Synthesis and cytotoxic activity of two steroids: icogenin aglycone analogs.
Guan, Yu-Yao; Li, Shu-Zhen; Lei, Ping-Sheng
2017-05-01
During the process of icogenin analog research, we obtained two cytotoxic steroids: compound 4 and compound 6 casually. Their in vitro antitumor activities were tested by the standard MTT assay. The results disclosed that compound 4 (IC 50 = 3.65-6.90 μM) showed potential antitumor activities against HELA, KB cell lines and compound 6 (IC 50 = 2.40-9.05 μM) showed potential antitumor activities against HELA, BGC-823, KB, A549, HCT-8 cell lines.
Anthwal, Amit; Thakur, Bandana K; Rawat, M S M; Rawat, D S; Tyagi, Amit K; Aggarwal, Bharat B
2014-01-01
In a search of new compounds active against cancer, synthesis of a series of C-5 curcumin analogues was carried out. The new compounds demonstrated good cytotoxicity against chronic myeloid leukemia (KBM5) and colon cancer (HCT116) cell lines. Further, these compounds were found to have better potential to inhibit TNF-α-induced NF-κB activation in comparison to curcumin, which show their potential to act as anti-inflammatory agents. Some compounds were found to show higher cytotoxicity against cancer cell lines in comparison to curcumin used as standard.
Ouyang, Liang; Cai, Haoyang; Liu, Bo
2016-01-01
Autophagy (macroautophagy) is well known as an evolutionarily conserved lysosomal degradation process for long-lived proteins and damaged organelles. Recently, accumulating evidence has revealed a series of small-molecule compounds that may activate or inhibit autophagy for therapeutic potential on human diseases. However, targeting autophagy for drug discovery still remains in its infancy. In this study, we developed a webserver called Autophagic Compound-Target Prediction (ACTP) (http://actp.liu-lab.com/) that could predict autophagic targets and relevant pathways for a given compound. The flexible docking of submitted small-molecule compound (s) to potential autophagic targets could be performed by backend reverse docking. The webpage would return structure-based scores and relevant pathways for each predicted target. Thus, these results provide a basis for the rapid prediction of potential targets/pathways of possible autophagy-activating or autophagy-inhibiting compounds without labor-intensive experiments. Moreover, ACTP will be helpful to shed light on identifying more novel autophagy-activating or autophagy-inhibiting compounds for future therapeutic implications. PMID:26824420
Gentry, Daniel R; Wilding, Imogen; Johnson, John M; Chen, Dongzhao; Remlinger, Katja; Richards, Cindy; Neill, Susan; Zalacain, Magdalena; Rittenhouse, Stephen F; Gwynn, Michael N
2010-11-01
We developed a homogenous microtiter based assay using the cationic dye 3, 3'-Diethyloxacarbocyanine iodide, DiOC2(3), to measure the effect of compounds on membrane potential in Staphylococcus aureus. In a screen of 372 compounds from a synthetic compound collection with anti-Escherichia coli activity due to unknown modes of action at least 17% demonstrated potent membrane activity, enabling rapid discrimination of nuisance compounds. Copyright © 2010. Published by Elsevier B.V.
Ooi, N; Eady, E A; Cove, J H; O'Neill, A J
2015-02-01
To investigate the antistaphylococcal/antibiofilm activity and mode of action (MOA) of a panel of redox-active (RA) compounds with a history of human use and to provide a preliminary preclinical assessment of their potential for topical treatment of staphylococcal infections, including those involving a biofilm component. Antistaphylococcal activity was evaluated by broth microdilution and by time-kill studies with growing and slow- or non-growing cells. The antibiofilm activity of RA compounds, alone and in combination with established antibacterial agents, was assessed using the Calgary Biofilm Device. Established assays were used to examine the membrane-perturbing effects of RA compounds, to measure penetration into biofilms and physical disruption of biofilms and to assess resistance potential. A living skin equivalent model was used to assess the effects of RA compounds on human skin. All 15 RA compounds tested displayed antistaphylococcal activity against planktonic cultures (MIC 0.25-128 mg/L) and 7 eradicated staphylococcal biofilms (minimum biofilm eradication concentration 4-256 mg/L). The MOA of all compounds involved perturbation of the bacterial membrane, whilst selected compounds with antibiofilm activity caused destructuring of the biofilm matrix. The two most promising agents [celastrol and nordihydroguaiaretic acid (NDGA)] in respect of antibacterial potency and selective toxicity against bacterial membranes acted synergistically with gentamicin against biofilms, did not damage artificial skin following topical application and exhibited low resistance potential. In contrast to established antibacterial drugs, some RA compounds are capable of eradicating staphylococcal biofilms. Of these, celastrol and NDGA represent particularly attractive candidates for development as topical antistaphylococcal biofilm treatments. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
The major bioactive components of seaweeds and their mosquitocidal potential.
Yu, Ke-Xin; Jantan, Ibrahim; Ahmad, Rohani; Wong, Ching-Lee
2014-09-01
Seaweeds are one of the most widely studied natural resources for their biological activities. Novel seaweed compounds with unique chemical structures have been reported for their pharmacological properties. The urge to search for novel insecticidal compound with a new mode of action for development of botanical insecticides supports the relevant scientific research on discovering the bioactive compounds in seaweeds. The mosquitocidal potential of seaweed extracts and their isolated compounds are documented in this review paper, along with the discussion on bioactivities of the major components of seaweeds such as polysaccharides, phenolics, proteins, terpenes, lipids, and halogenated compounds. The effects of seaweed extracts and compounds toward different life stages of mosquito (egg, larva, pupa, and adult), its growth, development, and reproduction are elaborated. The structure-activity relationships of mosquitocidal compounds are discussed to extrapolate the possible chemical characteristics of seaweed compounds responsible for insecticidal properties. Furthermore, the possible target sites and mode of actions of the mosquitocidal seaweed compounds are included in this paper. The potential synergistic effects between seaweeds and commercial insecticides as well as the toxic effects of seaweed extracts and compounds toward other insects and non-target organisms in the same habitat are also described. On top of that, various factors that influence the mosquitocidal potential of seaweeds, such as abiotic and biotic variables, sample preparation, test procedures, and considerations for a precise experimental design are discussed. The potential of active seaweed extracts and compounds in the development of effective bioinsecticide are also discussed.
Birkett, Michael A; Dodds, Catherine J; Henderson, Ian F; Leake, Lucy D; Pickett, John A; Selby, Martin J; Watson, Peter
2004-03-01
Extracts of volatiles from foliage of three plants in the Apiaceae, Conium maculatum L. (hemlock), Coriandrum sativum L. (coriander), and Petroselinum crispum Mill. (Nym.) (parsley), previously shown to exhibit antifeedant activity in assays with the field slug, Deroceras reticulatum (Muller) (Limacidae: Pulmonata), were studied further to identify the active components. Coupled gas chromatography-mass spectrometry (GC-MS) and neurophysiological assays using tentacle nerve preparations resulted in the identification of 11 active compounds from the three extracts. Wheat flour feeding bioassays were used to determine which of these compounds had the highest antifeedant activity. One of the most active compounds was the alkaloid gamma-coniceine, from C. maculatum. The role of potentially toxic alkaloids as semiochemicals and the potential for using such compounds as crop protection agents to prevent slug feeding damage is discussed.
Antioxidative and antiproliferative activities of novel pyrido[1,2-a]benzimidazoles.
Tireli, Martina; Starčević, Kristina; Martinović, Tamara; Pavelić, Sandra Kraljević; Karminski-Zamola, Grace; Hranjec, Marijana
2017-02-01
A series of pyrido[1,2-a]benzimidazoles has been designed, and novel examples are synthesized and evaluated for their potential antiproliferative activity against four human tumour cell lines-cervical (HeLa), colorectal (SW620), breast (MCF-7) and hepatocellular carcinoma (HepG2). In addition, their antioxidative potency has been evaluated by in vitro spectrophotometric assays. Preliminary structure-activity relationships among the synthesized compounds are discussed. Evaluation of their antioxidative capacity has shown that two compounds (25 and 26) possess promising reducing characteristics and free radical scavenging activity. Selective antiproliferative effect in the single-digit micromolar range was observed for compound 25 on MCF-7 [Formula: see text] and HeLa [Formula: see text] cell lines, comparable to the standards 5-fluorouracil and cisplatin. The combination of the radical scavenging activity and antiproliferative activity of compound 25 positions this compound as a potential lead candidate for further optimization.
NEW RENIN INHIBITORS - STABILITY AND ACTIVITY DETERMINATION. PART IV.
Marszalek, Dorota; Goldnik, Anna; Winiecka, Iwona; Jaworsk, Pawel; Mazurek Aleksander P
2017-03-01
A series of new seven potential renin inhibitors containing pseudodipeptides were synthesized. Stability for all compounds (1-7) in homogenates of liver, kidney, lung and in serum, gastric, intestinal juice and in the presence of α-chymotrypsin was determined. Compound 1 was unstable in all determined mediums. Compounds 2, 4, 5 and 7 were unstable, compound 3 was stable, compound 6 was unstable only in α-chy-motrypsin solution. Inhibitory activity of the compounds was measured in vitro by HPLC determination of low-ering concentration of substrate (angiotensinogen) in the presence of renin and the potential renin inhibitor (compounds 1-7). Compounds 1, 2, 4, 5, 6 and 7 showed inhibitory activity (1.12 x 10⁻⁷, 0.96 x 10⁻⁶, 1.58 x10⁻⁷,1.68 x 10⁻⁶, 1.30 x 10⁻⁶, 0.96 x 10⁻⁷M, respectively).
Lin, Chien-Min; Lin, Yi-Tzu; Lin, Rong-Dih; Huang, Wei-Jan; Lee, Mei-Hsien
2015-05-20
Lovastatin, a secondary metabolite isolated from Monascus-fermented red rice mold, has neuroprotective activity and permeates the blood-brain barrier. The aim of this study was to enhance the activity of lovastatin for potential use as a treatment for neuronal degeneration in Parkinson's disease. Six lovastatin-derived compounds were semisynthesized and screened for neurocytoprotective activity against 6-hydroxydopamine (6-OHDA)-induced toxicity in human neuroblastoma PC12 cells. Four compounds, designated as 3a, 3d, 3e, and 3f, significantly enhanced cell viability. In particular, compound 3f showed excellent neurocytoprotective activity (97.0 ± 2.7%). Annexin V-FITC and propidium iodide double staining and 4',6-diamidino-2-phenylindole staining indicated that compound 3f reduced 6-OHDA-induced apoptosis in PC12 cells. Compound 3f also reduced caspase-3, -8, and -9 activities, and intracellular calcium concentrations elevated by 6-OHDA in a concentration-dependent manner, without inhibiting reactive oxygen species generation. JC-1 staining indicated that compound 3f also stabilized mitochondrial membrane potential. Thus, compound 3f may be used as a neurocytoprotective agent. Future studies should investigate its potential application as a treatment for Parkinson's disease.
In vitro activity of synthetic tetrahydroindeno[2,1-c]quinolines on Leishmania mexicana.
Hernández-Chinea, Concepción; Carbajo, Erika; Sojo, Felipe; Arvelo, Francisco; Kouznetsov, Vladimir V; Romero-Bohórquez, Arnold R; Romero, Pedro J
2015-12-01
New synthetic compounds based on tetrahydroindenoquinoline structure were evaluated for their in vitro antileishmanial activities. The seven compounds assayed have antiproliferative activities against promastigotes of Leishmania mexicana. Compound 1 and 3 were the most active (IC50 1.0 μg/ml) and showed high selectivity towards the parasite. These compounds were selected to evaluate their effect on promastigote morphology and mitochondrial transmembrane potential as well as on the amastigote capability to survive into macrophages J774 cell line. Whereas compound 1 affected the promastigote cell cycle, compound 3 induced morphological changes and the total collapse of the mitochondrial transmembrane potential, a hallmark of apoptosis. Both compounds also affected the amastigote form of the parasite, decreasing their survival rate in J774 macrophages. Due to the greatest selectivity index, the apparent effect as apoptotic inducer and its sustained inhibition on intracellular amastigote replication, compound 3 is the best candidate to be tested in vivo. This compound is worth considering for the development of new antileishmanial drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ikhile, M. I.; Barnard, T. G.; Ngila, J. C.
2017-08-01
This work reports a study towards a search for environmentally friendly water disinfectant. The most common method for water treatment is based on chlorine which had a wide application over the years as a water disinfectant, but suffer the disadvantage of reacting with natural organic matter to form disinfection by products. In this study, the potential application of novel ferrocenylimines compounds, namely 4-ferrocenylaniline (1), N-(3-bromo-2-hydroxylbenzylidene)-4-ferrocenylimine (2) and N-(3-bromo-5-chlorosalicyl)-4-ferrocenylimine (3) for the elimination of bacteria in water was investigated by evaluating their antibacterial properties against twelve different bacterial strains using microdilution method in sterile 96 well micro titer plates. The in vitro antibacterial activity revealed that the ferrocenylimines compound exhibit higher antibacterial activity than ferrocene, which is one of the starting materials towards the synthesis of this novel ferrocenylimines compounds. The most active ferrocenylimines compound was compound 3 with a minimal inhibitory concentration (MIC) value of 0.30 mg/ml against S. sonnei. In addition, all the ferrocenylimines compounds possessed excellent antibacterial activity against B. cereus with the same MIC value of 0.31 mg/ml. The results obtained so far show great potential in the three tested ferrocenylimines compounds for use in water treatment in killing bacteria in water.
Lead optimization of antimalarial propafenone analogues.
Lowes, David; Pradhan, Anupam; Iyer, Lalitha V; Parman, Toufan; Gow, Jason; Zhu, Fangyi; Furimsky, Anna; Lemoff, Andrew; Guiguemde, W Armand; Sigal, Martina; Clark, Julie A; Wilson, Emily; Tang, Liang; Connelly, Michele C; Derisi, Joseph L; Kyle, Dennis E; Mirsalis, Jon; Guy, R Kiplin
2012-07-12
Previously reported studies identified analogues of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are nontoxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges.
Sandoval-Castro, Claudia Jaqueline; Valdez-Morales, Maribel; Oomah, B Dave; Gutiérrez-Dorado, Roberto; Medina-Godoy, Sergio; Espinosa-Alonso, L Gabriela
2017-06-01
Bioactive compounds and antioxidant activity were evaluated from industrial Jalapeño pepper byproducts and simulated non processed byproducts from two Mexican states (Chihuahua and Sinaloa) to determine their value added potential as commercial food ingredients. Aqueous 80% ethanol produced about 13% of dry extract of polar compounds. Total phenolic content increased and capsaicin and dihydrocapsaicin decreased on scalding samples (80 °C, 2 min) without affecting ascorbic acid. The major phenolic compounds, rutin, epicatechin and catechin comprised 90% of the total compounds detected by HPLC of each Jalapeño pepper byproducts. ORAC analysis showed that the origin and scalding process affected the antioxidant activity which correlated strongly with capsaicin content. Although scalding decreased capsaicinoids (up to 42%), phenolic content by (up to 16%), and the antioxidant activity (variable). Jalapeño pepper byproduct is a good source of compounds with antioxidant activity, and still an attractive ingredient to develop useful innovative products with potential food/non-food applications simultaneously reducing food loss and waste.
El-Hawash, Soad A M; Soliman, Raafat; Youssef, Amal M; Ragab, Hanan M A; Elzahhar, Perihan A S; El-Ashmawey, Ibrahim M; Abdel Wahab, Abeer E; Shaat, Iman A
2014-05-01
A series of substituted pyridinylpyrazole (or isoxazole) derivatives were synthesized and evaluated for their anti-inflammatory (AI) activity using formalin-induced paw edema bioassays. Their inhibitory activities of cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) were also determined. The analgesic activity of the same compounds was evaluated using rat-tail withdrawal technique. Their antipyretic activity was also evaluated. The results revealed that compounds 4a,b, 6a, 8a, 14c and 15a exhibited significant AI and analgesic activities. Compounds 5a, 6a and 8a displayed good antipyretic activity. Compounds 14c and 15a showed good COX-2 inhibitory activity and weak inhibition of COX-1. Additionally, the most active compounds were shown to have a large safety margin (ALD50 >300-400 mg / Kg) and minimal ulcerogenic potentialities when administered orally at a dose of 300 mg/Kg. Docking studies for 14c and 15a with COX-2 showed good binding profile. Antimicrobial evaluation proved that most of the compounds exhibited distinctive activity against the gram negative bacteria, P. aeruginosa and E coli.
Khan, Hamayun; Amin, Hazrat; Ullah, Asad; Saba, Sumbal; Rafique, Jamal; Khan, Khalid; Ahmad, Nasir; Badshah, Syed Lal
2016-01-01
Two important biologically active compounds were isolated from Mallotus philippensis. The isolated compounds were characterized using spectroanalytical techniques and found to be bergenin (1) and 11-O-galloylbergenin (2). The in vitro antioxidant and antiplasmodial activities of the isolated compounds were determined. For the antioxidant potential, three standard analytical protocols, namely, DPPH radical scavenging activity (RSA), reducing power assay (RPA), and total antioxidant capacity (TAC) assay, were adopted. The results showed that compound 2 was found to be more potent antioxidant as compared to 1. Fascinatingly, compound 2 displayed better EC50 results as compared to α-tocopherol while being comparable with ascorbic acid. The antiplasmodial assay data showed that both the compound exhibited good activity against chloroquine sensitive strain of Plasmodium falciparum (D10) and IC50 values were found to be less than 8 μM. The in silico molecular docking analyses were also performed for the determination of binding affinity of the isolated compounds using P. falciparum proteins PfLDH and Pfg27. The results showed that compound 2 has high docking score and binding affinity to both protein receptors as compared to compound 1. The demonstrated biological potentials declared that compound 2 could be the better natural antioxidant and antiplasmodial candidate. PMID:26998192
NASA Astrophysics Data System (ADS)
Dimova, Dilyana; Bajorath, Jürgen
2017-07-01
Computational scaffold hopping aims to identify core structure replacements in active compounds. To evaluate scaffold hopping potential from a principal point of view, regardless of the computational methods that are applied, a global analysis of conventional scaffolds in analog series from compound activity classes was carried out. The majority of analog series was found to contain multiple scaffolds, thus enabling the detection of intra-series scaffold hops among closely related compounds. More than 1000 activity classes were found to contain increasing proportions of multi-scaffold analog series. Thus, using such activity classes for scaffold hopping analysis is likely to overestimate the scaffold hopping (core structure replacement) potential of computational methods, due to an abundance of artificial scaffold hops that are possible within analog series.
Decoys Selection in Benchmarking Datasets: Overview and Perspectives
Réau, Manon; Langenfeld, Florent; Zagury, Jean-François; Lagarde, Nathalie; Montes, Matthieu
2018-01-01
Virtual Screening (VS) is designed to prospectively help identifying potential hits, i.e., compounds capable of interacting with a given target and potentially modulate its activity, out of large compound collections. Among the variety of methodologies, it is crucial to select the protocol that is the most adapted to the query/target system under study and that yields the most reliable output. To this aim, the performance of VS methods is commonly evaluated and compared by computing their ability to retrieve active compounds in benchmarking datasets. The benchmarking datasets contain a subset of known active compounds together with a subset of decoys, i.e., assumed non-active molecules. The composition of both the active and the decoy compounds subsets is critical to limit the biases in the evaluation of the VS methods. In this review, we focus on the selection of decoy compounds that has considerably changed over the years, from randomly selected compounds to highly customized or experimentally validated negative compounds. We first outline the evolution of decoys selection in benchmarking databases as well as current benchmarking databases that tend to minimize the introduction of biases, and secondly, we propose recommendations for the selection and the design of benchmarking datasets. PMID:29416509
Lead Optimization of Anti-Malarial Propafenone Analogs
Lowes, David; Pradhan, Anupam; Iyer, Lalitha V.; Parman, Toufan; Gow, Jason; Zhu, Fangyi; Furimsky, Anna; Lemoff, Andrew; Guiguemde, W. Armand; Sigal, Martina; Clark, Julie A.; Wilson, Emily; Tang, Liang; Connelly, Michele C.; DeRisi, Joseph L.; Kyle, Dennis E.; Mirsalis, Jon; Guy, R. Kiplin
2015-01-01
Previously reported studies identified analogs of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are non-toxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges. PMID:22708838
Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity.
Sang-Ngern, Mayuramas; Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Simmons, Charles J; Wall, Marisa M; Ruf, Michael; Lorch, Sam E; Leong, Ethyn; Pezzuto, John M; Chang, Leng Chee
2016-06-15
Three new withanolides, physaperuvin G (1), with physaperuvins I (2), and J (3), along with seven known derivatives (4-10), were isolated from the aerial parts of Physalis peruviana. The structures of 1-3 were determined by NMR, X-ray diffraction, and mass spectrometry. Compounds 1-10 were evaluated in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells. Compounds 4, 5, and 10 with potent nitric oxide inhibitory activity in LPS-activated RAW 264.7 cells, with IC50 values in the range of 0.32-7.8μM. In addition, all compounds were evaluated for potential to inhibit tumor necrosis factor-alpha (TNF-α)-activated nuclear factor-kappa B (NF-κB) activity with transfected human embryonic kidney cells 293. Compounds 4-7 inhibited TNF-α-induced NF-κB activity with IC50 values in the range of 0.04-5.6μM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Penna-Coutinho, Julia; Cortopassi, Wilian Augusto; Oliveira, Aline Alves; França, Tanos Celmar Costa; Krettli, Antoniana Ursine
2011-01-01
The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH) has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH) all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH) and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole) were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2). The IC50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM) and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use. PMID:21779323
Therapeutic potential and health benefits of Sargassum species
Yende, Subhash R.; Harle, Uday N.; Chaugule, Bhupal B.
2014-01-01
Sargassum species are tropical and sub-tropical brown macroalgae (seaweed) of shallow marine meadow. These are nutritious and rich source of bioactive compounds such as vitamins, carotenoids, dietary fibers, proteins, and minerals. Also, many biologically active compounds like terpenoids, flavonoids, sterols, sulfated polysaccharides, polyphenols, sargaquinoic acids, sargachromenol, pheophytine were isolated from different Sargassum species. These isolated compounds exhibit diverse biological activities like analgesic, anti-inflammatory, antioxidant, neuroprotective, anti-microbial, anti-tumor, fibrinolytic, immune-modulatory, anti-coagulant, hepatoprotective, anti-viral activity etc., Hence, Sargassum species have great potential to be used in pharmaceutical and neutralceutical areas. This review paper explores the current knowledge of phytochemical, therapeutic potential, and health benefits of different species of genus Sargassum. PMID:24600190
Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents.
Qin, Hua-Li; Leng, Jing; Youssif, Bahaa G M; Amjad, Muhammad Wahab; Raja, Maria Abdul Ghafoor; Hussain, Muhammad Ajaz; Hussain, Zahid; Kazmi, Syeda Naveed; Bukhari, Syed Nasir Abbas
2017-09-01
The incidence of cancer can be decreased by chemoprevention using either natural or synthetic agents. Apart from synthetic compounds, numerous natural products have exhibited promising potential to inhibit carcinogenesis in vivo. In this study, α, β-unsaturated carbonyl-based anticancer compounds were used as starting materials to synthesize new oxime analogs. The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship. The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines. The mechanistic effects of compounds on EGFR-TK kinases and tubulin polymerization and BRAF V 600E were investigated. In addition, the efficacy of compounds in reversing the efflux-mediated resistance developed by cancer cells was also studied. The compounds 5a and 6a displayed potent activity on various targets such as BRAF V 600E and EGFR-TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents. © 2017 John Wiley & Sons A/S.
Efficient Synthesis and Bioactivity of Novel Triazole Derivatives.
Hu, Boyang; Zhao, Hanqing; Chen, Zili; Xu, Chen; Zhao, Jianzhuang; Zhao, Wenting
2018-03-21
Triazole pesticides are organic nitrogen-containing heterocyclic compounds, which contain 1,2,3-triazole ring. In order to develop potential glucosamine-6-phosphate synthase (GlmS) inhibitor fungicides, forty compounds of triazole derivatives were synthesized in an efficient way, thirty nine of them were new compounds. The structures of all the compounds were confirmed by high resolution mass spectrometer (HRMS), ¹H-NMR and 13 C-NMR. The fungicidal activities results based on means of mycelium growth rate method indicated that some of the compounds exhibited good fungicidal activities against P. CapasiciLeonian , Sclerotinia sclerotiorum (Lib.) de Bary, Pyricularia oryzae Cav. and Fusarium oxysporum Schl. F.sp. vasinfectum (Atk.) Snyd. & Hans. at the concentration of 50 µg/mL, especially the inhibitory rates of compounds 1-d and 1-f were over 80%. At the same time, the preliminary studies based on the Elson-Morgan method indicated that the compounds exhibited some inhibitory activity toward glucosamine-6-phosphate synthase (GlmS). These compounds will be further studied as potential antifungal lead compounds. The structure-activity relationships (SAR) were discussed in terms of the effects of the substituents on both the benzene and the sugar ring.
Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana
2014-01-01
The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249
The Pharmacological Potential of Mushrooms
2005-01-01
This review describes pharmacologically active compounds from mushrooms. Compounds and complex substances with antimicrobial, antiviral, antitumor, antiallergic, immunomodulating, anti-inflammatory, antiatherogenic, hypoglycemic, hepatoprotective and central activities are covered, focusing on the review of recent literature. The production of mushrooms or mushroom compounds is discussed briefly. PMID:16136207
Pyle, Louise C.; Ehrhardt, Annette; Mitchell, Lisa High; Fan, LiJuan; Ren, Aixia; Naren, Anjaparavanda P.; Li, Yao; Clancy, J. P.; Bolger, Graeme B.; Sorscher, Eric J.
2011-01-01
Modulator compounds intended to overcome disease-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) show significant promise in clinical testing for cystic fibrosis. However, the mechanism(s) of action underlying these compounds are not fully understood. Activation of CFTR ion transport requires PKA-regulated phosphorylation of the regulatory domain (R-D) and dimerization of the nucleotide binding domains. Using a newly developed assay, we evaluated nine compounds including both CFTR potentatiators and activators discovered via various high-throughput screening strategies to acutely augment CFTR activity. We found considerable differences in the effects on R-D phosphorylation. Some (including UCCF-152) stimulated robust phosphorylation, and others had little effect (e.g., VRT-532 and VX-770). We then compared CFTR activation by UCCF-152 and VRT-532 in Ussing chamber studies using two epithelial models, CFBE41o− and Fischer rat thyroid cells, expressing various CFTR forms. UCCF-152 activated wild-type-, G551D-, and rescued F508del-CFTR currents but did not potentiate cAMP-mediated CFTR activation. In contrast, VRT-532 moderately activated CFTR short-circuit current and strongly potentiated forskolin-mediated current. Combined with the result that UCCF-152, but not VRT-532 or VX-770, acts by increasing CFTR R-D phosphorylation, these findings indicate that potentiation of endogenous cAMP-mediated activation of mutant CFTR is not due to a pathway involving augmented R-D phosphorylation. This study presents an assay useful to distinguish preclinical compounds by a crucial mechanism underlying CFTR activation, delineates two types of compound able to acutely augment CFTR activity (e.g., activators and potentiators), and demonstrates that a number of different mechanisms can be successfully employed to activate mutant CFTR. PMID:21724857
Arora, Sanjeevani; Heyza, Joshua; Zhang, Hao; Kalman-Maltese, Vivian; Tillison, Kristin; Floyd, Ashley M.; Chalfin, Elaine M.; Bepler, Gerold; Patrick, Steve M.
2016-01-01
ERCC1-XPF heterodimer is a 5′-3′ structure-specific endonuclease which is essential in multiple DNA repair pathways in mammalian cells. ERCC1-XPF (ERCC1-ERCC4) repairs cisplatin-DNA intrastrand adducts and interstrand crosslinks and its specific inhibition has been shown to enhance cisplatin cytotoxicity in cancer cells. In this study, we describe a high throughput screen (HTS) used to identify small molecules that inhibit the endonuclease activity of ERCC1-XPF. Primary screens identified two compounds that inhibit ERCC1-XPF activity in the nanomolar range. These compounds were validated in secondary screens against two other non-related endonucleases to ensure specificity. Results from these screens were validated using an in vitro gel-based nuclease assay. Electrophoretic mobility shift assays (EMSAs) further show that these compounds do not inhibit the binding of purified ERCC1-XPF to DNA. Next, in lung cancer cells these compounds potentiated cisplatin cytotoxicity and inhibited DNA repair. Structure activity relationship (SAR) studies identified related compounds for one of the original Hits, which also potentiated cisplatin cytotoxicity in cancer cells. Excitingly, dosing with NSC16168 compound potentiated cisplatin antitumor activity in a lung cancer xenograft model. Further development of ERCC1-XPF DNA repair inhibitors is expected to sensitize cancer cells to DNA damage-based chemotherapy. PMID:27650543
Synthesis and evaluation of new 3-phenylcoumarin derivatives as potential antidepressant agents.
Sashidhara, Koneni V; Rao, K Bhaskara; Singh, Seema; Modukuri, Ram K; Aruna Teja, G; Chandasana, Hardik; Shukla, Shubha; Bhatta, Rabi S
2014-10-15
A series of amine substituted 3-phenyl coumarin derivatives were designed and synthesized as potential antidepressant agents. In preliminary screening, all compounds were evaluated in forced swimming test (FST), a model to screen antidepressant activity in rodents. Among the series, compounds 5c and 6a potentially decreased the immobility time by 73.4% and 79.7% at a low dose of 0.5 mg/kg as compared to standard drug fluoxetine (FXT) which reduced the immobility time by 74% at a dose of 20 mg/kg, ip. Additionally, these active compounds also exhibited significant efficacy in tail suspension test (TST) (another model to screen antidepressant compounds). Interestingly, rotarod and locomotor activity tests confirmed that these two compounds do not have any motor impairment effect and neurotoxicity in mice. Our studies demonstrate that the new 3-phenylcoumarin derivatives may serve as a promising antidepressant lead and hence pave the way for further investigation around this chemical space. Copyright © 2014 Elsevier Ltd. All rights reserved.
Paemanee, Atchara; Hitakarun, Atitaya; Roytrakul, Sittiruk; Smith, Duncan R
2018-05-16
Infections with the mosquito transmitted dengue virus (DENV) are a significant public health burden in many parts of the world. Despite the introduction of a commercial vaccine in some parts of the world, the majority of the populations at risk of infection remain unprotected against this disease, and there is currently no treatment for DENV infection. Natural compounds offer the prospect of cheap and sustainable therapeutics to reduce the disease burden during infection, and thus potentially alleviate the risk of more severe disease. This study evaluated the potential anti-DENV 2 activity of five natural compounds namely melatonin, α-tocopherol, folic acid, acetyl-L-carnitine and resveratrol in two different cell lines. Screening of the compounds showed that one compound (acetyl-L-carnitine) showed no effect on DENV infection, three compounds (melatonin, α-tocopherol and folic acid) slightly increased levels of infection, while the 5th compound, resveratrol, showed some limited anti-DENV activity, with resveratrol reducing virus output with an EC 50 of less than 25 μM. These results suggest that some commonly taken natural compounds may have beneficial effects on DENV infection, but that others may potentially add to the disease burden.
Luthra, Priya; Liang, Jue; Pietzsch, Colette A; Khadka, Sudip; Edwards, Megan R; Wei, Shuguang; De, Sampriti; Posner, Bruce; Bukreyev, Alexander; Ready, Joseph M; Basler, Christopher F
2018-02-01
Ebola virus (EBOV) is an enveloped negative-sense, single-stranded RNA virus of the filovirus family that causes severe disease in humans. Approved therapies for EBOV disease are lacking. EBOV RNA synthesis is carried out by a virus-encoded complex with RNA-dependent RNA polymerase activity that is required for viral propagation. This complex and its activities are therefore potential antiviral targets. To identify potential lead inhibitors of EBOV RNA synthesis, a library of small molecule compounds was screened against a previously established assay of EBOV RNA synthesis, the EBOV minigenome assay (MGA), in 384 well microplate format. The screen identified 56 hits that inhibited EBOV MGA activity by more than 70% while exhibiting less than 20% cell cytotoxicity. Inhibitory chemical scaffolds included angelicin derivatives, derivatives of the antiviral compound GSK983 and benzoquinolines. Structure-activity relationship (SAR) studies of the benzoquinoline scaffold produced ∼50 analogs and led to identification of an optimized compound, SW456, with a submicromolar IC 50 in the EBOV MGA and antiviral activity against infectious EBOV in cell culture. The compound was also active against a MGA for another deadly filovirus, Marburg virus. It also exhibited antiviral activity towards a negative-sense RNA virus from the rhabdovirus family, vesicular stomatitis virus, and a positive-sense RNA virus, Zika virus. Overall, these data demonstrate the potential of the EBOV MGA to identify anti-EBOV compounds and identifies the benzoquinoline series as a broad-spectrum antiviral lead. Copyright © 2017. Published by Elsevier B.V.
Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li
2017-01-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structureâactivity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...
Mehta-Kolte, Misha G.
2012-01-01
The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential. PMID:22843516
Bano, Bilquees; Arshia; Khan, Khalid Mohammed; Kanwal; Fatima, Bibi; Taha, Muhammad; Ismail, Nor Hadiani; Wadood, Abdul; Ghufran, Mehreen; Perveen, Shahnaz
2017-10-20
In this study synthesis and β-glucuronidase inhibitory potential of 3/5/8 sulfonamide and 8-sulfonate derivatives of quinoline (1-40) are discussed. Studies reveal that all the synthetic compounds were found to have good inhibitory activity against β-glucuronidase. Nonetheless, compounds 1, 2, 5, 13, and 22-24 having IC 50 values in the range of 1.60-8.40 μM showed superior activity than the standard saccharic acid 1,4-lactone (IC 50 = 48.4 ± 1.25 μM). Moreover, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites. Structures of all the synthetic compounds were confirmed through 1 H NMR, EI-MS and HREI-MS spectroscopic techniques. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Choi, Seoung-Ryoung; Frandsen, Joel; Narayanasamy, Prabagaran
2017-01-10
Menaquinone (MK) biosynthesis pathway is a potential target for evaluating antimicrobials in gram-positive bacteria. Here, 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) was targeted to reduce methicillin-resistant Staphylococcus aureus (MRSA) growth. MenA inhibiting, long chain-based compounds were designed, synthesized and evaluated against MRSA and menaquinone utilizing bacteria in aerobic conditions. The results showed that these bacteria were susceptible to most of the compounds. Menaquinone (MK-4) supplementation rescued MRSA growth, suggesting these compounds inhibit MK biosynthesis. 3a and 7c exhibited promising inhibitory activities with MICs ranging 1-8 μg/mL against MRSA strains. The compounds did not facilitate small colony variant formation. These compounds also inhibited the biofilm growth by MRSA at high concentration. Compounds 3a, 6b and 7c displayed a promising extracellular bactericidal activity against MRSA at concentrations equal to and four-fold less than their respective MICs. We also observed cytokines released from THP-1 macrophages treated with compounds 3a, 6b and 7c and found decreases in TNF-α and IL-6 release and increase in IL-1β. These data provide evidence that MenA inhibitors act as TNF-α and IL-6 inhibitors, raising the potential for development and application of these compounds as potential immunomodulatory agents.
Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna; Joy, Minju
2017-03-01
Heterotrophic Bacillus amyloliquefaciens associated with edible red seaweed, Laurenciae papillosa was used to isolate antibacterial polyketide compounds. Antibacterial activity studies integrated with the outcome obtained by polyketide synthetase (pks) coding genes established that seaweed-affiliated bacterial flora had a wide-ranging antibacterial activities and potential natural product diversity, which proved that the bacterium is valuable reservoir of novel bioactive metabolites. Bioactivity-guided isolation of 3-(octahydro-9-isopropyl-2H-benzo[h]chromen-4-yl)-2-methylpropyl benzoate and methyl 8-(2-(benzoyloxy)-ethyl)-hexahydro-4-((E)-pent-2-enyl)-2H-chromene-6-carboxylate of polyketide origin, with activity against human opportunistic food pathogenic microbes, have been isolated from the ethyl acetate extract of B. amyloliquefaciens. Structure-activity relationship analysis revealed that hydrophobic descriptor of the polyketide compounds significantly contribute towards its antibacterial activity. Seaweed-associated microorganisms were shown to represent a potential source of antimicrobial compounds for food and health benefits. The antibacterial polyketide compounds described in the present study may find potential applications in the food industry to reduce food-borne pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Luo, Wen; Wang, Ting; Hong, Chen; Yang, Ya-Chen; Chen, Ying; Cen, Juan; Xie, Song-Qiang; Wang, Chao-Jie
2016-10-21
A new series of 4-dimethylamine flavonoid derivatives were designed and synthesized as potential multifunctional anti-Alzheimer agents. The inhibition of cholinesterase activity, self-induced β-amyloid (Aβ) aggregation, and antioxidant activity by these derivatives was investigated. Most of the compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. A Lineweaver-Burk plot and molecular modeling study showed that these compounds targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. The derivatives showed potent self-induced Aβ aggregation inhibition and peroxyl radical absorbance activity. Moreover, compound 6d significantly protected PC12 neurons against H2O2-induced cell death at low concentrations. Thus, these compounds could become multifunctional agents for further development for the treatment of AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Ashok, Dongamanti; Gundu, Srinivas; Aamate, Vikas Kumar; Devulapally, Mohan Gandhi
2018-04-18
A new series of triheterocycles containing indole-benzimidazole-based 1,2,3-triazole hybrids have been synthesized in good yields via a microwave-assisted click reaction. All the compounds were characterized by IR, [Formula: see text] NMR, [Formula: see text] NMR and mass spectroscopy and were evaluated for their in vitro antitubercular activity against the Mycobacterium tuberculosis H37Rv strain. Compounds 4b, 4h and 4i displayed highly potent antitubercular activity with MIC 3.125-6.25 [Formula: see text]. The antioxidant potential was evaluated using 2,2-diphenyl-1-picryl hydrazine and [Formula: see text] radical scavenging activity, and compounds 4e,4f and 4g showed excellent radical scavenging activity with [Formula: see text] values in the range of 08.50-10.05 [Formula: see text]. Furthermore, the compounds were evaluated for antimicrobial activity against numerous bacterial and fungal strains, and compounds 4b, 4c and 4h were found to be the most promising potential antimicrobial molecules with MIC 3.125-6.25 [Formula: see text].
Huang, Nan; Rizshsky, Ludmila; Hauck, Cathy; Nikolau, Basil J.; Murphy, Patricia A.; Birt, Diane F.
2011-01-01
Hypericum perforatum (St. John’s wort) is an herb widely used as supplement for mild to moderate depression. Our prior studies revealed synergistic anti-inflammatory activity associated with 4 bioactive compounds in a fraction of H. perforatum ethanol extract. Whether these 4 compounds also contributed to the ethanol extract activity was addressed in the research reported here. Despite the popularity of H. perforatum, other Hypericum species with different phytochemical profiles could have their anti-inflammatory potentials attributed to these or other compounds. In the current study, ethanol extracts of different Hypericum species were compared for their inhibitory effect on LPS-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 mouse macrophages. Among these extracts, those made from H. perforatum and H. gentianoides demonstrated stronger overall efficacy. LC-MS analysis indicated the 4 compounds in H. perforatum extract and pseudohypericin in all active fractions. The 4 compounds accounted for a significant part of the extract’s inhibitory activity on PGE2, NO, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW 264.7 as well as peritoneal macrophages. Pseudohypericin was the most important contributor of the anti-inflammatory potential among the 4 compounds. The lipophilic fractions of H. gentianoides extract, which did not contain the previously identified active constituents, decreased PGE2 and NO potently. These fractions were rich in acylphloroglucinols, including uliginosin A that accounted for a proportion of the anti-inflammatory activity observed with the active fractions. Overall, the current study revealed a different group of major anti-inflammatory constituents in H. gentianoides, while showing that a previously identified 4 compounds combination was important for H. perforatum’s anti-inflammatory potential. PMID:21855951
Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman
2009-03-01
A new class of novel bis-benzimidazole diamidine compounds have been synthesized and evaluated for in vitro antibacterial activities, including drug-resistant bacterial strains. Anti-MRSA and anti-VRE activities of the most potent compound 1 were more active than Vancomycin. The mechanism of action for this class of compounds appears to be different from existing antibiotics. Bis-benzimidazole diamidine compounds have potential for further investigation as a new class of potent anti-MRSA and anti-VRE agents.
Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.
Liu, Juan; Jung, Jee H; Liu, Yonghong
2016-01-01
It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.
A workflow to investigate exposure and pharmacokinetic ...
Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption, distribution, metabolism, excretion (ADME) properties of chemicals. We developed a conceptual workflow to consider exposure and ADME properties in relationship to an MIE and demonstrated the utility of this workflow using a previously established AOP, acetylcholinesterase (AChE) inhibition. Thirty active chemicals found to inhibit AChE in the ToxCastTM assay were examined with respect to their exposure and absorption potentials, and their ability to cross the blood-brain barrier. Structural similarities of active compounds were compared against structures of inactive compounds to detect possible non-active parents that might have active metabolites. Fifty-two of the 1,029 inactive compounds exhibited a similarity threshold above 75% with their nearest active neighbors. Excluding compounds that may not be absorbed, 22 could be potentially toxic following metabolism. The incorporation of exposure and ADME properties into the conceptual workflow resulted in prioritization of 20 out of 30 active compounds identified in an AChE inhibition assay for further analysis, along with identification of several inactive parent compounds of active metabolites. This qualitative approach can minimize co
Oliveira, Alexandre A; Oliveira, Ana P A; Franco, Lucas L; Ferencs, Micael O; Ferreira, João F G; Bachi, Sofia M P S; Speziali, Nivaldo L; Farias, Luiz M; Magalhães, Paula P; Beraldo, Heloisa
2018-05-07
In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.
Cajanus cajan- a source of PPARγ activators leading to anti-inflammatory and cytotoxic effects.
Schuster, Roswitha; Holzer, Wolfgang; Doerfler, Hannes; Weckwerth, Wolfram; Viernstein, Helmut; Okonogi, Siriporn; Mueller, Monika
2016-09-14
Cajanus cajan is an important legume crop in the human diet in many parts of the world. Due to its pharmacological properties, C. cajan is, moreover, used in traditional medicine for treating skin diseases, diabetes, inflammatory disorders and various other dysfunctions. In this study, we focused on the role of peroxisome proliferator-activated receptor gamma (PPARγ) as a potential therapeutic target of Cajanus cajan and its main compounds for the treatment of cancer, inflammation and inflammation-related disorders. The anti-inflammatory potential of C. cajan and its bioactive compounds and their cytotoxicity on the human cervical adenocarcinoma cell line HeLa, the human colorectal adenocarcinoma cell line CaCo-2 and the human breast adenocarcinoma cell line MCF-7 were elucidated. C. cajan and its compounds exerted significant anti-inflammatory activity on lipopolysaccharide-stimulated macrophages, showed good cytotoxic effects on the 3 different cancer cell lines and proved PPARγ activity in vitro. The main active compounds were orientin, pinostrobin and vitexin. Cajaninstilbene acid and pinosylvin monomethylether were identified as novel PPARγ activators. Based on these data, C. cajan provides excellent beneficial medicinal attributes and may be used as a potential food or a pharmaceutical supplement.
Therapeutic Potential of Pterocarpus santalinus L.: An Update
Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy
2016-01-01
Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with “up-to-date” discussion. PMID:27041873
Therapeutic Potential of Pterocarpus santalinus L.: An Update.
Bulle, Saradamma; Reddyvari, Hymavathi; Nallanchakravarthula, Varadacharyulu; Vaddi, Damodara Reddy
2016-01-01
Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with "up-to-date" discussion.
Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi
2015-01-01
Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459
Alafeefy, Ahmed M; Bakht, Mohammed A; Ganaie, Majid A; Ansarie, Mohd N; El-Sayed, Nahed N; Awaad, Amani S
2015-01-15
A series of certain novel Schiff bases as fenamate isosteres (VI:a-k) were synthesized to locate analgesic, anti-inflammatory agent with minimal ulcerogenic potential. The structures of the newly synthesized compounds were elucidated on the basis of their elemental analysis as well as IR, and NMR and mass spectroscopic data. All the compounds were evaluated for their anti-inflammatory activity by carrageenan induced paw oedema method. The compounds possessing good anti-inflammatory activity were further tested for analgesic, ulcerogenic, lipid peroxidation potentials and liver toxicity. Compounds (VI-c), (VI-f), (VI-h) and (VI-i) showed the best anti-inflammatory and significant analgesic activities at doses comparable to that of the standard drug Indomethacin. However, compounds (VI-c) and (VI-f) could be considered the most potent anti-inflammatory and analgesic molecules with maximum reduction in gastro-intestinal ulceration with no hepatocyte necrosis or liver degeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Venkatesh, Talavara; Bodke, Yadav Dasharathrao; Joy, Muthipeedika Nibin; Dhananjaya, Bhadrapura Lakkappa; Venkataraman, Sivaramakrishnan
2018-01-01
In this investigation, the synthesis of 2-substituted pyrimidines by the reaction of benzofuran chalcones (3a-d) with urea, thiourea and guanidine hydrochloride was reported. The structures of title compounds (4a-d), (5a-d) and (6a-d) were established on the basis of analytical and spectral data. The synthesized compounds were screened for antimicrobial activity and molecular docking studies. Some of the compounds displayed excellent antimicrobial activity. The molecular docking analysis revealed that compounds 5a and 5c with the lowest binding energy in comparison to others suggesting its potential as best inhibitor of GluN-6-P. Consequently, it is confirmed from the above analysis that the compounds 5a and 5c might serve as a useful backbone scaffold for rational design, adaptation and investigation of more active analogs as potential broad spectrum antimicrobial agents.
Potential Antiviral Agents from Marine Fungi: An Overview
Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan
2015-01-01
Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947
Na, Younghwa; Nam, Jung-Min
2011-01-01
In order to find potential anticancer drug candidate targeting topoisomerases enzyme, we have designed and synthesized oxiranylmethoxy- and thiiranylmethoxy-retrochalcone derivatives and evaluated their pharmacological activity including topoisomerases inhibitory and cytotoxic activity. Of the compounds prepared compound 25 showed comparable or better cytotoxic activity against cancer cell lines tested. Compound 25 inhibited MCF7 (IC(50): 0.49 ± 0.21 μM) and HCT15 (IC(50): 0.23 ± 0.02 μM) carcinoma cell growth more efficiently than references. In the topoisomerases inhibition test, all the compounds were inactive to topoisomerase I but moderate inhibitors to topoisomerase II enzyme. Especially, compound 25 inhibited topoisomerase II activity with comparable extent to etoposide at 100 μM concentrations. Correlation between cytotoxicity and topoisomerase II inhibitory activity implies that compound 25 can be a possible lead compound for anticancer drug impeding the topoisomerase II function. Copyright © 2010 Elsevier Ltd. All rights reserved.
Chacón-Vargas, Karla Fabiola; Nogueda-Torres, Benjamin; Sánchez-Torres, Luvia E; Suarez-Contreras, Erick; Villalobos-Rocha, Juan Carlos; Torres-Martinez, Yuridia; Lara-Ramirez, Edgar E; Fiorani, Giulia; Krauth-Siegel, R Luise; Bolognesi, Maria Laura; Monge, Antonio; Rivera, Gildardo
2017-02-01
Chagas disease or American trypanosomiasis is a worldwide public health problem. In this work, we evaluated 26 new propyl and isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives as potential trypanocidal agents. Additionally, molecular docking and enzymatic assays on trypanothione reductase (TR) were performed to provide a basis for their potential mechanism of action. Seven compounds showed better trypanocidal activity on epimastigotes than the reference drugs, and only four displayed activity on trypomastigotes; T-085 was the lead compound with an IC50 = 59.9 and 73.02 µM on NINOA and INC-5 strain, respectively. An in silico analysis proposed compound T-085 as a potential TR inhibitor with better affinity than the natural substrate. Enzymatic analysis revealed that T-085 inhibits parasite TR non-competitively. Compound T-085 carries a carbonyl, a CF3, and an isopropyl carboxylate group at 2-, 3- and 7-position, respectively. These results suggest the chemical structure of this compound as a good starting point for the design and synthesis of novel trypanocidal derivatives with higher TR inhibitory potency and lower toxicity.
Kalathiya, Umesh; Padariya, Monikaben; Baginski, Maciej
2014-01-01
During previous years, many studies on synthesis, as well as on anti-tumor, anti-inflammatory and anti-bacterial activities of the pyrazole derivatives have been described. Certain pyrazole derivatives exhibit important pharmacological activities and have proved to be useful template in drug research. Considering importance of pyrazole template, in current work the series of novel inhibitors were designed by replacing central ring of acridine with pyrazole ring. These heterocyclic compounds were proposed as a new potential base for telomerase inhibitors. Obtained dibenzopyrrole structure was used as a novel scaffold structure and extension of inhibitors was done by different functional groups. Docking of newly designed compounds in the telomerase active site (telomerase catalytic subunit TERT) was carried out. All dibenzopyrrole derivatives were evaluated by three docking programs: CDOCKER, Ligandfit docking (Scoring Functions) and AutoDock. Compound C_9g, C_9k and C_9l performed best in comparison to all designed inhibitors during the docking in all methods and in interaction analysis. Introduction of pyrazole and extension of dibenzopyrrole in compounds confirm that such compound may act as potential telomerase inhibitors.
Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library.
Chen, Shiuan; Hsieh, Jui-Hua; Huang, Ruili; Sakamuru, Srilatha; Hsin, Li-Yu; Xia, Menghang; Shockley, Keith R; Auerbach, Scott; Kanaya, Noriko; Lu, Hannah; Svoboda, Daniel; Witt, Kristine L; Merrick, B Alex; Teng, Christina T; Tice, Raymond R
2015-10-01
Multiple mechanisms exist for endocrine disruption; one nonreceptor-mediated mechanism is via effects on aromatase, an enzyme critical for maintaining the normal in vivo balance of androgens and estrogens. We adapted the AroER tri-screen 96-well assay to 1536-well format to identify potential aromatase inhibitors (AIs) in the U.S. Tox21 10K compound library. In this assay, screening with compound alone identifies estrogen receptor alpha (ERα) agonists, screening in the presence of testosterone (T) identifies AIs and/or ERα antagonists, and screening in the presence of 17β-estradiol (E2) identifies ERα antagonists. Screening the Tox-21 library in the presence of T resulted in finding 302 potential AIs. These compounds, along with 31 known AI actives and inactives, were rescreened using all 3 assay formats. Of the 333 compounds tested, 113 (34%; 63 actives, 50 marginal actives) were considered to be potential AIs independent of cytotoxicity and ER antagonism activity. Structure-activity analysis suggested the presence of both conventional (eg, 1, 2, 4, - triazole class) and novel AI structures. Due to their novel structures, 14 of the 63 potential AI actives, including both drugs and fungicides, were selected for confirmation in the biochemical tritiated water-release aromatase assay. Ten compounds were active in the assay; the remaining 4 were only active in high-throughput screen assay, but with low efficacy. To further characterize these 10 novel AIs, we investigated their binding characteristics. The AroER tri-screen, in high-throughput format, accurately and efficiently identified chemicals in a large and diverse chemical library that selectively interact with aromatase. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library
Chen, Shiuan; Hsieh, Jui-Hua; Huang, Ruili; Sakamuru, Srilatha; Hsin, Li-Yu; Xia, Menghang; Shockley, Keith R.; Auerbach, Scott; Kanaya, Noriko; Lu, Hannah; Svoboda, Daniel; Witt, Kristine L.; Merrick, B. Alex; Teng, Christina T.; Tice, Raymond R.
2015-01-01
Multiple mechanisms exist for endocrine disruption; one nonreceptor-mediated mechanism is via effects on aromatase, an enzyme critical for maintaining the normal in vivo balance of androgens and estrogens. We adapted the AroER tri-screen 96-well assay to 1536-well format to identify potential aromatase inhibitors (AIs) in the U.S. Tox21 10K compound library. In this assay, screening with compound alone identifies estrogen receptor alpha (ERα) agonists, screening in the presence of testosterone (T) identifies AIs and/or ERα antagonists, and screening in the presence of 17β-estradiol (E2) identifies ERα antagonists. Screening the Tox-21 library in the presence of T resulted in finding 302 potential AIs. These compounds, along with 31 known AI actives and inactives, were rescreened using all 3 assay formats. Of the 333 compounds tested, 113 (34%; 63 actives, 50 marginal actives) were considered to be potential AIs independent of cytotoxicity and ER antagonism activity. Structure-activity analysis suggested the presence of both conventional (eg, 1, 2, 4, - triazole class) and novel AI structures. Due to their novel structures, 14 of the 63 potential AI actives, including both drugs and fungicides, were selected for confirmation in the biochemical tritiated water-release aromatase assay. Ten compounds were active in the assay; the remaining 4 were only active in high-throughput screen assay, but with low efficacy. To further characterize these 10 novel AIs, we investigated their binding characteristics. The AroER tri-screen, in high-throughput format, accurately and efficiently identified chemicals in a large and diverse chemical library that selectively interact with aromatase. PMID:26141389
Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda
2013-08-01
As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.
Holler, Jes Gitz; Christensen, S Brøgger; Slotved, Hans-Christian; Rasmussen, Hasse B; Gúzman, Alfonso; Olsen, Carl-Erik; Petersen, Bent; Mølgaard, Per
2012-05-01
To isolate a plant-derived compound with efflux inhibitory activity towards the NorA transporter of Staphylococcus aureus. Bioassay-guided isolation was used, with inhibition of ethidium bromide efflux via NorA as a guide. Characterization of activity was carried out using MIC determination and potentiation studies of a fluoroquinolone antibiotic in combination with the isolated compound. Everted membrane vesicles of Escherichia coli cells enriched with NorA were prepared to study efflux inhibitory activity in an isolated manner. The ethanolic extract of Persea lingue was subjected to bioassay-guided fractionation and led to the isolation of the known compound kaempferol-3-O-α-L-(2,4-bis-E-p-coumaroyl)rhamnoside (compound 1). Evaluation of the dose-response relationship of compound 1 showed that ethidium bromide efflux was inhibited, with an IC(50) value of 2 μM. The positive control, reserpine, was found to have an IC(50) value of 9 μM. Compound 1 also inhibited NorA in enriched everted membrane vesicles of E. coli. Potentiation studies revealed that compound 1 at 1.56 mg/L synergistically increased the antimicrobial activity of ciprofloxacin 8-fold against a NorA overexpresser, and the synergistic activity was exerted at a fourth of the concentration necessary for reserpine. Compound 1 was not found to exert a synergistic effect on ciprofloxacin against a norA deletion mutant. The 2,3-coumaroyl isomer of compound 1 has been shown previously not to cause acute toxicity in mice at 20 mg/kg/day. Our results show that compound 1 acts through inhibition of the NorA efflux pump. Combination of compound 1 with subinhibitory concentrations of ciprofloxacin renders a wild-type more susceptible and a NorA overexpresser S. aureus susceptible.
New ligand-based approach for the discovery of antitrypanosomal compounds.
Vega, María Celeste; Montero-Torres, Alina; Marrero-Ponce, Yovani; Rolón, Miriam; Gómez-Barrio, Alicia; Escario, José Antonio; Arán, Vicente J; Nogal, Juan José; Meneses-Marcel, Alfredo; Torrens, Francisco
2006-04-01
The antitrypanosomal activity of 10 already synthesized compounds was in silico predicted as well as in vitro and in vivo explored against Trypanosoma cruzi. For the computational study, an approach based on non-stochastic linear fingerprints to the identification of potential antichagasic compounds is introduced. Molecular structures of 66 organic compounds, 28 with antitrypanosomal activity and 38 having other clinical uses, were parameterized by means of the TOMOCOMD-CARDD software. A linear classification function was derived allowing the discrimination between active and inactive compounds with a confidence of 95%. As predicted, seven compounds showed antitrypanosomal activity (%AE>70) against epimastigotic forms of T. cruzi at a concentration of 100mug/mL. After an unspecific cytotoxic assay, three compounds were evaluated against amastigote forms of the parasite. An in vivo test was carried out for one of the studied compounds.
New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities.
Qin, Ning-Bo; Jia, Cui-Cui; Xu, Jun; Li, Da-Hong; Xu, Fan-Xing; Bai, Jiao; Li, Zhan-Lin; Hua, Hui-Ming
2017-06-01
Two new amide compounds, mariamides A and B (1-2), were obtained together with fourteen known compounds from the seeds of milk thistle (Silybum marianum). Their structures were established on the basis of extensive 1D and 2D NMR analyses, as well as HR-ESI-MS data. Most of the compounds showed significant antioxidant activities than positive control in ABTS and FRAP assays. However, only amide compounds 1-4 showed moderate DPPH radical scavenging activity and compounds 7 and 16 showed the most potent activity against DPPH. Most of the compounds showed moderate to stronger α-glucosidase inhibitory activities. Nevertheless, only flavonoids showed strong PTP1B inhibitory activities. These results indicate a use of milk thistle seed extracts as promising antioxidant and antidiabetic agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis and fungicidal activity of 1,1-diaryl tertiary alcohols.
Li, Xiuyun; Han, Xiaoqiang; He, Mengmeng; Xiao, Yumei; Qin, Zhaohai
2016-12-15
A series of 1,1-diaryl tertiary alcohols and some of their dehydration derivatives were designed, synthesized and evaluated for their antifungal activities. Some compounds exhibited moderate inhibitory activities against seven plant pathogens at 50μg/mL in vitro, compounds 5g and 7c displayed nearly the same or higher fungicidal activities against some certain plant pathogens compared with the lead compound pyrimorph. A qualitative structure-activity relationship (SAR) analysis revealed that the Cl substituent and its position at the pyridine ring were crucial for the compounds' activities. Specially, several compounds displayed 100% protection effect against wheat powdery mildew or cucumber anthrax at 400mg/mL in vivo, which suggested that these compounds might be potential fungicidal candidates for certain plant diseases. Copyright © 2016. Published by Elsevier Ltd.
Bekhit, Adnan A; Farghaly, Ahmed M; Shafik, Ragab M; Elsemary, Mona Ma; El-Shoukrofy, Mai S; Bekhit, Alaa El-Din A; Ibrahim, Tamer M
2017-06-01
New triazolotetrahydrobenzothienopyrimidinone derivatives were synthesized. Their structures were confirmed, and their anti-inflammatory, antimicrobial activities and ulcerogenic potentials were evaluated. Compounds 7a, 10a and 11a showed minimal ulcerogenic effect and high selectivity toward human recombinant COX-2 over COX-1 enzyme with IC 50 values of 1.39, 1.22 and 0.56 μM, respectively. Their docking outcome correlated with their biological activity and confirmed the high selectivity binding toward COX-2. Compound 12b displayed antimicrobial activity comparable to that of ampicillin against Escherichia coli while compounds 6 and 11c were similar to ampicillin against Staphylococcus aureus. In addition, compounds 7a, 9a, 10b and 11c showed dual anti-inflammatory/antimicrobial activities. This work represents a promising matrix for developing new potential anti-inflammatory, antimicrobial and dual antimicrobial/anti-inflammatory candidates. [Formula: see text].
Bioactive Lignans from Zanthoxylum alatum Roxb. stem bark with cytotoxic potential.
Mukhija, Minky; Lal Dhar, Kanaya; Nath Kalia, Ajudhia
2014-02-27
Zanthoxylum alatum is used in traditional medicinal systems for number of disorders like cholera, diabetes, cough, diarrhea, fever, headache, microbial infections, toothache, inflammation and cancer. The aim of the present study was to evaluate Zanthoxylum alatum stem bark for its cytotoxic potential and to isolate the bioactive constituents. Cytotoxicity of the different extracts and isolated compounds was studied on lung carcinoma cell line (A549) and pancreatic carcinoma cell line (MIA-PaCa) using MTT assay. Isolation of compounds from most active extract (petroleum ether) was done on silica gel column. Structure elucidation was done by using various spectrophotometric techniques like UV, IR, (1)H NMR, (13)C NMR and mass spectroscopy. The type of cell death caused by most active compound C was explored by fluorescence microscopy using the acridine orange/ethidium bromide method. Petroleum ether extract of plant has shown significant cytotoxic potential. Three lignans sesamin (A), kobusin (B), and 4'O demethyl magnolin (C) has been isolated. All lignans showed cytotoxic activities in different ranges. Compound C was the novel bioactive compound from a plant source and found to be most active. In apoptosis study, treatment caused typical apoptotic morphological changes. It enhances the apoptosis at IC50 dose (21.72 µg/mL) however showing necrotic cell death at higher dose after 24h on MIA-PaCa cell lines. Petroleum ether extract (60-80 °C) of Zanthoxylum alatum has cytotoxic potential. The lignans isolated from the petroleum ether extract were responsible for the cytotoxic potential of the extract. 4'O demethyl magnolin was novel compound from Zanthoxylum alatum. Hence the Zanthoxylum alatum can be further explored for the development of anticancer drug. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Liu, Zhikun; Fang, Lei; Zhang, Huan; Gou, Shaohua; Chen, Li
2017-04-15
Total sixteen tacrine-curcumin hybrid compounds were designed and synthesized for the purpose of searching for multifunctional anti-Alzheimer agents. In vitro studies showed that these hybrid compounds showed good cholinesterase inhibitory activity. Particularly, the potency of K 3-2 is even beyond tacrine. Some of the compounds exhibited different selectivity on acetylcholinesterase or butyrylcholinesterase due to the structural difference. Thus, the structure and activity relationship is summarized and further discussed based on molecular modeling studies. The ORAC and MTT assays indicated that the hybrid compounds possessed pronounced antioxidant activity and could effectively protect PC12 cells from the H 2 O 2 /Aβ42-induced toxicity. Moreover, the hybrid compounds also showed positive metal ions-chelating ability in vitro, suggesting a potential to halt ion-induced Aβ aggregation. All the obtained results demonstrated that the tacrine-curcumin hybrid compounds, in particular compound K 3-2 , can be considered as potential therapeutic agents for Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Yan; Liu, Yuxiu; Song, Hongjian; Li, Yongqiang; Wang, Qingmin
2016-11-01
Numerous compounds containing urea bridge and biurea moieties are used in a variety of fields, especially as drugs and pesticides. To search for novel, environmentally benign and ecologically safe pesticides with unique modes of action, four series of novel triazone analogues containing urea, thiourea, biurea, and thiobiurea bridge, respectively, were designed and synthesized, according to various calcium ion channel inhibitors which act on transient receptor potential protein. Their structures were characterized by [Formula: see text] NMR, [Formula: see text] NMR, and HRMS. The insecticidal activities of the new compounds were obtained. The bioassay results indicated that compounds containing a thiourea bridge and a thiobiurea bridge exhibited excellent insecticidal activities against bean aphid. Specifically, compounds [Formula: see text], [Formula: see text], and [Formula: see text] exhibited 85, 90, and 95 % activities, respectively, at 10 mg/kg. Compounds [Formula: see text] (30 %), [Formula: see text] (35 %), [Formula: see text] (30 %), and [Formula: see text] (40 %) exhibited the approximate aphicidal activity of pymetrozine (30 %) at 5 mg/kg. In addition, some target compounds exhibited insecticidal activities against lepidopteran pests. From a molecular design standpoint, the information obtained in this study could help in the further design of new derivatives with improved insecticidal activities.
Stalder, Romain; McKercher, Scott R.; Williamson, Robert E.; Roth, Gregory P.; Lipton, Stuart A.
2015-01-01
Activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 and heat-shock protein 90/heat-shock factor-1 signal-transduction pathways plays a central role in combatting cellular oxidative damage and related endoplasmic reticulum stress. Electrophilic compounds have been shown to be activators of these transcription-mediated responses through S-alkylation of specific regulatory proteins. Previously, we reported that a prototype compound (D1, a small molecule representing a proelectrophilic, para-hydroquinone species) exhibited neuroprotective action by activating both of these pathways. We hypothesized that the para-hydroquinone moiety was critical for this activation because it enhanced transcription of these neuroprotective pathways to a greater degree than that of the corresponding ortho-hydroquinone isomer. This notion was based on the differential oxidation potentials of the isomers for the transformation of the hydroquinone to the active, electrophilic quinone species. Here, to further test this hypothesis, we synthesized a pair of para- and ortho-hydroquinone-based proelectrophilic compounds and measured their redox potentials using analytical cyclic voltammetry. The redox potential was then compared with functional biological activity, and the para-hydroquinones demonstrated a superior neuroprotective profile. PMID:26243592
Satoh, Takumi; Stalder, Romain; McKercher, Scott R; Williamson, Robert E; Roth, Gregory P; Lipton, Stuart A
2015-01-01
Activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 and heat-shock protein 90/heat-shock factor-1 signal-transduction pathways plays a central role in combatting cellular oxidative damage and related endoplasmic reticulum stress. Electrophilic compounds have been shown to be activators of these transcription-mediated responses through S-alkylation of specific regulatory proteins. Previously, we reported that a prototype compound (D1, a small molecule representing a proelectrophilic, para-hydroquinone species) exhibited neuroprotective action by activating both of these pathways. We hypothesized that the para-hydroquinone moiety was critical for this activation because it enhanced transcription of these neuroprotective pathways to a greater degree than that of the corresponding ortho-hydroquinone isomer. This notion was based on the differential oxidation potentials of the isomers for the transformation of the hydroquinone to the active, electrophilic quinone species. Here, to further test this hypothesis, we synthesized a pair of para- and ortho-hydroquinone-based proelectrophilic compounds and measured their redox potentials using analytical cyclic voltammetry. The redox potential was then compared with functional biological activity, and the para-hydroquinones demonstrated a superior neuroprotective profile. © The Author(s) 2015.
[ANTIOXIDANT POTENTIAL OF MELIPONA BEECHEII HONEY AND ITS RELATIONSHIP TO HEALTH: A REVIEW].
Cauich Kumul, Roger; Ruiz Ruiz, Jorge Carlos; Ortíz Vázquez, Elizabeth; Segura Campos, Maira Rubi
2015-10-01
The present article provides a literature review about the biological potential of Melipona beecheii. The objective is to project some tendecies in research about nutraceutical aspects related to the bioactive compounds presents in the honey of this stingless bee species, known for its medicinal properties traditional, in the Yucatan Peninsula. Currently, there is strong evidence that M. beecheii honey has bioactive compounds such as proteins, flavonoids and polyphenols with high antioxidant activity. The scientific evidence allows to propose to the honey of stingless bee species as a potential alternative for the obtention of bioactive compounds with antioxidant activity in the Yucatan Peninsula and natural food being proposed to reduce some diseases associated with stress oxidative physiological human cells. However, there is still information that explains such antioxidant activity, therefore, according to the literature reviewed, sees the need to address nutraceuticals and functional aspects correlated with the bioactive compounds present in this honey bee. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Structure-Activity Relationship of Dialkoxychalcones to Combat Fish Pathogen Saprolegnia australis.
Montenegro, Iván; Muñoz, Ociel; Villena, Joan; Werner, Enrique; Mellado, Marco; Ramírez, Ingrid; Caro, Nelson; Flores, Susana; Madrid, Alejandro
2018-06-07
To investigate the anti- Saprolegnia activities of chalconic compounds, nine dialkoxychalcones 2 ⁻ 10 , along with their key building block 2',4'-dihydroxychalcone 1 , were evaluated for their potential oomycide activities against Saprolegnia australis strains. The synthesis afforded a series of O -alkylated derivatives with typical chalcone skeletons. Compounds 4 ⁻ 10 were reported for the first time. Interestingly, analogue 8 with the new scaffold demonstrated remarkable in vitro growth-inhibitory activities against Saprolegnia strains, displaying greater anti-oomycete potency than the standard drugs used in the assay, namely fluconazole and bronopol. In contrast, a dramatic loss of activity was observed for O -alkylated derivatives 2 , 3 , 6 , and 7 . These findings have highlighted the therapeutic potential of the natural compound 1 scaffold to be exploitable as a drug lead with specific activity against various Saprolegnia strains.
Phyto-SERM Constitutes from Flemingia macrophylla
Lai, Wan-Chun; Tsui, Ya-Ting; Singab, Abdel Nasser B.; El-Shazly, Mohamed; Du, Ying-Chi; Hwang, Tsong-Long; Wu, Chin-Chung; Yen, Ming-Hong; Lee, Ching-Kuo; Hou, Ming-Feng; Wu, Yang-Chang; Chang, Fang-Rong
2013-01-01
The methanolic extract of Flemingia macrophylla roots exhibited significant estrogenic activity in the transgenic plant assay system which was comparable to the activity of soybean extract. Utilizing estrogenic activity-guided fractionation, one new compound, fleminigin, together with 23 known compounds were isolated from F. macrophylla roots’ methanolic extract. The structure of the new compound was identified based on intensive spectroscopic analysis and the full spectral data for one of the isolated compounds, flemichin E, was introduced for the first time in the current investigation. The estrogenic and anti-estrogenic activities of the isolated compounds were evaluated revealing that the isolated isoflavonoids may act as partial estrogen agonists, as well as antagonists. Additionally, the anti-inflammatory and the cytotoxic activities of the isolated compounds were studied. These results suggested the potential applications of F. macrophylla extract and its isolated compounds as selective estrogen receptor modulators (SERMs). PMID:23896592
NASA Astrophysics Data System (ADS)
Gee, Veronica M. W.; Wong, Fiona S. L.; Ramachandran, Lalitha; Sethi, Gautam; Kumar, Alan Prem; Yap, Chun Wei
2014-11-01
Peroxisome proliferator-activated receptor-gamma (PPARγ) plays a critical role in lipid and glucose homeostasis. It is the target of many drug discovery studies, because of its role in various disease states including diabetes and cancer. Thiazolidinediones, a synthetic class of agents that work by activation of PPARγ, have been used extensively as insulin-sensitizers for the management of type 2 diabetes. In this study, a combination of QSAR and docking methods were utilised to perform virtual screening of more than 25 million compounds in the ZINC library. The QSAR model was developed using 1,517 compounds and it identified 42,378 potential PPARγ agonists from the ZINC library, and 10,000 of these were selected for docking with PPARγ based on their diversity. Several steps were used to refine the docking results, and finally 30 potentially highly active ligands were identified. Four compounds were subsequently tested for their in vitro activity, and one compound was found to have a K i values of <5 μM.
Ty, Nancy; Pontikis, Renée; Chabot, Guy G; Devillers, Emmanuelle; Quentin, Lionel; Bourg, Stéphane; Florent, Jean-Claude
2013-03-01
To evaluate the influence of stereochemistry on biological activities of cis-cyclopropyl combretastatin A4 (CA4) analogues, we have prepared several cyclopropyl compounds in their pure enantiomeric forms. The key reactions in our synthesis are the cyclopropanation of a (Z)-alkenylboron compound bearing a chiral auxiliary, and the cross-coupling of both enantiomeric cyclopropyl trifluoroborate salts with aryl and olefinic halides. Three pairs of cis-cyclopropyl CA4 analogues were evaluated for their potential antivascular activities. The diarylcyclopropyl compounds with SR-configuration (-)-1b, (-)-2b and the cyclopropylvinyl enantiomer (+)-3a with RR-configuration were the most potent tubulin polymerization inhibitors. A correlation was noted between anti-tubulin activity and rounding up activity of endothelial cells. The cytotoxic activity on B16 melanoma cells was in the submicromolar range for most compounds, but unlike the anti-tubulin activity, there was no difference in cytotoxic activity between racemic and enantiomerically pure forms for the three series of compounds. Molecular docking studies within the colchicine binding site of tubulin were in good agreement with the tubulin polymerization inhibitory data and confirmed the importance of the configuration of the synthesized cis-cyclopropyl CA4 analogues for potential antivascular activities. Copyright © 2013. Published by Elsevier Ltd.
Singh, Gagandeep; Sharma, Anuradha; Kaur, Harpreet; Ishar, Mohan Paul S
2016-02-01
Regio- and stereoselective 1,3-dipolar cycloadditions of C-(chrom-4-one-3-yl)-N-phenylnitrones (N) with different mono-substituted, disubstituted, and cyclic dipolarophiles were carried out to obtain substituted N-phenyl-3'-(chrom-4-one-3-yl)-isoxazolidines (1-40). All the synthesized compounds were assayed for their in vitro antibacterial activity and display significant inhibitory potential; in particular, compound 32 exhibited good inhibitory activity against Salmonella typhymurium-1 & Salmonella typhymurium-2 with minimum inhibitory concentration value of 1.56 μg/mL and also showed good potential against methicillin-resistant Staphylococcus aureus with minimum inhibitory concentration 3.12 μg/mL. Quantitative structure activity relationship investigations with stepwise multiple linear regression analysis and docking simulation studies have been performed for validation of the observed antibacterial potential of the investigated compounds for determination of the most important parameters regulating antibacterial activities. © 2015 John Wiley & Sons A/S.
In vitro microbiological evaluation of novel bis pyrazolones.
Narayana Rao, D V; Raghavendra Guru Prasad, A; Spoorthy, Y N; Raghunatha Rao, D; Ravindranath, L K
2014-03-01
Two series of bis pyrazolones (one with 3-methyl substituent and the other one with 3-amino substituent on the pyrazolone ring) were synthesized by the cyclization reaction between various hydrazides with esters/cyano esters in ethanolic medium. Structures of newly synthesized compounds were confirmed by elemental analysis, IR, (1)H NMR and mass spectral data. These compounds were screened for antibacterial and antifungal activities. The compounds of series 3 with amino substituent demonstrated better activity than the compounds of series 2 with methyl substituent on the pyrazolone ring. Compounds "e, f, c and d" showed higher antimicrobial activity than the compounds "b and a". The antimicrobial potentials of the synthesized compounds were compared with that of standards. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
DasGupta, Shirshendu; Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram
2009-05-15
Compounds belonging to the class of 2-imidazolidinones and tetrahydropyrimidin-2(1H)-ones were synthesized and evaluated for their TACE inhibitory activity. Most of the compounds showed very good TACE inhibitory activity. Docking study clearly indicates importance of the P1' group of the inhibitor for the TACE inhibitory activity. This work proves that these two classes of molecules could be used as potential leads for the development of TACE inhibitors.
Co-evaluation of plant extracts as petrochemical substitutes and for biologically active compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
McChesney, J.D.; Adams, R.P.
Recent efforts to discover phytochemicals that could substitute for petroleum-derived fuels and industrial feedstocks have not given much attention to the potential of these same phytochemicals to provide sources of biologically active compounds. The suitability of extraction products made to assess specific plants as potential botanochemical sources has been evaluated for use in screening procedures for evidence of biologically active compounds. Screening procedures for antibacterial, antifungal and toxic properties are discussed. Screening results are presented for extracts of nearly 80 species of plants from the southeastern United States and southern Great Plains that had previously been evaluated as sources ofmore » botanochemicals.« less
NASA Astrophysics Data System (ADS)
Mehdi, Sayed Hasan; Hashim, Rokiah; Ghalib, Raza Murad; Fátima C. Guedes da Silva, M.; Sulaiman, Othman; Rahman, Syed Ziaur; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran
2011-12-01
The crystal structure of the title compound, 4b,9b-dihydroxy-7,8-dihydro-4bH-indeno[1,2-b]benzofuran-9,10(6H,9bH)-dione has been determined by single crystal X-ray diffraction. It crystallizes in the monoclinic space group P2 1/c with Z = 4. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. The compound showed potential antimicrobial activity comparable to that of clinically used antimicrobial agents against selected microorganisms. It has selective and moderate inhibitory activity on butyryl cholinesterase enzyme and could serve as potential lead compound for synthesis of more bioactive derivatives.
Haberlea rhodopensis: pharmaceutical and medical potential as a food additive.
Todorova, Roumiana; Atanasov, Atanas T
2016-01-01
This review discusses the potential of Haberlea rhodopensis as a food additive. The following are described: plant distribution, reproduction, cultivation, propagation and resurrection properties; extraction, isolation and screening of biologically active compounds; metabolite changes during dehydration; phytotherapy-related properties such as antioxidant potential and free radical-scavenging activities, antioxidant skin effect, antibacterial activity, cytotoxic activity and cancer-modulating effect, radioprotective effect, chemoprotective effect, immunologic effect; present use in homoeopathy and cosmetics, pharmacological and economical importance; perspectives based on the ethnobotanical data for medicinal, cosmetic or ritual attributes. H. rhodopensis showed unique medical and pharmaceutical potential, related to antioxidant, antimicrobial, antimutagenic, anticancer, radioprotective, chemoprotective and immunological properties. H. rhodopensis extracts lack any cytotoxic activity and could be used in phytotherapy. The metabolic profiling of H. rhodopensis extracts revealed the presence of biologically active compounds, possessing antiradical and other physiological activities, useful for design of in vitro synthesised analogues and drugs.
Taiwo, Bamigboye J; Taiwo, Grace O; Olubiyi, Olujide O; Fatokun, Amos A
2016-08-01
Chromatographic fractionation of the methanolic extract of Corchorus olitorius (L.) (Tiliaceae), on silica gel yielded two polyphenolic compounds. The structures of the compounds were elucidated as Methyl-1,4,5-tri-O-caffeoyl quinate and trans-3-(4-Hydroxy-3-methoxyphenyl)acrylic anhydride, based on extensive use of spectroscopic techniques such as (1)H and (13)C NMR, DEPT and 2D NMR experiments (COSY, HSQC, HMBC), IR and MS. To establish an initial proof-of-concept for the biological relevance of these compounds, their cytotoxicity against the cancer cell lines HeLa, HL460 and PC3, which might indicate their anti-tumour potential, was assessed. The compounds when tested at a range of concentrations up to 1.6mM were found to possess mild cytotoxic activity which was significant against HeLa cells at ⩾800μM. The trans-3-(4-Hydroxy-3-methoxyl phenyl)acrylic anhydride was found to be related to curcumin, a compound known to have anti-cancer activity. Docking of each of the two compounds and also of curcumin into some molecular targets implicated in tumourigenesis revealed that the three compounds had binding affinities that were superior to those obtained for the co-crystallized inhibitors of metalloproteinase-9, fibroblast growth factor receptor 2 (FGFR2) and epidermal growth factor receptor (EGFR). The plant Corchorus olitorius therefore represents a potential source of natural 'lead' compounds with anti-tumour potential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ribeiro, Taisa Pereira Piacentini; Manarin, Flávia Giovana; Borges de Melo, Eduardo
2018-05-30
To address the rising global demand for food, it is necessary to search for new herbicides that can control resistant weeds. We performed a 2D-quantitative structure-activity relationship (QSAR) study to predict compounds with photosynthesis-inhibitory activity. A data set of 44 compounds (quinolines and naphthalenes), which are described as photosynthetic electron transport (PET) inhibitors, was used. The obtained model was approved in internal and external validation tests. 2D Similarity-based virtual screening was performed and 64 compounds were selected from the ZINC database. By using the VEGA QSAR software, 48 compounds were shown to have potential toxic effects (mutagenicity and carcinogenicity). Therefore, the model was also tested using a set of 16 molecules obtained by a similarity search of the ZINC database. Six compounds showed good predicted inhibition of PET. The obtained model shows potential utility in the design of new PET inhibitors, and the hit compounds found by virtual screening are novel bicyclic scaffolds of this class. Copyright © 2018 Elsevier Inc. All rights reserved.
Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.
Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir
2016-01-01
A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław
2018-01-01
Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.
Candido, Lafayette P; Varela, Rosa M; Torres, Ascensión; Molinillo, José M G; Gualtieri, Sonia C J; Macías, Francisco A
2016-08-01
Despite the increase in recent decades in herbicide research on the potential of native plants, current knowledge is considered to be low. Very few studies have been carried out on the chemical profile or the biological activity of the Brazilian savanna (Cerrado) species. In the study reported here, the allelopathic activity of AcOEt and MeOH extracts of leaves, stems, and roots from Ocotea pulchella Nees was evaluated. The extracts were assayed on etiolated wheat coleoptiles. The AcOEt leaf extract was the most active and this was tested on standard target species (STS). Lycopersicon esculentum and Lactuca sativa were the most sensitive species in this test. A total of eleven compounds have been isolated and characterized. Compounds 1, 2, 4, and 6 have not been identified previously from O. pulchella and ocoteol (9) is reported for the first time in the literature. Eight compounds were tested on wheat coleoptile growth, and spathulenol, benzyl salicylate, and benzyl benzoate showed the highest activities. These compounds showed inhibitory activity on L. esculentum. The values obtained correspond to the activity exhibited by the extract and these compounds may therefore be responsible for the allelopathic activity shown by O. pulchella. © 2016 Wiley-VHCA AG, Zürich.
Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.
2011-01-01
There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071
Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D
2011-03-01
There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.
Nonaminoglycoside compounds induce readthrough of nonsense mutations
Damoiseaux, Robert; Nahas, Shareef; Gao, Kun; Hu, Hailiang; Pollard, Julianne M.; Goldstine, Jimena; Jung, Michael E.; Henning, Susanne M.; Bertoni, Carmen
2009-01-01
Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ∼34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein. PMID:19770270
Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M
2016-10-01
The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.
Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds
Xu, Feng; Kulys, Juozas J.; Duke, Kyle; Li, Kaichang; Krikstopaitis, Kastis; Deussen, Heinz-Josef W.; Abbate, Eric; Galinyte, Vilija; Schneider, Palle
2000-01-01
1-Hydroxybenzotriazole, violuric acid, and N-hydroxyacetanilide are three N-OH compounds capable of mediating a range of laccase-catalyzed biotransformations, such as paper pulp delignification and degradation of polycyclic hydrocarbons. The mechanism of their enzymatic oxidation was studied with seven fungal laccases. The oxidation had a bell-shaped pH-activity profile with an optimal pH ranging from 4 to 7. The oxidation rate was found to be dependent on the redox potential difference between the N-OH substrate and laccase. A laccase with a higher redox potential or an N-OH compound with a lower redox potential tended to have a higher oxidation rate. Similar to the enzymatic oxidation of phenols, phenoxazines, phenothiazines, and other redox-active compounds, an “outer-sphere” type of single-electron transfer from the substrate to laccase and proton release are speculated to be involved in the rate-limiting step for N-OH oxidation. PMID:10788380
Antimicrobial Action of Compounds from Marine Seaweed
Pérez, María José; Falqué, Elena; Domínguez, Herminia
2016-01-01
Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications. PMID:27005637
Antifouling Compounds from Marine Macroalgae
Dahms, Hans Uwe; Dobretsov, Sergey
2017-01-01
Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way. PMID:28846625
Thirumurugan, Durairaj; Vijayakumar, Ramasamy; Vadivalagan, Chithravel; Karthika, Pushparaj; Alam Khan, Md Khurshid
2018-05-25
Around 120 actinobacterial colonies were isolated from various regions of marine East coast region of Tamil Nadu, India. Among them, 33 were morphologically distinct and they were preliminarily screened for their antibacterial activity against Pseudomonas fluorescens, Vibrio cholerae, V. parahaemolyticus, V. alginolyticus, and Aeromonas hydrophila by cross-streak plate technique. Among the isolated, the isolate ECR64 exhibited maximum zone of inhibition against fish pathogenic bacteria. The crude bioactive compounds were extracted from the isolate ECR64 using different organic solvents which exhibited maximum antibacterial activity. Separation and purification of the bioactive compounds were made by column chromatography which yielded 27 fractions and were re-chromatographed to obtain the active compound. Ultra violet (UV), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectral studies were used to predict the structure of the active compound which was identified as methyl-4,8-dimethylundecanate. The potential isolate ECR64 was identified as Streptomyces albogriseolus by phylogenetic, phenotypic and genotypic (16S rRNA gene sequence) analyses. The identified compound methyl-4,8-dimethylundecanate can be used as potential and alternative drug in disease management of aquaculture. Copyright © 2018 Elsevier Ltd. All rights reserved.
Antifouling Compounds from Marine Macroalgae.
Dahms, Hans Uwe; Dobretsov, Sergey
2017-08-28
Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.
Podeszwa, B; Niedbala, H; Polanski, J; Musiol, R; Tabak, D; Finster, J; Serafin, K; Milczarek, M; Wietrzyk, J; Boryczka, S; Mol, W; Jampilek, J; Dohnal, J; Kalinowski, D S; Richardson, D R
2007-11-15
The structure-activity relationships of new quinoline based compounds were investigated. Quinoline-5,8-dione and styrylquinoline scaffolds were used for the design of potentially active compounds. The novel analogues had comparable antiproliferative activity to cisplatin when evaluated in a bioassay against the P388 leukemia cell line. However, these compounds appeared far less efficient against SK-N-MC neuroepithelioma cells. Analogues without the 5,8-dione structure but containing the 8-carboxylic acid group were also found to induce antiproliferative activity. Hydrophobicity as measured by HPLC did not correlate with antiproliferative activity.
Phytosterols isolated from Clinacanthus nutans induce immunosuppressive activity in murine cells.
Le, Cheng-Foh; Kailaivasan, Thina Hareesh; Chow, Sek-Chuen; Abdullah, Zunoliza; Ling, Sui-Kiong; Fang, Chee-Mun
2017-03-01
Clinacanthus nutans (Burm. f.) Lindau is a traditional medicinal plant belonging to the Acanthaceae family. Its therapeutic potentials have been increasingly documented particularly the antiviral activity against Herpes Simplex Virus (HSV), anti-cancer, anti-oxidant, anti-inflammatory and immunomodulatory activities. However, majority of these studies used crude or fractionated extracts and not much is known about individual compounds from these extracts and their biological activities. In the present study, we have isolated four compounds (CN1, CN2, CN3 and CN4) from the hexane fractions of C. nutans leaves. Using NMR spectroscopic analysis, these compounds were identified to be shaftoside (CN1), stigmasterol (CN2), β-sitosterol (CN3) and a triterpenoid lupeol (CN4). To determine the immunosuppressive potential of these compounds, their effects on mitogens induced T and B lymphocyte proliferation and the secretion of helper T cell cytokines were examined. Among the four compounds, stigmasterol (CN2) and β-sitosterol (CN3) were shown to readily inhibit T cell proliferation mediated by Concanavalin A (ConA). However, only β-sitosterol (CN3) and not stigmasterol (CN2) blocks the secretion of T helper 2 (Th2) cytokines (IL-4 and IL-10). Both compounds have no effect on the secretion of Th1 cytokines (IL-2 and IFN-γ), suggesting that β-sitosterol treatment selectively suppresses Th2 activity and promotes a Th1 bias. CN3 was also found to significantly reduce the proliferation of both T helper cells (CD4 + CD25 + ) and cytotoxic T cells (CD8 + CD25 + ) following T cell activation induced by ConA. These results suggested that phytosterols isolated from C. nutans possess immunomodulatory effects with potential development as immunotherapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.
ZHENG, CHUN-SONG; FU, CHANG-LONG; PAN, CAI-BIN; BAO, HONG-JUAN; CHEN, XING-QIANG; YE, HONG-ZHI; YE, JIN-XIA; WU, GUANG-WEN; LI, XI-HAI; XU, HUI-FENG; XU, XIAO-JIE; LIU, XIAN-XIANG
2015-01-01
Diesun Miaofang (DSMF) is a traditional herbal formula, which has been reported to activate blood, remove stasis, promote qi circulation and relieve pain. DSMF holds a great promise for the treatment of traumatic injury in an integrative and holistic manner. However, its underlying mechanisms remain to be elucidated. In the present study, a systems pharmacology model, which integrated cluster ligands, human intestinal absorption and aqueous solution prediction, chemical space mapping, molecular docking and network pharmacology techniques were used. The compounds from DSMF were diverse in the clusters and chemical space. The majority of the compounds exhibited drug-like properties. A total of 59 compounds were identified to interact with 16 potential targets. In the herb-compound-target network, the majority of compounds acted on only one target; however, a small number of compounds acted on a large number of targets, up to a maximum of 12. The comparison of key topological properties in compound-target networks associated with the above efficacy intuitively demonstrated that potential active compounds possessed diverse functions. These results successfully explained the polypharmcological mechanism underlying the efficiency of DSMF for the treatment of traumatic injury as well as provided insight into potential novel therapeutic strategies for traumatic injury from herbal medicine. PMID:25891262
You, Chun-Xue; Guo, Shan-Shan; Zhang, Wen-Juan; Geng, Zhu-Feng; Liang, Jun-Yu; Lei, Ning; Du, Shu-Shan; Deng, Zhi-Wei
2017-08-20
Sixteen compounds were isolated from the leaves and stems of Murraya tetramera Huang. Based on the NMR and MS spectral results, the structures were determined. It was confirmed that the isolated compounds included three new compounds ( 9 , 10 and 13 ) and one new natural product ( 8 ), which were identified asmurratetra A ( 9 ), murratetra B ( 10 ), murratetra C ( 13 ) and [2-(7-methoxy-2-oxochromen-8-yl)-3-methylbut-2-enyl]3-methylbut-2-enoate ( 8 ), respectively. Meanwhile, the repellent activity against Tribolium castaneum was investigated for 13 of these isolated compounds. The results showed that the tested compounds had various levels of repellent activity against T. castaneum . Among them, compounds 1 (4(15)-eudesmene-1β,6α-diol), 11 (isoferulic acid) and 16 (2,3-dihydroxypropyl hexadecanoate) showed fair repellent activity against T. castaneum . They might be considered as potential leading compounds for the development of natural repellents.
Narusaka, Mari; Narusaka, Yoshihiro
2017-03-04
Plant activators activate systemic acquired resistance-like defense responses or induced systemic resistance, and thus protect plants from pathogens. We screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola, in Arabidopsis thaliana. We suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant activators, and can be useful and effective agrochemicals against various plant diseases.
Boyle, N A; Talesa, V; Giovannini, E; Rosi, G; Norton, S J
1997-09-12
Fourteen alkyl and aryl thiocarbonate derivatives of choline were synthesized and studied as potential inhibitors of acetylcholinesterase (AChE). Twelve of the compounds inhibited AChEs derived from calf forebrain, human red blood cells, and octopus brain ranging from low to moderately high inhibition potency. The concentration of each inhibitory compound giving 50% inhibition of enzyme activity (IC50 values, which ranged from 1 x 10(-2) to 8 x 10(-7) M) was determined and is reported; inhibitor constants (Ki values) for the most inhibitory compounds, (1-pentylthiocarbonyl)choline chloride and (1-heptylthiocarbonyl)choline chloride, were calculated from kinetic data and are also reported. The inhibitors are competitive with substrate, and they are not hydrolyzed by the AChE activities. Certain of these new compounds may provide direction for the development of new drugs that have anticholinesterase activity and may be used for the treatment of Alzheimer's disease.
New Thiazolyl-triazole Schiff Bases: Synthesis and Evaluation of the Anti-Candida Potential.
Stana, Anca; Enache, Alexandra; Vodnar, Dan Cristian; Nastasă, Cristina; Benedec, Daniela; Ionuț, Ioana; Login, Cezar; Marc, Gabriel; Oniga, Ovidiu; Tiperciuc, Brîndușa
2016-11-22
In the context of the dangerous phenomenon of fungal resistance to the available therapies, we present here the chemical synthesis of a new series of thiazolyl-triazole Schiff bases B1 - B15 , which were in vitro assessed for their anti- Candida potential. Compound B10 was found to be more potent against Candida spp. when compared with the reference drugs Fluconazole and Ketoconazole. A docking study of the newly synthesized Schiff bases was performed, and results showed good binding affinity in the active site of co-crystallized Itraconazole-lanosterol 14α-demethylase isolated from Saccharomyces cerevisiae . An in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) study was done in order to predict some pharmacokinetic and pharmacotoxicological properties. The Schiff bases showed good drug-like properties. The results of in vitro anti- Candida activity, a docking study and ADMET prediction revealed that the newly synthesized compounds have potential anti- Candida activity and evidenced the most active derivative, B10 , which can be further optimized as a lead compound.
Luo, Yin; Qiu, Ke-Ming; Lu, Xiang; Liu, Kai; Fu, Jie; Zhu, Hai-Liang
2011-08-15
A series of novel cinnamic acyl sulfonamide derivatives (9a-16e) have been designed and synthesized and their biological activities were also evaluated as potential tubulin polymerization inhibitors. Among all the compounds, 10c showed the most potent growth inhibitory activity against B16-F10 cancer cell line in vitro, with an IC(50) value of 0.8μg/mL. Docking simulation was performed to insert compound 10c into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. Based on the preliminary results, compound 10c with potent inhibitory activity in tumor growth may be a potential anticancer agent. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kumar, Ashwani; Khan, Inshad Ali; Koul, Surrinder; Koul, Jawahir Lal; Taneja, Subhash Chandra; Ali, Intzar; Ali, Furqan; Sharma, Sandeep; Mirza, Zahid Mehmood; Kumar, Manoj; Sangwan, Pyare Lal; Gupta, Pankaj; Thota, Niranjan; Qazi, Ghulam Nabi
2008-06-01
Evaluation of novel synthetic analogues of piperine as inhibitors of multidrug efflux pump NorA of Staphylococcus aureus. A library of piperine-derived compounds was evaluated for their potential to inhibit ethidium bromide efflux in NorA-overexpressing S. aureus SA 1199B. The active compounds were then individually combined with ciprofloxacin to study the potentiation of ciprofloxacin's activity. Based on the efflux inhibition assay, a library of 200 compounds was screened. Three piperine analogues, namely SK-20, SK-56 and SK-29, were found to be the most potent inhibitors of the NorA efflux pump. These inhibitors acted in a synergistic manner with ciprofloxacin, by substantially increasing its activity against both NorA-overexpressing and wild-type S. aureus isolates. These analogues were 2- to 4-fold more potent than piperine at a significantly lower minimal effective concentration. Furthermore, these inhibitors also significantly suppressed the in vitro emergence of ciprofloxacin-resistant S. aureus. A newly identified class of compounds derived from a natural amide, piperine, is more potent than the parent molecule in potentiating the activity of ciprofloxacin through the inhibition of the NorA efflux pump. These molecules may prove useful in augmenting the antibacterial activities of fluoroquinolones in a clinical setting.
Giordani, Federica; Buschini, Annamaria; Baliani, Alessandro; Kaiser, Marcel; Brun, Reto; Barrett, Michael P.; Pellacani, Claudia; Poli, Paola
2014-01-01
This paper reports an evaluation of a melamino nitroheterocycle, a potential lead for further development as an agent against human African trypanosomiasis (HAT). Studies on its efficacy, physicochemical and biopharmaceutical properties, and potential for toxicity are described. The compound previously had been shown to possess exceptional activity against Trypanosoma brucei in in vitro assays comparable to that of melarsoprol. Here, we demonstrate that the compound also was curative in the stringent acute mouse model T. brucei rhodesiense STIB 900 when given intraperitoneally at 40 mg/kg of body weight. Nevertheless, activity was only moderate when the oral route was used, and no cure was obtained when the compound was tested in a stage 2 rodent model of infection. Genotoxic profiling revealed that the compound induces DNA damage by a mechanism apparently independent from nitroreduction and involving the introduction of base pair substitutions (Ames test), possibly caused by oxidative damage of the DNA (comet test). No significant genotoxicity was observed at the chromosome level (micronucleus assay). The lack of suitable properties for oral and central nervous system uptake and the genotoxic liabilities prevent the progression of this melamine nitroheterocycle as a drug candidate for HAT. Further modification of the compound is required to improve the pharmacokinetic properties of the molecule and to separate the trypanocidal activity from the toxic potential. PMID:25022590
Peng, Shiyong; Liu, Suna; Zhang, Sai; Cao, Shengyu; Sun, Jiangtao
2015-10-16
Polyheteroaromatic compounds are potential optoelectronic conjugated materials due to their electro- and photochemical properties. Transition-metal-catalyzed multiple C-H activation and sequential oxidative annulation allows rapidly assembling of those compounds from readily available starting materials. A rhodium-catalyzed cascade oxidative annulation of β-enamino esters or 4-aminocoumarins with internal alkynes is described to access those compounds, featuring multiple C-H/N-H bond cleavages and sequential C-C/C-N bond formations in one pot.
Abubacker, Maghdu Nainamohamed; Devi, Palaniyappan Kamala
2014-09-01
To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Golestanzadeh, Mohsen; Naeimi, Hossein; Zahraie, Zohreh
2017-02-01
Phenolic antioxidants play important role in prevention of oxidation in different industrials. The research objective in the current study was synthesis and evaluate of antioxidant activity of star-shape phenolic antioxidants. The synthetic compounds were prepared in the presence of sulfonated reduced graphene oxide. The antioxidant activity of synthesized compounds was investigated by spectrophotometrically method according to the DPPH assay. Overall, these compounds are potentially important antioxidant and also to limit activity of reactive oxygen species. Copyright © 2016 Elsevier B.V. All rights reserved.
Alluri, Kiran Kumar; Reshma, Rudraraju Srilakshmi; Suraparaju, Raghuram; Gottapu, Suryanarayana; Sriram, Dharmarajan
2018-05-01
Need for new drugs to fight against tuberculosis (TB) is increasing day by day. In the present work we have taken a spiro compound (GSK 2200150A) reported by GSK as a lead and we modified the structure of the lead to study the antitubercular activity. For structure activity profiling twenty-one molecules have been synthesized, characterized and evaluated for their antimycobacterial potency against both active and dormant TB. Compound 06, 1-((4-methoxyphenyl)sulfonyl)-4',5'-dihydrospiro[piperidine-4,7'-thieno[2,3-c]pyran] was found to be the most potent compound (MIC: 8.23 µM) in active TB and was less effective than the lead but more potent than standard first line drug ethambutol. It was also found to be more efficacious than Isoniazid and Rifampicin and equipotent as Moxifloxacin against dormant Mycobacterium tuberculosis (MTB). Compound 06 also showed good inhibitory potential against over expressed latent MTB enzyme lysine ε-amino transferase with an IC 50 of 1.04 ± 0.32 µM. This compound is a good candidate for drug development owing to potential against both active and dormant stages of MTB. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kaki, Shiva Shanker; Kunduru, Konda Reddy; Kanjilal, Sanjit; Narayana Prasad, Rachapudi Badari
2015-01-01
Ferulic acid was modified to produce a novel phenolipid containing butyl chains. Ferulic acid was esterified with butanol to produce butyl ferulate which was further dihydroxylated followed by esterification with butyric anhydride to produce the phenolipid containing butyric acid. IR, NMR and MS techniques confirmed the structure of the synthesized structured lipophilic phenolic compound. The synthesized compound was tested for in vitro antioxidant and antimicrobial activities. The produced phenolipid showed moderate antioxidant activity in DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging assay but in linoleic acid oxidation method, it exhibited good activity compared with the parent compound and the reference compounds. The prepared derivative could find applications as antioxidant in lipophilic systems and also as a potential prodrug of butyric acid. It also showed antibacterial effect against the four bacterial strains studied. The drug-likeness properties of the prepared molecule calculated were in the acceptable ranges according to Lipinski's rule of 5 and suggest that it has potential to cross the blood-brain barrier.
A Pharmacological Screening Approach for Discovery of Neuroprotective Compounds in Ischemic Stroke
Beraki, Simret; Litrus, Lily; Soriano, Liza; Monbureau, Marie; To, Lillian K.; Braithwaite, Steven P.; Nikolich, Karoly; Urfer, Roman; Oksenberg, Donna; Shamloo, Mehrdad
2013-01-01
With the availability and ease of small molecule production and design continuing to improve, robust, high-throughput methods for screening are increasingly necessary to find pharmacologically relevant compounds amongst the masses of potential candidates. Here, we demonstrate that a primary oxygen glucose deprivation assay in primary cortical neurons followed by secondary assays (i.e. post-treatment protocol in organotypic hippocampal slice cultures and cortical neurons) can be used as a robust screen to identify neuroprotective compounds with potential therapeutic efficacy. In our screen about 50% of the compounds in a library of pharmacologically active compounds displayed some degree of neuroprotective activity if tested in a pre-treatment toxicity assay but just a few of these compounds, including Carbenoxolone, remained active when tested in a post-treatment protocol. When further examined, Carbenoxolone also led to a significant reduction in infarction size and neuronal damage in the ischemic penumbra when administered six hours post middle cerebral artery occlusion in rats. Pharmacological testing of Carbenoxolone-related compounds, acting by inhibition of 11-β-hydroxysteroid dehydrogenase-1 (11β-HSD1), gave rise to similarly potent in vivo neuroprotection. This indicates that the increase of intracellular glucocorticoid levels mediated by 11β-HSD1 may be involved in the mechanism that exacerbates ischemic neuronal cell death, and inhibiting this enzyme could have potential therapeutic value for neuroprotective therapies in ischemic stroke and other neurodegenerative disorders associated with neuronal injury. PMID:23874920
Montenegro, Iván J; Del Corral, Soledad; Diaz Napal, Georgina N; Carpinella, María C; Mellado, Marco; Madrid, Alejandro M; Villena, Joan; Palacios, Sara M; Cuellar, Mauricio A
2018-07-01
The antifeedant activity of 18 sesquiterpenoids of the drimane family (polygodial, drimenol and derivatives) was investigated. Polygodial, drimanic and nordrimanic derivatives were found to exert antifeedant effects against two insect species, Spodoptera frugiperda and Epilachna paenulata, which are pests of agronomic interest, indicating that they have potential as biopesticide agents. Among the 18 compounds tested, the epoxynordrimane compound (11) and isonordrimenone (4) showed the highest activity [50% effective concentration (EC 50 ) = 23.28 and 25.63 nmol cm - 2 , respectively, against S. frugiperda, and 50.50 and 59.00 nmol/cm 2 , respectively, against E. paenulata]. The results suggest that drimanic compounds have potential as new agents against S. frugiperda and E. paenulata. A quantitative structure-activity relationship (QSAR) analysis of the whole series, supported by electronic studies, suggested that drimanic compounds have structural features necessary for increasing antifeedant activity, namely a C-9 carbonyl group and an epoxide at C-8 and C-9. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Asati, Vivek; Bharti, Sanjay Kumar
2018-02-01
A series of novel thiazolidine-2,4-dione derivatives 4a-x have been designed, synthesized and evaluated for potential anti-cancer activity. The anti-cancer activity of synthesized compounds 4a-x were evaluated against selected human cancer cell line of breast (MCF-7) using sulforhodamine B (SRB) method. Among the synthesized compounds, 4x having 2-cyano phenyl group showed significant cytotoxic activity which is comparable to that of adriamycin as standard anti-cancer drug. The SAR study revealed that the substituted phenyl group on oxadiazole ring attached to thiazolidine-2,4-dione moiety showed significant growth inhibitory activity against MCF-7 cell line. The result of molecular modeling studies showed that compounds 4f, 4o and 4x having similar structural alignment as crystal ligand of protein.
Active-learning strategies in computer-assisted drug discovery.
Reker, Daniel; Schneider, Gisbert
2015-04-01
High-throughput compound screening is time and resource consuming, and considerable effort is invested into screening compound libraries, profiling, and selecting the most promising candidates for further testing. Active-learning methods assist the selection process by focusing on areas of chemical space that have the greatest chance of success while considering structural novelty. The core feature of these algorithms is their ability to adapt the structure-activity landscapes through feedback. Instead of full-deck screening, only focused subsets of compounds are tested, and the experimental readout is used to refine molecule selection for subsequent screening cycles. Once implemented, these techniques have the potential to reduce costs and save precious materials. Here, we provide a comprehensive overview of the various computational active-learning approaches and outline their potential for drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Chong-Zhi; Qi, Lian-Wen; Yuan, Chun-Su
2015-01-01
Ginger is a commonly used spice and herbal medicine worldwide. Besides its extensive use as a condiment, ginger has been used in traditional Chinese medicine for the management of various medical conditions. In recent years, ginger has received wide attention due to its observed antiemetic and anticancer activities. This paper reviews the potential role of ginger and its active constituents in cancer chemoprevention. The phytochemistry, bioactivity, and molecular targets of ginger constituents, especially 6-shogaol, are discussed. The content of 6-shogaol is very low in fresh ginger, but significantly higher after steaming. With reported anti-cancer activities, 6-shogaol can be served as a lead compound for new drug discovery. The lead compound derivative synthesis, bioactivity evaluation, and computational docking provide a promising opportunity to identify novel anticancer compounds originating from ginger.
Tonk, Rajiv Kumar; Bawa, Sandhya; Chawla, Gita; Deora, Girdhar Singh; Kumar, Suresh; Rathore, Vandana; Mulakayala, Naveen; Rajaram, Azad; Kalle, Arunasree M; Afzal, Obaid
2012-11-01
A series of pyrazolo[4,3-c]cinnoline derivatives was synthesized, characterized and evaluated for anti-inflammatory and antibacterial activity. Test compounds that exhibited good anti-inflammatory activity were further screened for their ulcerogenic and lipid peroxidation activity. Compounds 4d and 4l showed promising anti-inflammatory activity with reduced ulcerogenic and lipid peroxidation activity when compared to naproxen. Docking results of these two compounds with COX-2 (PDB ID: 1CX2) also exhibited a strong binding profile. Among the test derivatives, compound 4i displayed significant antibacterial property against gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. However, compound 4b emerged as the best dual anti-inflammatory-antibacterial agent in the present study. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives
Shtyrlin, Nikita V.; Sapozhnikov, Sergey V.; Galiullina, Albina S.; Kayumov, Airat R.; Bondar, Oksana V.; Mirchink, Elena P.; Isakova, Elena B.; Firsov, Alexander A.; Balakin, Konstantin V.
2016-01-01
A series of novel quaternary ammonium 4-deoxypyridoxine derivatives was synthesized. Two compounds demonstrated excellent activity against a panel of Gram-positive methicillin-resistant S. aureus strains with MICs in the range of 0.5–2 μg/mL, exceeding the activity of miramistin. At the same time, both compounds were inactive against the Gram-negative E. coli and P. aeruginosa strains. Cytotoxicity studies on human skin fibroblasts and embryonic kidney cells demonstrated that the active compounds possessed similar toxicity with benzalkonium chloride but were slightly more toxic than miramistin. SOS-chromotest in S. typhimurium showed the lack of DNA-damage activity of both compounds; meanwhile, one compound showed some mutagenic potential in the Ames test. The obtained results make the described chemotype a promising starting point for the development of new antibacterial therapies. PMID:27800491
Mumtaz, Amara; Zahoor, Fareeha; Zaib, Sumera; Nawaz, Muhammad Azhar H; Saeed, Aamer; Waseem, Amir; Khan, Afsar; Hussain, Izhar; Iqbal, Jamshed
2017-01-30
In spite of substantial progress in scientific cognizance and medical technology, still infectious diseases are among the leading cause of morbidity and mortality. Creatinine and Schiff bases are well known for their diverse range of biological activities and thought to be emerging and useful therapeutic target for the treatment of several diseases. The present work was aimed to illustrate the influence of substitution of amides and Schiff bases on creatinine and their antimicrobial, antioxidant and anti-urease effectiveness was determined. Creatinine substituted amides (1-2) and creatinine Schiff bases (3-7) were synthesized and characterized by NMR and IR spectral data in combination with elemental analysis. All the compounds (1-7) were investigated on Jack bean urease for their urease inhibitory potential. Investigation of antimicrobial activity of the compounds was made by the agar dilution method. Moreover, 1,1-diphenyl-2- picrylhydrazyl (DPPH) method was used to determine their antioxidant potential. Molecular docking studies were also carried out to elucidate their relationship with the binding pockets of the enzyme. The compounds were found to be potent inhibitors of urease. The synthesized derivatives exhibited significant inhibition against Gram-positive and Gram-negative bacterial strains, as compared to standard, ciprofloxacin. Creatinine based derivatives exhibited potential antifungal activity when tested on infectious and pathogenic fungal strains. Similarly, most of the compounds exhibited good antioxidant activity. These derivatives may serve as a source of potential antioxidants and also help to retard microbial growth in food industry. Similarly, the studies provide a basis for further research to develop more potent urease inhibitory compounds of medicinal /agricultural interest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Identification of sumoylation activating enzyme 1 inhibitors by structure-based virtual screening.
Kumar, Ashutosh; Ito, Akihiro; Hirohama, Mikako; Yoshida, Minoru; Zhang, Kam Y J
2013-04-22
SUMO activating enzyme 1 (SUMO E1) is responsible for the activation of SUMO in the first step of the sumoylation cascade. SUMO E1 is linked to many human diseases including cancer, thus making it a potential therapeutic target. There are few reported SUMO E1 inhibitors including several natural products. To identify small molecule inhibitors of SUMO E1 with better drug-like properties for potential therapeutic studies, we have used structure-based virtual screening to identify hits from the Maybridge small molecule library for biological assay. Our virtual screening protocol involves fast docking of the entire small molecule library with rigid protein and ligands followed by redocking of top hits using a method that incorporates both ligand and protein flexibility. Subsequently, the top-ranking compounds were prioritized using the molecular dynamics simulation-based binding free energy calculation. Out of 24 compounds that were acquired and tested using in vitro sumoylation assay, four of them showed more than 85% inhibition of sumoylation with the most active compound showing an IC50 of 14.4 μM. A similarity search with the most active compound in the ZINC database has identified three more compounds with improved potency. These compounds share a common phenyl urea scaffold and have been confirmed to inhibit SUMO E1 by in vitro SUMO-1 thioester bond formation assay. Our study suggests that these phenyl urea compounds could be used as a starting point for the development of novel therapeutic agents.
Genotoxic activity of 4,4',5'-trimethylazapsoralen on plasmid DNA.
Lagatolla, C; Dolzani, L; Granzotto, M; Monti-Bragadin, C
1998-01-01
The genotoxic activities of 8-methoxypsoralen (8-MOP) and 4,4',5'-trimethylazapsoralen (4,4',5'-TMAP) on plasmid DNA have been compared. In a previous work, 4,4',5'-TMAP, a methyl derivative of a psoralen isoster, had shown potential photochemotherapeutic activity. The mutagenic activity of mono- and bifunctional lesions caused by these compounds was evaluated both after UVA irradiation, which causes the formation of both kinds of lesions, and after a two-step irradiation procedure of the psoralen-plasmid DNA complex, which allowed monoadducts and interstrand crosslinks to be studied separately. Furthermore, we used a procedure that allowed us to evaluate both the mutagenic and recombinogenic activity of the two compounds. Results indicate that the most important difference between 8-MOP and 4,4',5'-TMAP consists in their mode of photoreaction with DNA rather than in their mutagenic potential. In fact, in all of the experimental procedures, 4,4',5'-TMAP shows a lower ability than 8-MOP to generate interstrand crosslinks. However, when comparable toxicity levels are reached, the two compounds show the same mutagenic potentiality.
Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity
Godoy, Luis D.; Lucas, Julianna E.; Bender, Abigail J.; Romanick, Samantha S.; Ferguson, Bradley S.
2017-01-01
Scope Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of HDACs, impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Methods and results Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. Conclusion This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. PMID:27981795
Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity.
Godoy, Luis D; Lucas, Julianna E; Bender, Abigail J; Romanick, Samantha S; Ferguson, Bradley S
2017-04-01
Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of histone deacetylases (HDACs), impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hadda, Taibi Ben; Talhi, Oualid; Silva, Artur S M; Senol, Fatma Sezer; Orhan, Ilkay Erdogan; Rauf, Abdur; Mabkhot, Yahia N; Bachari, Khaldoun; Warad, Ismail; Farghaly, Thoraya A; Althagafi, Ismail I; Mubarak, Mohammad S
2018-01-01
Cholinesterase family consists of two sister enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which hydrolyze acetylcholine. Since deficit of acetylcholine has been evidenced in patients of Alzheimer's disease (AD), cholinesterase inhibitors are currently the most prescribed drugs for the treatment of AD. our aim in this article was to investigate the inhibitory potential of five known compounds (2-6) with spiro skeleton against AChE and BChE using ELISA microplate assays. In addition to their ChE inhibitory effect, their physico-chemical properties were also calculated. Moreover, the present work aims at investigating the charge/geometrical effect of a hypothetical pharmacophore or bidentate site in a bioactive group, on the inhibition efficiency of spiro compounds 2-6 by using Petra/Osiris/ molinspiration (POM) and X-ray analyses. In the present study, five compounds (2-6) with spiro skeleton have been synthesized and tested in vitro for their inhibitory potential against AChE and BChE using ELISA microtiter plate assays at 25 µg/mL. Results revealed that three of the spiro compounds tested exert more than 50% inhibition against one of cholinesterases. Compound 5 displayed 68.73 ± 4.73% of inhibition toward AChE, whereas compound 6 showed 56.17 ± 0.83% of inhibition toward BChE; these two previously synthesized compounds have been the most active hits. Our data obtained from screening of compounds 2-6 against the two cholinesterases indicate that three of these show good potential to selectively inhibit AChE or BChE. Spiro compounds 2, 5, and 6 exhibited the most potent activity of the series against AChE or BChE with inhibition values in the range 55-70%. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bowden, Gregory D; Land, Kirkwood M; O'Connor, Roberta M; Fritz, Heather M
2018-04-01
The apicomplexan parasite Sarcocystis neurona is the primary etiologic agent of equine protozoal myeloencephalitis (EPM), a serious neurologic disease of horses. Many horses in the U.S. are at risk of developing EPM; approximately 50% of all horses in the U.S. have been exposed to S. neurona and treatments for EPM are 60-70% effective. Advancement of treatment requires new technology to identify new drugs for EPM. To address this critical need, we developed, validated, and implemented a high-throughput screen to test 725 FDA-approved compounds from the NIH clinical collections library for anti-S. neurona activity. Our screen identified 18 compounds with confirmed inhibitory activity against S. neurona growth, including compounds active in the nM concentration range. Many identified inhibitory compounds have well-defined mechanisms of action, making them useful tools to study parasite biology in addition to being potential therapeutic agents. In comparing the activity of inhibitory compounds identified by our screen to that of other screens against other apicomplexan parasites, we found that most compounds (15/18; 83%) have activity against one or more related apicomplexans. Interestingly, nearly half (44%; 8/18) of the inhibitory compounds have reported activity against dopamine receptors. We also found that dantrolene, a compound already formulated for horses with a peak plasma concentration of 37.8 ± 12.8 ng/ml after 500 mg dose, inhibits S. neurona parasites at low concentrations (0.065 μM [0.036-0.12; 95% CI] or 21.9 ng/ml [12.1-40.3; 95% CI]). These studies demonstrate the use of a new tool for discovering new chemotherapeutic agents for EPM and potentially providing new reagents to elucidate biologic pathways required for successful S. neurona infection. Copyright © 2018. Published by Elsevier Ltd.
New hydroxypyridinone iron-chelators as potential anti-neurodegenerative drugs.
Arduino, Daniela; Silva, Daniel; Cardoso, Sandra M; Chaves, Silvia; Oliveira, Catarina R; Santos, M Amelia
2008-05-01
The neuroprotective action of a set of new hydroxypyridinone-based (3,4-HP) compounds (A, B and C), which are iron chelators extra-functionalized with a propargylamino group for potential MAO-B inhibition, was evaluated after cell treatment with MPP+ (an in vivo inducer of parkinsonism) and Abeta(1-40) and/or Abeta(1-42) peptides. Our results show that all these compounds improved cell viability in cells treated with MPP+ and Abeta(1-40) peptide or Abeta(1-42) peptide. In order to evaluate the cellular mechanisms underlying the activity of these compounds, we studied their protective role in caspase activation. All compounds tested were able to prevent MPP+ and Brefeldin A induced caspase-2 activation. They also showed quite effective in the inhibition of caspase-4 and caspase-3 activity, an effector caspase in the apoptotic process. Finally, detection of apoptotic-like cell death after cell exposure to MPP+ was also performed by TUNEL assay. Our results demonstrated that all tested compounds prevented DNA fragmentation by decreasing TUNEL positive cells. A, B and C were more effective than DFP (a 3,4-HP iron-chelating agent in clinical use) in MPP+ induced cell death. Therefore, these results evidenced a neuroprotective and antiapoptotic role for the compounds studied.
Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity
Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J.; Showalter, Hollis D.; Donato, Nicholas J.; Wobus, Christiane E.; O’Riordan, Mary X. D.
2014-01-01
The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity. PMID:25093325
Isoflavones from green vegetable soya beans and their antimicrobial and antioxidant activities.
Wang, Taoyun; Liu, Yanli; Li, Xiaoran; Xu, Qiongming; Feng, Yulin; Yang, Shilin
2018-03-01
Green vegetable soya beans, known as Maodou in China, are supplied as vegetable-type fruits of the soybean plant. Previous study indicated that green vegetable soya beans exhibited antioxidative and anti-inflammatory activities. However, the material basis and pharmacological activities of green soybean plant were not unravelled clearly. In this study, we investigated the chemical ingredients and their pharmacological activities. Investigation of the chemical ingredients indicated that two new isoflavones, 2'-hydroxyerythrin A (1), and daidzein-7-O-β-d-{6″-[(E)-but-2-enoyl]}glycoside (2), together with seven known ones - 7,4'-dihydroxy-6-methoxyisoflavone (3), daidzein (4), daidzin (5), genistein (6), formononetin (7), ononin (8), and isoerythrinin A (9) - were obtained. The structures of compounds 1-9 were elucidated on the basis of spectroscopic and chemical analysis. We evaluated the antimicrobial efficacies and free-radical scavenging potential of the isolated compounds (1-9). Compounds 1 and 9 exhibited the most pronounced efficacy against the tested bacterial strains with IC 50 values ranging from 10.6 to 22.6 μg mL -1 . The isolated compounds showed moderate radical scavenging properties with compound 6 being the most active, followed by compounds 3, 1 and 4. This study indicated that the isoflavones from soya beans could be considered as potential antioxidants or antimicrobials in the food, cosmetics and pharmaceutical industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Small molecule deubiquitinase inhibitors promote macrophage anti-infective capacity.
Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J; Showalter, Hollis D; Donato, Nicholas J; Wobus, Christiane E; O'Riordan, Mary X D
2014-01-01
The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity.
A new antioxidant beverage produced with green tea and apple.
Rubio-Perez, Jose M; Vidal-Guevara, Maria L; Zafrilla, Pilar; Morillas-Ruiz, Juana M
2014-08-01
Green tea and apple are natural products with health benefits. These healthy properties are linked closely to the antioxidant compounds, mainly phenolic compounds. These antioxidant compounds have a potential for preventing and treating cancer, cardiovascular, inflammatory and neurodegenerative diseases in humans. The aim of the present work was to design a new beverage with high antioxidant power combining extracts of green tea and apple, studying the antioxidant composition and activity, organoleptic properties (colour) and stability status during storage at different temperatures. The majority compounds identified in the beverage were flavan-3-ols, being the (-)-epigallocatechin-3-gallate which had the highest concentration. After storage, floridzine was the compound with lower decrease of concentration. The new designed beverage had a good colour, and high antioxidant activity and stability at room temperature, so that the beverage needs no refrigeration, showing potential for the development of new healthy functional beverages.
Strupińska, Marzanna; Rostafińska-Suchar, Grażyna; Pirianowicz-Chaber, Elżbieta; Grabczuk, Mateusz; Józwenko, Magdalena; Kowalczyk, Hubert; Szuba, Joanna; Wójcicka, Monika; Chen, Tracy; Mazurek, Aleksander P
2015-01-01
A series of potential anticonvulsants have been synthesized. There are eight fluorobenzylamides and three chlorobenzylamides of isocyclic or heterocyclic acids. Two not halogenated benzylamides were also synthesized to compare the effect of halogenation. The aim of the research performed was to evaluate whether halogenation of the mother structure is able to improve its anticonvulsant activity. The compounds were tested in Anticonvulsant Screening Project (ASP) of Antiepileptic Drug Development Program (ADDP) of NIH. Compound 1 showed MES ED50 = 80.32 mg/kg, PI = 3.16. Compound 7 showed CKM ED50 = 56.72 mg/kg. Compound 8 showed MES ED50 = 34.23 mg/kg and scPTZ ED50 > 300 mg/kg, PI = 8.53.Compound 13 showed 6Hz ED50 = 78.96, PI = 3.37. The results indicate that fluorination does not improve activity, whereas chlorination in our experiment even reduces it.
Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan K.; Tidwell, Richard R.; Kumar, Arvind; Boykin, David W.; Perfect, John R.
1998-01-01
Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents. PMID:9756748
Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents.
Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C J; Smith, Diane K
2014-11-01
Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Nitrotriazole- and Imidazole-Based Amides and Sulfonamides as Antitubercular Agents
Bloomer, William D.; Rosenzweig, Howard S.; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C. J.; Smith, Diane K.
2014-01-01
Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. PMID:25182645
NASA Astrophysics Data System (ADS)
Mahmood, Fawad; Jan, Muhammad S.; Ahmad, Sajjad; Rashid, Umer; Ayaz, Muhammad; Ullah, Farhat; Hussain, Fida; Ahmad, Ashfaq; Khan, Arif-ullah; Aasim, Muhammad; Sadiq, Abdul
2017-12-01
The development of novel and more effective drugs is slow asthe resistance produced by pathogens.From the current scenario it can be imagine that this field of research will enter into the pre-antibiotic era. This work aims to study and evaluate the preliminary antibacterial, anthelmintic and cytotoxic potentials of ethyl 3-oxo-2-(2,5-dioxopyrrolidin-3-yl)butanoates.Among all of the four compounds, compound 2 has displayed remarkable potency with MIC values of 0.125, 0.083, 0.073 and 0.109 mg/ml against E. sakazakii, E. coli. S. aureus and K. pneumonia respectively. Compared to etoposide (LC50 9.8 µg/ml), the compounds demonstrated LC50 values from 280 to 765 µg/ml. For anthelmintic assay, three concentrations of each compound and standard drug were studied in determination of time of death of the two species. Excellent anthelmintic activity was observed by all four compounds against P. posthuma and A. gallibetter than standard albendazole. High GOLD fitness score data from docking analysis towards the targets represent better protein–ligand binding affinity and thus indicate a high propensity for all the active compounds to bind to the active site.Thepromisingin-vitro antimicrobial, anthelmintic activity and cytotoxicity data conclusively revealed that these compounds may serve as viable lead compounds for the treatment of bacterial and parasitic infections, and therefore, could help the medicinal chemists to design future chemotherapeutic agents to avoid rapid drug resistance.
NASA Astrophysics Data System (ADS)
Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz
2017-01-01
A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.
Zhao, Ruo-Lin; He, Yu-Min
2018-01-10
Ganoderma lucidum (GL) is an oriental medical fungus, which was used to prevent and treat many diseases. Previously, the effective compounds of Ganoderma lucidum extract (GLE) were extracted from two kinds of GL, [Ganoderma lucidum (Leyss. Ex Fr.) Karst.] and [Ganoderma sinense Zhao, Xu et Zhang], which have been used for adjuvant anti-cancer clinical therapy for more than 20 years. However, its concrete active compounds and its regulation mechanisms on tumor are unclear. In this study, we aimed to identify the main active compounds from GLE and to investigate its anti-cancer mechanisms via drug-target biological network construction and prediction. The main active compounds of GLE were identified by HPLC, EI-MS and NMR, and the compounds related targets were predicted using docking program. To investigate the functions of GL holistically, the active compounds of GL and related targets were predicted based on four public databases. Subsequently, the Identified-Compound-Target network and Predicted-Compound-Target network were constructed respectively, and they were overlapped to detect the hub potential targets in both networks. Furthermore, the qRT-PCR and western-blot assays were used to validate the expression levels of target genes in GLE treated Hepa1-6-bearing C57 BL/6 mice. In our work, 12 active compounds of GLE were identified, including Ganoderic acid A, Ganoderenic acid A, Ganoderic acid B, Ganoderic acid H, Ganoderic acid C2, Ganoderenic acid D, Ganoderic acid D, Ganoderenic acid G, Ganoderic acid Y, Kaemferol, Genistein and Ergosterol. Using the docking program, 20 targets were mapped to 12 compounds of GLE. Furthermore, 122 effective active compounds of GL and 116 targets were holistically predicted using public databases. Compare with the Identified-Compound-Target network and Predicted-Compound-Target network, 6 hub targets were screened, including AR, CHRM2, ESR1, NR3C1, NR3C2 and PGR, which was considered as potential markers and might play important roles in the process of GLE treatment. GLE effectively inhibited tumor growth in Hepa1-6-bearing C57 BL/6 mice. Finally, consistent with the results of qRT-PCR data, the results of western-blot assay demonstrated the expression levels of PGR and ESR1 were up-regulated, as well as the expression levels of NR3C2 and AR were down-regulated, while the change of NR3C1 and CHRM2 had no statistical significance. The results indicated that these 4 hub target genes, including NR3C2, AR, ESR1 and PGR, might act as potential markers to evaluate the curative effect of GLE treatment in tumor. And, the combined data provide preliminary study of the pharmacological mechanisms of GLE, which may be a promising potential therapeutic and chemopreventative candidate for anti-cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Nayak, V Lakshma; Nagesh, Narayana; Ravikumar, A; Bagul, Chandrakant; Vishnuvardhan, M V P S; Srinivasulu, Vunnam; Kamal, Ahmed
2017-01-01
Apoptosis is a representative form of programmed cell death, which has been assumed to be critical for cancer prevention. Thus, any agent that can induce apoptosis may be useful for cancer treatment and apoptosis induction is arguably the most potent defense against cancer promotion. In our previous studies, 2-aryl benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity and one of the new molecule (2f) was considered as a potential lead. This lead molecule showed significant antiproliferative activity against human breast cancer cell line, MCF-7. The results of the present study revealed that this compound arrested the cell cycle at G2/M phase. Topoisomerase II inhibition assay and Western blot analysis suggested that this compound effectively inhibits topoisomerase II activity which leads to apoptotic cell death. Apoptosis induction in MCF-7 cells was further confirmed by loss of mitochondrial membrane potential (∆Ψm), release of cytochrome c from mitochondria, an increase in the level of apoptosis inducing factor (AIF), generation of reactive oxygen species (ROS), up regulation of proapoptotic protein Bax and down regulation of anti apoptotic protein Bcl-2. Apoptosis assay using Annexin V-FITC assay also suggested that this compound induced cell death by apoptosis. However, compound 2f induced apoptosis could not be reversed by Z-VAD-FMK (a pan-caspase inhibitor) demonstrated that the 2f induced apoptosis was caspase independent. Further, 2f treatment did not activate caspase-7 and caspase-9 activity, suggesting that this compound induced apoptosis in breast cancer cells via a caspase independent pathway. Most importantly, this compound was less toxic towards non-tumorigenic breast epithelial cells, MCF-10A. Furthermore, docking studies also support the potentiality of this molecule to bind to the DNA topoisomerase II.
Malawska, Katarzyna; Rak, Aleksandra; Gryzło, Beata; Sałat, Kinga; Michałowska, Małgorzata; Żmudzka, Elżbieta; Lodarski, Krzysztof; Malawska, Barbara; Kulig, Katarzyna
2017-02-01
The aim of this study was to synthesize a series of new N-Mannich bases derived from 4,4-diphenylpyrrolidin-2-one having differently substituted 4-phenylpiperazines as potential anticonvulsant agents with additional (beneficial) pharmacological properties. The target compounds 8-12 were prepared in one step from the 4-substituted phenylpiperazines, paraformaldehyde, and synthesized 4,4-diphenylpyrrolodin-2-one (7) by a Mannich-type reaction. The obtained compounds were assessed and tested for their anticonvulsant activity in two screening mouse models of seizures, i.e., the maximal electroshock (MES) test and in the subcutaneous pentylenetetrazole (scPTZ) test. The effect of these compounds on animals' motor coordination was measured in the rotarod test. A selected 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) was evaluated in vivo for its anxiolytic- and antidepressant-like properties. Its impact on animals' locomotor activity was also evaluated. Compound 8 showed protection (25%) in the MES and in the scPTZ tests at the dose of 100mg/kg and was not neurotoxic. In the four-plate test, compound 8 at the dose of 30mg/kg showed a statistically significant (p<0.05) anxiolytic-like activity. In the forced swim test, it reduced the immobility time by 24.3% (significant at p<0.05), which indicates its potential antidepressant-like properties. In the locomotor activity test, compound 8 significantly reduced animals' locomotor activity by 79.9%. The results obtained make a new derivative of 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) a promising lead structure for further development. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
Llorent-Martínez, E J; Ortega-Barrales, P; Zengin, G; Mocan, A; Simirgiotis, M J; Ceylan, R; Uysal, S; Aktumsek, A
2017-09-01
The genus Lathyrus has great importance in terms of food and agricultural areas. In this study, the in vitro antioxidant activity (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC and metal chelating) and enzyme inhibitory activity evaluation (acetylcholinesterase, butyrylcholinesterase, α-amylase and α-glucosidase) of L. cicera and L. digitatus were investigated, as well as their phytochemical profiles. The screening of the main phytochemical compounds in aerial parts of L. cicera and L. digitatus was carried out by high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MS n ), observing that flavonoids represent the highest percentage of identified compounds, with abundance of tri- and tetra-glycosilated flavonoids, including acylated ones, especially in L. cicera. Generally, L. digitatus exhibited stronger antioxidant and enzyme inhibitory activities in correlation with its higher level of phenolics. The high number of phenolic compounds and the results of the antioxidant and enzyme assays suggest that these plants may be further used as sources of bioactive compounds, and for the preparation of new nutraceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thirumurugan, D; Vijayakumar, R
2015-05-01
Forty marine actinobacteria were isolated from the sediments of east coast (Bay of Bengal) region of Tamilnadu, India. Morphologically distinct colonies were primarily tested against fish pathogenic bacteria such as Vibrio cholerae, V. parahaemolyticus, V. alginolyticus, Pseudomonas fluorescens and Aeromonas hydrophila by cross-streak plate method. The secondary metabolites produced by the highly potential strain cultured on starch casein broth were extracted separately with various solvents such as alcohol, ethyl acetate, methanol, petroleum ether and chloroform. The antibacterial assay of the bioactive compounds was tested against the fish pathogenic bacteria by well diffusion method. Of the various solvents used, the ethyl acetate extract of the isolate had good antibacterial activity. The potential strain was identified as Streptomyces labedae by phenotypic, 16S rRNA gene sequence and phylogenetic analysis. Purification of the biologically active compounds by column chromatography led to isolation of 27 fractions. The biologically active fraction was re-chromatographed on a silica gel column to obtain a single active compound, namely N-isopentyltridecanamide. The structure of the compounds was elucidated on the basis of ultra violet, Fourier transform infrared and nuclear magnetic resonance spectra.
Riaz, Sadaf; Khan, Islam Ullah; Bajda, Marek; Ashraf, Muhammad; Qurat-Ul-Ain; Shaukat, Ayesha; Rehman, Tanzeel Ur; Mutahir, Sadaf; Hussain, Sajjad; Mustafa, Ghulam; Yar, Muhammad
2015-12-01
This paper presents the efficient high yield synthesis of novel pyridine 2,4,6-tricarbohydrazide derivatives (4a-4i) along with their α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition activities. The enzymes inhibition results showed the potential of synthesized compounds in controlling both type-II diabetes mellitus and Alzheimer's disease. In vitro biological investigations revealed that most of compounds were more active against yeast α-glucosidase than the reference compound acarbose (IC50 38.25±0.12μM). Among the tested series the compound 4c bearing 4-flouro benzyl group was noted to be the most active (IC50 25.6±0.2μM) against α-glucosidase, and it displayed weak inhibition activities against AChE and BChE. Compound 4a exhibited the most desired results against all three enzymes, as it was significantly active against all the three enzymes; α-glucosidase (IC50 32.2±0.3μM), AChE (IC50 50.2±0.8μM) and BChE (IC50 43.8±0.8μM). Due to the most favorable activity of 4a against the tested enzymes, for molecular modeling studies this compound was selected to investigate its pattern of interaction with α-glucosidase and AChE targets. Copyright © 2015 Elsevier Inc. All rights reserved.
Shen, Bingbing; Zhou, Rongrong; Yang, Yupei; Li, Jiayu; Liang, Xuejuan; Chen, Lin; Huang, Luqi; Zhang, Shuihan
2018-04-03
This paper intends to identify the antimicrobial activity compounds from the deciduous leaves of Malus doumeri (Dong Li Tea) by HPLC-ESI-QTOF-MS/MS. The ethanol extracts of Malus doumeri were partitioned into petroleum ether, dichloromethane, ethyl acetate, n-butanol and water fraction, respectively. The antimicrobial screening experiments showed that ethyl acetate fraction has a certain antibacterial activity by inhibition zone method in vitro. And then we used the HPLC-ESI-QTOF-MS/MS method to verify the identities of bioactive compounds. Finally, 41 compounds were determined and 11 of which were firstly reported in this plant. Notably, compounds (32, 34, 38) are new dihydrochalcones, and three chlorogenic acid analogues (10, 13, 17) may be potential antimicrobial active ingredient. Which is of great significance to the isolation of novel compounds and the discovery of new natural preservative candidates from the deciduous leaves of Malus doumeri.
Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S.
2015-01-01
Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine. PMID:26536350
Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.
Balfer, Jenny; Hu, Ye; Bajorath, Jürgen
2014-08-01
Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ekins, Sean; Kaneko, Takushi; Lipinski, Christopher A; Bradford, Justin; Dole, Krishna; Spektor, Anna; Gregory, Kellan; Blondeau, David; Ernst, Sylvia; Yang, Jeremy; Goncharoff, Nicko; Hohman, Moses M; Bunin, Barry A
2010-11-01
There is an urgent need for new drugs against tuberculosis which annually claims 1.7-1.8 million lives. One approach to identify potential leads is to screen in vitro small molecules against Mycobacterium tuberculosis (Mtb). Until recently there was no central repository to collect information on compounds screened. Consequently, it has been difficult to analyze molecular properties of compounds that inhibit the growth of Mtb in vitro. We have collected data from publically available sources on over 300 000 small molecules deposited in the Collaborative Drug Discovery TB Database. A cheminformatics analysis on these compounds indicates that inhibitors of the growth of Mtb have statistically higher mean logP, rule of 5 alerts, while also having lower HBD count, atom count and lower PSA (ChemAxon descriptors), compared to compounds that are classed as inactive. Additionally, Bayesian models for selecting Mtb active compounds were evaluated with over 100 000 compounds and, they demonstrated 10 fold enrichment over random for the top ranked 600 compounds. This represents a promising approach for finding compounds active against Mtb in whole cells screened under the same in vitro conditions. Various sets of Mtb hit molecules were also examined by various filtering rules used widely in the pharmaceutical industry to identify compounds with potentially reactive moieties. We found differences between the number of compounds flagged by these rules in Mtb datasets, malaria hits, FDA approved drugs and antibiotics. Combining these approaches may enable selection of compounds with increased probability of inhibition of whole cell Mtb activity.
NASA Astrophysics Data System (ADS)
Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din
2015-04-01
The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.
NASA Astrophysics Data System (ADS)
Murugavel, S.; Vetri velan, V.; Kannan, Damodharan; Bakthadoss, Manickam
2016-07-01
The title compound methyl(2E)-2-{[N-(2-formylphenyl) (4-methylbenzene)sulfonamido]methyl}-3-(4-chlorophenyl) prop-2-enoate (MFMSC) has been synthesized and single crystals were grown by slow evaporation solution growth technique at room temperature. Structural and vibrational spectroscopic studies were carried out by using single crystal X-ray diffraction, FT-IR and NMR spectral analysis together with DFT method using GAUSSIAN'03 software. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. NBO analysis, Mulliken charge analysis, HOMO-LUMO, MEP, Global chemical reactivity descriptors and thermodynamic properties have been analyzed. The hyperpolarisability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. The obtained antimicrobial activity results indicate that the compound shows good to moderate activity against all tested bacterial and fungal pathogens. A computational study was also carried out to predict the drug-likeness and ADMET properties of the title compound. Due to the different potential biological activity of the title compound, molecular docking study is also reported and the compound might exhibit inhibitory activity against penicillin-binding protein PBP-2X.
Flores, Gema; Dastmalchi, Keyvan; Wu, Shi-Biao; Whalen, Kathleen; Dabo, Abdoulaye J.; Reynertson, Kurt A.; Foronjy, Robert F.; D’Armiento, Jeanine M.; Kennelly, Edward J.
2016-01-01
The potential therapeutic effects of Costa Rican guava (Psidium friedrichsthalianum) extracts for chronic obstructive pulmonary disease were examined. The ethyl acetate fraction displayed the highest antioxidant activity, as compared to the hexane, chloroform, and n-butanol fractions, as well as the crude extract. This fraction was evaluated for its anti-inflammatory activity response relationship against interleukin-8 (IL-8) and inhibition of matrix metalloproteinase-1 (MMP-1) expression before and after treatment with cigarette smoke. The ethyl acetate fraction exhibited inhibitory activity against IL-8 production and MMP-1 expression, showing the most potent inhibitory activities in both assays at 100 μg/mL, and nine compounds (1–9) were found. Phenolic compounds 1-O-trans-cinnamoyl-β-D-glucopyranose (2), ellagic acid (3), myricetin (4), quercitrin (7), and quercetin (9) were identified using standard compounds or literature reports from related species. Compounds 1, 5, 6, and 8 were tentatively identified as 1,5-dimethyl citrate (1), sinapic aldehyde 4-O-β-D-glucopyranose (5), 3,3′,4-tri-O-methylellagic acid-4′-O-D-glucopyranoside (6), and 1,3-O-diferuloylglycerol (8), All nine compounds are reported for the first time in Costa Rican guava. PMID:23790863
Özdemir, Ahmet; Altıntop, Mehlika Dilek; Kaplancıklı, Zafer Asım; Can, Özgür Devrim; Demir Özkay, Ümide; Turan-Zitouni, Gülhan
2015-02-04
In an effort to develop potent antidepressant agents, new pyrazoline derivatives 2a-s were synthesized and evaluated for their antidepressant-like activity by tail suspension test (TST) and modified forced swimming test (MFST). The effects of the compounds on spontaneous locomotor activity were also investigated using an activity cage apparatus. Among these derivatives, compounds 2b, 2d, 2f, 2o, and 2r decreased both horizontal and vertical activity number of the mice. On the other hand, compounds 2a, 2h, 2j, 2k, 2l, 2m, and 2n, which did not induce any significant change in the locomotor activity, significantly shortened the immobility time of mice in TST and MFST, representing the presence of the antidepressant-like effect. Additionally, the same compounds increased the swimming time of mice in MFST without any change in climbing duration, similar to the reference drug fluoxetine (10 mg/kg). In the light of previous papers examining the effects of pyrazolines on central nervous system, this study, once more, pointed out remarkable antidepressant activity potential of pyrazoline derivatives.
Attene-Ramos, Matias S.; Huang, Ruili; Sakamuru, Srilatha; Witt, Kristine L.; Beeson, Gyda C.; Shou, Louie; Schnellmann, Rick G.; Beeson, Craig C.; Tice, Raymond R.; Austin, Christopher P.; Xia, Menghang
2014-01-01
A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for one or five h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled identification of 20 compounds as uncouplers. This comprehensive approach allows for evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs. PMID:23895456
Manoharan, Prabu; Sridhar, J
2018-05-01
The organophosphorus hydrolase enzyme is involved in the catalyzing reaction that involve hydrolysis of organophosphate toxic compounds. An enzyme from Deinococcus radiodurans reported as homologous to phosphotriesterase and show activity against organophosphate. In the past activity of this enzyme is low and efforts made to improve the activity by experimental mutation study. However only very few organophosphates tested against very few catalytic site mutations. In order to improve the catalytic power of the organophosphorus hydrolase enzyme, we carried out systematic functional hotspot based protein engineering strategy. The mutants tested against 46 know organophosphate compounds using molecular docking study. Finally, we carried out an extensive molecular docking study to predict the binding of 46 organophosphate compounds to wild-type protein and mutant organophosphorus hydrolase enzyme. At the end we are able to improve the degrading potential of organophosphorus hydrolase enzyme against organophosphate toxic compounds. This preliminary study and the outcome would be useful guide for the experimental scientist involved in the bioremediation of toxic organophosphate compounds. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of Muscle Atrophy on Motor Control: Cage-size Effects
NASA Technical Reports Server (NTRS)
Stuart, D. G.
1985-01-01
Two populations of male Sprague-Dawley rats were raised either in conventional minimum-specification cages or in a larger cage. When the animals were mature (125 to 150 d), the physiological status of the soleus (SOL) and extensor digitorum longus (EDL) muscles of the small- and large-cage animals were compared. Analysis of whole-muscle properties including the performance of the test muscle during a standardized fatigue test in which the nerve to the test muscle was subjected to supramaximal intermittent stimulation shows: (1) the amplitude, area, mean amplitude, and peak-to-peak rate of the compound muscle action potential decreased per the course of the fatigue test; (2) cage size did not affect the profile of changes for any of the action-potential measurements; (3) changes exhibited in the compound muscle action potential by SOL and EDL were substantially different; and (4) except for SOL of the large-cage rats, there was a high correlation between all four measures of the compound muscle action potential and the peak tetanic force during the fatigue test; i.e., either the electrical activity largely etermines the force profile during the fatigue test or else contractile-related activity substantially affects the compound muscle action potential.
Pharmacological Potential of Sea Cucumbers
Khotimchenko, Yuri
2018-01-01
This review presents a detailed analysis of published research data focused on the pharmacological activity exerted by biologically active compounds isolated from sea cucumbers belonging to the class of Holothuroidea, phylum Echinodermata. The review contains descriptions of the structure, physico-chemical properties and pharmacological effects of these active substances. Particular attention is given to compounds with anticoagulant, antithrombotic, antioxidant, anticancer, anti-infectious, immune-stimulating and anti-ACE (angiotensin converting enzyme) activities as well as to the substances exerting a regulating influence on lipid and carbohydrate metabolism. All these compounds may be considered as prototypes for development of new pharmaceutical substances and medicines. PMID:29724051
Blough, Bruce E; Landavazo, Antonio; Partilla, John S; Baumann, Michael H; Decker, Ann M; Page, Kevin M; Rothman, Richard B
2014-06-12
As part of our program to study neurotransmitter releasers, we report herein a class of hybrid dopamine reuptake inhibitors that display serotonin releasing activity. Hybrid compounds are interesting since they increase the design potential of transporter related compounds and hence represent a novel and unexplored strategy for therapeutic drug discovery. A series of N-alkylpropiophenones was synthesized and assessed for uptake inhibition and release activity using rat brain synaptosomes. Substitution on the aromatic ring yielded compounds that maintained hybrid activity, with the two disubstituted analogues (PAL-787 and PAL-820) having the most potent hybrid activity.
NASA Astrophysics Data System (ADS)
El-Helby, Abdel Ghany A.; Ayyad, Rezk R.; Sakr, Helmy M.; Abdelrahim, Adel S.; El-Adl, K.; Sherbiny, Farag S.; Eissa, Ibrahim H.; Khalifa, Mohamed M.
2017-02-01
In view of their expected anticonvulsant activity, some novel derivatives of 2,3-dihydrophthalazine-1,4-dione 4-22 were designed, synthesized and evaluated using pentylenetetrazole (PTZ) and picrotoxin as convulsion-inducing models. Moreover, the most active compounds were tested against electrical induced convulsion using maximal electroshock (MES) models of seizures. Most of the tested compounds showed considerable anticonvulsant activity in at least one of the anticonvulsant tests. Compounds 13 and 14g were proved to be the most potent compounds of this series with relatively low toxicity in the median lethal dose test when compared with the reference drug. Molecular modeling studies were done to verify the biological activity. The obtained results showed that the most potent compounds could be useful as a template for future design, optimization, and investigation to produce more active analogues.
Fungal immunomodulatory proteins in the context of biomedicine.
Uribe-Echeverry, Paula Tatiana; Lopez-Gartner, German Ariel
2017-06-01
Fungi represent a large group of biodiverse microorganisms with potential applications ranging from industrial fields to the treatment for human diseases. A large number of pharmacologically active compounds including terpenoids, polysaccharides and proteins have been derived from these microorganisms. Fungal Immunomodulatory Proteins (FIPs) are a group of active compounds that are being considered for the treatment of asthma, allergy, autoimmune diseases and cancer. Here, we discuss the discovery, heterologous production bioactive mechanisms of action and their potential use in biomedicine.
Polyphenols, their metabolites and derivatives as drug leads.
Almeida, Filipa A; Dos Santos, Cláudia Nunes; Ventura, Maria Rita
2018-05-15
In this non-comprehensive review, the potential of natural polyphenols as lead compounds for the design and synthesis of new molecules with potential application in several diseases was highlighted. Organic synthesis has been essential for the development of new analogues of naturally found polyphenols, providing a wide range of structural modifications for structure-activity relationship studies and improving or modulating the biological activity of the promising compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Obafemi, Craig A.; Fadare, Olatomide A.; Jasinski, Jerry P.; Millikan, Sean P.; Obuotor, Efere M.; Iwalewa, Ezekiel O.; Famuyiwa, Samson O.; Sanusi, Kayode; Yilmaz, Yusuf; Ceylan, Ümit
2018-03-01
In the present study a new tetrahydroquinazoline-2-carboxylic, C10H10N2O3, 1‧, was synthesized and its structure was characterized by elemental analysis, IR, 1H NMR, 13C NMR data and high-resolution mass spectrometry. The spectral results are in line with the proposed structure. Single crystal X-ray structural analysis of the compound showed that the crystal structure adopts a monoclinic space group P21/c, with the packing of the molecule stabilized by Cdbnd O … …Hsbnd O, Nsbnd H … ….Odbnd Csbnd Osbnd intermolecular hydrogen bonding. The theoretical geometrical parameters of the compound have been calculated using density functional (DFT) and time-dependent density functional (TD-DFT) theory methods and have been used to predict the thermodynamic one-electron redox potential and the electronic absorption property of the compound. The theoretical characterization matched the experimental measurements, showing a good correlation. The calculated HOMO-LUMO gap (4.79 eV) suggests that compound 1‧ could be a potential antioxidant. The synthesized compound was screened for its in vitro antimicrobial activity against selected bacterial strains and antioxidant activity using the TAC, FRAP, NO and ABTS models. In vitro antioxidant activity of 1' showed a moderate activity, but weaker scavenging activity than the standards of ascorbic acid and trolox. Results of the antibacterial activity of the tested compound showed that it possesses a higher activity against Bacillus anthracis, Bacillus cereus, Bacillus polymyxa, Bacillus subtilis and Staphylococcus aureus than the two standard drugs, streptomycin and tetracycline, and better activity than tetracycline against Escherichia coli.
Freeman, Lita A.; Demosky, Stephen J.; Konaklieva, Monika; Kuskovsky, Rostislav; Aponte, Angel; Ossoli, Alice F.; Gordon, Scott M.; Koby, Ross F.; Manthei, Kelly A.; Shen, Min; Vaisman, Boris L.; Shamburek, Robert D.; Jadhav, Ajit; Calabresi, Laura; Gucek, Marjan; Tesmer, John J.G.; Levine, Rodney L.
2017-01-01
Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile], a small heterocyclic amine, activates LCAT. The effect of compound A on LCAT was tested in human plasma and with recombinant LCAT. Mass spectrometry and nuclear magnetic resonance were used to determine compound A adduct formation with LCAT. Molecular modeling was performed to gain insight into the effects of compound A on LCAT structure and activity. Compound A increased LCAT activity in a subset (three of nine) of LCAT mutations to levels comparable to FLD heterozygotes. The site-directed mutation LCAT-Cys31Gly prevented activation by compound A. Substitution of Cys31 with charged residues (Glu, Arg, and Lys) decreased LCAT activity, whereas bulky hydrophobic groups (Trp, Leu, Phe, and Met) increased activity up to 3-fold (P < 0.005). Mass spectrometry of a tryptic digestion of LCAT incubated with compound A revealed a +103.017 m/z adduct on Cys31, consistent with the addition of a single hydrophobic cyanopyrazine ring. Molecular modeling identified potential interactions of compound A near Cys31 and structural changes correlating with enhanced activity. Functional groups important for LCAT activation by compound A were identified by testing compound A derivatives. Finally, sulfhydryl-reactive β-lactams were developed as a new class of LCAT activators. In conclusion, compound A activates LCAT, including some FLD mutations, by forming a hydrophobic adduct with Cys31, thus providing a mechanistic rationale for the design of future LCAT activators. PMID:28576974
Half-cell potentials of semiconductive simple binary sulphides in aqueous solution
Sato, M.
1966-01-01
Theoretical consideration of the charge-transfer mechanism operative in cells with an electrode of a semiconductive binary compound leads to the conclusion that the half-cell potential of such a compound is not only a function of ionic activities in the electrolytic solution, but also a function of the activities of the component elements in the compound phase. The most general form of the electrode equation derived for such a compound with a formula MiXj which dissociates into Mj+ and Xi- ions in aqueous solution is. EMiXj = EMiXj0 + R T 2 ij ln [ (sua Mj+)aqi ?? (suaX)jMiXj/ (suaXi-)aqj ?? (suaM)iMiXj],. where. EMiXj0 = 1 2(EM,Mj+0 + EXi-,X). The equation can be modified to other forms. When applied to semiconductive simple binary sulphides, these equations appear to give better descriptions of the observed electrode potentials of such sulphides than any other proposed equations. ?? 1966.
Elzahhar, Perihan A; Elkazaz, Salwa; Soliman, Raafat; El-Tombary, Alaa A; Shaltout, Hossam A; El-Ashmawy, Ibrahim M; Abdel Wahab, Abeer E; El-Hawash, Soad A
2017-08-01
Inflammation may cause accumulation of fluid in the injured area, which may promote bacterial growth. Other reports disclosed that non-steroidal anti-inflammatory drugs may enhance progression of bacterial infection. This work describes synthesis of new series of 2,3'-bipyridine-5-carbonitriles as structural analogs of etoricoxib, linked at position-6 to variously substituted thio or oxo moieties. Biological screening results revealed that compounds 2b, 4b, 7e and 8 showed significant acute and chronic AI activities and broad spectrum of antimicrobial activity. In addition, similarity ensemble approach was applied to predict potential biological targets of the tested compounds. Then, pharmacophore modeling study was employed to determine the most important structural parameters controlling bioactivity. Moreover, title compounds showed physicochemical properties within those considered adequate for drug candidates. This study explored the potential of such series of compounds as structural leads for further modification to develop a new class of dual AI-antimicrobial agents.
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-01-01
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases.
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-03-04
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery.
Arshia; Khan, Anum Khalid; Khan, Khalid Mohammed; Ahmed, Ayaz; Taha, Muhammad; Perveen, Shahnaz
2017-09-01
Antibacterial/antibiofilm potential of microwave-assisted synthetic thirty-three 2-amino-5-chloro benzophenone Schiff bases have been carried out against four bacterial strains i.e. Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus and Streptococcus mutans. Among them compounds 5, 6, 8, 9, 14, 16, 22, 24, 26, and 30-32 showed antibiofilm activities against isolates at less than 100 μg/ml concentrations. These compounds showed enhanced antibiofilm activity against S. aureus as compared to cefixime used as control. However, remaining compounds were found to be active but at higher concentration. Fluorescence microscopy has been employed for confirmation of antibiofilm results. The structures of all synthetic molecules have been characterized on the basis of spectroscopic techniques including 1 H NMR, 13 C NMR, EI-MS, HREI-MS, and IR spectroscopy and their structure-activity relationship have been established. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antifouling potential of the marine microalga Dunaliella salina.
Gao, Min; Li, Fengchao; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei
2014-11-01
Marine organisms have usually been viewed as sources of environmentally friendly compounds with antifouling activity. We performed a series of operations to investigate the antifouling potential of the marine microalga Dunaliella salina. For the ethyl acetate crude extract, the antialgal activity was significant, and the EC50 value against Skeletonema costatum was 58.9 μg ml(-1). The isolated purified extract was tested for antifouling activity, the EC 50 value against S. costatum was 21.2 μg ml(-1), and the LC50 against Balanus amphitrite larvae was 18.8 μg ml(-1). Subsequently, both UHR-TOF-MS and GC-MS were used for the structural elucidation of the compounds, and a series of unsaturated and saturated 16- and 18-carbon fatty acids were detected. The data suggested that the fatty acid extracts from D. salina possess high antifouling activity, and could be used as substitutes for potent, toxic antifouling compounds.
Segneanu, Adina-Elena; Grozescu, Ioan; Cziple, Florentina; Berki, Daniel; Damian, Daniel; Niculite, Cristina Mariana; Florea, Alexandru; Leabu, Mircea
2015-12-11
There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.
Synthesis and cytotoxic evaluation of novel symmetrical taspine derivatives as anticancer agents.
Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Sicen; He, Langchon
2011-07-01
It has been demonstrated that taspine derivatives act as anticancer agents, thus we designed and synthesized a novel class of symmetrical biphenyl derivatives. We evaluated the cytotoxicity and antitumor activity of biphenyls against five human tumor and normal cell lines. The results indicated that the majority of the compounds exhibited anticancer activity equivalent to or greater than the positive control. Compounds (11) and (12) demonstrated the most potent cytotoxic activity with IC₅₀ values between 19.41 µM and 29.27 µM. The potent antiproliferative capabilities of these compounds against ECV304 human transformed endothelial cells indicated that these biphenyls could potentially serve as antiangiogenic agents. We also reviewed the relationship between structure and activity based on the experimental results. Our findings provide a good starting point for further development of symmetrical biphenyl derivatives as potential novel anticancer agents.
Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Navarro-Olivarria, Marisol; Flores-Alamo, Marcos; Manzanera-Estrada, Mayra; Ortiz-Frade, Luis; Galindo-Murillo, Rodrigo; Ruiz-Azuara, Lena; Meléndrez-Luevano, Ruth Ma; Cabrera-Vivas, Blanca M
2015-05-29
Four new hydrazones were synthesized by the condensation of the selected hydrazine and the appropriate nitrobenzaldehyde. A complete characterization was done employing 1H- and 13C-NMR, electrochemical techniques and theoretical studies. After the characterization and electrochemical analysis of each compound, amoebicidal activity was tested in vitro against the HM1:IMSS strain of Entamoeba histolytica. The results showed the influence of the nitrobenzene group and the hydrazone linkage on the amoebicidal activity. meta-Nitro substituted compound 2 presents a promising amoebicidal activity with an IC50 = 0.84 μM, which represents a 7-fold increase in cell growth inhibition potency with respect to metronidazole (IC50 = 6.3 μM). Compounds 1, 3, and 4 show decreased amoebicidal activity, with IC50 values of 7, 75 and 23 µM, respectively, as a function of the nitro group position on the aromatic ring. The observed differences in the biological activity could be explained not only by the redox potential of the molecules, but also by their capacity to participate in the formation of intra- and intermolecular hydrogen bonds. Redox potentials as well as the amoebicidal activity can be described with parameters obtained from the DFT analysis.
Chen, Han-Sen; Qi, Su-Hua; Shen, Jian-Gang
2017-01-01
Abstract: Tissue plasminogen activator (t-PA) is the only FDA-approved drug for acute ischemic stroke treatment, but its clinical use is limited due to the narrow therapeutic time window and severe adverse effects, including hemorrhagic transformation (HT) and neurotoxicity. One of the potential resolutions is to use adjunct therapies to reduce the side effects and extend t-PA's therapeutic time window. However, therapies modulating single target seem not to be satisfied, and a multi-target strategy is warranted to resolve such complex disease. Recently, large amount of efforts have been made to explore the active compounds from herbal supplements to treat ischemic stroke. Some natural compounds revealed both neuro- and blood-brain-barrier (BBB)-protective effects by concurrently targeting multiple cellular signaling pathways in cerebral ischemia-reperfusion injury. Thus, those compounds are potential to be one-drug-multi-target agents as combined therapy with t-PA for ischemic stroke. In this review article, we summarize current progress about molecular targets involving in t-PA-mediated HT and neurotoxicity in ischemic brain injury. Based on these targets, we select 23 promising compounds from currently available literature with the bioactivities simultaneously targeting several important molecular targets. We propose that those compounds merit further investigation as combined therapy with t-PA. Finally, we discuss the potential drawbacks of the natural compounds' studies and raise several important issues to be addressed in the future for the development of natural compound as an adjunct therapy. PMID:27334020
Manyi-Loh, Christy E.; Ndip, Roland N.; Clarke, Anna M.
2011-01-01
Volatile organic compounds (VOCs) in honey are obtained from diverse biosynthetic pathways and extracted by using various methods associated with varying degrees of selectivity and effectiveness. These compounds are grouped into chemical categories such as aldehyde, ketone, acid, alcohol, hydrocarbon, norisoprenoids, terpenes and benzene compounds and their derivatives, furan and pyran derivatives. They represent a fingerprint of a specific honey and therefore could be used to differentiate between monofloral honeys from different floral sources, thus providing valuable information concerning the honey’s botanical and geographical origin. However, only plant derived compounds and their metabolites (terpenes, norisoprenoids and benzene compounds and their derivatives) must be employed to discriminate among floral origins of honey. Notwithstanding, many authors have reported different floral markers for honey of the same floral origin, consequently sensory analysis, in conjunction with analysis of VOCs could help to clear this ambiguity. Furthermore, VOCs influence honey’s aroma described as sweet, citrus, floral, almond, rancid, etc. Clearly, the contribution of a volatile compound to honey aroma is determined by its odor activity value. Elucidation of the aroma compounds along with floral origins of a particular honey can help to standardize its quality and avoid fraudulent labeling of the product. Although only present in low concentrations, VOCS could contribute to biomedical activities of honey, especially the antioxidant effect due to their natural radical scavenging potential. PMID:22272147
Wang, Hui; Jiang, Mingyue; Li, Shujun; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo
2017-09-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure-activity relationships (QSARs) for CAAS compounds against Aspergillus niger ( A. niger ) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models ( R 2 = 0.9346 for A. niger , R 2 = 0.9590 for P. citrinum, ) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi.
Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo
2017-01-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758
Li, Shenghong; Qiu, Shengxiang; Yao, Ping; Sun, Handong; Fong, Harry H S; Zhang, Hongjie
2013-01-01
As part of our continuing efforts in the search for potential biologically active compounds from medicinal plants, we have isolated 18 compounds including two novel nitrogen containing diterpenes from extracts of the fruits of Vitex agnus-castus. These isolates, along with our previously obtained novel compound vitexlactam A (1), were evaluated for potential biological effects, including cancer chemoprevention. Chemically, the nitrogenous isolates were found to be two labdane diterpene alkaloids, each containing an α , β -unsaturated γ -lactam moiety. Structurally, they were elucidated to be 9 α -hydroxy-13(14)-labden-16,15-amide (2) and 6 β -acetoxy-9 α -hydroxy-13(14)-labden-15,16-amide (3), which were named vitexlactams B and C, respectively. The 15 known isolates were identified as vitexilactone (4), rotundifuran (5), 8-epi-manoyl oxide (6), vitetrifolin D (7), spathulenol (8), cis-dihydro-dehydro-diconiferylalcohol-9-O- β -D-glucoside (9), luteolin-7-O-glucoside (10), 5-hydroxy-3,6,7,4'-tetramethoxyflavone (11), casticin (12), artemetin (13), aucubin (14), agnuside (15), β -sitosterol (16), p-hydroxybenzoic acid (17), and p-hydroxybenzoic acid glucose ester (18). All compound structures were determined/identified on the basis of 1D and/or 2D NMR and mass spectrometry techniques. Compounds 6, 8, 9, and 18 were reported from a Vitex spieces for the first time. The cancer chemopreventive potentials of these isolates were evaluated for NADP(H):quinone oxidoreductase type 1 (QR1) induction activity. Compound 7 demonstrated promising QR1 induction effect, while the new compound vitexlactam (3) was only slightly active.
Li, Shenghong; Qiu, Shengxiang; Yao, Ping; Sun, Handong; Fong, Harry H. S.; Zhang, Hongjie
2013-01-01
As part of our continuing efforts in the search for potential biologically active compounds from medicinal plants, we have isolated 18 compounds including two novel nitrogen containing diterpenes from extracts of the fruits of Vitex agnus-castus. These isolates, along with our previously obtained novel compound vitexlactam A (1), were evaluated for potential biological effects, including cancer chemoprevention. Chemically, the nitrogenous isolates were found to be two labdane diterpene alkaloids, each containing an α, β-unsaturated γ-lactam moiety. Structurally, they were elucidated to be 9α-hydroxy-13(14)-labden-16,15-amide (2) and 6β-acetoxy-9α-hydroxy-13(14)-labden-15,16-amide (3), which were named vitexlactams B and C, respectively. The 15 known isolates were identified as vitexilactone (4), rotundifuran (5), 8-epi-manoyl oxide (6), vitetrifolin D (7), spathulenol (8), cis-dihydro-dehydro-diconiferylalcohol-9-O-β-D-glucoside (9), luteolin-7-O-glucoside (10), 5-hydroxy-3,6,7,4′-tetramethoxyflavone (11), casticin (12), artemetin (13), aucubin (14), agnuside (15), β-sitosterol (16), p-hydroxybenzoic acid (17), and p-hydroxybenzoic acid glucose ester (18). All compound structures were determined/identified on the basis of 1D and/or 2D NMR and mass spectrometry techniques. Compounds 6, 8, 9, and 18 were reported from a Vitex spieces for the first time. The cancer chemopreventive potentials of these isolates were evaluated for NADP(H):quinone oxidoreductase type 1 (QR1) induction activity. Compound 7 demonstrated promising QR1 induction effect, while the new compound vitexlactam (3) was only slightly active. PMID:23662135
Scafuri, Bernardina; Marabotti, Anna; Carbone, Virginia; Minasi, Paola; Dotolo, Serena; Facchiano, Angelo
2016-01-01
We investigated the potential role of apple phenolic compounds in human pathologies by integrating chemical characterization of phenolic compounds in three apple varieties, computational approaches to identify potential protein targets of the compounds, bioinformatics analyses on data from public archive of gene expression data, and functional analyses to hypothesize the effects of the selected compounds in molecular pathways. Starting by the analytic characterization of phenolic compounds in three apple varieties, i.e. Annurca, Red Delicious, and Golden Delicious, we used computational approaches to verify by reverse docking the potential protein targets of the identified compounds. Direct docking validation of the potential protein-ligand interactions has generated a short list of human proteins potentially bound by the apple phenolic compounds. By considering the known chemo-preventive role of apple antioxidants’ extracts against some human pathologies, we performed a functional analysis by comparison with experimental gene expression data and interaction networks, obtained from public repositories. The results suggest the hypothesis that chemo-preventive effects of apple extracts in human pathologies, in particular for colorectal cancer, may be the interference with the activity of nucleotide metabolism and methylation enzymes, similarly to some classes of anticancer drugs. PMID:27587238
Pernin, Aurélia; Dubois-Brissonnet, Florence; Roux, Stéphanie; Masson, Marine; Bosc, Véronique; Maillard, Marie-Noëlle
2018-04-20
Phenolic compounds present a potential solution to ensuring food quality and safety. Indeed, they can limit oxidation reactions and bacterial growth in food products. Although their antioxidant mechanisms of action are well known, their antibacterial ones are less well understood, especially in light of their chemical structures. The aim of this study was to first quantify both aspects of a series of natural phenolic compounds and then link these activities to their chemical structure. We evaluated antioxidant activity by measuring the capacity of phenolic compounds to delay free linoleic acid oxidation caused by the action of a hydrophilic azo-radical initiator (AAPH). We evaluated antibacterial activity by measuring the growth inhibition of Listeria monocytogenes and determining the non-inhibitory and minimum inhibitory concentrations for each compound. Compounds with ortho-diphenolic structures were the best antioxidants, whereas those belonging to the simple phenol category were the best antibacterial compounds. The physico-chemical properties of the compounds influenced both activities, but not in the same way. The chemical environment of the phenolic group and the presence of delocalization structures are the most important parameters for antioxidant activity, whereas the partition coefficient logP is one of the most important factors involved in antibacterial activity. This article is protected by copyright. All rights reserved.
α-Amylase inhibitors: a review of raw material and isolated compounds from plant source.
Sales, Paloma Michelle; Souza, Paula Monteiro; Simeoni, Luiz Alberto; Silveira, Damaris
2012-01-01
Inhibition of α-amylase, enzyme that plays a role in digestion of starch and glycogen, is considered a strategy for the treatment of disorders in carbohydrate uptake, such as diabetes and obesity, as well as, dental caries and periodontal diseases. Plants are an important source of chemical constituents with potential for inhibition of α-amylase and can be used as therapeutic or functional food sources. A review about crude extracts and isolated compounds from plant source that have been tested for α-amylase inhibitory activity has been done. The analysis of the results shows a variety of crude extracts that present α-amylase inhibitory activity and some of them had relevant activity when compared with controls used in the studies. Amongst the phyto-constituents that have been investigated, flavonoids are one of them that demonstrated the highest inhibitory activities with the potential of inhibition related to number of hydroxyl groups in the molecule of the compound. Several phyto-constituents and plant species as α-amylase inhibitors are being reported in this article. Majority of studies have focused on the anti-amylase phenolic compounds.
2011-01-01
Type-2 diabetes is mediated by defects in either insulin secretion or insulin action. In an effort to identify extracts that may stimulate glucose uptake, similar to insulin, a high throughput-screening assay for measuring glucose uptake in skeletal muscle cells was established. During the screening studies to discover novel antidiabetic compounds from microbial resources a Streptomyces strain PM0324667 (MTCC 5543, the Strain accession number at Institute of Microbial Technology, Chandigarh, India), an isolate from arid soil was identified which expressed a secondary metabolite that induced glucose uptake in L6 skeletal muscle cells. By employing bioactivity guided fractionation techniques, a tri-substituted simple aromatic compound with anti-diabetic potential was isolated. It was characterized based on MS and 2D NMR spectral data and identified as NFAT-133 which is a known immunosuppressive agent that inhibits NFAT-dependent transcription in vitro. Our investigations revealed the antidiabetic potential of NFAT-133. The compound induced glucose uptake in differentiated L6 myotubes with an EC50 of 6.3 ± 1.8 μM without activating the peroxisome proliferator-activated receptor-γ. Further, NFAT-133 was also efficacious in vivo in diabetic animals and reduced systemic glucose levels. Thus it is a potential lead compound which can be considered for development as a therapeutic for the treatment of type-2 diabetes. We have reported herewith the isolation of the producer microbe, fermentation, purification, in vitro, and in vivo antidiabetic activity of the compound. PMID:22104600
Van den Driessche, Freija; Brackman, Gilles; Swimberghe, Rosalie; Rigole, Petra; Coenye, Tom
2017-03-01
Staphylococcus aureus biofilms are involved in a wide range of infections that are extremely difficult to treat with conventional antibiotic therapy. We aimed to identify potentiators of antibiotics against mature biofilms of S. aureus Mu50, a methicillin-resistant and vancomycin-intermediate-resistant strain. Over 700 off-patent drugs from a repurposing library were screened in combination with vancomycin in a microtitre plate (MTP)-based biofilm model system. This led to the identification of 25 hit compounds, including four phenothiazines among which thioridazine was the most potent. Their activity was evaluated in combination with other antibiotics both against planktonic and biofilm-grown S. aureus cells. The most promising combinations were subsequently tested in an in vitro chronic wound biofilm infection model. Although no synergistic activity was observed against planktonic cells, thioridazine potentiated the activity of tobramycin, linezolid and flucloxacillin against S. aureus biofilm cells. However, this effect was only observed in a general biofilm model and not in a chronic wound model of biofilm infection. Several drug compounds were identified that potentiated the activity of vancomycin against biofilms formed in a MTP-based biofilm model. A selected hit compound lost its potentiating activity in a model that mimics specific aspects of wound biofilms. This study provides a platform for discovering and evaluating potentiators against bacterial biofilms and highlights the necessity of using relevant in vitro biofilm model systems. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
In vitro evaluation of cytotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives.
Aliança, Amanda Silva Dos Santos; Oliveira, Arsênio Rodrigues; Feitosa, Ana Paula Sampaio; Ribeiro, Karla Raíza Cardoso; de Castro, Maria Carolina Accioly Brelaz; Leite, Ana Cristina Lima; Alves, Luiz Carlos; Brayner, Fábio André
2017-07-15
It is estimated that the worldwide prevalence of leishmaniasis is around 12 million individuals in 80 countries, with 400,000new cases per year. In the search for new leishmanicidal agents, the hybrid phthalimido-thiazoles have been identified as an important scaffold for drug design and discovery. The present study thus reports the in vitro activity of a series of phthalimido-thiazole derivatives. Cytotoxicity against a strain of L. infantum, Vero cells, J774 macrophages and peritoneal macrophages was evaluated, as well as nitric oxide (NO) production. Activity against amastigote and promastigote forms of L. infantum and microscopic changes in the parasite and intracellular targets of the parasite were achieved. The results show that the compounds arising from hybridization of phthalimide and 1,3-thiazole exhibit promising leishmanicidal activity. Compounds 2j and 2m were the most potent of the series tested and the parasites treated with these compounds exhibited ultrastructural changes, such as cell body shrinkage, loss of cellular membrane integrity, vacuolization of cytoplasm, membrane profiles surrounding organelles and swelling of mitochondria. The data showed that these compounds reduced the survival of intracellular amastigotes and presented low toxicity for mammalian cells. The compounds produced increased NO production compared to untreated cells in non-infected macrophages. Treated promastigote forms showed an increase in the number of cells stained with propidium iodide. The compounds brought about significant changes in mitochondrial membrane potential. According to the present study, phthalimido-thiazole compounds exhibit leishmanicidal activity and could be used to develop novel antileishmaniasis drugs and explore potential molecular targets. Copyright © 2017 Elsevier B.V. All rights reserved.
Bell, C A; Dykstra, C C; Naiman, N A; Cory, M; Fairley, T A; Tidwell, R R
1993-01-01
Nine dicationically substituted bis-benzimidazoles were examined for their in vitro activities against Giardia lamblia WB (ATCC 30957). The potential mechanisms of action of these compounds were evaluated by investigating the relationship among in vitro antigiardial activity and the affinity of the molecules for DNA and their ability to inhibit the activity of giardial topoisomerase II. Each compound demonstrated antigiardial activity, as measured by assessing the incorporation of [methyl-3H]thymidine by giardial trophozoites exposed to the test agents. Three compounds exhibited excellent in vitro antigiardial activities, with 50% inhibitory concentrations which compared very favorably with those of two currently used drugs, quinacrine HCl and metronidazole. Putative mechanisms of action for these compounds were suggested by the strong correlation observed among in vitro antigiardial activity and the affinity of the molecules for natural and synthetic DNA and their ability to inhibit the relaxation activity of giardial topoisomerase II. A strong correlation between the DNA binding affinity of these compounds and their inhibition of giardial topoisomerase II activity was also observed. Images PMID:8109934
Shen, Ya-Ching; Chang, Yao-To; Lin, Chun-Ling; Liaw, Chia-Ching; Kuo, Yao Haur; Tu, Lan-Chun; Yeh, Sheau Farn; Chern, Ji-Wang
2011-01-01
A series of 1-substituted carbazolyl-1,2,3,4-tetrahydro- and carbazolyl-3,4-dihydro-β-carboline analogs have been synthesized and evaluated for antitumor activity against human tumor cells including KB, DLD, NCI-H661, Hepa, and HepG2/A2 cell lines. Among these, compounds 2, 6, 7, and 9 exhibited the most potent and selective activity against the tested tumor cells. As for inhibition of topoisomerase II, compounds 1–14 and 18 showed better activity than etoposide. Among them, compounds 3, 4, 7, 9, and 10 exhibited potent activity. The structure and activity relationship (SAR) study revealed correlation between carbon numbers of the side chain and biological activities. The molecular complex with DNA for compound 2 was proposed. PMID:21566798
Mura, F; Silva, T; Castro, C; Borges, F; Zuñiga, M C; Morales, J; Olea-Azar, C
2014-12-01
A series hydroxycinnamic and gallic acids and their derivatives were studied with the aim of evaluating their in vitro antioxidant properties both in homogeneous and in cellular systems. It was concluded from the oxygen radical absorbance capacity-fluorescein (ORAC-FL), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and cyclic voltammetry data that some compounds exhibit remarkable antioxidant properties. In general, in homogeneous media (DPPH assay), galloyl-based cinnamic and benzoic systems (compounds 7-11) were the most active, exhibiting the lowest oxidation potentials in both dimethyl sulfoxide (DMSO) and phosphate buffer. Yet, p-coumaric acid and its derivatives (compounds 1-3) disclosed the highest scavenging activity toward peroxyl radicals (ORAC-FL assay). Interesting structure-property- activity relationships between ORAC-FL, or DPPH radical, and redox potentials have been attained, showing that the latter parameter can be a valuable antioxidant measure. It was evidenced that redox potentials are related to the structural features of cinnamic and benzoic systems and that their activities are also dependent on the radical generated in the assay. Electron spin resonance data of the phenoxyl radicals generated both in DMSO and phosphate buffer support the assumption that radical stability is related to the type of phenolic system. Galloyl-based cinnamic and benzoic ester-type systems (compounds 9 and 11) were the most active and effective compounds in cell-based assays (51.13 ± 1.27% and 54.90 ± 3.65%, respectively). In cellular systems, hydroxycinnamic and hydroxybenzoic systems operate based on their intrinsic antioxidant outline and lipophilic properties, so the balance between these two properties is considered of the utmost importance to ensure their performance in the prevention or minimization of the effects due to free radical overproduction.
Fang, Xue-Jie; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhou, Qian; Zhou, Cheng-He
2016-06-01
A series of 5-fluorouracil benzimidazoles as novel type of potential antimicrobial agents were designed and synthesized for the first time. Bioactive assay manifested that some of the prepared compounds exhibited good or even stronger antibacterial and antifungal activities against the tested strains in comparison with reference drugs norfloxacin, chloromycin and fluconazole. Noticeably, 3-fluorobenzyl benzimidazole derivative 5c gave remarkable antimicrobial activities against Saccharomyces cerevisiae, MRSA and Bacillus proteus with MIC values of 1, 2 and 4μg/mL, respectively. Experimental research revealed that compound 5c could effectively intercalate into calf thymus DNA to form compound 5c-DNA complex which might block DNA replication and thus exert antimicrobial activities. Molecular docking indicated that compound 5c should bind with DNA topoisomerase IA through three hydrogen bonds by the use of fluorine atom and oxygen atoms in 5-fluorouracil with the residue Lys 423. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Yan; Zhang, Wen-Juan; Huang, Dong-Ye; Wang, Ying; Wei, Jian-Yu; Li, Zhi-Hua; Sun, Jian-Sheng; Bai, Jia-Feng; Tian, Zhao-Fu; Wang, Ping-Juan; Du, Shu-Shan
2015-12-08
The essential oil obtained by hydrodistillation from Alpinia kwangsiensis rhizomes was investigated by GC-MS. A total of 31 components representing 92.45% of the oil were identified and the main compounds in the oil were found to be camphor (17.59%), eucalyptol (15.16%), β-pinene (11.15%) and α-pinene (10.50%). These four compounds were subsequently isolated and the essential oil and four isolated compounds exhibited potent insecticidal activity against Lasioderma serricorne adults. During the assay, it was shown that the essential oil exhibited both potential contact (LD50 = of 24.59 μg/adult) and fumigant (LC50 = of 9.91 mg/L air) toxicity against Lasioderma serricorne. The study revealed that the insecticidal activity of the essential oil can be attributed to the synergistic effects of its diverse major components, which indicates that oil of Alpinia kwangsiensis and its isolated compounds have potential to be developed into natural insecticides to control insects in stored grains and traditional Chinese medicinal materials.
NASA Astrophysics Data System (ADS)
Osman, M. S.; Ghani, Z. A.; Ismail, N. F.; Razak, N. A. A.; Jaapar, J.; Ariff, M. A. M.
2017-09-01
At present time, Mariposa Christia Vespertillonis (MCV) leave has become popular for its anti-cancer and thus is used widely among the traditional medicine in Malaysia. There are several types of MCV plants and the one that is currently well-known for traditional medicine in Malaysia is the green MCV (GMCV). Red MCV (RMCV) is another type of MCV plant which can also be found easily in Malaysia. In this study, the active compounds for GMCV and RMCV will be compared and analyzed by using Liquid Chromatography - Mass Spectrometry (LC-MS). The active compounds will be extracted from the MCV leaves by using Supercritical Fluid Extraction (SFE). The findings of this study indicates the global yield of the MCV oils is 31 mg/g while the compound identification indicates the presence of anti-cancer, anti-inflammatory and beneficial phytochemicals. This work is an explorative study to reveal the potential of MCV to be extracted using SFE method as potential therapeutic plants for the traditional medicine in Malaysia.
Buszewska-Forajta, Magdalena; Siluk, Danuta; Struck-Lewicka, Wiktoria; Raczak-Gutknecht, Joanna; Markuszewski, Michał J; Kaliszan, Roman
2014-02-01
In recent years biologically active compounds isolated from insects call special interest of drug researchers. According to some Polish etnopharmacological observations, secretion from the grasshopper's abdomen (Orthoptera family) is believed to speed up the process of wound healing. In the present work we focused on determination of main components of the lipid fraction of material from grasshopper abdomen using GC-MS/MS. Samples were qualitatively analyzed using gas chromatography coupled with mass spectrometry. Both liquid-liquid extraction and solid-phase extraction pretreatment methods were used to concentrate and fractionate the compounds from the insect. In the derivatized fractions ca. 350 compounds were identified, including substances of known biological activity. The potential agents affecting wound healing have been indicated. A set of compounds characteristic for all the studied Chorthippus spp., have been identified. Data analysis revealed different lipidomic profiles of grasshoppers depending on the insects origin and collection area. Copyright © 2013 Elsevier B.V. All rights reserved.
Méndez-Rojas, Claudio; Quiroz, Gabriel; Faúndez, Mario; Gallardo-Garrido, Carlos; Pessoa-Mahana, C David; Chung, Hery; Gallardo-Toledo, Eduardo; Saitz-Barría, Claudio; Araya-Maturana, Ramiro; Kogan, Marcelo J; Zúñiga-López, María C; Iturriaga-Vásquez, Patricio; Valenzuela-Gutiérrez, Carla; Pessoa-Mahana, Hernán
2018-05-01
With the purpose of expanding the structural variety of chemical compounds available as pharmacological tools for the treatment of Alzheimer's disease, we synthesized and evaluated a novel series of indole-benzoxazinones (Family I) and benzoxazine-arylpiperazine derivatives (Family II) for potential human acetylcholinesterase (hAChE) inhibitory properties. The most active compounds 7a and 7d demonstrated effective inhibitory profiles with K i values of 20.3 ± 0.9 μM and 20.2 ± 0.9 μM, respectively. Kinetic inhibition assays showed non-competitive inhibition of AChE by the tested compounds. According to our docking studies, the most active compounds from both series (Families I and II) showed a binding mode similar to donepezil and interact with the same residues. © 2018 Deutsche Pharmazeutische Gesellschaft.
Kim, Min-Young; Seguin, Philippe; Ahn, Joung-Kuk; Kim, Jong-Jin; Chun, Se-Chul; Kim, Eun-Hye; Seo, Su-Hyun; Kang, Eun-Young; Kim, Sun-Lim; Park, Yool-Jin; Ro, Hee-Myong; Chung, Ill-Min
2008-08-27
A study was conducted to determine the content of phenolic compounds and the antioxidative activity of five edible and five medicinal mushrooms commonly cultivated in Korea. Phenolic compounds were analyzed using high performance liquid chromatography, and antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and superoxide dismutase activity. A total of 28 phenolic compounds were detected in the mushrooms studied. The average total concentration of phenolic compounds was 326 microg/g, the average being of 174 microg/g in edible mushrooms and 477 microg/g in medicinal mushrooms. The average total flavonoids concentration was 49 microg/g, with averages of 22 and 76 microg/g in edible and medicinal mushrooms, respectively. The DPPH radical scavenging activities ranged between 15 (Pleurotus eryngii) and 70% (Ganoderma lucidum) when reaction time was for 1 min. When reaction time was 30 min, the values ranged between 5 (Pleurotus eryngii) and 78% (Agaricus bisporus). The SOD activity averaged 28% among the 10 mushroom species, averages for edible and medicinal mushrooms being comparable. DPPH activities was significantly correlated (p < 0.01) with total content of phenolic compounds in edible mushrooms, while in medicinal mushrooms there was a significant correlation (p < 0.01) between SOD activity and total concentration of phenolic compounds. Numerous significant positive correlations were observed between phenolic compounds detected and antioxidative potential.
Muhammad, Asim; Guerrero-Analco, Jose A; Martineau, Louis C; Musallam, Lina; Madiraju, Padma; Nachar, Abir; Saleem, Ammar; Haddad, Pierre S; Arnason, John T
2012-07-27
Through ethnobotanical surveys, the CIHR Team in Aboriginal Antidiabetic Medicines identified 17 boreal forest plants stemming from the pharmacopeia of the Cree First Nations of Eeyou Istchee (James Bay region of Northern Quebec) that were used traditionally against diabetes symptoms. The leaves of Sarracenia purpurea (pitcher plant), one of the identified Cree plants, exhibited marked antidiabetic activity in vitro by stimulating glucose uptake in C2C12 mouse muscle cells and by reducing glucose production in H4IIE rat liver cells. Fractionation guided by glucose uptake in C2C12 cells resulted in the isolation of 11 compounds from this plant extract, including a new phenolic glycoside, flavonoid glycosides, and iridoids. Compounds 6 (isorhamnetin-3-O-glucoside), 8 [kaempferol-3-O-(6″-caffeoylglucoside], and 11 (quercetin-3-O-galactoside) potentiated glucose uptake in vitro, which suggests they represent active principles of S. purpurea (EC(50) values of 18.5, 13.8, and 60.5 μM, respectively). This is the first report of potentiation of glucose uptake by compounds 6 and 8, while compound 11 (isolated from Vaccinium vitis) was previously shown to enhance glucose uptake. Treatment of H4IIE liver cells with the new compound 1, 6'-O-caffeoylgoodyeroside, decreased hepatic glucose production by reducing glucose-6-phosphatase enzymatic activity (IC(50) = 13.6 μM), which would contribute to lowering glycemia and to the antidiabetic potential of S. purpurea.
The use of marine-derived bioactive compounds as potential hepatoprotective agents
Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K
2015-01-01
The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871
Drugs as habitable planets in the space of dark chemical matter.
Siramshetty, Vishal B; Preissner, Robert
2018-03-01
A recent study demonstrated antifungal activity of dark chemical matter (DCM) compounds that were otherwise inactive in more than 100 HTS assays. These compounds were proposed to possess unique activity and 'clean' safety profiles. Here, we present an outlook of the promiscuity and safety of these compounds by retrospectively comparing their chemical and biological spaces with those of drugs. Significant amounts of marketed drugs (16%), withdrawn drugs (16.5%) and natural compounds (3.5%) share structural identity with DCM. Compound promiscuity assessment indicates that dark matter compounds could potentially interact with multiple biological targets. Further, thousands of DCM compounds showed presence of frequent-hitting pan-assay interference compound (PAINS) substructures. In light of these observations, filtering these compounds from screening libraries can be an irrevocable loss. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tajammal, Affifa; Batool, Majda; Ramzan, Ayesha; Samra, Malka M.; Mahnoor, Idrees; Verpoort, Francis; Irfan, Ahmad; Al-Sehemi, Abdullah G.; Munawar, Munawar Ali; Basra, Muhammad Asim R.
2017-11-01
Chronic exposure of supraphysiologic glucose concentration to cells and tissues resulted in glucose toxicity which causes oxidative stress. Antioxidants have promising effect in suppressing the oxidative stress in the pathogenesis of diabetes mellitus (DM). Condensation of 2,5-dihydroxyacetophenone with different nitrobenzaldehydes was used to synthesize antioxidant nitro substituted chalcones along with nitro substituted flavanones in one step protocol. The compounds were characterized by IR, 1H NMR and 13C NMR and then screened for their in vitro antioxidant and in vivo antihyperglycemic activities. Postulated structures of the synthesized compounds were in agreement with their spectral data. The results indicated that the novel compound (2E)-1-(2,5-Dihydroxyphenyl)-3-(2-nitrophenyl) prop-2-en-1-one (2a) was potent antioxidant because of its lower IC50 value compared with trolox and ascorbic acid. Compound 2a also exhibited excellent antihyperglycemic activity in diabetic rats while the compound (E)-1-(2,5-Dihydroxyphenyl)-3-(4-nitrophenyl)prop-2-one (2c) suppressed the hyperglycemia more effectively in normal rats. The radical scavenging activity behavior was elucidated on the basis of hydrogen atom transfer and one-electron transfer mechanisms by density functional theory (DFT). The compound 2a showed the smallest ionization potential and bond dissociation enthalpy. Experimental and computational investigations concluded that compound 2a might be an effective antihyperglycemic agent because of its antioxidative nature and smallest ionization potential.
How to acquire new biological activities in old compounds by computer prediction
NASA Astrophysics Data System (ADS)
Poroikov, V. V.; Filimonov, D. A.
2002-11-01
Due to the directed way of testing chemical compounds' in drug research and development many projects fail because serious adverse effects and toxicity are discovered too late, and many existing prospective activities remain unstudied. Evaluation of the general biological potential of molecules is possible using a computer program PASS that predicts more than 780 pharmacological effects, mechanisms of action, mutagenicity, carcinogenicity, etc. on the basis of structural formulae of compounds, with average accuracy ˜85%. PASS applications to both databases of available samples included hundreds of thousands compounds, and small collections of compounds synthesized by separate medicinal chemists are described. It is shown that 880 compounds from Prestwick chemical library represent a very diverse pharmacological space. New activities can be found in existing compounds by prediction. Therefore, on this basis, the selection of compounds with required and without unwanted properties is possible. Even when PASS cannot predict very new activities, it may recognize some unwanted actions at the early stage of R&D, providing the medicinal chemist with the means to increase the efficiency of projects.
2013-01-01
Traditional medicine caters for about 80% of the health care needs of many rural populations around the world, especially in developing countries. In addition, plant-derived compounds have played key roles in drug discovery. Malaria is currently a public health concern in many countries in the world due to factors such as chemotherapy faced by resistance, poor hygienic conditions, poorly managed vector control programmes and no approved vaccines. In this review, an attempt has been made to assess the value of African medicinal plants for drug discovery by discussing the anti-malarial virtue of the derived phytochemicals that have been tested by in vitro and in vivo assays. This survey was focused on pure compounds derived from African flora which have exhibited anti-malarial properties with activities ranging from “very active” to “weakly active”. However, only the compounds which showed anti-malarial activities from “very active” to “moderately active” are discussed in this review. The activity of 278 compounds, mainly alkaloids, terpenoids, flavonoids, coumarines, phenolics, polyacetylenes, xanthones, quinones, steroids, and lignans have been discussed. The first part of this review series covers the activity of 171 compounds belonging to the alkaloid and terpenoid classes. Data available in the literature indicated that African flora hold an enormous potential for the development of phytomedicines for malaria. PMID:24330395
Benzoin Schiff Bases: Design, Synthesis, and Biological Evaluation as Potential Antitumor Agents.
Sabbah, Dima A; Al-Tarawneh, Fatima; Talib, Wamidh H; Sweidan, Kamal; Bardaweel, Sanaa K; Al-Shalabi, Eveen; Zhong, Haizhen A; Abu Sheikha, Ghassan; Abu Khalaf, Reema; Mubarak, Mohammad S
2018-04-12
Phosphoinositide 3-kinase α (PI3Kα) is an attractive target for anticancer drug design. Target compounds were designed to probe the significance of alcohol and imine moieties tailored on a benzoin scaffold to better understand the structure activity relation (SAR) and improve their biological activity as anticancer compounds. Chemical synthesis of the targeted compounds, biological evaluation tests against human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines, as well as Glide docking studies were employed in this investigation. A new series of 1,2-diphenylimino ethanol was successfully synthesized and characterized by means of FT-IR, HRMS, NMR, and by elemental analysis. Biological screening revealed that the newly synthesized compounds inhibit PI3Kα activity in human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines. Results additionally showed that these compounds exhibit selective antiproliferative activity, induce apoptosis, and suppress the VEGF production. Compounds 2b, 2d, and 2g displayed promising inhibitory activity in HCT-116 suggesting that hydrophobic and/or hydrogen bond-acceptor mediate(s) ligand-receptor interaction on o- and m-positions. Furthermore, compounds 2g, 2i, 2j, and 2h, bearing hydrophobic moiety on m- and p-position, exerted high antiproliferative activity in T47D and MCF-7 cells, whereas compound 2e showed selectivity against T47D and MCF-7. Molecular docking studies against PI3Kα and caspase-3 demonstrated a strong correlation between the predicted binding affinity (ΔGobsd) and IC50 values of prepared compounds for the caspase-3 model, implying that the cellulous inhibitory activity was caspase-3-dependent. Moreover, Glide docking against PI3Kα identified Ser774, Lys802, E849, V851, and Asp933 as key binding residues. The series exerted a potential PI3Kα inhibitory activity in human carcinoma cell lines expressing PI3Kα. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Rai, Mahendra K; Gaikwad, Swapnil; Nagaonkar, Dipali; dos Santos, Carolina Alves
2015-01-01
Ganoderma spp. are very important therapeutic mushrooms and have been used traditionally for 4000 years in the treatment of various human disorders. Different species of Ganoderma possess bioactive compounds, which have already demonstrated antiviral, antibacterial, and antifungal activities. Various bioactive compounds such as triterpenoids, colossolactones, and polysaccharides, which are responsible for the antimicrobial potential of the genus, are discussed here in detail. Some Ganoderma spp. have been reported to be potential agents for the synthesis of metal nanoparticles. These nanoparticles have demonstrated antimicrobial activity and also are reviewed herein. The main aim of this review is to discuss the possible use of Ganoderma extracts and their active principles in antimicrobial therapy.
NASA Astrophysics Data System (ADS)
Firdaus; Soekamto, N. H.; Seniwati; Islam, M. F.; Sultan
2018-03-01
Bioactivity of a compound is closely related to the molecular structure of the compound concerned, its strength being the quantitative relation of the strength of the activity of the group it possesses. The combining of moieties of the active compounds will produce more active compounds. Most phenolic compounds as well as compounds containing moiety phenethyl groups have potential activity as anticancer. Combining phenolic groups and phenethyl groups in a compound will result in compounds having strong anticancer bioactivity. This study aims to combine the feruloyl and phenethyl groups to form esters and amides by synthesize of phenethyl trans-3-(4-hydroxy-3-methoxyphenyl)acrylate (5) and trans-3-(4- hydroxy-3-methoxyphenyl)-N-phenethylacrylamide (6) from ferulic acid with phenethyl alcohol and phenethylamine, and to study their bioactivity as anticancer. The synthesis of both compounds was conducted via indirect reaction, including acetylation, chlorination, esterfication/amidation, and deacetylation. Structures of products were characterized by FTIR and NMR data, and their bioactivity assay of the compounds against P388 Leukemia Murine Cells was conducted by an MTT method. Results showed that the compound 5 was obtained as a yellow gel with the IC50 of 10.79 μg/mL (36.21 μΜ), and the compound 6 was a yellowish solid with a melting point of 118-120°C and the IC50 of 29.14 μg/mL (97.79 μΜ). These compounds were more active than the analog compounds.
NASA Astrophysics Data System (ADS)
Aziz, Hamid; Saeed, Aamer; Jabeen, Farukh; Simpson, Jim; Munawar, Amna; Qasim, Muhammad
2018-03-01
Amide derivatives have gained considerable attention because of their extensive range of biological activities and pharmaceutical applications. The current paper presents the synthesis of N, N‧-(ethane-1,2-diyl) bis (3-methylbenzamide), (I), its molecular and crystal structure and an evaluation of its likely biological activity, including cytotoxicity (LD50 = 37.21 μg/ml) and antileishmanial activity (IC50 = 5.77 μg/ml). Moreover, a docking simulation was used to determine the possible interaction sites of the compound (I) with TryR, an enzyme involved in the redox metabolism of the leishmania parasite. Docking computations demonstrate that the compound established prominent binding interactions with the key residues of the TryR and possess the potential to effectively inhibit the catalytic activities of the enzyme. Thus the results suggest that this compound can serve as a potential scaffold for the treatment of leishmaniasis and deserves further development.
Varsha, Kontham Kulangara; Nishant, Gopalan; Sneha, Srambikal Mohandas; Shilpa, Ganesan; Devendra, Leena; Priya, Sulochana; Nampoothiri, Kesavan Madhavan
2016-12-01
A bioactive compound was purified from the culture medium of a new strain of Lactococcus BSN307 by solvent extraction followed by chromatographic techniques. This bioactive compound was identified to belong to phenazine class of compounds by MS, NMR and FTIR. The phenazine compound showed antifungal activity against Aspergillus niger , Penicillium chrysogenum as well as Fusarium oxysporum by disc diffusion assay in addition to antioxidant potential as demonstrated by DPPH scavenging assay. The compound demonstrated selective cytotoxicity against cancer cell lines HeLa and MCF-7 where IC 50 was achieved with 20 and 24 µg/mL respectively. At the same time no cytotoxicity was occurred in normal H9c2 cells. The bioactive found to be inhibitory to both leucine and proline aminopeptidases and thus revealed its potential as metalloenzyme inhibitor. This study, for the first time reports the production of phenazine class of compounds by lactic acid bacteria.
Inoue Andrade, Flávia; Purgato, Gislaine Aparecida; de Faria Maia, Thalita; Pais Siqueira, Raoni; Lima, Sâmia; Diaz, Marisa Alves Nogueira
2015-01-01
Upon undergoing biomonitoring, the most active dichloromethane extract retrieved from Senna macranthera roots led to the isolation of three main compounds: emodine, physione, and chrysophanol. In this sequence, these compounds revealed a potential antibacterial activity against Staphylococcus aureus strains isolated from animals with mastitis infections with minimum inhibitory concentration (MIC) values of 20, 90, and 90 μg mL−1, respectively. Therefore, an herbal soap was also produced from this same active extract. This soap was tested in vitro using gloves contaminated by animals with bovine mastitis that had been discarded after use by milkers and showed similar results to previously tested compounds. These results indicate the potential of this plant as an alternative veterinary medicine for the production of antibacterial soaps that aimed at controlling bovine mastitis infections in small Brazilian farms. PMID:25821480
Ealy, Julie B.; Sudol, Malgorzata; Krzeminski, Jacek; Amin, Shantu; Katzman, Michael
2012-01-01
Retroviral integrase can use water or some small alcohols as the attacking nucleophile to nick DNA. To characterize the range of compounds that human immunodeficiency virus type 1 integrase can accommodate for its endonuclease activities, we tested 45 potential electron donors (having varied size and number or spacing of nucleophilic groups) as substrates during site-specific nicking at viral DNA ends and during nonspecific nicking reactions. We found that integrase used 22 of the 45 compounds to nick DNA, but not all active compounds were used for both activities. In particular, 13 compounds were used for site-specific and nonspecific nicking, 5 only for site-specific nicking, and 4 only for nonspecific nicking; 23 other compounds were not used for either activity. Thus, integrase can accommodate a large number of nucleophilic substrates but has selective requirements for its different activities, underscoring its dynamic properties and providing new information for modeling and understanding integrase. PMID:22910593
Makhafola, Tshepiso Jan; Elgorashi, Esameldin Elzein; McGaw, Lyndy Joy; Awouafack, Maurice Ducret; Verschaeve, Luc; Eloff, Jacobus Nicolaas
2017-09-06
Mutations play a major role in the pathogenesis and development of several chronic degenerative diseases including cancer. It follows, therefore that antimutagenic compound may inhibit the pathological process resulting from exposure to mutagens. Investigation of the antimutagenic potential of traditional medicinal plants and compounds isolated from plant extracts provides one of the tools that can be used to identify compounds with potential cancer chemopreventive properties. The aim of this study was to isolate and characterise the compounds responsible for the antimutagenic activity of Combretum microphyllum. The methanol leaf extract of C. microphyllum was evaluated for antimutagenicity in the Ames/microsome assay using Salmonella typhimurium TA98. TA100 and TA102. Solvent-solvent fractionation was used to partition the extracts and by using bioassay-guided fractionation, three compounds were isolated. The antimutagenic activity of the three compounds were determined in the Ames test using Salmonella typhimurium TA98, TA100 and TA102. The antioxidant activity of the three compounds were determined by the quantitative 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging method. The cytotoxicity was determined in the MTT assay using human hepatocytes. A bioassay-guided fractionation of the crude extracts for antimutagenic activity led to the isolation of three compounds; n-tetracosanol, eicosanoic acid and arjunolic acid. Arjunolic acid was the most active in all three tested strains with a antimutagenicity of 42 ± 9.6%, 36 ± 1.5% and 44 ± 0.18% in S. typhimurium TA98, TA100 and TA102 respectively at the highest concentration (500 μg/ml) tested, followed by eicosanoic acid and n-tetracosanol. The antioxidant activity of the compounds were determined using the quantitative 2,2 diphenyl-1-picryhydrazyl (DPPH)-free radical scavenging method. Only arjunolic acid had pronounced antioxidant activity (measured as DPPH-free scavenging activity) with an EC 50 value of 0.51 μg/ml. The cytotoxicity of the isolated compounds were determined in the MTT assay using human hepatocytes. The compounds had low cytotoxicity at the highest concentration tested with LC 50 values >200 μg/ml for n-tetracosanol and eicosanoic acid and 106.39 μg/ml for arjunolic acid. Based on findings from this study, compounds in leaf extracts of C. microphyllum protected against 4-NQO and MMC induced mutations as evident in the Ames test. The antimutagenic activity of arjunolic acid may, at least in part, be attributed to its antioxidant activity resulting in the detoxification of reactive oxygen species produced during mutagenesis.
Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels
Xia, Menghang; Shahane, Sampada; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao, Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.
2011-01-01
The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K+) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially lead to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC50 potencies ranging from 0.26 to 22 μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC50 value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo. PMID:21362439
Antitrypanosomal and antioxidant properties of 4-hydroxycoumarins derivatives.
Pérez-Cruz, Fernanda; Serra, Silvia; Delogu, Giovanna; Lapier, Michel; Maya, Juan Diego; Olea-Azar, Claudio; Santana, Lourdes; Uriarte, Eugenio
2012-09-01
In the present communication we prepared a series of six 4-hydroxycoumarin derivatives, isosters of quercetin, recognized as an antioxidant natural compound, with the aim of evaluating the antitrypanosomal activity against Trypanosoma cruzi, the parasite responsible for Chagas disease, and the antioxidant properties. We have used the 4-hydroxycoumarin moiety (compound 1) as the molecular template for the synthesis of compounds 2-7. These derivates have shown moderate trypanocidal activity. However they have been proved to be good antioxidants. In particular compound 7 is the most active antioxidant and it is, therefore, a potential candidate for a successful employment in conditions characterized by free radicals overproduction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chetan, Bhadaliya; Bunha, Mahesh; Jagrat, Monika; Sinha, Barij Nayan; Saiko, Philipp; Graser, Geraldine; Szekeres, Thomas; Raman, Ganapathy; Rajendran, Praveen; Moorthy, Dhatchana; Basu, Arijit; Jayaprakash, Venkatesan
2010-07-01
Six compounds were synthesized with piperazine in linker region and hydroxamate as Zinc Binding Group (ZBG). They were screened against three cancer cell-lines (NCIH460; HCT116; U251). Compounds 5c and 5f with GI(50) value of 9.33+/-1.3 microM and 12.03+/-4 microM, respectively, were tested for their inhibitory potential on hHDAC8. Compound 5c had IC(50) of 33.67 microM. Compounds were also screened for their anticancer activity against HL60 human promyelocytic leukemia cell line due to the presence of pharmacophoric features of RR inhibitors in them. Compound 5c had IC(50) of 0.6 microM at 48h. 2010 Elsevier Ltd. All rights reserved.
Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena
2018-01-01
Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.
Zeng, Huawu; Locatelli, Monica; Bardelli, Claudio; Amoruso, Angela; Coisson, Jean Daniel; Travaglia, Fabiano; Arlorio, Marco; Brunelleschi, Sandra
2011-05-25
There is a great interest in the potential health benefits of biologically active phenolic compounds in cocoa (Theobroma cacao) and dark chocolate. We investigated the anti-inflammatory potential of clovamide (a N-phenylpropenoyl-L-amino acid amide present in cocoa beans) and two phenolic extracts from unroasted and roasted cocoa beans, by evaluating superoxide anion (O(2)(-)) production, cytokine release, and NF-κB activation in human monocytes stimulated by phorbol 12-myristate 13-acetate (PMA). The effects of rosmarinic acid are shown for comparison. Clovamide and rosmarinic acid inhibited PMA-induced O(2)(-) production and cytokine release (with a bell-shaped curve and maximal inhibition at 10-100 nM), as well as PMA-induced NF-κB activation; the two cocoa extracts were less effective. In all tests, clovamide was the most potent compound and also enhanced peroxisome proliferator-activated receptor-γ (PPARγ) activity, which may exert anti-inflammatory effects. These findings indicate clovamide as a possible bioactive compound with anti-inflammatory activity in human cells.
Gan, Xiuhai; Hu, Deyu; Wang, Yanjiao; Yu, Lu; Song, Baoan
2017-06-07
A series of novel trans-ferulic acid derivatives containing a chalcone moiety were designed and synthesized to induce plant resistance. Antiviral activities of the compounds were evaluated. Bioassay results demonstrated that compounds F3, F6, F17, and F27 showed remarkable curative, protective, and inactivating activities against tobacco mosaic virus (TMV). With a 50% effective concentration (EC 50 ) value of 98.78 μg mL -1 , compound F27 exhibited the best protective activity compared with trans-ferulic acid (328.6 μg mL -1 ), dufulin (385.6 μg mL -1 ), and ningnanmycin (241.3 μg mL -1 ). This protective ability was associated with potentiation of defense-related enzyme activity and activation of photosynthesis of tobacco at an early stage. This notion was confirmed by up-regulated expression of stress responses and photosynthesis regulating proteins. This work revealed that F27 can induce resistance and enhance plant tolerance to TMV infection. Hence, F27 can be considered as a novel activator for inducing plant resistance.
Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L.
Fernandes, Ana; Fernandes, Iva; Cruz, Luís; Mateus, Nuno; Cabral, Miguel; de Freitas, Victor
2009-12-09
Phenolic compounds, namely, hydrolyzable tannins and low molecular weight phenolic compounds, were isolated and purified from Portuguese cork from Quercus suber L. Some of these compounds were studied to evaluate their antioxidant activity, including free-radical scavenging capacity (DPPH method) and reducing capacity (FRAP method). All compounds tested showed significant antioxidant activity, namely, antiradical and reducing properties. The antiradical capacity seemed to increase with the presence of galloyl groups. Regarding the reducing capacity, this structure-activity relationship was not so clear. These compounds were also studied to evaluate the growth inhibitory effect on the estrogen responsive human breast cancer cell line (ER+) MCF-7 and two other colon cancer cell lines (Caco-2 and HT-29). Generally, all the compounds tested exhibited, after a continuous exposure during a 48 h period, a dose-dependent growth inhibitory effect. Relative inhibitory activity was primarily related to the number of phenolic hydroxyl groups (galloyl and HHDP moieties) found in the active structures, with more groups generally conferring increased effects, except for HHDP-di-galloyl-glucose. Mongolicain B showed a greater potential to inhibit the growth of the three cell lines tested, identical to the effect observed with castalagin. Since these compounds are structurally related with each other, this activity might be based within the C-glycosidic ellagitannin moiety.
Compound K Attenuates the Development of Atherosclerosis in ApoE−/− Mice via LXRα Activation
Zhou, Li; Zheng, Yu; Li, Zhuoying; Bao, Lingxia; Dou, Yin; Tang, Yuan; Zhang, Jianxiang; Zhou, Jianzhi; Liu, Ya; Jia, Yi; Li, Xiaohui
2016-01-01
Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis. PMID:27399689
Kittayaruksakul, Suticha; Zhao, Wenchen; Xu, Meishu; Ren, Songrong; Lu, Jing; Wang, Ju; Downes, Michael; Evans, Ronald M.; Venkataramanan, Raman; Chatsudthipong, Varanuj; Xie, Wen
2013-01-01
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) have been known to play a role in xenobiotic metabolism by regulating the expression of drug-metabolizing enzymes and transporters. In addition, PXR agonists were found to exert therapeutic effects through multiple mechanisms, such as detoxification of bile acids and inhibition of inflammation. In this study, we first investigated the effects of three natural product compounds, carapin, santonin and isokobusone, on the activity of PXR and CAR. These compounds activated both PXR and CAR in transient transfection and luciferase reporter gene assays. Mutagenesis studies showed that two amino acid residues, Phe305 of the rodent PXR and Leu308 of the human PXR, are critical for the recognition of these compounds by PXR. Importantly, the activation of PXR and CAR by these compounds induced the expression of drug-metabolizing enzymes in primary human and mouse hepatocytes. Furthermore, activation of PXR by these compounds inhibited the expression of inflammatory mediators in response to lipopolysaccharide (LPS). The effects of these natural compounds on drug metabolism and inflammation were abolished in PXR−/− hepatocytes. These natural compounds can be explored for their potential in the treatment of diseases where the PXR activation has been shown to be beneficial, such as inflammatory bowel disease, cholestasis, and hyperbilirubinemia. PMID:23896737
Efficacy of 2'-C-methylcytidine against yellow fever virus in cell culture and in a hamster model.
Julander, Justin G; Jha, Ashok K; Choi, Jung-Ae; Jung, Kie-Hoon; Smee, Donald F; Morrey, John D; Chu, Chung K
2010-06-01
Yellow fever virus (YFV) continues to cause outbreaks of disease in endemic areas where vaccine is underutilized. Due to the effectiveness of the vaccine, antiviral development solely for the treatment of YFV is not feasible, but antivirals that are effective in the treatment of related viral diseases may be characterized for potential use against YFV as a secondary indication disease. 2'-C-methylcytidine (2'-C-MeC), a compound active against hepatitis C virus, was found to have activity against the 17D vaccine strain of YFV in cell culture (EC(90)=0.32 microg/ml, SI=141). This compound was effective when added as late as 16 h after virus challenge of Vero cells. When administered to YFV-infected hamsters 4 h prior to virus challenge at a dose as low as 80 mg/kg/d, 2'-C-MeC was effective in significantly improving survival and other disease parameters (weight change, serum ALT, and liver virus titers). Disease was improved when compound was administered beginning as late as 3 d post-virus infection. Broadly active antiviral compounds, such as 2'-C-MeC, represent potential for the development of compounds active against related viruses for the treatment of YFV. Copyright 2010 Elsevier B.V. All rights reserved.
Stana, Anca; Vodnar, Dan C.; Tamaian, Radu; Pîrnău, Adrian; Vlase, Laurian; Ionuț, Ioana; Oniga, Ovidiu; Tiperciuc, Brînduşa
2017-01-01
Twenty-three thiazolin-4-ones were synthesized starting from phenylthioamide or thiourea derivatives by condensation with α-monochloroacetic acid or ethyl α-bromoacetate, followed by substitution in position 5 with various arylidene moieties. All the synthesized compounds were physico-chemically characterized and the IR (infrared spectra), 1H NMR (proton nuclear magnetic resonance), 13C NMR (carbon nuclear magnetic resonance) and MS (mass spectrometry) data were consistent with the assigned structures. The synthesized thiazolin-4-one derivatives were tested for antifungal properties against several strains of Candida and all compounds exhibited efficient anti-Candida activity, two of them (9b and 10) being over 500-fold more active than fluconazole. Furthermore, the compounds’ lipophilicity was assessed and the compounds were subjected to in silico screening for prediction of their ADME-Tox properties (absorbtion, distribution, metabolism, excretion and toxicity). Molecular docking studies were performed to investigate the mode of action towards the fungal lanosterol 14α-demethylase, a cytochrome P450-dependent enzyme. The results of the in vitro antifungal activity screening, docking study and ADME-Tox prediction revealed that the synthesized compounds are potential anti-Candida agents that might act by inhibiting the fungal lanosterol 14α-demethylase and can be further optimized and developed as lead compounds. PMID:28106743
Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen
2014-01-01
Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen
2014-01-01
Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246 × 10−6 mol/L and 5.910 × 10−6 mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies. PMID:25548779
Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles.
Yadav, Pinki; Lal, Kashmiri; Kumar, Ashwani; Guru, Santosh Kumar; Jaglan, Sundeep; Bhushan, Shashi
2017-01-27
A series of chalcone linked-1,2,3-triazoles was synthesized via cellulose supported copper nanoparticle catalyzed click reaction in water. The structures of all the compounds were analyzed by IR, NMR and Mass spectral techniques. All the synthesized products were subjected to 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay against a panel of four human cancer cell lines (MCF-7, MIA-Pa-Ca-2, A549, HepG2) to check their anticancer potential. Compound 6h was found to be most active against all the tested cancer cell lines with IC 50 values in the range of 4-11 μM and showed better or comparable activity to the reference drug against all the tested cell lines. Cell cycle analysis revealed that compound 6h induces apoptosis and G2/S arrest in MIA-Pa-Ca-2 cells. Compound 6h triggers mitochondrial potential loss in pancreatic cancer MIA-Pa-Ca-2 cells. Further, Compound 6h also triggers caspase-3 and PARP-1 cleavage, which increases in dose dependent manner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Antimicrobial azobenzene compounds and their potential use in biomaterials
NASA Astrophysics Data System (ADS)
Sessa, L.; Concilio, S.; Iannelli, P.; De Santis, F.; Porta, A.; Piotto, S.
2016-04-01
We recently synthesized a class of active compounds with azobenzene structure [1] and lowest in silico toxicity values. The antimicrobial activity of these molecules and their thermal stability are very promising and indicate that they may have interesting and therapeutically significant applications. This work aims to develop new materials with antibacterial and antifungal activity inserting different percentages of synthetic antimicrobial azo compounds in commercial polymer matrices. We realized thin films using solvent casting and melt compounding techniques. The obtained materials retained the proprieties of the pure matrices. This means that azo dye dissolved in the matrix does not influence the thermal behavior and the morphology of the material. Tested films exhibited the capability to inhibit biofilms formation of S. aureus and C. albicans. Spectrophotometric investigation of the azo compound released from the polymer matrices confirmed that the realized materials might be interesting for biomedical tools, antibacterial surfaces, and films for active packaging.
Cholinesterase inhibitory triterpenoids from the bark of Garcinia hombroniana.
Jamila, Nargis; Khairuddean, Melati; Yeong, Khaw Kooi; Osman, Hasnah; Murugaiyah, Vikneswaran
2015-02-01
Context: Garcinia hombroniana Pierre, known as manggis hutan in Malaysia is a rich source of xanthones and benzophenones. This study was aimed to isolate and characterize potential cholinesterase inhibitors from the extracts of G. hombroniana bark and investigate their interactions with the enzymes. The dichloromethane extract afforded five triterpenoids which were characterized by NMR and mass spectral techniques. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds were also tested for their antioxidant capacity. The isolated triterpenoids were identified as: 2β-hydroxy-3α-O-caffeoyltaraxar-14-en-28-oic acid (1), taraxerol (2), taraxerone (3), betulin (4) and betulinic acid (5). Compound 1 was the most active dual inhibitor of both AChE and BChE. Compound 1 also showed good antioxidant activities. Compound 1 had dual and moderate inhibitory activity on AChE and BChE worthy for further investigations.
Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Rahim, Fazal; Wadood, Abdul; Khan, Huma; Ullah, Hayat; Salar, Uzma; Khan, Khalid Mohammed
2016-10-01
Hybrid bisindole-thiosemicarbazides analogs (1-18) were synthesized and screened for β-glucuronidase activity. All compounds showed varied degree of β-glucuronidase inhibitory potential when compared with standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Compounds 4, 7, 9, 6, 5, 12, 17 and 18 showed exceptional β-glucuronidase inhibition with IC50 values ranging from 0.1 to 5.7μM. Compounds 1, 3, 8, 16, 13, 2 and 14 also showed better activities than standard with IC50 values ranging from 7.12 to 15.0μM. The remaining compounds 10, 11, and 15 showed good inhibitory potential with IC50 values 33.2±0.75, 21.4±0.30 and 28.12±0.25μM respectively. Molecular docking studies were carried out to confirm the binding interaction of the compounds. Copyright © 2016 Elsevier Inc. All rights reserved.
Aston, John E.; Apel, William A.; Lee, Brady D.; ...
2015-11-05
Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence ofmore » 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.« less
Antiviral Screening of Multiple Compounds against Ebola Virus.
Dowall, Stuart D; Bewley, Kevin; Watson, Robert J; Vasan, Seshadri S; Ghosh, Chandradhish; Konai, Mohini M; Gausdal, Gro; Lorens, James B; Long, Jason; Barclay, Wendy; Garcia-Dorival, Isabel; Hiscox, Julian; Bosworth, Andrew; Taylor, Irene; Easterbrook, Linda; Pitman, James; Summers, Sian; Chan-Pensley, Jenny; Funnell, Simon; Vipond, Julia; Charlton, Sue; Haldar, Jayanta; Hewson, Roger; Carroll, Miles W
2016-10-27
In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.
Identifying Novel Molecular Structures for Advanced Melanoma by Ligand-Based Virtual Screening
Wang, Zhao; Lu, Yan; Seibel, William; Miller, Duane D.; Li, Wei
2009-01-01
We recently discovered a new class of thiazole analogs that are highly potent against melanoma cells. To expand the structure-activity relationship study and to explore potential new molecular scaffolds, we performed extensive ligand-based virtual screening against a compound library containing 342,910 small molecules. Two different approaches of virtual screening were carried out using the structure of our lead molecule: 1) connectivity-based search using Scitegic Pipeline Pilot from Accelerys and 2) molecular shape similarity search using Schrodinger software. Using a testing compound library, both approaches can rank similar compounds very high and rank dissimilar compounds very low, thus validating our screening methods. Structures identified from these searches were analyzed, and selected compounds were tested in vitro to assess their activity against melanoma cancer cell lines. Several molecules showed good anticancer activity. While none of the identified compounds showed better activity than our lead compound, they provided important insight into structural modifications for our lead compound and also provided novel platforms on which we can optimize new classes of anticancer compounds. One of the newly synthesized analogs based on this virtual screening has improved potency and selectivity against melanoma. PMID:19445498
Qin, Rulan; Zhao, Ying; Zhao, Yudan; Zhou, Wanrong; Lv, Chongning; Lu, Jincai
2016-12-01
Three new phenolic compounds (1-3), along with five known compounds (4-8) were isolated from the rhizome of Cimicifuga dahurica (Turcz.) Maxim. Their structures were elucidated by spectroscopic methods including 1D-NMR, 2D-NMR and HR-MS techniques. DPPH method and protective effect on PC12 cells against H 2 O 2 -induced oxidative damage model were carried to evaluate the antioxidant capability of these compounds. Compound 5 showed significant antioxidant activity with IC 50 values 9.33μM in DPPH assay and compound 2 displayed marked neuro-protective effect with 87.65% cell viability at the concentration of 10μM. Additionally, the possible structure-activity relationships of these phenolic compounds were tentatively discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Mokhtari, Mona; Jackson, Michael D; Brown, Alistair S; Ackerley, David F; Ritson, Nigel J; Keyzers, Robert A; Munkacsi, Andrew B
2018-06-06
Pathogenic fungi continue to develop resistance against current antifungal drugs. To explore the potential of agricultural waste products as a source of novel antifungal compounds, we obtained an unbiased GC-MS profile of 151 compounds from 16 commercial and experimental cultivars of feijoa peels. Multivariate analysis correlated 93% of the compound profiles with antifungal bioactivities. Of the 18 compounds that significantly correlated with antifungal activity, 5 had not previously been described from feijoa. Two novel cultivars were the most bioactive, and the compound 4-cyclopentene-1,3-dione, detected in these cultivars, was potently antifungal (IC 50 = 1-2 μM) against human-pathogenic Candida species. Haploinsufficiency and fluorescence microscopy analyses determined that the synthesis of chitin, a fungal-cell-wall polysaccharide, was the target of 4-cyclopentene-1,3-dione. This fungal-specific mechanism was consistent with a 22-70-fold reduction in antibacterial activity. Overall, we identified the agricultural waste product of specific cultivars of feijoa peels as a source of potential high-value antifungal compounds.
Aldose Reductase Inhibitory Activity of Compounds from Zea mays L.
Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung
2013-01-01
Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057
Muthusamy, Karthikeyan; Chinnasamy, Sathishkumar; Nagarajan, Subbiah; Sivaraman, Thirunavukkarasu
2017-12-14
Ikshusterol3-O-glucoside was isolated from Clematis gouriana Roxb. ex DC. root. A structure of the isolated compound was determined on the basis of various spectroscopic interpretations (UV, NMR, FTIR, and GC-MS-EI). This structure was submitted in the PubChem compound database (SID 249494133). SID 249494133 was carried out by density functional theory calculation to observe the chemical stability and electrostatic potential of this compound. The absorption, distribution, metabolism, and excretion property of this compound was predicted to evaluate the drug likeness and toxicity. In addition, molecular docking, quantum polarized ligand docking, prime MMGBSA calculation, and induced fit docking were performed to predict the binding status of SID 249494133 with the active site of phospholipase A 2 (PLA 2 ) (PDB ID: 1A3D). The stability of the compound in the active site of PLA 2 was carried out using molecular dynamics simulation. Further, the anti-venom activity of the compound was assessed using the PLA 2 assay against Naja naja (Indian cobra) crude venom. The results strongly show that Ikshusterol3-O-glucoside has a potent snake-venom neutralizing capacity and it might be a potential molecule for the therapeutic treatment for snakebites.
In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam
Muhammad, Abubakar Amali; Pauzi, Nur Aimi Syarina; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida
2013-01-01
Moringa oleifera Lam. (M. oleifera) from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro. PMID:24490175
Antibacterial and Hypoglycemic Diterpenoids from Salvia chamaedryoides.
Bisio, Angela; De Mieri, Maria; Milella, Luigi; Schito, Anna M; Parricchi, Anita; Russo, Daniela; Alfei, Silvana; Lapillo, Margherita; Tuccinardi, Tiziano; Hamburger, Matthias; De Tommasi, Nunziatina
2017-02-24
A surface extract of the aerial parts of Salvia chamaedryoides afforded 13 diterpenes (1-13), with seven compounds (1, 3, 4, 7-9, 12) described for the first time. The structures of the new compounds were established using 1D and 2D NMR spectroscopic methods, HRESIMS, and ECD data. The potential hypoglycemic effects of the crude extract, fractions, and pure compounds from S. chamaedryoides were investigated by inhibition of α-glucosidase and α-amylase enzymes. The extract and its fractions showed a moderate dose-dependent inhibition; the pure compounds exhibited differential inhibitory activity against these two enzymes. Molecular modeling studies were also performed to suggest the interaction mode of compound 3 in the α-glucosidase enzyme active site. The antimicrobial activity of the purified compounds was investigated against 26 clinical pathogens. No activity was detected for the Gram-negative species tested nor on Candida albicans and C. glabrata, while variable susceptibilities were observed using Gram-positive staphylococcal and enterococcal species.
da Rocha, Cláudia Quintino; Queiroz, Emerson Ferreira; Meira, Cássio Santana; Moreira, Diogo Rodrigo Magalhães; Soares, Milena Botelho Pereira; Marcourt, Laurence; Vilegas, Wagner; Wolfender, Jean-Luc
2014-06-27
The nonpolar fraction of an aqueous ethanol extract of the roots of Arrabidaea brachypoda, a Brazilian medicinal plant, demonstrated significant in vitro activity against Trypanosoma cruzi, the parasite responsible for Chagas disease. Targeted isolation of the active constituents led to the isolation of three new dimeric flavonoids (1-3), and their structures were elucidated using UV, NMR, and HRMS analysis, as well as by chemical derivatization. The anti-T. cruzi activity and cytotoxicity toward mammalian cells were determined for these substances. Compound 1 exhibited no activity toward T. cruzi, while flavonoids 2 and 3 exhibited selective activity against these trypomastigotes. Compounds 2 and 3 inhibited the parasite invasion process and its intracellular development in host cells with similar potencies to benznidazole. In addition, compound 2 reduced the blood parasitemia of T. cruzi-infected mice. This study has revealed that these two dimeric flavonoids represent potential anti-T. cruzi lead compounds for further drug development.
Sheena Mary, Y; Yohannan Panicker, C; Sapnakumari, M; Narayana, B; Sarojini, B K; Al-Saadi, Abdulaziz A; Van Alsenoy, Christian; War, Javeed Ahmad
2015-03-05
The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of ethyl-6-(4-chlorophenyl)-4-(4-fluoro-phenyl)-2-oxocyclohex-3-ene-1-carboxylate have been investigated experimentally and theoretically using Gaussian09 software. The title compound was optimized using the HF and DFT levels of theory. The geometrical parameters are in agreement with the XRD data. The stability of the molecule has been analyzed by NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. As can be seen from the MEP map of the title compound, regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl rings and the remaining species are surrounded by zero potential. First hyperpolarizability is calculated in order to find its role in non linear optics. The title compound binds at the active sites of both CypD and β-secretase and the molecular docking results draw the conclusion that the compound might exhibit β-secretase inhibitory activity which could be utilized for development of new anti-alzheimeric drugs with mild CypD inhibitory activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Mauchle, Ulrike; Selvarajah, Gayathri T; Mol, Jan A; Kirpensteijn, Jolle; Verheije, Monique H
2015-08-01
Osteosarcoma is the most common primary bone tumour in dogs but various forms of therapy have not significantly improved clinical outcomes. As dysregulation of kinase activity is often present in tumours, kinases represent attractive molecular targets for cancer therapy. The purpose of this study was to identify novel compounds targeting kinases with the potential to induce cell death in a panel of canine osteosarcoma cell lines. The ability of 80 well-characterized kinase inhibitor compounds to inhibit the proliferation of four canine osteosarcoma cell lines was investigated in vitro. For those compounds with activity, the mechanism of action and capability to potentiate the activity of doxorubicin was further evaluated. The screening showed 22 different kinase inhibitors that induced significant anti-proliferative effects across the four canine osteosarcoma cell lines investigated. Four of these compounds (RO 31-8220, 5-iodotubercidin, BAY 11-7082 and an erbstatin analog) showed significant cell growth inhibitory effects across all cell lines in association with variable induction of apoptosis. RO 31-8220 and 5-iodotubercidin showed the highest ability to potentiate the effects of doxorubicin on cell viability. In conclusion, the present study identified several potent kinase inhibitors targeting the PKC, CK1, PKA, ErbB2, mTOR and NF-κB pathways, which may warrant further investigations for the treatment of osteosarcoma in dogs. Copyright © 2014 Elsevier Ltd. All rights reserved.
C-Aryl glucoside SGLT2 inhibitors containing a biphenyl motif as potential anti-diabetic agents.
Ding, Yuyang; Mao, Liufeng; Xu, Dengfeng; Xie, Hui; Yang, Ling; Xu, Hongjiang; Geng, Wenjun; Gao, Yong; Xia, Chunguang; Zhang, Xiquan; Meng, Qingyi; Wu, Donghai; Zhao, Junling; Hu, Wenhui
2015-07-15
A series of highly active C-aryl glucoside SGLT2 inhibitors containing a biphenyl motif were designed and synthesized for biological evaluation. Among the compounds tested, compound 16l demonstrated high inhibitory activity against SGLT2 (IC50=1.9 nM) with an excellent pharmacokinetic profile. Further study indicated that the in vivo efficacy of compound 16l was comparable to that of dapagliflozin, suggesting that further development would be worthwhile. Copyright © 2015 Elsevier Ltd. All rights reserved.
Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi
Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi
2016-01-01
In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799
Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Jahan, Humera; Perveen, Shahnaz; Choudhary, M Iqbal
2011-11-01
2,4,6-Trichlorophenyl hydrazones 1-35 were synthesized and their in vitro antiglycation potential was evaluated. Compounds 14 (IC50 = 27.2 ± 0.00 μM), and 18 (IC50 = 55.7 ± 0.00 μM) showed an excellent activity against glycation of protein, better than the standard (rutin, IC50 = 70 ± 0.50 μM). This study thus identified a novel series of antiglycation agents. A structure-activity relationship has been studied, and all the compounds were characterized by spectroscopic techniques.
Islam, M T; Tahara, S
2001-01-01
Screening chemical compounds, we found that a xenoestrogen, bisphenol A, showed potent repellent activity against the zoospores of Aphanomyces cochlioides. Based on this finding, we tested a number of androgenic and estrogenic compounds (e.g. testosterone, progesterone, estradiols, diethylstilbestrol, estrone, estriol, pregnenolone, dienestrol etc.) on the motility behavior of A. cochlioides zoospores. Interestingly, most of the estrogenic compounds exhibited potent repellent activity (1 microg/ml or less by the "particle method") toward the motile zoospores of A. cochlioides. We derivatized some of the estrogens and discussed the relationship between the structure of active molecules and their repellent activity. Apparently, aromatization of the A ring with a free hydroxyl group at C-3 position of a steroidal structure is necessary for higher repellent activity. Interestingly, methylation of diethylstilbestrol (DES) yielded completely different activity i.e. both mono- and di-methyl ethers of DES showed attractant activity. Moreover, the attracted zoospores were encysted and then germinated in the presence of di-methyl ether of DES. The potential usefulness of this repellent test is discussed for the detection of estrogenic activity of naturally occurring compounds, and the possible role of phytoestrogens in host/parasite interactions. So far, this will be the first report of repellent activity of estrogenic compounds toward trivial fungal zoospores.
New hydrazones of ferulic acid: synthesis, characterization and biological activity.
Wolszleger, Maria; Stan, Cătălina Daniela; Apotrosoaei, Maria; Vasincu, Ioana; Pânzariu, Andreea; Profire, Lenuţa
2014-01-01
The ferulic acid (4-hydroxy-3-methoxy-cinnamic acid) is a phenolic compound with important antioxidant effects and which nowadays is being extensively studied for his potential indications in inflammatory and neurodegenerative diseases, hypertension, atherosclerosis, etc. The synthesis of new ferulic acid compounds with potential antioxidant activity. The synthesis of the designed compounds was performed in several steps: (i) the obtaining of ferulic acid chloride by reacting of ferulic acid with thionyl chloride; (ii) the reaction between the ferulic acid chloride and hydrazine hydrate 98% to obtain the ferulic acid hydrazide; (iii) the condensation of ferrulic acid hydrazide with various benzaldehydes (2-hydroxy/3-hydroxy/4-hydroxy/2-nitro/3-nitro/4-nitro/2-methoxi/ 4-chloro/4-fluoro/4-bromo-benzaldehyde) resulting the correspond- ing hydrazones. The structure of the synthesized compounds was confirmed by FT-IR spectroscopy and the evaluation of antioxidant potential was achieved by determining the total antioxidant capacity and reducing power. In this study new hydrazones of ferulic acid have been synthesized, physic-chemical and spectral characterized. The evaluation of antioxidant potential using in vitro methods showed the favorable influence of the structural modulation on the antioxidant effects of ferulic acid.
Islam, Md Nurul; Islam, Md Shahidul; Hoque, Md Ashraful; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru
2014-12-01
Histone deacetylase (HDAC) inhibitors are a class of potential therapeutics for the treatment of cancer. Bicyclic tetrapeptides equipped with methoxymethyl ketone and boronic acid as zinc-binding group were designed and synthesized. The inhibitory activities of these compounds were evaluated against HDAC enzymes. The cell-free and cell-based assay data showed that both potency and selectivity changed with the change in zinc-binding group. Boronic acid-based compound showed poor activity whereas methoxymethyl ketone-based compound displayed impressive activity in both cell-free and cell-based conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aston, John E.; Apel, William A.; Lee, Brady D.
Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence ofmore » 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.« less
Radical scavenging behavior of eriodictyol and fustin flavonoid compounds - A DFT study
NASA Astrophysics Data System (ADS)
Sadasivam, K.; Praveena, R.; Anbakzhakan, K.
2018-05-01
The density functional theory (DFT) protocol together with B3LYP/6-311G(d,p) level of theory has been utilized to explore and compare the structural features and molecular characteristics of two naturally occurring flavonoid compounds eriodictyol and fustin. The -OH bond dissociation energy (BDE) for all the radical species have been computed and interpreted in accordance with the radical scavenging activity. The ionization potential (IP) value of fustin flavonoid compound was found to be within the range of synthetic food additives. The polar nature and their capacity to polarise other atoms are established through the dipole moment analysis. Additionally, various parameters that are relevant to chemical potential such as electron affinity, hardness, softness, electro negativity and electrophilic index were calculated and analysed in the light of quercetin flavonoid compound in view of their antioxidant activity. The antioxidant capability of fustin is found to be superior to eriodictyol flavonoid.
Chemical signatures and new drug targets for gametocytocidal drug development
NASA Astrophysics Data System (ADS)
Sun, Wei; Tanaka, Takeshi Q.; Magle, Crystal T.; Huang, Wenwei; Southall, Noel; Huang, Ruili; Dehdashti, Seameen J.; McKew, John C.; Williamson, Kim C.; Zheng, Wei
2014-01-01
Control of parasite transmission is critical for the eradication of malaria. However, most antimalarial drugs are not active against P. falciparum gametocytes, responsible for the spread of malaria. Consequently, patients can remain infectious for weeks after the clearance of asexual parasites and clinical symptoms. Here we report the identification of 27 potent gametocytocidal compounds (IC50 < 1 μM) from screening 5,215 known drugs and compounds. All these compounds were active against three strains of gametocytes with different drug sensitivities and geographical origins, 3D7, HB3 and Dd2. Cheminformatic analysis revealed chemical signatures for P. falciparum sexual and asexual stages indicative of druggability and suggesting potential targets. Torin 2, a top lead compound (IC50 = 8 nM against gametocytes in vitro), completely blocked oocyst formation in a mouse model of transmission. These results provide critical new leads and potential targets to expand the repertoire of malaria transmission-blocking reagents.
Li, Xin; Sheng, Juzheng; Huang, Guihua; Ma, Ruixin; Yin, Fengxin; Song, Di; Zhao, Can; Ma, Shutao
2015-06-05
In an attempt to discover potential antibacterial agents against the increasing bacterial resistance, novel cinnamaldehyde derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activity against nine significant pathogens using broth microdilution method, and their cell division inhibitory activity against four representative strains. In the in vitro antibacterial activity, the newly synthesized compounds generally displayed better efficacy against Staphylococcus aureus ATCC25923 than the others. In particular, compounds 3, 8 and 10 exerted superior or comparable activity to all the reference drugs. In the cell division inhibitory activity, all the compounds showed the same trend as their in vitro antibacterial activity, exhibiting better activity against S. aureus ATCC25923 than the other strains. Additionally, compounds 3, 6, 7 and 8 displayed potent cell division inhibitory activity with an MIC value of below 1 μg/mL, over 256-fold better than all the reference drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
The antitumor activity screening of chemical constituents from Camellia nitidissima Chi
Yang, Rui; Qi, Jing; Huang, Yue; Feng, Shuyun; Wu, Yao; Lin, Sensen; Liu, Zhixin; Jia, Ai-Qun; Yuan, Shengtao; Sun, Li
2018-01-01
Chemotherapy is the preferred and most common treatment for cancer in clinical practice. An increasing number of researchers all over the world are focusing on natural medicines to find new antitumor drugs, and several reports have shown that Camellia nitidissima (C. nitidis-sima) Chi could reduce blood-lipid, decrease blood pressure, resist oxidation, prevent carcinogenesis and inhibit tumors. Therefore, the pharmacodynamics of the chemical constituents in C. nitidissima need to be investigated further. In the present study, 16 chemical constituents were isolated from the leaves of C. nitidissima, of which 6 compounds are reported to be found in this plant for the first time. Furthermore, all these phytochemicals were screened for antitumor activity on 4 common cancer cell lines, while compound 3, one oleanane-type triterpene, exhibited the most potential antitumor effects. Interestingly, to our knowledge, this was the first report that compound 3 inhibits cancer cells. Compound 3 inhibited EGFR-mutant lung cancer cell line, NCI-H1975 via apoptosis effect, with an IC50 of 13.37±2.05 µM at 48 h. Based on the data, compound 3 showed potential for antitumor drug development, suggesting the scientific basis for the antitumor activity of C. nitidissima. PMID:29484370
2016-01-01
The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure–activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism. PMID:27642770
Synthesis of galactosyl compounds for targeted gene delivery.
Ren, T; Zhang, G; Liu, D
2001-11-01
Cell-specific DNA delivery offers a great potential for targeted gene therapy. Toward this end, we have synthesized a series of compounds carrying galactose residues as a targeting ligand for asialoglycoprotein receptors of hepatocytes and primary amine groups as a functional domain for DNA binding. Biological activity of these galactosyl compounds in DNA delivery was evaluated in HepG2 and BL-6 cells and compared with respect to the number of galactose residues as well as primary amine groups in each molecule. Transfection experiments using a firefly luciferase gene as a reporter revealed that compounds with multivalent binding properties were more active in DNA delivery. An optimal transfection activity in HepG2 cells requires seven primary amine groups and a minimum of two galactose residues in each molecule. The transfection activity of compounds carrying multi-galactose residues can be inhibited by asialofetuin, a natural substrate for asialoglycoprotein receptors of hepatocytes, suggesting that gene transfer by these galactosyl compounds is asialoglycoprotein receptor-mediated. These results provide direct evidence in support of our new strategy for the use of small and synthetic compounds for cell specific and targeted gene delivery.
Ch’ng, Jun-Hong; Moll, Kirsten; Quintana, Maria del Pilar; Chan, Sherwin Chun Leung; Masters, Ellen; Moles, Ernest; Liu, Jianping; Eriksson, Anders B.; Wahlgren, Mats
2016-01-01
The spread of artemisinin-resistant parasites could lead to higher incidence of patients with malaria complications. However, there are no current treatments that directly dislodge sequestered parasites from the microvasculature. We show that four common antiplasmodial drugs do not disperse rosettes (erythrocyte clusters formed by malaria parasites) and therefore develop a cell-based high-throughput assay to identify potential rosette-disrupting compounds. A pilot screen of 2693 compounds identified Malaria Box compound MMV006764 as a potential candidate. Although it reduced rosetting by a modest 20%, MMV006764 was validated to be similarly effective against both blood group O and A rosettes of three laboratory parasite lines. Coupled with its antiplasmodial activity and drug-likeness, MMV006764 represents the first small-molecule compound that disrupts rosetting and could potentially be used in a resource-limited setting to treat patients deteriorating rapidly from malaria complications. Such dual-action drugs that simultaneously restore microcirculation and reduce parasite load could significantly reduce malaria morbidity and mortality. PMID:27403804
Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan; Tidwell, Richard R.; Czarny, Agnieszka; Bajic, Miroslav; Bajic, Marina; Kumar, Arvind; Boykin, David; Perfect, John R.
1998-01-01
Twenty analogues of pentamidine, 7 primary metabolites of pentamidine, and 30 dicationic substituted bis-benzimidazoles were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. A majority of the compounds had MICs at which 80% of the strains were inhibited (MIC80s) comparable to those of amphotericin B and fluconazole. Unlike fluconazole, many of these compounds were found to have potent fungicidal activity. The most potent compound against C. albicans had an MIC80 of ≤0.09 μg/ml, and the most potent compound against C. neoformans had an MIC80 of 0.19 μg/ml. Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. It is clear from the data presented here that further studies on the structure-activity relationships, mechanisms of action and toxicities, and in vivo efficacies of these compounds are warranted to determine their clinical potential. PMID:9756747
New isopimarane diterpenes and nortriterpene with cytotoxic activity from Ephorbia alatavica Boiss.
Rozimamat, Rushangul; Hu, Rui; Aisa, Haji Akber
2018-06-01
Three new isopimarane diterpenes and one new nor-triterpenes, along with five known diterpenes were isolated from the whole areal part of Ephorbia alatavica Boiss. The structures of the new compounds (1-4) were determined based on extensive spectroscopic analysis, including HR-ESIMS, 1D and 2D NMR data. A plausible biosynthetic pathway for new compounds (1-4) were hypothesized. All isolated compounds were screen for cytotoxicity activity against MCF-8, HeLa and A549 cell lines in vitro by MTT assay. New compound 1 and known 9 showed potential cytotoxic activities with IC 50 values of 15.327 μg/mL, 23.066 μg/mL against MCF-8 cell lines, compound1 showed noteworthy cytotoxic activity with IC 50 13.033 μg/mL against A549 cancer cell line. New compounds 2, 4 and 4 showed moderate cytotoxic activities three human cancer lines with IC 50 value around 50 μg/mL, which compared with positive control doxorubicin (DOX). Copyright © 2018 Elsevier B.V. All rights reserved.
Omardien, Soraya; Ter Beek, Alexander; Vischer, Norbert; Montijn, Roy; Schuren, Frank; Brul, Stanley
2018-06-14
An empirical approach was taken to screen a novel synthetic compound library designed to be active against Gram-positive bacteria. We obtained five compounds that were active against spores from the model organism Bacillus subtilis and the food-borne pathogen Bacillus cereus during our population based experiments. Using single cell live imaging we were able to observe effects of the compounds on spore germination and outgrowth. Difference in sensitivity to the compounds could be observed between B. subtilis and B. cereus using live imaging, with minor difference in the minimal inhibitory and bactericidal concentrations of the compounds against the spores. The compounds all delayed the bursting time of germinated spores and affected the generation time of vegetative cells at sub-inhibitory concentrations. At inhibitory concentrations spore outgrowth was prevented. One compound showed an unexpected potential for preventing spore germination at inhibitory concentrations, which merits further investigation. Our study shows the valuable role single cell live imaging can play in the final selection process of antimicrobial compounds.
Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives.
Vijayaraghavan, Shilpa; Mahajan, Supriya
2017-04-15
A series of 4-anilinoquinoline triazine derivatives were designed, synthesized and screened for in vivo antimalarial activity against a chloroquine-sensitive strain of Plasmodium berghei. The compounds were further subjected to in vitro antimalarial activity against chloroquine-resistant W2 strain of Plasmodium falciparum and β-haematin inhibition studies. All the compounds exhibited in vivo antimalarial activity better than that shown by the standard drug, chloroquine. Twelve out of fifteen compounds showed better inhibition than that of chloroquine against chloroquine-resistant W2 strain of Plasmodium falciparum. Ten compounds showed β-haematin inhibition, better than that of chloroquine, with IC 50 values in the range of 18-25µM. One compound, 3k, was found to be better than artemisinin against W2 strain of Plasmodium falciparum and also displayed the best β-haematin inhibitory activity, thereby becoming eligible to be explored as a potential lead for antimalarial chemotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis and evaluation of antimalarial properties of novel 4-aminoquinoline hybrid compounds.
Fisher, Gillian M; Tanpure, Rajendra P; Douchez, Antoine; Andrews, Katherine T; Poulsen, Sally-Ann
2014-10-01
Pharmacophore hybridization has recently been employed in the search for antimalarial lead compounds. This approach chemically links two pharmacophores, each with their own antimalarial activity and ideally with different modes of action, into a single hybrid molecule with the goal to improve therapeutic properties. In this paper, we report the synthesis of novel 7-chloro-4-aminoquinoline/primary sulfonamide hybrid compounds. The chlorinated 4-aminoquinoline scaffold is the core structure of chloroquine, an established antimalarial drug, while the primary sulfonamide functional group has a proven track record of efficacy and safety in many clinically used drugs and was recently shown to exhibit some antimalarial activity. The activity of the hybrid compounds was determined against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains. While the hybrid compounds had lower antimalarial activity when compared to chloroquine, they demonstrated a number of interesting structure-activity relationship (SAR) trends including the potential to overcome the resistance profile of chloroquine. © 2014 John Wiley & Sons A/S.
Huang, Guang; Zhao, Hui-Ran; Meng, Qing-Qing; Zhang, Qi-Jing; Dong, Jin-Yun; Zhu, Bao-Quan; Li, Shao-Shun
2018-01-01
As a continuation of our research on developing potent and potentially safe antineoplastic agents, a set of forty five sulfur-containing shikonin oxime derivatives were synthesized and evaluated for their in vitro cytotoxic activity against human colon cancer (HCT-15), gastric carcinoma (MGC-803), liver (Bel7402), breast (MCF-7) cancer cells and human skin fibroblast (HSF) cells. All the synthesized compounds exhibited potent cytotoxic activity selectively towards HCT-15 cells and did not display apparent toxicity to the normal HSF cells, some of which were more or comparatively effective to the parent compound against HCT-15, MGC-803 and Bel7402 cells. The most active agent 9m displayed high potency against human cancer cells with IC 50 ranging from 0.27 ± 0.02 to 9.23 ± 0.12 μM. The structure-activity relationships (SARs) studies suggested that the nature of substituent group in the side chain is important for antitumor potency in vitro. Additionally, nitric oxide release studies revealed that the amount of nitric oxide generated from these oxime derivatives was relatively low. Furthermore, cellular mechanism investigations indicated that compound 9m could arrest cell cycle at G1 phase and induce a strong apoptotic response in HCT-15 cells. Moreover, western blot studies revealed that compound 9m induced apoptosis through the down-regulation of Bcl-2 and up-regulation of Bax, caspase 3 and 9. For all these reasons, compound 9m hold promising potential as antineoplastic agent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Pylina, Yana I; Shadrin, Dmitry M; Shevchenko, Oksana G; Startseva, Olga M; Velegzhaninov, Igor O; Belykh, Dmitry V; Velegzhaninov, Ilya O
2017-01-05
In the present work, we investigated the dark and photoinduced cytotoxic activity of the new chlorophyll-a derivatives which contain the substituents of oligoethylene glycol on the periphery of their macrocycles. These compounds were tested using human cell lines to estimate their potential as photosensitizers for photodynamic therapy of cancer. It was shown that all the tested compounds have expressed photoinduced cytotoxic activity in vitro. Detailed study of the biological activity of one of the most perspective compound in this series-pyropheophorbide-a 17-diethylene glycol ester (Compound 21 ) was performed. This new compound is characterized by lower dark cytotoxicity and higher photoinduced cytotoxicity than previously described in a similar compound (DH-I-180-3) and clinically used Photolon TM . Using fluorescent microscopy, it was shown that Compound 21 quickly penetrates the cells. Analysis of caspase-3 activity indicated an apoptosis induction 40 min after exposure to red light (λ = 660 nm). The induction of DNA damages and apoptosis was shown using Comet assay. The results of expression analysis of the stress-response genes indicate an activation of the genes which control the cell cycle and detoxification of the free radicals after an exposure of HeLa cells to Compound 21 and to red light. High photodynamic activity of this compound and the ability to oxidize biomolecules was demonstrated on nuclear-free mice erythrocytes. In addition, it was shown that Compound 21 is effectively activated with low energy 700 nm light, which can penetrate deep into the tissue. Thus, Compound 21 is a prospective substance for development of the new drugs for photodynamic therapy of cancer.
Sabbah, Dima A; Hishmah, Bayan; Sweidan, Kamal; Bardaweel, Sanaa; AlDamen, Murad; Zhong, Haizhen A; Abu Khalaf, Reema; Hasan Ibrahim, Ameerah; Al-Qirim, Tariq; Abu Sheikha, Ghassan; Mubarak, Mohammad S
2018-01-01
Oncogenic potential of phosphatidylinositol 3-kinase (PI3Kα) has been highlighted as a therapeutic target for anticancer drug design. Target compounds were designed to address the effect of different substitution patterns at the N atom of the carboxamide moiety on the bioactivity of this series. Synthesis of the targeted compounds, crystallography, biological evaluation tests against human colon carcinoma (HCT-116), and Glide docking studies. A new series of N-substituted- 4-hydroxy-2-quinolone-3-carboxamides was prepared and characterized by means of FT-IR, 1H and 13C NMR, and elemental analysis. In addition, the identity of the core nucleus 5 was successfully characterized with the aid of X-ray crystallography. Biological activity of prepared compounds was investigated in vitro against human colon carcinoma (HCT-116) cell line. Results revealed that these compounds inhibit cell proliferation and induce apoptosis through an increase in caspase-3 activity and a decrease in DNA cellular content. Compounds 7, 14, and 17 which have H-bond acceptor moiety on p-position displayed promising PI3Kα inhibitory activity. On the other hand, derivatives tailored with bulky and hydrophobic motifs (16 and 18) on o- and m-positions exhibited moderate activity. Molecular docking studies against PI3Kα and caspase-3 showed an agreement between the predicted binding affinity (ΔGobsd) and IC50 values of the derivatives for the caspase-3 model. Furthermore, Glide docking studies against PI3Kα demonstrated that the newly synthesized compounds accommodate PI3Kα kinase catalytic domain and form H-bonding with key binding residues. The series exhibited a potential PI3Kα inhibitory activity in HCT-116 cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Xue, Tao; Ding, Shi; Guo, Bin; Chu, Wenjing; Wang, Hui; Yang, Yushe
2015-01-01
In our previous Letter, we reported the discovery of a novel benzoxazinyl-oxazolidinone antibacterial candidate 2. In order to identify a potential backup compound, extensive modifications on the B/C ring and C3 side chain were undertaken. A series of novel [6,6,5] tricyclic analogues were synthesized and their in vitro antibacterial activities were tested against a panel of susceptible and resistant Gram-positive pathogens. Among of them, benzothiazinyl-oxazolidinones with acetamide or thioamide as C3 side chains exhibited moderate to good antibacterial activity, such as compounds 54, 58, 59 and 63. In vitro liver microsomal stability was further evaluated and the results manifested that compounds 54 and 58 were both metabolically stable in rat and human liver microsomes. Additionally, insights gained from this investigation should provide directions for the further research of new oxazolidinone antibiotics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang
2012-01-01
Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778
Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang
2012-01-01
Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.
Elizondo-Jimenez, Silvia; Moreno-Herrera, Antonio; Reyes-Olivares, Rogelio; Dorantes-Gonzalez, Edith; Nogueda-Torres, Benjamín; Oliveira, Eduardo A Gamosa de; Romeiro, Nelilma C; Lima, Lidia M; Palos, Isidro; Rivera, Gildardo
2017-01-01
Chagas disease is a public health problem caused by Trypanosoma cruzi. Cruzain is a pharmacological target for designing a new drug against this parasite. Hydrazone and Nacylhydrazone derivatives have been traditionally associated as potential Cruzain inhibitors. Additionally, benzenesulfonyl derivatives show trypanocidal activity. Therefore, in this study, the combination of both structures has been taken into account for drug design. Seven benzenesulfonylhydrazone (BS-H) and seven N-propionyl benzenesulfonylhydrazone (BS-NAH) derivatives were synthetized and elucidated by infrared spectroscopy, nuclear magnetic resonance, and elemental analysis. All compounds were evaluated biologically in vitro against two strains of Trypanosoma cruzi (NINOA and INC-5), which are endemic in Mexico, and compared with the reference drugs nifurtimox and benznidazole. In order to gain insight into the putative molecular origin of the trypanocidal properties of these derivatives, docking studies were carried out with Cruzain. Compounds 4 and 6 (BS-H) and 10, 12-14 (BS-NAH) showed the best biological activity against NINOA and INC-5 strains, respectively. Compound 13 was the most potent trypanocidal compound showing a LC50 of 0.06 µM against INC-5 strain. However, compound 4 showed the best activity against both strains (LC50 <30 µM). Theoretical binding modes obtained suggested covalent binding that could explain their biological activity. Benzenesulfonyl and N-propionyl benzenesulfonyl hydrazone derivatives are good options for developing new trypanocidal agents. Particularly, compound 4 could be considered a lead compound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Efficient Synthesis and Discovery of Schiff Bases as Potent Cholinesterase Inhibitors.
Razik, Basma M Abd; Osman, Hasnah; Ezzat, Mohammed O; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Murugaiyah, Vikneswaran
2016-01-01
The search for new cholinesterase inhibitors is still a promising approach for management of Alzheimer`s disease. Schiff bases are considered as important class of organic compounds, which have wide range of applications including as enzyme inhibitors. In the present study, a new green ionic liquid mediated strategy was developed for convenient synthesis of two series of Schiff bases 3(a-j) and 5(a-j) as potential cholinesterase inhibitors using aromatic aldehydes and primary amines in [bmim]Br. The synthesized compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential by modified Ellman's method. The molecular interactions between the most active compound and the enzyme were analyzed by molecular docking. Among them, 3j displayed higher inhibitory activities than reference drug, galanthamine, with IC50 values of 2.05 and 5.77 µM, for AChE and BChE, respectively. Interestingly, all the compounds except 3b displayed higher BChE inhibitions than galanthamine with IC50 values ranging from 5.77 to 18.52 µM. Molecular docking of compound 3j inside the TcAChE and hBChE completely coincided with the inhibitory activities observed. The compound forms strong hydrogen bonding at the peripheral anionic site of AChE whereas on BChE, it had hydrophobic and mild polar interactions. An efficient and eco-friendly synthetic methodology has been developed to synthesize Schiff bases in a very short reaction time and excellent yields in ionic solvent, whereby the compounds from series 3 showed promising cholinesterase inhibitory activity.
Khanage, Shantaram Gajanan; Mohite, Popat Baban; Pandhare, Ramdas Bhanudas; Raju, S. Appala
2014-01-01
Purpose: An efficient technique has been developed for microwave assisted synthesis of 1-[5-(substituted aryl)-1H-pyrazol-3-yl]-3,5-diphenyl-1H-1,2,4-triazole as antinociceptive and antimicrobial agents. Methods: The desired compounds (S1-S10) were synthesized by the microwave irradiation via cyclization of formerly synthesized chalcones of 3,5-diphenyl-1H-1,2,4-triazole and hydrazine hydrate in mild acidic condition. All newly synthesized compounds were subjected to study their antinociceptive and antimicrobial activity. The analgesic potential of compounds was tested by acetic acid induced writhing response and hot plate method. The MIC values for antimicrobial activity were premeditated by liquid broth method. Results: The compounds S1, S2, S4, S6 and S10 were found to be excellent peripherally acting analgesic agents when tested on mice by acetic acid induced writhing method and compounds S3, S6 and S1 at dose level of 100 mg/kg were exhibited superior centrally acting antinociceptive activity when tested by Eddy’s hot plate method. In antimicrobial activity compound S10 found to be broad spectrum antibacterial agent at MIC value of 15.62 µg/ml and compound S6 was exhibited antifungal potential at 15.62 µg/mL on both fungal strains. Conclusion: Some novel pyrazoles clubbed with 1,2,4-triazole derivatives were synthesized and evaluated as possible antimicrobial, centrally and peripherally acting analgesics. PMID:24511473
Hafez, Hend N; El-Gazzar, Abdel-Rhman B A; Al-Hussain, Sami A
2016-05-15
A series of [4-amino-3-(4-chlorophenyl)-1H-pyrazol-5-yl](3,5-dimethyl-1H-pyrazol-1-yl)-methanone and 6-amino-3-(4-chlorophenyl)-5-methyl-1,6-dihydro-7H-pyrazolo[4,3-d]-pyrimidin-7-one have been synthesized from ethyl 4-amino-3-(4-chlorophenyl)-pyrazol-5-carboxylate. The newly synthesized compounds were characterized by IR, (1)H NMR, (13)CNMR, Mass spectra and Elemental analysis. The compounds were evaluated for their in vitro antimicrobial and anticancer activity. Among the synthesized compounds, compounds 7a,b and 15 exhibited higher anticancer activity than the doxorubicin as reference drug. Most of the newly synthesized compounds have good to excellent antimicrobial activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Meixian; Dong, Jing; Lin, Zongtao; Niu, Yanyan; Zhang, Xiaotian; Jiang, Haixiu; Guo, Ning; Li, Wei; Wang, Hong; Chen, Shizhong
2016-06-10
Transferrin (Transferrin, TRF, TF) has drawn increasing attention in cancer therapy due to its potential applications in drug delivery. TF receptor, highly expressed in tumor cells, recognizes and transports Fe(3+)-TF into cells to release iron into cytoplasm. Thus, discovering TF-binding compounds has become an active research area and is of great importance for target therapy. In this study, an on-line analysis method was established for screening TF-binding compounds from the flowers of Bauhinia blakeana Dunn using a high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-transferrin-fluorescence detector (HPLC-DAD-MS(n)-TF-FLD) method. As a result, 33 of 80 identified or tentatively characterized compounds in the sample were TF-binding active. Twenty-five flavonol glycosides and eight phenolic acids were identified as TF-binders. Twelve of these active compounds together with six standard compounds were used to study the dose-response effects and structure-activity relationships of flavonoids and phenolic acids. The method was validated by vitexin with a good linearity in the range of concentrations used in the study. The limit of detection for vitexin was 0.1596 nmol. Our study indicated that the established method is simple, rapid and sensitive for screening TF-binding active compounds in the extract of Bauhinia blakeana Dunn, and therefore is important for discovering potential anti-cancer ingredients from complex samples for TF related drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening
NASA Astrophysics Data System (ADS)
Kalid, Ori; Mense, Martin; Fischman, Sharon; Shitrit, Alina; Bihler, Hermann; Ben-Zeev, Efrat; Schutz, Nili; Pedemonte, Nicoletta; Thomas, Philip J.; Bridges, Robert J.; Wetmore, Diana R.; Marantz, Yael; Senderowitz, Hanoch
2010-12-01
Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.
Espargaró, Alba; Ginex, Tiziana; Vadell, Maria Del Mar; Busquets, Maria A; Estelrich, Joan; Muñoz-Torrero, Diego; Luque, F Javier; Sabate, Raimon
2017-02-24
Alzheimer's disease (AD) is the main cause of dementia in people over 65 years. One of the major culprits in AD is the self-aggregation of amyloid-β peptide (Aβ), which has stimulated the search for small molecules able to inhibit Aβ aggregation. In this context, we recently reported a simple, but effective in vitro cell-based assay to evaluate the potential antiaggregation activity of putative Aβ aggregation inhibitors. In this work this assay was used together with docking and molecular dynamics simulations to analyze the anti-Aβ aggregation activity of several naturally occurring flavonoids and phenolic compounds. The results showed that rosmarinic acid, melatonin, and o-vanillin displayed zero or low inhibitory capacity, curcumin was found to have an intermediate inhibitory potency, and apigenin and quercetin showed potent antiaggregation activity. Finally, the suitability of the combined in vitro cell-based/in silico approach to distinguish between active and inactive compounds was further assessed for an additional set of flavonols and dihydroflavonols.
Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Malik, Jan; Kokoska, Ladislav; Widowitz, Ute; Pribylova, Marie; Dvorakova, Marcela; Marsik, Petr; Schuster, Daniela; Bauer, Rudolf; Vanek, Tomas
2013-01-01
Quinones are compounds frequently contained in medicinal plants used for the treatment of inflammatory diseases. Therefore, the impact of plant-derived quinones on the arachidonic acid metabolic pathway is worthy of investigation. In this study, twenty-three quinone compounds of plant origin were tested in vitro for their potential to inhibit leukotriene B4 (LTB4) biosynthesis in activated human neutrophil granulocytes with 5-lipoxygenase (5-LOX) activity. The benzoquinones primin (3) and thymohydroquinone (4) (IC50 = 4.0 and 4.1 microM, respectively) showed activity comparable with the reference inhibitor zileuton (1C50 = 4.1 microM). Moderate activity was observed for the benzoquinone thymoquinone (2) (1C50 = 18.2 microM) and the naphthoquinone shikonin (1) (IC50 = 24.3 microM). The anthraquinone emodin and the naphthoquinone plumbagin (5) displayed only weak activities (IC50 > 50 microM). The binding modes of the active compounds were further evaluated in silico by molecular docking to the human 5-LOX crystal structure. This process supports the biological data and suggested that, although the redox potential is responsible for the quinone's activity on multiple targets, in the case of 5-LOX the molecular structure plays a vital role in the inhibition. The obtained results suggest primin as a promising compound for the development of dual COX-2/5-LOX inhibitors.
Lynch, Caitlin; Pan, Yongmei; Li, Linhao; Ferguson, Stephen S.; Xia, Menghang; Swaan, Peter W.; Wang, Hongbing
2012-01-01
Purpose The constitutive androstane receptor (CAR, NR1I3) is a xenobiotic sensor governing the transcription of numerous hepatic genes associated with drug metabolism and clearance. Recent evidence suggests that CAR also modulates energy homeostasis and cancer development. Thus, identification of novel human (h) CAR activators is of both clinical importance and scientific interest. Methods Docking and ligand-based structure-activity models were used for virtual screening of a database containing over 2000 FDA-approved drugs. Identified lead compounds were evaluated in cell-based reporter assays to determine hCAR activation. Potential activators were further tested in human primary hepatocytes (HPHs) for the expression of the prototypical hCAR target gene CYP2B6. Results Nineteen lead compounds with optimal modeling parameters were selected for biological evaluation. Seven of the 19 leads exhibited moderate to potent activation of hCAR. Five out of the seven compounds translocated hCAR from the cytoplasm to the nucleus of HPHs in a concentration-dependent manner. These compounds also induce the expression of CYP2B6 in HPHs with rank-order of efficacies closely resembling that of hCAR activation. Conclusion These results indicate that our strategically integrated approaches are effective in the identification of novel hCAR modulators, which may function as valuable research tools or potential therapeutic molecules. PMID:23090669
2,6-Dinitrotoluene (2,6-DNT) and pentachlorophenol (PCP) are used for industrial purposes and are found in the environment as hazardous contaminants. ecause exposure to both compounds can occur, it is of interest to determine if organiochlorine compounds an potentiate the effect ...
Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?
Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert
2015-01-01
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846
Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?
Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert
2015-06-19
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.
Huang, Jihan; Cheung, Fan; Tan, Hor-Yue; Hong, Ming; Wang, Ning; Yang, Juan; Feng, Yibin; Zheng, Qingshan
2017-01-01
Yinchenhao decoction (YCHD) is a traditional Chinese medicine formulation, which has been widely used for the treatment of jaundice for 2,000 years. Currently, YCHD is used to treat various liver disorders and metabolic diseases, however its chemical/pharmacologic profiles remain to be elucidated. The present study identified the active compounds and significant pathways of YCHD based on network pharmacology. All of the chemical ingredients of YCHD were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. Absorption, distribution, metabolism and excretion screening with oral bioavailability (OB) screening, drug-likeness (DL) and intestinal epithelial permeability (Caco-2) evaluation were applied to discover the bioactive compounds in YCHD. Following this, target prediction, pathway identification and network construction were employed to clarify the mechanism of action of YCHD. Following OB screening, and evaluation of DL and Caco-2, 34 compounds in YCHD were identified as potential active ingredients, of which 30 compounds were associated with 217 protein targets. A total of 31 significant pathways were obtained by performing enrichment analyses of 217 proteins using the JEPETTO 3.x plugin, and 16 classes of gene-associated diseases were revealed by performing enrichment analyses using Database for Annotation, Visualization and Integrated Discovery v6.7. The present study identified potential active compounds and significant pathways in YCHD. In addition, the mechanism of action of YCHD in the treatment of various diseases through multiple pathways was clarified. PMID:28791364
Algae as promising organisms for environment and health
2011-01-01
Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials. PMID:21862867
Tseng, Chih-Hua; Tung, Chun-Wei; Wu, Chen-Hsin; Tzeng, Cherng-Chyi; Chen, Yen-Hsu; Hwang, Tsong-Long; Chen, Yeh-Long
2017-06-16
A series of indeno[1,2- c ]quinoline derivatives were designed, synthesized and evaluated for their anti-tuberculosis (anti-TB) and anti-inflammatory activities. The minimum inhibitory concentration (MIC) of the newly synthesized compound was tested against Mycobacterium tuberculosis H 37 R V . Among the tested compounds, ( E )- N '-[6-(4-hydroxypiperidin-1-yl)-11 H -indeno[1,2- c ]quinolin-11-ylidene]isonicotino-hydrazide ( 12 ), exhibited significant activities against the growth of M. tuberculosis (MIC values of 0.96 μg/mL) with a potency approximately equal to that of isoniazid (INH), an anti-TB drug. Important structure features were analyzed by quantitative structure-activity relationship (QSAR) analysis to give better insights into the structure determinants for predicting the anti-TB activity. The anti-inflammatory activity was induced by superoxide anion generation and neutrophil elastase (NE) release using the formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)-activated human neutrophils method. Results indicated that compound 12 demonstrated a potent dual inhibitory effect on NE release and superoxide anion generation with IC 50 values of 1.76 and 1.72 μM, respectively. Our results indicated that compound 12 is a potential lead compound for the discovery of dual anti-TB and anti-inflammatory drug candidates. In addition, 6-[3-(hydroxymethyl)piperidin-1-yl]-9-methoxy-11 H -indeno[1,2- c ]quinolin-11-one ( 4g ) showed a potent dual inhibitory effect on NE release and superoxide anion generation with IC 50 values of 0.46 and 0.68 μM, respectively, and is a potential lead compound for the discovery of anti-inflammatory drug candidates.
Jiamvoraphong, Nittaya; Jantaratnotai, Nattinee; Sanvarinda, Pantip; Tuchinda, Patoomratana; Piyachaturawat, Pawinee; Thampithak, Anusorn; Sanvarinda, Pimtip
2017-07-01
We investigated the molecular mechanisms underlying the effect of (3S)-1-(3,4-dihydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol, also known as compound 092, isolated from Curcuma comosa Roxb on the production of pro-inflammatory mediators and oxidative stress in lipopolysaccharide (LPS)-activated highly aggressive proliferating immortalized (HAPI) microglial cell lines. Nitric oxide (NO) production was determined using the Griess reaction, and reverse transcription polymerase chain reaction was used to measure the expression of inducible nitric oxide synthase (iNOS) mRNA. Western blotting was used to determine the levels of pro-inflammatory mediators and their related upstream proteins. Compound 092 suppressed NO production and iNOS expression in LPS-stimulated HAPI cells. These effects originated from the ability of compound 092 to attenuate the activation of nuclear factor (NF)-κB as determined by the reduction in p-NF-κB and p-IκB kinase (IKK) protein levels. Compound 092 also significantly lowered LPS-activated intracellular reactive oxygen species production and p38 mitogen-activated protein kinase (MAPK) activation. Compound 092 suppresses microglial activation through attenuation of p38 MAPK and NF-κB activation. Compound 092 thus holds the potential to treat neurodegenerative disorders associated with neuroinflammation and oxidative stress. © 2017 Royal Pharmaceutical Society.
Amen, Yhiya; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Shimizu, Kuniyoshi
2017-04-01
Recent studies identified Rho-kinase enzymes (ROCK-I and ROCK-II) as important targets that are involved in a variety of diseases. Synthetic Rho-kinase inhibitors have emerged as potential therapeutic agents to treat disorders such as hypertension, stroke, cancer, diabetes, glaucoma, etc. Our study is the first to screen the total ethanol extract of the medicinal mushroom Ganoderma lingzhi with thirty-five compounds for Rho-kinase inhibitory activity. Moreover, a molecular binding experiment was designed to investigate the binding affinity of the compounds at the active sites of Rho-kinase enzymes. The structure-activity relationship analysis was investigated. Our results suggest that the traditional uses of G. lingzhi might be in part due to the ROCK-I and ROCK-II inhibitory potential of this mushroom. Structure-activity relationship studies revealed some interesting features of the lanostane triterpenes that potentiate their Rho-kinase inhibition. These findings would be helpful for further studies on the design of Rho-kinase inhibitors from natural sources and open the door for contributions from other researchers for optimizing the development of natural Rho-kinase inhibitors.
Teerasripreecha, Dungporn; Phuwapraisirisan, Preecha; Puthong, Songchan; Kimura, Kiyoshi; Okuyama, Masayuki; Mori, Haruhide; Kimura, Atsuo; Chanchao, Chanpen
2012-03-30
Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G(2)), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC(50) values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC(50) values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs.
Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines.
Olender, Dorota; Żwawiak, Justyna; Zaprutko, Lucjusz
2018-05-29
The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.
Xu, Xue-Tao; Mou, Xue-Qing; Xi, Qin-Mei; Liu, Wei-Ting; Liu, Wen-Feng; Sheng, Zhao-Jun; Zheng, Xi; Zhang, Kun; Du, Zhi-Yun; Zhao, Su-Qing; Wang, Shao-Hua
2016-11-01
2-Substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole, a key structural moiety exiting in many bioactive molecules, has been shown to have excellent selective activity on COX-2. In the present study, the anti-inflammatory activity and the underlying molecular mechanism of 2-substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole on skin inflammation were assessed by 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice. Most of the compounds showed anti-inflammatory activity on TPA-induced skin inflammation. The anti-inflammatory activity of compound 4 showed higher anti-inflammatory activity than celecoxib (3.2-fold). Compound 4 pretreatment resulted in markedly suppression of TPA-induced IL-1β, IL-6, TNF-α, and COX-2, respectively. Furthermore, the mechanical study indicated that the anti-inflammatory activity of compound 4 was associated with its ability to inhibit activation of factor kappa-κB (NF-κB) by blocking IκB kinase (IKK) activities. Accordingly, compound 4 could be used as a potential anti-inflammatory agent for skin inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Ying-Ying; Zhou, Wen-Jing; Wang, Hui; Guo, Gan-Lin; Su, Zhen-Xia; Pu, Yin-Fang
2018-08-15
Nine antialgal active compounds, (i.e. trehalose (1), twenty-two methyl carbonate (2), (-)-dihydromenisdaurilide (3), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (4), isophytol (5), 8-hexadecenol (6), 17-hydroxyheptadecanoic acid (7), trans-asarone (8) and 2-amino-3-mercaptopropanoic acid (9)) were isolated from Ulva pertusa for the first time by sephadex LH-20 column chromatography, silica gel column chromatography and repeated preparative TLC. Except for compound 4, all compounds represented novel isolated molecules from marine macroalgae. Further, antialgal activities of these compounds against Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globosa, Prorocentrum donghaiense and Skeletonema costatum were investigated for the first time. Results showed these nine compounds have selectivity antialgal effects on all test red tide microalgae, and antialgal activities against red tide microalgae obviously enhanced with the increase of concentration of antialgal compounds. Based on this, EC 50-96 h values of these nine compounds for six red tide microalgae were obtained for the first time. By analyzing and comparing EC 50-96 h values, it has been determined that seven compounds (1, 3, 4, 6, 7, 8 and 9) showed the superior application potential than potassium dichromate or gossonorol and other six compounds as a characteristic antialgal agent against Heterosigma akashiwo, Karenia mikimitoi and Prorocentrum donghaiense. Overall this study has suggested that green algae Ulva pertusa is a new source of bioactive compounds with antialgal activity. Copyright © 2018. Published by Elsevier Inc.
Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte
2015-12-11
This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source.
Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte
2015-01-01
This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source. PMID:26690454
Zha, Gao-Feng; Leng, Jing; Darshini, N; Shubhavathi, T; Vivek, H K; Asiri, Abdullah M; Marwani, Hadi M; Rakesh, K P; Mallesha, N; Qin, Hua-Li
2017-07-15
A series of new benzo[d]thiazole-hydrazones analogues were synthesized and screened for their in vitro antibacterial and antifungal activities. The results revealed that compounds 13, 14, 15, 19, 20, 28 and 30 exhibited superior antibacterial potency compared to the reference drug chloramphenicol and rifampicin. Compounds 5, 9, 10, 11, 12, 28 and 30 were found to be good antifungal activity compared to the standard drug ketoconazole. A preliminary study of the structure-activity relationship (SAR) revealed that the antimicrobial activity depended on the effect of different substituents on the phenyl ring. The electron donating (OH and OCH 3 ) groups presented in the analogues, increase the antibacterial activity (except compound 12), interestingly, while the electron withdrawing (Cl, NO 2 , F and Br) groups increase the antifungal activity (except compound 19 and 20). In addition, analogues containing thiophene (28) and indole (30) showed good antimicrobial activities. Whereas, aliphatic analogues (24-26) shown no activities in both bacterial and fungal stains even in high concentrations (100µg/mL). Molecular docking studies were performed for all the synthesized compounds of which compounds 11, 19 and 20 showed the highest glide G-score. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roman, Bart I.; Guedes, Rita C.; Stevens, Christian V.; García-Sosa, Alfonso T.
2018-05-01
In multitarget drug design, it is critical to identify active and inactive compounds against a variety of targets and antitargets. Multitarget strategies thus test the limits of available technology, be that in screening large databases of compounds versus a large number of targets, or in using in silico methods for understanding and reliably predicting these pharmacological outcomes. In this paper, we have evaluated the potential of several in silico approaches to predict the target, antitarget and physicochemical profile of (S)-blebbistatin, the best-known myosin II ATPase inhibitor, and a series of analogs thereof. Standard and augmented structure-based design techniques could not recover the observed activity profiles. A ligand-based method using molecular fingerprints was, however, able to select actives for myosin II inhibition. Using further ligand- and structure-based methods, we also evaluated toxicity through androgen receptor binding, affinity for an array of antitargets and the ADME profile (including assay-interfering compounds) of the series. In conclusion, in the search for (S)-blebbistatin analogs, the dissimilarity distance of molecular fingerprints to known actives and the computed antitarget and physicochemical profile of the molecules can be used for compound design for molecules with potential as tools for modulating myosin II and motility-related diseases.
Rodrigues, Caroline Fabri Bittencourt; Gaeta, Henrique Hessel; Belchor, Mariana Novo; Ferreira, Marcelo José Pena; Pinho, Marcus Vinícius Terashima; de Oliveira Toyama, Daniela; Toyama, Marcos Hikari
2015-01-01
The aim of this work was to verify the effects of methanol (MeOH) and hydroalcoholic (HA) extracts and their respective partition phases obtained from white mangrove (Laguncularia racemosa (L.) C.F. Gaertn.) leaves on human thrombin activity. Among the extracts and phases tested, only the ethyl acetate and butanolic partitions significantly inhibited human thrombin activity and the coagulation of plasma in the presence of this enzyme. Chromatographic analyses of the thrombin samples incubated with these phases revealed that different compounds were able to interact with thrombin. The butanolic phase of the MeOH extract had the most potent inhibitory effects, reducing enzymatic activity and thrombin-induced plasma coagulation. Two glycosylated flavonoids in this partition were identified as the most potent inhibitors of human thrombin activity, namely quercetin-3-O-arabinoside (QAra) and quercetin-3-O-rhamnoside (Qn). Chromatographic analyses of thrombin samples incubated with these flavonoids demonstrated the chemical modification of this enzyme, suggesting that the MeOH extract contained other compounds that both induced structural changes in thrombin and diminished its activity. In this article, we show that despite the near absence of the medical use of mangrove compounds, this plant contains natural compounds with potential therapeutic applications. PMID:26197325
Nunes, Polyana Campos; Aquino, Jailane de Souza; Rockenbach, Ismael Ivan; Stamford, Tânia Lúcia Montenegro
2016-01-01
The purpose of this study was to evaluate the physico-chemical characteristics, bioactive compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense) grown in Brazil with regard to the geographical origin and its peel fractions and edible portion analyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total phenolics (1293 mg gallic acid equivalent/100 g) and total anthocyanins (1045 mg/100 g) contents were higher in the peel, with the major anthocyanin identified using HPLC-DAD-MS/MS as cyanidin 3-glucoside. Higher values for DPPH antiradical scavenging activity (47.52 μMol trolox equivalent antioxidant capacity/g) and Ferric Reducing Antioxidant Potential (FRAP, 0.19 mM ferreous sulfate/g) were also observed in the peel fraction. All extracts tested showed the ability to inhibit oxidation in the β-carotene/linoleic acid system. This study highlights the potential of Malay apple fruit as a good source of antioxidant compounds with potential benefits to human health. PMID:27352306
Elkamhawy, Ahmed; Park, Jung-Eun; Hassan, Ahmed H E; Pae, Ae Nim; Lee, Jiyoun; Park, Beoung-Geon; Roh, Eun Joo
2018-01-20
A series of 2-(3-arylureido)pyridines and 2-(3-benzylureido)pyridines were synthesized and evaluated as potential modulators for amyloid beta (Aβ)-induced mitochondrial dysfunction in Alzheimer's disease (AD). The blocking activities of forty one small molecules against Aβ-induced mitochondrial permeability transition pore (mPTP) opening were evaluated by JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The inhibitory activity of twenty five compounds against Aβ-induced mPTP opening was superior to that of the standard cyclosporin A (CsA). Six hit compounds have been identified as likely safe in regards to mitochondrial and cellular safety and subjected to assessment for their protective effect against Aβ-induced deterioration of ATP production and cytotoxicity. Among them, compound 7fb has been identified as a lead compound protecting neuronal cells against 67% of neurocytotoxicity and 43% of suppression of mitochondrial ATP production induced by 5 μM concentrations of Aβ. Using CDocker algorithm, a molecular docking model presented a plausible binding mode for these compounds with cyclophilin D (CypD) receptor as a major component of mPTP. Hence, this report presents compound 7fb as a new nonpeptidyl mPTP blocker which would be promising for further development of Alzheimer's disease (AD) therapeutics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Iwata, Yuko; Katayama, Yoshimi; Okuno, Yasushi; Wakabayashi, Shigeo
2018-03-06
Transient receptor potential cation channel, subfamily V, member 2 (TRPV2) is a principal candidate for abnormal Ca 2+ -entry pathways, which is a potential target for therapy of muscular dystrophy and cardiomyopathy. Here, an in silico drug screening and the following cell-based screening to measure the TRPV2 activation were carried out in HEK293 cells expressing TRPV2 using lead compounds (tranilast or SKF96365) and off-patent drug stocks. We identified 4 chemical compounds containing amino-benzoyl groups and 1 compound (lumin) containing an ethylquinolinium group as candidate TRPV2 inhibitors. Three of these compounds inhibited Ca 2+ entry through both mouse and human TRPV2, with IC 50 of less than 10 μM, but had no apparent effect on other members of TRP family such as TRPV1 and TRPC1. Particularly, lumin inhibited agonist-induced TRPV2 channel activity at a low dose. These compounds inhibited abnormally increased Ca 2+ influx and prevented stretch-induced skeletal muscle damage in cultured myocytes from dystrophic hamsters (J2N-k). Further, they ameliorated cardiac dysfunction, and prevented disease progression in vivo in the same J2N-k hamsters developing dilated cardiomyopathy as well as muscular dystrophy. The identified compounds described here are available as experimental tools and represent potential treatments for patients with cardiomyopathy and muscular dystrophy.
Iwata, Yuko; Katayama, Yoshimi; Okuno, Yasushi; Wakabayashi, Shigeo
2018-01-01
Transient receptor potential cation channel, subfamily V, member 2 (TRPV2) is a principal candidate for abnormal Ca2+-entry pathways, which is a potential target for therapy of muscular dystrophy and cardiomyopathy. Here, an in silico drug screening and the following cell-based screening to measure the TRPV2 activation were carried out in HEK293 cells expressing TRPV2 using lead compounds (tranilast or SKF96365) and off-patent drug stocks. We identified 4 chemical compounds containing amino-benzoyl groups and 1 compound (lumin) containing an ethylquinolinium group as candidate TRPV2 inhibitors. Three of these compounds inhibited Ca2+ entry through both mouse and human TRPV2, with IC50 of less than 10 μM, but had no apparent effect on other members of TRP family such as TRPV1 and TRPC1. Particularly, lumin inhibited agonist-induced TRPV2 channel activity at a low dose. These compounds inhibited abnormally increased Ca2+ influx and prevented stretch-induced skeletal muscle damage in cultured myocytes from dystrophic hamsters (J2N-k). Further, they ameliorated cardiac dysfunction, and prevented disease progression in vivo in the same J2N-k hamsters developing dilated cardiomyopathy as well as muscular dystrophy. The identified compounds described here are available as experimental tools and represent potential treatments for patients with cardiomyopathy and muscular dystrophy. PMID:29581825
Xu, Yun-Yun; Li, Si-Ning; Yu, Gao-Jian; Hu, Qing-Hua; Li, Huan-Qiu
2013-10-01
Two new series of new compounds containing a 6-amino-substituted group or 6-acrylamide-substituted group linked to a 4-anilinoquinazoline nucleus have been discovered as potential EGFR inhibitors. These compounds proved efficient effects on antiproliferative activity and EGFR-TK inhibitory activity. Especially, N(6)-((5-bromothiophen-2-yl)methyl)-N(4)-(3-chlorophenyl)quinazoline-4,6-diamine (5e), showed the most potent inhibitory activity (IC50=3.11μM for Hep G2, IC50=0.82μM for A549). The EGFR molecular docking model suggested that the new compound is nicely bound to the region of EGFR, and cell morphology by Hoechst stain experiment suggested that these compounds efficiently induced apoptosis of A549 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pinto, Erika G; Santos, Isabela O; Schmidt, Thomas J; Borborema, Samanta E T; Ferreira, Vitor F; Rocha, David R; Tempone, Andre G
2014-01-01
Naphtoquinones have been used as promising scaffolds for drug design studies against protozoan parasites. Considering the highly toxic and limited therapeutic arsenal, the global negligence with tropical diseases and the elevated prevalence of co-morbidities especially in developing countries, the parasitic diseases caused by various Leishmania species (leishmaniasis) became a significant public health threat in 98 countries. The aim of this work was the evaluation of antileishmanial in vitro potential of thirty-six 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones obtained by a three component reaction of lawsone, the appropriate aldehyde and thiols adequately substituted, exploiting the in situ generation of o-quinonemethides (o-QM) via the Knoevenagel condensation. The antileishmanial activity of the naphthoquinone derivatives was evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum and their cytotoxicity was verified in mammalian cells. Among the thirty-six compounds, twenty-seven were effective against promastigotes, with IC50 values ranging from 8 to 189 µM; fourteen compounds eliminated the intracellular amastigotes, with IC50 values ranging from 12 to 65 µM. The compounds containing the phenyl groups at R1 and R2 and with the fluorine substituent at the phenyl ring at R2, rendered the most promising activity, demonstrating a selectivity index higher than 15 against amastigotes. A QSAR (quantitative structure activity relationship) analysis yielded insights into general structural requirements for activity of most compounds in the series. Considering the in vitro antileishmanial potential of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones and their structure-activity relationships, novel lead candidates could be exploited in future drug design studies for leishmaniasis.
Adegboye, Akande Akinsola; Khan, Khalid Mohammed; Salar, Uzma; Aboaba, Sherifat Adeyinka; Kanwal; Chigurupati, Sridevi; Fatima, Itrat; Taha, Mohammad; Wadood, Abdul; Mohammad, Jahidul Isalm; Khan, Huma; Perveen, Shahnaz
2018-04-25
Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the α-amylase inhibitory activity. For that purpose, 2-aryl benzimidazole derivatives 1-45 were synthesized and screened for in vitro α-amylase inhibitory activity. Structures of all synthetic compounds were deduced by various spectroscopic techniques. All compounds revealed inhibition potential with IC 50 values of 1.48 ± 0.38-2.99 ± 0.14 μM, when compared to the standard acarbose (IC 50 = 1.46 ± 0.26 μM). Limited SAR suggested that the variation in the inhibitory activities of the compounds are the result of different substitutions on aryl ring. In order to rationalize the binding interactions of most active compounds with the active site of α-amylase enzyme, in silico study was conducted. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Synthesis and antimycobacterial screening of new thiazolyl-oxazole derivatives.
Abhale, Yogita K; Sasane, Amit V; Chavan, Abhijit P; Shekh, Saddam Husen; Deshmukh, Keshav K; Bhansali, Sujit; Nawale, Laxman; Sarkar, Dhiman; Mhaske, Pravin C
2017-05-26
In the present study a series of 4-methyl-2-aryl-5-(2-aryl/benzyl thiazol-4-yl) oxazole (4a-v) have been synthesized and evaluated for their preliminary antitubercular, antimicrobial and cytotoxicity activity. Among all the synthesized compounds, 4v reported comparable activity against dormant M. tuberculosis H 37 Ra and M. bovis BCG strains with respect to standard drug rifampicin. The active compounds from the antitubercular study were further tested for anti-proliferative activity against HeLa, A549 and PANC-1 cell lines using MTT assay and showed no significant cytotoxic activity at the maximum concentration evaluated. Further, the synthesized compounds were found to have potential antibacterial activities with MIC range of 2.1-26.8 μg/mL. High potency, lower cytotoxicity and promising antimycobacterial activity suggested that these compounds could serve as good leads for further optimisation and development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Synthesis and anticonvulsant activity of some substituted 1,2,4-thiadiazoles.
Gupta, Arun; Mishra, Pradeep; Pandeya, S N; Kashaw, Sushil K; Kashaw, Varsha; Stables, James P
2009-03-01
A series of new substituted 1,2,4-thiadiazoles were synthesized by appropriate route and screened for anticonvulsant, neurotoxic and sedative-hypnotic activity. The structures of the synthesized compounds were confirmed by IR spectroscopy, (13)C NMR and elemental (nitrogen and sulphur) analysis. After i.p. injection of the compounds to mice or rate at doses of 30, 100, and 300 mg/kg, body weights were examined in the maximal electroshock-induced seizures (MES) and subcutaneous pentylenetetrazole (scPTZ)-induced seizure models after 0.5 and 4 h. Rotorod method and phenobarbitone-induced hypnosis potentiation study were employed to examine neurotoxicity and sedative-hypnotic activity, respectively. All the compounds except 4g showed protection against MES screen after 0.5 h. Compounds 3a-c, 4a-c were active at 100 mg/kg dose i.p., whereas remaining compounds showed activity at 300 mg/kg. All 14 compounds except 3g showed neurotoxicity at 100 and 300 mg/kg after 0.5 h. Compounds 3b and 4b showed NT after 4 h. Two compounds 3b and 4g showed significant (p<0.05) percentage increase in sleeping time i.e. 67% and 59%, respectively. It may be concluded that the synthesized compounds were potent against MES-induced seizures than ScPTZ induced and showed low potency as sedative-hypnotic agent which is advantageous.
Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Sassi, Aicha; Abed, Besma; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila
2016-06-01
The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.
Kotapalli, Sudha Sravanti; Nallam, Sri Satya Anila; Nadella, Lavanya; Banerjee, Tanmay; Rode, Haridas B; Mainkar, Prathama S; Ummanni, Ramesh
2015-01-01
The purpose of this study was to provide a number of diverse and promising early-lead compounds that will feed into the drug discovery pipeline for developing new antitubercular agents. The results from the phenotypic screening of the open-source compound library against Mycobacterium smegmatis and Mycobacterium bovis (BCG) with hit validation against M. tuberculosis (H37Rv) have identified novel potent hit compounds. To determine their druglikeness, a systematic analysis of physicochemical properties of the hit compounds has been performed using cheminformatics tools. The hit molecules were analysed by clustering based on their chemical finger prints and structural similarity determining their chemical diversity. The hit compound library is also filtered for druglikeness based on the physicochemical descriptors following Lipinski filters. The robust filtration of hits followed by secondary screening against BCG, H37Rv and cytotoxicity evaluation has identified 12 compounds with potential against H37Rv (MIC range 0.4 to 12.5 μM). Furthermore in cytotoxicity assays, 12 compounds displayed low cytotoxicity against liver and lung cells providing high therapeutic index > 50. To avoid any variations in activity due to the route of chemical synthesis, the hit compounds were re synthesized independently and confirmed for their potential against H37Rv. Taken together, the hits reported here provides copious potential starting points for generation of new leads eventually adds to drug discovery pipeline against tuberculosis.
Zawawi, Nik Khairunissa Nik Abdullah; Taha, Muhammad; Ahmat, Norizan; Wadood, Abdul; Ismail, Nor Hadiani; Rahim, Fazal; Ali, Muhammad; Abdullah, Norishah; Khan, Khalid Mohammed
2015-07-01
A library of novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone (3a-3r) was synthesized and evaluated for their potential as β-glucuronidase inhibitors. Several compounds such as 3a-3d, 3e-3j, 3l-3o, 3q and 3r showed excellent inhibitory potentials much better than the standard (IC50=48.4±1.25μM: d-saccharic acid 1,4-lactone). All the synthesized compounds were characterized satisfactorily by using different spectroscopic methods. We further evaluated the interaction of the active compounds and the enzyme active site with the help of docking studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems
Johannes, Christian; Majcherczyk, Andrzej
2000-01-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713
NASA Astrophysics Data System (ADS)
Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei
2016-12-01
With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudalkar, Shalley N.; Beloor, Jagadish; Chan, Albert H.
The clinical benefits of HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are hindered by their unsatisfactory pharmacokinetic (PK) properties along with the rapid development of drug-resistant variants. However, the clinical efficacy of these inhibitors can be improved by developing compounds with enhanced pharmacological profiles and heightened antiviral activity. We used computational and structure-guided design to develop two next-generation NNRTI drug candidates, compounds I and II, which are members of a class of catechol diethers. We evaluated the preclinical potential of these compounds in BALB/c mice because of their high solubility (510 µg/ml for compound I and 82.9 µg/ml for compoundmore » II), low cytotoxicity, and enhanced antiviral activity against wild-type (WT) HIV-1 RT and resistant variants. Additionally, crystal structures of compounds I and II with WT RT suggested an optimal binding to the NNRTI binding pocket favoring the high anti-viral potency. A single intraperitoneal dose of compounds I and II exhibited a prolonged serum residence time of 48 hours and concentration maximum (Cmax) of 4000- to 15,000-fold higher than their therapeutic/effective concentrations. These Cmax values were 4- to 15-fold lower than their cytotoxic concentrations observed in MT-2 cells. Compound II showed an enhanced area under the curve (0–last) and decreased plasma clearance over compound I and efavirenz, the standard of care NNRTI. Hence, the overall (PK) profile of compound II was excellent compared with that of compound I and efavirenz. Furthermore, both compounds were very well tolerated in BALB/c mice without any detectable acute toxicity. Taken together, these data suggest that compounds I and II possess improved anti-HIV-1 potency, remarkable in vivo safety, and prolonged in vivo circulation time, suggesting strong potential for further development as new NNRTIs for the potential treatment of HIV infection.« less
Burger-Kentischer, Anke; Finkelmeier, Doris; Keller, Petra; Bauer, Jörg; Eickhoff, Holger; Kleymann, Gerald; Abu Rayyan, Walid; Singh, Anurag; Schröppel, Klaus; Lemuth, Karin; Wiesmüller, Karl-Heinz; Rupp, Steffen
2011-01-01
Fungal infections are a serious health problem in clinics, especially in the immune-compromised patient. Disease ranges from widespread superficial infections like vulvovaginal infections to life-threatening systemic candidiasis. Especially for systemic mycoses, only a limited arsenal of antifungals is available. The most commonly used classes of antifungal compounds used include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapy, significant side effects, and high costs for several antifungals, there is a medical need for new antifungals in the clinic and general practice. In order to expand the arsenal of compounds with antifungal activities, we screened a compound library including more than 35,000 individual compounds derived from organic synthesis as well as combinatorial compound collections representing mixtures of compounds for antimycotic activity. In total, more than 100,000 compounds were screened using a new type of activity-selectivity assay, analyzing both the antifungal activity and the compatibility with human cells at the same time. One promising hit, an (S)-2-aminoalkyl benzimidazole derivative, was developed among a series of lead compounds showing potent antifungal activity. (S)-2-(1-Aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole showed the highest antifungal activity and the best compatibility with human cells in several cell culture models and against a number of clinical isolates of several species of pathogenic Candida yeasts. Transcriptional profiling indicates that the newly discovered compound is a potential inhibitor of the ergosterol pathway, in contrast to other benzimidazole derivatives, which target microtubules. PMID:21746957
Naik, Pradeep K; Santoshi, Seneha; Joshi, Harish C
2012-01-01
We have identified a new class of microtubule-binding compounds-noscapinoids-that alter microtubule dynamics at stoichiometric concentrations without affecting tubulin polymer mass. Noscapinoids show great promise as chemotherapeutic agents for the treatment of human cancers. To investigate the structural determinants of noscapinoids responsible for anti-cancer activity, we tested 36 structurally diverse noscapinoids in human acute lymphoblastic leukemia cells (CEM). The IC(50) values of these noscapinoids vary from 1.2 to 56.0 μM. Pharmacophore models of anti-cancer activity were generated that identify two hydrogen bond acceptors, two aromatic rings, two hydrophobic groups, and one positively charged group as essential structural features. Additionally, an atom-based quantitative structure-activity relationship (QSAR) model was developed that gave a statistically satisfying result (R(2) = 0.912, Q(2) = 0.908, Pearson R = 0.951) and effectively predicts the anti-cancer activity of training and test set compounds. The pharmacophore model presented here is well supported by electronic property analysis using density functional theory at B3LYP/3-21*G level. Molecular electrostatic potential, particularly localization of negative potential near oxygen atoms of the dimethoxy isobenzofuranone ring of active compounds, matched the hydrogen bond acceptor feature of the generated pharmacophore. Our results further reveal that all active compounds have smaller lowest unoccupied molecular orbital (LUMO) energies concentrated over the dimethoxy isobenzofuranone ring, azido group, and nitro group, which is indicative of the electron acceptor capacity of the compounds. Results obtained from this study will be useful in the efficient design and development of more active noscapinoids.
Pedron, Julien; Boudot, Clotilde; Hutter, Sébastien; Bourgeade-Delmas, Sandra; Stigliani, Jean-Luc; Sournia-Saquet, Alix; Moreau, Alain; Boutet-Robinet, Elisa; Paloque, Lucie; Mothes, Emmanuelle; Laget, Michèle; Vendier, Laure; Pratviel, Geneviève; Wyllie, Susan; Fairlamb, Alan; Azas, Nadine; Courtioux, Bertrand; Valentin, Alexis; Verhaeghe, Pierre
2018-06-05
To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin. Crown Copyright © 2018. Published by Elsevier Masson SAS. All rights reserved.
Ko, Seok-Chun; Lee, Myoungsook; Lee, Ji-Hyeok; Lee, Seung-Hong; Lim, Yunsook; Jeon, You-Jin
2013-11-01
In this study, we assessed the potential inhibitory effect of 5 species of brown seaweeds on adipogenesis the differentiation of 3T3-L1 preadipocytes into mature adipocytes by measuring Oil-Red O staining. The Ecklonia cava extract tested herein evidenced profound adipogenesis inhibitory effect, compared to that exhibited by the other four brown seaweed extracts. Thus, E. cava was selected for isolation of active compounds and finally the three polyphenol compounds of phlorotannins were obtained and their inhibitory effect on adipogenesis was observed. Among the phlorotannins, dieckol exhibited greatest potential adipogenesis inhibition and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding proteins (C/EBPα), sterol regulatory element-binding protein 1 (SREBP1) and fatty acid binding protein 4 (FABP4) in a dose-dependent manner. The specific mechanism mediating the effects of dieckol was confirmed by AMP-activated protein kinase (AMPK) activation. These results demonstrate inhibitory effect of dieckol compound on adipogenesis through the activation of the AMPK signal pathway. Copyright © 2013 Elsevier B.V. All rights reserved.
Glycolipids from seaweeds and their potential biotechnological applications.
Plouguerné, Erwan; da Gama, Bernardo A P; Pereira, Renato C; Barreto-Bergter, Eliana
2014-01-01
Marine macroalgae, or seaweeds, are a formidable source of natural compounds with diverse biological activities. In the last five decades it has been estimated that more than 3000 natural compounds were discovered from these organisms. The great majority of the published works have focused on terpenoids. In comparison, glycolipids are a neglected class of macroalgal secondary metabolites therefore remaining as a largely unknown reservoir of molecular diversity. Nevertheless, the interest regarding these compounds has been growing fast in the last decades as activities of ecological or pharmaceutical interest have been highlighted. This paper will review recent work regarding isolation and structural characterization of glycolipids from seaweeds and their prospective biological activities.
Wijesinghe, W A J P; Jeon, You-Jin
2012-01-01
Over the years, the biological activities of seaweeds could have gained a considerable research interest because of their specific functional compounds, which may not be available in land plants. Thus, efforts at discovery of novel metabolites from seaweeds over the past years have yielded a considerable amount of new active compounds. In addition, studies about the extraction of active compounds from natural products have attracted special attention in the last recent years. Potent biologically active compounds of seaweeds have been demonstrated to play a significant role in prevention of certain degenerative diseases such as cancer, inflammation, arthritis, diabetes and hypertension. Therefore, seaweed derived active components, whose immense biochemical diversity looks like to become a rich source of novel chemical entities for the use as functional ingredients in many industrial applications such as functional foods, pharmaceuticals and cosmeceuticals. Thus, the interest in the extraction of active compounds from seaweeds is obvious. However, the physical and chemical barriers of the plant material become the key drawbacks of such extraction process. Therefore, enhanced release and recovery of active compounds attached to the cells have been addressed. Taken together, the aim of this communication is to discuss the potential use of enzyme treatment as a tool to improve the extraction efficiency of bioactive compounds from seaweeds. Copyright © 2011 Elsevier B.V. All rights reserved.
Haller, Simone; Meissle, Michael; Romeis, Jörg
2016-12-01
Potentially adverse effects on ecosystem functioning by the planting of insect-resistant, genetically engineered plants or by the direct application of insecticidal compounds are carefully evaluated in pre-market risk assessments. To date, few studies have assessed the potential risks of genetically engineered crops or insecticidal compounds on the survival and fitness of dipteran species, despite their important contribution to ecosystem services such as decomposition in agricultural systems. Therefore, we propose that Drosophila melanogaster Meigen (Drosophilidae) be used as a surrogate species for the order Diptera and for the functional guild of soil arthropod decomposers in pre-market risk assessments. We developed two assays to assess the toxicity of gut-active insecticidal compounds to D. melanogaster. One assay uses groups of fly larvae, and the other uses individuals. Cryolite, a mineral pesticide, proved to be an adequate positive control. The effects of cryolite on D. melanogaster larvae were comparable between the two assays. Statistical power analyses were used to define the number of replications required to identify different effect sizes between control and treatment groups. Finally, avidin, E-64, GNA, and SBTI were used as test compounds to validate the individual-based assay; only avidin adversely affected D. melanogaster. These results indicate that both D. melanogaster assays will be useful for early tier risk assessment concerning the effects of orally active compounds on non-target dipterans.
Li, Ding; Luong, Tuong Thi Mai; Dan, Wen-Jia; Ren, Yanliang; Nien, Hoang Xuan; Zhang, An-Ling; Gao, Jin-Ming
2018-01-15
Several recently identified antifungal compounds share the backbone structure of acetophenones. The aim of the present study was to develop new isobutyrophenone analogs as new antifungal agents. A series of new 2,4-dihydroxy-5-methyl isobutyrophenone derivatives were prepared and characterized by 1 H, 13 C NMR and MS spectroscopic data. These products were evaluated for in vitro antifungal activities against seven plant fungal pathogens by the mycelial growth inhibitory rate assay. Compounds 3, 4a, 5a, 5b, 5e, 5f and 5g showed a broad-spectrum high antifungal activity. On the other hand, for the first time, these compounds were also assayed as potential inhibitors against Class II fructose-1,6-bisphosphate aldolase (Fba) from the rice blast fungus, Magnaporthe grisea. Compounds 5e and 5g were found to exhibit the inhibition constants (Ki) for 15.12 and 14.27 μM, respectively, as the strongest competitive inhibitors against Fba activity. The possible binding-modes of compounds 5e and 5g were further analyzed by molecular docking algorithms. The results strongly suggested that compound 5g could be a promising lead for the discovery of new fungicides via targeting Class II Fba. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antifouling potential of Nature-inspired sulfated compounds
NASA Astrophysics Data System (ADS)
Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel
2017-02-01
Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.
Antifouling potential of Nature-inspired sulfated compounds
Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel
2017-01-01
Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL−1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL−1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL−1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents. PMID:28205590
Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones
Sarkar, Souvik; Siddiqui, Asim A.; Saha, Shubhra J.; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S.; Nag, Shiladitya; Adhikari, Susanta
2016-01-01
We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [3H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. PMID:27139466
Gottardi, W; Klotz, S; Nagl, M
2014-06-01
To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.
Tyagi, Amit Kumar; Prasad, Sahdeo; Yuan, Wei; Li, Shiyou; Aggarwal, Bharat B
2015-12-01
Considering that as many as 80% of the anticancer drugs have their roots in natural products derived from traditional medicine, we examined compounds other than curcumin from turmeric (Curcuma longa) that could exhibit anticancer potential. Present study describes the isolation and characterization of another turmeric-derived compound, β-sesquiphellandrene (SQP) that exhibits anticancer potential comparable to that of curcumin. We isolated several compounds from turmeric, including SQP, α-curcumene, ar-turmerone, α-turmerone, β-turmerone, and γ-turmerone, only SQP was found to have antiproliferative effects comparable to those of curcumin in human leukemia, multiple myeloma, and colorectal cancer cells. While lack of the NF-κB-p65 protein had no effect on the activity of SQP, lung cancer cells that expressed p53 were more susceptible to the cytotoxic effect of SQP than were cells that lacked p53 expression. SQP was also found to be highly effective in suppressing cancer cell colony formation and inducing apoptosis, as shown by assays of intracellular esterase activity, plasma membrane integrity, and cell-cycle phase. SQP was found to induce cytochrome c release and activate caspases that lead to poly ADP ribose polymerase cleavage. SQP exposure was associated with downregulation of cell survival proteins such cFLIP, Bcl-xL, Bcl-2, c-IAP1, and survivin. Furthermore, SQP was found to be synergistic with the chemotherapeutic agents velcade, thalidomide and capecitabine. Overall, our results indicate that SQP has anticancer potential comparable to that of curcumin.
Jayamani, Elamparithi; Tharmalingam, Nagendran; Rajamuthiah, Rajmohan; Kim, Wooseong; Okoli, Ikechukwu; Hernandez, Ana M.; Lee, Kiho; Nau, Gerard J.; Ausubel, Frederick M.
2017-01-01
ABSTRACT Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal Caenorhabditis elegans-F. tularensis pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans p38 mitogen-activate protein (MAP) kinase cascade is involved in the immune response to F. tularensis, and we developed a robust F. tularensis-mediated C. elegans killing assay with a Z′ factor consistently of >0.5, which was then utilized to screen a library of FDA-approved compounds that included 1,760 small molecules. In addition to clinically used antibiotics, five FDA-approved drugs were also identified as potential hits, including the anti-inflammatory drug diflunisal that showed anti-F. tularensis activity in vitro. Moreover, the nonsteroidal anti-inflammatory drug (NSAID) diflunisal, at 4× MIC, blocked the replication of an F. tularensis live vaccine strain (LVS) in primary human macrophages and nonphagocytic cells. Diflunisal was nontoxic to human erythrocytes and HepG2 human liver cells at concentrations of ≥32 μg/ml. Finally, diflunisal exhibited synergetic activity with the antibiotic ciprofloxacin in both a checkerboard assay and a macrophage infection assay. In conclusion, the liquid C. elegans-F. tularensis LVS assay described here allows screening for anti-F. tularensis compounds and suggests that diflunisal could potentially be repurposed for the management of tularemia. PMID:28652232
Dong, Jing-Jun; Li, Qing-Shan; Wang, Shu-Fu; Li, Cui-Yun; Zhao, Xin; Qiu, Han-Yue; Zhao, Meng-Yue; Zhu, Hai-Liang
2013-10-07
The RAF-MEK-ERK cascade appears to be intimately involved in the regulation of cell cycle progression and apoptosis. The BRAF(V600E) mutant results in constitutive activation of the ERK pathway, which can lead to cellular growth dysregulation. A series of 5-phenyl-1H-pyrazol derivatives (3a-5e) have been designed and synthesized, and their biological activities were evaluated as potential BRAF(V600E) inhibitors. All the compounds were reported for the first time except 3e, and compound 1-(4-bromo-2-hydroxybenzyl)-3-phenyl-1-(5-phenyl-1H-pyrazol-3-yl)urea (5c) displayed the most potent inhibitory activity (BRAF(V600E) IC50 = 0.19 μM). Antiproliferative assay results indicated that compound 5c possessed high antiproliferative activity against cell lines WM266.4 and A375 in vitro, with IC50 values of 1.50 and 1.32 μM, respectively, which were comparable with the positive control vemurafenib. Docking simulations showed that compound 5c binds tightly to the BRAF(V600E) active site and acts as BRAF(V600E) inhibitor. A 3D-QSAR model was also built to provide more pharmacophore understanding towards designing new agents with more potent BRAF(V600E) inhibitory activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lecomte, Sylvain; Lelong, Marie; Bourgine, Gaëlle
Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as amore » model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases. - Highlights: • SERM activity of dietary compounds on proliferation and differentiation is studied. • All the dietary compounds tested transactivate estrogen receptors. • Apigenin and resveratrol could be good candidates for future therapeutics. • Daidzein and zearalenone are to be avoided to maintain human health.« less
Abu-Gharbieh, Eman; Shehab, Naglaa Gamil
2017-04-18
Hyperglycemia is a complicated condition accompanied with high incidence of infection and dyslipidemia. This study aimed to explore the phyto-constituents of Crataegus azarolus var. eu- azarolus Maire leaves, and to evaluate the therapeutic potentials particularly antimicrobial, antihyperglycemic and antihyperlipidemic of the extract and the isolated compound (3β-O-acetyl ursolic acid). Total phenolics and flavonoidal contents were measured by RP-HPLC analysis. Free radicals scavenging activity of different extraction solvents was tested in-vitro on DPPH free radicals. The antimicrobial activity of the ethanolic extract and its fractions as well as the isolated compounds were evaluated in-vitro on variable microorganisms. Animal models were used to evaluate the antihyperglycemic and antihyperlipidemic activities of the ethanolic extract along with the isolated compound (3β-O acetyl ursolic acid). RP- HPLC analysis of the phenolics revealed high content of rutin, salicylic and ellagic acids. Six compounds belonging to triterpenes and phenolics were isolated from chloroform and n-butanol fractions namely: ursolic acid, 3β-O-acetyl ursolic acid, ellagic acid, quercetin 3-O-β methyl ether, rutin and apigenin7-O-rutinoside. Ethanolic extract showed the highest DPPH radical scavenger activity compared to other solvents. Ethanolic extract, hexane fraction, ursolic acid, 3β-O acetyl ursolic acid and quercetin 3-O-methyl ether showed variable antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Administration of the ethanolic extract or 3β-O acetyl ursolic acid orally to the mice reduced blood glucose significantly in a time- and dose-dependent manner. Ethanolic extract significantly reduced LDL-C, VLDL-C, TC and TG and increased HDL-C in rats. Ethanolic extract and 3β-O acetyl ursolic acid reduced in-vitro activity of pancreatic lipase. This study reveals that Crataegus azarolus var. eu- azarolus Maire has the efficiency to control hyperglycemia with its associated complications. This study is the first to evaluate antihyperglycemic and antihyperlipidemic potentials of 3β-O acetyl ursolic acid.
Bonefeld-Jørgensen, Eva C.; Long, Manhai; Hofmeister, Marlene V.; Vinggaard, Anne Marie
2007-01-01
Background An array of environmental compounds is known to possess endocrine disruption (ED) potentials. Bisphenol A (BPA) and bisphenol A dimethacrylate (BPA-DM) are monomers used to a high extent in the plastic industry and as dental sealants. Alkylphenols such as 4-n-nonylphenol (nNP) and 4-n-octylphenol (nOP) are widely used as surfactants. Objectives We investigated the effect in vitro of these four compounds on four key cell mechanisms including transactivation of a) the human estrogen receptor (ER), b) the human androgen receptor (AR), c) the aryl hydrocarbon receptor (AhR), and d) aromatase activity. Results All four compounds inhibited aromatase activity and were agonists and antagonists of ER and AR, respectively. nNP increased AhR activity concentration-dependently and further increased the 2,3,7,8-tetrachlorodibenzo-p-dioxin AhR action. nOP caused dual responses with a weak increased and a decreased AhR activity at lower (10−8 M) and higher concentrations (10−5–10−4 M), respectively. AhR activity was inhibited with BPA (10−5–10−4 M) and weakly increased with BPA-DM (10−5 M), respectively. nNP showed the highest relative potency (REP) compared with the respective controls in the ER, AhR, and aromatase assays, whereas similar REP was observed for the four chemicals in the AR assay. Conclusion Our in vitro data clearly indicate that the four industrial compounds have ED potentials and that the effects can be mediated via several cellular pathways, including the two sex steroid hormone receptors (ER and AR), aromatase activity converting testosterone to estrogen, and AhR; AhR is involved in syntheses of steroids and metabolism of steroids and xenobiotic compounds. PMID:18174953
de Souza, Nicolli Bellotti; de Andrade, Isabel M; Carneiro, Paula F; Jardim, Guilherme AM; de Melo, Isadora MM; da Silva, Eufrânio N; Krettli, Antoniana Ursine
2014-01-01
Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study. PMID:25099332
Two-electron high potential and high capacity redox active molecules for energy storage applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinhua; Zhang, Lu; Burrell, Anthony K.
A non-aqueous redox flow battery includes a catholyte including a compound of formula (I), a compound of formula (II), or a compound of formula (III): ##STR00001## wherein two R groups have the formula X, wherein X is X, wherein X is a group of formula IV-A or IV-B; ##STR00002##
Kumar, Bhupinder; Sharma, Praveen; Gupta, Vivek Prakash; Khullar, Madhu; Singh, Sandeep; Dogra, Nilambra; Kumar, Vinod
2018-08-01
A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC 50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC 50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket. Copyright © 2018 Elsevier Inc. All rights reserved.
Jiang, Pingzhe; Dong, Zhen; Ma, Baicheng; Ni, Zaizhong; Duan, Huikun; Li, Xiaodan; Wang, Bin; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Li, Minggang
2016-11-01
Diabetes has been cited as the most challenging health problem in the twenty-first century. Accordingly, it is urgent to develop a new type of efficient and low-toxic antidiabetic medication. Since vanadium compounds have insulin-mimetic and potential hypoglycemic activities for type 1 and type 2 diabetes, a new trend has been developed using vanadium and organic ligands to form a new compound in order to increase the intestinal absorption and reduce the toxicity of vanadium compound. In the current investigation, a new organic vanadium compounds, vanadyl rosiglitazone, was synthesized and determined by infrared spectra. Vanadyl rosiglitazone and three other organic vanadium compounds were administered to the diabetic mice through oral administration for 5 weeks. The results of mouse model test indicated that vanadyl rosiglitazone could regulate the blood glucose level and relieve the symptoms of polydipsia, polyphagia, polyuria, and weight loss without side effects and was more effective than the other three organic vanadium compounds including vanadyl trehalose, vanadyl metformin, and vanadyl quercetin. The study indicated that vanadyl rosiglitazone presents insulin-mimetic activities, and it will be a good potential candidate for the development of a new type of oral drug for type 2 diabetes.
Tubulin polymerization-stimulating activity of Ganoderma triterpenoids.
Kohno, Toshitaka; Hai-Bang, Tran; Zhu, Qinchang; Amen, Yhiya; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Shimizu, Kuniyoshi
2017-04-01
Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.
2014-01-01
Malaria is currently a public health concern in many countries in the world due to various factors which are not yet under check. Drug discovery projects targeting malaria often resort to natural sources in the search for lead compounds. A survey of the literature has led to a summary of the major findings regarding plant-derived compounds from African flora, which have shown anti-malarial/antiplasmodial activities, tested by in vitro and in vivo assays. Considerations have been given to compounds with activities ranging from “very active” to “weakly active”, leading to >500 chemical structures, mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylenes, xanthones, quinones, steroids and lignans. However, only the compounds that showed anti-malarial activity, from “very active” to “moderately active”, are discussed in this review. PMID:24602358
Amaral, Gabriela V; Silva, Eric Keven; Cavalcanti, Rodrigo N; Martins, Carolina P C; Andrade, Luiz Guilherme Z S; Moraes, Jeremias; Alvarenga, Verônica O; Guimarães, Jonas T; Esmerino, Erick A; Freitas, Mônica Q; Silva, Márcia C; Raices, Renata S L; Sant' Ana, Anderson S; Meireles, M Angela A; Cruz, Adriano G
2018-01-15
The effect of supercritical carbon dioxide technology (SCCD, 14, 16, and 18MPa at 35±2°C for 10min) on whey-grape juice drink characteristics was investigated. Physicochemical characterization (pH, titratable acidity, total soluble solids), bioactive compounds (phenolic compounds, anthocyanin, DPPH and ACE activity) and the volatile compounds were performed. Absence of differences were found among treatments for pH, titratable acidity, soluble solids, total anthocyanin and DPPH activity (p-value>0.05). A direct relationship between SCCD pressure and ACE inhibitory activity was observed, with 34.63, 38.75, and 44.31% (14, 16, and 18MPa, respectively). Regards the volatile compounds, it was noted few differences except by the presence of ketones. The findings confirm the SCCD processing as a potential promising technology to the conventional thermal treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.
Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata
2018-01-01
A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.
Taha, Muhammad; Arbin, Mastura; Ahmat, Norizan; Imran, Syahrul; Rahim, Fazal
2018-04-01
Due to the great biological importance of β-glucuronidase inhibitors, here in this study, we have synthesized a library of novel benzothiazole derivatives (1-30), characterized by different spectroscopic methods and evaluated for β-glucuronidase inhibitory potential. Among the series sixteen compounds i.e.1-6, 8, 9, 11, 14, 15, 20-23 and 26 showed outstanding inhibitory potential with IC 50 value ranging in between 16.50 ± 0.26 and 59.45 ± 1.12 when compared with standard d-Saccharic acid 1,4-lactone (48.4 ± 1.25 µM). Except compound 8 and 23 all active analogs showed better potential than the standard. Structure activity relationship has been established. Copyright © 2018 Elsevier Inc. All rights reserved.
Nguyen, Phi-Hung; Yang, Jun-Li; Uddin, Mohammad N; Park, So-Lim; Lim, Seong-Il; Jung, Da-Woon; Williams, Darren R; Oh, Won-Keun
2013-11-22
As part of our ongoing search for new antidiabetic agents from medicinal plants, we found that a methanol extract of Morinda citrifolia showed potential stimulatory effects on glucose uptake in 3T3-L1 adipocyte cells. Bioassay-guided fractionation of this active extract yielded two new lignans (1 and 2) and three new neolignans (9, 10, and 14), as well as 10 known compounds (3-8, 11-13, and 15). The absolute configurations of compounds 9, 10, and 14 were determined by ECD spectra analysis. Compounds 3, 6, 7, and 15 showed inhibitory effects on PTP1B enzyme with IC50 values of 21.86 ± 0.48, 15.01 ± 0.20, 16.82 ± 0.42, and 4.12 ± 0.09 μM, respectively. Furthermore, compounds 3, 6, 7, and 15 showed strong stimulatory effects on 2-NBDG uptake in 3T3-L1 adipocyte cells. This study indicated the potential of compounds 3, 6, 7, and 15 as lead molecules for antidiabetic agents.
The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...
Syahidah, A; Saad, C R; Hassan, M D; Rukayadi, Y; Norazian, M H; Kamarudin, M S
2017-01-01
The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle . Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method. The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1. Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.
Natural chalcones as dual inhibitors of HDACs and NF-κB
ORLIKOVA, B.; SCHNEKENBURGER, M.; ZLOH, M.; GOLAIS, F.; DIEDERICH, M.; TASDEMIR, D.
2012-01-01
Histone deacetylase enzymes (HDACs) are emerging as a promising biological target for cancer and inflammation. Using a fluorescence assay, we tested the in vitro HDAC inhibitory activity of twenty-one natural chalcones, a widespread group of natural products with well-known anti-inflammatory and antitumor effects. Since HDACs regulate the expression of the transcription factor NF-κB, we also evaluated the inhibitory potential of the compounds on NF-κB activation. Only four chalcones, isoliquiritigenin (no. 10), butein (no. 12), homobutein (no. 15) and the glycoside marein (no. 21) showed HDAC inhibitory activity with IC50 values of 60–190 μM, whereas a number of compounds inhibited TNFα-induced NF-κB activation with IC50 values in the range of 8–41 μM. Interestingly, three chalcones (nos. 10, 12 and 15) inhibited both TNFα-induced NF-κB activity and total HDAC activity of classes I, II and IV. Molecular modeling and docking studies were performed to shed light into dual activity and to draw structure-activity relationships among chalcones (nos. 1–21). To the best of our knowledge this is the first study that provides evidence for HDACs as potential drug targets for natural chalcones. The dual inhibitory potential of the selected chalcones on NF-κB and HDACs was investigated for the first time. This study demonstrates that chalcones can serve as lead compounds in the development of dual inhibitors against both targets in the treatment of inflammation and cancer. PMID:22710558
Iqbal, Saleem; Anantha Krishnan, Dhanabalan; Gunasekaran, Krishnasamy
2017-12-13
Protein kinases are ubiquitously expressed as Serine/Threonine kinases, and play a crucial role in cellular activities. Protein kinases have evolved through stringent regulation mechanisms. Protein kinases are also involved in tauopathy, thus are important targets for developing Anti-Alzheimer's disease compounds. Structures with an indole scaffold turned out to be potent new leads. With the aim of developing new inhibitors for human protein kinase C, here we report the generation of four point 3D geometric featured pharmacophore model. In order to identify novel and potent PKCθ inhibitors, the pharmacophore model was screened against 80,000,00 compounds from various chemical databases such as., ZINC, SPEC, ASINEX, which resulted in 127 compound hits, and were taken for molecular docking filters (HTVS, XP docking). After in-depth analysis of binding patterns, induced fit docking (flexible) was employed for six compounds along with the cocrystallized inhibitor. Molecular docking study reveals that compound 6F found to be tight binder at the active site of PKCθ as compared to the cocrystal and has occupancy of 90 percentile. MM-GBSA also confirmed the potency of the compound 6F as better than cocrystal. Molecular dynamics results suggest that compound 6F showed good binding stability of active sites residues similar to cocrystal 7G compound. Present study corroborates the pharmacophore-based virtual screening, and finds the compound 6F as a potent Inhibitor of PKC, having therapeutic potential for Alzheimer's disease. Worldwide, 46.8 million people are believed to be living with Alzheimer's disease. When elderly population increases rapidly and neurodegenerative burden also increases in parallel, we project the findings from this study will be useful for drug developing efforts targeting Alzheimer's disease.
Synthesis and P-glycoprotein induction activity of colupulone analogs.
Bharate, Jaideep B; Batarseh, Yazan S; Wani, Abubakar; Sharma, Sadhana; Vishwakarma, Ram A; Kaddoumi, Amal; Kumar, Ajay; Bharate, Sandip B
2015-05-21
Brain amyloid-beta (Aβ) plaques are one of the primary hallmarks associated with Alzheimer's disease (AD) pathology. Efflux pump proteins located at the blood-brain barrier (BBB) have been reported to play an important role in the clearance of brain Aβ, among which the P-glycoprotein (P-gp) efflux transporter pump has been shown to play a crucial role. Thus, P-gp has been considered as a potential therapeutic target for treatment of AD. Colupulone, a prenylated phloroglucinol isolated from Humulus lupulus, is known to activate pregnane-X-receptor (PXR), which is a nuclear receptor controlling P-gp expression. In the present work, we aimed to synthesize and identify analogs of colupulone that are potent P-gp inducer(s) with an ability to enhance Aβ transport across the BBB. A series of colupulone analogs were synthesized by modifications at both prenyl as well as acyl domains. All compounds were screened for P-gp induction activity using a rhodamine 123 based efflux assay in the P-gp overexpressing human adenocarcinoma LS-180 cells, wherein all compounds showed significant P-gp induction activity at 5 μM. In the western blot studies in LS-180 cells, compounds 3k and 5f were able to induce P-gp as well as LRP1 at 1 μM. The effect of compounds on the Aβ uptake and transport was then evaluated. Among all tested compounds, diprenylated acyl phloroglucinol displayed a significant increase (29%) in Aβ transport across bEnd3 cells grown on inserts as a BBB model. The results presented here suggest the potential of this scaffold to enhance clearance of brain Aβ across the BBB and thus its promise for development as a potential anti-Alzheimer agent.
Organocatalytic atroposelective synthesis of axially chiral styrenes
NASA Astrophysics Data System (ADS)
Zheng, Sheng-Cai; Wu, San; Zhou, Qinghai; Chung, Lung Wa; Ye, Liu; Tan, Bin
2017-05-01
Axially chiral compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. It is well-known that styrenes are one of the most abundant and principal feedstocks and thus represent excellent prospective building blocks for chemical synthesis. Driven by the development of atroposelective synthesis of axially chiral styrene derivatives, we discovered herein the asymmetric organocatalytic approach via direct Michael addition reaction of substituted diones/ketone esters/malononitrile to alkynals. The axially chiral styrene compounds were produced with good chemical yields, enantioselectivities and almost complete E/Z-selectivities through a secondary amine-catalysed iminium activation strategy under mild conditions. Such structural motifs are important precursors for further transformations into biologically active compounds and synthetic useful intermediates and may have potential applications in asymmetric synthesis as olefin ligands or organocatalysts.
Synthesis of 2,4-dihydroxychalcone derivatives as potential antidepressant effect.
Guan, L-P; Zhao, D-H; Chang, Y; Wen, Z-S; Tang, L-M; Huang, F-F
2013-01-01
In this study, twelve 2,4-dihydroxychalcone derivatives were synthesized and evaluated for antidepressant activities using the forced swimming test (FST). The pharmacological test showed that 6 compounds significantly reduced the immobility times in the FST at a dose of 10 mg/kg, indicative of antidepressant activity. Among the derivatives, compounds designated 3d and 3 h exhibited the best antidepressant activity, with reduced immobility time by 32.05% and 34.33%, respectively. In the 5-hydroxytryptophan-induced head-twitch test and yohimbine-induced mortality test, compounds 3d and 3 h increased head-twitch and increased the mortality rate. The mechanisms of the antidepressant effects of compounds 3d and 3 h may be related with the 5-HTP and NE nervous system. © Georg Thieme Verlag KG Stuttgart · New York.
Anticancer effects of different seaweeds on human colon and breast cancers.
Moussavou, Ghislain; Kwak, Dong Hoon; Obiang-Obonou, Brice Wilfried; Maranguy, Cyr Abel Ogandaga; Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Dae Hoon; Pissibanganga, Ordelia Gwenaelle Manvoudou; Ko, Kisung; Seo, Jae In; Choo, Young Kug
2014-09-24
Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.
Rama Krishna, Boddu; Thummuri, Dinesh; Naidu, V G M; Ramakrishna, Sistla; Venkata Mallavadhani, Uppuluri
2018-08-01
A total of twenty-two novel coumarin triazole hybrids (4a-4k and 6a-6k) were synthesized from orcinol in good to excellent yields of 70-94%. The structures of all the synthesized compounds were elucidated by spectroscopic techniques such as 1 H NMR, 13 C NMR, and HRMS. The anti-inflammatory potential of synthesized compounds was investigated against the proinflammatory cytokine, TNF-α on U937 cell line and compounds 4d, 4j, and 6j were found to exhibit promising anti-inflammatory activity. These three compounds were further screened against TNF-α on LPS-stimulated RAW 264.7 cells, which confirm their anti-inflammatory potential. Furthermore, the above said active compounds were tested for their inhibitory effect on RANKL-induced osteoclastogenesis in RAW 264.7 cells by using tartrate resistant acid phosphatase (TRAP) staining assay at 10 µM. Molecular mechanism studies demonstrated that compound 4d exhibited dose dependent inhibition of RANKL-induced osteoclastogenesis by suppression of the NF-kB pathway. Thus, compound 4d is a promising candidate for further optimization to develop as a potent anti-osteoporotic agent. Copyright © 2018 Elsevier Inc. All rights reserved.
Activation of the proapoptotic Bcl-2 protein Bax by a small molecule induces tumor cell apoptosis.
Zhao, Guoping; Zhu, Yanglong; Eno, Colins O; Liu, Yanlong; Deleeuw, Lynn; Burlison, Joseph A; Chaires, Jonathan B; Trent, John O; Li, Chi
2014-04-01
The proapoptotic Bcl-2 protein Bax by itself is sufficient to initiate apoptosis in almost all apoptotic paradigms. Thus, compounds that can facilitate disruptive Bax insertion into mitochondrial membranes have potential as cancer therapeutics. In our study, we have identified small-molecule compounds predicted to associate with the Bax hydrophobic groove by a virtual-screen approach. Among these, one lead compound (compound 106) promotes Bax-dependent but not Bak-dependent apoptosis. Importantly, this compound alters Bax protein stability in vitro and promotes the insertion of Bax into mitochondria, leading to Bax-dependent permeabilization of the mitochondrial outer membrane. Furthermore, as a single agent, compound 106 inhibits the growth of transplanted tumors, probably by inducing apoptosis in tumors. Our study has revealed a compound that activates Bax and induces Bax-dependent apoptosis, which may lead to the development of new therapeutic agents for cancer.
Activation of the Proapoptotic Bcl-2 Protein Bax by a Small Molecule Induces Tumor Cell Apoptosis
Zhao, Guoping; Zhu, Yanglong; Eno, Colins O.; Liu, Yanlong; DeLeeuw, Lynn; Burlison, Joseph A.; Chaires, Jonathan B.; Trent, John O.
2014-01-01
The proapoptotic Bcl-2 protein Bax by itself is sufficient to initiate apoptosis in almost all apoptotic paradigms. Thus, compounds that can facilitate disruptive Bax insertion into mitochondrial membranes have potential as cancer therapeutics. In our study, we have identified small-molecule compounds predicted to associate with the Bax hydrophobic groove by a virtual-screen approach. Among these, one lead compound (compound 106) promotes Bax-dependent but not Bak-dependent apoptosis. Importantly, this compound alters Bax protein stability in vitro and promotes the insertion of Bax into mitochondria, leading to Bax-dependent permeabilization of the mitochondrial outer membrane. Furthermore, as a single agent, compound 106 inhibits the growth of transplanted tumors, probably by inducing apoptosis in tumors. Our study has revealed a compound that activates Bax and induces Bax-dependent apoptosis, which may lead to the development of new therapeutic agents for cancer. PMID:24421393
2017-01-01
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the infectious disease responsible for the highest number of deaths worldwide. Herein, 22 new N-oxide-containing compounds were synthesized followed by in vitro and in vivo evaluation of their antitubercular potential against Mtb. Compound 8 was found to be the most promising compound, with MIC90 values of 1.10 and 6.62 μM against active and nonreplicating Mtb, respectively. Additionally, we carried out in vivo experiments to confirm the safety and efficacy of compound 8; the compound was found to be orally bioavailable and highly effective, leading to a reduction of Mtb to undetectable levels in a mouse model of infection. Microarray-based initial studies on the mechanism of action suggest that compound 8 blocks translation. Altogether, these results indicate that benzofuroxan derivative 8 is a promising lead compound for the development of a novel chemical class of antitubercular drugs. PMID:28968083
NASA Astrophysics Data System (ADS)
Li, Jinxuan; Chen, Jing-Yi; Deng, Ya-Lin; Zhou, Qian; Wu, Yinuo; Wu, Deyan; Luo, Hai-Bin
2018-05-01
Phosphodiesterase 10 is a promising target for the treatment of a series of central nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant defense systems as a universal condition in neurodegenerative disorders is widely studied as a potential therapy for CNS diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). To discover multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant activities were designed and synthesized. Nine out of thirteen designed compounds showed good PDE10 inhibition at the concentration of 1.0 μM. Among these compounds, eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical absorbance capacity) value above 1.0. Molecular docking was performed for better understanding of the binding patterns of these compounds with PDE10. Compound 11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity may serve as a lead for the further modification.
Sugar cane stillage: a potential source of natural antioxidants.
Caderby, Emma; Baumberger, Stéphanie; Hoareau, William; Fargues, Claire; Decloux, Martine; Maillard, Marie-Noëlle
2013-11-27
Biorefinery of sugar cane is the first economic activity of Reunion Island. Some sugar cane manufactured products (juice, syrup, molasses) have antioxidant activities and are sources of both phenolic compounds and Maillard Reaction Products (MRP). The study aimed to highlight the global antioxidant activity of sugar cane stillage and understand its identity. Chromatographic fractionation on Sephadex LH-20 resin allowed the recovery of a MRP-rich fraction, responsible for 58 to 66% of the global antioxidant activity according to the nature of the sugar cane stillage (DPPH test), and a phenolic compounds-rich fraction for 37 to 59% of the activity. A good correlation was recorded between the antioxidant activity of the sugar cane stillage and its content in total reducing compounds amount (Folin-Ciocalteu assay), among them 2.8 to 3.9 g/L of phenolic compounds (in 5-caffeoylquinic acid equivalent). Preliminary experiments by HPLC-DAD-MS allowed to identify several free phenolic acids and gave clues to identify esters of quinic acids.
Polyphenols in strawberry (Fragaria × ananassa) leaves induced by plant activators.
Kårlund, Anna; Salminen, Juha-Pekka; Koskinen, Piia; Ahern, Jeffrey R; Karonen, Maarit; Tiilikkala, Kari; Karjalainen, Reijo O
2014-05-21
Strawberry leaves contain high amounts of diverse phenolic compounds potentially possessing defensive activities against microbial pathogens and beneficial properties for human health. In this work, young strawberry plants were treated with two plant activators, S-methylbenzo-1,2,3-thaidiazole-7-carbothiate (BTH) and birch wood distillate. Phenolic compounds from activator-treated and control leaves were subjected to quantitative analyses by HPLC-DAD, HPLC-ESI-MS, and microQTOF ESI-MS. Thirty-two different phenolic compounds were detected and characterized, and 21 different ellagitannins constituted the largest group of compounds in the strawberry leaves (37.88-45.82 mg/g dry weight, 47.0-54.3% of total phenolics). Treatment with BTH resulted in higher levels of individual ellagitannins, whereas treatment with birch wood distillate strongly increased the levels of chlorogenic acid in strawberry leaves compared with the control. The results suggest that different plant activators may be useful tools for the activation of different branches in the phenylpropanoid biosynthesis in strawberry.
Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts.
Valdez-Morales, Maribel; Espinosa-Alonso, Laura Gabriela; Espinoza-Torres, Libia Citlali; Delgado-Vargas, Francisco; Medina-Godoy, Sergio
2014-06-11
The phenolic content and antioxidant and antimutagenic activities from the peel and seeds of different tomato types (grape, cherry, bola and saladette type), and simulated tomato industrial byproducts, were studied. Methanolic extracts were used to quantify total phenolic content, groups of phenolic compounds, antioxidant activities, and the profile of phenolic compounds (by HPLC-DAD). Antimutagenic activity was determined by Salmonella typhimurium assay. The total phenolic content and antioxidant activity of tomato and tomato byproducts were comparable or superior to those previously reported for whole fruit and tomato pomace. Phenolic compounds with important biological activities, such as caffeic acid, ferulic acid, chlorogenic acids, quercetin-3-β-O-glycoside, and quercetin, were quantified. Differences in all phenolic determinations due to tomato type and part of the fruit analyzed were observed, peel from grape type showing the best results. Positive antimutagenic results were observed in all samples. All evaluated materials could be used as a source of potential nutraceutical compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medyantseva, E.P.; Budnikov, G.K.; Balakaeva, T.A.
The interest in the analytical chemistry of ruthenium and its compounds has recently been increasing. Ruthenium compounds can be used an antitumor agents and in the treatment of tuberculosis and fungal infections. It has been suggested that there is a specific relationship between the reduction potentials of the compounds and their biological activity. Of greatest interest among the biologically active compounds are the compounds with nitrogen-containing heterocycles. In order to obtain information on the degree of oxidation of the central atom in the complexes and to select the optimum conditions for the determination of the mono- and bi-nuclear complexes ofmore » ruthenium compounds with biologically active ligands such as imidazole (Im), histidine (His), benzimidazole (BIm) and its methyl derivative [1,2(CH{sub 3}){sub 2} - BIm], benzohyroxamic acid (Bha), and 1-phenyl-2-methylamino-1-propanol or ephedrine (Eph) in the present work, the authors studied their electrochemical behavior at dropping mercury (dme) and a platinum electrodes. 6 refs., 1 fig., 2 tabs.« less
Mayer, Alejandro M S; Rodríguez, Abimael D; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro
2017-08-29
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998-2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012-2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.
Salve, Preeti S; Alegaon, Shankar G; Sriram, Dharmarajan
2017-04-15
An efficient three-component, one-pot protocol is described for the synthesis of biologically interesting 2-(benzylideneamino)-N-(7-chloroquinolin-4-yl)benzohydrazide derivatives from isatoic anhydride, 7-chloro-4-hydrazinylquinoline and aromatic and/or hetero aromatic aldehydes under catalyst free condensation by using water as reaction media. All synthesized compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis (MTB) and cytotoxicity activity against normal VERO cell lines. The synthesized compounds exhibited minimum inhibitory concentration (MIC) ranging from 0.78 to 25μM. Among the tested compounds 4c, 4o, 4r, and 4u exhibited promising inhibitory activity (MIC=3.12μM). Compounds 4h and 4i stand out, showing MIC values of 0.78 and 1.56μM respectively. Both compounds were further screened for their Mycobacterium tuberculosis DNA gyrase inhibitory assay which suggested that these compounds have a great potential for further optimization and development as antitubercular agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sharma, Vijeta; Amarnath, Nagarjuna; Shukla, Swapnil; Ayana, R; Kumar, Naveen; Yadav, Nisha; Kannan, Deepika; Sehrawat, Seema; Pati, Soumya; Lochab, Bimlesh; Singh, Shailja
2018-05-15
Development of new class of anti-malarial drugs is an essential requirement for the elimination of malaria. Bioactive components present in medicinal plants and their chemically modified derivatives could be a way forward towards the discovery of effective anti-malarial drugs. Herein, we describe a new class of compounds, 1,3-benzoxazine derivatives of pharmacologically active phytophenols eugenol (compound 3) and isoeugenol (compound 4) synthesised on the principles of green chemistry, as anti-malarials. Compound 4, showed highest anti-malarial activity with no cytotoxicity towards mammalian cells. Compound 4 induced alterations in the intracellular Na + levels and mitochondrial depolarisation in intraerythrocytic Plasmodium falciparum leading to cell death. Knowing P-type cation ATPase PfATP4 is a regulator for sodium homeostasis, binding of compound 3, compound 4 and eugenol to PfATP4 was analysed by molecular docking studies. Compounds showed binding to the catalytic pocket of PfATP4, however compound 4 showed stronger binding due to the presence of propylene functionality, which corroborates its higher anti-malarial activity. Furthermore, anti-malarial half maximal effective concentration of compound 4 was reduced to 490 nM from 17.54 µM with nanomaterial graphene oxide. Altogether, this study presents anti-plasmodial potential of benzoxazine derivatives of phytophenols and establishes disruption of parasite sodium homeostasis as their mechanism of action. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gartika, Meirina; Pramesti, Hening T; Kurnia, Dikdik; Satari, Mieke H
2018-05-09
Dental caries remains a serious problem due to its detrimental effects on individual health and quality of life. The bulbs of Myrmecodia pendans (Merr & Perry), native plants of Papua, have been used as natural remedies for tumours, gout, diarrhoea, and fever. In this study, one of the active compounds of M. pendans was isolated, and its biological activity against the formation of Streptococcus mutans ATCC 25175 biofilm was tested. M. pendans was extracted with ethyl acetate using a Soxhlet apparatus. The extract was then separated, and chromatographic purification provided the isolated compound. The structure of the active compound was then characterized using UV, IR, NMR, and MS spectrometry. The obtained compound was added to S. mutans biofilms to determine the MBIC and MBEC values. The compound isolated from M. pendans was determined to be a labdane diterpene derivative with the formula C 31 H 50 O 3 . The MBIC value of the terpenoid towards the S. mutans biofilms was 50 ppm, and the MBEC value for the 1 min induction time was 40%. The terpenoid extracted from M. pendans has the potential to be developed into an antibacterial agent particularly for preventing the formation of biofilms.
Screening for Anti-Cancer Compounds in Marine Organisms in Oman
Dobretsov, Sergey; Tamimi, Yahya; Al-Kindi, Mohamed A.; Burney, Ikram
2016-01-01
Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF)-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies. PMID:27226907
Martinčič, Rok; Mravljak, Janez; Švajger, Urban; Perdih, Andrej; Anderluh, Marko; Novič, Marjana
2015-01-01
A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds. PMID:26474393
Exploration of the anti-enterovirus activity of a series of pleconaril/pirodavir-like compounds.
Bernard, Angela; Lacroix, Céline; Cabiddu, Maria G; Neyts, Johan; Leyssen, Pieter; Pompei, Raffaello
2015-04-01
The Enterovirus genus of the Picornaviridae is represented by several viral pathogens that are associated with human disease, namely Poliovirus 1, Enterovirus 71 and Rhinoviruses. Enterovirus 71 has been associated with encephalitis, while Rhinoviruses are a major cause of asthma exacerbations and chronic obstructive pulmonary disease. Based on the structure of both pleconaril and pirodavir, we previously synthesized some original compounds as potential inhibitors of Rhinovirus replication. These compounds were explored for in vitro antiviral potential on other human pathogenic Enteroviruses, namely Enterovirus 71 on rhabdo-myosarcoma cells, Coxsackievirus B3 on Vero cells, Poliovirus 1 and Echovirus 11 on BGM cells. Activity was confirmed for compound against Rhinovirus 14. Furthermore, few compounds showed a cell-protective effect on Enterovirus 71, presented a marked improvement as compared to the reference drug pleconaril for inhibitory activity on both Enterovirus 71 and Poliovirus 1. The most striking observation was the clear cell protective effect for the set of analogues in a virus-cell-based assay for Echovirus 11 with an effective concentration (EC50) as low as 0.3 µM (Selectivity index or SI = 483), and selectivity indexes greater than 857 (EC50 = 0.6 µM) and 1524 (EC50 = 0.33 µM). Some of the evaluated compounds showed potent and selective antiviral activity against several enterovirus species, such as Enterovirus 71 (EV-A), Echovirus 11 (EV-B), and Poliovirus 1 (EV-C). This could be used as a starting point for the development of other pleconaril/pirodavir-like enterovirus inhibitors with broad-spectrum activity and improved effects as compared to the reference drugs. © The Author(s) 2015.
Newberry, Kim; Wang, Shuya; Hoque, Nina; Kiss, Laszlo; Ahlijanian, Michael K.; Herrington, James
2016-01-01
In vitro phenotypic assays of sensory neuron activity are important tools for identifying potential analgesic compounds. These assays are typically characterized by hyperexcitable and/or abnormally, spontaneously active cells. Whereas manual electrophysiology experiments provide high-resolution biophysical data to characterize both in vitro models and potential therapeutic modalities (e.g., action potential characteristics, the role of specific ion channels, and receptors), these techniques are hampered by their low throughput. We have established a spontaneously active dorsal root ganglia (DRG) platform using multiwell multielectrode arrays (MEAs) that greatly increase the ability to evaluate the effects of multiple compounds and conditions on DRG excitability within the context of a cellular network. We show that spontaneous DRG firing can be attenuated with selective Na+ and Ca2+ channel blockers, as well as enhanced with K+ channel blockers. In addition, spontaneous activity can be augmented with both the transient receptor potential cation channel subfamily V member 1 agonist capsaicin and the peptide bradykinin and completely blocked with neurokinin receptor antagonists. Finally, we validated the use of this assay by demonstrating that commonly used neuropathic pain therapeutics suppress DRG spontaneous activity. Overall, we have optimized primary rat DRG cells on a multiwell MEA platform to generate and characterize spontaneously active cultures that have the potential to be used as an in vitro phenotypic assay to evaluate potential therapeutics in rodent models of pain. PMID:27052585
Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B; Titus, Louisa; Boden, Scott D
2009-12-01
The requirement of large amounts of the recombinant human bone morphogenetic protein-2 (BMP-2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP-2. In this study, we describe the development and optimization of a cell-based assay that is sensitive, reproducible, and reliable in identifying reagents that potentiate the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. The assay is based on a BMP-responsive Smad1-driven luciferase reporter gene. LIM mineralization protein-1 (LMP-1) is a novel intracellular LIM domain protein that has been shown by our group to enhance cellular responsiveness to BMP-2. Our previous report elucidated that the binding of LMP-1 with the WW2 domain in Smad ubiquitin regulatory factor-1 (Smurf1) rescues the osteogenic Smads from degradation. Here, using the optimized cell-based assay, we first evaluated the activity of the recombinantly prepared proteins, LMP-1, and its mutant (LMP-1DeltaSmurf1) that lacks the Smurf1-WW2 domain-binding motif. Both the wild type and the mutant proteins were engineered to contain an 11-amino acid HIV-TAT protein derived membrane transduction domain to aid the cellular delivery of recombinant proteins. The cell-based reporter assay confirmed that LMP-1 potentiates the BMP-induced stimulation of C2C12 cells towards the osteoblastic phenotype. The potentiating effect of LMP-1 was significantly reduced when a specific-motif known to interact with Smurf1 was mutated. We validated the results obtained in the reporter assay by also monitoring the expression of mRNA for osteocalcin and alkaline phosphatase (ALP) which is widely accepted osteoblast differentiation marker genes. Finally, we provide further confirmation of our results by measuring the activity of alkaline phosphatase in support of the accuracy and reliability of our cell-based assay. Direct delivery of synthesized protein can be limited by high cost, instability or inadequate post-translational modifications. Thus, there would be a clear benefit for a low cost, cell penetrable chemical compound. We successfully used our gene expression-based assay to choose an active compound from a select group of compounds that were identified by computational screenings as the most likely candidates for mimicking the function of LMP-1. Among them, we selected SVAK-3, a compound that showed a dose-dependent potentiation of BMP-2 activity in inducing osteoblastic differentiation of C2C12 cells. We show that either the full length LMP-1 protein or its potential mimetic compound consistently exhibit similar potentiation of BMP-2 activity even when multiple markers of the osteoblastic phenotype were parallely monitored.
Can, Nafiz Öncü; Can, Özgür Devrim; Osmaniye, Derya; Demir Özkay, Ümide
2018-03-21
Novel thiadiazole derivatives were synthesized through the reaction of acetylated 2-aminothiadiazole and piperazine derivatives. The chemical structures of the compounds were clarified by Infrared Spectroscopy (IR), ¹H Nuclear Magnetic Resonance Spectroscopy (¹H-NMR), 13 C Nuclear Magnetic Resonance Spectroscopy ( 13 C-NMR) and Electronspray Ionisation Mass Spectroscopy (ESI-MS) spectroscopic methods. Antidepressant-like activities were evaluated by the tail-suspension (TST) and modified forced swimming (MFST) methods. Besides, possible influence of the test compounds on motor activities of the animals were examined by activity cage tests. In the TST, administration of the compounds 2c , 2d , 2e , 2f , 2g and 2h significantly decreased the immobility time of mice regarding the control values. Further, in the MFST, the same compounds reduced the total number of immobility behaviors while increasing swimming performance. However, no change was observed in the total number of climbing behaviors. These data suggested that compounds 2c , 2d , 2e , 2f , 2g and 2h possess notable antidepressant-like activities. Reference drug fluoxetine (10 mg/kg) was also exhibited its antidepressant activity, as expected. No significant difference was seen between the locomotor activity values of the test groups signifying that observed antidepressant-like activities are specific. Theoretical calculation of absorption, distribution, metabolism, excretion (ADME) properties for the obtained compounds were performed and obtained data supported the antidepressant-like potential of these novel thiadiazole derivatives.
Lad, Nitin P; Manohar, Yogesh; Mascarenhas, Malcolm; Pandit, Yashwant B; Kulkarni, Mahesh R; Sharma, Rajiv; Salkar, Kavita; Suthar, Ashish; Pandit, Shivaji S
2017-03-01
A series of novel 4 and 5-substituted methylsulfonyl benzothiazole (MSBT) compounds having amide, alkoxy, sulfonamide, nitro and amine functionality were synthesized from sequential reactions on 5-ethoxy-2-(methylsulfonyl)benzo[d]thiazole such as nitration, reduction, sulfonation, dealkylation, etc. All synthesized compounds were screened against antimicrobial and selected screened for anticancer activity. Antimicrobial activities studies reveled that among all compounds screened, out of MSBT-07, MSBT-11, MSBT-12, MSBT-14, MSBT-19, and MSBT-27 were found to have promising antimicrobial activity at MIC range of 4-50μg/ml against selected bacterial as well as fungal species. Compounds having good antimicrobial activity were screened for cervical cancer (HeLA cell lines). Of these MSBT-07 and MSBT-12 significantly reduced the cell growth. Consequently their calculated GI 50 values were found to be 0.1 or <0.1μM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tachibana, Keisuke; Yuzuriha, Tomohiro; Tabata, Ryotaro; Fukuda, Syohei; Maegawa, Takashi; Takahashi, Rika; Tanimoto, Keiichi; Tsujino, Hirofumi; Nunomura, Kazuto; Lin, Bangzhong; Matsuura, Yoshiharu; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro Js; Kodama, Tatsuhiko; Kobayashi, Tadayuki; Ishimoto, Kenji; Miyachi, Hiroyuki; Doi, Takefumi
2018-05-15
Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator responsive elements (PPRE) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of > 12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo. Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata
2014-09-30
A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.
Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group.
González, Miguel A; Clark, Julie; Connelly, Michele; Rivas, Fatima
2014-11-15
The abietane-type diterpenoid (+)-ferruginol, a bioactive compound isolated from New Zealand's Miro tree (Podocarpus ferruginea), displays relevant pharmacological properties, including antimicrobial, cardioprotective, anti-oxidative, anti-plasmodial, leishmanicidal, anti-ulcerogenic, anti-inflammatory and anticancer. Herein, we demonstrate that ferruginol (1) and some phthalimide containing analogues 2-12 have potential antimalarial activity. The compounds were evaluated against malaria strains 3D7 and K1, and cytotoxicity was measured against a mammalian cell line panel. A promising lead, compound 3, showed potent activity with an EC50 = 86 nM (3D7 strain), 201 nM (K1 strain) and low cytotoxicity in mammalian cells (SI>290). Some structure-activity relationships have been identified for the antimalarial activity in these abietane analogues. Copyright © 2014 Elsevier Ltd. All rights reserved.
New Cytochalasin from Rosellinia sanctae-cruciana, an Endophytic Fungus of Albizia lebbeck.
Sharma, Nisha; Kushwaha, Manoj; Arora, Divya; Jain, Shreyans; Singamaneni, Venugopal; Sharma, Sonia; Shankar, Ravi; Bhushan, Shashi; Gupta, Prasoon; Jaglan, Sundeep
2018-03-24
To explore the potential of Rosellinia sanctae-cruciana an endophytic fungus associated with Albizia lebbeck for pharmaceutically important cytotoxic compounds. One novel cytochalasin, named Jammosporin A (1) and four known analogues (2-5) were isolated from the culture of the endophytic fungus Rosellinia sanctae-cruciana, harbored from the leaves of medicinal plant Albizia lebbeck. Their structures were elucidated by extensive spectroscopic analyses including 1D and 2D NMR data along with MS data and by comparison with literature reports. In preliminary screening the ethyl acetate extract of the fungal culture was tested for the cytotoxic activity against a panel of four cancer cell lines (MOLT-4, A549, MIA PaCa -2 and MDA-MB-231), was found to be active against MOLT-4 with IC 50 value of 10 μg/mL. Owing to the remarkable cytotoxic activity of the extract the isolated compounds (1-5) were evaluated for their cytototoxicity against MOLT-4 cell line by MTT assay. Interestingly, compounds 1-2, 4 and 5 showed considerable cytotoxic potential against the human leukemia cancer cell line (MOLT-4) with IC 50 values of 20.0, 10.0, 8.0 and 6.0 μM, respectively, while compound 3 showed IC 50 value of 25 μM. This is the first report of existence of this class of secondary metabolites in Rosellinia sanctae-cruciana fungus. This study discovered a novel compound, named Jammosporin A, isolated for the first time from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck with anticancer activity against MOLT-4 cell line. Rosellinia sanctae-cruciana represents an interesting source of a new compound with bioactive potential as a therapeutic agent against human leukemia cancer cell line (MOLT-4). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ali, Mumtaz; Muhammad, Sultan; Shah, Muhammad R.; Khan, Ajmal; Rashid, Umer; Farooq, Umar; Ullah, Farhat; Sadiq, Abdul; Ayaz, Muhammad; Ali, Majid; Ahmad, Manzoor; Latif, Abdul
2017-01-01
Crataegus oxyacantha is an important herbal supplement and famous for its antioxidant potential. The antioxidant in combination with anticholinesterase activity can be considered as an important target in the management of Alzheimer’s disease. The compounds isolated from C. oxyacantha were evaluated for cholinesterases inhibitory activity using Ellman’s assay with Galantamine as standard drug. Total of nine (1–9) compounds were isolated. Compounds 1 and 2 were isolated for the first time from natural source. Important natural products like β-Sitosterol-3-O-β-D-Glucopyranoside (3), lupeol (4), β-sitosterol (5), betulin (6), betulinic acid (7), oleanolic acid (8), and chrysin (9) have also been isolated from C. oxyacantha. Overall, all the compounds exhibited an overwhelming acetylcholinesterase (AChE) inhibition potential in the range 5.22–44.47 μM. The compound 3 was prominent AChE inhibitor with IC50 value of 5.22 μM. Likewise, all the compounds were also potent in butyrylcholinesterase (BChE) inhibitions with IC50s of up to 0.55–15.36 μM. All the compounds, except 3, were selective toward BChE. Mechanism of the inhibition of both the enzymes were further studied by docking procedures using Genetic Optimization for Ligand Docking suit v5.4.1. Furthermore, computational blood brain barrier prediction of the isolated compounds suggest that these are BBB+. PMID:28638340
NASA Astrophysics Data System (ADS)
Awaluddin, Rizki; Muhtadi, Wildan Khairi; Chabib, Lutfi; Ikawati, Zullies; Martien, Ronny; Ismail, Hilda
2017-03-01
Rheumatoid arthritis (RA) is an autoimmune disease with recurrent bone destruction around the joints that could lead to permanent joint damage. DMARDs (Disease Modifying Anti-Rheumatoid Drugs) and NSAIDs (Non-Steroid Anti-Inflammatory Drugs) are the RA therapies with many side effects on long term use. Based on the ethnomedicine, there are many plants that could be found in Indonesia that contain the potential compounds as alternative RA therapies. The aim of this study is to assess the potential of compounds of various medicinal plants against multiple proteins that play an important role on RA through the molecular docking study and pharmacokinetic prediction. Hesperidin, EGCG (Epigallocatechin gallate), and mangiferin showed higher activity compared to the other compounds against TACE (TNF-α converting enzyme) which play an important role in the inhibition of TNF-α. Inhibition on it could suppress macrophage cell and T-cell activity by suppressing the regulation of cytokine secretion against inflammation. Furthermore, hesperidin, EGCG, and mangiferin did not show effects on CYP450 (cytochrome P450). Modification of drug delivery system must be done to increase the bioavailability of the compounds. It can be concluded that hesperidin, EGCG, and mangiferin are potential to be developed as an RA therapy with a modification of drug delivery system. This study suggest the encapsulation method using liposome as the drug carrier, which is suitable with the charactheristic of hesperidine, EGCG, and mangiferin.
Aremu, Oluwole S; Gopaul, Kaalin; Kadam, Pramod; Singh, Moganavelli; Mocktar, Chunderika; Singh, Parvesh; Koorbanally, Neil A
2017-01-01
Pyrimidines have widespread activity and have shown potent antibacterial and anticancer activity. To synthesise a range of pyrimidine diones and test them for their antibacterial and anticancer activity. The pyranopyrimidin-2,4-dione derivatives (1-7) were synthesized in a one-pot reaction by reacting malononitrile and barbituric acid with several aromatic aldehydes in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) in aqueous medium. The compounds were tested for their antibacterial activity using the broth microdilution method and for their cytotoxicity against three cell lines, HeLa (cervical cancer), Caco-2 (human colon adenocarcinoma) and HEK 293 (human embryonic kidney cells) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. Compounds 1-7 were successfully synthesized in yields of >90%. The 3,4-dihydroxyaryl (3) and the 2,5- dimethoxyaryl (7) derivatives were novel. Compounds 3, 5 (4'-methoxy derivative) and 6 (2',3'-dimethoxy derivative) showed antibacterial activity comparable to or better than the standard ampicillin. All the test compounds 1-7 showed good anticancer activity. The IC50 values ranged from 3.46 to 37.13 μM (HeLa); 136.78 to 297.05 μM (Caco-2) and 137.84 to 333.81 μM (HEK293). The best activity was seen in the HeLa cell line when compared to the standard 5FU (5-Fluorouracil IC50 of 41.85 μM), with 1, 2, 5 and 7 having IC50 values of 10.64, 3.46, 4.36 and 4.44 μM respectively. Additionally, two representative compounds (1 and 7) found to be potent against the two cell lines (HeLa and HEK 293) were docked into the binding site of human kinesin Eg5 with the aim of predicting their binding propensities and to establish their mechanism of action. The Lipinski parameters of these compounds were also computed and analysed for their drug-likeness. Compound 6 is an excellent candidate for a broad spectrum antibiotic with MBCs of 45.6-365.2 μM, while both 3 and 6 have the potential to be developed into an antibiotic against MRSA, with MBCs of 183-199 μM. Since all synthesized compounds showed IC50 values of 10 μM or less especially against the HeLa cells, they can be considered good lead compounds for anticancer agents. Additionally, the docking simulations suggested a good binding affinity of the compounds with Eg5 and indicated their anti-cancer action, at least partially, through its inhibition. The predicted Lipinski descriptors also indicated the potential of these compounds as an orally active drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
High-Throughput Gene Expression Profiles to Define Drug Similarity and Predict Compound Activity.
De Wolf, Hans; Cougnaud, Laure; Van Hoorde, Kirsten; De Bondt, An; Wegner, Joerg K; Ceulemans, Hugo; Göhlmann, Hinrich
2018-04-01
By adding biological information, beyond the chemical properties and desired effect of a compound, uncharted compound areas and connections can be explored. In this study, we add transcriptional information for 31K compounds of Janssen's primary screening deck, using the HT L1000 platform and assess (a) the transcriptional connection score for generating compound similarities, (b) machine learning algorithms for generating target activity predictions, and (c) the scaffold hopping potential of the resulting hits. We demonstrate that the transcriptional connection score is best computed from the significant genes only and should be interpreted within its confidence interval for which we provide the stats. These guidelines help to reduce noise, increase reproducibility, and enable the separation of specific and promiscuous compounds. The added value of machine learning is demonstrated for the NR3C1 and HSP90 targets. Support Vector Machine models yielded balanced accuracy values ≥80% when the expression values from DDIT4 & SERPINE1 and TMEM97 & SPR were used to predict the NR3C1 and HSP90 activity, respectively. Combining both models resulted in 22 new and confirmed HSP90-independent NR3C1 inhibitors, providing two scaffolds (i.e., pyrimidine and pyrazolo-pyrimidine), which could potentially be of interest in the treatment of depression (i.e., inhibiting the glucocorticoid receptor (i.e., NR3C1), while leaving its chaperone, HSP90, unaffected). As such, the initial hit rate increased by a factor 300, as less, but more specific chemistry could be screened, based on the upfront computed activity predictions.
Su, Tao; Zhang, Tianhua; Xie, Shishun; Yan, Jun; Wu, Yinuo; Li, Xingshu; Huang, Ling; Luo, Hai-Bin
2016-02-25
Recently, phosphodiesterase-9 (PDE9) inhibitors and biometal-chelators have received much attention as potential therapeutics for the treatment of Alzheimer's disease (AD). Here, we designed, synthesized, and evaluated a novel series of PDE9 inhibitors with the ability to chelate metal ions. The bioassay results showed that most of these molecules strongly inhibited PDE9 activity. Compound 16 showed an IC50 of 34 nM against PDE9 and more than 55-fold selectivity against other PDEs. In addition, this compound displayed remarkable metal-chelating capacity and a considerable ability to halt copper redox cycling. Notably, in comparison to the reference compound clioquinol, it inhibited metal-induced Aβ(1-42) aggregation more effectively and promoted greater disassembly of the highly structured Aβ fibrils generated through Cu(2+)-induced Aβ aggregation. These activities of 16, together with its favorable blood-brain barrier permeability, suggest that 16 may be a promising compound for treatment of AD.
Borges, Cristine Vanz; Amorim, Vanusia Batista de Oliveira; Ramlov, Fernanda; Ledo, Carlos Alberto da Silva; Donato, Marcela; Maraschin, Marcelo; Amorim, Edson Perito
2014-02-15
The banana is an important, widely consumed fruit, especially in areas of rampant undernutrition. Twenty-nine samples were analysed, including 9 diploids, 13 triploids and 7 tetraploids, in the Active Germplasm Bank, at Embrapa Cassava & Fruits, to evaluate the bioactive compounds. The results of this study reveal the presence of a diversity of bioactive compounds, e.g., catechins; they are phenolic compounds with high antioxidant potential and antitumour activity. In addition, accessions with appreciable amounts of pVACs were identified, especially compared with the main cultivars that are currently marketed. The ATR-FTIR, combined with principal components analysis, identified accessions with distinct metabolic profiles in the fingerprint regions of compounds important for human health. Likewise, starch fraction characterisation allowed discrimination of accessions according to their physical, chemical, and functional properties. The results of this study demonstrate that the banana has functional characteristics endowing it with the potential to promote human health. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ribay, Kathryn; Kim, Marlene T; Wang, Wenyi; Pinolini, Daniel; Zhu, Hao
2016-03-01
Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR models, particularly for the activity cliffs that induce prediction errors. The results of this study indicate that the response profile of chemicals from public data provides useful information for modeling and evaluation purposes. The public big data resources should be considered along with chemical structure information when predicting new compounds, such as unknown ERα binding agents.
Balaña-Fouce, R; Pulido, T G; Escudero, D O; Sanz-Sanchez, F
1986-01-01
Two phenylated compounds of methylglyoxal bis(guanylhydrazone), potentially inhibitors of diamine oxidase activity, have been synthesized: phenylglyoxal bis(guanylhydrazone) and diphenylglyoxal bis(guanylhydrazone). Their inhibitory capacity was tested: while PGBG was able to reduce the enzyme activity by 50% at 1.3 microM, DPGBG was only able to reduce diamine oxidase activity by less than 2% at a concentration 1000-fold higher. The inhibition of PGBG was non-competitive and the Ki calculated by a Dixon plot was estimated as 1.7 microM.
Removal of organic compounds from shale gas flowback water.
Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P; Rijnaarts, Huub H M
2018-07-01
Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200-350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characterization of ToxCast Phase II compounds disruption of ...
The development of multi-well microelectrode array (mwMEA) systems has increased in vitro screening throughput making them an effective method to screen and prioritize large sets of compounds for potential neurotoxicity. In the present experiments, a multiplexed approach was used to determine compound effects on both neural function and cell health in primary cortical networks grown on mwMEA plates following exposure to ~1100 compounds from EPA’s Phase II ToxCast libraries. On DIV 13, baseline activity (40 min) was recorded prior to exposure to each compound at 40 µM. DMSO and the GABAA antagonist bicuculline (BIC) were included as controls on each mwMEA plate. Changes in spontaneous network activity (mean firing rate; MFR) and cell viability (lactate dehydrogenase; LDH and CellTiter Blue; CTB) were assessed within the same well following compound exposure. Activity calls (“hits”) were established using the 90th and 20th percentiles of the compound-induced change in MFR (medians of triplicates) across all tested compounds; compounds above (top 10% of compounds increasing MFR), and below (bottom 20% of compounds decreasing MFR) these thresholds, respectively were considered hits. MFR was altered beyond one of these thresholds by 322 compounds. Four compound categories accounted for 66% of the hits, including: insecticides (e.g. abamectin, lindane, prallethrin), pharmaceuticals (e.g. haloperidol, reserpine), fungicides (e.g. hexaconazole, fenamidone), and h
Rane, Rajesh A; Karpoormath, Rajshekhar; Naphade, Shital S; Bangalore, Pavankumar; Shaikh, Mahamadhanif; Hampannavar, Girish
2015-08-01
In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimumbiofilm inhibitory concentration(MBIC) of 0.39, 0.78 and 3.125 μg/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC = 3.125 μg/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched. Copyright © 2015 Elsevier Inc. All rights reserved.
Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannes, C.; Majcherczyk, A.
2000-02-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less
Connors, S. P.; Gill, E. W.; Terrar, D. A.
1992-01-01
1. The actions and mechanisms of action of novel analogues of sotalol which prolong cardiac action potentials were investigated in guinea-pig and rabbit isolated ventricular cells. 2. In guinea-pig and rabbit cells the compounds significantly prolonged action potential duration at 20% and 90% repolarization levels without affecting resting membrane potential. In guinea-pig but not rabbit cells there was an increase in action potential amplitude and in rabbit cells there was no change in the shape or position of the 'notch' in the action potential. 3. Possible mechanisms of action were studied in more detail in the case of compound II (1-(4-methanesulphonamidophenoxy)-3-(N-methyl 3,4 dichlorophenylethylamino)-2-propanol). Prolongation of action potential duration continued to occur in the presence of nisoldipine, and calcium currents recorded under voltage-clamp conditions were not reduced by compound II (1 microM). Action potential prolongation by compound II was also unaffected in the presence of 10 microM tetrodotoxin. 4. Compound II (1 microM) did not influence IK1 assessed from the current during ramp changes in membrane potential (20 mV s-1) over the range -90 to -10 mV. 5. Compound II (1 microM) blocked time-dependent delayed rectifier potassium current (IK) activated by step depolarizations and recorded as an outward tail following repolarization. When a submaximal concentration (50 nM) was applied there was no change in the apparent reversal potential of IK.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1393293
Putri, Sastia Prama; Ishido, Kei-Ichi; Kinoshita, Hiroshi; Kitani, Shigeru; Ihara, Fumio; Sakihama, Yasuko; Igarashi, Yasuhiro; Nihira, Takuya
2014-05-01
A total of 412 strains belonging to 14 genera of clavicipitoid entomopathogenic fungi (EPF) were screened for activities against two economically important plant pathogenic oomycetes, Phytophthora sojae and Aphanomyces cochlioides. To identify the antioomycete compounds produced by EPF, the extracts of 13 highly active EPF strains were characterized in detail by high performance liquid chromatography with diode array detection and high-resolution mass spectrometric detection and antioomycete assay. The antioomycete activity of several Metarhizium extracts was associated with previously isolated aurovertins, fungerin, N-(methyl-3-oxodec-6-enoyl)-2-pyrroline, and N-(methyl-3-oxodecanoyl)-2-pyrroline. The depsipeptide beauvericin was confirmed to be one of the active principles of three strains of Isaria tenuipes, which strongly inhibited mycelial growth of both P. sojae and A. cochlioides. Two known bioactive metabolites, paecilosetin and aranorosinol A, together with a novel and potent antioomycete compound, farinomalein, were isolated from the extracts of Isaria farinosa and all compounds were confirmed to have antioomycete activity. Identification of 8 antioomycete compounds from 13 clavicipitioid EPF demonstrated a new potential use of EPF as a source of compounds for the control of soil-borne plant pathogenic oomycetes. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea.
Athukorala, Yasantha; Lee, Ki-Wan; Kim, Se-Kwon; Jeon, You-Jin
2007-07-01
Twenty-two algal species were evaluated for their potential anticoagulant activities. Hot water extracts from selected species, Codium fragile and Sargassum horneri showed high activated partial thromboplastin time (APTT). Ultraflo extract of C. fragile and S. horneri exhibited the most potent anticoagulant activity. Furthermore, in both algal species, active compounds were mainly concentrated in >30kDa faction. The crude polysaccharide fraction (>30kDa; CpoF) of C. fragile composed of approximately 80% carbohydrate and approximately 19% of protein; the crude polysaccharide fraction (>30kDa; CpoF) of S. horneri was composed of 97% of carbohydrate and approximately 2% of protein. Therefore, most probably the active compound, or compounds of the algal species were related to high molecular weight polysaccharide, or a complex form with carbohydrate and protein (proteoglycan).
Zhang, Hong; Jin, Hong; Ji, Lan-zhu; Tao, Ke; Liu, Wei; Zhao, Hao-yu; Hou, Tai-ping
2011-07-01
Three natural products, 1,5-diphenylpentan-1-one, 1,5-diphenylpent-2-en-1-one, and 3-hydroxy-1,5-diphenylpentan-1-one, with good insecticidal activities were extracted from Stellera chamaejasme L. Based on their shared diaryl ketone moiety as 'pharmacophores', a series of diaryl ketones were synthesized and tested for insecticidal activity, acetylcholinesterase inhibitory activity, and antifungal activity. All synthesized compounds showed poor insecticidal and acetylcholinesterase inhibitory activities. Compound III with a furyl ring showed strong activities against plant pathogenic fungi. The IC(50) of compound (E)-1-(2,4-dichlorophenyl)-3-(furan-2-yl)- -prop-2-en-1-one (III(2) ) was 1.20 mg/L against Rhizoctonia solani, suggesting its strong potential as a novel antifungal drug. © 2011 John Wiley & Sons A/S.
The antioxidant effect of derivatives pyroglutamic lactam
NASA Astrophysics Data System (ADS)
Rohadi, Atisya; Lazim, Azwani Mat; Hasbullah, Siti Aishah
2013-11-01
Diphenylpicrylhydrazyl (DPPH) is widely used for quickly accessing the ability of polyphenols to transfer labile H atoms to radicals. The antioxidant activity of all the synthesized compounds was screened by DPPH method. Compound (4) showed 54% antioxidant potential while all other compounds were found to have moderate to have moderate to mild antioxidant activity ranging from 47-52%. Pyroglutamic lactams have been synthesized stereoselectively in racemic form from levulinic acid as bifunctional adduct using convertible isocyanide in one-pot Ugi 4-center-3-component condensation reaction (U-4C-3CR). The product formed provides biologically interesting products in excellent yields in a short reaction time. The structures of the synthesized compounds were elucidated using spectroscopic data and elemental analysis.
Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Miriam N.; Nolan, Gail T.; Hood, Steven R.
2005-12-01
The pregnane X receptor (PXR) mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The receptor is expressed in liver and intestinal tissues and is activated by a wide range of compounds. The ability of a diverse range of dietary compounds to activate PXR-mediated transcription was assayed in HuH7 cells following transient transfection with human PXR (hPXR). The compounds investigated included phytochemicals such as lignans and phytoestrogens, organochlorine dietary contaminants such as polychlorinated biphenyls (PCBs) and triclosan and selected steroid, drug and herbal compounds. The hPXR activation at the top concentrations tested (10 {mu}M) relative to themore » positive control 10 {mu}M rifampicin ranged from 1.3% (trans-resveratrol) to 152% (ICI 182780). Hydroxylated compounds were marginally more potent than the parent compounds (tamoxifen activation was 74.6% whereas 4 hydroxytamoxifen activation was 84.2%) or significantly greater (vitamin D{sub 3} activation was 1.6%, while hydroxylated vitamin D{sub 3} activation was 55.6%). Enterolactone, the metabolite of common dietary lignans, was a medium activator of PXR (35.6%), compared to the lower activation of a parent lignan, secoisolariciresinol (20%). Two non-hydroxylated PCB congeners (PCB 118 and 153), which present a larger fraction of the PCB contamination of fatty foods, activated hPXR by 26.6% and 17%, respectively. The pesticide trans-nonachlor activation was 53.8%, while the widely used bacteriocide triclosan was a medium activator of hPXR at 46.2%. The responsiveness of PXR to activation by lignan metabolites suggests that dietary intake of these compounds may affect the metabolism of drugs that are CYP3A substrates. Additionally, the evidence that organochlorine chemicals, particularly the ubiquitous triclosan, activate hPXR suggests that these environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals.« less
Culhaoglu, Burcu; Capan, Asli; Boga, Mehmet; Ozturk, Mehmet; Ozturk, Turan; Topcu, Gulacti
2017-01-01
Flavones, are a class of naturally occuring polyphenolic compounds which have 2-phenylchromen-4-one structure. Various studies showed that flavones have several pharmacological activities such as antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antitumour and antiallergic. In the present study, 3-hydroxyflavones also called flavonols, posessing 4'-dialkylamino moiety were synthesized, and their antioxidant and anticholinesterase activities were investigated by comparison with unmodified 3-hydroxflavone. For investigation of antioxidant potential, radical scavenging assays (DPPH•, ABTS+_, O2.-) were used along with CUPRAC and lipid peroxidation inhibitory assays, as well as anticholinesterase activity by Ellman method. The best results were obtained for 4'-N,N-dimethyl flavonol (1) in both antioxidant and anticholinesterase activity tests, possibly due to its least steric hinderance effect. It exhibited remarkable DPPH free radical scavenging activity (2.43±0,09 μg/mL) competing with a standard compound quercetin (2.10±0,10 μg/mL). Moreover, the other tested flavonols also showed high antioxidant activities. Compounds 5 and 6 exhibited close IC50 values to those of compound 1. Antioxidant activity test results were found to be well correlated with anticholinesterase activity test results indicating possible role of antioxidant compounds in the treatment of Alzheimer's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Souza, Terezinha M; Cunha, Arcelina P; Farias, Davi F; Machado, Lyeghyna K; Morais, Selene M; Ricardo, Nágila Mps; Carvalho, Ana Fu
2012-10-01
Myracrodruon urundeuva Fr. Allemao is a common tree in the Caatinga that has been widely used for various medical purposes. Previous studies showed that the ethanol seed extract of M. urundeuva has potent activity against the larval stage of the dengue vector Aedes aegypti. Given this potential insecticidal activity, bioguided separation steps were performed in order to isolate the active compound(s). The isolation process resulted in only one active chemical compound, identified by infrared spectroscopy and mass spectrometry as m-pentadecadienyl-phenol. This compound presented potent larvicidal and pupicidal activity (LC50 10.16 and 99.06 µg mL(-1) respectively) and great egg hatching inhibitory activity (IC50 49.79 µg mL(-1)). The mode of action was investigated through observations of behavioural and morphological changes performed in third-instar larvae treated with m-pentadecadienyl-phenol solution after 1, 6, 12, 16 and 20 h of exposure. Some changes were observed as flooding of the tracheal system, alterations in siphonal valves and anal gills and lethargy, probably caused by the strong anticholinesterasic activity reported previously. The compound isolated from M. urundeuva seeds, m-pentadecadienyl-phenol, showed potent activity against immature stages of dengue vector, Ae. aegypti, being considered the main larvicidal principle. Copyright © 2012 Society of Chemical Industry.
Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview
Teixeira, José; Gaspar, Alexandra; Garrido, E. Manuela; Garrido, Jorge; Borges, Fernanda
2013-01-01
Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure. The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants. The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far. PMID:23956973
Pereda-Miranda, Rogelio; Kaatz, Glenn W; Gibbons, Simon
2006-03-01
Twenty-two convolvulaceous oligosaccharides selected from the tricolorin (1-7), scammonin (8, 9), and orizabin (10-22) series were evaluated for activity against a panel of Staphylococcus aureus strains possessing or lacking specific efflux pumps. The minimum inhibitory concentrations (MIC values) for most of the amphipatic compounds ranged from 4 to 32 microg/mL against XU-212 (possessing the TetK multidrug efflux pump) and SA-1199B (overexpressing the NorA multidrug efflux pump), compared with 64 and 0.25 microg/mL, respectively, for tetracycline. This activity was shown to be bactericidal. Two microbiologically inactive members of the orizabin series (10, 20) increased norfloxacin susceptibility of strain SA-1199B. At low concentrations, compound 10 was a more potent inhibitor of multidrug pump-mediated EtBr efflux than reserpine. The wide range of antimicrobial activity displayed by these compounds is an example of synergy between related components occurring in the same medicinal crude drug extract, i.e., microbiologically inactive components disabling a resistance mechanism, potentiating the antibiotic properties of the active substances. These results provide an insight into the antimicrobial potential of these complex macrocyclic lactones and open the possibility of using these compounds as starting points for the development of potent inhibitors of S. aureus multidrug efflux pumps.
Alam, M I; Gomes, A
1998-10-01
The adjuvant effect and antiserum potentiation of a compound 2-hydroxy-4-methoxy benzoic acid were explored in the present investigation. This compound, isolated and purified from the Indian medicinal plant Hemidesmus indicus R. Br, possessed antisnake venom activity. Rabbits immunized with Vipera russellii venom in the presence and absence of the compound along with Freund's complete adjuvant, produced a precipitating band in immunogel diffusion and immunogel electrophoresis. The venom neutralizing capacity of this antiserum showed positive adjuvant effects as evident by the higher neutralization capacity (lethal and hemorrhage) when compared with the antiserum raised with venom alone. The pure compound potentiated the lethal action neutralization of venom by commercial equine polyvalent snake venom antiserum in experimental models. These observations raised the possibility of the use of chemical antagonists (from herbs) against snake bite, which may provide a better protection in presence of antiserum, especially in the rural parts of India.
Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis
Costa, Margarida; Costa-Rodrigues, João; Fernandes, Maria Helena; Barros, Piedade; Vasconcelos, Vitor; Martins, Rosário
2012-01-01
Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed. PMID:23170077
Lordan, Sinéad; Ross, R Paul; Stanton, Catherine
2011-01-01
The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases.
Lordan, Sinéad; Ross, R. Paul; Stanton, Catherine
2011-01-01
The marine environment represents a relatively untapped source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine-based compounds have been identified as having diverse biological activities, with some reported to interfere with the pathogenesis of diseases. Bioactive peptides isolated from fish protein hydrolysates as well as algal fucans, galactans and alginates have been shown to possess anticoagulant, anticancer and hypocholesterolemic activities. Additionally, fish oils and marine bacteria are excellent sources of omega-3 fatty acids, while crustaceans and seaweeds contain powerful antioxidants such as carotenoids and phenolic compounds. On the basis of their bioactive properties, this review focuses on the potential use of marine-derived compounds as functional food ingredients for health maintenance and the prevention of chronic diseases. PMID:21747748
Nieto-Meneses, Rocío; Castillo, Rafael; Hernández-Campos, Alicia; Maldonado-Rangel, Armando; Matius-Ruiz, Jeferson B; Trejo-Soto, Pedro Josué; Nogueda-Torres, Benjamín; Dea-Ayuela, Ma Auxiliadora; Bolás-Fernández, Francisco; Méndez-Cuesta, Carlos; Yépez-Mulia, Lilián
2018-01-01
The identification of specific therapeutic targets and the development of new drugs against leishmaniasis are urgently needed, since chemotherapy currently available for its treatment has several problems including many adverse side effects. In an effort to develop new antileishmanial drugs, in the present study a series of 28 N-benzyl-1H-benzimidazol-2-amine derivatives was synthesized and evaluated in vitro against Leishmania mexicana promastigotes. Compounds 7 and 8 with the highest antileishmanial activity (micromolar) and lower cytotoxicity than miltefosine and amphotericin B were selected to evaluate their activity against L. braziliensis 9and L. donovani, species causative of mucocutaneous and visceral leishmaniasis, respectively. Compound 7 showed significantly higher activity against L. braziliensis promastigotes than compound 8 and slightly lower than miltefosine. Compounds 7 and 8 had IC 50 values in the micromolar range against the amastigote of L. mexicana and L. braziliensis. However, both compounds did not show better activity against L. donovani than miltefosine. Compound 8 showed the highest SI against both parasite stages of L. mexicana. In addition, compound 8 inhibited 68.27% the activity of recombinant L. mexicana arginase (LmARG), a therapeutic target for the treatment of leishmaniasis. Docking studies were also performed in order to establish the possible mechanism of action by which this compound exerts its inhibitory effect. Compound 8 shows promising potential for the development of more potent antileishmanial benzimidazole derivatives. Copyright © 2017 Elsevier Inc. All rights reserved.
Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones.
Sarkar, Souvik; Siddiqui, Asim A; Saha, Shubhra J; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S; Nag, Shiladitya; Adhikari, Susanta; Bandyopadhyay, Uday
2016-07-01
We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [(3)H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico
2016-06-01
Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Implication of novel thiazolo-thiophene derivative (MCD-KV-10) for management of asthma.
Patil, Dhiraj; Dash, Ranjeet Prasad; Thakur, Sandeep Kumar; Pandya, Amit N; Venkatesh, P; Vasu, Kamala K; Nivsarkar, Manish
2015-04-01
Asthma is multifaceted disease where many targets contribute towards its development and progression. Among these, adenosine receptor subtypes play a major role. MCD-KV-10, a novel thiazolo-thiophene was designed and evaluated pre-clinically for its implication in management of asthma. This compound showed good affinity and selectivity towards A(2A)/A3 adenosine receptor (AR) subtypes. Furthermore, MCD-KV-10 was evaluated for in vitro lipoxygenase inhibition activity; in vivo mast cell stabilization potential and in vivo anti-asthmatic activity was done in ovalbumin-induced airway inflammation model in guinea pigs. The compound showed good (>57%) inhibition of lipoxygenase enzyme and also effectively protected mast cell degranulation (>63%). The compound showed good anti-asthmatic activity as inferred from the in vivo studies. These results indicate that MCD-KV-10 has an inhibitory effect on airway inflammation. Though, we have identified a potential candidate for management of asthma, further mechanistic studies are needed.
Velena, Astrida; Zarkovic, Neven; Gall Troselj, Koraljka; Bisenieks, Egils; Krauze, Aivars; Poikans, Janis; Duburs, Gunars
2016-01-01
Many 1,4-dihydropyridines (DHPs) possess redox properties. In this review DHPs are surveyed as protectors against oxidative stress (OS) and related disorders, considering the DHPs as specific group of potential antioxidants with bioprotective capacities. They have several peculiarities related to antioxidant activity (AOA). Several commercially available calcium antagonist, 1,4-DHP drugs, their metabolites, and calcium agonists were shown to express AOA. Synthesis, hydrogen donor properties, AOA, and methods and approaches used to reveal biological activities of various groups of 1,4-DHPs are presented. Examples of DHPs antioxidant activities and protective effects of DHPs against OS induced damage in low density lipoproteins (LDL), mitochondria, microsomes, isolated cells, and cell cultures are highlighted. Comparison of the AOA of different DHPs and other antioxidants is also given. According to the data presented, the DHPs might be considered as bellwether among synthetic compounds targeting OS and potential pharmacological model compounds targeting oxidative stress important for medicinal chemistry. PMID:26881016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan
Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitorsmore » with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.« less
Murine and human CFTR exhibit different sensitivities to CFTR potentiators
Cui, Guiying
2015-01-01
Development of therapeutic molecules with clinical efficacy as modulators of defective CFTR includes efforts to identify potentiators that can overcome or repair the gating defect in mutant CFTR channels. This has taken a great leap forward with the identification of the potentiator VX-770, now available to patients as “Kalydeco.” Other small molecules with different chemical structure also are capable of potentiating the activity of either wild-type or mutant CFTR, suggesting that there are features of the protein that may be targeted to achieve stimulation of channel activity by structurally diverse compounds. However, neither the mechanisms by which these compounds potentiate mutant CFTR nor the site(s) where these compounds bind have been identified. This knowledge gap partly reflects the lack of appropriate experimental models to provide clues toward the identification of binding sites. Here, we have compared the channel behavior and response to novel and known potentiators of human CFTR (hCFTR) and murine (mCFTR) expressed in Xenopus oocytes. Both hCFTR and mCFTR were blocked by GlyH-101 from the extracellular side, but mCFTR activity was increased with GlyH-101 applied directly to the cytoplasmic side. Similarly, glibenclamide only exhibited a blocking effect on hCFTR but both blocked and potentiated mCFTR in excised membrane patches and in intact oocytes. The clinically used CFTR potentiator VX-770 transiently increased hCFTR by ∼13% but potentiated mCFTR significantly more strongly. Our results suggest that mCFTR pharmacological sensitivities differ from hCFTR, which will provide a useful tool for identifying the binding sites and mechanism for these potentiators. PMID:26209275
Assessment of Inhibition of Ebola Virus Progeny Production by Antiviral Compounds.
Falzarano, Darryl
2017-01-01
Assessment of small molecule compounds against filoviruses, such as Ebola virus, has identified numerous compounds that appear to have antiviral activity and should presumably be further investigated in animal efficacy trials. However, despite the many compounds that are purported to have good antiviral activity in in vitro studies, there are few instances where any efficacy has been reported in nonhuman primate models. Many of the high-throughput screening assays use reporter systems that only recapitulate a portion of the virus life cycle, while other assays only assess antiviral activity at relatively early time points. Moreover, many assays do not assess virus progeny production. A more in-depth evaluation of small numbers of test compounds is useful to economize resources and to generate higher quality antiviral hits. Assessing virus progeny production as late as 5 days post-infection allows for the elimination of compounds that have initial antiviral effects that are not sustained or where the virus rapidly develops resistance. While this eliminates many potential lead compounds that may be worthy of further structure-activity relationship (SAR) development, it also quickly excludes compounds that in their current form are unlikely to be effective in animal models. In addition, the inclusion of multiple assays that assess both cell viability and cell cytotoxicity, via different mechanisms, provides a more thorough assessment to exclude compounds that are not direct-acting antivirals.
A bioactive sesquiterpene from Bixa orellana.
Raga, Dennis D; Espiritu, Rafael A; Shen, Chien-Chang; Ragasa, Consolacion Y
2011-01-01
A dichloromethane extract of the air-dried leaves of Bixa orellana afforded ishwarane 1, phytol 2, polyprenol 3, and a mixture of stigmasterol 4a and sitosterol 4b by silica gel chromatography. The structure of 1 was elucidated by extensive 1D and 2D NMR spectroscopy. Compound 1 at three doses (25, 50, and 100 mg/kg BW) was tested for prophylactic, gastrointestinal motility, analgesic, hypoglycemic, and antimicrobial potentials. Results of the prophylactic assay demonstrated the anti-toxic property of 1 at 100 mg/kg BW. A 50 mg/kg BW dose of 1 resulted in a more propulsive movement of the gastrointestinal tract (88.38 ± 13.59%) compared to the negative control (78.47 ± 10.61%). Tail flick and acetic acid writhing tests indicated that 100 mg/kg BW 1 had minimal analgesic activity. Compound 1 demonstrated no hypoglycemic potential on the animals tested. Compound 1 exhibited moderate antifungal activity against C. albicans, low activity against T. mentagrophytes, and low antibacterial activity against E. coli, S. aureus, and P. aeruginosa. It was inactive against B. subtilis and A. niger.
NASA Astrophysics Data System (ADS)
Murthy, P. Krishna; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Suchetan, P. A.
2017-04-01
4-benzyl-5-oxomorpholine-3-carbamide has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR, FT-Raman and 1H-NMR. The compound crystallizes in the monoclinic space group P21/n. The molecular geometry of the compound was optimized by using Density Functional Theory (DFT/B3LYP) method with 6-311++G(d,p) basis set in the ground state and geometric parameters are in agreement with the X-ray analysis results of the structure. The experimental vibrational spectra were compared with the calculated spectra and each vibrational wave number was assigned on the basis of potential energy distribution (PED). The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbital's (HOMOs) and lowest unoccupied molecular orbital's (LUMOs). Besides molecular electrostatic potential (MEP), frontier molecular orbital's (FMOs), some global reactivity descriptors, thermodynamic properties, non-linear optical (NLO) behavior and Mullikan charge analysis of the title compound were computed with the same method in gas phase, theoretically. Potential reactive sites of the title compound have been identified by average local ionization energy and Fukui functions, both mapped to the electron density surface. Bond dissociation energies for all single acyclic bonds have been calculated in order to investigate autoxidation and degradation properties of the title compound. Atoms with pronounced interactions with water molecules have been detected by calculations of radial distribution functions after molecular dynamics simulations. The experimental results are compared with the theoretical calculations using DFT methods for the fortification of the paper. Further the docking studies revealed that the title compound as a docked ligand forms a stable complex with pyrrole inhibitor with a binding affinity value of -7.5 kcal/mol. This suggests that the title compound might exhibit inhibitory activity against pyrrole inhibitor. To confirm the potential practical applicability of the title compound antimicrobial activity was tested against gram negative and gram positive bacteria.
Mendes, Rodrigo A; Almeida, Shawan K C; Soares, Iuri N; Barboza, Cristina A; Freitas, Renato G; Brown, Alex; de Souza, Gabriel L C
2018-05-11
In this work, we present a computational study on the antioxidant potential of myricetin 3,4[Formula: see text]-di-O-α-L-rhamnopyranoside (Compound M). A density functional theory (DFT) approach with the B3LYP and LC-ωPBE functionals and with both the 6-311G(d,p) and 6-311+G(d,p) basis sets was used. The focus of the investigation was on the structural and energetic parameters including both bond dissociation enthalpies (BDEs) and ionization potentials (IPs), which provide information on the potential antioxidant activity. The properties computed were compared with BDEs and IPs available in the literature for myricetin, a compound well known for presenting antioxidant activity (and the parent molecule of the compound of interest in the present work). Myricetin 3,4[Formula: see text]-di-O-α-L-rhamnopyranoside presented the lowest BDE to be 79.13 kcal/mol (as determined using B3LYP/6-311G(d,p) in water) while myricetin has a quite similar value (within 3.4 kcal/mol). IPs computed in the gas phase [B3LYP/6-311G(d,p)] are 157.18 and 161.4 kcal/mol for myricetin 3,4[Formula: see text]-di-O-α-L-rhamnopyranoside and myricetin, respectively. As the values of BDEs are considerably lower than the ones probed for IPs (in the gas phase or in any given solvent environment), the hydrogen atom transfer mechanism is preferred over the single electron transfer mechanism. The BDEs obtained suggest that myricetin 3,4[Formula: see text]-di-O-α-L-rhamnopyranoside can present antioxidant potential as good as the parent molecule myricetin (a well-known antioxidant). Therefore, experimental tests on the antioxidant activity of Compound M are encouraged.
2016-01-01
degradation of poly- and perfluoroalkyl compounds (PFCs), and potentially other water contaminants, without the need for repeated bioaugmentation with...active cultures or stimulation with nutrients. We designed a single-step method for encapsulating lignin peroxidases (LiP), manganese peroxidases (MnP
Wang, Xiaoning; Radwan, Mohamed M; Taráwneh, Amer H; Gao, Jiangtao; Wedge, David E; Rosa, Luiz H; Cutler, Horace G; Cutler, Stephen J
2013-05-15
Bioassay-guided fractionation of Cladosporium cladosporioides (Fresen.) de Vries extracts led to the isolation of four compounds, including cladosporin, 1; isocladosporin, 2; 5'-hydroxyasperentin, 3; and cladosporin-8-methyl ether, 4. An additional compound, 5',6-diacetylcladosporin, 5, was synthesized by acetylation of compound 3. Compounds 1-5 were evaluated for antifungal activity against plant pathogens. Phomopsis viticola was the most sensitive fungus to the tested compounds. At 30 μM, compound 1 exhibited 92.7, 90.1, 95.4, and 79.9% growth inhibition against Colletotrichum acutatum , Colletotrichum fragariae , Colletotrichum gloeosporioides , and P. viticola, respectively. Compound 2 showed 50.4, 60.2, and 83.0% growth inhibition at 30 μM against Co. fragariae, Co. gloeosporioides, and P. viticola, respectively. Compounds 3 and 4 were isolated for the first time from Cl. cladosporioides. Moreover, the identification of essential structural features of the cladosporin nuclei has also been evaluated. These structures provide new templates for the potential treatment and management of plant diseases.
Wang, Xiaoning; Radwan, Mohamed M.; Taráwneh, Amer H.; Gao, Jiangtao; Wedge, David E.; Rosa, Luiz H.; Cutler, Horace G.; Cutler, Stephen J.
2013-01-01
Bioassay-guided fractionation of Cladosporium cladosporioides (Fresen.) de Vries extracts led to the isolation of four compounds, including cladosporin, 1, isocladosporin, 2, 5′-hydroxyasperentin, 3, and cladosporin-8-methyl ether, 4. An additional compound 5′,6-diacetyl cladosporin, 5, was synthesized by acetylation of compound 3. Compounds 1-5 were evaluated for antifungal activity against plant pathogens. Phomopsis viticola was the most sensitive fungus to the tested compounds. At 30 μM, compound 1 exhibited 92.7%, 90.1%, 95.4% and 79.9% growth inhibition against Colletotrichum acutatum, Co. fragariae, Co. gloeosporioides and Phomopsis viticola, respectively. Compound 2 showed 50.4%, 60.2% and 83.0% growth inhibition at 30 μM against Co. fragariae, Co. gloeosporioides and P. viticola, respectively. Compounds 3 and 4 were isolated for the first time from Cladosporium cladosporioides. Moreover, the identification of essential structural features of the cladosporin nuclei has also been evaluated. These structures provide new templates for the potential treatment and management of plant diseases. PMID:23651409
Naeem, Muhammad; Chadhury, Muhammad Nawaz; Amjad, Rana; Rehaman, Salma; Khan, Kahlida
2012-10-01
Environmentally benign and economically feasible procedures have been adopted for the synthesis of novel biologically potential 4-thiazolidinone derivatives. Purpose built microwave oven and ionic liquids (PTCs) showed wrack improvements in yield, time and cost. The yield of 1st series (01-08) obtained in the ranged from 82.4-94.2% and for 2nd series (09-16) obtained 80.6-92.8%. The compounds (01-16) were applied for anti-inflammatory activity at concentrations of 0.5 and 01 mg/kg in carrageenan induced acute and formalin induced chronic inflammatory procedures in mice and better results were obtained at 0.5 mg/kg dose. Some of the compounds 03, 04, 07, 12, 13 showed remarkable anti-inflammatory activity in both procedures as compared to the standard reference drug 2-(2,6-dichloranilino) phenyl acetic acid (diclofenac). Particularly compound 12 and 13 may be used as a non-steroidal anti-inflammatory drug (NSAID) to reduce inflammation. The compounds (01-16) were screened for their antimicrobial activity (in-vivo) and found that the compounds 12, 13 and 14 exhibited comparable or higher antibacterial activity then ciprofloxacin (standard) against E. coli, S. enteritidis, P. aeruginosa, S. aureus and B. subtilis. The compounds of series-2 showed significant activity as compared with ciprofloxacin. These compounds could be lead to the selection and use as efficient antimicrobial agents, especially for the treatment of multi-drug resistant infections.
Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II.
Scribner, Andrew; Dennis, Richard; Lee, Shuliang; Ouvry, Gilles; Perrey, David; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye
2008-06-01
Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Recently, we reported the synthesis and biological activity of potent imidazo[1,2-a]pyridine anticoccidial agents. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we report the synthesis and anticoccidial activity of a second set of such compounds, focusing on derivatization of the amine side chain at the imidazopyridine 7-position. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.
Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan
2016-05-11
The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.
Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica
2017-01-17
The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.
New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.
Yadav, Dharmendra K; Rai, Reeta; Kumar, Naresh; Singh, Surjeet; Misra, Sanjeev; Sharma, Praveen; Shaw, Priyanka; Pérez-Sánchez, Horacio; Mancera, Ricardo L; Choi, Eun Ha; Kim, Mi-Hyun; Pratap, Ramendra
2016-12-06
The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.
Noutoshi, Yoshiteru; Jikumaru, Yusuke; Kamiya, Yuji; Shirasu, Ken
2012-01-01
Plant activators are agrochemicals that protect crops from pathogens. They confer durable resistance to a broad range of diseases by activating intrinsic immune mechanisms in plants. To obtain leads regarding useful compounds, we have screened a chemical library using an established method that allows selective identification of immune-priming compounds. Here, we report the characterisation of one of the isolated chemicals, imprimatinC1, and its structural derivative imprimatinC2. ImprimatinC1 functions as a weak analogue of salicylic acid (SA) and activates the expression of defence-related genes. However, it lacks antagonistic activity toward jasmonic acid. Structure-activity relationship analysis suggests that imprimatinC1 and C2 can be metabolised to 4-chlorobenzoic acid and 3,4-chlorobenzoic acid, respectively, to function in Arabidopsis. We also found that imprimatinC1 and C2 and their potential functional metabolites acted as partial agonists of SA. Thus, imprimatinC compounds could be useful tools for dissecting SA-dependent signal transduction pathways. PMID:23050089
Three new phenylpropanoids from Lavandula angustifolia and their bioactivities.
Tang, Shiyun; Shi, Jianlian; Liu, Chunbo; Jiang, Rui; Zhao, Wei; Liu, Xin; Xiang, Nengjun; Chen, Yongkuan; Shen, Qinpeng; Miao, Mingming; Liu, Zhihua; Yang, Guangyu
2017-06-01
Three new phenylpropanoids, 3-(3,4-dimethoxy-5-methylphenyl)-3-oxopropyl acetate (1), 3-hydroxy-1-(3,4-dimethoxy-5-methylphenyl)propan-1-one (2), and 3-hydroxy-1-(4-methylbenzo[d][1,3]dioxol-6-yl) propan-1-one (3), together with three known phenylpropanoids (4-6) were isolated from the whole plant of Lavandula angustifolia. Their structures were determined by means of HRESIMS and extensive 1D and 2D NMR spectroscopic studies. Compounds 1-6 were tested for their anti-tobacoo mosaic virus (TMV) activities and cytotoxicity activities. The results revealed that compounds 1-3 showed high anti-TMV activity with inhibition rate of 35.2, 38.4 and 33.9%. These rates are higher than that of positive control. The other compounds also showed potential anti-TMV activities with inhibition rates in the range of 26.8-28.9%, respectively. Compounds 1-6 also showed weak inhibitory activities against some tested human tumour cell lines with IC50 values in the range of 3.8-8.8 μM.
A novel in vitro image-based assay identifies new drug leads for giardiasis.
Hart, Christopher J S; Munro, Taylah; Andrews, Katherine T; Ryan, John H; Riches, Andrew G; Skinner-Adams, Tina S
2017-04-01
Giardia duodenalis is an intestinal parasite that causes giardiasis, a widespread human gastrointestinal disease. Treatment of giardiasis relies on a small arsenal of compounds that can suffer from limitations including side-effects, variable treatment efficacy and parasite drug resistance. Thus new anti-Giardia drug leads are required. The search for new compounds with anti-Giardia activity currently depends on assays that can be labour-intensive, expensive and restricted to measuring activity at a single time-point. Here we describe a new in vitro assay to assess anti-Giardia activity. This image-based assay utilizes the Perkin-Elmer Operetta ® and permits automated assessment of parasite growth at multiple time points without cell-staining. Using this new approach, we assessed the "Malaria Box" compound set for anti-Giardia activity. Three compounds with sub-μM activity (IC 50 0.6-0.9 μM) were identified as potential starting points for giardiasis drug discovery. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Noutoshi, Yoshiteru; Jikumaru, Yusuke; Kamiya, Yuji; Shirasu, Ken
2012-01-01
Plant activators are agrochemicals that protect crops from pathogens. They confer durable resistance to a broad range of diseases by activating intrinsic immune mechanisms in plants. To obtain leads regarding useful compounds, we have screened a chemical library using an established method that allows selective identification of immune-priming compounds. Here, we report the characterisation of one of the isolated chemicals, imprimatinC1, and its structural derivative imprimatinC2. ImprimatinC1 functions as a weak analogue of salicylic acid (SA) and activates the expression of defence-related genes. However, it lacks antagonistic activity toward jasmonic acid. Structure-activity relationship analysis suggests that imprimatinC1 and C2 can be metabolised to 4-chlorobenzoic acid and 3,4-chlorobenzoic acid, respectively, to function in Arabidopsis. We also found that imprimatinC1 and C2 and their potential functional metabolites acted as partial agonists of SA. Thus, imprimatinC compounds could be useful tools for dissecting SA-dependent signal transduction pathways.
Sponge-Inspired Dibromohemibastadin Prevents and Disrupts Bacterial Biofilms without Toxicity
Le Norcy, Tiffany; Niemann, Hendrik; Proksch, Peter; Tait, Karen; Linossier, Isabelle; Réhel, Karine; Hellio, Claire; Faÿ, Fabienne
2017-01-01
Since the banning of several families of compounds in antifouling (AF) coatings, the search for environmentally friendly AF compounds has intensified. Natural sources of AF compounds have been identified in marine organisms and can be used to create analogues in laboratory. In a previous study, we identified that dibromohemibastadin-1 (DBHB) is a promising AF molecule, leading to the inhibition of the activity of phenoloxidase, an enzyme involved in the attachment of mussels to surfaces. This paper describes the activity of the DBHB on biofilm formation and its detachment and on bacterial adhesion and communication: quorum sensing. DBHB has an anti-biofilm activity without affecting adhesion of marine and terrestrial bacteria at a dose of 10 µM. Moreover, DBHB activity on quorum sensing (QS) is demonstrated at doses of 8 and 16 µM. The activity of DBHB on QS is compared to kojic acid, a quorum sensing inhibitor already described. This compound is a promising environmentally friendly molecule potentially useful for the inhibition of microfouling. PMID:28704947
Chaves, Joana Darc S; Tunes, Luiza Guimarães; de J Franco, Chris Hebert; Francisco, Thiago Martins; Corrêa, Charlane Cimini; Murta, Silvane M F; Monte-Neto, Rubens Lima; Silva, Heveline; Fontes, Ana Paula S; de Almeida, Mauro V
2017-02-15
The current anticancer and antileishmanial drug arsenal presents several limitations concerning their specificity, efficacy, costs and the emergence of drug-resistant cells lines, which encourages the urgent need to search for new alternatives. Inspired by the fact that gold(I)-based compounds are promising antitumoral and antileishmanial drug candidates, we synthesized novel gold(I) complexes containing phosphine and 5-phenyl-1,3,4-oxadiazole-2-thione and evaluated their anticancer and antileishmanial activities. Synthesis was performed by reacting 5-phenyl-1,3,4-oxadiazole-2-thione derivatives with chloro(triphenylphosphine)gold(I) and chloro(triethylphosphine)gold(I). The novel compounds were characterized by infrared, Raman, 1 H, 13 C nuclear magnetic resonance, high-resolution mass spectra, and x-ray crystallography. The coordination of the ligands to gold(I) occurred through the exocyclic sulfur atom. All gold(I) complexes were active at low micromolar or nanomolar range with IC 50 values ranging from <0.10 to 1.66 μM against cancer cell lines and from 0.9 to 4.2 μM for Leishmania infantum intracellular amastigotes. Compound (6-A) was very selective against murine melanoma B16F10, colon cancer CT26.WT cell lines and L. infantum intracellular amastigotes. Compound (7-B) presented the highest anticancer activity against both cancer cell lines while the promising antileishmanial lead was compound (6-A). Tiethylphosphine gold(I) complexes were more active than the conterparts triphenylphosphine derivatives for both anticancer and antileishmanial activities. Triethylphosphine gold(I) derivatives presented antimony cross-resistance in L. guyanensis demonstrating their potential to be used as chemical tools to better understand mechanisms of drug resistance and action. These findings revealed the anticancer and antileishmanial potential of gold(I) oxadiazole phosphine derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin
2016-01-01
Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680
Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R.; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier
2016-01-01
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders. PMID:27739443
Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier
2016-10-14
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.
Hiromori, Youhei; Yui, Hiroki; Nishikawa, Jun-ichi; Nagase, Hisamitsu; Nakanishi, Tsuyoshi
2016-01-01
Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), are typical environmental contaminants and suspected endocrine-disrupting chemicals because they cause masculinization in female mollusks. In addition, previous studies have suggested that the endocrine disruption by organotin compounds leads to activation of peroxisome proliferator-activated receptor (PPAR)γ and retinoid X receptor (RXR). However, whether organotin compounds cause crucial toxicities in human development and reproduction is unclear. We here investigated the structure-dependent effect of 12 tin compounds on mRNA transcription of 3β-hydroxysteroid dehydrogenase type I (3β-HSD I) and progesterone production in human choriocarcinoma Jar cells. TBT, TPT, dibutyltin, monophenyltin, tripropyltin, and tricyclohexyltin enhanced progesterone production in a dose-dependent fashion. Although tetraalkyltin compounds such as tetrabutyltin increased progesterone production, the concentrations necessary for activation were 30-100 times greater than those for trialkyltins. All tested active organotins increased 3β-HSD I mRNA transcription. We further investigated the correlation between the agonistic activity of organotin compounds on PPARγ and their ability to promote progesterone production. Except for DBTCl2, the active organotins significantly induced the transactivation function of PPARγ. In addition, PPARγ knockdown significantly suppressed the induction of mRNA transcription of 3β-HSD I by all active organotins except DBTCl2. These results suggest that some organotin compounds promote progesterone biosynthesis in vitro by inducing 3β-HSD I mRNA transcription via the PPARγ signaling pathway. The placenta represents a potential target organ for these compounds, whose endocrine-disrupting effects might cause local changes in progesterone concentration in pregnant women. Copyright © 2014 Elsevier Ltd. All rights reserved.
Haynes, Keith M.; Abdali, Narges; Jhawar, Varsha; ...
2017-06-26
In Gram-negative bacteria, efflux pumps are able to prevent effective cellular concentrations from being achieved for a number of antibiotics. Small molecule adjuvants that act as efflux pump inhibitors (EPIs) have the potential to reinvigorate existing antibiotics that are currently ineffective due to efflux mechanisms. Through a combination of rigorous experimental screening and in silico virtual screening, we recently identified novel classes of EPIs that interact with the membrane fusion protein AcrA, a critical component of the AcrAB-TolC efflux pump in Escherichia coli. In this paper, we present initial optimization efforts and structure–activity relationships around one of those previously describedmore » hits, NSC 60339 (1). Finally, from these efforts we identified two compounds, SLUPP-225 (17h) and SLUPP-417 (17o), which demonstrate favorable properties as potential EPIs in E. coli cells including the ability to penetrate the outer membrane, improved inhibition of efflux relative to 1, and potentiation of the activity of novobiocin and erythromycin.« less
Ranilla, Lena Galvez; Kwon, Young-In; Apostolidis, Emmanouil; Shetty, Kalidas
2010-06-01
Traditionally used medicinal plants, herbs and spices in Latin America were investigated to determine their phenolic profiles, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension. High phenolic and antioxidant activity-containing medicinal plants and spices such as Chancapiedra (Phyllantus niruri L.), Zarzaparrilla (Smilax officinalis), Yerba Mate (Ilex paraguayensis St-Hil), and Huacatay (Tagetes minuta) had the highest anti-hyperglycemia relevant in vitro alpha-glucosidase inhibitory activities with no effect on alpha-amylase. Molle (Schinus molle), Maca (Lepidium meyenii Walp), Caigua (Cyclanthera pedata) and ginger (Zingiber officinale) inhibited significantly the hypertension relevant angiotensin I-converting enzyme (ACE). All evaluated pepper (Capsicum) genus exhibited both anti-hyperglycemia and anti-hypertension potential. Major phenolic compounds in Matico (Piper angustifolium R.), Guascas (Galinsoga parviflora) and Huacatay were chlorogenic acid and hydroxycinnamic acid derivatives. Therefore, specific medicinal plants, herbs and spices from Latin America have potential for hyperglycemia and hypertension prevention associated with Type 2 diabetes. (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haynes, Keith M.; Abdali, Narges; Jhawar, Varsha
In Gram-negative bacteria, efflux pumps are able to prevent effective cellular concentrations from being achieved for a number of antibiotics. Small molecule adjuvants that act as efflux pump inhibitors (EPIs) have the potential to reinvigorate existing antibiotics that are currently ineffective due to efflux mechanisms. Through a combination of rigorous experimental screening and in silico virtual screening, we recently identified novel classes of EPIs that interact with the membrane fusion protein AcrA, a critical component of the AcrAB-TolC efflux pump in Escherichia coli. In this paper, we present initial optimization efforts and structure–activity relationships around one of those previously describedmore » hits, NSC 60339 (1). Finally, from these efforts we identified two compounds, SLUPP-225 (17h) and SLUPP-417 (17o), which demonstrate favorable properties as potential EPIs in E. coli cells including the ability to penetrate the outer membrane, improved inhibition of efflux relative to 1, and potentiation of the activity of novobiocin and erythromycin.« less
Singh, Anil K.; Rathore, Sumit; Tang, Yan; Goldfarb, Nathan E.; Dunn, Ben M.; Rajendran, Vinoth; Ghosh, Prahlad C.; Singh, Neelu; Latha, N.; Singh, Brajendra K.; Rawat, Manmeet; Rathi, Brijesh
2015-01-01
A novel class of phthalimides functionalized with privileged scaffolds was designed, synthesized and evaluated as potential inhibitors of plasmepsin 2 (Ki: 0.99 ± 0.1 μM for 6u) and plasmepsin 4 (Ki: 3.3 ± 0.3 μM for 6t), enzymes found in the digestive vacuole of the plasmodium parasite and considered as crucial drug targets. Three compounds were identified as potential candidates for further development. The listed compounds were also assayed for their antimalarial efficacy against chloroquine (CQ) sensitive strain (3D7) of Plasmodium falciparum. Assay of twenty seven hydroxyethylamine derivatives revealed four (5e, 6j, 6o and 6s) as strongly active, which were further evaluated against CQ resistant strain (7GB) of P. falciparum. Compound 5e possessing the piperidinopiperidine moiety exhibited promising antimalarial activity with an IC50 of 1.16 ± 0.04 μM. Further, compounds 5e, 6j, 6o and 6s exhibited low cytotoxic effect on MCF-7 cell line. Compound 6s possessing C 2 symmetry was identified as the least cytotoxic with significant antimalarial activity (IC50: 1.30 ± 0.03 μM). The combined presence of hydroxyethylamine and cyclic amines (piperazines and piperidines) was observed as crucial for the activity. The current studies suggest that hydroxyethylamine based molecules act as potent antimalarial agent and may be helpful in drug development. PMID:26502278
Identification of chalcone-based antileishmanial agents targeting trypanothione reductase.
Ortalli, Margherita; Ilari, Andrea; Colotti, Gianni; De Ionna, Ilenia; Battista, Theo; Bisi, Alessandra; Gobbi, Silvia; Rampa, Angela; Di Martino, Rita M C; Gentilomi, Giovanna A; Varani, Stefania; Belluti, Federica
2018-05-02
All currently used first-line and second-line drugs for the treatment of leishmaniasis exhibit several drawbacks including toxicity, high costs and route of administration. Furthermore, some drugs are associated with the emergence of drug resistance. Thus, the development of new treatments for leishmaniasis is a priority in the field of neglected tropical diseases. The present work highlights the use of natural derived products, i.e. chalcones, as potential source of antileishmanial agents. Thirty-one novel chalcone compounds have been synthesized and their activity has been evaluated against promastigotes of Leishmania donovani; 16 compounds resulted active against L. donovani in a range from 3.0 to 21.5 μM, showing low toxicity against mammalian cells. Among these molecules, 6 and 16 showed good inhibitory activity on both promastigotes and intracellular amastigotes, coupled with an high selectivity index. Furthermore, compounds 6 and 16 inhibited the promastigote growth of other leishmanial species, including L. tropica, L. major and L. infantum. Finally, 6 and 16 interacted with high affinity with trypanothione reductase (TR), an essential enzyme for the leishmanial parasite and compound 6 inhibited TR with sub-micromolar potency. Thus, the effective inhibitory activity against Leishmania, the lack of toxicity on mammalian cells and the ability to block a crucial parasite's enzyme, highlight the potential for compound 6 to be optimized as novel drug candidate against leishmaniasis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Padhye, Subhash; Banerjee, Sanjeev; Ahmad, Aamir; Mohammad, Ramzi; Sarkar, Fazlul H
2008-01-01
Summary Over many centuries humans have been mining the bounties of nature for discovering substances that have been used for the treatment of all human diseases; many such remedies are useful even today as modern day medicine. Emerging evidence also suggests that the search is still continuing for harnessing active compounds from nature in combating human illnesses although pharmaceutical industries are equally active for synthesizing small molecule compounds as novel therapeutics. The lesson learned over many centuries clearly suggests that further sophisticated search for finding compounds from natural resources together with robust characterization and chemical synthesis will lead to the discovery of novel drugs that may have high therapeutic efficacy against all human diseases including cancer. Black cumin seed (Nigella sativa) oil extracts have been used for many centuries for the treatment of many human illnesses, and more recently the active compound found in black seed oil, viz. thymoquinone (TQ) has been tested for its efficacy against several diseases including cancer. However, further research is needed in order to assess the full potential of TQ as a chemopreventive and/or therapeutic agent against cancers. Here, we have summarized what is known regarding the value of black seed oil and its active compound TQ, and how this knowledge will help us to advance further research in this field by creating awareness among scientists and health professionals in order to appreciate the medicinal value of TQ and beyond. PMID:19018291
Batra, S; Srivastava, P; Roy, K; Pandey, V C; Bhaduri, A P
2000-09-07
1-(3'-Diethylaminopropyl)-3-(substituted phenylmethylene)pyrrolidines were synthesized and evaluated for CQ-resistant reversal activity. In general the compounds of the series elicit better biological response than their phenylmethyl analogues. The most active compound 4b has been evaluated in vivo in detail, and the results are presented. The possible mode of action of the compounds of this series is by inhibition of the enzyme heme oxygenase, thereby increasing the levels of heme and hemozoin, which are lethal to the parasite.
Interactions of polyphenols with carbohydrates, lipids and proteins.
Jakobek, Lidija
2015-05-15
Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Discovery of a Potent, Dual Serotonin and Norepinephrine Reuptake Inhibitor
2013-01-01
The objective of the described research effort was to identify a novel serotonin and norepinephrine reuptake inhibitor (SNRI) with improved norepinephrine transporter activity and acceptable metabolic stability and exhibiting minimal drug–drug interaction. We describe herein the discovery of a series of 3-substituted pyrrolidines, exemplified by compound 1. Compound 1 is a selective SNRI in vitro and in vivo, has favorable ADME properties, and retains inhibitory activity in the formalin model of pain behavior. Compound 1 thus represents a potential new probe to explore utility of SNRIs in central nervous system disorders, including chronic pain conditions. PMID:24900709
Jin, Kang; Li, Shanshan; Li, Xiaoguang; Zhang, Jian; Xu, Wenfang; Li, Xuechen
2015-08-01
Histone deacetylases (HDACs) are zinc-dependent or NAD(+) dependent enzymes and play a critical role in the process of tumor development. Herein a series of indoline-2,3-dione derivatives have been designed and synthesized as potential HDACs inhibitors. The preliminary biological evaluation showed that most compounds synthesized have exhibited moderate Hela cell nuclear extract inhibitory activities, among which compound 25a (IC50=10.13 nM) has shown the best efficacy. The anti-proliferative activities of some of these compounds were also discussed. Copyright © 2015. Published by Elsevier Ltd.
2012-01-01
Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G2), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. Results The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC50 values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC50 values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. Conclusion This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs. PMID:22458642
Perfluorinated compounds affect the function of sex hormone receptors.
Kjeldsen, Lisbeth Stigaard; Bonefeld-Jørgensen, Eva Cecilie
2013-11-01
Perfluorinated compounds (PFCs) are a large group of chemicals used in different industrial and commercial applications. Studies have suggested the potential of some PFCs to disrupt endocrine homeostasis, increasing the risk of adverse health effects. This study aimed to elucidate mechanisms behind PFC interference with steroid hormone receptor functions. Seven PFCs [perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA)] were analyzed in vitro for their potential to affect estrogen receptor (ER) and androgen receptor (AR) transactivity as well as aromatase enzyme activity. The PFCs were assessed as single compounds and in an equimolar mixture. PFHxS, PFOS and PFOA significantly induced the ER transactivity, whereas PFHxS, PFOS, PFOA, PFNA and PFDA significantly antagonized the AR activity in a concentration-dependent manner. Moreover, PFDA weakly decreased the aromatase activity at a high test concentration. A mixture effect more than additive was observed on AR function. We conclude that five of the seven PFCs possess the potential in vitro to interfere with the function of the ER and/or the AR. The observed mixture effect emphasizes the importance of considering the combined action of PFCs in future studies to assess related health risks.
Investigation of 4-amino-5-alkynylpyrimidine-2(1H)-ones as anti-mycobacterial agents.
Garg, Gaurav; Pande, Milind; Agrawal, Ambika; Li, Jie; Kumar, Rakesh
2016-04-15
In vitro anti-mycobacterial activities of novel 4-amino-5-alkynylpyrimidine-2(1H)-ones were investigated. 4-Amino-5-heptynylpyrimidine-2(1H)-one (3) and 4-amino-5-(2-phenylethynyl)pyrimidine-2(1H)-one (7) displayed potent in vitro activity against Mycobacterium bovis and Mycobacterium tuberculosis. Compounds 3 and 7 were also assessed for their in vivo activity in BALB/c mice infected with M. tuberculosis (H37Ra). Both compounds showed promising in vivo efficacy at a dose of 25 mg/kg for 2 weeks. Importantly, compounds 3 and 7 interacted synergistically with the front-line anti-tuberculosis drug isoniazid in vitro and in vivo. These results suggest that this class of compounds has strong anti-mycobacterial potential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yadav, Pinki; Lal, Kashmiri; Kumar, Lokesh; Kumar, Ashwani; Kumar, Anil; Paul, Avijit K; Kumar, Rajnish
2018-06-02
A simple and green synthesis of some fluorinated chalcone-triazole hybrids from propargylated chalcones and organic azides catalyzed by cellulose supported copper nanoparticles click reaction is reported. All the synthesized compounds were well characterized by various analytical and spectroscopic methods. The X-rays crystallographic study of compounds 6k revealed the self assembling properties. The antimicrobial screening results of all the synthesized compounds revealed that most of the triazole hybrids exhibited significant efficacy against tested bacterial and fungal strains. The activity results showed the synergistic effect of biological activity when two pharmacophoric units, i.e. chalcone and 1,2,3-triazole are conjugated. Further, docking simulation of the most active compounds 6p into Escherichia coli topoisomerase II DNA Gyrase B was also carried out. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Kumar, S.; Srivastava, D. P.
2010-01-01
An efficient electrochemical method for the preparation of 2-amino-5-substituted-1,3,4-oxadiazoles (4a-k) at platinum anode through the electrooxidation of semicarbazone (3a-k) at controlled potential electrolysis has been reported in the present study. The electrolysis was carried out in the acetic acid solvent and lithium perchlorate was used as supporting electrolyte. The products were characterized by IR,1H-NMR,13C-NMR, mass spectra and elemental analysis. The synthesized compounds were screened for their in vitro growth inhibiting activity against different strains of bacteria viz., Klebsilla penumoniae, Escherichia coli, Bassilus subtilis and Streptococcus aureus and antifungal activity against Aspergillus niger and Crysosporium pannical and results have been compared with the standard antibacterial streptomycin and antifungal griseofulvin. Compounds exhibits significant antibacterial activity and antifungal activity. Compounds 4a and g exhibited equal while 4c, d, i and j slightly less antibacterial activity than standard streptomycin. Compounds 4a and g exhibited equal while 4b, c, d, f and i displayed slightly less antifungal activity than standard griseofulvins. PMID:21218056
Zhou, Zhong-Yu; Liu, Wan-Xue; Pei, Gang; Ren, Hui; Wang, Jing; Xu, Qiao-Lin; Xie, Hai-Hui; Wan, Fang-Hao; Tan, Jian-Wen
2013-12-04
A bioassay-directed phytochemical study was conducted to investigate potential allelochemicals in the roots of the invasive plant Ageratina adenophora. Eleven phenolic compounds, including seven new ones, 7-hydroxy-8,9-dehydrothymol 9-O-trans-ferulate (1), 7-hydroxythymol 9-O-trans-ferulate (2), 7,8-dihydroxythymol 9-O-trans-ferulate (3), 7,8-dihydroxythymol 9-O-cis-ferulate (4), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-trans-p-coumarate (5), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-cis-p-coumarate (6), and 3-(2-hydroxyphenyl)propyl methyl malonate (7), were isolated from a bioactive subfraction of the ethanol extract of the roots of A. adenophora. The new structures were established on the basis of detailed spectroscopic analysis. The potential phytotoxic effects of these compounds on the germination of Arabidopsis thaliana seeds were tested by a filter paper assay. Compound 7 and known compounds 3-(2-hydroxyphenyl)-1-propanol (8) and o-coumaric acid (9) remarkably showed inhibition activity against Arabidopsis seed germination at a concentration of 1.0 mM. Compounds 1, 2, 5, 6, and 10 showed slight inhibitory activity at the test concentration after treatment for 3 days, while the other compounds showed no obvious inhibitory effects. Moreover, 7-9 were further found to show obvious inhibitory activity on retarding the seedling growth of Ar. thaliana cultured in soil medium.
Lee, Dong Chan; Ahn, Young-Joon
2013-01-01
The toxicity of Pinus densiflora (red pine) hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus), Aedes aegypti (Ae. aegypti) and Culex pipiens palles (Cx. p. pallens) was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+)-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE) inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides. PMID:26464387
Huang, Ai-Ling; Zhang, Yi-Long; Ding, Hai-Wen; Li, Bo; Huang, Cheng; Meng, Xiao-Ming; Li, Jun
2018-05-28
Hesperetin has been known to exert several activities such as anti-oxidant, antitumor and anti-inflammatory. To find hesperetin derivatives showing better activity, sixteen novel hesperetin derivatives were designed and synthesized. The new obtained compounds were investigated for their anti-inflammatory activity by inhibiting interleukin-1β (IL-1β), interleukin-6 (IL-6) and production of nitric oxide (NO) in mouse RAW264.7 macrophages, and the structure-activity relationship of them was discussed. Among them, the compound 1l, 2c demonstrated more effective inhibitory activity of IL-1β and IL-6, meanwhile, the compound 1l showed the best inhibition of NO production. The results of NO inhibition study were basically accord with the molecular docking results of inducible nitric oxide synthase (iNOS). Furthermore, the expression of LPS-induced iNOS and components of NF-κB signaling pathway were reduced by compound 1l. Our results suggest that the inhibitory effect of compound 1l on LPS-stimulated inflammatory mediator production in RAW 264.7 cells is associated with the suppression of NF-κB signaling pathway and inhibition of iNOS protein and iNOS activity. From in vivo study, it was also observed that compound 1l had hepato-protective and anti-inflammatory effects in CCl 4 -induced acute liver injury mouse models. Copyright © 2018 Elsevier B.V. All rights reserved.
Santos, Gabriel F Dos; Takahashi, Jacqueline A
2017-01-01
The in vitro metabolism of a widespread natural product, trachyloban-19-oic acid (1), by the fungal species Mucor plumbeus was studied in a sucrose-yeast liquid medium. Two products were isolated, and their structures were determined by spectroscopic means as 7β-hydroxytrachyloban-19-oic acid (5) and trachyloban-19-O-β-D-glucopyranosyl ester (6). To the best of our knowledge, compound 6 is herein reported by the first time in the literature. These compounds were assayed for acetylcholinesterase inhibition along with some related compounds. Compound 6 showed the highest acetylcholinesterase inhibitory activity at 10000 µg/mL among the tested compounds, a result (92.89%) comparable to the activity of the positive control, galanthamine (94.21%). Therefore, biotransformation of the natural product 1 by M. plumbeus produced a novel compound with potential as a new lead to develop anti-Alzheimer medicines.
Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds.
Wang, Fang; Zhong, Huan-Huan; Chen, Wei-Ke; Liu, Qing-Pu; Li, Cun-Yu; Zheng, Yun-Feng; Peng, Guo-Ping
2017-08-01
Moringa oleifera seed has remarkable curative effects on reducing blood pressure, blood sugar and enhancing human immunity. In this study, one novel phenolic glycoside (1) together with four known compounds 2-5 were isolated from the macroporous resin adsorption extract of M. oleifera seeds, and the compound 3 was reported for the first time from this plant. The structure of the new crystalline compound was determined on the basis of spectroscopic analyses including mass spectrometry, 1D and 2D NMR experiments. The hypoglycaemic activity of isolated compounds was investigated with HepG2 cell and STZ-induced mice. It was found that compound 1, 4 and 5 could promote the glucose consumption of insulin resistance cells and reduce blood glucose levels of STZ-induced mice. This study concludes that compound 1, 4 and 5 may be developed as new and safe hypoglycaemic drugs.
Pimpão, Rui C; Ventura, M Rita; Ferreira, Ricardo B; Williamson, Gary; Santos, Claudia N
2015-02-14
Bioavailability studies are vital to assess the potential impact of bioactive compounds on human health. Although conjugated phenolic metabolites derived from colonic metabolism have been identified in the urine, the quantification and appearance of these compounds in plasma is less well studied. In this regard, it is important to further assess their potential biological activity in vivo. To address this gap, a cross-over intervention study with a mixed fruit purée (blueberry, blackberry, raspberry, strawberry tree fruit and Portuguese crowberry) and a standard polyphenol-free meal was conducted in thirteen volunteers (ten females and three males), who received each test meal once, and plasma metabolites were identified by HPLC-MS/MS. Sulfated compounds were chemically synthesised and used as standards to facilitate quantification. Gallic and caffeic acid conjugates were absorbed rapidly, reaching a maximum concentration between 1 and 2 h. The concentrations of sulfated metabolites resulting from the colonic degradation of more complex polyphenols increased in plasma from 4 h, and pyrogallol sulfate and catechol sulfate reached concentrations ranging from 5 to 20 μm at 6 h. In conclusion, phenolic sulfates reached high concentrations in plasma, as opposed to their undetected parent compounds. These compounds have potential use as biomarkers of polyphenol intake, and their biological activities need to be considered.
Gwaram, Nura Suleiman; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; Buckle, Michael J C; Sukumaran, Sri Devi; Chung, Lip Yong; Othman, Rozana; Alhadi, Abeer A; Yehye, Wageeh A; Hadi, A Hamid A; Hassandarvish, Pouya; Khaledi, Hamid; Abdelwahab, Siddig Ibrahim
2012-02-28
Alzheimer's disease (AD) is the most common form of dementia among older people and the pathogenesis of this disease is associated with oxidative stress. Acetylcholinesterase inhibitors with antioxidant activities are considered potential treatments for AD. Some novel ketone derivatives of gallic hydrazide-derived Schiff bases were synthesized and examined for their antioxidant activities and in vitro and in silico acetyl cholinesterase inhibition. The compounds were characterized using spectroscopy and X-ray crystallography. The ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays revealed that all the compounds have strong antioxidant activities. N-(1-(5-bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (2) was the most potent inhibitor of human acetyl cholinesterase, giving an inhibition rate of 77% at 100 μM. Molecular docking simulation of the ligand-enzyme complex suggested that the ligand may be positioned in the enzyme's active-site gorge, interacting with residues in the peripheral anionic subsite (PAS) and acyl binding pocket (ABP). The current work warrants further preclinical studies to assess the potential for these novel compounds for the treatment of AD.
Wodtke, Robert; Hauser, Christoph; Ruiz-Gómez, Gloria; Jäckel, Elisabeth; Bauer, David; Lohse, Martin; Wong, Alan; Pufe, Johanna; Ludwig, Friedrich-Alexander; Fischer, Steffen; Hauser, Sandra; Greif, Dieter; Pisabarro, M Teresa; Pietzsch, Jens; Pietsch, Markus; Löser, Reik
2018-05-24
Transglutaminase 2 (TGase 2)-catalyzed transamidation represents an important post-translational mechanism for protein modification with implications in physiological and pathophysiological conditions, including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis of and therapy for these diseases. In this study, we report on the synthesis and kinetic characterization of N ε -acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100 to 10 000 M -1 s -1 , which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity toward transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed, including the assessment of potential membrane permeability and liver microsomal stability.
Tauroursodeoxycholic acid binds to the G-protein site on light activated rhodopsin.
Lobysheva, E; Taylor, C M; Marshall, G R; Kisselev, O G
2018-05-01
The heterotrimeric G-protein binding site on G-protein coupled receptors remains relatively unexplored regarding its potential as a new target of therapeutic intervention or as a secondary site of action by the existing drugs. Tauroursodeoxycholic acid bears structural resemblance to several compounds that were previously identified to specifically bind to the light-activated form of the visual receptor rhodopsin and to inhibit its activation of transducin. We show that TUDCA stabilizes the active form of rhodopsin, metarhodopsin II, and does not display the detergent-like effects of common amphiphilic compounds that share the cholesterol scaffold structure, such as deoxycholic acid. Computer docking of TUDCA to the model of light-activated rhodopsin revealed that it interacts using similar mode of binding to the C-terminal domain of transducin alpha subunit. The ring regions of TUDCA made hydrophobic contacts with loop 3 region of rhodopsin, while the tail of TUDCA is exposed to solvent. The results show that TUDCA interacts specifically with rhodopsin, which may contribute to its wide-ranging effects on retina physiology and as a potential therapeutic compound for retina degenerative diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin
2014-10-02
Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.
Chung, Ill-Min; Lim, Ju-Jin; Ahn, Mun-Seob; Jeong, Haet-Nim; An, Tae-Jin; Kim, Seung-Hyun
2015-01-01
Background The study of phenolic compounds profiles and antioxidative activity in ginseng fruit, leaves, and roots with respect to cultivation years, and has been little reported to date. Hence, this study examined the phenolic compounds profiles and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging activities in the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) as a function of cultivation year. Methods Profiling of 23 phenolic compounds in ginseng fruit, leaves, and roots was investigated using ultra-high performance liquid chromatography with the external calibration method. Antioxidative activity of ginseng fruit, leaves, and roots were evaluated using the method of DPPH free-radical-scavenging activity. Results The total phenol content in ginseng fruit and leaves was higher than in ginseng roots (p < 0.05), and the phenol content in the ginseng samples was significantly correlated to the DPPH free-radical-scavenging activity (r = 0.928****). In particular, p-coumaric acid (r = 0.847****) and ferulic acid (r = 0.742****) greatly affected the DPPH activity. Among the 23 phenolic compounds studied, phenolic acids were more abundant in ginseng fruit, leaves, and roots than the flavonoids and other compounds (p < 0.05). In particular, chlorogenic acid, gentisic acid, p- and m-coumaric acid, and rutin were the major phenolic compounds in 3–6-yr-old ginseng fruit, leaves, and roots. Conclusion This study provides basic information about the antioxidative activity and phenolic compounds profiles in fruit, leaves, and roots of Korean ginseng with cultivation years. This information is potentially useful to ginseng growers and industries involved in the production of high-quality and nutritional ginseng products. PMID:26843824
The fate of 14 polycyclic aromatic hydrocarbon (PAH) compounds was evaluated with regard to interphase transfer potential and mechanisms of treatment in soil under unsaturated conditions. Volatilization and abiotic and biotic fate of the PAHs were determined using two soils not p...
APPLICATION OF DRY HAWTHORN (CRATAEGUS OXYACANTHA L.) EXTRACT IN NATURAL TOPICAL FORMULATIONS.
Stelmakiene, Ada; Ramanauskiene, Kristina; Petrikaite, Vilma; Jakstas, Valdas; Briedis, Vitalis
2016-07-01
There is a great potential for a semi-solid preparation for topical application to the skin that would use materials of natural origin not only as an active substance but also as its base. The aim of this research was to model semisolid preparations containing hawthorn extract and to determine the effect of their bases (carriers) on the release of active components from experimental dosage forms, based on the results of the in vitro studies of the bioactivity of hawthorn active components and ex vivo skin penetration studies. The active compounds of hawthorn were indentified and quantified by validated HPLC method. The antimicrobial and anti-radical activity of dry hawthorn extract were evaluated by methods in vitro. The penetration of active substances into the full undamaged human skin was evaluated by method ex vivo. Natural topical composition was chosen according to the results of release of active compounds. Release experiments were performed with modified Franz type diffusion cells. B.ceieus was the most sensitive bacteria for the hawthorn extract. Extract showed antiradical activity, however the penetration was limited. Only traces of hyperoside and isoquercitrin were founded in epidermis. Protective topical preparation with shea butter released 41.4-42.4% of active substances. Four major compounds of dry hawthorn extract were identified. The research showed that extract had antimicrobial and antiradical activity, however compounds of hawthorn stay on the surface of the undamaged human skin. Topical preparation containing beeswax did not release active compounds. Beeswax was identified as suspending agent. Topical preparations released active compounds when shea butter was used instead of beeswax.
Jardim, Guilherme A M; Silva, Thaissa L; Goulart, Marilia O F; de Simone, Carlos A; Barbosa, Juliana M C; Salomão, Kelly; de Castro, Solange L; Bower, John F; da Silva Júnior, Eufrânio N
2017-08-18
Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC 50 /24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Warsi; Sholichah, A. R.
2017-11-01
Basil leaf (Ocimum basilicum L.) contains various compounds such as flavonoid, alkaloid, phenol and essential oil, so it needs to be fractionated to find out the flavonoid compound with the greatest potential as an antioxidant. This research was aimed to know the chemical compound, antioxidant potential of ethanolic extract and ethyl acetate fraction from basil leaf. The basil leaf was extracted by maceration using ethanol 70 %. The crude extract was fractionated with ethyl acetate. The ethanolic extract and ethyl acetate fraction were screened of phytochemical content including identification of flavonoids, alkaloids and polyphenolics. The antioxidant activity of the ethanolic extract and ethyl acetate fraction were tested qualitatively with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdate. Its antioxidant activity was determined quantitatively using DPPH radical scavenging method. Phytochemical screening test showed that ethanolic extract and ethyl acetate fraction from basil leaf contain flavonoids, polyphenolics, and alkaloids. The qualitative analysis of antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf showed an antioxidant activity. The IC50 value of ethanolic extract, ethyl acetate fraction and quercetin were 1,374.00±6.20 389.00±1.00 2.10±0.01μg/mL, respectively. The research showed that antioxidant activity of the ethyl acetate fraction more potential than the ethanol extract of the basil leaf, but less than quercetin.
Antiproliferative and antibacterial activity of some glutarimide derivatives.
Popović-Djordjević, Jelena B; Klaus, Anita S; Žižak, Željko S; Matić, Ivana Z; Drakulić, Branko J
2016-12-01
Antiproliferative and antibacterial activities of nine glutarimide derivatives (1-9) were reported. Cytotoxicity of compounds was tested toward three human cancer cell lines, HeLa, K562 and MDA-MB-453 by MTT assay. Compound 7 (2-benzyl-2-azaspiro[5.11]heptadecane-1,3,7-trione), containing 12-membered ketone ring, was found to be the most potent toward all tested cell lines (IC50 = 9-27 μM). Preliminary screening of antibacterial activity by a disk diffusion method showed that Gram-positive bacteria were more susceptible to the tested compounds than Gram-negative bacteria. Minimum inhibitory concentration (MIC) determined by a broth microdilution method confirmed that compounds 1, 2, 4, 6-8 and 9 inhibited the growth of all tested Gram-positive and some of the Gram-negative bacteria. The best antibacterial potential was achieved with compound 9 (ethyl 4-(1-benzyl-2,6-dioxopiperidin-3-yl)butanoate) against Bacillus cereus (MIC 0.625 mg/mL; 1.97 × 10(-3 )mol/L). Distinction between more and less active/inactive compounds was assessed from the pharmacophoric patterns obtained by molecular interaction fields.
Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Babar, Mustafeez Mujtaba; Zaidi, Najam-Us-Sahar Sadaf
2015-12-01
A series of umbelliferone analogues were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. Especially, 2-oxo-2-[(2-oxo-2H-chromen-7-yl)oxy]ethyl-2,4-dihydroxybenzoate (4e) bearing 2,4-dihydroxy substituted phenyl ring exhibited the most potent tyrosinase inhibitory activity with IC50 value 8.96 µM and IC50 value of kojic acid is 16.69. The inhibition mechanism analyzed by Lineweaver-Burk plots revealed that the type of inhibition of compound 4e on tyrosinase was non-competitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compounds 4c and 4e showed the highest binding affinity with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compounds 4c and 4e may serve as a structural template for the design and development of novel tyrosinase inhibitors.
NASA Astrophysics Data System (ADS)
Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Rodrigues, B. L.; Donnici, C. L.; Fujiwara, R. T.; Bartholomeu, D. C.; Ferreira, R. A.; Ferreira, S. R.; Mendes, T. A. O.; da Silva, J. G.; Alves, M. R. A.
2015-01-01
In this paper we report the synthesis and characterization of four new nitroaromatic compounds, 2-{6-nitrobenzo[1,3]dioxol-5-(methyleneamino)}benzoic acid (1), 2-{[5-(2-nitrophenyl)furan-2-yl]methylene-amino}benzoic acid (2), 2-{(6-nitrobenzo[1,3]dioxol-5-yl)methylene}hydrazinecarboxamide (3) and 2-{[5-(2-nitrophenyl)furan-2-yl]methylene}hydrazinecarboxamide (4). Compounds (1)-(4) have been authenticated by infrared and NMR spectroscopy, and the structure of (1), (2) and (4) have been determined by X-ray diffraction. In addition, the in vitro ability of compounds (1)-(4) to inhibit the growth of Leishmania infantum has been evaluated. Comparisons of the redox potential of the compounds and leishmanicidal activity indicate that the presence of the electroactive nitro group is important for the biological activity. The inhibition activity of compound (3) is comparable to that of the reference drug, SbCl3. Considering the important side effects and the low efficiency of SbCl3 in the case of resistance, compound (3) deserves further attention as a promising anti-leishmanicidal drug for veterinary use.
Riluzole activates TRPC5 channels independently of PLC activity
Richter, Julia M; Schaefer, Michael; Hill, Kerstin
2014-01-01
BACKGROUND AND PURPOSE The transient receptor potential channel C5 (TRPC5) is a Ca2+-permeable cation channel, which is predominantly expressed in the brain. TRPC5 is activated in a PLC-dependent manner by, as yet, unidentified endogenous messengers. Recently, modulators of TRPC5, like Ca2+, pH and phospholipids, have been identified. However, the role of TRPC5 in vivo is only poorly understood. Novel specific modulators of TRPC5 might help to elucidate its function. EXPERIMENTAL APPROACH Novel modulators of TRPC5 were identified in a compound screening of approved drugs and natural compounds. The potency and selectivity of TRPC5-activating compounds were determined by fluorometric calcium imaging. The biophysical properties of channel activation by these compounds were analysed using electrophysiological measurements. KEY RESULTS Riluzole was identified as a novel activator of TRPC5 (EC50 9.2 ± 0.5 μM) and its mechanism of action was shown to be independent of G protein signalling and PLC activity. Riluzole-induced TRPC5 currents were potentiated by La3+ and, utilizing TRPC5 mutants that lack La3+ binding sites, it was confirmed that riluzole and La3+ activate TRPC5 by different mechanisms. Recordings of excised inside-out patches revealed a relatively direct effect of riluzole on TRPC5. CONCLUSIONS AND IMPLICATIONS Riluzole can activate TRPC5 heterologously expressed in HEK293 cells as well as those endogenously expressed in the U-87 glioblastoma cell line. Riluzole does not activate any other member of the TRPC family and could, therefore, despite its action on other ion channels, be a useful pharmacological tool for identifying TRPC5-specific currents in immortalized cell lines or in acutely isolated primary cells. PMID:24117252
Kumar, B V S Suneel; Lakshmi, Narasu; Kumar, M Ravi; Rambabu, Gundla; Manjashetty, Thimmappa H; Arunasree, Kalle M; Sriram, Dharmarajan; Ramkumar, Kavya; Neamati, Nouri; Dayam, Raveendra; Sarma, J A R P
2014-01-01
Fibroblast growth factor receptor 1 (FGFR1) a tyrosine kinase receptor, plays important roles in angiogenesis, embryonic development, cell proliferation, cell differentiation, and wound healing. The FGFR isoforms and their receptors (FGFRs) considered as a potential targets and under intense research to design potential anticancer agents. Fibroblast growth factors (FGF's) and its growth factor receptors (FGFR) plays vital role in one of the critical pathway in monitoring angiogenesis. In the current study, quantitative pharmacophore models were generated and validated using known FGFR1 inhibitors. The pharmacophore models were generated using a set of 28 compounds (training). The top pharmacophore model was selected and validated using a set of 126 compounds (test set) and also using external validation. The validated pharmacophore was considered as a virtual screening query to screen a database of 400,000 virtual molecules and pharmacophore model retrieved 2800 hits. The retrieved hits were subsequently filtered based on the fit value. The selected hits were subjected for docking studies to observe the binding modes of the retrieved hits and also to reduce the false positives. One of the potential hits (thiazole-2-amine derivative) was selected based the pharmacophore fit value, dock score, and synthetic feasibility. A few analogues of the thiazole-2-amine derivative were synthesized. These compounds were screened for FGFR1 activity and anti-proliferative studies. The top active compound showed 56.87% inhibition of FGFR1 activity at 50 µM and also showed good cellular activity. Further optimization of thiazole-2-amine derivatives is in progress.
Wu, Chi-Hao; Ko, Shun-Yao; Chen, Michael Yuanchien; Shih, Yin-Hua; Shieh, Tzong-Ming; Chuang, Li-Chuan; Wu, Ching-Yi
2016-01-01
The aim of the present study was to determine the antibacterial activities of the phenolic essential oil (EO) compounds hinokitiol, carvacrol, thymol, and menthol against oral pathogens. Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia. coli were used in this study. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), bacterial growth curves, temperature and pH stabilities, and synergistic effects of the liquid and vapor EO compounds were tested. The MIC/MBC of the EO compounds, ranging from the strongest to weakest, were hinokitiol (40–60 μg/mL/40-100 μg/mL), thymol (100–200 μg/mL/200-400 μg/mL), carvacrol (200–400 μg/mL/200-600 μg/mL), and menthol (500-more than 2500 μg/mL/1000-more than 2500 μg/mL). The antibacterial activities of the four EO phenolic compound based on the agar diffusion test and bacterial growth curves showed that the four EO phenolic compounds were stable under different temperatures for 24 h, but the thymol activity decreased when the temperature was higher than 80°C. The combination of liquid carvacrol with thymol did not show any synergistic effects. The activities of the vaporous carvacrol and thymol were inhibited by the presence of water. Continual violent shaking during culture enhanced the activity of menthol. Both liquid and vaporous hinokitiol were stable at different temperatures and pH conditions. The combination of vaporous hinokitiol with zinc oxide did not show synergistic effects. These results showed that the liquid and vapor phases of hinokitiol have strong anti-oral bacteria abilities. Hinokitiol has the potential to be applied in oral health care products, dental materials, and infection controls to exert antimicrobial activity. PMID:27681039
N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads.
Pérez, Bianca C; Teixeira, Cátia; Albuquerque, Inês S; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Prudêncio, Miguel; Gomes, Paula
2013-01-24
The control of malaria is challenged by drug resistance, and new antimalarial drugs are needed. New drug discovery efforts include consideration of hybrid compounds as potential multitarget antimalarials. Previous work from our group has demonstrated that hybrid structures resulting from cinnamic acid conjugation with heterocyclic moieties from well-known antimalarials present improved antimalarial activity. Now, we report the synthesis and SAR analysis of an expanded series of cinnamic acid derivatives displaying remarkably high activities against both blood- and liver-stage malaria parasites. Two compounds judged most promising, based on their in vitro activity and druglikeness according to the Lipinski rules and Veber filter, were active in vivo against blood-stage rodent malaria parasites. Therefore, the compounds reported represent a new entry as promising dual-stage antimalarial leads.
Ahsan, Mohamed Jawed; Khalilullah, Habibullah; Yasmin, Sabina; Jadav, Surender Singh; Govindasamy, Jeyabalan
2013-01-01
In search of potential therapeutics for cancer, we described herein the synthesis, characterization, and in vitro anticancer activity of a novel series of curcumin analogues. The anticancer effects were evaluated on a panel of 60 cell lines, according to the National Cancer Institute (NCI) screening protocol. There were 10 tested compounds among 14 synthesized compounds, which showed potent anticancer activity in both one-dose and 5-dose assays. The most active compound of the series was 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-yl(phenyl)methanone which showed mean growth percent of -28.71 in one-dose assay and GI₅₀ values between 0.0079 and 1.86 µM in 5-dose assay.
Han, Xiaoyan; Zhong, Yifan; Zhou, Guan; Qi, Hui; Li, Shengbin; Ding, Qiang; Liu, Zhenming; Song, Yali; Qiao, Xiaoqiang
2017-06-15
A new series of thirteen N-(carbobenzyloxy)-l-phenylalanine and N-(carbobenzyloxy)-l-aspartic acid-β-benzyl ester compounds were synthesized and evaluated for antiproliferative activity against four different human cancer cell lines: cervical cancer (HeLa), lung cancer (A549), gastric cancer (MGC-803) and breast cancer (MCF-7) as well as topoisomerase I and IIα inhibitory activity. Compounds (5a, 5b, 5e, 8a, 8b) showed significant antiproliferative activity with low IC 50 values against the four cancer cell lines. Equally, compounds 5a, 5b, 5e, 5f, 8a, 8d, 8e and 8f showed topoisomerase IIα inhibitory activity at 100μM with 5b, 5e, 8f exhibiting potential topoisomerase IIα inhibitory activity compared to positive control at 100μM and 20μM, respectively. Conversely compounds 5e, 5f, 5g and 8a showed weaker topoisomerase I inhibitory activity compared to positive control at 100μM. Compound 5b exhibited the most potent topoisomerase IIα inhibitory activity at low concentration and better antiproliferative activity against the four human cancer cell lines. The molecular interactions between compounds 5a-5g, 8a-8f and the topoisomerase IIα (PDB ID: 1ZXM) were further investigated through molecular docking. The results indicated that these compounds could serve as promising leads for further optimization as novel antitumor agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abouzid, Khaled A M; Al-Ansary, Ghada H; El-Naggar, Abeer M
2017-07-07
Targeting Pim-1 kinase recently proved to be profitable for conquering cancer proliferation. In the current study, we report the design, synthesis and biological evaluation of two novel series of 2-amino cyanopyridine series (5a-g) and 2-oxocyanopyridine series (6a-g) targeting Pim-1 kinase. All of the newly synthesized compounds were evaluated for their in vitro anticancer activity against a panel of three cell lines, namely, the liver cancer cell line (HepG2), the colon cancer cell line (HCT-116) and the breast cancer cell line (MCF-7). Most of the compounds showed good to moderate anti-proliferative activity against HepG2 and HCT-116 cell lines while only few compounds showed significant cytotoxic activity against MCF-7 cell line. Further, the Pim-1 kinase inhibitory activity for the two series was evaluated where most of the tested compounds showed marked Pim-1 kinase inhibitory activity (26%-89%). Moreover, determination of the IC 50 values unraveled very potent molecules in the submicromolar range where compound 6c possessed an IC 50 value of 0.94 μM. Moreover, apoptosis studies were conducted on the most potent compound 6c to evaluate the proapoptotic potential of our compounds. Interestingly, it induced the level of active caspase 3 and boosted the Bax/Bcl2 ratio 22704 folds in comparison to the control. Finally, a molecular docking study was conducted to reveal the probable interaction with the Pim-1 kinase active site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Moradi-Afrapoli, Fahimeh; van der Merwe, Hannes; De Mieri, Maria; Wilhelm, Anke; Stadler, Marco; Zietsman, Pieter C; Hering, Steffen; Swart, Kenneth; Hamburger, Matthias
2017-10-01
A dichloromethane extract from leaves of Searsia pyroides potentiated gamma aminobutyric acid-induced chloride currents by 171.8 ± 54% when tested at 100 µg/mL in Xenopus oocytes transiently expressing gamma aminobutyric acid type A receptors composed of α 1 β 2 γ 2 s subunits. In zebrafish larvae, the extract significantly lowered pentylenetetrazol-provoked locomotion when tested at 4 µg/mL. Active compounds of the extract were tracked with the aid of HPLC-based activity profiling utilizing a previously validated zebrafish larval locomotor activity assay. From two active HPLC fractions, compounds 1 - 3 were isolated. Structurally related compounds 4 - 6 were purified from a later eluting inactive HPLC fraction. With the aid of 1 H and 13 C NMR and high-resolution mass spectrometry, compounds 1 - 6 were identified as analogues of anacardic acid. Compounds 1 - 3 led to a concentration-dependent decrease of pentylenetetrazol-provoked locomotion in the zebrafish larvae model, while 4 - 6 were inactive. Compounds 1 - 3 enhanced gamma aminobutyric acid-induced chloride currents in Xenopus oocytes in a concentration-dependent manner, while 4 - 6 only showed marginal enhancements of gamma aminobutyric acid-induced chloride currents. Compounds 2, 3 , and 5 have not been reported previously. Georg Thieme Verlag KG Stuttgart · New York.
Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation
Terry-Lorenzo, Ryan T.; Chun, Lawrence E.; Brown, Scott P.; Heffernan, Michele L. R.; Fang, Q. Kevin; Orsini, Michael A.; Pollegioni, Loredano; Hardy, Larry W.; Spear, Kerry L.; Large, Thomas H.
2014-01-01
The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors. PMID:25001371
Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents
Zhang, Xiao-Fei; Sun, Rong-qin; Jia, Yi-fan; Chen, Qing; Tu, Rong-Fu; Li, Ke-ke; Zhang, Xiao-Dong; Du, Run-Lei; Cao, Ri-hui
2016-01-01
A series of novel harmine derivatives bearing a benzylindine substituent in position-1 of β-carboline ring were synthesized and evaluated as antitumor agents. The N2-benzylated β-carboline derivatives 3a–g represented the most interesting anticancer activities and compound 3c was found to be the most active agent to diverse cancer cell lines such as gastric carcinoma, melanoma and colorectal cancer. Notably, compound 3c showed low toxicity to normal cells. The treatment significantly induced cell apoptosis. Mechanistically, PI3K/AKT signaling pathway mediated compound 3c-induced apoptosis. Compound 3c inhibited phosphorylation of AKT and promoted the production of reactive oxygen species (ROS). The ROS scavenger, LNAC and GSH, could disturb the effect of compound 3c induced apoptosis and PI3K activity inhibitor LY294002 synergistically enhanced compound 3c efficacy. Moreover, the results from nude mice xenograft model showed that compound 3c treatment effectively inhibited tumor growth and decreased tumor weight. Collectively, our results demonstrated that compound 3c exerts apoptotic effect in cancer cells via suppression of phosphorylated AKT and evocation of ROS generation, which suggested that compound 3c might be served as a promising therapeutic agent for cancer treatment. PMID:27625151
Richter, Ingrid; Fidler, Andrew E.
2014-01-01
Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319
Yehye, Wageeh A; Abdul Rahman, Noorsaadah; Saad, Omar; Ariffin, Azhar; Abd Hamid, Sharifah Bee; Alhadi, Abeer A; Kadir, Farkaad A; Yaeghoobi, Marzieh; Matlob, Abdulsalam A
2016-06-28
A new series of multipotent antioxidants (MPAOs), namely Schiff base-1,2,4-triazoles attached to the oxygen-derived free radical scavenging moiety butylated hydroxytoluene (BHT) were designed and subsequently synthesized. The structure-activity relationship (SAR) of the designed antioxidants was established alongside the prediction of activity spectra for substances (PASS). The antioxidant activities of the synthesized compounds 4-10 were tested by the DPPH bioassay. The synthesized compounds 4-10 inhibited stable DPPH free radicals at a level that is 10(-4) M more than the well-known standard antioxidant BHT. Compounds 8-10 with para-substituents were less active than compounds 4 and 5 with trimethoxy substituents compared to those with a second BHT moiety (compounds 6 and 7). With an IC50 of 46.13 ± 0.31 µM, compound 6 exhibited the most promising in vitro inhibition at 89%. Therefore, novel MPAOs containing active triazole rings, thioethers, Schiff bases, and BHT moieties are suggested as potential antioxidants for inhibiting oxidative stress processes and scavenging free radicals, hence, this combination of functions is anticipated to play a vital role in repairing cellular damage, preventing various human diseases and in medical therapeutic applications.
Madaiah, Malavalli; Prashanth, Maralekere K; Revanasiddappa, Hosakere D; Veeresh, Bantal
2013-03-01
New 3-[(2,4-dioxo-1,3,8-triazaspiro[4.6]undec-3-yl)methyl]benzonitrile derivatives 8-37 were synthesized and their pharmacological activities were determined with the objective to better understand their structure-activity relationship (SAR) for anticonvulsant activity. All the compounds were evaluated for their possible anticonvulsant activity by maximal electroshock seizure (MES) and pentylenetetrazole (PTZ) test. Compounds 11, 18, 31, and 32 showed significant and protective effect on seizure, when compared with the standard drug valproate. The same compounds were found to exhibit advanced anticonvulsant activity as well as lower neurotoxicity than the reference drug. From this study, it is quite apparent that there are at least three parameters for the activity of anticonvulsant drugs, that is, a lipophilic domain, a hydrophobic center, and a two-electron donor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Fei; Dai, Jiang-Kun; Liu, Dan; Wang, Shi-Jun; Wang, Jun-Ru
2016-03-21
As part of our continuing research on canthin-6-one antimicrobial agents, a new series of ester derivatives of 10-hydroxycanthin-6-one were synthesized using a simple and effective synthetic route. The structure of each compound was characterized by NMR, ESI-MS, FT-IR, UV, and elemental analysis. The antimicrobial activity of these compounds against three phytopathogenic fungi (Alternaria solani, Fusarium graminearum, and Fusarium solani) and four bacteria (Bacillus cereus, Bacillus subtilis, Ralstonia solanacearum, and Pseudomonas syringae) were evaluated using the mycelium linear growth rate method and micro-broth dilution method, respectively. The structure-activity relationship is discussed. Of the tested compounds, 4 and 7s displayed significant antifungal activity against F. graminearum, with inhibition rates of 100% at a concentration of 50 μg/mL. Compounds 5, 7s, and 7t showed the best inhibitory activity against all the tested bacteria, with minimum inhibitory concentrations (MICs) between 3.91 and 31.25 μg/mL. Thus, 7s emerged as a promising lead compound for the development of novel canthine-6-one antimicrobial agents.
NASA Astrophysics Data System (ADS)
Bavadi, Masoumeh; Niknam, Khodabakhsh; Shahraki, Omolbanin
2017-10-01
The synthesis of new derivatives of pyrrole substituted sulfonamide groups is described. The in vitro anticancer activity of these pyrroles was evaluated against MCF7, MOLT-4 and HL-60 cells using MTT assay. The target compounds showed inhibitory activity against tested cell lines. Among the compounds, compound 1a exhibited good cytotoxic activity. The potential of this analog to induce apoptosis was confirmed in a nuclear morphological assay by Hoechst 33258 staining in the PC-12 cells. Finally, molecular docking was performed to determine the probable binding mode of the designed pyrrole derivatives into the active site of FGFR1 protein. DFT calculations were carried out at the B3LYP levels of theory with 6-31+G (d,p) basis set for compound 1a. The point group (C1) of it was obtained based on the optimized structures; the calculation of the FT-IR vibrational frequencies, 1H NMR and 13C NMR chemical shifts of the compound were carried out and compared with those obtained experimentally.
The in-vitro anti-leishmanial activity of inhibitors of ergosterol biosynthesis.
Gebre-Hiwot, A; Frommel, D
1993-12-01
The in-vitro activity of a group of antifungal compounds known to inhibit ergosterol synthesis was investigated against Leishmania donovani grown as intracellular amastigotes in the human leukaemia monocyte cell line, THP-1. Toxicity on the host cells was assessed using the colorimetric MTT assay. Compounds inhibiting 2,3 oxidosqualene lanosterol cyclase; RO 43-3815, RO 43-5955, RO 43-8208, RO 42-6589 and RO 43-0688 displayed high activity with a median effective dose (ED50) of 0.6, 0.9, 3.5, 2.2 and 0.7 mg/L respectively. Of the azole compounds, oxiconazole had an ED50 value of 3.3 mg/L while ketoconazole showed the least activity. The delta-14-reductase and delta-8-delta-7 isomerase inhibitor, amorolfine, gave the highest therapeutic index with an ED50 value of 1.6 mg/L. Most compounds tested had a lower ED50 value than the standard antileishmanial drugs, sodium stibogluconate (5.5 mg Sbv/L) and meglumine antimoniate (3.0 mg Sbv/L) indicating the clean potential of these antifungal compounds in treating leishmaniasis.
Fleeman, Renee; LaVoi, Travis M; Santos, Radleigh G; Morales, Angela; Nefzi, Adel; Welmaker, Gregory S; Medina-Franco, José L; Giulianotti, Marc A; Houghten, Richard A; Shaw, Lindsey N
2015-04-23
Mixture based synthetic combinatorial libraries offer a tremendous enhancement for the rate of drug discovery, allowing the activity of millions of compounds to be assessed through the testing of exponentially fewer samples. In this study, we used a scaffold-ranking library to screen 37 different libraries for antibacterial activity against the ESKAPE pathogens. Each library contained between 10000 and 750000 structural analogues for a total of >6 million compounds. From this, we identified a bis-cyclic guanidine library that displayed strong antibacterial activity. A positional scanning library for these compounds was developed and used to identify the most effective functional groups at each variant position. Individual compounds were synthesized that were broadly active against all ESKAPE organisms at concentrations <2 μM. In addition, these compounds were bactericidal, had antibiofilm effects, showed limited potential for the development of resistance, and displayed almost no toxicity when tested against human lung cells and erythrocytes. Using a murine model of peritonitis, we also demonstrate that these agents are highly efficacious in vivo.
NASA Astrophysics Data System (ADS)
Writer, J.; Keefe, S.; Barber, L. B.; Brown, G.; Schoenfuss, H.; Kiesling, R.; Gray, J. L.
2009-12-01
Select endocrine active compounds (EACs) were measured in four rivers in southern Minnesota. Additionally, caged and wild fish were assessed for indication of endocrine disruption using plasma vitellogenin and histopathology. Low concentrations of EACs were identified in all rivers, as was elevated plasma vitellogenin in caged and wild fish, indicating potential endocrine disruption. To evaluate the persistence of these compounds in small rivers, a tracer study was performed on one of the rivers (Redwood River) using Lagrangian sampling coupled with hydrologic modeling incorporating transient storage. Mass exchange (transient storage, sorption) and degradation were approximated as pseudo first order processes, and in-stream removal rates were then computed by comparing conservative tracer concentrations to organic compound concentrations. Production of estrone and 4-nonylphenol in the studied reach as a result of biochemical transformation from their parent compounds (17β-estradiol and alkylphenolpolyethoxylates, respectively) was quantified. The distance required for 17β-estradiol and nonylphenol to undergo a 50% reduction in concentration was >2 km and >10 km, respectively. These results indicate that EACs are transported several kilometers downstream from discharge sources and therefore have the potential of adversely impacting the lotic ecosystem over these distances.
Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B.; Titus, Louisa; Boden, Scott D.
2010-01-01
The requirement of large amounts of the recombinant human bone morphogenetic protein-2 (BMP-2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP-2. In this study, we describe the development and optimization of a cell-based assay that is sensitive, reproducible, and reliable in identifying reagents that potentiate the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. The assay is based on a BMP-responsive Smad1-driven luciferase reporter gene. LIM mineralization protein-1 (LMP-1) is a novel intracellular LIM domain protein that has been shown by our group to enhance cellular responsiveness to BMP-2. Our previous report elucidated that the binding of LMP-1 with the WW2 domain in Smad ubiquitin regulatory factor-1 (Smurf1) rescues the osteogenic Smads from degradation. Here, using the optimized cell-based assay, we first evaluated the activity of the recombinantly prepared proteins, LMP-1, and its mutant (LMP-1ΔSmurf1) that lacks the Smurf1-WW2 domain-binding motif. Both the wild type and the mutant proteins were engineered to contain an 11-amino acid HIV-TAT protein derived membrane transduction domain to aid the cellular delivery of recombinant proteins. The cell-based reporter assay confirmed that LMP-1 potentiates the BMP-induced stimulation of C2C12 cells towards the osteoblastic phenotype. The potentiating effect of LMP-1 was significantly reduced when a specific-motif known to interact with Smurf1 was mutated. We validated the results obtained in the reporter assay by also monitoring the expression of mRNA for osteocalcin and alkaline phosphatase (ALP) which is widely accepted osteoblast differentiation marker genes. Finally, we provide further confirmation of our results by measuring the activity of alkaline phosphatase in support of the accuracy and reliability of our cell-based assay. Direct delivery of synthesized protein can be limited by high cost, instability or inadequate post-translational modifications. Thus, there would be a clear benefit for a low cost, cell penetrable chemical compound. We successfully used our gene expression-based assay to choose an active compound from a select group of compounds that were identified by computational screenings as the most likely candidates for mimicking the function of LMP-1. Among them, we selected SVAK-3, a compound that showed a dose-dependent potentiation of BMP-2 activity in inducing osteoblastic differentiation of C2C12 cells. We show that either the full length LMP-1 protein or its potential mimetic compound consistently exhibit similar potentiation of BMP-2 activity even when multiple markers of the osteoblastic phenotype were parallely monitored. PMID:19862690
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.
Role of the modulation of CYP1A1 expression and activity in chemoprevention.
Badal, S; Delgoda, R
2014-07-01
As one of the main extra-hepatic cytochrome P450 (CYP) enzymes, CYP1A1 has been comprehensively investigated for its ability to metabolize both exogenous and endogenous compounds into their carcinogenic derivatives. These derivatives are linked to cancer initiation and progression. The compound benzo-a-pyrene (BaP), a copious and noxious compound present in coal tar, automobile exhaust fumes, cigarette smoke and charbroiled food, is metabolised by CYP1A1 and has been studied in great detail. Other compounds reliant on the same enzyme for their activation include 7,12 dimethylbenz(a)anthracene (DMBA) and heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). This review takes an in-depth look at a number of phytochemicals, plant extracts and a few synthetic compounds that have been researched and deemed potential chemopreventives via their interaction with the activity and expression of CYP1A1. It will also review a useful active site model of CYP1A1. Based on inhibitors of CYP1A1 that have demonstrated in vivo use as chemopreventors, CYP1A1 is a useful initial target for screening compounds with such potential, with the use of rapid in vitro and/or in silico assessments. Chemoprevention is a means by which healthy tissues are protected via the prevention, inhibition or reversal of carcinogenesis. This review focuses on one important pathway of carcinogenesis and identifies the important role that CYP1A1 plays in that pathway. It is hoped that highlighting the importance of such a key target, will help revive further research into and application of inhibitors of CYP1A1 towards generating improved chemopreventors. Copyright © 2014 John Wiley & Sons, Ltd.
Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena
2013-01-01
The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Sohn, Jae Hak; Lee, Yu-Ri; Lee, Dong-Sung; Kim, Youn-Chul; Oh, Hyuncheol
2013-09-28
The selective inhibition of PTP1B has been widely recognized as a potential drug target for the treatment of type 2 diabetes and obesity. In the course of screening for PTP1B inhibitory fungal metabolites, the organic extracts of several fungal species isolated from marine environments were found to exhibit significant inhibitory effects, and the bioassay-guided investigation of these extracts resulted in the isolation of fructigenine A (1), cyclopenol (2), echinulin (3), flavoglaucin (4), and viridicatol (5). The structures of these compounds were determined mainly by analysis of NMR and MS data. These compounds inhibited PTP1B activity with 50% inhibitory concentration values of 10.7, 30.0, 29.4, 13.4, and 64.0 micrometer, respectively. Furthermore, the kinetic analysis of PTP1B inhibition by compounds 1 and 5 suggested that compound 1 inhibited PTP1B activity in a noncompetitive manner, whereas compound 5 inhibited PTP1B activity in a competitive manner.
Wu, Jianzhang; Wu, Shoubiao; Shi, Lingyi; Zhang, Shanshan; Ren, Jiye; Yao, Song; Yun, Di; Huang, Lili; Wang, Jiabing; Li, Wulan; Wu, Xiaoping; Qiu, Peihong; Liang, Guang
2017-01-05
The nuclear factor-kappa B (NF-κB) signaling pathway has been targeted for the therapy of various cancers, including lung cancer. EF24 was considered as a potent inhibitor of NF-κB signaling pathway. In this study, a series of asymmetric EF24 analogues were synthesized and evaluated for their anti-cancer activity against three lung cancer cell lines (A549, LLC, H1650). Most of the compounds exhibited good anti-tumor activity. Among them, compound 81 showed greater cytotoxicity than EF24. Compound 81 also possessed a potent anti-migration and anti-proliferative ability against A549 cells in a concentration-dependent manner. Moreover, compound 81 induced lung cancer cells death by inhibiting NF-κB signaling pathway, and activated the JNK-mitochondrial apoptotic pathway by increasing reactive oxygen species (ROS) generation resulting in apoptosis. In summary, compound 81 is a valuable candidate for anti-lung cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Mallesha, Lingappa; Mohana, Kikkeri N; Veeresh, Bantal; Alvala, Ravi; Mallika, Alvala
2012-01-01
A series of new 2-methyl-3-(2-piperazin-1-yl-ethyl)-pyrido[1,2-a]pyrimidin-4-one derivatives 6a-j were synthesized by a nucleophilic substitution reaction of 2-methyl-3-(2-piperazin-1-ylethyl)-pyrido[1,2-a]pyrimidin-4-one with various sulfonyl chlorides. The compounds were characterized by different spectral studies. All the compounds were evaluated for their antiproliferative effect using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method against four human cancer cell lines (K562, Colo-205, MDA-MB 231, IMR-32) for the time period of 24 h. Among the series, compounds 6d, 6e and 6i showed good activity on all cell lines except K562, whereas the other compounds in the series exhibited moderate activity. Compound 6d could be a potential anticancer agent and therefore deserves further research.
Natural bioactive compounds from winery by-products as health promoters: a review.
Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina
2014-09-04
The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.
Unnikrishnan, P S; Suthindhiran, K; Jayasri, M A
2015-10-01
In the continuing search for safe and efficient antidiabetic drug, marine algae become important source which provide several compounds of immense therapeutic potential. Alpha-amylase, alpha-glucosidase inhibitors, and antioxidant compounds are known to manage diabetes and have received much attention recently. In the present study, four green algae (Chaetomorpha aerea, Enteromorpha intestinalis, Chlorodesmis, and Cladophora rupestris) were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro. The phytochemical constituents of all the extracts were qualitatively determined. Antidiabetic activity was evaluated by inhibitory potential of extracts against alpha-amylase and alpha-glucosidase by spectrophotometric assays. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide (H2O2), and nitric oxide scavenging assay. Gas chromatography-mass spectrometry (GC-MS) analysis was carried out to determine the major compound responsible for its antidiabetic action. Among the various extracts screened, chloroform extract of C. aerea (IC50 - 408.9 μg/ml) and methanol extract of Chlorodesmis (IC50 - 147.6 μg/ml) showed effective inhibition against alpha-amylase. The extracts were also evaluated for alpha-glucosidase inhibition, and no observed activity was found. Methanol extract of C. rupestris showed notable free radical scavenging activity (IC50 - 666.3 μg/ml), followed by H2O2 (34%) and nitric oxide (49%). Further, chemical profiling by GC-MS revealed the presence of major bioactive compounds. Phenol, 2,4-bis (1,1-dimethylethyl) and z, z-6,28-heptatriactontadien-2-one were predominantly found in the methanol extract of C. rupestris and chloroform extract of C. aerea. Our results demonstrate that the selected algae exhibit notable alpha-amylase inhibition and antioxidant activity. Therefore, characterization of active compounds and its in vivo assays will be noteworthy. Four green algae were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro C. aerea and Chlorodesmis showed significant inhibition against alpha-amylase, and C. rupestris showed notable free radical scavenging activityNo observed activity was found against alpha-glucosidaseGC-MS analysis of the active extracts reveals the presence of major compounds which gives an insight on the antidiabetic and antioxidant activity of these algae. Abbreviations used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, BHT: Butylated hydroxytoluene, GC-MS: Gas chromatography-mass spectrometry.
Unnikrishnan, P. S.; Suthindhiran, K.; Jayasri, M. A.
2015-01-01
Aim: In the continuing search for safe and efficient antidiabetic drug, marine algae become important source which provide several compounds of immense therapeutic potential. Alpha-amylase, alpha-glucosidase inhibitors, and antioxidant compounds are known to manage diabetes and have received much attention recently. In the present study, four green algae (Chaetomorpha aerea, Enteromorpha intestinalis, Chlorodesmis, and Cladophora rupestris) were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro. Materials and Methods: The phytochemical constituents of all the extracts were qualitatively determined. Antidiabetic activity was evaluated by inhibitory potential of extracts against alpha-amylase and alpha-glucosidase by spectrophotometric assays. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide (H2O2), and nitric oxide scavenging assay. Gas chromatography-mass spectrometry (GC-MS) analysis was carried out to determine the major compound responsible for its antidiabetic action. Results: Among the various extracts screened, chloroform extract of C. aerea (IC50 − 408.9 μg/ml) and methanol extract of Chlorodesmis (IC50 − 147.6 μg/ml) showed effective inhibition against alpha-amylase. The extracts were also evaluated for alpha-glucosidase inhibition, and no observed activity was found. Methanol extract of C. rupestris showed notable free radical scavenging activity (IC50 – 666.3 μg/ml), followed by H2O2 (34%) and nitric oxide (49%). Further, chemical profiling by GC-MS revealed the presence of major bioactive compounds. Phenol, 2,4-bis (1,1-dimethylethyl) and z, z-6,28-heptatriactontadien-2-one were predominantly found in the methanol extract of C. rupestris and chloroform extract of C. aerea. Conclusion: Our results demonstrate that the selected algae exhibit notable alpha-amylase inhibition and antioxidant activity. Therefore, characterization of active compounds and its in vivo assays will be noteworthy. SUMMARY Four green algae were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro C. aerea and Chlorodesmis showed significant inhibition against alpha-amylase, and C. rupestris showed notable free radical scavenging activityNo observed activity was found against alpha-glucosidaseGC-MS analysis of the active extracts reveals the presence of major compounds which gives an insight on the antidiabetic and antioxidant activity of these algae. Abbreviations used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, BHT: Butylated hydroxytoluene, GC-MS: Gas chromatography-mass spectrometry. PMID:27013787
Consensus model for identification of novel PI3K inhibitors in large chemical library.
Liew, Chin Yee; Ma, Xiao Hua; Yap, Chun Wei
2010-02-01
Phosphoinositide 3-kinases (PI3Ks) inhibitors have treatment potential for cancer, diabetes, cardiovascular disease, chronic inflammation and asthma. A consensus model consisting of three base classifiers (AODE, kNN, and SVM) trained with 1,283 positive compounds (PI3K inhibitors), 16 negative compounds (PI3K non-inhibitors) and 64,078 generated putative negatives was developed for predicting compounds with PI3K inhibitory activity of IC(50) < or = 10 microM. The consensus model has an estimated false positive rate of 0.75%. Nine novel potential inhibitors were identified using the consensus model and several of these contain structural features that are consistent with those found to be important for PI3K inhibitory activities. An advantage of the current model is that it does not require knowledge of 3D structural information of the various PI3K isoforms, which is not readily available for all isoforms.
Consensus model for identification of novel PI3K inhibitors in large chemical library
NASA Astrophysics Data System (ADS)
Liew, Chin Yee; Ma, Xiao Hua; Yap, Chun Wei
2010-02-01
Phosphoinositide 3-kinases (PI3Ks) inhibitors have treatment potential for cancer, diabetes, cardiovascular disease, chronic inflammation and asthma. A consensus model consisting of three base classifiers (AODE, kNN, and SVM) trained with 1,283 positive compounds (PI3K inhibitors), 16 negative compounds (PI3K non-inhibitors) and 64,078 generated putative negatives was developed for predicting compounds with PI3K inhibitory activity of IC50 ≤ 10 μM. The consensus model has an estimated false positive rate of 0.75%. Nine novel potential inhibitors were identified using the consensus model and several of these contain structural features that are consistent with those found to be important for PI3K inhibitory activities. An advantage of the current model is that it does not require knowledge of 3D structural information of the various PI3K isoforms, which is not readily available for all isoforms.
Olazaran, Fabián E; Rivera, Gildardo; Pérez-Vázquez, Alondra M; Morales-Reyes, Cynthia M; Segura-Cabrera, Aldo; Balderas-Rentería, Isaías
2017-01-12
Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [ N -( p -methoxy-phenyl)-2-( p -methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site.
2016-01-01
Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [N-(p-methoxy-phenyl)-2-(p-methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site. PMID:28105271
Apple Pomace as Potential Source of Natural Active Compounds.
Waldbauer, Katharina; McKinnon, Ruxandra; Kopp, Brigitte
2017-08-01
Apple pomace is a waste product of the apple manufacturing industry that has been in the focus of life sciences as it represents a low-cost source of fruit-derived compounds. High fruit consumption is associated with beneficial health effects, and therefore, apple pomace and its constituents raise therapeutic interest. The present work reviews (i) the chemical constituents of apple pomace, (ii) optimized extraction methods of apple pomace compounds, and (iii) biological activities of apple pomace. Current evidence of apple pomace influence on digestion and metabolism, cholesterol and triglyceride homeostasis, diabetes, and sex hormones is summarized. Furthermore, studies regarding its antioxidative, anti-inflammatory, antiproliferative, antibacterial and antiviral effects are presented. The review concludes that apple pomace is an underutilized waste product of the apple industry with the potential of being processed for its nutritional and pharmaceutical value. Georg Thieme Verlag KG Stuttgart · New York.
Mao, Fei; Huang, Ling; Luo, Zonghua; Liu, Anqiu; Lu, Chuanjun; Xie, Zhiyong; Li, Xingshu
2012-10-01
In an effort to identify novel multifunctional drug candidates for the treatment of Alzheimer's disease (AD), a series of hybrid molecules were synthesised by reacting N-(aminoalkyl)tacrine with salicylic aldehyde or derivatives of 2-aminobenzaldehyde. These compounds were then evaluated as multifunctional anti-Alzheimer's disease agents. All of the hybrids are potential biometal chelators, and in addition, most of them were better antioxidants and inhibitors of cholinesterases and amyloid-β (Aβ) aggregation than the lead compound tacrine. Compound 7c has the potential to be a candidate for AD therapy: it is a much better inhibitor of acetylcholinesterase (AChE) than tacrine (IC(50): 0.55 nM vs 109 nM), has good biometal chelation ability, is able to inhibit Aβ aggregation and has moderate antioxidant activity (1.22 Trolox equivalents). Copyright © 2012 Elsevier Ltd. All rights reserved.
Evaluation of anti-bacterial and wound healing activity of the fruits of Amorpha fruticosa L.
Qu, Xueling; Diao, Yunpeng; Zhang, Zhen; Wang, Shouyu; Jia, Yujie
2013-01-01
As the traditional Chinese medicine, the fresh fruits of Amorpha fruticosa L. were applied for the treatment of carbuncle, eczema and burn (Das et al., 2007). However, little is known about the functional roles of the fruits of Amorpha fruticosa L. during wound healing progress. In the present study, we evaluated both antimicrobial potential against a wide range of microorganisms and wound healing activity of the seven compounds isolated from the fruits of Amorpha fruticosa L in vitro and in vivo. Our results showed that compounds I (6a,12a-dehydroamorphin), V (dehydrosermundone) and VI (tephrosin) isolated from the fruits of Amorpha fruticosa L. performed dominant antimicrobial potential against microorganisms. Moreover, these compounds significantly enhanced fibroblasts proliferation and migration, leading to promotion of wound healing. Thus, it could be possible for the therapeutic utilization of Amorpha fruticosa L. for wound healing in the future.
Aqua mediated synthesis of bio-active compounds.
Panda, Siva S
2013-05-01
Recently the aqueous medium has attracted the interest of organic chemists, and many. Moreover, in the past 20 years, the drug-discovery process has undergone extraordinary changes, and high-throughput biological screening of potential drug candidates has led to an ever-increasing demand for novel drug-like compounds. Noteworthy advantages were observed during the course of study on aqua mediated synthesis of compounds of medicinal importance. The established advantages of water as a solvent for reactions are, water is the most abundant and available resource on the planet and many biochemical processes occur in aqueous medium. This review will focus on describing new developments in the application of water in medicinal chemistry for the synthesis of bio-active compounds possessing various biological properties.
Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.
Andrews, Katherine T; Fisher, Gillian M; Sumanadasa, Subathdrage D M; Skinner-Adams, Tina; Moeker, Janina; Lopez, Marie; Poulsen, Sally-Ann
2013-11-15
Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite. Copyright © 2013 Elsevier Ltd. All rights reserved.
The antioxidant effect of derivatives pyroglutamic lactam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohadi, Atisya; Lazim, Azwani Mat; Hasbullah, Siti Aishah
Diphenylpicrylhydrazyl (DPPH) is widely used for quickly accessing the ability of polyphenols to transfer labile H atoms to radicals. The antioxidant activity of all the synthesized compounds was screened by DPPH method. Compound (4) showed 54% antioxidant potential while all other compounds were found to have moderate to have moderate to mild antioxidant activity ranging from 47–52%. Pyroglutamic lactams have been synthesized stereoselectively in racemic form from levulinic acid as bifunctional adduct using convertible isocyanide in one-pot Ugi 4-center-3-component condensation reaction (U-4C-3CR). The product formed provides biologically interesting products in excellent yields in a short reaction time. The structures ofmore » the synthesized compounds were elucidated using spectroscopic data and elemental analysis.« less
Vokou, Despina; Douvli, Panagiota; Blionis, George J; Halley, John M
2003-10-01
We compared the potential allelopathic activity of 47 monoterpenoids of different chemical groups, by estimating their effect on seed germination and subsequent growth of Lactuca sativa seedlings. Apart from individual compounds, eleven pairs at different proportions were also tested. As a group, the hydrocarbons, except for (+)-3-carene, were the least inhibitory. Of the oxygenated compounds, the least inhibitory were the acetates; whenever the free hydroxyl group of an alcohol turned into a carboxyl group, the activity of the resulting ester was markedly lower (against both germination and seedling growth). Twenty-four compounds were extremely active against seedling growth (inhibiting it by more than 85%), but only five against seed germination. The compounds that were most active against both processes belonged to the groups of ketones and alcohols; they were terpinen-4-ol, dihydrocarvone, and two carvone stereoisomers. We used a model to investigate whether compounds acted independently when applied in pairs. The combined effect varied. In half of the cases, it followed the pattern expected under the assumption of independence; in the rest, either synergistic or antagonistic interactions were found in both germination and elongation. However, even in cases of synergistic interactions, the level of inhibition was not comparable to that of a single extremely active compound, unless such a compound already participated in the combination. The specific structural factors that operate and determine the activity of monoterpenoids still remain rather obscure. The same holds true for the combined effect; its character cannot in general be predicted on the basis of individual compounds acting alone.
Chen, Chun-Han; Lee, Chia-Hwa; Liou, Jing-Ping; Teng, Che-Ming; Pan, Shiow-Lin
2015-01-01
Upregulation of class I histone deacetylases (HDAC) correlates with poor prognosis in colorectal cancer (CRC) patients. Previous study revealed that (E)-N-hydroxy-3-(1-(4-methoxyphenylsulfonyl)-1,2,3,4-tetrahydroquinolin-6-yl)acrylamide (Compound 11) is a potent and selective class I HDAC inhibitor, exhibited significant anti-proliferative activity in various human cancer cell lines. In current study, we demonstrated that compound 11 exhibited significant anti-proliferative and cytotoxic activity in CRC cells. Notably, compound 11 was less potent than SAHA in inhibiting HDAC6 as evident from the lower expression of acetyl-α-tubulin, suggesting higher selectivity for class I HDACs. Mechanistically, compound 11 induced cell-cycle arrest at the G2/M phase, activated both intrinsic- and extrinsic-apoptotic pathways, altered the expression of Bcl-2 family proteins and exerted a potent inhibitory effect on survival signals (p-Akt, p-ERK) in CRC cells. Moreover, we provide evidence that compound 11 suppressed motility, decreased mesenchymal markers (N-cadherin and vimentin) and increased epithelial marker (E-cadherin) through down-regulation of Akt. The anti-tumor activity and underlying molecular mechanisms of compound 11 were further confirmed using the HCT116 xenograft model in vivo. Our findings provide evidence of the significant anti-tumor activity of compound 11 in a preclinical model, supporting its potential as a novel therapeutic agent for CRC. PMID:26462017
Design and Synthesis of Curcumin-Like Diarylpentanoid Analogues as Potential Anticancer Agents.
Qudjani, Elahe; Iman, Maryam; Davood, Asghar; Ramandi, Mahdi F; Shafiee, Abbas
2016-01-01
Curcumin is a polyphenolic natural compound with multiple targets that used for the prophylaxis and treatment of some type of cancers like cervical and pancreatic cancers. Some recent patent for curcumin for cancer has also been reviewed. In this study, ten new curcumin derivatives were designed and synthesized and their cytostatic activity evaluated against the Hela and Panc cell lines that some of them showed more activity than curcumin. In the present study, a series of mono-carbonyl derivatives of curcumin were designed and prepared. The details of the synthesis and chemical characterization of the synthesized compounds are described. The cytostatic activities of the designed compounds are assessed in two different tumor cell lines using MTT test. In vitro screening for human cervix carcinoma cell lines (Hela) and pancreatic cell lines (Panc-1) at 24 and 48 hour showed that all the analogs possessed good activity against these tumor cell lines and compounds 5a, 5c and 6 with high potency can be used as a new lead compounds for the designing and finding new and potent cytostatic agents. Docking studies indicated that compound 5c readily binds the active site of human glyoxalase I protein via two strong hydrogen bonds engaging residues of Glu-99 and Lys-156. Our results are useful in guiding a design of optimized ligands with improved pharmacokinetic properties and increased of anti-cancer activity vs. the prototype curcumin compound.
Mirza, Muhammad Usman; Ikram, Nazia
2016-10-26
The Ebola virus (EBOV) has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA) approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40), including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated. Homology modelling and subsequent superimposition of binding site residues on other strains of EBOV were carried out to check residual conformations, and hence to confirm the efficacy of potential compounds. As a mechanism for artefactual inhibition of proteins through non-specific compounds, virtual hits were assessed for their aggregator potential compared with previously reported aggregators. These systematic studies have indicated that a few compounds may be effective inhibitors of EBOV replication and therefore might have the potential to be developed as anti-EBOV drugs after subsequent testing and validation in experiments in vivo.
Jeyakkumar, Ponmani; Zhang, Ling; Avula, Srinivasa Rao; Zhou, Cheng-He
2016-10-21
A series of novel berberine-benzimidazole derivatives were conveniently and efficiently synthesized and characterized by NMR, IR, MS and HRMS spectra. Most of the prepared compounds showed effective antimicrobial activities in contrast with clinical norfloxacin, chloromycin and fluconazole. Especially, compound 5d exhibited good anti-MRSA, anti-Escherichia coli, and anti-Salmonella typhi activity with low MIC values of 2-8 μg/mL, which were comparable or even superior to reference drugs. The preliminarily interactive investigation revealed that the most active compound 5d could effectively intercalate into DNA to form 5d-DNA complex and cleavage DNA by agarose gel electrophoresis experiments. It was also found that compound 5d was able to efficiently permeabilize the membranes of both Gram-positive (MRSA) and Gram-negative (E. coli DH52) bacteria. Experiments and molecular docking both showed that human serum albumin (HSA) could effectively transport compound 5d and hydrophobic interactions and hydrogen bonds play important roles in the association of compound 5d with HSA. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Rashid, Mamoon Ur; Alamzeb, Muhammad; Ali, Saqib; Shah, Zafar Ali; Naz, Ishrat; Khan, Ashfaq Ahmad; Semaan, Dima; Khan, Mohammad Rafiullah
2017-02-01
A new compound named as santolinylol-3-acetate (4-(2-hydroxypropan-2-yl)-2-methylhexa-1,5-dien-3-yl acetate) (3), along with seven known compounds; linoleic acid (1), benzoic acid (2), santolinylol (4), ethyl-(E)-p-hydroxy cinnamate (5), scopoletin (6), esculetin (7) isofraxidin (8) and eupatorin (9), were isolated from the aerial parts (ethanolic extract) of endangered species: Artemisia incisa Pamp (Asteraceae). The compounds' structures were determined through modern spectroscopic techniques, and comparison of data (physicochemical constants) with the literature. The relative stereochemistry of santolinylol-3-acetate (3) was determined by comparing its data of NOESY, and specific rotation with its diol analogue; santolinylol (4), isolated from the same plant; A. incisa. The results of the antifungal activity showed that coumarins are as whole less active compounds. Compounds 3 (25 and 300 μg/mL), and 4 (12.5 and 300 μg/mL), showed good activities against Candida albicans, and Aspergillus flavus, respectively, which justifies A. incisa as a traditional medicine for curing the said fungal infections.
Anti-inflammatory sesquiterpene lactones from the flower of Vernonia cinerea.
Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Simmons, Charles J; Borris, Robert P; Tanamatayarat, Patcharawan; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Pezzuto, John M; Chang, Leng Chee
2012-09-01
Bioassay-guided fractionation of the hexane extract from the flowers of Vernonia cinerea (Asteraceae) led to the isolation of a new sesquiterpene lactone, 8α-hydroxyhirsutinolide (2), and a new naturally occurring derivative, 8α-hydroxyl-1-O-methylhirsutinolide (3), along with seven known compounds (1 and 4-9). The structures of the new compounds were determined by 1D and 2D NMR experiments and by comparison with the structure of compound 1, whose relative stereochemistry was determined by X-ray analysis. The isolated compounds were evaluated for their cancer chemopreventive potential based on their ability to inhibit nitric oxide (NO) production and tumor necrosis factor alpha (TNF-α)-induced NF-κB activity. Compounds 1, 2, 4, 5, and 9 inhibited TNF-α-induced NF-κB activity with IC(50) values of 3.1, 1.9, 0.6, 5.2, and 1.6 μM, respectively; compounds 4 and 6-9 exhibited significant NO inhibitory activity with IC(50) values of 2.0, 1.5, 1.2, 2.7, and 2.4 μM, respectively. Published by Elsevier Ltd.
Zhan, Xiao-Ping; Lan, Lan; Wang, Shuai; Zhao, Kai; Xin, Yu-Xuan; Qi, Qi; Wang, Yao-Lin; Mao, Zhen-Min
2017-02-01
A series of 3-(substituted aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT-26, HeLa, MGC80-3, NCI-H460 and SGC-7901 cells (IC 50 = 8.2 - 31.7 μm); 3g, 3n and 3a were the most potent compounds against CHO (IC 50 = 8.2 μm), HCT-15 (IC 50 = 21 μm) and MCF-7 cells (IC 50 = 18.7 μm), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC 50 > 100 μm). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S
2018-07-01
To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro
2017-01-01
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories. PMID:28850074
Identification of marine neuroactive molecules in behaviour-based screens in the larval zebrafish.
Long, Si-Mei; Liang, Feng-Yin; Wu, Qi; Lu, Xi-Lin; Yao, Xiao-Li; Li, Shi-Chang; Li, Jing; Su, Huanxing; Pang, Ji-Yan; Pei, Zhong
2014-05-30
High-throughput behavior-based screen in zebrafish is a powerful approach for the discovery of novel neuroactive small molecules for treatment of nervous system diseases such as epilepsy. To identify neuroactive small molecules, we first screened 36 compounds (1-36) derived from marine natural products xyloketals and marine isoprenyl phenyl ether obtained from the mangrove fungus. Compound 1 demonstrated the most potent inhibition on the locomotor activity in larval zebrafish. Compounds 37-42 were further synthesized and their potential anti-epilepsy action was then examined in a PTZ-induced epilepsy model in zebrafish. Compound 1 and compounds 39, 40 and 41 could significantly attenuate PTZ-induced locomotor hyperactivity and elevation of c-fos mRNA in larval zebrafish. Compound 40 showed the most potent inhibitory action against PTZ-induced hyperactivity. The structure-activity analysis showed that the OH group at 12-position played a critical role and the substituents at the 13-position were well tolerated in the inhibitory activity of xyloketal derivatives. Thus, these derivatives may provide some novel drug candidates for the treatment of epilepsy.
Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien
2015-12-02
Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2'-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver-Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics.
Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien
2015-01-01
Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics. PMID:26633381
Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed
2017-04-15
Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Cunningham, Virginia L; D'Aco, Vincent J; Pfeiffer, Danielle; Anderson, Paul D; Buzby, Mary E; Hannah, Robert E; Jahnke, James; Parke, Neil J
2012-07-01
This article presents the capability expansion of the PhATE™ (pharmaceutical assessment and transport evaluation) model to predict concentrations of trace organics in sludges and biosolids from municipal wastewater treatment plants (WWTPs). PhATE was originally developed as an empirical model to estimate potential concentrations of active pharmaceutical ingredients (APIs) in US surface and drinking waters that could result from patient use of medicines. However, many compounds, including pharmaceuticals, are not completely transformed in WWTPs and remain in biosolids that may be applied to land as a soil amendment. This practice leads to concerns about potential exposures of people who may come into contact with amended soils and also about potential effects to plants and animals living in or contacting such soils. The model estimates the mass of API in WWTP influent based on the population served, the API per capita use, and the potential loss of the compound associated with human use (e.g., metabolism). The mass of API on the treated biosolids is then estimated based on partitioning to primary and secondary solids, potential loss due to biodegradation in secondary treatment (e.g., activated sludge), and potential loss during sludge treatment (e.g., aerobic digestion, anaerobic digestion, composting). Simulations using 2 surrogate compounds show that predicted environmental concentrations (PECs) generated by PhATE are in very good agreement with measured concentrations, i.e., well within 1 order of magnitude. Model simulations were then carried out for 18 APIs representing a broad range of chemical and use characteristics. These simulations yielded 4 categories of results: 1) PECs are in good agreement with measured data for 9 compounds with high analytical detection frequencies, 2) PECs are greater than measured data for 3 compounds with high analytical detection frequencies, possibly as a result of as yet unidentified depletion mechanisms, 3) PECs are less than analytical reporting limits for 5 compounds with low analytical detection frequencies, and 4) the PEC is greater than the analytical method reporting limit for 1 compound with a low analytical detection frequency, possibly again as a result of insufficient depletion data. Overall, these results demonstrate that PhATE has the potential to be a very useful tool in the evaluation of APIs in biosolids. Possible applications include: prioritizing APIs for assessment even in the absence of analytical methods; evaluating sludge processing scenarios to explore potential mitigation approaches; using in risk assessments; and developing realistic nationwide concentrations, because PECs can be represented as a cumulative probability distribution. Finally, comparison of PECs to measured concentrations can also be used to identify the need for fate studies of compounds of interest in biosolids. Copyright © 2011 SETAC.
Synthesis and hypoglycemic activity of 9-O-(lipophilic group substituted) berberine derivatives.
Zhang, Shanshan; Wang, Xiaohong; Yin, Weicheng; Liu, Zhenbao; Zhou, Mi; Xiao, Daipeng; Liu, Yanfei; Peng, Dongming
2016-10-01
A series of 9-O-(lipophilic group substituted) berberine derivatives were synthesized and evaluated for their cytotoxicity and hypoglycemic activity against HepG2 cells. All the results indicated that most of the synthesized compounds exhibited lower cytotoxicity and a certain degree of hypoglycemic activity. Especially the compounds 5g and 5h displayed dramatically increased hypoglycemic activity compared with berberine, and the cytotoxicity maintained or even lower than berberine, indicating that they are potential candidates for new anti-type 2 diabetes mellitus drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ibrahim, M K; Taghour, M S; Metwaly, A M; Belal, A; Mehany, A B M; Elhendawy, M A; Radwan, M M; Yassin, A M; El-Deeb, N M; Hafez, E E; ElSohly, M A; Eissa, I H
2018-06-04
New series of [1,2,4]triazolo [4,3-a]quinoxaline and bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been designed, synthesized and biologically evaluated for their cytotoxic activities against three tumor cell lines (HePG-2, Hep-2 and Caco-2). Compounds 16 e , 21, 25 a and 25 b exhibited the highest activities against the examined cell lines with IC 50 values ranging from 0.29 to 0.90 μM comparable to that of doxorubicin (IC 50 ranging from 0.51 to 0.73 μM). The most active members were further evaluated for their topoisomerase II (Topo II) inhibitory activities and DNA intercalating affinities as potential mechanisms for their anti-proliferative activities. Interestingly, the results of Topo II inhibition and DNA binding assays were consistent with that of the cytotoxicity data, where the most potent anti-proliferative derivatives exhibited good Topo II inhibitory activities and DNA binding affinities, comparable to that of doxorubicin. Moreover, the most active compound 25 a caused cell cycle arrest at G2/M phase and induced apoptosis in Caco-2 cells. In addition, Furthermore, molecular docking studies were performed for the novel compounds against DNA-Topo II complex to investigate their binding patterns. Based on these studies, it was concluded that DNA binding and/or Topo II inhibition may contribute to the observed cytotoxicity of the synthesized compounds. Copyright © 2018. Published by Elsevier Masson SAS.
Bailey, T.A.
1984-01-01
Four species of aquatic fungi (Achlya flagellata, A. racemosa, Saprolegnia hypogyna, and S. megasperma) were exposed to 25 chemicals representing seven classes of compounds for 15 and 60 min, in an effort to identify potential fungicidal agents for use in fish culture. The antifungal activity of each chemical was compared with that of malachite green, a reference compound with known fungicidal properties but not registered for fishery use. Six compounds which inhibited fungal growth on artificial media at concentrations of < 100 mg/l (listed in order of decreasing antifungal activity) were the cationics Du-terA? and copper oxychloride sulfate, the amine LesanA?, the amide BAS-389-O1F and the cationics CuprimyxinA? and RoccalA? II. Certain chemicals from these classes of compounds may have promise as aquatic fungicides.
Lu, Chuanjun; Guo, Yueyan; Li, Jianheng; Yao, Meicun; Liao, Qiongfeng; Xie, Zhiyong; Li, Xingshu
2012-12-15
A series of novel resveratrol derivatives were designed, synthesised and evaluated as potential therapeutic agents for the treatment of Alzheimer's disease. Among these compounds, compound 7l, (E)-5-(4-(isopropylamino)styryl)benzene-1,3-diol, exhibited potent ß-amyloid aggregation inhibition activity, which was confirmed by a ThT fluorescence assay (71.65% at 20 μM) and transmission electron microscopy (TEM). Compound 7l also exhibited good antioxidant activity (4.12 Trolox equivalents in an oxygen radical absorbance capacity assay and a 37% reduction in reactive oxygen species in cells at 10 μM). The cytotoxicity analysis of compounds 7f, 7i, 7j and 7l indicated that these compounds have lower toxicities than resveratrol at 60 μM. Copyright © 2012 Elsevier Ltd. All rights reserved.