Aristolochic acid-related nephropathy associated with the popular Chinese herb Xi Xin.
Yang, Huang-Yu; Lin, J-L; Chen, Kuan-Hsing; Yu, Chun-Chen; Hsu, Po-Yaur; Lin, Chun-Liang
2006-01-01
Chinese herbs nephropathy is known as a subacute interstitial nephritis attributed to aristolochic acid. This work describes the case of a 49-year-old male who displayed subacute renal failure induced by ingestion of herbal powder containing Xi Xin, which includes aristolochic acid. Since Xi Xin is a common ingredient in traditional formulae, care needs to be taken in the future to identify the aristolochic acid concentration of different components of Xi Xin. Xi Xin containing aristolochic acid should be forbidden for use in remedies in order to prevent the harmful effects of aristolochic acid.
Cao, Yi; Tan, Zhou-jin; Xia, Bo-hou; Xie, Jia-chi; Lin, Lin-mei; Liao, Duan-fang
2015-05-01
This paper was aim to screen microorganisms with attenualed efficiency for Chinese medicine containing aristolochic acid A by liquid-state fermentation. Twelve Chinese medicine were detected by UPLC and aristolochic acid A was only founded in four species of Aristolochia, those were Caulis Aristolochiae Manshuriensis, Aristolochiae Radix, Aistolochia Contorta Bunge and Herba Aristolochiae Mollissima,but not in the others. With the four Chinese medicine containing aristolochic acid A as raw material, ten microorganisms were tested, and the content of aristolochic acid A was detected by UPLC. The results showed that one microorganism can decrease content of aristolochic acid A in all those four Chinese medicine.
[Trace analysis of aristolochic acid A].
Liu, Yalin; Gao, Huimin; Wang, Zhimin; Zhang, Qiwei
2010-12-01
A HPLC method for limit detection of aristolochic acid A in the Chinese herbs containing aristolochic acid or suspected-containing aristolochic acid and their preparations was established. The samples were analyzed on an Alltima C18 column eluted with methanol-water-acetic acid (68:32:1.5) as the mobile phase. Flow rate was at 1.0 mL x min(-1) and the detection wavelength was at 390 nm. The calibration curve was linear over the range from 0.016 to 0.51 g (r = 0.9993) and LOD was 4 ng. The average recovery was 101.2% with RSD of 2.01%. The procedures of sample preparation were systematically investigated. The contents of aristolochic acid A in Radix et Rhizoma Asari bought from market or drugstore were fluctuated from 3.1 to 26.6 microg x g(-1) and 3 of 11 samples accorded with the quality requirement of current Chinese Pharmacopoeia. Among 15 batches samples of Chinese medicaments, only one sample was found to contain aristolochic acid A. The present investigation shows that the method is sensitive and repeatable and it could be used for the limit detection of aristolochic acid A in the Chinese herbal medicines containing trace amount of aristolochic acid A or suspected-containing aristolochic acid A and their preparations.
Aristolochic acid nephropathy: Harbinger of a global iatrogenic disease.
Grollman, Arthur P
2013-01-01
This review constitutes an overview of our investigations of aristolochic acid nephropathy, a chronic kidney disease associated with carcinomas of the upper urinary tract. Our studies began by confirming the hypothesis that chronic dietary poisoning by aristolochic acid was responsible for endemic (Balkan) nephropathy. A unique TP53 mutational signature in urothelial tumors and the presence of aristolactam-DNA adducts in the renal cortex, defined in the course of this research, proved to be robust biomarkers of exposure to this potent nephrotoxin and human carcinogen. Armed with this information, we used molecular epidemiologic approaches and novel mechanistic information to establish the causative role of aristolochic acid in upper urinary tract carcinoma in Taiwan, where one-third of the population had been prescribed herbal remedies containing Aristolochia, and the recorded incidence of upper urinary tract cancers is the highest in the world. As traditional Chinese medicine is practiced similarly in Taiwan and China, it is likely that upper urinary tract carcinomas and their attendant aristolochic acid nephropathy are prevalent in China and other Asian countries where Aristolochia herbs have been used for centuries in the treatment and prevention of disease, creating a potential public health problem of considerable magnitude. Copyright © 2012 Wiley Periodicals, Inc.
Bunel, Valérian; Antoine, Marie-Hélène; Nortier, Joëlle; Duez, Pierre; Stévigny, Caroline
2015-03-01
This in vitro study aimed to determine the effects of a Panax ginseng extract on aristolochic acid-mediated toxicity in HK-2 cells. A methanolic extract of ginseng (50 µg/mL) was able to reduce cell survival after treatment with 50 µM aristolochic acid for 24, 48, and 72 h, as evidenced by a resazurin reduction assay. This result was confirmed by a flow cytometric evaluation of apoptosis using annexin V-PI staining, and indicated higher apoptosis rates in cells treated with aristolochic acid and P. ginseng extract compared with aristolochic acid alone. However, P. ginseng extract by itself (5 and 50 µg/mL) increased the Ki-67 index, indicating an enhancement in cellular proliferation. Cell cycle analysis excluded a P. ginseng extract-mediated induction of G2/M cell cycle arrest such as the one typically observed with aristolochic acid. Finally, β-catenin acquisition was found to be accelerated when cells were treated with both doses of ginseng, suggesting that the epithelial phenotype of renal proximal tubular epithelial cells was maintained. Also, ginseng treatment (5 and 50 µg/mL) reduced the oxidative stress activity induced by aristolochic acid after 24 and 48 h. These results indicate that the ginseng extract has a protective activity towards the generation of cytotoxic reactive oxygen species induced by aristolochic acid. However, the ginseng-mediated alleviation of oxidative stress did not correlate with a decrease but rather with an increase in aristolochic acid-induced apoptosis and death. This deleterious herb-herb interaction could worsen aristolochic acid tubulotoxicity and reinforce the severity and duration of the injury. Nevertheless, increased cellular proliferation and migration, along with the improvement in the epithelial phenotype maintenance, indicate that ginseng could be useful for improving tubular regeneration and the recovery following drug-induced kidney injury. Such dual activities of ginseng certainly warrant further in vivo studies. Georg Thieme Verlag KG Stuttgart · New York.
ARISTOLOCHIC ACID I METABOLISM IN THE ISOLATED PERFUSED RAT KIDNEY
Priestap, Horacio A.; Torres, M. Cecilia; Rieger, Robert A.; Dickman, Kathleen G.; Freshwater, Tomoko; Taft, David R.; Barbieri, Manuel A.; Iden, Charles R.
2012-01-01
Aristolochic acids are natural nitro-compounds found globally in the plant genus Aristolochia that have been implicated in the severe illness in humans termed aristolochic acid nephropathy (AAN). Aristolochic acids undergo nitroreduction, among other metabolic reactions, and active intermediates arise that are carcinogenic. Previous experiments with rats showed that aristolochic acid I (AA-I), after oral administration or injection, is subjected to detoxication reactions to give aristolochic acid Ia, aristolactam Ia, aristolactam I and their glucuronide and sulfate conjugates that can be found in urine and faeces. Results obtained with whole rats do not clearly define the role of liver and kidney in such metabolic transformation. In this study, in order to determine the specific role of the kidney on the renal disposition of AA-I and to study the biotransformations suffered by AA-I in this organ, isolated kidneys of rats were perfused with AA-I. AA-I and metabolite concentrations were determined in perfusates and urines using HPLC procedures. The isolated perfused rat kidney model showed that AA-I distributes rapidly and extensively in kidney tissues by uptake from the peritubular capillaries and the tubules. It was also established that the kidney is able to metabolize AA-I into aristolochic acid Ia, aristolochic acid Ia O-sulfate, aristolactam Ia, aristolactam I and aristolactam Ia O-glucuronide. Rapid demethylation and sulfation of AA-I in the kidney generate aristolochic acid Ia and its sulfate conjugate that are voided to the urine. Reduction reactions to give the aristolactam metabolites occur to a slower rate. Renal clearances showed that filtered AA-I is reabsorbed at the tubules whereas the metabolites are secreted. The unconjugated metabolites produced in the renal tissues are transported to both urine and perfusate whereas the conjugated metabolites are almost exclusively secreted to the urine. PMID:22118289
[Determination of aristolochic acid A in Guanxinsuhe preparations by RP-HPLC].
Li, Lin; Gao, Hui-Min; Wang, Zhi-Min; Wang, Wei-Hao
2006-01-01
To establish a determination method of aristolochic acid A in Guanxisuhe preparations by RP-HPLC. The instrument used was Hewlett-Packard 1100 HPLC with a Alltech C18 column (4.6 mm x 250 mm, 5 microm). The mobile phase was methanol-water-acetic acid (68: 32:1) and the flow rate was 1.0 mL x min(-1). The UV detection wavelength was 390 nm and the column temperature was at 35 degrees C. The extracted solvent for the preparations was methanol solution contained 10% formic acid. The calibration curve was linear (r = 0.999 9) within the range of 0.119-1.89 microg for aristolochic acid A. The average recovery 99.0%, RSD 0.63%. The method with good linear relationship was convenient, quick, accurate, and suitable for the quality control of the aristolochic acid A in Guanxinsuhe and other traditional Chinese medicines containing aristolochic acid A.
Yang, Hsiao-Yu; Wang, Jung-Der; Lo, Tsai-Chang; Chen, Pau-Chung
2013-01-01
Aristolochic acid can cause urothelial carcinoma. Herbal remedies containing aristolochic acids were previously categorized as proven group 1 human carcinogens by the WHO cancer agency, the International Agency for Research on Cancer. However, the health effect on workers exposed to aristolochic acid is unclear. Fangchi, a representative herb containing aristolochic acid, is commonly used in the Chinese herbal medicine industry. We determined whether workers exposed to fangchi are at increased risk for urothelial carcinoma. We designed a case-control study based in a national representative cohort of Chinese herbalists. This study analyzed 6,564 Chinese herbalists employed between 1985 and 1998. All incident cases of urothelial carcinoma that occurred between 1988 and 2001 were defined as the case group. Controls were selected from the baseline cohort in a randomized manner. A total of 24 cases and 140 controls were included in analysis. Information about fangchi exposure was obtained in a questionnaire survey administered in 2002. Processing, selling or dispensing herbs containing fangchi significantly increased the risk of urothelial carcinoma (HR 2.4, 95% CI 1.1-5.3, p = 0.03). This relationship was independent of cigarette smoking or potential arsenic exposure from drinking water from deep wells. Exposure to the Chinese herbal drug fangchi increases the risk of urothelial carcinoma in herbalists. Appropriate medical monitoring is warranted for workers who have similar exposure. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
[Determination of aristolochic acid A in Radix Aristolociae and Herba Asari by RP-HPLC].
Jiang, Xu; Wang, Zhi-min; You, Li-shuan; Dai, Li-ping; Ding, Guang-zhi
2004-05-01
To develop a HPLC method to determine the contents of aristolochic A in aristolochia debilis and Asarun spp.. Methanol-water-formic acid extracts were separated on an Alltech C18 column with methanol-water-acetic acid (68:32:1) as mobile phase. The flow rate was 1.0 mL x min(-1). UV detection wavelength was 390 nm. Column temperature was 35 degrees C. Aristolochic acid A was separated well. The relationship of injection amounts and peak areas was linear (r = 0.9999) the range of 0.12-1.89 microg x g(-1) and the recovery rate was 101.8% (n = 5). 11 samples of aristolochia debilis which bought from different areas in China were determined, and the contents of aristolochic acid A varied from 0.9 to 2 mg x g(-1). The difference of the contents in Asarum spp. was obvious. The highest is 0.35, and aristolochic acid A couldn't be detected in one sample.
Lai, Ming-Nan; Chen, Pau-Chung; Chen, Ya-Yin
2010-01-01
Background Consumption of Chinese herbs that contain aristolochic acid (eg, Mu Tong) has been associated with an increased risk of urinary tract cancer. Methods We conducted a population-based case–control study in Taiwan to examine the association between prescribed Chinese herbal products that contain aristolochic acid and urinary tract cancer. All patients newly diagnosed with urinary tract cancer (case subjects) from January 1, 2001, to December 31, 2002, and a random sample of the entire insured population from January 1, 1997, to December 31, 2002 (control subjects), were selected from the National Health Insurance reimbursement database. Subjects who were ever prescribed more than 500 pills of nonsteroidal anti-inflammatory drugs and/or acetaminophen were excluded, leaving 4594 case patients and 174 701 control subjects in the final analysis. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by using multivariable logistic regression models for the association between prescribed Chinese herbs containing aristolochic acid and the occurrence of urinary tract cancer. Models were adjusted for age, sex, residence in a township where black foot disease was endemic (an indicator of chronic arsenic exposure from drinking water [a risk factor for urinary tract cancer]), and history of chronic urinary tract infection. Statistical tests were two-sided. Results Having been prescribed more than 60 g of Mu Tong and an estimated consumption of more than 150 mg of aristolochic acid were independently associated with an increased risk for urinary tract cancer in multivariable analyses (Mu Tong: at 61–100 g, OR = 1.6, 95% CI = 1.3 to 2.1, and at >200 g, OR = 2.1, 95% CI = 1.3 to 3.4; aristolochic acid: at 151–250 mg, OR = 1.4, 95% CI = 1.1 to 1.8, and at >500 mg, OR = 2.0, 95% CI = 1.4 to 2.9). A statistically significant linear dose–response relationship was observed between the prescribed dose of Mu Tong or the estimated cumulative dose of aristolochic acid and the risk of urinary tract cancer (P < .001 for both). Conclusions Consumption of aristolochic acid–containing Chinese herbal products is associated with an increased risk of cancer of the urinary tract in a dose-dependent manner that is independent of arsenic exposure. PMID:20026811
Trujillo, William A.; Sorenson, Wendy R.; La Luzerne, Paul; Austad, John W.; Sullivan, Darryl
2008-01-01
The presence of aristolochic acid in some dietary supplements is a concern to regulators and consumers. A method has been developed, by initially using a reference method as a guide, during single laboratory validation (SLV) for the determination of aristolochic acid I, also known as aristolochic acid A, in botanical species and dietary supplements at concentrations of approximately 2 to 32 μg/g. Higher levels were determined by dilution to fit the standard curve. Through the SLV, the method was optimized for quantification by liquid Chromatography with ultraviolet detection (LC-UV) and LC/mass Spectrometry (MS) confirmation. The test samples were extracted with organic solvent and water, then injected on a reverse phase LC column. Quantification was achieved with linear regression using a laboratory automation system. The SLV study included systematically optimizing the LC-UV method with regard to test sample size, fine grinding of solids, and solvent extraction efficiency. These parameters were varied in increments (and in separate optimization studies), in order to ensure that each parameter was individually studied; the test results include corresponding tables of parameter variations. In addition, the chromatographic conditions were optimized with respect to injection volume and detection wavelength. Precision studies produced overall relative standard deviation values from 2.44 up to 8.26% for aristolochic acid I. Mean recoveries were between 100 and 103% at the 2 μg/g level, between 102 and 103% at the 10 μg/g level, and 104% at the 30 μg/g level. PMID:16915829
Trujillo, William A; Sorenson, Wendy R; La Luzerne, Paul; Austad, John W; Sullivan, Darryl
2006-01-01
The presence of aristolochic acid in some dietary supplements is a concern to regulators and consumers. A method has been developed, by initially using a reference method as a guide, during single laboratory validation (SLV) for the determination of aristolochic acid I, also known as aristolochic acid A, in botanical species and dietary supplements at concentrations of approximately 2 to 32 microg/g. Higher levels were determined by dilution to fit the standard curve. Through the SLV, the method was optimized for quantification by liquid chromatography with ultraviolet detection (LC-UV) and LC/mass spectrometry (MS) confirmation. The test samples were extracted with organic solvent and water, then injected on a reverse phase LC column. Quantification was achieved with linear regression using a laboratory automation system. The SLV study included systematically optimizing the LC-UV method with regard to test sample size, fine grinding of solids, and solvent extraction efficiency. These parameters were varied in increments (and in separate optimization studies), in order to ensure that each parameter was individually studied; the test results include corresponding tables of parameter variations. In addition, the chromatographic conditions were optimized with respect to injection volume and detection wavelength. Precision studies produced overall relative standard deviation values from 2.44 up to 8.26% for aristolochic acid I. Mean recoveries were between 100 and 103% at the 2 microg/g level, between 102 and 103% at the 10 microg/g level, and 104% at the 30 microg/g level.
Agrawal, Poonam; Laddha, Kirti
2017-04-01
This study was undertaken to isolate and quantify aristolochic acid in Aristolochia indica stem and Apama siliquosa root. Aristolochic acid is an important biomarker component present in the Aristolochiaceae family. The isolation method involved simple solvent extraction, precipitation and further purification, using recrystallization. The structure of the compound was confirmed using infrared spectroscopy, mass spectrometry and nuclear magnetic resonance. A specific and rapid high-performance thin layer chromatography (HPTLC) method was developed for analysis of aristolochic acid. The method involved separation on the silica gel 60 F 254 plates using the single solvent system of n-hexane: chloroform: methanol. The method showed good linear relationship in the range 0.4-2.0 μg/spot with r 2 = 0.998. The limit of detection and limit of quantification were 62.841 ng/spot and 209.47 ng/spot, respectively. The proposed validated HPTLC method was found to be an easy to use, accurate and convenient method that could be successfully used for standardization and quality assessment of herbal material as well as formulations containing different species of the Aristolochiaceae family. Copyright © 2016. Published by Elsevier B.V.
Fanconi's syndrome, interstitial fibrosis and renal failure by aristolochic acid in Chinese herbs.
Hong, Yin-Tai; Fu, Lin-Shien; Chung, Lin-Huei; Hung, Shien-Chung; Huang, Yi-Ting; Chi, Chin-Shiang
2006-04-01
Aristolochic acid-associated nephropathy (AAN) has been identified as a separate entity of progressive tubulo-interstitial nephropathy. Its characteristic pathological findings, including hypocellular interstitial fibrosis, intimal thickening of interlobular and afferent arterioles with glomeruli sparing or mild sclerosis, have been identified. Many cases of AAN in adults have been reported in Taiwan as well as throughout the world, but it has seldom been described in children. We report on a 10-year-old boy who presented with severe anemia, Fanconi's syndrome, and progressive renal failure. Renal biopsy revealed typical findings of AAN. Aristolochic acids I and II were identified from a Chinese herb mixture ingested by the boy. AAN was diagnosed after other etiologies had been excluded. The case demonstrates the hazards of Chinese herbs with regard to children's health in Taiwan and suggests that more attention should be paid to this issue.
Abdullah, Rozaini; Diaz, Leolean Nyle; Wesseling, Sebastiaan; Rietjens, Ivonne M C M
2017-02-01
After the incidences of induction of aristolochic acid nephropathy after consumption of herbal weight loss preparations that accidentally contained aristolochic acids (AAs), several countries defined national restrictions on the presence of AAs in food, including plant food supplements (PFS) and herbal products. This study investigates whether the risks associated with exposure to AAs via PFS and herbal products are at present indeed negligible. Data reported in literature on AA levels in PFS and other herbal products and also obtained from a new series of PFS in the present study were used to calculate the estimated daily intakes (EDIs) and corresponding margins of exposure (MOEs). Available literature data revealed that 206 out of 573 samples were found to contain aristolochic acid I (AAI) and/or aristolochic acid II (AAII). The results obtained from recently collected PFS revealed that both AAI and AAII were detected in three out of 18 analysed PFS at levels up to 594.8 and 235.3 µg g -1 , respectively, being in line with the levels reported in literature. The EDIs resulting from intake of these PFS resulted in MOEs that were generally below 10,000, corroborating the priority for risk management. Although these results refer to PFS collected by targeted sampling strategies, the data reveal that AA-containing PFS are still freely available. When considering that the use of these samples may be limited to shorter periods of time, the EDIs might be lower, but MOE values would still be lower than 10,000 for more than 50% of the AA-containing PFS and herbal products. In conclusion, the presence of AAs in PFS and herbal products even several years after instalment of the legal restrictions still raises concern, especially for people who frequently use the respective PFS and herbal products.
Bhattacharjee, Payel; Bhattacharyya, Debasish
2013-01-09
The aqueous extract of the roots of Aristolochia indica is used as a decoction for the ailment of a number of diseases including snake bite treatment. Though the alcoholic extract of the different parts of the plant are well studied, information on the aqueous extract is limited. We have estimated aristolochic acid, different enzymes, enzyme inhibitors and anti-snake venom potency of its root extract. Reverse phase-HPLC was used to quantify aristolochic acid. Zymography, DQ-gelatin assay and atomic force microscopy were done to demonstrate gelatinase and collagenase activities of the extract. SDS-PAGE followed by MS/MS analysis revealed the identity of major protein components. Toxicity of the extract was estimated on animal model. Interaction of the extract with Russell's viper venom components was followed by Rayleigh scattering and enzyme assay. The aristolochic acid content of the root extract is 3.08 ± 1.88 × 10(-3)mg/ml. The extract possesses strong gelatinolytic, collagenase, peroxidase and nuclease activities together with l-amino acid oxidase and protease inhibitory potencies. Partial proteomic studies indicated presence of starch branching enzymes as major protein constituent of the extract. The extract did not show any acute and sub-chronic toxicity in animals at lower doses, but high dose causes liver and kidney damage. The extract elongated duration of survival of animals after application of Russell's viper venom. Considering the low aristolochic acid content of the extract, its consumption for a short time at moderate dose does not appear to cause serious toxicity. Strong inhibition of l-amino acid oxidase may give partial relief from snake bite after topical application of the extract. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Arlt, Volker M; Meinl, Walter; Florian, Simone; Nagy, Eszter; Barta, Frantisek; Thomann, Marlies; Mrizova, Iveta; Krais, Annette M; Liu, Maggie; Richards, Meirion; Mirza, Amin; Kopka, Klaus; Phillips, David H; Glatt, Hansruedi; Stiborova, Marie; Schmeiser, Heinz H
2017-04-01
Exposure to aristolochic acid (AA) causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN). Conflicting results have been found for the role of human sulfotransferase 1A1 (SULT1A1) contributing to the metabolic activation of aristolochic acid I (AAI) in vitro. We evaluated the role of human SULT1A1 in AA bioactivation in vivo after treatment of transgenic mice carrying a functional human SULT1A1-SULT1A2 gene cluster (i.e. hSULT1A1/2 mice) and Sult1a1(-/-) mice with AAI and aristolochic acid II (AAII). Both compounds formed characteristic DNA adducts in the intact mouse and in cytosolic incubations in vitro. However, we did not find differences in AAI-/AAII-DNA adduct levels between hSULT1A1/2 and wild-type (WT) mice in all tissues analysed including kidney and liver despite strong enhancement of sulfotransferase activity in both kidney and liver of hSULT1A1/2 mice relative to WT, kidney and liver being major organs involved in AA metabolism. In contrast, DNA adduct formation was strongly increased in hSULT1A1/2 mice compared to WT after treatment with 3-nitrobenzanthrone (3-NBA), another carcinogenic aromatic nitro compound where human SULT1A1/2 is known to contribute to genotoxicity. We found no differences in AAI-/AAII-DNA adduct formation in Sult1a1(-/-) and WT mice in vivo. Using renal and hepatic cytosolic fractions of hSULT1A1/2, Sult1a1(-/-) and WT mice, we investigated AAI-DNA adduct formation in vitro but failed to find a contribution of human SULT1A1/2 or murine Sult1a1 to AAI bioactivation. Our results indicate that sulfo-conjugation catalysed by human SULT1A1 does not play a role in the activation pathways of AAI and AAII in vivo, but is important in 3-NBA bioactivation.
Aristolochic acid-associated urothelial cancer in Taiwan
Chen, Chung-Hsin; Dickman, Kathleen G.; Moriya, Masaaki; Zavadil, Jiri; Sidorenko, Viktoriya S.; Edwards, Karen L.; Gnatenko, Dmitri V.; Wu, Lin; Turesky, Robert J.; Wu, Xue-Ru; Pu, Yeong-Shiau; Grollman, Arthur P.
2012-01-01
Aristolochic acid, a potent human carcinogen produced by Aristolochia plants, is associated with urothelial carcinoma of the upper urinary tract (UUC). Following metabolic activation, aristolochic acid reacts with DNA to form aristolactam (AL)-DNA adducts. These lesions concentrate in the renal cortex, where they serve as a sensitive and specific biomarker of exposure, and are found also in the urothelium, where they give rise to a unique mutational signature in the TP53 tumor-suppressor gene. Using AL-DNA adducts and TP53 mutation spectra as biomarkers, we conducted a molecular epidemiologic study of UUC in Taiwan, where the incidence of UUC is the highest reported anywhere in the world and where Aristolochia herbal remedies have been used extensively for many years. Our study involves 151 UUC patients, with 25 patients with renal cell carcinomas serving as a control group. The TP53 mutational signature in patients with UUC, dominated by otherwise rare A:T to T:A transversions, is identical to that observed in UUC associated with Balkan endemic nephropathy, an environmental disease. Prominent TP53 mutational hotspots include the adenine bases of 5′AG (acceptor) splice sites located almost exclusively on the nontranscribed strand. A:T to T:A mutations also were detected at activating positions in the FGFR3 and HRAS oncogenes. AL-DNA adducts were present in the renal cortex of 83% of patients with A:T to T:A mutations in TP53, FGFR3, or HRAS. We conclude that exposure to aristolochic acid contributes significantly to the incidence of UUC in Taiwan, a finding with significant implications for global public health. PMID:22493262
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi Xinming; Cai Yan; Gong Likun
Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca{sup 2+}, AAI caused mitochondrial swelling, leakage of Ca{sup 2+}, membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelialmore » cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid.« less
Aristolic Acid Derivatives from the Bark of Antidesma ghaesembilla.
Schäfer, Sibylle; Schwaiger, Stefan; Stuppner, Hermann
2017-08-01
Antidesma ghaesembilla is an important medicinal and food plant in many Asian countries. Ten substances could be isolated from the dichloromethane and methanol extract: sitostenone ( 3 ), daucosterol ( 4 ), chavibetol ( 5 ), asperphenamate ( 6 ), protocatechuic acid ( 7 ), vanillic acid-4- O - β -D-glucoside ( 8 ), 1- O - β -D-glucopyranosyl-3- O -methyl-phloroglucinol ( 9 ), and aristolic acid II-8- O - β -D-glucoside ( 10 ), and two new aristolic acid derivatives, 10-amino-5,7-dimethoxy-aristolic acid II (= 6-amino-9,11-dimethoxyphenanthro[3,4- d ]-1,3-dioxole-5-carboxylic acid; 1 ) and 5,7-dimethoxy-aristolochic acid II (= 9,11-dimethoxy-6-nitrophenantro[3,4- d ]-1,3-dioxole-5-carboxylic acid; 2 ). Exposure to humans of some of these compounds is associated with a severe disease today known as aristolochic acid nephropathy. Therefore, the traditional usage of this plant has to be reconsidered carefully. Georg Thieme Verlag KG Stuttgart · New York.
[Nephrotoxicity of Aristolochia manshuriensis and aristolochic acids in mice].
Ding, Xiao-shuang; Liang, Ai-hua; Wang, Jin-hua; Xiao, Yong-qing; Wu, Zi-lun; Li, Chun-ying; Li, Li; He, Rong; Hui, Lian-qiang; Liu, Bao-yan
2005-07-01
The acute toxic effects of Aristolochia manshuriensis (GMT) and the total aristolochic acids (TA) were compared in mice with aristolochic acid A (AA) as the dose standard. The dose relationship of the renal toxicity induced by Aristolochia manshuriensis was determined. A single dose of GMT extract or TA was given intragastrically to mice at different doses. LD50 values, the blood levels of BUN, Cr and ALT were measured. A histomorphological study was also performed in livers and kidneys of mice. LD50 value of GMT extract was 4.4 g x kg(-1) which was equivalent to 40 mg x kg(-1) as calculated by the content of AA in GMT extract, and this value was comparable with LD50 obtained from TA given intragastrically in mice (equivalent to 33 mg x kg(-1) of AA for male and 37 mg x kg(-1) for female). GMT extract caused a significant increase in blood BUN and Cr and an obvious morphological change in kidney in a dose-dependent manner at doses of AA 4.5 mg x kg(-1) and above. Liver damage, characterized by both an increase in blood level of AST and histomorphological change, was observed at doses of AA 25 mg x kg(-1) and above. All changes were in proportion to the doses of AA. GMT causes both renal and liver toxicity. The dose leading to nephrotoxicity is much lower than that inducing hepatatoxicity. Aristolochic acids existed in GMT are the main toxic components to cause renal toxicity which is a crucial cause to result in death. The lethality and nephrotoxicity of GMT is in proportion to the doses of AA.
NASA Astrophysics Data System (ADS)
Wu, Lan; Sun, Wei; Wang, Bo; Zhao, Haiyu; Li, Yaoli; Cai, Shaoqing; Xiang, Li; Zhu, Yingjie; Yao, Hui; Song, Jingyuan; Cheng, Yung-Chi; Chen, Shilin
2015-08-01
Traditional herbal medicines adulterated and contaminated with plant materials from the Aristolochiaceae family, which contain aristolochic acids (AAs), cause aristolochic acid nephropathy. Approximately 256 traditional Chinese patent medicines, containing Aristolochiaceous materials, are still being sold in Chinese markets today. In order to protect consumers from health risks due to AAs, the hidden assassins, efficient methods to differentiate Aristolochiaceous herbs from their putative substitutes need to be established. In this study, 158 Aristolochiaceous samples representing 46 species and four genera as well as 131 non-Aristolochiaceous samples representing 33 species, 20 genera and 12 families were analyzed using DNA barcodes based on the ITS2 and psbA-trnH sequences. Aristolochiaceous materials and their non-Aristolochiaceous substitutes were successfully identified using BLAST1, the nearest distance method and the neighbor-joining (NJ) tree. In addition, based on sequence information of ITS2, we developed a Real-Time PCR assay which successfully identified herbal material from the Aristolochiaceae family. Using Ultra High Performance Liquid Chromatography-Mass Spectrometer (UHPLC-HR-MS), we demonstrated that most representatives from the Aristolochiaceae family contain toxic AAs. Therefore, integrated DNA barcodes, Real-Time PCR assays using TaqMan probes and UHPLC-HR-MS system provides an efficient and reliable authentication system to protect consumers from health risks due to the hidden assassins (AAs).
Lian, Christine Guo; Xu, Shuyun; Guo, Weimin; Yan, Jian; Frank, Maximilian Y M; Liu, Robert; Liu, Cynthia; Chen, Ying; Murphy, George F; Chen, Tao
2015-11-01
The level of 5-hydroxymethylcytosine (5-hmC) converted by ten-eleven translocation (TET) family is decreased in cancers. However, whether 5-hmC level is perturbed in early stages of carcinogenesis caused by genotoxic carcinogens is not defined. 5-hmC levels and TET2 expression were measured in liver of rats treated with genotoxic carcinogens, riddelliine, or aristolochic acid. Levels of 5-hmC and TET2 expression decreased in the liver of the carcinogens-treated rats. Loss of 5-hmC correlates well with documented induction of genetic mutations by the carcinogens, suggesting that TET2-mediated 5-hydroxymethylation plays an epigenetic role in early state of carcinogenesis. © 2014 Wiley Periodicals, Inc.
Lian, Christine Guo; Xu, Shuyun; Guo, Weimin; Yan, Jian; Frank, Maximilian Y M; Liu, Robert; Liu, Cynthia; Chen, Ying; Murphy, George F.; Chen, Tao
2018-01-01
The level of 5-hydroxymethylcytosine (5-hmC) converted by ten-eleven translocation (TET) family is decreased in cancers. However, whether 5-hmC level is perturbed in early stages of carcinogenesis caused by genotoxic carcinogens is not defined. 5-hmC levels and TET2 expression were measured in liver of rats treated with genotoxic carcinogens, riddelliine, or aristolochic acid. Levels of 5-hmC and TET2 expression decreased in the liver of the carcinogens-treated rats. Loss of 5-hmC correlates well with documented induction of genetic mutations by the carcinogens, suggesting that TET2-mediated 5-hydroxymethylation plays an epigenetic role in early state of carcinogenesis. PMID:25154389
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levova, Katerina; Moserova, Michaela; Nebert, Daniel W.
Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−)more » and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.« less
Li, Weiwei; Chan, Chi-Kong; Wong, Yee-Lam; Chan, K K Jason; Chan, Ho Wai; Chan, Wan
2018-10-30
Emerging evidence suggests that aristolochic acids (AA) produced naturally by a common weed Aristolochia clematitis in the cultivation fields is contaminating the food products in Balkan Peninsula and acting as the etiological agent in the development of Balkan endemic nephropathy. In this study, we investigated the combined use of natural anti-oxidative "food additives" and different cooking methods to find a solution for the widespread contamination of AA in food products. The results indicated that the addition of healthy dietary supplements (such as cysteine, glutathione, ascorbic acid, citric acid and magnesium) during cooking, is a highly efficient method in lowering the concentration of AA in the final food products. Because previous observation indicated one of the toxicological mechanisms by which AA exert its toxicity is to induce oxidative stress in internal organs, it is anticipated that these added anti-oxidants will also help to attenuate the nephrotoxicity of AA. Copyright © 2018 Elsevier Ltd. All rights reserved.
... a full list, see the FDA website at https: / / go. usa. gov/ xN66S. Contact the manufacturer or ... I go for more information? National Toxicology Program https: / / ntp. niehs. nih. gov/ go/ roc The Report ...
Yang, Hsiao-Yu; Chen, Pau-Chung; Wang, Jung-Der
2014-01-01
Herbal remedies containing aristolochic acid (AA) have been designated to be a strong carcinogen. This review summarizes major epidemiologic evidence to argue for the causal association between AA exposure and urothelial carcinoma as well as nephropathy. The exposure scenarios include the following: Belgian women taking slimming pills containing single material Guang Fang Ji, consumptions of mixtures of Chinese herbal products in the general population and patients with chronic renal failure in Taiwan, occupational exposure in Chinese herbalists, and food contamination in farming villages in valleys of the Danube River. Such an association is corroborated by detecting specific DNA adducts in the tumor tissue removed from affected patients. Preventive actions of banning such use and education to the healthcare professionals and public are necessary for the safety of herbal remedies.
Yang, Hsiao-Yu; Chen, Pau-Chung; Wang, Jung-Der
2014-01-01
Herbal remedies containing aristolochic acid (AA) have been designated to be a strong carcinogen. This review summarizes major epidemiologic evidence to argue for the causal association between AA exposure and urothelial carcinoma as well as nephropathy. The exposure scenarios include the following: Belgian women taking slimming pills containing single material Guang Fang Ji, consumptions of mixtures of Chinese herbal products in the general population and patients with chronic renal failure in Taiwan, occupational exposure in Chinese herbalists, and food contamination in farming villages in valleys of the Danube River. Such an association is corroborated by detecting specific DNA adducts in the tumor tissue removed from affected patients. Preventive actions of banning such use and education to the healthcare professionals and public are necessary for the safety of herbal remedies. PMID:25431765
Lin, Chia-En; Chang, Wen-Shin; Lee, Jen-Ai; Chang, Ting-Ya; Huang, Yu-Shen; Hirasaki, Yoshiro; Chen, Hung-Shing; Imai, Kazuhiro; Chen, Shih-Ming
2018-03-01
Aristolochic acid (AA) causes interstitial renal fibrosis, called aristolochic acid nephropathy (AAN). There is no specific indicator for diagnosing AAN, so this study aimed to investigate the biomarkers for AAN using a proteomics method. The C3H/He female mice were given ad libitum AA-distilled water (0.5 mg/kg/day) and distilled water for 56 days in the AA and normal groups, respectively. The AA-induced proteins in the kidney were investigated using a proteomics study, including fluorogenic derivatization with 7-chloro-N-[2-(dimethylamino)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide, followed by high-performance liquid chromatography analysis and liquid chromatography tandem mass spectrometry with a MASCOT database searching system. There were two altered proteins, thrombospondin type 1 (TSP1) and G protein-coupled receptor 87 (GPR87), in the kidney of AA-group mice on day 56. GPR87, a tumorigenesis-related protein, is reported for the first time in the current study. The renal interstitial fibrosis was certainly induced in the AA-group mice under histological examination. Based on the results of histological examination and the proteomics study, this model might be applied to AAN studies in the future. TSP1 might be a novel biomarker for AAN, and the further role of GPR87 leading to AA-induced tumorigenesis should be researched in future studies. Copyright © 2017 John Wiley & Sons, Ltd.
Wang, Ke; Feng, Chenchen; Li, Chenggang; Yao, Jun; Xie, Xiaofeng; Gong, Likun; Luan, Yang; Xing, Guozhen; Zhu, Xue; Qi, Xinming; Ren, Jin
2015-01-01
Exposure to aristolochic acid I (AAI) can lead to aristolochic acid nephropathy (AAN), Balkan endemic nephropathy (BEN) and urothelial cancer. The induction of hepatic CYP1A, especially CYP1A2, was considered to detoxify AAI so as to reduce its nephrotoxicity. We previously found that baicalin had the strong ability to induce CYP1A2 expression; therefore in this study, we examined the effects of baicalin on AAI toxicity, metabolism and disposition, as well as investigated the underlying mechanisms. Our toxicological studies showed that baicalin reduced the levels of blood urea nitrogen (BUN) and creatinine (CRE) in AAI-treated mice and attenuated renal injury induced by AAI. Pharmacokinetic analysis demonstrated that baicalin markedly decreased AUC of AAI in plasma and the content of AAI in liver and kidney. CYP1A induction assays showed that baicalin exposure significantly increased the hepatic expression of CYP1A1/2, which was completely abolished by inhibitors of the Aromatic hydrocarbon receptor (AhR), 3ʹ,4ʹ-dimethoxyflavone and resveratrol, in vitro and in vivo, respectively. Moreover, the luciferase assays revealed that baicalin significantly increased the luciferase activity of the reporter gene incorporated with the Xenobiotic response elements recognized by AhR. In summary, baicalin significantly reduced the disposition of AAI and ameliorated AAI-induced kidney toxicity through AhR-dependent CYP1A1/2 induction in the liver. PMID:26204831
Quality standards of the European Pharmacopoeia.
Bouin, Anne-Sophie; Wierer, Michael
2014-12-02
The European Pharmacopoeia (Ph. Eur.) provides a legal and scientific reference for the quality control of medicines. It is legally binding in the 38 signatory parties of the Convention on the elaboration of a European Pharmacopoeia (37 member states and the European Union). The requirements for a specific herbal drug are prescribed in the corresponding individual monograph and the relevant general monographs. Criteria for pesticides and heavy metals for example are defined in the general monograph on Herbal drugs. The Ph. Eur. also provides general methods including methods for determination of aflatoxins B1 and ochratoxin A. Screening methods for aristolochic acids are applied for herbal drugs that may be subject to adulteration or substitution with plant material containing aristolochic acids. The Ph. Eur. collaborate in many areas with the European Medicines Agency (EMA) to ensure close collaboration as regards the respective work programmes and approach. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Glendinning, John I; Davis, Adrienne; Ramaswamy, Sudha
2002-08-15
Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selectively to bitter taste stimuli. Each bilateral pair of bitter-sensitive taste cells has a different molecular receptive range (MRR); some of these taste cells also contain two signaling pathways with distinctive MRRs and temporal patterns of spiking. To test for discrimination, we habituated the caterpillar's taste-mediated aversive response to one bitter taste stimulus (salicin) and then asked whether this habituation phenomenon generalized to four other bitter taste stimuli (caffeine, aristolochic acid, Grindelia extract, and Canna extract). We inferred that the two compounds were discriminable if the habituation phenomenon failed to generalize (e.g., from salicin to aristolochic acid). We found that M. sexta could discriminate between salicin and those bitter taste stimuli that activate (1) different populations of bitter-sensitive taste cells (Grindelia extract and Canna extract) or (2) different signaling pathways within the same bitter-sensitive taste cell (aristolochic acid). M. sexta could not discriminate between salicin and a bitter taste stimulus that activates the same signaling pathway within the same bitter-sensitive taste cell (caffeine). We propose that the heterogeneous population of bitter-sensitive taste cells and signaling pathways within this insect facilitates the discrimination of bitter taste stimuli.
USDA-ARS?s Scientific Manuscript database
In many countries, including the United States, herbal supplements, tisanes and vegetable products, including traditional Chinese medicines, are largely unregulated and their content is not registered, monitored or verified. Consequently, potent plant toxins including dehydropyrrolizidine alkaloids ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoes, Maria L.; Hockley, Sarah L.; Schwerdtle, Tanja
Aristolochic acid (AA) is the causative agent of urothelial tumours associated with aristolochic acid nephropathy. These tumours contain TP53 mutations and over-express TP53. We compared transcriptional and translational responses of two isogenic HCT116 cell lines, one expressing TP53 (p53-WT) and the other with this gene knocked out (p53-null), to treatment with aristolochic acid I (AAI) (50-100 {mu}M) for 6-48 h. Modulation of 118 genes was observed in p53-WT cells and 123 genes in p53-null cells. Some genes, including INSIG1, EGR1, CAV1, LCN2 and CCNG1, were differentially expressed in the two cell lines. CDKN1A was selectively up-regulated in p53-WT cells, leadingmore » to accumulation of TP53 and CDKN1A. Apoptotic signalling, measured by caspase-3 and -7 activity, was TP53-dependent. Both cell types accumulated in S phase, suggesting that AAI-DNA adducts interfere with DNA replication, independently of TP53 status. The oncogene MYC, frequently over-expressed in urothelial tumours, was up-regulated by AAI, whereas FOS was down-regulated. Observed modulation of genes involved in endocytosis, e.g. RAB5A, may be relevant to the known inhibition of receptor-mediated endocytosis, an early sign of AA-mediated proximal tubule injury. AAI-DNA adduct formation was significantly greater in p53-WT cells than in p53-null cells. Collectively, phenotypic anchoring of the AAI-induced expression profiles to DNA adduct formation, cell-cycle parameters, TP53 expression and apoptosis identified several genes linked to these biological outcomes, some of which are TP53-dependent. These results strengthen the importance of TP53 in AA-induced cancer, and indicate that other alterations, e.g. to MYC oncogenic pathways, may also contribute.« less
Lin, Hsing-Hua; Chou, Shan-An; Yang, Hsiao-Yu; Hwang, Yaw-Huei; Kuo, Ching-Hua; Kao, Tze-Wah; Lo, Tsai-Chang; Chen, Pau-Chung
2013-08-01
This study was undertaken to explore the association of estimated glomerular filtration rate (GFR) with exposure to aristolochic acids (ALAs) and nephrotoxic metals in herbalists after the ban of herbs containing ALAs in Taiwan. This cross-sectional study recruited a total of 138 herbalists without end-stage renal disease or urothelial carcinoma from the Occupational Union of Chinese Herbalists in Taiwan in 2007. Aristolochic acid I (ALA-I) was measured by ultra-high-pressure liquid chromatography/ tandem mass spectrometry (UHPLC-MS/MS) and heavy metals in blood samples were analysed by Agilent 7500C inductively coupled plasma-mass spectrometry. Renal function was assessed by using a simplified Modification of Diet in Renal Disease Study equation to estimate GFR. Blood lead was higher in herbal dispensing procedures (p=0.053) and in subjects who self-prescribe herbal medicine (p=0.057); mercury was also higher in subjects living in the workplace (p=0.03). Lower estimated GFR was significantly associated with lead (β=-10.66, 95% CI -18.7 to -2.6) and mercury (β=-12.52, 95% CI -24.3 to -0.8) with a significant interaction (p=0.01) between mercury and lead; however, estimated GFR was not significantly associated with high ALA-I level groups, arsenic and cadmium after adjusting for other confounding factors. We found that lower estimated GFR was associated with blood lead and mercury in herbalists after the ban of herbs containing ALAs in Taiwan. The ALA-I exposure did not show a significant negative association of estimated GFR, which might due to herbalists having known how to distinguish ALA herbs after the banning policy. Rigorous monitoring is still needed to protect herbalists and the general population who take herbs.
Developmental nephrotoxicity of aristolochic acid in a zebrafish model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Yu-Ju; Chen, Yau-Hung, E-mail: yauhung@mail.tku.edu.tw
2012-05-15
Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ±more » 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.« less
USDA-ARS?s Scientific Manuscript database
In many countries, including the United States, herbal supplements, tisanes and vegetable products including traditional Chinese medicines are largely unregulated and their content is not registered, monitored or verified. Consequently potent plant toxins including dehydopyrrolizidine alkaloids and...
Li, Weiwei; Hu, Qin; Chan, Wan
2016-01-13
Emerging evidence has suggested aristolochic acids (AAs) are linked to the development of Balkan endemic nephropathy (BEN), a chronic renal disease affecting numerous farmers living in the Balkan peninsula. However, the pathway by which AAs enter the human food chain and cause kidney disease remains poorly understood. Using our previously developed analytical method with high sensitivity and selectivity (Chan, W.; Lee, K. C.; Liu, N.; Cai, Z. J. Chromatogr. A 2007, 1164, 113-119), we quantified AAs in lettuce, tomato, and spring onion grown in AA-contaminated soil and culture medium. Our study revealed that AAs were being taken up from the soil and bioaccumulated in food crops in a time- and dose-dependent manner. To the best of our knowledge, this study is the first to identify one of the possible pathways by which AAs enter our food chain to cause chronic food poisoning. Results also demonstrated that AAs were resistant to the microbial activity of the soil/water.
Hsieh, Shu-Ching; Lin, I-Hsin; Tseng, Wei-Lum; Lee, Chang-Hsing; Wang, Jung-Der
2008-10-23
Some Chinese herbal products (CHPs) may contain aristolochic acid (AA) or may be adulterated by the herbs suspected of containing AA which is nephrotoxic and carcinogenic. This study aims to identify the risk and the prescription profile of AA-containing CHPs (AA-CHPs) in Taiwan. A longitudinal analysis was conducted on a randomly sampled cohort of 200,000 patients using the data from the National Health Insurance (NHI) in Taiwan between 1997 and 2003. During the 7-year study period, 78,644 patients were prescribed with AA-CHPs; most patients were females, or middle-aged, or both. A total of 526,867 prescriptions were made to use 1,218 licensed AA-CHPs. Over 85% of the AA-exposed patients took less than 60 g of AA-herbs; however, about 7% were exposed to a cumulated dose of over 100 g of Radix et Rhizoma Asari (Xixin), Caulis Akebiae (Mutong) or Fructus Aristolochiae (Madouling). Patients of respiratory and musculoskeletal diseases received most of the AA-CHP prescriptions. The most frequently prescribed AA-CHPs Shujing Huoxie Tang, Chuanqiong Chadiao San and Longdan Xiegan Tang, containing Radix Stephaniae Tetrandrae, Radix et Rhizoma Asari and Caulis Akebiae, respectively. About one-third of people in Taiwan have been prescribed with AA-CHPs between 1997 and 2003. Although the cumulated doses were not large, further actions should be carried out to ensure the safe use of AA-CHPs.
Hsieh, Shu-Ching; Lin, I-Hsin; Tseng, Wei-Lum; Lee, Chang-Hsing; Wang, Jung-Der
2008-01-01
Background Some Chinese herbal products (CHPs) may contain aristolochic acid (AA) or may be adulterated by the herbs suspected of containing AA which is nephrotoxic and carcinogenic. This study aims to identify the risk and the prescription profile of AA-containing CHPs (AA-CHPs) in Taiwan. Methods A longitudinal analysis was conducted on a randomly sampled cohort of 200,000 patients using the data from the National Health Insurance (NHI) in Taiwan between 1997 and 2003. Results During the 7-year study period, 78,644 patients were prescribed with AA-CHPs; most patients were females, or middle-aged, or both. A total of 526,867 prescriptions were made to use 1,218 licensed AA-CHPs. Over 85% of the AA-exposed patients took less than 60 g of AA-herbs; however, about 7% were exposed to a cumulated dose of over 100 g of Radix et Rhizoma Asari (Xixin), Caulis Akebiae (Mutong) or Fructus Aristolochiae (Madouling). Patients of respiratory and musculoskeletal diseases received most of the AA-CHP prescriptions. The most frequently prescribed AA-CHPs Shujing Huoxie Tang, Chuanqiong Chadiao San and Longdan Xiegan Tang, containing Radix Stephaniae Tetrandrae, Radix et Rhizoma Asari and Caulis Akebiae, respectively. Conclusion About one-third of people in Taiwan have been prescribed with AA-CHPs between 1997 and 2003. Although the cumulated doses were not large, further actions should be carried out to ensure the safe use of AA-CHPs. PMID:18945373
Wang, Yinan; Chan, Wan
2014-06-25
Nephrotoxic and carcinogenic aristolochic acids (AAs) are naturally occurring nitrophenanthrene carboxylic acids in the herbal genus Aristolochia. The misuse of AA-containing herbs in preparing slimming drugs has caused hundred of cases of kidney disease in Belgium women in a slimming regime in the early 1990s. Accumulating evidence also suggested that prolong dietary intake of AA-contaminated food is one of the major causes to the Balkan endemic nephropathy that was first observed in the late 1950s. Therefore, analytical methods of high sensitivity are extremely important for safeguarding human exposure to AA-containing herbal medicines, herbal remedies, and food composites. In this paper, we describe the development of a new high-performance liquid chromatography coupled fluorescence detector (HPLC-FLD) method for the sensitive determination of AAs. The method makes use of a novel cysteine-induced denitration reaction that "turns on" the fluorescence of AAs for fluorometric detections. Our results showed that the combination of cysteine-induced denitration and HPLC-FLD analysis allows for sensitive quantification of AA-I and AA-II at detection limits of 27.1 and 25.4 ng/g, respectively. The method was validated and has been successfully applied in quantifying AAs in Chinese herbal medicines.
Barta, Frantisek; Levova, Katerina; Hodek, Petr; Schmeiser, Heinz H; Arlt, Volker M; Stiborova, Marie
2015-01-01
Balkan endemic nephropathy (BEN) is a chronic progressive fibrosis associated with upper urothelial carcinoma (UUC). Aetiology of BEN is still not fully explained. Although carcinogenic aristolochic acid I (AAI) was proven as the major cause of BEN/UUC, this nephropathy is considered to be multifactorial. Hence, we investigated whether other factors considered as potential causes of BEN [a mycotoxin ochratoxin A (OTA), Cd, Pb, Se and As ions and organic compounds (i.e. phthalates) released from lignite deposits in BEN areas] can influence detoxication of AAI, whose concentrations are crucial for BEN development. Oxidation of AAI to 8-hydroxyaristolochic acid I (AAIa) in the presence of Cd, Pb, Se, As ions, dibutylphthalate (DBP), butylbenzylphthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP) and OTA by rat liver microsomes was determined by HPLC. Only OTA, cadmium and selenium ions, and BBP inhibited AAI oxidation by rat liver microsomes. These compounds also inhibited activities of CYP1A1 and/or CYP2C6/11 catalysing AAI demethylation in rat livers. Therefore, these CYP inhibitions can be responsible for a decrease in AAIa formation. When the combined effects of these compounds were investigated, the most efficient inhibition was caused by OTA combined with BBP and selenium ions. The results show low effects of BBP, cadmium and selenium ions, and/or their combinations on AAI detoxication. No effects were produced by the other metal ions (Pb, As) and phthalates DBP and DEHP. This finding suggests that they do not influence AAI-mediated BEN development. In contrast, OTA might influence this process, by inhibition of AAI detoxication.
The Role of Protein Elongation Factor eEF1A2 in Breast Cancer
2006-09-01
serve as regulators of multiple signaling pathways (15-18). PIs are composed of an inositol ring covalently bound to a lipid phosphatidic acid ...mouse model of aristolochic acid nephropathy, and human kidney-proximal tubule cells. Satisfyingly, one of these targets is Dishevelled 2 (DVL2...Rho signaling proteins together. The two human eEF1A isoforms (eEF1A2 and eEF1A2) are very similar proteins (92% amino acid identity). The two
Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao
2014-04-06
Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Stashenko, Elena E; Andrés Ordóñez, Sergio; Marín, Néstor Armando; Martínez, Jairo René
2009-10-01
Volatile and semi-volatile secondary metabolites, as well as aristolochic acids (AA), present in leaves, stems, and flowers of Aristolochia ringens were determined by gas chromatography (GC)-mass spectrometry (MS) and high-performance liquid chromatography (HPLC) methods, respectively. Metabolite isolation was performed using different extraction techniques: microwave-assisted hydrodistillation (MWHD), supercritical fluid extraction, and headspace solid-phase microextraction (HS-SPME). The chemical composition of the extracts and oils was established by GC-MS. The determinations of AAI and AAII were conducted by methanolic extraction of different plant parts followed by HPLC analysis. Essential oil yields from leaves and stems were 0.008 +/- 0.0022% and 0.047 +/- 0.0026%, respectively. Aristolochia ringens flowers did not yield essential oil under MWHD. Sesquiterpene hydrocarbons (66%) were the main compounds in the essential oil isolated from leaves whereas monoterpene hydrocarbons (73%) predominated in the stems essential oil. Yields of extracts isolated by SFE from leaves, stems, and flowers were 4 +/- 1.8%, 1.2 +/- 0.25%, and 4 +/- 1.8%, respectively. In vivo HS-SPME of flowers isolated compounds with known unpleasant smells such as volatile aldehydes and short-chain carboxylic acids. HPLC analysis detected the presence of AAII in the flowers of Aristolochia ringens at a concentration of 610 +/- 47 mg/kg of dried flower.
Nephrotoxicity and Chinese Herbal Medicine.
Yang, Bo; Xie, Yun; Guo, Maojuan; Rosner, Mitchell H; Yang, Hongtao; Ronco, Claudio
2018-04-03
Chinese herbal medicine has been practiced for the prevention, treatment, and cure of diseases for thousands of years. Herbal medicine involves the use of natural compounds, which have relatively complex active ingredients with varying degrees of side effects. Some of these herbal medicines are known to cause nephrotoxicity, which can be overlooked by physicians and patients due to the belief that herbal medications are innocuous. Some of the nephrotoxic components from herbs are aristolochic acids and other plant alkaloids. In addition, anthraquinones, flavonoids, and glycosides from herbs also are known to cause kidney toxicity. The kidney manifestations of nephrotoxicity associated with herbal medicine include acute kidney injury, CKD, nephrolithiasis, rhabdomyolysis, Fanconi syndrome, and urothelial carcinoma. Several factors contribute to the nephrotoxicity of herbal medicines, including the intrinsic toxicity of herbs, incorrect processing or storage, adulteration, contamination by heavy metals, incorrect dosing, and interactions between herbal medicines and medications. The exact incidence of kidney injury due to nephrotoxic herbal medicine is not known. However, clinicians should consider herbal medicine use in patients with unexplained AKI or progressive CKD. In addition, exposure to herbal medicine containing aristolochic acid may increase risk for future uroepithelial cancers, and patients require appropriate postexposure screening. Copyright © 2018 by the American Society of Nephrology.
Observational Studies on Evaluating the Safety and Adverse Effects of Traditional Chinese Medicine
Tang, Jin-Ling; Wang, Jung-Der
2013-01-01
Background. This study aims to share our experiences when carrying out observational studies of traditional Chinese medicine (TCM). Methods. We have proactively monitored the safety profiles of Duhuo Jisheng Tang (DJT), Suan Zao Ren Tang (SZRT), and TMN-1. A list of adverse events (AEs), complete blood counts, and liver and kidney function tests were obtained from the participants during their scheduled hospital visits. Retrospective observational studies were conducted based on the reimbursement database of the National Health Insurance system, Taiwan, to explore the relationship between the use of TCM that have been adulterated by aristolochic acid and the risk from both nephrotoxins and carcinogens. Results. A total of 221, 287, and 203 AEs were detected after SZRT, DJT, and TMN-1 had been taken, respectively. Dizziness, headache, stomach ache, and diarrhea were judged to be probably related to SZRT treatment. Retrospective observational studies found an association between the consumption of aristolochic acid-containing Chinese formulae such as Mu Tong and an increased risk of CKD, ESRD, and urinary tract cancer. Conclusion. Prospective and retrospective observational studies seem to have specific advantages when investigating the safety and adverse effects of TCM therapies, as well as possibly other alternative/complementary therapies. PMID:24159351
Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D
2015-04-21
Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural characteristics of the preferred conformations of adducted DNA explain the resistance of these adducts to repair and thereby add to our current understanding of the toxicity of AAs within living cells.
[Renal risks of dietary complements: a forgotten cause].
Dori, Olympia; Humbert, Antoine; Burnier, Michel; Teta, Daniel
2014-02-26
The use of dietary complements like vitamins, minerals, trace elements, proteins, aminoacids and plant-derived agents is prevalent in the general population, in order to promote health and treat diseases. Dietary complements are considered as safe natural products and are easily available without prescription. However, these can lead to severe renal toxicity, especially in cases of unknown pre-existing chronic kidney disease (CKD). In particular, Chinese herbs including aristolochic acid, high doses of vitamine C, creatine and protein complements may lead to acute and chronic renal failure, sometimes irreversible. Dietary complement toxicity should be suspected in any case of unexplained renal impairement. In the case of pre-existing CKD, the use of potentially nephrotoxic dietary complements should be screened for.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, P.; Schawalder, H.; Weibel, B.
The mutagenic activities of aristolochic acid I (AAI) and II (AAII), the two main components of aristolochic acid (AA), were tested for mutagenicity in vivo in a subcutaneous granulation tissue in rats and in vitro in the corresponding freshly isolated and cultured target cells. In vivo at equimolar dose, AAI induced 16 times more 6-thioguanine resistant cells than AAII. Oxygen tension in vitro was adjusted to that found in vivo: in the subcutaneous connective tissue, the pO/sub 2/ was determined to be 40 +/- 9 mm Hg, which corresponds in vitro to an O/sub 2/ concentration of 5% in themore » incubator atmosphere. In vitro, AAI was 19 times more mutagenic than AAII at this low oxygen tension but exhibited only 4 times greater activity than AAII under standard culture conditions. These results indicate that the genotoxic activity of AA in mammals is mainly caused by AAI and that the exposure of cells to AAI and AAII in vitro at low pO/sub 2/ corresponds more closely to the metabolic situation in vivo. Therefore, the mutagenic potency of the two chemicals can only be estimated correctly at tissue oxygen tension. The influence of pO/sub 2/ on the mutation frequencies seems to arise from a modulation of the activation/detoxification pathways.« less
Matsui, Katsuomi; Kamijo-Ikemorif, Atsuko; Sugaya, Takeshi; Yasuda, Takashi; Kimura, Kenjiro
2011-01-01
Injection of aristolochic acid (AA) in mice causes AA-induced nephrotoxicity, in which oxidative stress contributes to development of tubulointerstitial damage (TID). Liver-type fatty acid binding protein (L-FABP) is expressed in human proximal tubules and has an endogenous antioxidative function. The renoprotection of renal L-FABP was examined in a model of AA-induced nephrotoxicity. Established human L-FABP (hL-FABP) transgenic (Tg) mice and wild-type (WT) mice were treated with AA for up to 5 days. Mice were sacrificed on days 1, 3, and 5 after the start of AA injection. Although mouse L-FABP was not expressed in proximal tubules of WT mice, hL-FABP was expressed in proximal tubules of Tg mice. The expression of renal hL-FABP was significantly increased in Tg mice administered AA (Tg-AA), compared with the control (saline-treated Tg mice). In WT-AA mice, there was high urinary excretion of Nε-(hexanoyl)-lysine, the production of heme oxygenase-1 and receptor for advanced glycation end products increased, and TID was provoked. In contrast, renal hL-FABP in Tg-AA mice suppressed production of Nε-(hexanoyl)lysine, heme oxygenase-1, and receptor for advanced glycation end products. Renal dysfunction was significantly milder in Tg-AA mice than in WT-AA mice. The degree of TID was significantly attenuated in Tg-AA mice, compared with WT-AA. In conclusion, renal hL-FABP reduced the oxidative stress in AA-induced nephrotoxicity and attenuated TID. PMID:21356355
Huang, Ren-fa; Liang, Qun-qing; Cheng, Xin; Long, Yun; Wu, Jin-yu
2013-08-01
To investigate the effect of both fermented Cordyceps powder (CS) and prednisone on the Notch2/hes-1 signaling activation in the kidney tubules of rats with acute aristolochic acid nephropathy (AAAN). Totally 50 SD rats were randomly divided into 4 groups, i.e., the normal group, the model group, the CS group, the prednisone group, and the CS plus prednisone group, 10 in each group. The AAAN rat model was induced by intragastric administration of pure aristolochic acid A at the daily dose of 100 mg/kg for 3 days. Rats in the CS group were administered with CS at the daily dose of 5.0 g/kg by gastrogavage, while those in the prednisone group were administered with prednisone at the daily dose of 0.5 mg/kg. Rats in the CS plus prednisone group were treated by CS and prednisone. All treatment lasted for 3 successive weeks. Kidney functions [urea nitrogen (BUN) and serum creatinine (SCr)] were detected. The pathological changes of kidneys were observed by Hematoxylin-Eosin staining. The apoptosis of the renal tubular epithelial cells was detected by TUNEL. The protein expressions of Notch2 and Hes-1 in the renal tissue were detected by immunohistochemical assay and Western blot. Results of HE staining showed the structure in the nephridial tissue was regular in rats of the normal group. The renal tubular necrosis occurred in the rats of the model group. The pathological changes of kidneys were obviously improved in the CS group, the prednisone group, and the CS plus prednisone group. Compared with the normal group, levels of BUN and SCr, semi-quantitative score of the tubular interstitial tissue, ratio of apoptotic cells, and expressions of Notch2 and Hes-1 proteins significantly increased in the model group (P < 0.01). Compared with the model group, the aforesaid indices significantly decreased in the 3 treatment groups (P < 0.01). All indices decreased most obviously in the CS plus prednisone group (P < 0.05, P < 0. 01). Notch2/hes-1 signaling activation might be associated with apoptosis of renal tubular epithelial cells. Both CS and prednisone could play a nephroprotective role for AAAN. But CS plus prednisone could achieve the best effect. Inhabiting the Notch2/hes-1 signaling activation could be its nephroprotective mechanism.
Bunel, Valérian; Antoine, Marie-Hélène; Stévigny, Caroline; Nortier, Joëlle; Duez, Pierre
2016-01-01
Aristolochic acids (AA) are nephrotoxic agents found in Aristolochia species whose consumption leads to the onset of a progressive tubulointerstitial fibrosis. This AA-nephropathy was first reported during the Belgian outbreak of the 1990's in which more than a hundred patients consumed slimming pills containing an Aristolochia species and Magnolia officinalis. The patients developed an end-stage kidney disease requiring dialysis or transplantation. Magnolol and honokiol are bioactive compounds from M. officinalis known for their potent antioxidant activity. As they can alleviate oxidative stress, we investigated their respective effects on AA-mediated tubulotoxicity using HK-2 cells. Magnolol and honokiol were able to reduce the oxidative stress associated with AA-treatment. Cytotoxicity alleviation was further investigated and overall cell viability measurements unexpectedly revealed that both compounds worsened the survival of AA-treated cells. Flow cytometry analyses of annexin V/PI stained cells indicated that the lignans efficiently prevented AA-induced apoptosis; but favored necrosis. Microscopy observations highlighted extensive vacuolization; other types of cell death, including autophagy, paraptosis or accelerated senescence were excluded. Ki-67 index and cell cycle analysis indicated that both magnolol and honokiol inhibited proliferation by blocking the cell cycle at the G1 phase; they also prevented the AA-induced G2/M arrest. Copyright © 2015 Elsevier Ltd. All rights reserved.
Expression of Renal Aquaporins in Aristolochic Acid I and Aristolactam I-Induced Nephrotoxicity.
Li, Ji; Zhang, Liang; Jiang, ZhenZhou; He, XiuQin; Zhang, LuYong; Xu, Ming
2016-01-01
Exposure to aristolochic acid (AA) can cause AA nephropathy, which is characterized by extensive proximal tubular damage and polyuria. To test the hypothesis that polyuria might be induced by altered regulation of aquaporins (AQPs) in the kidney, different doses of AA-I or aristolactam I (AL-I) were administered intraperitoneally to Sprague-Dawley rats, and urine, blood, and kidney samples were analyzed. In addition, AQP1, AQP2, AQP4 and AQP6 expression in the kidney were determined. The results showed dose-dependent proximal tubular damage and polyuria in the AA-I- and AL-I-treated groups, and the nephrotoxicity of AL-I was higher than that of AA-I. The expression of renal AQP1, AQP2 and AQP4, but not AQP6 were significantly inhibited by AA-I and AL-I. Comparison of the inhibition potencies of AA-I and AL-I showed that AL-I was a stronger inhibitor of AQP1 expression than AA-I, while there was no difference in their effects on AQP2 and AQP4. These results suggested that AA induced renal damage and polyuria were associated with a specific decrease in the expression of renal AQP1 AQP2 and AQP4, and AL-I showed higher nephrotoxicity than AA-I, which might be attributable to the differences in their inhibition of AQP1. © 2016 S. Karger AG, Basel.
[Comparison among families of Mutong].
Ma, Hong-mei; Zhang, Bo-li
2002-06-01
To distinguish families of Mutong correctly and direct effective and safe clinical administration. Comparison among families of Mutong on Herbs, Taxology, Clinic, Pharmacology and Toxicology. 1. There are mainly three families of Mutong: Lardizabalaceae, Ranunculaceae, Aristolochiaceae, which were all included in China Pharmacopeia in 1963. However only Mutong of Ranunculaceae and Aristolochiaceae family have been included in China Pharmacopeia since 1977, but Mutong of Lardizabalaceae family has not been included in China Pharmacopeia ever since. 2. It was Mutong of Lardizabalaceae family that was used mainly through the ages without toxic records, and Mutong of Aristolochiaceae e.g. Caulis Aristolochia manshuriensis (CAM) was not put down in writing of past ages but is mainly used today with toxicity repeatedly. 3. CAM contain aristolochic acid and aristololactam with high toxicity, which plays an uncertain role in diuresis with poor bactericidal power. Mutong of Lardizabalaceae family e.g. Akebia trifoliata (Thunb.) Koidz. var. australis (Diels) Rehd (ATKV) don't contain aristolochic acid and aristololactam, which has low toxicity and plays a certain role in diuresis with high bactericidal power. It may be quite safe to use ATKV instead of CAM in clinics. So we suggest that ATKV should be reused as first Mutong in China Pharmacopeia revised edition in order to ensure a correct understanding of the facts and reveal Mutong in its true colors, and CAM should be used as second Mutong strictly according to the rules in China Pharmacopeia revised edition.
The influence of ochratoxin A on DNA adduct formation by the carcinogen aristolochic acid in rats.
Stiborová, Marie; Bárta, František; Levová, Kateřina; Hodek, Petr; Frei, Eva; Arlt, Volker M; Schmeiser, Heinz H
2015-11-01
Exposure to the plant nephrotoxin and carcinogen aristolochic acid (AA) leads to the development of AA nephropathy, Balkan endemic nephropathy (BEN) and upper urothelial carcinoma (UUC) in humans. Beside AA, exposure to ochratoxin A (OTA) was linked to BEN. Although OTA was rejected as a factor for BEN/UUC, there is still no information whether the development of AA-induced BEN/UUC is influenced by OTA exposure. Therefore, we studied the influence of OTA on the genotoxicity of AA (AA-DNA adduct formation) in vivo. AA-DNA adducts were formed in liver and kidney of rats treated with AA or AA combined with OTA, but no OTA-related DNA adducts were detectable in rats treated with OTA alone or OTA combined with AA. Compared to rats treated with AA alone, AA-DNA adduct levels were 5.4- and 1.6-fold higher in liver and kidney, respectively, of rats treated with AA combined with OTA. Although AA and OTA induced quinone oxidoreductase (NQO1) activating AA to DNA adducts, their combined treatment did not lead to either higher NQO1 enzyme activity or higher AA-DNA adduct levels in ex vivo incubations. Oxidation of AA I (8-methoxy-6-nitrophenanthro[3,4-d]-1,3-dioxole-5-carboxylic acid) to its detoxification metabolite, 8-hydroxyaristolochic acid, was lower in microsomes from rats treated with AA and OTA, and this was paralleled by lower activities of cytochromes P450 1A1/2 and/or 2C11 in these microsomes. Our results indicate that a decrease in AA detoxification after combined exposure to AA and OTA leads to an increase in AA-DNA adduct formation in liver and kidney of rats.
Xie, Xiang-Cheng; Zhao, Ning; Xu, Qun-Hong; Yang, Xiu; Xia, Wen-Kai; Chen, Qi; Wang, Ming; Fei, Xiao
2017-06-01
Aristolochic acid nephropathy remains a leading cause of chronic kidney disease (CKD), however few treatment strategies exist. Emerging evidence has shown that H2 relaxin (RLX) possesses powerful antifibrosis and anti-apoptotic properties, therefore we aimed to investigate whether H2 relaxin can be employed to reduce AA-induced cell apoptosis. Human proximal tubular epithelial (HK-2) cells exposed to AA-I were treated with or without administration of H2 RLX. Cell viability was examined using the WST-8 assay. Apoptotic morphologic alterations were observed using the Hoechst 33342 staining method. Apoptosis was detected using flow cytometry. The expression of caspase 3, caspase 8, caspase 9, ERK1/2, Bax, Bcl-2, and Akt proteins was determined by Western blot. Co-treatment with RLX reversed the increased apoptosis observed in the AA-I only treated group. RLX restored expression of phosphorylated Akt which found to be decreased in the AA-I only treated cells. RLX co-treatment led to a decrease in the Bax/Bcl-2 ratio as well as the cleaved form of caspase-3 compared to the AA-I only treated cells. This anti-apoptotic effect of RLX was attenuated by co-administration of the Akt inhibitor LY294002. The present study demonstrated H2 RLX can decrease AA-I induced apoptosis through activation of the PI3K/Akt signaling pathway.
Aristolochic Acid in the Etiology of Renal Cell Carcinoma
Hoang, Margaret L.; Chen, Chung-Hsin; Chen, Pau-Chung; Roberts, Nicholas J.; Dickman, Kathleen G.; Yun, Byeong Hwa; Turesky, Robert J.; Pu, Yeong-Shiau; Vogelstein, Bert; Papadopoulos, Nickolas; Grollman, Arthur P.; Kinzler, Kenneth W.; Rosenquist, Thomas A.
2017-01-01
Background Aristolochia species used in the practice of traditional herbal medicine contains aristolochic acid (AA), an established human carcinogen contributing to urothelial carcinomas of the upper urinary tract. AA binds covalently to genomic DNA, forming aristolactam (AL)–DNA adducts. Here we investigated whether AA is also an etiologic factor in clear cell renal cell carcinoma (ccRCC). Methods We conducted a population-based case–control study to investigate the linkage between Aristolochia prescription history, cumulative AA consumption, and ccRCC incidence in Taiwan (5,709 cases and 22,836 matched controls). The presence and level of mutagenic dA-AL-I adducts were determined in the kidney DNA of 51 Taiwanese ccRCC patients. The whole-exome sequences of ccRCC tumors from 10 Taiwanese ccRCC patients with prior exposure to AA were determined. Results Cumulative ingestion of more than 250 mg of AA increased risk of ccRCC (OR, 1.25), and we detected dA-AL-I adducts in 76% of Taiwanese ccRCC patients. Furthermore, the distinctive AA mutational signature was evident in six of 10 sequenced ccRCC exomes from Taiwanese patients. Conclusions This study strongly suggests that AA contributes to the etiology of certain RCCs. Impact The current study offers compelling evidence implicating AA in a significant fraction of the RCC arising in Taiwan and illustrates the power of integrating epidemiologic, molecular, and genetic data in the investigation of cancer etiology. PMID:27555084
Occupational kidney disease among Chinese herbalists exposed to herbs containing aristolochic acids.
Yang, Hsiao-Yu; Wang, Jung-Der; Lo, Tsai-Chang; Chen, Pau-Chung
2011-04-01
Many Chinese herbs contain aristolochic acids (ALAs) which are nephrotoxic and carcinogenic. The objective of this study was to identify whether exposure to herbs containing ALAs increased the risk of kidney disease among Chinese herbalists. A nested case-control study was carried out on 6538 Chinese herbalists registered between 1985 and 1998. All incident cases of chronic renal failure reported to the Database of Catastrophic Illness of the National Health Insurance Bureau between 1995 and 2000 were defined as the case group. Up to four controls without renal failure were randomly matched to each case by sex and year of birth. A structured questionnaire survey was administered between November and December 2002. The Mantel-Haenszel method and conditional logistic regression were used to estimate the risks. 40 cases and 98 matched controls were included in the final analysis. After adjusting for age, frequent analgesic use, and habitual consumption of alcohol, fermented or smoked food, we found manufacturing and selling Chinese herbal medicine (OR 3.43, 95% CI 1.16 to 10.19), processing, selling or dispensing herbal medicines containing Fangji (OR 4.17, 95% CI 1.36 to 12.81), living in the workplace (OR 3.14, 95% CI 1.11 to 8.84) and a history of taking of herbal medicines containing Fangji (frequently or occasionally) (OR 5.42, 95% CI 1.18 to 24.96) were significantly associated with renal failure. Occupational exposure to and consumption of herbs containing ALAs increases the risk of renal failure in Chinese herbalists.
Ouzzane, A; Rouprêt, M; Leon, P; Yates, D R; Colin, P
2014-11-01
To describe the epidemiology, the risk and genetic factors involved in carcinogenesis pathways of upper urinary tumors UTUCs. A systematic review of the scientific literature was performed from the database Medline (National Library of Medicine, PubMed) and websites of the HAS and the ANSM using the following keywords: epidemiology; risk factor; tobacco; aristolochic acid; urothelial carcinoma; ureter; renal pelvis. The search was focused on the characteristics, the mode of action, the efficiency and the side effects of the various drugs concerned. The estimated UTUC incidence is 1.2 cases/100,000 inhabitant per year in Europe. The incidence of renal pelvis tumor has been stable for 30years, while the frequency of ureteric locations has increased over time. Locally advanced stage and high grade are more frequent at the time of diagnosis. The median age for diagnosis is 70-years-old. Male-to-female ratio is nearly 2. Main carcinogenic factors are tobacco consumption and occupational exposure. There are specific risk factors for UTUC such acid aristolochic (balkan's nephropathy and Chinese herbs nephropathy). Familial cases are distinct from sporadic cases. UTUCs belong to the HNPCC syndrome and they rank third in its tumor spectrum. UTUCs are scarce tumors with specific epidemiologic characteristics. UTUCs share common risk factors with other urothelial carcinomas such as bladder tumors but have also specific risk factors that clinicians should know. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Case study of building of conservation coalitions to conserve ecological interactions.
Chen, Gao; Luo, Shihong; Mei, Nianshu; Shen, Dingfang; Sun, Weibang
2015-12-01
We engaged experts in various fields of study (pollination ecology, chemical ecology, and ethnobotany), invited community participation, and provided environmental education in an effort to conserve an endangered birthwort (Aristolochia delavayi) and a vulnerable pipevine swallowtail (Byasa daemonius). Scientists studied the uptake and sequestration of the secondary metabolites aristolochic acids from A. delavayi leaves by different stages of pipevine swallowtail as a defense mechanism; low fruit set of the myophilous A. delavayi due to pollinator limitation; and the emission of chemical signals that attract parasitic wasps by the prepupae of B. daemonius. The results of these studies were part of an education program delivered by personnel of non-governmental organizations. The program was devised to deliver information to the public about the health risks of consuming A. delavayi individuals (aristolochic-acid-associated cancers) and to establish a bridge between the public and scientific research. Following delivery of the program, the behavior of residents changed considerably. Community residents were involved in management activities, including participation in a program to promote understanding of ecological interactions between A. delavayi and B. daemonius; designing an in situ conservation site; monitoring A. delavayi and B. daemonius individuals; and promoting the natural fruit set of A. delavayi by scattering animal excrement to attract fly pollinators. The integration of scientific information and community participation appears to have resulted in an increase in abundance of threatened A. delavayi and B. daemonius populations. We believe the involvement of local people in conservation is necessary for successful species conservation. © 2015 Society for Conservation Biology.
Wang, Yiying; Arlt, Volker M; Roufosse, Candice A; McKim, Karen L; Myers, Meagan B; Phillips, David H; Parsons, Barbara L
2012-08-01
Aristolochic acid (AA) is a strong cytotoxic nephrotoxin and carcinogen, which induces forestomach and kidney tumors in mice and is associated with development of urothelial cancer in humans. This study sought to gain mechanistic insight into AAI-induced carcinogenesis through analysis of a tumor-relevant endpoint. Female Hupki mice were treated daily with 5 mg AAI/kg body weight by gavage for 3, 12, or 21 days. Histopathology and DNA adduct analysis confirmed kidney and forestomach as target tissues for AAI-induced toxicity. H-ras codon 61 CAA→CTA mutations were measured in mouse kidney and forestomach, as well as liver and glandular stomach (nontarget organs) by allele-specific competitive blocker-PCR (ACB-PCR), because A→T transversion is the predominant mutation induced by AA and this particular mutation was found previously in AA-induced rodent forestomach tumors. Treatment-related differences were observed, with the H-ras mutant fraction (MF) of mouse kidney and forestomach exposed to 5 mg AAI/kg body weight for 21 days significantly higher than that of vehicle-treated controls (Fisher's exact test, P < 0.05). Statistically significant correlations between dA-AAI adduct levels (measured previously in the same animals) and induced H-ras MFs were evident in forestomach of mice treated for 21 days (linear regression, P < 0.05). The significant increase in H-ras MF in kidney and forestomach, along with the correlation between DNA adducts, histopathology, and oncogene mutation, provide definitive evidence that AA induces tumors through a directly mutagenic mode of action. Thus, measurement of tumor-associated mutations is a useful tool for elucidating the mechanisms underlying the tissue specificity of carcinogenesis. Copyright © 2012 Wiley Periodicals, Inc.
Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury.
Succar, Lena; Pianta, Timothy J; Davidson, Trent; Pickering, John W; Endre, Zoltán H
2017-09-01
Extensive structural damage within the kidney must be present before serum creatinine increases. However, a subclinical phase of chronic kidney disease (CKD) usually goes undetected. Here we tested whether experimental subclinical CKD would modify functional and damage biomarker profiles of acute kidney injury (AKI). Subclinical CKD was induced in rats by adenine or aristolochic acid models but without increasing serum creatinine. After prolonged recovery (three to six weeks), AKI was induced with a subnephrotoxic dose of cisplatin. Urinary levels of kidney injury molecule-1 (KIM-1), cytochrome C, monocyte chemotactic protein-1 (MCP-1), clusterin, and interleukin-18 increased during CKD induction, without an increase in serum creatinine. After AKI in adenine-induced CKD, serum creatinine increased more rapidly, while increased urinary KIM-1, clusterin, and MCP-1 were delayed and reduced. Increased serum creatinine and biomarker excretion were associated with diffuse tubulointerstitial injury in the outer stripe of outer medulla coupled with over 50% cortical damage. Following AKI in aristolochic acid-induced CKD, increased serum creatinine, urinary KIM-1, clusterin, MCP-1, cytochrome C, and interleukin-18 concentrations and excretion were greater at day 21 than day 42 and inversely correlated with cortical injury. Subclinical CKD modified functional and damage biomarker profiles in diametrically opposite ways. Functional biomarker profiles were more sensitive, while damage biomarker diagnostic thresholds and increases were diminished and delayed. Damage biomarker concentrations and excretion were inversely linked to the extent of prior cortical damage. Thus, thresholds for AKI biomarkers may need to be lower or sampling delayed in the known presence of CKD. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhenzhou, E-mail: jiangcpu@yahoo.com.cn; Bao, Qingli, E-mail: bao_ql@126.com; Sun, Lixin, E-mail: slxcpu@126.com
This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged andmore » dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stemmer, Kerstin; Ellinger-Ziegelbauer, Heidrun; Lotz, Kerstin
2006-11-15
Laser microdissection in conjunction with microarray technology allows selective isolation and analysis of specific cell populations, e.g., preneoplastic renal lesions. To date, only limited information is available on sample preparation and preservation techniques that result in both optimal histomorphological preservation of sections and high-quality RNA for microarray analysis. Furthermore, amplification of minute amounts of RNA from microdissected renal samples allowing analysis with genechips has only scantily been addressed to date. The objective of this study was therefore to establish a reliable and reproducible protocol for laser microdissection in conjunction with microarray technology using kidney tissue from Eker rats p.o. treatedmore » for 7 days and 6 months with 10 and 1 mg Aristolochic acid/kg bw, respectively. Kidney tissues were preserved in RNAlater or snap frozen. Cryosections were cut and stained with either H and E or cresyl violet for subsequent morphological and RNA quality assessment and laser microdissection. RNA quality was comparable in snap frozen and RNAlater-preserved samples, however, the histomorphological preservation of renal sections was much better following cryopreservation. Moreover, the different staining techniques in combination with sample processing time at room temperature can have an influence on RNA quality. Different RNA amplification protocols were shown to have an impact on gene expression profiles as demonstrated with Affymetrix Rat Genome 230{sub 2}.0 arrays. Considering all the parameters analyzed in this study, a protocol for RNA isolation from laser microdissected samples with subsequent Affymetrix chip hybridization was established that was also successfully applied to preneoplastic lesions laser microdissected from Aristolochic acid-treated rats.« less
Treatment of chronic kidney diseases with histone deacetylase inhibitors
Liu, Na; Zhuang, Shougang
2015-01-01
Histone deacetylases (HDACs) induce deacetylation of both histone and non-histone proteins and play a critical role in the modulation of physiological and pathological gene expression. Pharmacological inhibition of HDAC has been reported to attenuate progression of renal fibrogenesis in obstructed kidney and reduce cyst formation in polycystic kidney disease. HDAC inhibitors (HDACis) are also able to ameliorate renal lesions in diabetes nephropathy, lupus nephritis, aristolochic acid nephropathy, and transplant nephropathy. The beneficial effects of HDACis are associated with their anti-fibrosis, anti-inflammation, and immunosuppressant effects. In this review, we summarize recent advances on the treatment of various chronic kidney diseases with HDACis in pre-clinical models. PMID:25972812
[Current research situation of nephrotoxicity of Chinese herbal medicine].
Feng, Xue; Fang, Sai-Nan; Gao, Yu-Xin; Liu, Jian-Ping; Chen, Wei
2018-02-01
To provide the basis for the future research on the nephrotoxicity of Chinese herbal medicine through systematic and comprehensive summary of all the Chinese herbal medicines which may lead to nephrotoxicity. Foreign resources included PubMed and Cochrane library, and domestic research resources was China Food and Drug Administration(CDFA) Adverse Drug Reaction Monitoring Center database. The databases were searched from establishment to January 1, 2017. There was no limitation on research type. 28 English studies were found, including 97 Chinese herbs or prescriptions with the risk of nephrotoxicity. The following six Chinese herbal medicines with the risk of nephrotoxicity had a large number of studies: aristolochic acid(5 studies), Tripterygium wilfordii(4 studies), Erycibe obtusifolia(2 studies), Rheum palmatum(2 studies), Ephedra sinica(2 studies), and Atractylodes lances(2 studies). The remaining 91 Chinese medicines were reported with risk of nephrotoxicity in only 1 study respectively. CDFA reported 16 Chinese herbal medicines with the risk of nephrotoxicity, including Ganmaoqing Pian(capsule), Zhenju Jiangya Pian, T. wilfordii preparation, Vc-Yinqiao Pian, Chuanhuning injection, Shuanghuanglian injection, Qingkailing injection, Lianbizhi injection, herbal decoction containing Aristolochiae Radix, Guanxin Suhe Wan, Shugan Liqi Wan, Ershiwuwei Songshi Wan, herbal decoction containing Aristolochia Fangchi, herbal granules containing root of Kaempfer Dutchmanspipe, Ganmaotong(tablets), and Longdan Xiegan Wan. Currently, in addition to aristolochic acids, the most reported Chinese herbal medicine with the risk of nephrotoxicity is T. wilfordii preparation. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Hu, Yong; Wu, Hai-Long; Yin, Xiao-Li; Gu, Hui-Wen; Xiao, Rong; Wang, Li; Fang, Huan; Yu, Ru-Qin
2017-03-01
A rapid interference-free spectrofluorometric method combined with the excitation-emission matrix fluorescence and the second-order calibration methods based on the alternating penalty trilinear decomposition (APTLD) and the self-weighted alternating trilinear decomposition (SWATLD) algorithms, was proposed for the simultaneous determination of nephrotoxic aristolochic acid I (AA-I) and aristololactam I (AL-I) in five Chinese herbal medicines. The method was based on a chemical derivatization that converts the non-fluorescent AA-I to high-fluorescent AL-I, achieving a high sensitive and simultaneous quantification of the analytes. The variables of the derivatization reaction that conducted by using zinc powder in acetose methanol aqueous solution, were studied and optimized for best quantification results of AA-I and AL-I. The satisfactory results of AA-I and AL-I for the spiked recovery assay were achieved with average recoveries in the range of 100.4-103.8% and RMSEPs < 0.78 ng mL- 1, which validate the accuracy and reliability of the proposed method. The contents of AA-I and AL-I in five herbal medicines obtained from the proposed method were also in good accordance with those of the validated LC-MS/MS method. In light of high sensitive fluorescence detection, the limits of detection (LODs) of AA-I and AL-I for the proposed method compare favorably with that of the LC-MS/MS method, with the LODs < 0.35 and 0.29 ng mL- 1, respectively. The proposed strategy based on the APTLD and SWATLD algorithms by virtue of the "second-order advantage", can be considered as an attractive and green alternative for the quantification of AA-I and AL-I in complex herbal medicine matrices without any prior separations and clear-up processes.
Activity of Aristolochia bracteolata against Moraxella catarrhalis
Khedr, Amgad I. M.; Abd AlGadir, Haidar; Takeshita, Satoshi; Shah, Mohammad Monir; Ichinose, Yoshio; Maki, Toshihide
2014-01-01
A bioassay-guided fractionation of methanol extract of Aristolochia bracteolata whole plant was carried out in order to evaluate its antimicrobial activity and to identify the active compounds in this extract. Antibacterial and antifungal activities of methanol extract against gram-positive, gram-negative, and fungal strains were investigated by the agar disk diffusion method. Among the strains tested, Moraxella catarrhalis and sea urchin-derived Bacillus sp. showed the highest sensitivity towards the methanol extract and hence they are used as test organisms for the bioassay-guided fractionation. From this extract, aristolochic acid 1 (AA-1) has been isolated and has showed the greatest antibacterial activity against both standard strain and clinical isolates of Moraxella catarrhalis with equal minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 25 and 50 μg/mL. Modification of the AA-1 to AA-1 methyl ester completely abolished the antibacterial activity of the compound and the piperonylic acid moiety of AA-1 which suggested that the coexistence of phenanthrene ring and free carboxylic acid is essential for AA-1 antibacterial activity. PMID:26904734
Wang, Xing; Zhang, Yuxin; Liu, Qing; Ai, Zhixin; Zhang, Yanling; Xiang, Yuhong; Qiao, Yanjiang
2016-01-01
Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA. PMID:26999111
2013-01-01
Temperature modulates the peripheral taste response of many animals, in part by activating transient receptor potential (Trp) cation channels. We hypothesized that temperature would also modulate peripheral taste responses in larval Manduca sexta. We recorded excitatory responses of the lateral and medial styloconic sensilla to chemical stimuli at 14, 22, and 30 °C. The excitatory responses to 5 chemical stimuli—a salt (KCl), 3 sugars (sucrose, glucose, and inositol) and an alkaloid (caffeine)—were unaffected by temperature. In contrast, the excitatory response to the aversive compound, aristolochic acid (AA), increased robustly with temperature. Next, we asked whether TrpA1 mediates the thermally dependent taste response to AA. To this end, we 1) identified a TrpA1 gene in M. sexta; 2) demonstrated expression of TrpA1 in the lateral and medial styloconic sensilla; 3) determined that 2 TrpA1 antagonists (HC-030031 and mecamylamine) inhibit the taste response to AA, but not caffeine; and then 4) established that the thermal dependence of the taste response to AA is blocked by HC-030031. Taken together, our results indicate that TrpA1 serves as a molecular integrator of taste and temperature in M. sexta. PMID:23828906
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Scott A., E-mail: scott.jordan@hc-sc.gc.c; Cunningham, David G.; Marles, Robin J.
Although herbal medicinal products (HMP) have been perceived by the public as relatively low risk, there has been more recognition of the potential risks associated with this type of product as the use of HMPs increases. Potential harm can occur via inherent toxicity of herbs, as well as from contamination, adulteration, plant misidentification, and interactions with other herbal products or pharmaceutical drugs. Regulatory safety assessment for HMPs relies on both the assessment of cases of adverse reactions and the review of published toxicity information. However, the conduct of such an integrated investigation has many challenges in terms of the quantitymore » and quality of information. Adverse reactions are under-reported, product quality may be less than ideal, herbs have a complex composition and there is lack of information on the toxicity of medicinal herbs or their constituents. Nevertheless, opportunities exist to capitalise on newer information to increase the current body of scientific evidence. Novel sources of information are reviewed, such as the use of poison control data to augment adverse reaction information from national pharmacovigilance databases, and the use of more recent toxicological assessment techniques such as predictive toxicology and omics. The integration of all available information can reduce the uncertainty in decision making with respect to herbal medicinal products. The example of Aristolochia and aristolochic acids is used to highlight the challenges related to safety assessment, and the opportunities that exist to more accurately elucidate the toxicity of herbal medicines.« less
Molecular mechanisms of toxicity of important food-borne phytotoxins.
Rietjens, Ivonne M C M; Martena, Martijn J; Boersma, Marelle G; Spiegelenberg, Wim; Alink, Gerrit M
2005-02-01
At present, there is an increasing interest for plant ingredients and their use in drugs, for teas, or in food supplements. The present review describes the nature and mechanism of action of the phytochemicals presently receiving increased attention in the field of food toxicology. This relates to compounds including aristolochic acids, pyrrolizidine alkaloids, beta-carotene, coumarin, the alkenylbenzenes safrole, methyleugenol and estragole, ephedrine alkaloids and synephrine, kavalactones, anisatin, St. John's wort ingredients, cyanogenic glycosides, solanine and chaconine, thujone, and glycyrrhizinic acid. It can be concluded that several of these phytotoxins cause concern, because of their bioactivation to reactive alkylating intermediates that are able to react with cellular macromolecules causing cellular toxicity, and, upon their reaction with DNA, genotoxicity resulting in tumors. Another group of the phytotoxins presented is active without the requirement for bioactivation and, in most cases, these compounds appear to act as neurotoxins interacting with one of the neurotransmitter systems. Altogether, the examples presented illustrate that natural does not equal safe and that in modern society adverse health effects, upon either acute or chronic exposure to phytochemicals, can occur as a result of use of plant- or herb-based foods, teas, or other extracts.
Genomic and epigenomic heterogeneity of hepatocellular carcinoma
Lin, De-Chen; Mayakonda, Anand; Dinh, Huy Q.; Huang, Pinbo; Lin, Lehang; Liu, Xiaoping; Ding, Ling-wen; Wang, Jie; Berman, Benjamin P.; Song, Er-Wei; Yin, Dong; Koeffler, H. Phillip
2017-01-01
Understanding the intratumoral heterogeneity of hepatocellular carcinoma (HCC) is instructive for developing personalized therapy and identifying molecular biomarkers. Here we applied whole-exome sequencing to 69 samples from 11 patients to resolve the genetic architecture of subclonal diversification. Spatial genomic diversity was found in all 11 HCC cases, with 29% of driver mutations being heterogeneous, including TERT, ARID1A, NOTCH2, and STAG2. Similar with other cancer types, TP53 mutations were always shared between all tumor regions i.e. located on the “trunk” of the evolutionary tree. In addition, we found that variants within several drug targets such as KIT, SYK and PIK3CA were mutated in a fully clonal manner, indicating their therapeutic potentials for HCC. Temporal dissection of mutational signatures suggested that mutagenic processes associated with exposure to aristolochic acid and aflatoxin might play a more important role in early, as opposed to late, stages of HCC development. Moreover, we observed extensive intratumoral epigenetic heterogeneity in HCC based on multiple independent analytical methods and showed that intratumoral methylation heterogeneity might play important roles in the biology of HCC cells. Our results also demonstrated prominent heterogeneity of intratumoral methylation even in a stable HCC genome. Together, these findings highlight widespread intratumoral heterogeneity at both the genomic and epigenomic levels in HCC and provide an important molecular foundation for better understanding the pathogenesis of this malignancy. PMID:28302680
Reljic, Zorica; Zlatovic, Mario; Savic-Radojevic, Ana; Pekmezovic, Tatjana; Djukanovic, Ljubica; Matic, Marija; Pljesa-Ercegovac, Marija; Mimic-Oka, Jasmina; Opsenica, Dejan; Simic, Tatjana
2014-01-01
Although recent data suggest aristolochic acid as a putative cause of Balkan endemic nephropathy (BEN), evidence also exists in favor of ochratoxin A (OTA) exposure as risk factor for the disease. The potential role of xenobiotic metabolizing enzymes, such as the glutathione transferases (GSTs), in OTA biotransformation is based on OTA glutathione adducts (OTHQ-SG and OTB-SG) in blood and urine of BEN patients. We aimed to analyze the association between common GSTA1, GSTM1, GSTT1, and GSTP1 polymorphisms and BEN susceptibility, and thereafter performed an in silico simulation of particular GST enzymes potentially involved in OTA transformations. GSTA1, GSTM1, GSTT1 and GSTP1 genotypes were determined in 207 BEN patients and 138 non-BEN healthy individuals from endemic regions by polymerase chain reaction (PCR). Molecular modeling in silico was performed for GSTA1 protein. Among the GST polymorphisms tested, only GSTA1 was significantly associated with a higher risk of BEN. Namely, carriers of the GSTA1*B gene variant, associated with lower transcriptional activation, were at a 1.6-fold higher BEN risk than those carrying the homozygous GSTA1*A/*A genotype (OR = 1.6; p = 0.037). In in silico modeling, we found four structures, two OTB-SG and two OTHQ-SG, bound in a GSTA1 monomer. We found that GSTA1 polymorphism was associated with increased risk of BEN, and suggested, according to the in silico simulation, that GSTA1-1 might be involved in catalyzing the formation of OTHQ-SG and OTB-SG conjugates. PMID:25111321
Fan, Ying; Xiao, Wenzhen; Lee, Kyung; Salem, Fadi; Wen, Jiejun; He, Li; Zhang, Jing; Fei, Yang; Cheng, Dongsheng; Bao, Hongda; Liu, Yumei; Lin, Fujun; Jiang, Gengru; Guo, Zhiyong; Wang, Niansong; He, John Cijiang
2017-07-01
Several animal studies have shown an important role for endoplasmic reticulum (ER) stress in AKI, whereas human studies are lacking. We recently reported that Reticulon-1A (RTN1A) is a key mediator of ER stress and kidney cell injury. Here, we investigated whether modulation of RTN1A expression during AKI contributes to the progression to CKD. In a retrospective study of 51 patients with AKI, increased expression of RTN1A and other ER stress markers were associated with the severity of kidney injury and with progression to CKD. In an inducible tubular cell-specific RTN1A-knockdown mouse model subjected to folic acid nephropathy (FAN) or aristolochic acid nephropathy, reduction of RTN1A expression during the initial stage of AKI attenuated ER stress and kidney cell injury in early stages and renal fibrosis development in later stages. Treatment of wild-type mice with tauroursodeoxycholic acid, an inhibitor of ER stress, after the induction of kidney injury with FA facilitated renoprotection similar to that observed in RTN1A-knockdown mice. Conversely, in transgenic mice with inducible tubular cell-specific overexpression of RTN1A subjected to FAN, induction of RTN1A overexpression aggravated ER stress and renal injury at the early stage and renal fibrosis at the late stage of FAN. Together, our human and mouse data suggest that the RTN1A-mediated ER stress response may be an important determinant in the severity of AKI and maladaptive repair that may promote progression to CKD. Copyright © 2017 by the American Society of Nephrology.
Sakthivel, G.; Dey, Amitabha; Nongalleima, Kh.; Chavali, Murthy; Rimal Isaac, R. S.; Singh, N. Surjit; Deb, Lokesh
2013-01-01
The present study emphasizes to reveal the antivenom activity of Aristolochia bracteolata Lam., Tylophora indica (Burm.f.) Merrill, and Leucas aspera S. which were evaluated against venoms of Daboia russelli russelli (Russell's viper) and Naja naja (Indian cobra). The aqueous extracts of leaves and roots of the above-mentioned plants and their polyherbal (1 : 1 : 1) formulation at a dose of 200 mg/kg showed protection against envenomed mice with LD50 doses of 0.44 mg/kg and 0.28 mg/kg against Russell's viper and cobra venom, respectively. In in vitro antioxidant activities sample extracts showed free radical scavenging effects in dose dependent manner. Computational drug design and docking studies were carried out to predict the neutralizing principles of type I phospholipase A2 (PLA2) from Indian common krait venom. This confirmed that aristolochic acid and leucasin can neutralize type I PLA2 enzyme. Results suggest that these plants could serve as a source of natural antioxidants and common antidote for snake bite. However, further studies are needed to identify the lead molecule responsible for antidote activity. PMID:23533518
Mechanisms of herb-induced nephrotoxicity.
Allard, T; Wenner, T; Greten, H J; Efferth, T
2013-01-01
Herbal therapies gained much popularity among the general public, but compared to therapies approved by official authorities, toxicological studies are frequently not available for them. Hence, there may be inherent risks and the kidneys may be especially vulnerable to toxic effects. Herbs may induce nephrotoxicity by induction of apoptosis. High oxalate contents in Star fruit (Averrhoa carambola L.) may induce acute nephropathy. Triptolide from Thunder God Vine (Triperygium wilfordii Hook) is a diterpenoid epoxide with induces reactive oxygen species and nephrotubular apoptosis. Cranberry juice is discussed as promoter of kidney stone formation (nephrolithiasis). Abuse of guaifenesin from Roughbark (Guaicum officinale L.) increases stone formation. Aristolochia acids from Aristolochia fangchi Y.C.Wu ex L.D. Chow & S.M. Hwang causes the well-known aristolochic acid nephropathy and carcinogenesis by DNA adduct formation. Carboxyatractyloside from Impila (Callilepsis laureola DC.) inhibits mitochondrial ATP synthesis. Acute allergic interstitial nephritis was diagnosed after intake of Peruvian Cat's claw (Uncaria tomentosa Willd. DC.). Whether or not Willow Bark (Salix alba L.) induces analgesic nephropathwy is a matter of discussion. Other herbal therapies are considered to affect the rennin-angiotensisn-aldosterone (RAA) system Ephedra sinica Stapf with its ingredient ephedrine. Devil's Claw (Harpagophytum procumbens DC. Ex Meisn.) and licorice (Glycyrrhiza glabra L.) may inhibit major renal transport processes needed for filtration, secretion, and absorption. Strategies to minimize nephrotoxicity include (1) quality control and standardization of herbal products, (2) research on the molecular modes of action to better understand pathophysiological mechanisms of herbal products as well as (3) clinical trials to demonstrate efficacy and safety.
Zebrafish Heart Failure Models for the Evaluation of Chemical Probes and Drugs
Monte, Aaron; Cook, James M.; Kabir, Mohd Shahjahan; Peterson, Karl P.
2013-01-01
Abstract Heart failure is a complex disease that involves genetic, environmental, and physiological factors. As a result, current medication and treatment for heart failure produces limited efficacy, and better medication is in demand. Although mammalian models exist, simple and low-cost models will be more beneficial for drug discovery and mechanistic studies of heart failure. We previously reported that aristolochic acid (AA) caused cardiac defects in zebrafish embryos that resemble heart failure. Here, we showed that cardiac troponin T and atrial natriuretic peptide were expressed at significantly higher levels in AA-treated embryos, presumably due to cardiac hypertrophy. In addition, several human heart failure drugs could moderately attenuate the AA-induced heart failure by 10%–40%, further verifying the model for drug discovery. We then developed a drug screening assay using the AA-treated zebrafish embryos and identified three compounds. Mitogen-activated protein kinase kinase inhibitor (MEK-I), an inhibitor for the MEK-1/2 known to be involved in cardiac hypertrophy and heart failure, showed nearly 60% heart failure attenuation. C25, a chalcone derivative, and A11, a phenolic compound, showed around 80% and 90% attenuation, respectively. Time course experiments revealed that, to obtain 50% efficacy, these compounds were required within different hours of AA treatment. Furthermore, quantitative polymerase chain reaction showed that C25, not MEK-I or A11, strongly suppressed inflammation. Finally, C25 and MEK-I, but not A11, could also rescue the doxorubicin-induced heart failure in zebrafish embryos. In summary, we have established two tractable heart failure models for drug discovery and three potential drugs have been identified that seem to attenuate heart failure by different mechanisms. PMID:24351044
CKD hotspots around the world: where, why and what the lessons are. A CKJ review series.
Martín-Cleary, Catalina; Ortiz, Alberto
2014-12-01
Chronic kidney disease (CKD) is one of the three causes of death that has had the highest increase in the last 20 years. The increasing CKD burden occurs in the context of lack of access of most of the world population to adequate healthcare and an incomplete understanding of the pathogenesis of CKD. However, CKD is not homogeneously distributed. CKD hotspots are defined as countries, region, communities or ethnicities with higher than average incidence of CKD. Analysis of CKD hotspots has the potential to provide valuable insights into the pathogenesis of kidney disease and to improve the life expectancy of the affected communities. Examples include ethnicities such as African Americans in the USA or Aboriginals in Australia, regions such as certain Balkan valleys or Central America and even groups of people sharing common activities or interests such as young women trying to lose weight in Belgium. The study of these CKD hotspots has identified underlying genetic factors, such as ApoL1 gene variants, environmental toxins, such as aristolochic acid and socioeconomic factors leading to nutritional deprivation and inflammation/infection. The CKD hotspots series of CKJ reviews will explore the epidemiology and causes in CKD hotspots, beginning with Australian Aboriginals in this issue. An online map of CKD hotspots around the world will feature the reviewed hotspots, highlighting known or suspected causes as well as ongoing projects to unravel the cause and providing a directory of public health officials, physicians and basic scientists involved in these efforts. Since the high prevalence of CKD in a particular region or population may only be known to local physicians, we encourage readers to propose further CKD hotspots to be reviewed.
Kwak, Dong Hoon; Lee, Ji-Hye; Kim, Taesoo; Ahn, Hyo Sun; Cho, Won-Kyung; Ha, Hyunil; Hwang, Youn-Hwan; Ma, Jin Yeul
2012-01-01
Aristolochia manshuriensis Kom (AMK) is a traditional medicinal herb used for the treatment of arthritis, rheumatism, hepatitis, and anti-obesity. Because of nephrotoxicity and carcinogenicity of AMK, there are no pharmacological reports on anti-obesity potential of AMK. Here, we showed AMK has an inhibitory effect on adipocyte differentiation of 3T3-L1 cells along with significantly decrease in the lipid accumulation by downregulating several adipocyte-specific transcription factors including peroxisome proliferation-activity receptor γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBP-α) and C/EBP-β, which are critical for adipogenesis in vitro. AMK also markedly activated the extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathway including Ras, Raf1, and mitogen-activated protein kinase kinase 1 (MEK1), and significantly suppressed Akt pathway by inhibition of phosphoinositide-dependent kinase 1 (PDK1). Aristolochic acid (AA) and ethyl acetate (EtOAc) fraction of AMK with AA were significantly inhibited TG accumulation, and regulated two pathway (ERK1/2 and Akt) during adipocyte differentiation, and was not due to its cytotoxicity. These two pathways were upstream of PPAR-γ and C/EBPα in the adipogenesis. In addition, gene expressions of secreting factors such as fatty acid synthase (FAS), adiponectin, lipopreotein lipase (LPL), and aP2 were significantly inhibited by treatment of AMK during adipogenesis. We used the high-fat diet (HFD)-induced obesity mouse model to determine the inhibitory effects of AMK on obesity. Oral administration of AMK (62.5 mg/kg/day) significantly decreased the fat tissue weight, total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C) concentration in the blood. The results of this study suggested that AMK inhibited lipid accumulation by the down-regulation of the major transcription factors of the adipogensis pathway including PPAR-γ and C/EBP-α through regulation of Akt pathway and ERK 1/2 pathway in 3T3-L1 adipocytes and HFD-induced obesity mice, and AA may be main act in inhibitory effects of AMK during adipocyte differentiation. PMID:23166699
Tian, Jing-Zhuo; Liang, Ai-Hua; Liu, Jing; Zhang, Bo-Li
2017-12-01
Aristolochic acids (AAs) widely exist in such plants as Aristolochia and Asarum. The renal toxicity of AAs as well as its carcinogenicity to urinary system have been widely known. In 2003 and 2004, China prohibited the use of Aristolochiae Radix, Aristolochiae Manshuriensis Caulis and Aristolochiae Fangchi Radix, and required administering other AAs-containing medicines in accordance with the regulations for prescription drugs. In this paper, we retrieved literatures on the content determination of AAs in recent 10 years in China. It suggested that the AAs content is lower in Asarum herb, especially in its roots and rhizomes, and most of which do not show detectable amount of AA-I. Some of traditional Chinese medicines show fairly small amount of detectable AA-I. The AAs content in Aristolochia herb (including Fructus Aristolochiae, kaempfer dutchmanspipe root) is relatively high; however, there are fewer literatures for studying the content determination of AAs in Chinese patent medicines. There were many factors affecting AAs content, including the parts used, origins, processing methods, extraction process. It suggested that we should pay attention to the toxicity of Chinese medicines containing AAs and use these decoction pieces and traditional Chinese medicines cautiously. In addition, basic studies for the origins, processing methods and extraction process of Chinese patent medicines containing AAs, as well as supervision and detection of AAs content in traditional Chinese medicinal materials, decoction pieces and Chinese patent medicines shall be strengthened for reducing medication risk and guaranteeing clinical medication safety. Copyright© by the Chinese Pharmaceutical Association.
Mechanisms underlying ketoconazole-induced Ca(2+) mobilization in Madin-Darby canine kidney cells.
Jan, C; Tseng, C
2000-04-15
The effect of ketoconazole on Ca(2+) signaling in Madin-Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Ketoconazole evoked increases in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) concentration dependently. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium, pretreatment with ketoconazole abolished the [Ca(2+)](i) rise induced by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump. Addition of 3 mM Ca(2+) induced a significant [Ca(2+)](i) rise after preincubation with 150 microM ketoconazole in Ca(2+)-free medium. Pretreatment with aristolochic acid (40 microM) to inhibit phospholipase A(2) inhibited the 150-microM-ketoconazole-induced internal Ca(2+) release by 37%, but inhibition of phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) (2 microM) had no effect. Collectively, we found that ketoconazole increases [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive pools in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from the external space.
The Organic Anion Transporter (OAT) Family: A Systems Biology Perspective
Nigam, Sanjay K.; Bush, Kevin T.; Martovetsky, Gleb; Ahn, Sun-Young; Liu, Henry C.; Richard, Erin; Bhatnagar, Vibha; Wu, Wei
2015-01-01
The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the “Remote Sensing and Signaling Hypothesis,” which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling. PMID:25540139
Sanz, Ana B; Sanchez-Niño, María Dolores; Martín-Cleary, Catalina; Ortiz, Alberto; Ramos, Adrián M
2013-07-01
Acute kidney injury (AKI) is a clinical syndrome characterized by the acute loss of kidney function. AKI is increasingly frequent and is associated with impaired survival and chronic kidney disease progression. Experimental AKI models have contributed to a better understanding of pathophysiological mechanisms but they have not yet resulted in routine clinical application of novel therapeutic approaches. The authors present the advances in experimental AKI models over the last decade. Furthermore, the authors review their current and expected impact on novel drug discovery. New AKI models have been developed in rodents and non-rodents. Non-rodents allow the evaluation of specific aspects of AKI in both bigger animals and simpler organisms such as drosophila and zebrafish. New rodent models have recently reproduced described clinical entities, such as aristolochic and warfarin nephropathies, and have also provided better models for old entities such as thrombotic microangiopathy-induced AKI. Several therapies identified in animal models are now undergoing clinical trials in human AKI, including p53 RNAi and bone-marrow derived mesenchymal stem cells. It is conceivable that further refinement of animal models in combination with ongoing trials and novel trials based on already identified potential targets will eventually yield effective therapies for clinical AKI.
Yun, Byeong Hwa; Rosenquist, Thomas; Sidorenko, Viktoriya; Iden, Charles; Chung-Hsin, Chen; Pu, Yeong-Shiau; Bonala, Radha; Johnson, Francis; Dickman, Kathleen G.; Grollman, Arthur P.; Turesky, Robert J.
2012-01-01
Aristolochic acids (AAs) are a structurally-related family of nephrotoxic and carcinogenic nitrophenanthrene compounds found in Aristolochia herbaceous plants, many of which have been used worldwide for medicinal purposes. AAs have been implicated in the etiology of so-called Chinese herbs nephropathy and of Balkan endemic nephropathy. Both of these disease syndromes are associated with carcinomas of the upper urinary tract (UUC). 8-Methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I) is a principal component of Aristolochia herbs. Following metabolic activation, AA-I reacts with DNA to form aristolactam (AL-I)-DNA adducts. We have developed a sensitive analytical method, using ultra-performance liquid chromatography-electrospray ionization/multistage mass spectrometry (UPLC-ESI/MSn) with a linear quadrupole ion-trap mass spectrometer, to measure 7-(deoxyadenosin-N6-yl) aristolactam I (dA-AL-I) and 7-(deoxyguanosin-N2-yl) aristolactam I (dG-AL-I) adducts. Using 10 μg of DNA for measurements, the lower limits of quantitation of dA-AL-I and dG-AL-I are, respectively, 0.3 and 1.0 adducts per 108 DNA bases. We have used UPLC-ESI/MSn to quantify AL-DNA adducts in tissues of rodents exposed to AA, and in the renal cortex of patients with UUC who reside in Taiwan, where the incidence of this uncommon cancer is the highest reported for any country in the world. In human tissues, dA-AL-I was detected at levels ranging from 9 to 338 adducts per 108 DNA bases, whereas dG-AL-I was not found. We conclude that UPLC-ESI/MSn is a highly sensitive, specific and robust analytical method, positioned to supplant 32P-postlabeling techniques currently used for biomonitoring of DNA adducts in human tissues. Importantly, UPLC-ESI/MSn could be used to document exposure to AA, the toxicant responsible for AA nephropathy and its associated UUC. PMID:22515372
Romero, Paco; Gandía, Mónica; Alférez, Fernando
2013-09-01
The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality. Expression of CsPLDα and CsPLDβ, and CssPLA2α and CssPLA2β was studied by real-time RT-PCR during water stress and in response to ABA. CsPLDα expression increased in mature-green fruit from 'Navelate' but not in 'Pinalate' and ABA did not counteract this effect. ABA enhanced repression of CsPLDα in full-mature fruit. CsPLDβ gene expression decreased in mature-green 'Pinalate', remained unchanged in 'Navelate' and was induced in full-mature fruit from both varieties. CssPLA2α expression increased in mature-green fruit from both varieties whereas in full-mature fruit only increased in 'Navelate'. CssPLA2β expression increased in mature-green flavedo from both varieties, but in full-mature fruit remained steady in 'Navelate' and barely increased in 'Pinalate' fruit. ABA reduced expression in both after prolonged storage. Responsiveness to ABA increased with maturation. Our results show interplay between PLA2 and PLD and suggest that ABA action is upstream phospholipase activation. Response to ABA during water stress in citrus is regulated during fruit maturation and involves membrane phospholipid degradation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Oliveira-Mendes, Bárbara Bruna Ribeiro; do Carmo, Anderson Oliveira; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Machado-de-Ávila, Ricardo Andrez; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes
2014-01-01
Background Scorpionism is a public health problem in Brazil, and Tityus serrulatus (Ts) is primarily responsible for severe accidents. The main toxic components of Ts venom are low-molecular-weight neurotoxins; however, the venom also contains poorly characterized high-molecular-weight enzymes. Hyaluronidase is one such enzyme that has been poorly characterized. Methods and principal findings We examined clones from a cDNA library of the Ts venom gland and described two novel isoforms of hyaluronidase, TsHyal-1 and TsHyal-2. The isoforms are 83% identical, and alignment of their predicted amino acid sequences with other hyaluronidases showed conserved residues between evolutionarily distant organisms. We performed gel filtration followed by reversed-phase chromatography to purify native hyaluronidase from Ts venom. Purified native Ts hyaluronidase was used to produce anti-hyaluronidase serum in rabbits. As little as 0.94 µl of anti-hyaluronidase serum neutralized 1 LD50 (13.2 µg) of Ts venom hyaluronidase activity in vitro. In vivo neutralization assays showed that 121.6 µl of anti-hyaluronidase serum inhibited mouse death 100%, whereas 60.8 µl and 15.2 µl of serum delayed mouse death. Inhibition of death was also achieved by using the hyaluronidase pharmacological inhibitor aristolochic acid. Addition of native Ts hyaluronidase (0.418 µg) to pre-neutralized Ts venom (13.2 µg venom+0.94 µl anti-hyaluronidase serum) reversed mouse survival. We used the SPOT method to map TsHyal-1 and TsHyal-2 epitopes. More peptides were recognized by anti-hyaluronidase serum in TsHyal-1 than in TsHyal-2. Epitopes common to both isoforms included active site residues. Conclusions Hyaluronidase inhibition and immunoneutralization reduced the toxic effects of Ts venom. Our results have implications in scorpionism therapy and challenge the notion that only neurotoxins are important to the envenoming process. PMID:24551256
Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrini, Kathryn L.
Establishing a microRNA (miRNA) expression profile in affected tissues provides an important foundation for the discovery of miRNAs involved in the development or progression of pathologic conditions. We conducted small RNA sequencing to generate a temporal profile of miRNA expression in the kidneys using a mouse model of folic acid-induced (250 mg/kg i.p.) kidney injury and fibrosis. From the 103 miRNAs that were differentially expressed over the time course (> 2-fold, p < 0.05), we chose to further investigate miR-18a-5p, which is expressed during the acute stage of the injury; miR-132-3p, which is upregulated during transition between acute and fibroticmore » injury; and miR-146b-5p, which is highly expressed at the peak of fibrosis. Using qRT-PCR, we confirmed the increased expression of these candidate miRNAs in the folic acid model as well as in other established mouse models of acute injury (ischemia/reperfusion injury) and fibrosis (unilateral ureteral obstruction). In situ hybridization confirmed high expression of miR-18a-5p, miR-132-3p and miR-146b-5p throughout the kidney cortex in mice and humans with severe kidney injury or fibrosis. When primary human proximal tubular epithelial cells were treated with model nephrotoxicants such as cadmium chloride (CdCl{sub 2}), arsenic trioxide, aristolochic acid (AA), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and cisplatin, miRNA-132-3p was upregulated 4.3-fold after AA treatment and 1.5-fold after K{sub 2}Cr{sub 2}O{sub 7} and CdCl{sub 2} treatment. These results demonstrate the application of temporal small RNA sequencing to identify miR-18a, miR-132 and miR-146b as differentially expressed miRNAs during distinct phases of kidney injury and fibrosis progression. - Highlights: • We used small RNA sequencing to identify differentially expressed miRNAs in kidney. • Distinct patterns were found for acute injury and fibrotic stages in the kidney. • Upregulation of miR-18a, -132 and -146b was confirmed in mice and human kidneys.« less
Participation of PLA2 and PLC in DhL-induced activation of Rhinella arenarum oocytes.
Zapata-Martínez, J; Medina, M F; Gramajo-Bühler, M C; Sánchez-Toranzo, G
2016-08-01
Rhinella arenarum oocytes can be artificially activated, a process known as parthenogenesis, by a sesquiterpenic lactone of the guaianolide group, dehydroleucodine (DhL). Transient increases in the concentration of cytosolic Ca2+ are essential to trigger egg activation events. In this sense, the 1-4-5 inositol triphosphate receptors (IP3R) seem to be involved in the Ca2+ transient release induced by DhL in this species. We analyzed the involvement of phosphoinositide metabolism, especially the participation of phospholipase A2 (PLA2) and phospholipase C (PLC) in DhL-induced activation. Different doses of quinacrine, aristolochic acid (ATA) (PLA2 inhibitors) or neomycin, an antibiotic that binds to PIP2, thus preventing its hydrolysis, were used in mature Rhinella arenarum oocytes. In order to assay the participation of PI-PLC and PC- PLC we used U73122, a competitive inhibitor of PI-PLC dependent events and D609, an inhibitor of PC-PLC. We found that PLA2 inhibits quinacrine more effectively than ATA. This difference could be explained by the fact that quinacrine is not a specific inhibitor for PLA2 while ATA is specific for this enzyme. With respect to the participation of PLC, a higher decrease in oocyte activation was detected when cells were exposed to neomycin. Inhibition of PC-PLC with D609 and IP-PLC with U73122 indicated that the last PLC has a significant participation in the effect of DhL-induced activation. Results would indicate that DhL induces activation of in vitro matured oocytes of Rhinella arenarum by activation of IP-PLC, which in turn may induce IP3 formation which produces Ca2+ release.
Effect of [6]-shogaol on cytosolic Ca2+ levels and proliferation in human oral cancer cells (OC2).
Chen, Chung-Yi; Yang, Yu-Han; Kuo, Soong-Yu
2010-08-27
The effect of [6]-shogaol (1) on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and viability has not been explored previously in oral epithelial cells. The present study has examined whether 1 alters [Ca(2+)](i) and viability in OC2 human oral cancer cells. Compound 1 at concentrations > or = 5 microM increased [Ca(2+)](i) in a concentration-dependent manner with a 50% effective concentration (EC(50)) value of 65 microM. The Ca(2+) signal was reduced substantially by removing extracellular Ca(2+). In a Ca(2+)-free medium, the 1-induced [Ca(2+)](i) elevation was mostly attenuated by depleting stored Ca(2+) with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). The [Ca(2+)](i) signal was inhibited by La(3+) but not by L-type Ca(2+) channel blockers. The elevation of [Ca(2+)](i) caused by 1 in a Ca(2+)-containing medium was not affected by modulation of protein kinase C activity, but was inhibited by 82% with the phospholipase A2 inhibitor aristolochic acid I (20 microM). U73122, a selective inhibitor of phospholipase C, abolished 1-induced [Ca(2+)](i) release. At concentrations of 5-100 microM, 1 killed cells in a concentration-dependent manner. These findings suggest that [6]-shogaol induces a significant rise in [Ca(2+)](i) in oral cancer OC2 cells by causing stored Ca(2+) release from the thapsigargin-sensitive endoplasmic reticulum pool in an inositol 1,4,5-trisphosphate-dependent manner and by inducing Ca(2+) influx via a phospholipase A2- and La(3+)-sensitive pathway.
Increased risks of upper tract urothelial carcinoma in male and female chinese herbalists.
Yang, Hsiao-Yu; Wang, Jung-Der; Lo, Tsai-Chang; Chen, Pau-Chung
2011-03-01
It has been shown that herbs that contain aristolochic acid induce urological cancer. Chinese herbalists have easy access to such herbs. Our previous mortality study has shown a significantly increased risk of urological cancer in female but not male herbalists. To re-examine this risk in male herbalists, the incidence of urological cancer was analyzed. We enrolled all 6550 Chinese herbalists in Taiwan registered during 1985-2000, and we retrospectively followed the development of cancer until 2001 by analysis of data collected from the Taiwan Cancer Registry. Standardized incidence ratios (SIRs) were calculated for urological cancers in herbalists and compared with those for the general population in Taiwan. There were 30 newly diagnosed cases of urological cancer and most of them were transitional cell carcinoma (93.1%). The mean age at diagnosis for urothelial carcinoma was 51.6 years, and 51.9% were in the upper urinary tract. After adjustment for age and sex, the SIR for all urological cancers was 3.51 [(95% confidence interval (CI): 2.37-5.01]. When stratified by location, the SIRs for kidney and upper urinary tract cancers and bladder cancer were 4.24 (95% CI: 2.47-6.80) and 2.86 (95% CI: 1.52-4.89), respectively. When analyzed by sex, the SIRs for all urological cancers, kidney and upper urinary tract cancers, and bladder cancer were also significantly increased in male herbalists. The significant risk of urothelial carcinoma noted in male herbalists increases our suspicion that this is an occupational disease that renders regular health assessment of herbalists an urgent necessity. Copyright © 2011 Formosan Medical Association & Elsevier. Published by Elsevier B.V. All rights reserved.
Translational value of animal models of kidney failure.
Ortiz, Alberto; Sanchez-Niño, Maria D; Izquierdo, Maria C; Martin-Cleary, Catalina; Garcia-Bermejo, Laura; Moreno, Juan A; Ruiz-Ortega, Marta; Draibe, Juliana; Cruzado, Josep M; Garcia-Gonzalez, Miguel A; Lopez-Novoa, Jose M; Soler, Maria J; Sanz, Ana B
2015-07-15
Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with decreased renal function and increased mortality risk, while the therapeutic armamentarium is unsatisfactory. The availability of adequate animal models may speed up the discovery of biomarkers for disease staging and therapy individualization as well as design and testing of novel therapeutic strategies. Some longstanding animal models have failed to result in therapeutic advances in the clinical setting, such as kidney ischemia-reperfusion injury and diabetic nephropathy models. In this regard, most models for diabetic nephropathy are unsatisfactory in that they do not evolve to renal failure. Satisfactory models for additional nephropathies are needed. These include anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, IgA nephropathy, anti-phospholipase-A2-receptor (PLA2R) membranous nephropathy and Fabry nephropathy. However, recent novel models hold promise for clinical translation. Thus, the AKI to CKD translation has been modeled, in some cases with toxins of interest for human CKD such as aristolochic acid. Genetically modified mice provide models for Alport syndrome evolving to renal failure that have resulted in clinical recommendations, polycystic kidney disease models that have provided clues for the development of tolvaptan, that was recently approved for the human disease in Japan; and animal models also contributed to target C5 with eculizumab in hemolytic uremic syndrome. Some ongoing trials explore novel concepts derived from models, such TWEAK targeting as tissue protection for lupus nephritis. We now review animal models reproducing diverse, genetic and acquired, causes of AKI and CKD evolving to kidney failure and discuss the contribution to clinical translation and prospects for the future. Copyright © 2015 Elsevier B.V. All rights reserved.
Leung, Sharon; Shalansky, Karen; Vashisht, Puneet; Leung, Marianna; Marin, Judith G
2017-01-01
There is a lack of published safety information on the use of natural health products (NHPs) for patients with chronic kidney disease (CKD) or renal transplant. To create an online database to provide evidence-based safety recommendations for commonly used NHPs, specific to patients with CKD or renal transplant. NHPs used by CKD and transplant patients in British Columbia were identified from the records of the BC Provincial Renal Agency. For each NHP, several databases (MEDLINE, Embase, Lexi-Natural Products, PubMed Dietary Supplement Subset, and Natural Medicines) were searched for any information pertaining to dosage, adverse drug reactions, drug interactions, immunomodulatory effects, and pharmacokinetics in patients with renal disease. Each NHP was given 1 of 4 safety ratings: likely safe, possibly safe, possibly unsafe, and likely unsafe. An NHP was classified as "possibly unsafe" for patients with renal transplant if it had demonstrated in vitro immunomodulatory effects and/or significant interactions with transplant medications due to effects on the cytochrome P450 3A4 isozyme. Of the 19 627 BC-registered patients with renal disease (as of August 2014), 4122 (21%) were using one or more NHPs. The Herbal-CKD website (www.herbalckd.com) was created in 2015 to provide information about 47 commonly used NHPs and 2 known nephrotoxins (aristolochic acid and silver). This website provides a systematic evaluation of safety information for selected NHPs for patients with CKD (both nondialysis and dialysis-dependent) and kidney transplant. The most common NHP safety classification was "possibly safe", reflecting the paucity of studies in renal populations and the availability of safety data for the general population. Limitations of the website include difficulty in interpreting and generalizing the safety literature because most NHP formulations are not standardized, and others are combination products. The website www.herbalckd.com provides an easy-to-use, evidence-based tool for health care professionals to assess the safety of NHPs for CKD and transplant patients.
Brown, Amy Christine
2017-09-01
No tabular summary of potentially life-threatening, kidney-toxic dietary supplements (DS; includes herbs) based on PubMed case reports is currently available online and continually updated to forewarn United States consumers, clinicians, and companies manufacturing DS. The purpose of this review was to create an online research summary table of kidney toxicity case reports related to DS. Documented PubMed case reports (1966 to May 2016, and cross-referencing) of DS appearing to contribute to kidney toxicity were listed in "DS Toxic Tables." Keywords included "herb" or "dietary supplement" combined with "kidney" to generate an overview list, and possibly "toxicity" to narrow the selection. Case reports were excluded if they involved herb combinations (some exceptions), Chinese herb mixtures, teas of mixed herb contents, mushrooms, poisonous plants, self-harm, excessive doses (except vitamins/minerals), legal or illegal drugs, drug-herbal interactions, and confounders of drugs or diseases. Since commercial DS often include a combination of ingredients, they were treated separately; so were foods. A few foods with kidney-toxic effects were listed in a fourth table. The spectrum of herbal or DS-induced kidney injuries included kidney stones, nephritis, nephrotic syndrome, necrosis, acute kidney injury (AKI; previously known as acute renal failure [ARF]), chronic kidney disease, kidney transplant, and death. Approximately 7 herbs (minus 4 no longer for sale) and 10 dietary supplements (minus 3 excluded due to excessive doses + germanium that is no longer sold) have been related to kidney injury case reports published in PubMed (+crosslisting) in the last 50 + years (1966 to May 2016). The implicated herbs include Chinese yew (Taxus celbica) extract, impila (Callilepis laureola), morning cypress (Cupressus funebris Endl), St. John's wort (Hypericum perforatum), thundergod vine (Tripterygium wilfordii hook F), tribulus (Tribulus terrestris) and wormwood (Artemisia herba-alba). No longer sold in the United States are chocolate vine or mu tong (Caulis aristolochiae), guang fang ji (Aristolochia fangchi), ma huang (Ephedra sinica), and Tenshin Tokishigyaku-ka-goshuyu-shokyo-to. The DS include bile (sheep), chlorella, chromium (Cr), CKLS, creatine, gallbladder (fish), glucosamine, hydrazine, N.O.-Xplode, Spanish fly, and excess intakes of vitamins A, C, and D. Germanium (Ge) is not available for sale. The top two DS with the largest number of reported publications, but not always case reports, in descending order, were the aristolochic acid-containing herbs guang fang ji (mistaken identity) and chocolate vine or mu tong. The remaining DS featured one to three publications over a 50+ year period. Numerous case reports were reported for kidney-toxic foods: djenkol bean, gallbladders (carp fish, pufferfish, & snake), and star fruit (only in chronic kidney disease patients), and uncooked yam powder or juice. This online "DS Toxic Table" provides clinicians, consumers, and manufacturers with a list of herbs that could potentially contribute to kidney injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fleischer, Tom; Su, Yi-Chang; Lin, Sunny Jui-Shan
2017-01-20
The regulation policies of substances used in Chinese Herbal Medicine (CHM), have a direct influence on the ability of health providers to practice in the clinic. We set out to assess the truth behind the assumption that practice of CHM in the west is constrained by the regulations imposed by authorities in western countries. For the first part of our study we surveyed and compiled lists of banned and restricted Chinese Materia Medica (CMM) from six countries: USA, UK, Germany, Israel, Canada and Australia. Afterwards, we estimated the relevant importance of the 300 CMM most-commonly-prescribed to the practice of CHM according to prescriptions from 2,000,000 randomly selected patients, from the Taiwanese National Health Insurance Research Database (NHIRD). We then compared both lists and determined the clinical importance of the banned and restricted CMM. Except for regulations from Canada, most of the information of banned CMM proved to be difficult to organize. The USA was found to have the least amount of banned herbs, with 9 substances. Canada had the highest amount, with 98. In Germany, Australia, the UK, and Israel 10, 29, 36, 68 banned CMM were found, respectively. Apart from aristolochic acid containing substances, ma huang (, Ephedra sinica) was the only CMM banned in all countries. Most of the banned CMM were not found to be among the most-commonly-prescribed according to the NHIRD. Authorities should make this information more accessible. No clear relation exists between CHM regulations and any 'Western' common denominator, and the amount of banned CMM varied greatly among the surveyed countries. However, even among countries with a larger amount of banned CMM, the majority of these were in the bottom two-thirds in respect to the frequency of their use. Thus, regulations in some western countries surely influence the practice of CHM, however, the variability of CMM have been influenced by regulations only to a limited extent. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Do polymorphisms in chemosensory genes matter for human ingestive behavior?
Hayes, John E.; Feeney, Emma L.; Allen, Alissa L.
2013-01-01
In the last decade, basic research in chemoreceptor genetics and neurobiology have revolutionized our understanding of individual differences in chemosensation. From an evolutionary perspective, chemosensory variations appear to have arisen in response to different living environments, generally in the avoidance of toxins and to better detect vital food sources. Today, it is often assumed that these differences may drive variable food preferences and choices, with downstream effects on health and wellness. A growing body of evidence indicates chemosensory variation is far more complex than previously believed. However, just because a genetic polymorphism results in altered receptor function in cultured cells or even behavioral phenotypes in the laboratory, this variation may not be sufficient to influence food choice in free living humans. Still, there is ample evidence to indicate allelic variation in TAS2R38 predicts variation in bitterness of synthetic pharmaceuticals (e.g., propylthiouracil) and natural plant compounds (e.g., goitrin), and this variation associates with differential intake of alcohol and vegetables. Further, this is only one of 25 unique bitter taste genes (TAS2Rs) in humans, and emerging evidence suggests other TAS2Rs may also contain polymorphisms that a functional with respect to ingestive behavior. For example, TAS2R16 polymorphisms are linked to the bitterness of naturally occurring plant compounds and alcoholic beverage intake, a TAS2R19 polymorphism predicts differences in quinine bitterness and grapefruit bitterness and liking, and TAS2R31 polymorphisms associate with differential bitterness of plant compounds like aristolochic acid and the sulfonyl amide sweeteners saccharin and acesulfame-K. More critically with respect to food choices, these polymorphisms may vary independently from each other within and across individuals, meaning a monolithic one-size-fits-all approach to bitterness needs to be abandoned. Nor are genetic differences restricted to bitterness. Perceptual variation has also been associated with polymorphisms in genes involved in odors associated with meat defects (boar taint), green/grassy notes, and cilantro, as well as umami and sweet tastes (TAS1R1/2/3). Here, a short primer on receptor genetics is provided, followed by a summary of current knowledge, and implications for human ingestive behavior are discussed. PMID:23878414
Potentiation of substance p by lysergic acid diethylamide in vivo
Krivoy, W. A.
1961-01-01
In doses of 10 μg/kg or more, lysergic acid diethylamide enhanced the fourth potential (DR IV) of the dorsal root potential complex in the cat. Smaller doses of lysergic acid diethylamide did not in themselves alter the DR IV, but revealed an enhancement of the potential by substance P, which by itself had no effect. 2-Bromolysergic acid diethylamide had no action on the dorsal root potentials, but prevented the actions of lysergic acid diethylamide. PMID:13754427
Potential adverse effects of omega-3 Fatty acids in dogs and cats.
Lenox, C E; Bauer, J E
2013-01-01
Fish oil omega-3 fatty acids, mainly eicosapentaenoic acid and docosahexaenoic acid, are used in the management of several diseases in companion animal medicine, many of which are inflammatory in nature. This review describes metabolic differences among omega-3 fatty acids and outlines potential adverse effects that may occur with their supplementation in dogs and cats with a special focus on omega-3 fatty acids from fish oil. Important potential adverse effects of omega-3 fatty acid supplementation include altered platelet function, gastrointestinal adverse effects, detrimental effects on wound healing, lipid peroxidation, potential for nutrient excess and toxin exposure, weight gain, altered immune function, effects on glycemic control and insulin sensitivity, and nutrient-drug interactions. Copyright © 2013 by the American College of Veterinary Internal Medicine.
Food acid content and erosive potential of sugar-free confections.
Shen, P; Walker, G D; Yuan, Y; Reynolds, C; Stacey, M A; Reynolds, E C
2017-06-01
Dental erosion is an increasingly prevalent problem associated with frequent consumption of acidic foods and beverages. The aim of this study was to measure the food acid content and the erosive potential of a variety of sugar-free confections. Thirty sugar-free confections were selected and extracts analysed to determine pH, titratable acidity, chemical composition and apparent degree of saturation with respect to apatite. The effect of the sugar-free confections in artificial saliva on human enamel was determined in an in vitro dental erosion assay using change in surface microhardness. The change in surface microhardness was used to categorize the confections as high, moderate or low erosive potential. Seventeen of the 30 sugar-free confections were found to contain high concentrations of food acids, exhibit low pH and high titratable acidity and have high erosive potential. Significant correlations were found between the dental erosive potential (change in enamel surface microhardness) and pH and titratable acidity of the confections. Ten of these high erosive potential confections displayed dental messages on the packaging suggesting they were safe for teeth. Many sugar-free confections, even some with 'Toothfriendly' messages on the product label, contain high contents of food acids and have erosive potential. © 2017 Australian Dental Association.
Herbal bioactivation: the good, the bad and the ugly.
Zhou, Shufeng; Koh, Hwee-Ling; Gao, Yihuai; Gong, Zhi-yuan; Lee, Edmund Jon Deoon
2004-01-09
It has been well established that the formation of reactive metabolites of drugs is associated with drug toxicity. Similarly, there are accumulating data suggesting the role of the formation of reactive metabolites/intermediates through bioactivation in herbal toxicity and carcinogenicity. It has been hypothesized that the resultant reactive metabolites following herbal bioactivation covalently bind to cellular proteins and DNA, leading to toxicity via multiple mechanisms such as direct cytotoxicity, oncogene activation, and hypersensitivity reactions. This is exemplified by aristolochic acids present in Aristolochia spp, undergoing reduction of the nitro group by hepatic cytochrome P450 (CYP1A1/2) or peroxidases in extrahepatic tissues to reactive cyclic nitrenium ion. The latter was capable of reacting with DNA and proteins, resulting in activation of H-ras oncogene, gene mutation and finally carcinogenesis. Other examples are pulegone present in essential oils from many mint species; and teucrin A, a diterpenoid found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming diets. Extensive pulegone metabolism generated p-cresol that was a glutathione depletory, and the furan ring of the diterpenoids in germander was oxidized by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase. On the other hand, some herbal/dietary constituents were shown to form reactive intermediates capable of irreversibly inhibiting various CYPs. The resultant metabolites lead to CYP inactivation by chemical modification of the heme, the apoprotein, or both as a result of covalent binding of modified heme to the apoprotein. Some examples include bergamottin, a furanocoumarin of grapefruit juice; capsaicin from chili peppers; glabridin, an isoflavan from licorice root; isothiocyanates found in all cruciferous vegetables; oleuropein rich in olive oil; dially sulfone found in garlic; and resveratrol, a constituent of red wine. CYPs have been known to metabolize more than 95% therapeutic drugs and activate a number of procarcinogens as well. Therefore, mechanism-based inhibition of CYPs may provide an explanation for some reported herb-drug interactions and chemopreventive activity of herbs. Due to the wide use and easy availability of herbal medicines, there is increasing concern about herbal toxicity. The safety and quality of herbal medicine should be ensured through greater research, pharmacovigilance, greater regulatory control and better communication between patients and health professionals.
Amrutha, Balagopal; Sundar, Kothandapani; Shetty, Prathapkumar Halady
2017-10-01
Organic acids are known to be used as food preservatives due to their antimicrobial potential. This study evaluated the ability of three organic acids, namely, acetic acid, citric acid and lactic acid to manage E. coli and Salmonella sp. from fresh fruits and vegetables. Effect of these organic acids on biofilm forming ability and anti-quorum potential was also investigated. The effect of organic acids on inactivation of E. coli and Salmonella sp. on the surface of a selected vegetable (cucumber) was determined. The minimum inhibitory concentration of the organic acids were found to be 1.5, 2 and 0.2% in E. coli while it was observed to be 1, 1.5 and 1% in Salmonella sp. for acetic, citric and lactic acids respectively. Maximum inhibition of biofilm formation was recorded at 39.13% with lactic acid in E. coli and a minimum of 22.53% with citric acid in Salmonella sp. EPS production was affected in E. coli with lactic acid showing reduction by 13.42% while citric acid and acetic acid exhibited only 6.25% and 10.89% respectively. Swimming and swarming patterns in E. coli was notably affected by both acetic and lactic acids. Lactic and acetic acids showed higher anti-quorum sensing (QS) potential when compared to citric acid. 2% lactic acid showed a maximum inhibition of violacein production by 37.7%. Organic acids can therefore be used as potential quorum quenching agents in food industry. 2% lactic acid treatment on cucumber demonstrated that it was effective in inactivating E. coli and Salmonella sp. There was 1 log reduction in microbial count over a period of 6 days after the lactic acid treatment. Thus, organic acids can act as effective potential sanitizers in reducing the microbial load associated with fresh fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.
2005-01-01
An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.
NASA Astrophysics Data System (ADS)
Suresha, B. L.; Sumantha, H. S.; Salman, K. Mohammed; Pramod, N. G.; Abhiram, J.
2018-04-01
The ionization potential is usually found to be less in acid and more in base. The experiment proves that the ionization potential increases on dilution of acid to base and reduces from base to acid. The potential can be tailored according to the desired properties based on our choice of acid or base. The experimental study establishes a direct relationship between pH and electric potential. This work provides theoretical insights on the need for a basic media of pH 10 in chemical thin film growth techniques called Chemical Bath Deposition Techniques.
USDA-ARS?s Scientific Manuscript database
Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...
New hydrazones of ferulic acid: synthesis, characterization and biological activity.
Wolszleger, Maria; Stan, Cătălina Daniela; Apotrosoaei, Maria; Vasincu, Ioana; Pânzariu, Andreea; Profire, Lenuţa
2014-01-01
The ferulic acid (4-hydroxy-3-methoxy-cinnamic acid) is a phenolic compound with important antioxidant effects and which nowadays is being extensively studied for his potential indications in inflammatory and neurodegenerative diseases, hypertension, atherosclerosis, etc. The synthesis of new ferulic acid compounds with potential antioxidant activity. The synthesis of the designed compounds was performed in several steps: (i) the obtaining of ferulic acid chloride by reacting of ferulic acid with thionyl chloride; (ii) the reaction between the ferulic acid chloride and hydrazine hydrate 98% to obtain the ferulic acid hydrazide; (iii) the condensation of ferrulic acid hydrazide with various benzaldehydes (2-hydroxy/3-hydroxy/4-hydroxy/2-nitro/3-nitro/4-nitro/2-methoxi/ 4-chloro/4-fluoro/4-bromo-benzaldehyde) resulting the correspond- ing hydrazones. The structure of the synthesized compounds was confirmed by FT-IR spectroscopy and the evaluation of antioxidant potential was achieved by determining the total antioxidant capacity and reducing power. In this study new hydrazones of ferulic acid have been synthesized, physic-chemical and spectral characterized. The evaluation of antioxidant potential using in vitro methods showed the favorable influence of the structural modulation on the antioxidant effects of ferulic acid.
Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried
2018-05-01
Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.
2017-04-01
Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).
Physiological functions and pathogenic potential of uric acid: A review.
El Ridi, Rashika; Tallima, Hatem
2017-09-01
Uric acid is synthesized mainly in the liver, intestines and the vascular endothelium as the end product of an exogenous pool of purines, and endogenously from damaged, dying and dead cells, whereby nucleic acids, adenine and guanine, are degraded into uric acid. Mentioning uric acid generates dread because it is the established etiological agent of the severe, acute and chronic inflammatory arthritis, gout and is implicated in the initiation and progress of the metabolic syndrome. Yet, uric acid is the predominant anti-oxidant molecule in plasma and is necessary and sufficient for induction of type 2 immune responses. These properties may explain its protective potential in neurological and infectious diseases, mainly schistosomiasis. The pivotal protective potential of uric acid against blood-borne pathogens and neurological and autoimmune diseases is yet to be established.
Parker, Tory L; Miller, Samantha A; Myers, Lauren E; Miguez, Fernando E; Engeseth, Nicki J
2010-01-13
Previous research has demonstrated that certain combinations of compounds result in a decrease in toxic or pro-oxidative effects, previously noted when compounds were administered singly. Thus, there is a need to study many complex interactions further. Two in vitro techniques [electron paramagnetic resonance (EPR) and oxygen radical absorbance capacity (ORAC) assays] were used in this study to assess pro- and antioxidant capacity and synergistic potential of various compounds. Rutin, p-coumaric acid, abscisic acid, ascorbic acid, and a sugar solution were evaluated individually at various concentrations and in all 26 possible combinations at concentrations found in certain foods (honey or papaya), both before and after simulated digestion. EPR results indicated sugar-containing combinations provided significantly higher antioxidant capacity; those combinations containing sugars and ascorbic acid demonstrated synergistic potential. The ORAC assay suggested additive effects, with some combinations having synergistic potential, although fewer combinations were significantly synergistic after digestion. Finally, ascorbic acid, caffeic acid, quercetin, and urate were evaluated at serum-achievable levels. EPR analysis did not demonstrate additive or synergistic potential, although ORAC analysis did, principally in combinations containing ascorbic acid.
Poša, Mihalj; Tepavčević, Vesna
2011-09-01
The formation of mixed micelles built of 7,12-dioxolithocholic and the following hydrophobic bile acids was examined by conductometric method: cholic (C), deoxycholic (D), chenodeoxycholic (CD), 12-oxolithocholic (12-oxoL), 7-oxolithocholic (7-oxoL), ursodeoxycholic (UD) and hiodeoxycholic (HD). Interaction parameter (β) in the studied binary mixed micelles had negative value, suggesting synergism between micelle building units. Based on β value, the hydrophobic bile acids formed two groups: group I (C, D and CD) and group II (12-oxoL, 7-oxoL, UD and HD). Bile acids from group II had more negative β values than bile acids from group I. Also, bile acids from group II formed intermolecular hydrogen bonds in aggregates with both smaller (2) and higher (4) aggregation numbers, according to the analysis of their stereochemical (conformational) structures and possible structures of mixed micelles built of these bile acids and 7,12-dioxolithocholic acid. Haemolytic potential and partition coefficient of nitrazepam were higher in mixed micelles built of the more hydrophobic bile acids (C, D, CD) and 7,12-dioxolithocholic acid than in micelles built only of 7,12-dioxolithocholic acid. On the other hand, these mixed micelles still had lower values of haemolytic potential than micelles built of C, D or CD. The mixed micelles that included bile acids: 12-oxoL, 7-oxoL, UD or HD did not significantly differ from the micelles of 7,12-dioxolithocholic acid, observing the values of their haemolytic potential. Copyright © 2011 Elsevier B.V. All rights reserved.
STUDIES OF THE MECHANISM OF ACTION OF URETHANE IN INITIATING PULMONARY ADENOMAS IN MICE
Rogers, Stanfield
1957-01-01
The process of carcinogenesis following exposure of mice to urethane is demonstrated in the present work to be intimately related to nucleic acid synthesis. Injection of animals with a DNA hydrolysate immediately prior to a single exposure of the animals to urethane markedly reduced the number of pulmonary adenomas initiated. Aminopterin, known to interfere in nucleic acid synthesis (46), potentiated the carcinogenic action of urethane and this potentiation was blocked by injection of a DNA hydrolysate. Of the components and precursors of nucleic acids the pyrimidine series seemed especially concerned. Alterations in the utilization of oxaloacetate, ureidosuccinic acid, dihydro-orotic acid, orotic acid, cytidylic acid, and thymine appeared to be critical steps in the oncogenic process, following upon the primary disorder of cellular metabolism initiated by the carcinogen. All these substances except oxaloacetate profoundly reduced the number of tumors initiated by urethane. Oxaloacetate potentiated the carcinogenic effect. When these results are viewed together and in relation to known facts concerning nucleic acid synthesis they provide evidence suggesting that the point of action of the carcinogen is in the pathway of nucleic acid synthesis below orotic acid and perhaps at the level of ureidosuccinic acid. The potentiating influence of adenine, 4-amino-5-imidazole carboxamide, and aminopterin, the lack of effect of uracil, and the inhibitory influence of thymine together suggest that DNA rather than RNA is the nucleic acid critical to the oncogenic response of mice to urethane. PMID:13416469
Fatty acid is a potential agent for bone tissue induction: In vitro and in vivo approach.
Cardoso, Guinea Bc; Chacon, Erivelto; Chacon, Priscila Gl; Bordeaux-Rego, Pedro; Duarte, Adriana Ss; Saad, Sara T Olalla; Zavaglia, Cecilia Ac; Cunha, Marcelo R
2017-12-01
Our hypothesis was to investigate the fatty acid potential as a bone induction factor. In vitro and in vivo studies were performed to evaluate this approach. Oleic acid was used in a 0.5 wt.% concentration. Polycaprolactone was used as the polymeric matrix by combining solvent-casting and particulate-leaching techniques, with a final porosity of 70 wt.%, investigated by SEM images. Contact angle measurements were produced to investigate the influence of oleic acid on polycaprolactone chains. Cell culture was performed using adipocyte-derived stem cells to evaluate biocompatibility and bioactivity properties. In addition, in vivo studies were performed to evaluate the induction potential of oleic acid addition. Adipocyte-derived stem cells were used to provide differentiation after 21 days of culture. Likewise, information were obtained with in vivo data and cellular invagination was observed on both scaffolds (polycaprolactone and polycaprolactone /oleic acid); interestingly, the scaffold with oleic acid addition demonstrated that cellular migrations are not related to the surrounding tissue, indicating bioactive potential. Our hypothesis is that fatty acid may be used as a potential induction factor for bone tissue engineering. The study's findings indicate oleic acid as a possible agent for bone induction, according to data on cell differentiation, proliferation, and migration. Impact statement The biomaterial combined in this study on bone regeneration is innovative and shows promising results in the treatment of bone lesions. Polycaprolactone (PCL) and oleic acid have been studied separately. In this research, we combined biomaterials to assess the stimulus and the speed of bone healing.
Mohammadi, Zohreh; Modabberi, Soroush; Jafari, Mohammad Reza; Ajayebi, Kimia Sadat
2015-06-01
Acid mine drainage (AMD) gives rise to several problems in sulfide-bearing mineral deposits whether in an ore body or in the mining wastes and tailings. Hence, several methods and parameters have been proposed to evaluate the acid-producing and acid-neutralizing potential of a material. This research compares common static methods for evaluation of acid-production potential of mining wastes in the Muteh gold mines by using 62 samples taken from six waste dumps around Senjedeh and Chah-Khatoun mines. According to a detailed mineralogical study, the waste materials are composed of mica-schist and quartz veins with a high amount of pyrite and are supposed to be susceptible to acid production, and upon a rainfall, they release acid drainage. All parameters introduced in different methods were calculated and compared in this research in order to predict the acid-generating and neutralization potential, including APP, NNP, MPA, NPR, and NAGpH. Based on the analytical results and calculation of different parameters, all methods are in a general consensus that DWS-02 and DWS-03 waste dumps are acid-forming which is clearly attributed to high content of pyrite in samples. DWS-04 is considered as non-acid forming in all methods except method 8 which is uncertain about its acid-forming potential and method 7 which considers a low potential for it. DWC-01 is acid-forming based on all methods except 8, 9, 10, and 11 which are also uncertain about its potential. The methods used are not reached to a compromise on DWS-01 and DWC-02 waste dumps. It is supposed that method 7 gives the conservationist results in all cases. Method 8 is unable to decide on some cases. It is recommended to use and rely on results provided by methods 1, 2, 3, and 12 for taking decisions for further studies. Therefore, according to the static tests used, the aforementioned criteria in selected methods can be used with much confidence as a rule of thumb estimation.
Potential effects of chlorogenic acids on platelet activiation
USDA-ARS?s Scientific Manuscript database
Coffee (Coffea sp) is a most consumed beverage world-wide. Chlorogenic acids (CHAs) are naturally occurring phenolic acid esters abundantly found in coffee. They are reported to have potential health effects on several chronic diseases such as obesity, diabetes and cardiovascular diseases (CVD). At...
Świeca, Michał; Gawlik-Dziki, Urszula; Dziki, Dariusz; Baraniak, Barbara
2017-04-15
The potential bioaccessibility and bioavailability of phenolics, caffeine and antioxidant activity of wheat bread enriched with green coffee were studied. Supplementation enhanced nutraceutical potential by improving phenolic content and lipid protecting capacity. The simulated-digestion-released phenolics (mainly caffeic acid, syringic acid and vanillic acid) from bread, also caused significant qualitative changes (chlorogenic acids were cleaved and significant amounts of caffeic acid and ferulic acid were determined). Compared to the control, for the bread with 1% and 5% of the functional component the contents of phenolics were 1.6 and 3.33 times higher. Also, an approximately 2.3-fold increase in antioxidant activity was found in bread containing 5% of the supplement. The compounds responsible for antioxidant potential have high bioaccessibility but poor bioavailability. The qualitative composition of the phenolic fraction has a key role in developing the antioxidant potential of bread; however, caffeine and synergism between antioxidants are also important considerations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xie, Xing-Guang; Huang, Chun-Yan; Fu, Wan-Qiu; Dai, Chuan-Chao
2016-03-01
The biodegradation potential of sinapic acid, one of the most representative methoxy phenolic pollutants presented in industrial wastewater, was first studied using an endophytic fungus called Phomopsis liquidambari. This strain can effectively degrade sinapic acid in flasks and in soil and the possible biodegradation pathway was first systematically proposed on the basis of the metabolite production patterns and the identification of the metabolites by GC-MS and HPLC-MS. Sinapic acid was first transformed to 2,6-dimethoxy-4-vinylphenol that was further degraded via 4-hydroxy-3,5-dimethoxybenzaldehyde, syringic acid, gallic acid, and citric acid which involved in the continuous catalysis by phenolic acid decarboxylase, laccase, and gallic acid dioxygenase. Moreover, their activities and gene expression levels exhibited a 'cascade induction' response with the changes in metabolic product concentrations and the generation of fungal laccase significantly improved the degradation process. This study is the first report of an endophytic fungus that has great potential to degrade xenobiotic sinapic acid, and also provide a basis for practical application of endophytic fungus in the bioremediation of sinapic acid-contaminated industrial wastewater and soils. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai
2017-10-15
In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Low acid producing solid propellants
NASA Technical Reports Server (NTRS)
Bennett, Robert R.
1995-01-01
The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.
Tan, Yen Hock; Huang, He; Kihara, Daisuke
2006-08-15
Aligning distantly related protein sequences is a long-standing problem in bioinformatics, and a key for successful protein structure prediction. Its importance is increasing recently in the context of structural genomics projects because more and more experimentally solved structures are available as templates for protein structure modeling. Toward this end, recent structure prediction methods employ profile-profile alignments, and various ways of aligning two profiles have been developed. More fundamentally, a better amino acid similarity matrix can improve a profile itself; thereby resulting in more accurate profile-profile alignments. Here we have developed novel amino acid similarity matrices from knowledge-based amino acid contact potentials. Contact potentials are used because the contact propensity to the other amino acids would be one of the most conserved features of each position of a protein structure. The derived amino acid similarity matrices are tested on benchmark alignments at three different levels, namely, the family, the superfamily, and the fold level. Compared to BLOSUM45 and the other existing matrices, the contact potential-based matrices perform comparably in the family level alignments, but clearly outperform in the fold level alignments. The contact potential-based matrices perform even better when suboptimal alignments are considered. Comparing the matrices themselves with each other revealed that the contact potential-based matrices are very different from BLOSUM45 and the other matrices, indicating that they are located in a different basin in the amino acid similarity matrix space.
Mepham, T. B.; Smith, M. W.
1966-01-01
1. Serosal transfers of valine and threonine were measured using everted sacs of anterior intestine taken from goldfish acclimatized to different temperatures. 2. Both valine and threonine were actively transported at incubation temperatures equal to or greater than the previous environmental temperature of the fish. There was also a positive serosal transfer of valine, but not threonine, at incubation temperatures below the previous environmental temperature of the fish. 3. The mean stable transmural potentials and amino-acid-evoked potentials depended both on the temperature to which the fish had been acclimatized and on the temperature at which the sacs were incubated. 4. There was a linear relation between the transmural potential and the serosal transfer of amino acid, one additional μmole of valine or threonine being transferred/2 hr incubation period for each 3 mV rise in potential. There was a less obvious correlation between the amino-acid-evoked potential and on serosal transfer of amino acid. 5. Acclimatization of the goldfish intestine from 8 to 25° C, assessed by changes occurring in the transmural potential and serosal transfer of amino acids, tended to stabilize both parameters, but the compensation in each case was only partial. 6. It is possible that the imbalance in transfer of valine-like and threonine-like amino acids, seen at incubation temperatures below the previous acclimatization temperature of the fish, has a special function in initiating the process of acclimatization to the new environmental temperature. PMID:5972157
Modabberi, Soroush; Alizadegan, Ali; Mirnejad, Hassan; Esmaeilzadeh, Esmat
2013-11-01
This study investigates the possibility of acid mine drainage (AMD) generation in active and derelict mine waste piles in Sarcheshmeh Copper Mine produced in several decades, using static tests including acid-base accounting (ABA) and net acid-generating pH (NAGpH). In this study, 51 composite samples were taken from 11 waste heaps, and static ABA and NAGpH tests were carried out on samples. While some piles are acid producing at present and AMD is discharging from the piles, most of them do not show any indication on their AMD potential, and they were investigated to define their acid-producing potential. The analysis of data indicates that eight waste piles are potentially acid generating with net neutralization potentials (NNPs) of -56.18 to -199.3, net acid generating of 2.19-3.31, and NPRs from 0.18 to 0.44. Other waste piles exhibited either a very low sulfur, high carbonate content or excess carbonate over sulfur; hence, they are not capable of acid production or they can be considered as weak acid producers. Consistency between results of ABA and NAGpH tests using a variety of classification criteria validates these tests as powerful means for preliminary evaluation of AMD/ARD possibilities in any mining district. It is also concluded that some of the piles with very negative NNPs are capable to produce AMD naturally, and they can be used in heap leaching process for economic recovery of trace amounts of metals without applying any biostimulation methods.
Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.
Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine
2016-04-01
The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.
Fatty Acids Modulate Excitability in Guinea-Pig Hippocampal Slices
1991-01-01
141-147. 32. Taube J. S. and Schwartzkroin P . A . (1988) M .- hanisms of long-term potentiation: a current-source density analysis. J. Neurosci. 8, 1645...pyrami- given volley size to elicit a synaptic potential, while dale to record the resultant population postsynaptic poten- stearic acid (100 p M) and...population spike amplitude (0) and population PSP size ( A ) with exposure to 250 p M capric acid in a representative experiment. Synaptic potentials
Calcium ion binding to a soil fulvic acid using a donnan potential model
Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.
1999-01-01
Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.
Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes?
Kampf, Günter; Fliss, Patricia M; Martiny, Heike
2014-09-16
The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed a systematic literature search and reviewed the available evidence to clarify the suitability of peracetic acid-based formulations for cleaning flexible endoscopes. A total of 243 studies were evaluated. No studies have yet demonstrated that peracetic acid-based cleaners are as effective as conventional cleaners. Some peracetic acid-based formulations have demonstrated some biofilm-cleaning effects and no biofilm-fixation potential, while others have a limited cleaning effect and a clear biofilm-fixation potential. All published data demonstrated a limited blood cleaning effect and a substantial blood and nerve tissue fixation potential of peracetic acid. No evidence-based guidelines on reprocessing flexible endoscopes currently recommend using cleaners containing peracetic acid, but some guidelines clearly recommend not using them because of their fixation potential. Evidence from some outbreaks, especially those involving highly multidrug-resistant gram-negative pathogens, indicated that disinfection using peracetic acid may be insufficient if the preceding cleaning step is not performed adequately. Based on this review we conclude that peracetic acid-based formulations should not be used for cleaning flexible endoscopes.
Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes?
Kampf, Günter; Fliss, Patricia M; Martiny, Heike
2014-01-01
The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed a systematic literature search and reviewed the available evidence to clarify the suitability of peracetic acid-based formulations for cleaning flexible endoscopes. A total of 243 studies were evaluated. No studies have yet demonstrated that peracetic acid-based cleaners are as effective as conventional cleaners. Some peracetic acid-based formulations have demonstrated some biofilm-cleaning effects and no biofilm-fixation potential, while others have a limited cleaning effect and a clear biofilm-fixation potential. All published data demonstrated a limited blood cleaning effect and a substantial blood and nerve tissue fixation potential of peracetic acid. No evidence-based guidelines on reprocessing flexible endoscopes currently recommend using cleaners containing peracetic acid, but some guidelines clearly recommend not using them because of their fixation potential. Evidence from some outbreaks, especially those involving highly multidrug-resistant gram-negative pathogens, indicated that disinfection using peracetic acid may be insufficient if the preceding cleaning step is not performed adequately. Based on this review we conclude that peracetic acid-based formulations should not be used for cleaning flexible endoscopes. PMID:25228941
[Development and application of electroanalytical methods in biomedical fields].
Kusu, Fumiyo
2015-01-01
To summarize our electroanalytical research in the biomedical field over the past 43 years, this review describes studies on specular reflection measurement, redox potential determination, amperometric acid sensing, HPLC with electrochemical detection, and potential oscillation across a liquid membrane. The specular reflection method was used for clarifying the adsorption of neurotransmitters and their related drugs onto a gold electrode and the interaction between dental alloys and compound iodine glycerin. A voltammetric screening test using a redox potential for the antioxidative effect of flavonoids was proposed. Amperometric acid sensing based on the measurement of the reduction prepeak current of 2-methyl-1,4-naphthoquinone (VK3) or 3,5-di-tert-buty1-1,2-benzoquinone (DBBQ) was applied to determine acid values of fats and oils, titrable acidity of coffee, and enzyme activity of lipase, free fatty acids (FFAs) in serum, short-chain fatty acids in feces, etc. The electrode reactions of phenothiazines, catechins, and cholesterol were applied to biomedical analysis using HPLC with electrochemical detection. A three-channel electrochemical detection system was utilized for the sensitive determination of redox compounds in Chinese herbal medicines. The behavior of barbituric acid derivatives was examined based on potential oscillation measurements.
NASA Astrophysics Data System (ADS)
Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.
Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce 4+ may not be well suited for use in RFB technology.
Miyamoto, M; Inoue, K; Gu, Y; Hoki, M; Haji, S; Ohyanagi, H
1999-01-01
At a number of points in the current procedures of islet isolation and islet culture after the harvesting of donor pancreata, microorganisms could potentially infect the islet preparation. Furthermore, the use of islets from multiple donors can compound the risks of contamination of individual recipients. Acidic oxidative potential water (also termed electrolyzed strong acid solution, function water, or acqua oxidation water), which was developed in Japan, is a strong acid formed on the anode in the electrolysis of water containing a small amount of sodium chloride. It has these physical properties: pH, from 2.3 to 2.7; oxidative-reduction potential, from 1,000 to 1,100 mV; dissolved chlorine, from 30 to 40 ppm; and dissolved oxygen, from 10 to 30 ppm. Because of these properties, acidic oxidative potential water has strong bactericidal effects on all bacteria including methicillin-resistant Staphylococcus aureus (MRSA), viruses including HIV, HBV, HCV, CMV, and fungi as a result of the action of the active oxygen and active chlorine that it contains. We conducted this study to evaluate the effect of acidic oxidative potential water irrigation on bacterial contamination on the harvesting of porcine pancreata from slaughterhouses for islet xenotransplantation by counting the number of pancreatic surface bacteria using the Dip-slide method, and on the results of islet culture; and to evaluate the direct effect on isolated islets when it is used to prevent bacterial contamination by the static incubation test and by morphological examination. Direct irrigation of the pancreas by acidic oxidative potential water was found to be very effective in preventing bacterial contamination, but direct irrigation of isolated islets slightly decreased their viability and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2004-08-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werpy, T.; Petersen, G.
2004-08-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.
Structure-based conformational preferences of amino acids
Koehl, Patrice; Levitt, Michael
1999-01-01
Proteins can be very tolerant to amino acid substitution, even within their core. Understanding the factors responsible for this behavior is of critical importance for protein engineering and design. Mutations in proteins have been quantified in terms of the changes in stability they induce. For example, guest residues in specific secondary structures have been used as probes of conformational preferences of amino acids, yielding propensity scales. Predicting these amino acid propensities would be a good test of any new potential energy functions used to mimic protein stability. We have recently developed a protein design procedure that optimizes whole sequences for a given target conformation based on the knowledge of the template backbone and on a semiempirical potential energy function. This energy function is purely physical, including steric interactions based on a Lennard-Jones potential, electrostatics based on a Coulomb potential, and hydrophobicity in the form of an environment free energy based on accessible surface area and interatomic contact areas. Sequences designed by this procedure for 10 different proteins were analyzed to extract conformational preferences for amino acids. The resulting structure-based propensity scales show significant agreements with experimental propensity scale values, both for α-helices and β-sheets. These results indicate that amino acid conformational preferences are a natural consequence of the potential energy we use. This confirms the accuracy of our potential and indicates that such preferences should not be added as a design criterion. PMID:10535955
Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil
USDA-ARS?s Scientific Manuscript database
Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...
Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging
Chen, Chunye
2016-01-01
Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas. PMID:27069529
[Contents of tannins and oxalic acid in the selected forest fruits depending on the harvest site].
Sembratowicz, Iwona; Ognik, Katarzyna; Rusinek, Elzbieta; Truchliński, Jerzy
2008-01-01
Contents of anti-nutritional components (tannins and oxalic acid) were determined in samples of forest fruits: blueberry, raspberry and wild strawberry harvested in Lublin region from areas considered as potentially not exposed to pollution (Skierbieszów Landscape Park) and potentially polluted areas (Cement Factory Rejowiec S.A.). Study revealed that blueberry and raspberry fruits collected on potentially polluted area were characterized by higher tannins contents than those harvested on potentially not polluted area. Oxalic acid level in studied material indicated its significantly higher concentration in wild strawberry fruits collected both from not exposed and polluted areas as compared to raspberry and blueberry. Tannins and oxalic acid contents in analyzed berries may be accepted as low and safe for human's health.
Chicoric acid: chemistry, distribution, and production
NASA Astrophysics Data System (ADS)
Lee, Jungmin; Scagel, Carolyn
2013-12-01
Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.
Chicoric acid: chemistry, distribution, and production.
Lee, Jungmin; Scagel, Carolyn F
2013-01-01
Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.
Chicoric acid: chemistry, distribution, and production
Lee, Jungmin; Scagel, Carolyn F.
2013-01-01
Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed. PMID:24790967
Electrophysiological characteristics of IB4-negative TRPV1-expressing muscle afferent DRG neurons.
Lin, Yi-Wen; Chen, Chih-Cheng
2015-01-01
Muscle afferent neurons that express transient receptor potential vanilloid type I (TRPV1) are responsible for muscle pain associated with tissue acidosis. We have previously found that TRPV1 of isolectin B4 (IB4)-negative muscle nociceptors plays an important role in the acid-induced hyperalgesic priming and the development of chronic hyperalgesia in a mouse model of fibromyalgia. To understand the electrophysiological properties of the TRPV1-expressing muscle afferent neurons, we used whole-cell patch clamp recording to study the acid responsiveness and action potential (AP) configuration of capsaicin-sensitive neurons innervating to gastrocnemius muscle. Here we showed that IB4-negative TRPV1-expressing muscle afferent neurons are heterogeneous in terms of cell size, resting membrane potential, AP configuration, tetrodotoxin (TTX)-resistance, and acid-induced current (I acid), as well as capsaicin-induced current (I cap). TRPV1-expressing neurons were all acid-sensitive and could be divided into two acid-sensitive groups depending on an acid-induced sustained current (type I) or an acid-induced biphasic ASIC3-like current (type II). Type I TRPV1-expressing neurons were distinguishable from type II TRPV1-expressing neurons in AP overshoot, after-hyperpolarization duration, and all I acid parameters, but not in AP threshold, TTX-resistance, resting membrane potential, and I cap parameters. These differential biophysical properties of TRPV1-expressing neurons might partially annotate their different roles involved in the development and maintenance of chronic muscle pain.
Lu, Yanzhen; Wu, Nan; Fang, Yingtong; Shaheen, Nusrat; Wei, Yun
2017-10-27
Many natural products are rich in antioxidants which play an important role in preventing or postponing a variety of diseases, such as cardiovascular and inflammatory disease, diabetes as well as breast cancer. In this paper, an automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography (DPPH-HPLC) method was established for antioxidants screening with nine standards including organic acids (4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, and benzoic acid), alkaloids (coptisine and berberine), and flavonoids (quercitrin, astragalin, and quercetin). The optimal concentration of DPPH was determined, and six potential antioxidants including 4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, quercitrin, astragalin, and quercetin, and three non-antioxidants including benzoic acid, coptisine, and berberine, were successfully screened out and validated by conventional DPPH radical scavenging activity assay. The established method has been applied to the crude samples of Saccharum officinarum rinds, Coptis chinensis powders, and Malus pumila leaves, consecutively. Two potential antioxidant compounds from Saccharum officinarum rinds and five potential antioxidant compounds from Malus pumila eaves were rapidly screened out. Then these seven potential antioxidants were purified and identified as p-coumaric acid, ferulic acid, phloridzin, isoquercitrin, quercetin-3-xyloside, quercetin-3-arabinoside, and quercetin-3-rhamnoside using countercurrent chromatography combined with mass spectrometry and their antioxidant activities were further evaluated by conventional DPPH radical scavenging assay. The activity result was in accordance with that of the established method. This established method is cheap and automatic, and could be used as an efficient tool for high-throughput antioxidant screening from various complex natural products. Copyright © 2017 Elsevier B.V. All rights reserved.
Johnson, E M
1997-03-01
Although topically applied all-trans-retinoic acid (tretinoin) undergoes minimal absorption and adds negligibly to normal endogenous levels, its safety in humans is occasionally questioned because oral ingestion of retinoids at therapeutic levels is known to entail teratogenic risks. To assess the actual potential for developmental toxicity from treatment with topical tretinoin. Risk assessments were conducted on four known human developmental toxicants (valproic acid, methotrexate, thalidomide, and isotretinoin) and a potential developmental toxicant (acetylsalicylic acid). The margin of safety for each chemical was calculated from the ratio of animal no-observed adverse effect levels to human lowest-observed adverse effect levels or estimated exposure doses. The derived safety margin of more than 100 for topical tretinoin (with 2% absorption) contrasted sharply with the near unity values for valproic acid, methotrexate, thalidomide, and isotretinoin and was larger than that for acetylsalicylic acid. These data support other epidemiologic and animal data that topical tretinoin is not a potential human developmental toxicant.
López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C
2016-06-15
Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer.
Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K
2012-11-01
Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.
We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.
Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...
2018-01-01
We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.
Jia, Hanzhong; Chen, Hongxia; Nulaji, Gulimire; Li, Xiyou; Wang, Chuanyi
2015-11-01
The photolysis of polycyclic aromatic hydrocarbons (PAHs) is potentially an important process for its transformation and fate on contaminated soil surfaces. In this study, phenanthrene is employed as a model to explore PAH photodegradation with the assistance of Fe(III)-smectite under visible-light while focusing on roles played by five low-molecular-weight organic acids (LMWOAs), i.e., malic acid, oxalic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid. Our results show that oxalic acid is most effective in promoting the photodegradation of phenanthrene, while only a slight increase in the rate of phenanthrene photodegradation is observed in the presence of malic acid. Electron paramagnetic resonance experiments confirm the formation of CO2(-) radicals in the presence of malic and oxalic acid, which provides strong evidence for generating OH and subsequent photoreaction pathways. The presence of EDTA or nitrilotriacetic acid significantly inhibits both Fe(II) formation and phenanthrene photodegradation because these organic anions tend to chelate with Fe(III), leading to decreases in the electron-accepting potential of Fe(III)-smectite and a weakened interaction between phenanthrene and Fe(III)-smectite. These observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and demonstrate the potential for using some LMWOAs as additives for the remediation of contaminated soil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liin, S I; Karlsson, U; Bentzen, B H; Schmitt, N; Elinder, F
2016-09-01
Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting the resting membrane potential in hippocampal and dorsal root ganglion neurones. Effects of fatty acids and fatty acid analogues on mouse dorsal root ganglion neurones and on the human KV 7.2/3 channel expressed in Xenopus laevis oocytes were studied using electrophysiology. Extracellular application of physiologically relevant concentrations of the polyunsaturated fatty acid docosahexaenoic acid hyperpolarized the resting membrane potential (-2.4 mV by 30 μm) and increased the threshold current to evoke action potentials in dorsal root ganglion neurones. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes, by shifting the conductance-vs.-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μm). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. These findings suggest that circulating polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty acids reduce neuronal excitability. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Urinary Urea, Uric Acid and Hippuric Acid as Potential Biomarkers in Multiple Sclerosis Patients.
Atya, Hanaa B; Ali, Sahar A; Hegazy, Mohamed I; El Sharkawi, Fathia Z
2018-04-01
Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, noninvasive, inexpensive, and efficient diagnostic tool for various human diseases. Despite these advantages, urine is an under-investigated source of biomarkers for multiple sclerosis (MS). The objective was to investigate the level of some urinary metabolites (urea, uric acid and hippuric acid) in patients with MS and correlate their levels to the severity of the disease, MS subtypes and MS treatment. The urine samples were collected from 73 MS patients-48 with RRMS and 25 with SPMS- and age matched 75 healthy controls. The values of urinary urea, uric acid and hippuric acid in MS patients were significantly decreased, and these metabolites in SPMS pattern showed significantly decrease than RRMS pattern. Also showed significant inverse correlation with expanded disability status scale and number of relapses. Accordingly, they may act as a potential urinary biomarkers for MS, and correlate to disease progression.
Yang, Sheng-Xiang; Liao, Bin; Yang, Zhi-Hui; Chai, Li-Yuan; Li, Jin-Tian
2016-08-15
Acidification is a major constraint for revegetation of sulphidic metal-contaminated soils, as exemplified by the limited literature reporting the successful phytostabilization of mine soils associated with pH<3 and high acidification potential. In this study, a combination of ameliorants (lime and chicken manure) and five acid-tolerant plant species has been employed in order to establish a self-sustaining vegetation cover on an extremely acid (pH<3) polymetallic pyritic mine waste heap in southern China exhibiting high acidification potential. The results from the first two-year data showed that the addition of the amendments and the establishment of a plant cover were effective in preventing soil acidification. Net acid-generating potential of the mine soil decreased steadily, whilst pH and acid neutralization capacity increased over time. All the five acid-tolerant plants colonized successfully in the acidic metal-contaminated soil and developed a good vegetation cover within six months, and subsequent vegetation development enhanced organic matter accumulation and nutrient element status in the mine soil. The two-year remediation program performed on this extremely acid metalliferous soil indicated that aided phytostabilization can be a practical and effective restoration strategy for such extremely acid mine soils. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Dendisova-Vyskovska, Marcela; Broncova, Gabriela; Clupek, Martin; Prokopec, Vadym; Matejka, Pavel
2012-12-01
The detection of p-coumaric acid and ferulic acid using a combined in situ electrochemical and surface-enhanced Raman scattering spectroscopic technique in specially made electrode cell is described. New in situ spectroelectrochemical cell was designed as the three-electrode arrangement connected via positioning device to fiber-optic probe of Raman spectrometer Dimension P2 (excitation wavelength 785 nm). In situ SERS spectra of p-coumaric acid and ferulic acid were recorded at varying applied negative potentials to copper substrates. The spectral intensities and shapes of bands as well as spatial orientation of molecules on the surface depend significantly on varying values of the applied electrode potential. The change of electrode potential influences analyte adsorption/desorption behavior on the surface of copper substrates, affecting the reversibility of the whole process and overall spectral enhancement level. Principal component analysis is used to distinguish several stages of spectral variations on potential changes.
Nauman, Mohd; Kale, R K; Singh, Rana P
2018-03-07
Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and antioxidants and therefore, might be mainly responsible for the antioxidant properties of S. aegyptiaca, while acetylsalicylic acid provided its maximum anti-inflammatory activity.
Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor
2017-12-01
Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed in neurons pretreated with pertussis toxin, an uncoupler of G proteins and MOR. The endomorphin-mediated potentiation was a result of a leftward shift of the activation curve to higher pH values and a slight shift of the inactivation curve to lower pH values. Intra-arterial co-administration of lactic acid and E-2 led to a significantly greater pressor reflex than lactic acid alone in the presence of naloxone. Finally, E-2 effects were inhibited by pretreatment with the ASIC3 blocker APETx2 and enhanced by pretreatment with the ASIC1a blocker psalmotoxin-1. These findings have uncovered a novel role of endomorphins by which the opioids can enhance the lactic acid-mediated reflex increase in arterial pressure that is MOR stimulation-independent and APETx2-sensitive. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
BenSaad, Lamees A; Kim, Kah Hwi; Quah, Chin Chew; Kim, Wee Ric; Shahimi, Mustafa
2017-01-14
Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells. The compounds ellagic acid, gallic acid and punicalagin A&B were isolated from EtOAc by high performance liquid chromatography (HPLC) and further identified by mass spectrometry (MS). The inhibitory effect of ellagic acid, gallic acid and punicalagin A&B were evaluated on the production of LPS-induced NO by Griess reagent, PGE-2 and IL-6 by immunoassay kit and prostaglandin E2 competitive ELISA kit, and COX-2 by Western blotting. Ellagic acid, gallic acid and punicalagin A&B potentially inhibited LPS-induced NO, PGE-2 and IL-6 production. The results indicate that ellagic acid, gallic acid and punicalagin may be the compounds responsible for the anti-inflammatory potential of P. granatum.
Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; ...
2014-11-03
We report that the amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10 –5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g –1) had a positive rise potential of 59 ± 4 mVmore » in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g –1) had a negative rise potential (₋31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to ₋6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. In conclusion, these results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.« less
Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai
2015-05-01
In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.
Ceruloplasmin and Hypoferremia: Studies in Burn and Non-Burn Trauma Patients
2015-03-06
Minneapolis, MN, USA). Serum uric acid concentrations were determined by standard clinical chemistry assay. Glutathione peroxidase activity was...Although serum total antioxidant potential was lower than control values throughout, glutathione peroxidase activity and uric acid levels were within...2 reducing potential and uric acid concentrations in 10 thermally injured subjects. Data expressed as mean ± SE. Dotted lines denote the upper and
NASA Astrophysics Data System (ADS)
Çelebi, E. Ender; Öncel, M. Salim
2016-12-01
Weathering of sulfide minerals is a major source of acid production in nature and especially in mining territories. Pyrite is not the only principal mineral that generates acid drainage: other sulfide minerals (sphalerite, galena, chalcopyrite, etc.) may also be responsible for acid production. In addition to massive sulfide minerals, sulfide-bearing mine tailings may also produce acid drainage due to oxidation and hydrolysis reactions in waste dumps. The lead/zinc (Pb/Zn) mining region in Balya and Balıkesir, in Turkey, has operated mines intensively since the 1860s; so that characterization of the sulfide minerals and tailings situated and formed around the mining site is of great importance to secure a sustainable environment. For this purpose, acid production and neutralization potentials of massive sulfide ores of the region, and in the Pb/Zn process facility mine tailings from ten different points of tailings dam, have been determined by applied conventional Acid-Base Accounting (ABA) and Net Acid Generation (NAG) static tests after chemical and mineralogical analysis. The NAG pH and net acid production potential (NAPP) values were compared on a chart in order to classify the samples as either acid generating or non-acid generating. According to the comparisons, the sulfide minerals were classified as potentially acid forming (PAF). Massive pyrite had the highest NAPP and NAG pH value of 1966.6 kg H2SO4/ton and 1.91, respectively and the galena had the lowest NAPP value of 558.9 kg H2SO4/ton. However, the sphalerite NAG leachate pH value of 4.30 was the highest in sulfide minerals so that the sphalerite plotted near the uncertainty reference border in the PAF zone. In the mine tailings, NAPP values of 105.9 kg H2SO4/ton on average and the NAG pH values of over 7.5 were determined. In addition to these tests, water leaching (agitation test) was carried out on tailings in order to generate more information. The tailings did not generate acidic leachates as they lie on limestone bed rock which neutralized the acidity.
Fritea, Luminţa; Tertiş, Mihaela; Cristea, Cecilia; Săndulescu, Robert
2013-01-01
The electrochemical behavior of ascorbic acid and uric acid on glassy carbon bare electrodes and ones modified with β-cyclodextrin entrapped in polyethyleneimine film has been investigated using square wave voltammetry. The electrode modification was achieved in order to separate the voltammetric peaks of ascorbic acid and uric acid when present in the same solution. On the modified electrodes the potential of the oxidation peak of the ascorbic acid was shifted to more negative values by over 0.3 V, while in the case of uric acid, the negative potential shift was about 0.15 V compared to the bare glassy carbon electrode. When the two compounds were found together in the solution, on the bare electrode only a single broad signal was observed, while on the modified electrode the peak potentials of these two compounds were separated by 0.4 V. When the uric acid concentration remained constant, the peak intensity of the ascorbic acid is increased linearly with the concentration (r2 = 0.996) and when the ascorbic acid concentration remains constant, the peak intensity of the uric acid increased linearly with the concentration (r2 = 0.992). FTIR measurements supported the formation of inclusion complexes. In order to characterize the modification of the electrodes microscopic studies were performed. The modified electrodes were successfully employed for the determination of ascorbic acid in pharmaceutical formulations with a detection limit of 0.22 μM. PMID:24287544
Role of pH on the stress corrosion cracking of titanium alloys
NASA Technical Reports Server (NTRS)
Khokhar, M. I.; Beck, F. H.; Fontana, M. G.
1973-01-01
Stress corrosion cracking (SCC) experiments were conducted on Ti-8-1-1 wire specimens in hydrochloric and sulfuric acids of variable pH in order to determine the effect of pH on the susceptibility to cracking. The alloy exhibited increasing susceptibility with decreasing pH. By varying the applied potential, it was observed that susceptibility zones exist both in the cathodic and the anodic ranges. In the cathodic range, susceptibility also increased with decreasing applied potential. Corrosion potential-time data in hydrochloric acid (pH 1.7) and sulfuric acid (pH 1.7) indicate that chloride ions lower the corrosion potential of the specimen which, in turn, increases the susceptibility.
Potential Antagonist of Folic Acid Metabolism as Malarial Drugs,
1982-09-01
which sen.irited from the hydrocloric acid was filtered and then washed with water (25 ml). The reaction gave 2.3 g of the product which melted be...neutralized with cold dilute hydrocloric acid and evaporated to dryness. The residue was then extracted with methylene chloride filtered, and again...FhGh6/15hEE 1281 12.5 ~I1.50 IIA 132ii MJCRc)tll I’RE SOLU i UN ltIS CHiARI AD FINAL REPORT POTENTIAL ANTAGONIST OF FOLIC ACID METABOLISM AS MALARIAL
Bai, Yongheng; Wu, Cunzao; Hong, Weilong; Zhang, Xing; Liu, Leping; Chen, Bicheng
2017-07-01
Sedum sarmentosum Bunge (SSBE) is a perennial plant widely distributed in Asian countries, and its extract is traditionally used for the treatment of certain inflammatory diseases. Our previous studies demonstrated that SSBE has marked renal anti‑fibrotic effects. However, the underlying molecular mechanisms remain to be fully elucidated. The present study identified that SSBE exerts its inhibitory effect on the myofibroblast phenotype and renal fibrosis via the hedgehog signaling pathway in vivo and in vitro. In rats with unilateral ureteral obstruction (UUO), SSBE administration reduced kidney injury and alleviated interstitial fibrosis by decreasing the levels of transforming growth factor (TGF)‑β1 and its receptor, and inhibiting excessive accumulation of extracellular matrix (ECM) components, including type I and III collagens. In addition, SSBE suppressed the expression of proliferating cell nuclear antigen, and this anti‑proliferative activity was associated with downregulation of hedgehog signaling activity in SSBE‑treated UUO kidneys. In cultured renal tubular epithelial cells (RTECs), recombinant TGF‑β1 activated hedgehog signaling, and resulted in induction of the myofibroblast phenotype. SSBE treatment inhibited the activation of hedgehog signaling and partially reversed the fibrotic phenotype in TGF‑β1‑treated RTECs. Similarly, aristolochic acid‑mediated upregulated activity of hedgehog signaling was reduced by SSBE treatment, and thereby led to the abolishment of excessive ECM accumulation. Therefore, these findings suggested that SSBE attenuates the myofibroblast phenotype and renal fibrosis via suppressing the hedgehog signaling pathway, and may facilitate the development of treatments for kidney fibrosis.
Akter, Shamima; Eguchi, Masafumi; Kurotani, Kayo; Kochi, Takeshi; Pham, Ngoc Minh; Ito, Rie; Kuwahara, Keisuke; Tsuruoka, Hiroko; Mizoue, Tetsuya; Kabe, Isamu; Nanri, Akiko
2015-02-01
Acid-base status has been suggested to influence blood pressure, but there is a paucity of epidemiologic evidence linking dietary acid load to hypertension. We examined cross-sectionally the association between dietary acid load and hypertension in a Japanese working population. Data were derived from health surveys from 2028 employees, ages 18 to 70 y, in two workplaces in Japan. A validated brief diet history questionnaire was used to assess diet. Two measures were used to characterize dietary acid load: potential renal acid load and estimated net endogenous acid production, which were derived from nutrient intakes. Multilevel logistic regression was used to examine the association between dietary acid load and hypertension with adjustment of potential confounding variables. High dietary acid load was suggestively associated with increased prevalence of hypertension. The multivariable adjusted odds ratios (95% confidence interval) of hypertension for the lowest through highest tertiles of net endogenous acid production were 1.00 (reference), 1.07 (0.80-1.42), and 1.33 (0.998-1.78), respectively (P for trend = 0.053). This positive association was statistically significant among normal-weight (body mass index <23 kg/m(2); P for trend = 0.03) and non-shift workers (P for trend = 0.04). Similar positive associations were observed between potential renal acid load and hypertension. The present findings suggest that high dietary acid load may be associated with increased prevalence of hypertension among those who were normal weight and non-shift workers. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werpy, Todd A.; Holladay, John E.; White, James F.
2004-11-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, themore » report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.« less
Sudhagar, S; Sathya, S; Anuradha, R; Gokulapriya, G; Geetharani, Y; Lakshmi, B S
2018-02-01
To examine the potential of ferulic acid and 4-vinylguaiacol for inhibiting epidermal growth factor receptor (EGFR) in human breast cancer cells in vitro. Ferulic acid and 4-vinylguaiacol limit the EGF (epidermal growth factor)-induced breast cancer proliferation and new DNA synthesis. Western blot analysis revealed both ferulic acid and 4-vinylguaiacol exhibit sustained inhibition of EGFR activation through down-regulation of Tyr 1068 autophosphorylation. Molecular docking analysis shows ferulic acid forming hydrogen bond interaction with Lys 745 and Met 793 whereas, 4-vinylguaiacol forms two hydrogen bonds with Phe 856 and exhibits stronger hydrophobic interactions with multiple amino acid residues at the EGFR kinase domain. Ferulic acid and 4-vinylguaiacol could serve as a potential structure for the development of new small molecule therapeutics against EGFR.
Updates on Antiobesity Effect of Garcinia Origin (-)-HCA.
Chuah, Li Oon; Ho, Wan Yong; Beh, Boon Kee; Yeap, Swee Keong
2013-01-01
Garcinia is a plant under the family of Clusiaceae that is commonly used as a flavouring agent. Various phytochemicals including flavonoids and organic acid have been identified in this plant. Among all types of organic acids, hydroxycitric acid or more specifically (-)-hydroxycitric acid has been identified as a potential supplement for weight management and as antiobesity agent. Various in vivo studies have contributed to the understanding of the anti-obesity effects of Garcinia/hydroxycitric acid via regulation of serotonin level and glucose uptake. Besides, it also helps to enhance fat oxidation while reducing de novo lipogenesis. However, results from clinical studies showed both negative and positive antiobesity effects of Garcinia/hydroxycitric acid. This review was prepared to summarise the update of chemical constituents, significance of in vivo/clinical anti-obesity effects, and the importance of the current market potential of Garcinia/hydroxycitric acid.
In vitro enzymic hydrolysis of chlorogenic acids in coffee.
da Encarnação, Joana Amarante; Farrell, Tracy L; Ryder, Alexandra; Kraut, Nicolai U; Williamson, Gary
2015-02-01
Coffee is rich in quinic acid esters of phenolic acids (chlorogenic acids) but also contains some free phenolic acids. A proportion of phenolic acids appear in the blood rapidly after coffee consumption due to absorption in the small intestine. We investigated in vitro whether this appearance could potentially be derived from free phenolic acids in instant coffee or from hydrolysis of chlorogenic acids by pancreatic or brush border enzymes. We quantified six free phenolic acids in instant coffees using HPLC-DAD-mass spectrometry. The highest was caffeic acid, but all were present at low levels compared to the chlorogenic acids. Roasting and decaffeination significantly reduced free phenolic acid content. We estimated, using pharmacokinetic modelling with previously published data, that the contribution of these compounds to small intestinal absorption is minimal. Hydrolysis of certain chlorogenic acids was observed with human-differentiated Caco-2 cell monolayers and with porcine pancreatin, which showed maximal rates on 3- and 5-O-caffeoylquinic acids, respectively. The amounts of certain free phenolic acids in coffee could only minimally account for small intestinal absorption based on modelling. The hydrolysis of caffeoylquinic, but not feruloylquinic acids, by enterocyte and pancreatic esterases is potentially a contributing mechanism to small intestinal absorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia
2014-01-01
Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633
USDA-ARS?s Scientific Manuscript database
Hydroxy fatty acids (HFA) are known to have industrial potential because of their special properties such as high viscosity and reactivity. Among the hydroxy fatty acids, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was successfully produced from oleic acid and lipid containing oleic acid by a bacter...
Environmental characterisation of coal mine waste rock in the field: an example from New Zealand
NASA Astrophysics Data System (ADS)
Hughes, J.; Craw, D.; Peake, B.; Lindsay, P.; Weber, P.
2007-08-01
Characterisation of mine waste rock with respect to acid generation potential is a necessary part of routine mine operations, so that environmentally benign waste rock stacks can be constructed for permanent storage. Standard static characterisation techniques, such as acid neutralisation capacity (ANC), maximum potential acidity, and associated acid-base accounting, require laboratory tests that can be difficult to obtain rapidly at remote mine sites. We show that a combination of paste pH and a simple portable carbonate dissolution test, both techniques that can be done in the field in a 15 min time-frame, is useful for distinguishing rocks that are potentially acid-forming from those that are acid-neutralising. Use of these techniques could allow characterisation of mine wastes at the metre scale during mine excavation operations. Our application of these techniques to pyrite-bearing (total S = 1-4 wt%) but variably calcareous coal mine overburden shows that there is a strong correlation between the portable carbonate dissolution technique and laboratory-determined ANC measurements (range of 0-10 wt% calcite equivalent). Paste pH measurements on the same rocks are bimodal, with high-sulphur, low-calcite rocks yielding pH near 3 after 10 min, whereas high-ANC rocks yield paste pH of 7-8. In our coal mine example, the field tests were most effective when used in conjunction with stratigraphy. However, the same field tests have potential for routine use in any mine in which distinction of acid-generating rocks from acid-neutralising rocks is required. Calibration of field-based acid-base accounting characteristics of the rocks with laboratory-based static and/or kinetic tests is still necessary.
Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production
Vuković, Rosemary; Likić, Saša; Jelaska, Sibila
2015-01-01
Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326
Bradley, Michael W.; Worland, Scott C.
2015-01-01
Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.
Sethupathy, Sivasamy; Ananthi, Sivagnanam; Selvaraj, Anthonymuthu; Shanmuganathan, Balakrishnan; Vigneshwari, Loganathan; Balamurugan, Krishnaswamy; Mahalingam, Sundarasamy; Pandian, Shunmugiah Karutha
2017-11-27
Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.
Degens, Bradley P; Krassoi, Rick; Galvin, Lynette; Reynolds, Brad; Micevska, Tina
2018-05-01
Measurements of potential acidity in water are used to manage aquatic toxicity risks of discharge from acid sulfate soils or acid mine drainage. Net acidity calculated from pH, dissolved metals and alkalinity is a common measurement of potential acidity but the relevance of current risk thresholds to aquatic organisms are unclear. Aquatic toxicity testing was carried out using four halophytic organisms with water from four saline sources in southern Western Australia (3 acidic drains and one alkaline river; 39-40 g TDS/L) where acidity was varied by adjusting pH to 4.5-6.5. The test species were brine shrimps (Artemia salina), locally sourced ostracods (Platycypris baueri), microalgae (Dunaliella salina) and amphipods (Allorchestes compressa). Testing found the EC 10 and IC 10 of net acidity ranged from -7.8 to 10.5 mg CaCO 3 /L with no survival or growth of any species at >47 mg CaCO 3 /L. Reduced net acidity indicated reduced whole effluent toxicity more reliably than increased pH alone with organisms tolerating pH up to 1.1 units lower in the absence of dissolved metals. Variation in toxicity indicated by net acidity was mostly attributed to reduced concentrations of dissolved Al and Fe combined with higher pH and alkalinity and some changes in speciation of Al and Fe with pH. These results indicate that rapid in-field assessments of net acidity in acidic, Al dominated waters may be an indicator of potential acute and sub-chronic impacts on aquatic organisms. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.
Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra
2016-09-05
Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.
Jayaraman, Premkumar; Sakharkar, Meena K; Lim, Chu Sing; Tang, Thean Hock; Sakharkar, Kishore R.
2010-01-01
In this study the in vitro activities of seven antibiotics (ciprofloxacin, ceftazidime, tetracycline, trimethoprim, sulfamethoxazole, polymyxin B and piperacillin) and six phytochemicals (protocatechuic acid, gallic acid, ellagic acid, rutin, berberine and myricetin) against five P. aeruginosa isolates, alone and in combination are evaluated. All the phytochemicals under investigation demonstrate potential inhibitory activity against P. aeruginosa. The combinations of sulfamethoxazole plus protocatechuic acid, sulfamethoxazole plus ellagic acid, sulfamethoxazole plus gallic acid and tetracycline plus gallic acid show synergistic mode of interaction. However, the combinations of sulfamethoxazole plus myricetin shows synergism for three strains (PA01, DB5218 and DR3062). The synergistic combinations are further evaluated for their bactericidal activity against P. aeruginosa ATCC strain using time-kill method. Sub-inhibitory dose responses of antibiotics and phytochemicals individually and in combination are presented along with their interaction network to suggest on the mechanism of action and potential targets for the phytochemicals under investigation. The identified synergistic combinations can be of potent therapeutic value against P. aeruginosa infections. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (antibiotics and phytochemicals). PMID:20941374
Zhang, Xiang; Lin, Dan; Jiang, Rong; Li, Hongzhong; Wan, Jingyuan; Li, Hongyuan
2016-07-01
Metastasis, which frequently occurs in breast cancer, is the major cause of mortality; therefore, new treatment strategies are urgently needed. Ferulic acid, isolated from Ferula foetida, a perennial herb, has shown antineoplastic activity in various types of cancers, such as colon and lung cancer, and central nervous system tumors. However, its potential role in suppressing breast cancer metastasis has not been fully understood. In the present study, we evaluated the antitumor activity of ferulic acid in breast cancer cell line-based in vitro and in vivo models. We first showed that ferulic acid treatment resulted in decreased viability, increased apoptosis and suppression of metastatic potential in breast cancer cell line MDA-MB-231. Furthermore, it was demonstrated that the antitumor activity of ferulic acid and its role in suppressing metastasis were regulated by the reversal of epithelial-mesenchymal transition (EMT). Consistent with our findings in vitro, the antitumor potential of ferulic acid was also verified in an MDA-MB-231 xenograft mouse model where significantly decreased tumor volume, weight and increased apoptosis were observed. Taken together, these results indicate that ferulic acid may be used as an effective therapeutic agent against breast cancer.
Li, Jiuyu; Xu, Renkou
2007-02-01
Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect on the capacity of exchangeable Al in variable-charge soils. Therefore, the higher the content of iron oxides, the greater the adsorption of organic acids by soils and the greater the increase in soil exchangeable Al induced by the organic acids.
Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi
2015-12-01
The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was < 10%. Therefore, these chemicals were classified as moderate skin sensitizers in the LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE.
Colón, Luz E; Johnson, Lori A; Gottschalk, Ronald W
2007-04-01
Topical therapy for rosacea aims to reduce inflammatory lesions and decrease erythema but can carry side effects such as stinging, pruritus, and burning. Metronidazole and azelaic acid gel 15% are U.S. Food and Drug Administration-approved for the treatment of rosacea. The current study was conducted to assess the cumulative irritation potential of 2 formulations of metronidazole 0.75% gel and 1% gel--and azelaic acid gel 15% over 21 days (N=36). Results of this study demonstrated a significantly greater poten tial for irritation from azelaic acid compared with metronidazole gel 0.75% (P < .0001), which had significantly greater potential for irritation compared with metronidazole gel 1% (P = .0054). Metronidazole gel 1% had a similar profile to white petrolatum.
Kahlon, Talwinder Singh; Chiu, Mei-Chen M; Chapman, Mary H
2008-06-01
Bile acid binding capacity has been related to the cholesterol-lowering potential of foods and food fractions. Lowered recirculation of bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile acid binding potential has been related to lowering the risk of heart disease and that of cancer. Previously, we have reported bile acid binding by several uncooked vegetables. However, most vegetables are consumed after cooking. How cooking would influence in vitro bile acid binding of various vegetables was investigated using a mixture of bile acids secreted in human bile under physiological conditions. Eight replicate incubations were conducted for each treatment simulating gastric and intestinal digestion, which included a substrate only, a bile acid mixture only, and 6 with substrate and bile acid mixture. Cholestyramine (a cholesterol-lowering, bile acid binding drug) was the positive control treatment and cellulose was the negative control. Relative to cholestyramine, in vitro bile acid binding on dry matter basis was for the collard greens, kale, and mustard greens, 13%; broccoli, 10%; Brussels sprouts and spinach, 8%; green bell pepper, 7%; and cabbage, 5%. These results point to the significantly different (P < or = .05) health-promoting potential of collard greens = kale = mustard greens > broccoli > Brussels sprouts = spinach = green bell pepper > cabbage as indicated by their bile acid binding on dry matter basis. Steam cooking significantly improved the in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage compared with previously observed bile acid binding values for these vegetables raw (uncooked). Inclusion of steam-cooked collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage in our daily diet as health-promoting vegetables should be emphasized. These green/leafy vegetables, when consumed regularly after steam cooking, would lower the risk of cardiovascular disease and cancer, advance human nutrition research, and improve public health.
Kaki, Shiva Shanker; Kunduru, Konda Reddy; Kanjilal, Sanjit; Narayana Prasad, Rachapudi Badari
2015-01-01
Ferulic acid was modified to produce a novel phenolipid containing butyl chains. Ferulic acid was esterified with butanol to produce butyl ferulate which was further dihydroxylated followed by esterification with butyric anhydride to produce the phenolipid containing butyric acid. IR, NMR and MS techniques confirmed the structure of the synthesized structured lipophilic phenolic compound. The synthesized compound was tested for in vitro antioxidant and antimicrobial activities. The produced phenolipid showed moderate antioxidant activity in DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging assay but in linoleic acid oxidation method, it exhibited good activity compared with the parent compound and the reference compounds. The prepared derivative could find applications as antioxidant in lipophilic systems and also as a potential prodrug of butyric acid. It also showed antibacterial effect against the four bacterial strains studied. The drug-likeness properties of the prepared molecule calculated were in the acceptable ranges according to Lipinski's rule of 5 and suggest that it has potential to cross the blood-brain barrier.
Liu, Haimei; Ma, Shuli; Xia, Hongrui; Lou, Hongxiang; Zhu, Faliang; Sun, Longru
2018-05-08
The roots of Salvia miltiorrhiza f. alba (Lamiaceae) (RSMA) are used as the Danshen, a traditional Chinese medicine, to treat the vascular diseases at local clinics, especially for the remedy of thromboangiitis obliterans (TAO) more than 100 years. Phenolic acids are one of the major effective constituents of RSMA, and some studies have linked phenolic acids with anti-inflammatory functions. The purpose of this research was to isolate phenolic acids from RSMA and investigate their anti-inflammatory effects and potential mechanisms. Nine already known compounds were obtained from RSMA. Their structures were elucidated through the spectroscopic analysis and comparing the reported data. The anti-inflammatory effects and potential mechanisms were investigated in LPS-stimulated THP-1 cells, using salvianolic acid B (SalB) as the positive control. The enzyme-linked immunosorbent assays (ELISA) were used to determine the secretory protein levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). And quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the mRNA levels of these inflammatory cytokines. The expression of TLR4, p65, p-p65, IκBα, and p-IκBα were measured using western blot. All these compounds, except for rosmarinic acid (5) and isosalvianolic acid (6) for IL-6 protein levels, rosmarinic acid-o-β-D-glucopyranoside (3) for IL-6 mRNA, and rosmarinic acid-o-β-D-glucopyranoside (3), rosmarinic acid (5) and isosalvianolic acid (6) for TNF-α mRNA levels, remarkably inhibited the production of TNF-α, IL-1β, and IL-6 at the concentration of 5 and 25μM in the mRNA and protein levels. Lithospermic acid (7) showed the strongest inhibitory effect among them and was similar to that of SalB. In particular, lithospermic acid (7) and SalB markedly downregulated the expressions of TLR4, p-p65, and p-IκBα induced by LPS in THP-1 macrophages. All the phenolic acids displayed anti-inflammatory properties and the potential mechanisms involved the TLR4/NF-κB signal pathway. Results of this study indicate that phenolic acids may be effective constituents of RSMA to treat vascular diseases associated with inflammation. Copyright © 2018. Published by Elsevier B.V.
Oleic Acid: Natural variation and potential enhancement in oilseed crops.
USDA-ARS?s Scientific Manuscript database
Oleic acid is a monounsaturated omega 9 fatty acid (MUFA, C18:1) which can be found in various plant lipids and animal fats. Unlike omega 3 (a-linolenic acid, C18:3) and omega 6 (linoleic acid, C18:2) fatty acids which are essential because they cannot be synthesized by humans and must be obtained f...
USDA-ARS?s Scientific Manuscript database
The naturally occurring compound, fumaric acid, was evaluated as a potential preservative for the long-term storage of cucumbers. Fumaric acid inhibited growth of lactic acid bacteria (LAB) in an acidified cucumber juice medium model system resembling conditions that could allow preservation of cucu...
Potential bronchoconstrictor stimuli in acid fog.
Balmes, J R; Fine, J M; Gordon, T; Sheppard, D
1989-01-01
Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and niric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction. PMID:2539989
The non-participation of organic sulphur in acid mine drainage generation
Casagrande, D.J.; Finkelman, R.B.; Caruccio, F.T.
1989-01-01
Acid mine drainage is commonly associated with land disturbances that encounter and expose iron sulphides to oxidising atmospheric conditions. The attendant acidic conditions solubilise a host of trace metals. Within this flow regime the potential exists to contaminate surface drinking water supplies with a variety of trace materials. Accordingly, in evaluating the applications for mines located in the headwaters of water sheds, the pre-mining prediction of the occurrence of acid mine drainage is of paramount importance. There is general agreement among investigators that coal organic sulphur is a nonparticipant in acid mine drainage generation; however, there is no scientific documentation to support this concensus. Using simulated weathering, kinetic, mass balance, petrographic analysis and a peroxide oxidation procedure, coal organic sulphur is shown to be a nonparticipant in acid mine drainage generation. Calculations for assessing the acid-generating potential of a sedimentary rock should not include organic sulphur content. ?? 1989 Sciences and Technology Letters.
Dieryckx, Cindy; Gaudin, Vanessa; Dupuy, Jean-William; Bonneu, Marc; Girard, Vincent; Job, Dominique
2015-01-01
Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873. PMID:26528317
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aston, John E.; Apel, William A.; Lee, Brady D.
Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence ofmore » 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.« less
Updates on Antiobesity Effect of Garcinia Origin (−)-HCA
Ho, Wan Yong; Beh, Boon Kee; Yeap, Swee Keong
2013-01-01
Garcinia is a plant under the family of Clusiaceae that is commonly used as a flavouring agent. Various phytochemicals including flavonoids and organic acid have been identified in this plant. Among all types of organic acids, hydroxycitric acid or more specifically (−)-hydroxycitric acid has been identified as a potential supplement for weight management and as antiobesity agent. Various in vivo studies have contributed to the understanding of the anti-obesity effects of Garcinia/hydroxycitric acid via regulation of serotonin level and glucose uptake. Besides, it also helps to enhance fat oxidation while reducing de novo lipogenesis. However, results from clinical studies showed both negative and positive antiobesity effects of Garcinia/hydroxycitric acid. This review was prepared to summarise the update of chemical constituents, significance of in vivo/clinical anti-obesity effects, and the importance of the current market potential of Garcinia/hydroxycitric acid. PMID:23990846
Busó-Rogero, Carlos; Perales-Rondón, Juan V; Farias, Manuel J S; Vidal-Iglesias, Francisco J; Solla-Gullon, Jose; Herrero, Enrique; Feliu, Juan M
2014-07-21
Thallium modified shape-controlled Pt nanoparticles were prepared and their electrocatalytic activity towards formic acid electrooxidation was evaluated in 0.5 M sulfuric acid. The electrochemical and in situ FTIR spectroscopic results show a remarkable improvement in the electrocatalytic activity, especially in the low potential region (around 0.1-0.2 V vs. RHE). Cubic Pt nanoparticles modified with Tl were found to be more active than the octahedral Pt ones in the entire range of Tl coverages and potential windows. In situ FTIR spectra indicate that the promotional effect produced by Tl results in the inhibition of the poisoning step leading to COads, thus improving the onset potential for the complete formic acid oxidation to CO2. Chronoamperometric experiments were also performed at 0.2 V to evaluate the stability of the electrocatalysts at constant potential. Finally, experiments with different concentrations of formic acid (0.05-1 M) were also carried out. In all cases, Tl-modified cubic Pt nanoparticles result to be the most active. All these facts reinforce the importance of controlling the surface structure of the electrocatalysts to optimize their electrocatalytic properties.
Raghi, K R; Sherin, D R; Saumya, M J; Arun, P S; Sobha, V N; Manojkumar, T K
2018-04-05
Chronic myeloid leukemia (CML), a hematological malignancy arises due to the spontaneous fusion of the BCR and ABL gene, resulting in a constitutively active tyrosine kinase (BCR-ABL). Pharmacological activity of Gallic acid and 1,3,4-Oxadiazole as potential inhibitors of ABL kinase has already been reported. Objective of this study is to evaluate the ABL kinase inhibitory activity of derivatives of Gallic acid fused with 1,3,4-Oxadiazole moieties. Attempts have been made to identify the key structural features responsible for drug likeness of the Gallic acid and the 1,3,4-Oxadiazole ring using molecular electrostatic potential maps (MESP). To investigate the inhibitory activity of Gallic acid derivatives towards the ABL receptor, we have applied molecular docking and molecular dynamics (MD) simulation approaches. A comparative study was performed using Bosutinib as the standard which is an approved CML drug acting on the same receptor. Furthermore, the novel compounds designed and reported here in were evaluated for ADME properties and the results indicate that they show acceptable pharmacokinetic properties. Accordingly these compounds are predicted to be drug like with low toxicity potential. Copyright © 2018 Elsevier Ltd. All rights reserved.
Improved flotation performance of hematite fines using citric acid as a dispersant
NASA Astrophysics Data System (ADS)
Luo, Xi-mei; Yin, Wan-zhong; Sun, Chuan-yao; Wang, Nai-ling; Ma, Ying-qiang; Wang, Yun-fan
2016-10-01
In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.
Pando, Jasmine M.; Karlinsey, Joyce E.; Lara, Jimmie C.; Libby, Stephen J.
2017-01-01
ABSTRACT The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation. PMID:28588134
Role of tartaric and malic acids in wine oxidation.
Danilewicz, John C
2014-06-04
Tartaric acid determines the reduction potential of the Fe(III)/Fe(II) redox couple. Therefore, it is proposed that it determines the ability of Fe to catalyze wine oxidation. The importance of tartaric acid was demonstrated by comparing the aerial oxidation of 4-methylcatechol (4-MeC) in model wine made up with tartaric and acetic acids at pH 3.6. Acetic acid, as a weaker Fe(III) ligand, should raise the reduction potential of the Fe couple. 4-MeC was oxidized in both systems, but the mechanisms were found to differ. Fe(II) readily reduced oxygen in tartrate model wine, but Fe(III) alone failed to oxidize the catechol, requiring sulfite assistance. In acetate model wine the reverse was found to operate. These observations should have broad application to model systems designed to study the oxidative process in foods and other beverages. Consideration should be given to the reduction potential of metal couples by the inclusion of appropriate ligands.
Amino acids as antioxidants for frying oil
USDA-ARS?s Scientific Manuscript database
Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...
Biomarkers for optimal requirements of amino acids by animals and humans.
Lin, Gang; Liu, Chuang; Wang, Taiji; Wu, Guoyao; Qiao, Shiyan; Li, Defa; Wang, Junjun
2011-06-01
Amino acids are building blocks of proteins and key regulators of nutrient metabolism in cells. However, excessive intake of amino acids can be toxic to the body. Therefore, it is important to precisely determine amino acid requirements by organisms. To date, none of the methods is completely satisfactory to generate comprehensive data on amino acid requirements of animals or humans. Because of many influencing factors, amino acid requirements remain a complex and controversial issue in nutrition that warrants further investigations. Benefiting from the rapid advances in the emerging omics technologies and bioinformatics, biomarker discovery shows great potential in obtaining in-depth understanding of regulatory networks in protein metabolism. This review summarizes the current approaches to assess amino acid requirements of animals and humans, as well as the recent development of biomarkers as potentially functional parameters for recommending requirements of individual amino acids in health and disease. Identification of biomarkers in plasma or serum, which is a noninvasive approach, holds great promise in rapidly advancing the field of protein nutrition.
Potential Approach of Microbial Conversion to Develop New Antifungal Products of Omega-3 Fatty Acids
USDA-ARS?s Scientific Manuscript database
Omega-3/('-3) or n-3 fatty acids are a family of unsaturated fatty acids that have in common a final carbon-carbon double bond in the n-3 position. n-3 Fatty acids which are important in human nutrition are: a-linolenic acid (18:3, n-3; ALA), eicosapentaenoic acid (20:5, n-3; EPA), and docosahexaen...
Potential human health effects of acid rain: report of a workshop
Goyer, Robert A.; Bachmann, John; Clarkson, Thomas W.; Ferris, Benjamin G.; Graham, Judith; Mushak, Paul; Perl, Daniel P.; Rall, David P.; Schlesinger, Richard; Sharpe, William; Wood, John M.
1985-01-01
This report summarizes the potential impact of the acid precipitation phenomenon on human health. There are two major components to this phenomenon: the predepositional phase, during which there is direct human exposure to acidic substances from ambient air, and the post-depositional phase, in which the deposition of acid materials on water and soil results in the mobilization, transport, and even chemical transformation of toxic metals. Acidification increases bioconversion of mercury to methylmercury, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time. PMID:3896772
Ueda, Tadaharu; Okumura, Takashi; Tanaka, Yukino; Akase, Saki; Shimamura, Tomoko; Ukeda, Hiroyuki
2016-01-01
A new method was developed to evaluate antioxidant activity based on the redox properties of polyoxometalates, which are partially reduced by antioxidants to generate a limiting potential. The polyoxometalates [PMo12O40](3-), [PVW11O40](4-) and [SV2W10O40]4- formed in situ were used as electrochemical probes for the new evaluation method, and their formation conditions were optimized to evaluate the antioxidant activities of gallic acid, ellagic acid, catechin, quercetin, morin, trans-ferulic acid, sesamol, α-tocopherol, δ-tocopherol and L-ascorbic acid. The observed difference between initial potential and limiting potential (ΔE) were compared with spectrophotometrically evaluated antioxidant activities. In addition, the antioxidant capacities of five beverages (Japanese green tea, concentrated catechin-containing green tea, grapefruit juice, red wine and Japanese sake) were evaluated.
NASA Astrophysics Data System (ADS)
Siebert, Agnieszka; Cholewiński, Grzegorz; Garwolińska, Dorota; Olejnik, Adrian; Rachoń, Janusz; Chojnacki, Jarosław
2018-01-01
The synthesis of a potential immunosuppressant, i.e. dimethyl ester of N-mycophenoyl malonic acid was optimized in the reaction of mycophenolic acid (MPA) with amino malonic dimethyl ester in the presence of propanephosphonic anhydride (T3P) as a coupling reagent. The structural properties of the obtained MPA derivative were investigated by NMR, MS and single crystal X-ray diffraction methods. Theoretical considerations of conformational flexibility based on DFT calculations are presented.
Montanari, Elita; Gennari, Arianna; Pelliccia, Maria; Gourmel, Charlotte; Lallana, Enrique; Matricardi, Pietro; McBain, Andrew J; Tirelli, Nicola
2016-12-01
Nanoparticles based on hyaluronic acid (HA) are designed to deliver tannic acid (TA) as an antimicrobial agent. The presence of HA makes these particles potentially useful to target bacteria that colonize cells presenting HA membrane receptors (e.g. CD44), such as macrophages. HA bearing 3-aminophenyl boronic acid groups (HA-APBA) is reacted with TA, yielding nanoparticles with a size that decreases with decreasing HA molecular weight (e.g. 200 nm for 44 kDa, 400 nm for 737 kDa). The boronate esters make the nanoparticles stable at physiological pH, but their hydrolysis in an acidic environment (pH = 5) leads to swelling/solubilization, therefore potentially allowing TA release in endosomal compartments. We have assessed the nanoparticle toxicity profile (on RAW 264.7 macrophages) and their antimicrobial activity (on E. coli and on both methicillin-sensitive and -resistant S. aureus). The antibacterial effect of HA-APBA/TA nanoparticles was significantly higher than that of TA alone, and has very similar activity to TA coformulated with a reducing agent (ascorbic acid), which indicates both the nanoparticles to protect TA catechols from oxidation, and the effective release of TA after nanoparticle internalization. Therefore, there is potential for these nanoparticles to be used in stable, effective, and potentially targetable nanoparticle-based antimicrobial formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Jae Chon; Myung, Soon Chul; Kim, Wonyong; Lee, Chung Soo
2012-11-01
The Hsp90 inhibition has been shown to induce apoptosis in various cancer cells. The licorice compounds may enhance the anti-cancer drug effect. However, effect of the licorice compounds on the Hsp90 inhibition-induced apoptosis in ovarian cancer cells has not been studied. To assess the ability of 18β-glycyrrhetinic acid to promote apoptosis, we examined whether 18β-glycyrrhetinic acid potentiated the Hsp90 inhibitor-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. Radicicol and geldanamycin induced a decrease in Bid, Bcl-2, Bcl-xL and survivin protein levels, an increase in Bax levels, the mitochondrial transmembrane potential loss, cytochrome c release, activation of caspases (-8, -9, and -3), cleavage of PARP-1, and an increase in the tumor suppressor p53 levels. 18β-Glycyrrhetinic acid enhanced Hsp90 inhibitor-induced apoptosis-related protein activation, nuclear damage, and cell death. The results suggest that 18β-glycyrrhetinic acid may potentiate the Hsp90 inhibition-induced apoptosis in ovarian carcinoma cell lines via the activation of the caspase-8- and Bid-dependent pathways and the mitochondria-mediated cell death pathway, leading to activation of caspases. Combination of Hsp90 inhibitors and 18β-glycyrrhetinic acid may confer a benefit in the treatment of epithelial ovarian adenocarcinoma.
Yin, Rui; Yang, Tongshu; Su, Hui; Ying, Li; Liu, Liyan; Sun, Changhao
2016-09-26
The aims were to investigate the serum free fatty acid (FFA) and esterified fatty acid (EFA) profiles and to identify biomarkers that can be used to identify patients with epithelial ovarian cancer (EOC) based on the metabolomics approach. We applied a targeted gas chromatography-mass spectrometry metabolomics approach to serum samples from 40 EOC patients and 35 healthy controls for achieving the FFA and EFA profiles. These metabolite profiles were processed using multivariate analysis to obtain potential biomarkers. And then, some independent samples were chosen to validate these potential biomarkers. There were higher saturated fatty acids and lower unsaturated fatty acids in EOC patients when compared with the healthy controls. EFA (C16:0), EFA (C18:0) and FFA (C16:0) were identified as potential biomarkers that distinguished EOC from the healthy controls. The areas under the curve from the EFA (C16:0), EFA (C18:0) and FFA (C16:0) in validated study were 0.745, 0.701, 0.682, respectively. Our study provides useful information to bridge the gaps in our understanding to the fatty acids metabolic alterations associated with EOC, and this study has demonstrated saturated fatty acid biomarkers might be helpful for the detection and characterization of EOC patients.
Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J
2018-07-01
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.
Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.
Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella
2016-02-01
The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible. © 2015 SETAC.
Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells.
Chu, Xi; Guo, Yusong; Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan
2015-01-01
Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities.
Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells
Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan
2015-01-01
Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities. PMID:26625122
Gu, Yu; Zhang, Xu; Chen, Yan-Kun; Zhao, Bo-Wen; Zhang, Yan-Ling
2017-12-01
5-lipoxygenase (5-LOX) and leukotriene A4 hydrolase (LTA4H), as the major targets of 5-LOX branch in the arachidonic acid (AA) metabolic pathway, play an important role in the treatment of inflammation. Rhei Radix et Rhizoma, Notopterygii Rhizoma et Radix and Genitana Macrophyllae Radix have clear anti-inflammation activities. In this paper, the targets of 5-LOX and LTA4H were used as the research carrier, and Hiphop module in DS4.0 (Discovery studio) was used to construct ingredients database for preliminary screening of three traditional Chinese medicines based on target inhibitor pharmacophore, so as to obtain 5-LOX and LTA4H potential active ingredients. The ingredients obtained in initial pharmacophore screening were further screened by using CDOCKER module, and the screening rules were established based on the score of initial compound and the key amino acids to obtain 12 potential 5-LOX inhibitors and 7 potential LTA4H inhibitors. To be more specific, the potential 5-LOX inhibitors included 6 ingredients in Rhei Radix et Rhizoma, such as procyanidins B2-3,3'-O-double gallate and revandchinone 2; four ingredients in notopterygium, such as dodecanoic acid and so on. On the other hand, potential LTA4H inhibitors included revandchinone 1, revandchinone 4 in Rhei Radix et Rhizoma, tridecanoic acid, tetracosanoic acid and methyl eicosanoate in Notopterygii Rhizoma et Radix, montanic acid methyl ester and N-docosanoyl-O-aminobenzoate in Genitana Macrophyllae Radix and so on. The molecular simulation methods were highly efficient and time-saving to obtain the potential inhibitors of 5-LOX and LTA4H, which could provide assistance for discovering the chemical quality indicators of anti-inflammatory efficacy of three Chinese herbs, and may be helpful to promote the whole-process quality control of three Chinese herbs. Copyright© by the Chinese Pharmaceutical Association.
Levulinic acid: a valuable platform chemical for fermentative syntheses
USDA-ARS?s Scientific Manuscript database
In 2004 the DOE included levulinic acid (LA) as a top platform molecule because of its production from renewable resources in large yields and its broad application potential as a precursor for many valuable chemical derivatives. While LA and its chemical derivatives have high application potential,...
Delekta, Phillip C; Shook, John C; Lydic, Todd A; Mulks, Martha H; Hammer, Neal D
2018-03-26
Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis pathway (FASII). FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL) represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor, triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection. IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the clinical utility of targeting bacterial fatty acid synthesis is debated. Moreover, the fatty acid reservoir(s) exploited by S. aureus are not well understood. Human low-density lipoprotein particles represent a particularly abundant in vivo source of fatty acids and are present in tissues S. aureus colonizes. Herein, we establish that S. aureus is capable of utilizing the fatty acids present in low-density lipoproteins to bypass both chemical and genetic inhibition of fatty acid synthesis. These findings imply that S. aureus targets LDLs as a source of fatty acids during pathogenesis. Copyright © 2018 American Society for Microbiology.
BMY 30047: A novel topically active retinoid with low local and systemic toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, X.; Quigley, J.; Tramposch, K.M.
In the treatment of various dermatological disorders, topically applied retinoids have potential therapeutic use with the advantage of improved localized activity and lower toxicity over systemically administered retinoids. However, most retinoids cause a significant degree of local irritation. In the present study, the ability to produce local activity with low local irritation potential was evaluated with a novel retinoic acid derivative. BMY 30047 (11-cis, 13-cis-12-hydroxymethylretinoic acid delta-lactone) is one of a series of retinoic acid derivatives in which the carboxyl function of the polar end was modified with the aim of achieving reduced local irritation and systemic toxicity while retainingmore » the local therapeutic effect. BMY 30047 was evaluated and compared with all-trans retinoic acid for topical retinoid activity in several preclinical assay systems, including the utricle reduction assay in rhino mice, 12-o-tetradecanoylphorbol 13-acetate ester-stimulated ornithine decarboxylase induction in hairless mice and the UV light-induced photodamaged skin model in hairless mice. BMY 30047 was assessed for retinoid-type side effects by evaluating the skin irritation potential in rabbits after repeated topical application, and hypervitaminosis A-inducing potential in mice after i.p. injection. BMY 30047 demonstrated significant topical retinoid activity in several in vivo models with less skin irritation potential relative to the most used clinical concentrations of all-trans retinoic acid. BMY 30047 also showed very little systemic activity and did not produce any evidence of hypervitaminosis A syndrome at systemic doses 20 times greater than the no-effect dose of all-trans retinoic acid.« less
USDA-ARS?s Scientific Manuscript database
6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...
Cieslarova, Zuzana; Lopes, Fernando Silva; do Lago, Claudimir Lucio; França, Marcondes Cavalcante; Colnaghi Simionato, Ana Valéria
2017-08-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons, leading to muscle atrophy, paralysis, and death caused by respiratory failure or infectious complications. Altered levels of homocysteine, cysteine, methionine, and glutamic acid have been observed in plasma of ALS patients. In this context, a method for determination of these potential biomarkers in plasma by capillary electrophoresis tandem mass spectrometry (CE-MS/MS) is proposed herein. Sample preparation was carefully investigated, since sulfur-containing amino acids may interact with plasma proteins. Owing to the non-thiol sulfur atom in methionine, it was necessary to split sample preparation into two methods: i) determination of homocysteine and cysteine as S-acetyl amino acids; ii) determination of glutamic acid and methionine. All amino acids were separated within 25min by CE-MS/MS using 5molL -1 acetic acid as background electrolyte and 5mmolL -1 acetic acid in 50% methanol/H 2 O (v/v) as sheath liquid. The proposed CE-MS/MS method was validated, presenting RSD values below 6% and 11% for intra- and inter-day precision, respectively, for the middle concentration level within the linear range. The limits of detection ranged from 35 (homocysteine) to 268nmolL -1 (glutamic acid). The validated method was applied to the analysis of plasma samples from a group of healthy individuals and patients with ALS, showing the potential of glutamic acid and homocysteine metabolites as biomarkers of ALS. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.
de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar
2016-03-01
Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
Alpha-2-macroglobulin and hyaluronic acid as fibromarkers in patients with chronic hepatitis C.
Pitekova, B; Kupcova, V; Uhlikova, E; Mojto, V; Turecky, L
2017-01-01
Liver fibrosis is the final common pathway of chronic liver diseases of various etiology. From the practical standpoint, it would be ideal to have a noninvasive fibromarker. The aim of our study was to investigate the levels of alpha-2-macroglobulin, potential fibromarker, in correlation to histological staging and another potential fibromarker, hyaluronic acid, in patients with chronic hepatitis C. Population groups in this study consisted of 51 healthy volunteers and 54 patients with chronic hepatitis C. Liver biopsies were obtained under ultrasound guidance. Alpha-2-macroglobulin was determined by electroimmunodiffusion and hyaluronic acid with enzyme-linked binding protein assay. Both potential fibromarkers, alpha-2-macroglobulin and hyaluronic acid, were increased in patients with chronic hepatitis C. The alpha-2-macroglobulin levels were not significantly increased in the groups F0-F1. In the groups F2-F4, alpha-2-macroglobulin levels were significantly higher than in the control group. The changes of hyaluronic acid were similar to changes of alpha-2-macroglobulin. Regression analysis showed a significant correlation between hyaluronic acid and alpha-2-macroglobulin levels. According to the results of our study, it can be concluded that alpha-2-macroglobulin and hyaluronic acid might be useful markers of liver fibrosis (Tab. 2, Ref. 15).
Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C.; Latham, Catherine F.; Ramsland, Paul A.; Gugasyan, Raffi; Cone, Richard A.; Tachedjian, Gilda
2015-01-01
Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs. PMID:26082720
Interactions between Therapeutic Proteins and Acrylic Acid Leachable.
Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da
2012-01-01
Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.
NASA Astrophysics Data System (ADS)
Mir, Irshad Ahmad; Rawat, Kamla; Bohidar, H. B.
2016-10-01
Herein we report a facile and cadmium-free approach to prepare water-soluble fluorescent ZnSe@ZnS core-shell quantum dots (QDs), using thioglycolic acid (TGA) ligand as a stabilizer and thiourea as a sulfur source. The optical properties and morphology of the obtained core-shell QDs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM), energy-dispersive x-ray analysis (EDX), x-ray diffraction (XRD), electrophoresis and dynamic light scattering (DLS) techniques. TEM analysis, and electrophoresis data showed that ZnSe core had an average size of 3.60 ± 0.12 nm and zeta potential of -38 mV; and for ZnSe@ZnS QDs, the mean size was 4.80 ± 0.20 nm and zeta potential was -45 mV. Compared to the core ZnSe QDs, the quantum yield of these core-shell structures was higher (13% versus 32%). These were interacted with five common bioanalytes such as, ascorbic acid, citric acid, oxalic acid, glucose and cholesterol which revealed fluorescence quenching due to concentration dependent binding of analytes to the core only, and core-shell QDs. The binding pattern followed the sequence: cholesterol < glucose < ascorbic acid < oxalic acid < citric acid for ZnSe, and cholesterol < glucose < oxalic acid < ascorbic acid < citric acid for core-shell QDs. Thus, enhanced binding was noticed for the analyte citric acid which may facilitate development of a fluorescence-based sensor based on the ZnSe core-only quantum dot platform. Further, the hydrophilic core-shell structure may find use in cell imaging applications.
Triacetic acid lactone production in industrial Saccharomyces yeast strains
USDA-ARS?s Scientific Manuscript database
Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...
Influence of microbial growth in the redox potential of fermented cucumbers
USDA-ARS?s Scientific Manuscript database
Commonly, pH measurements are used during the production of fermented cucumbers to indirectly monitor growth of lactic acid bacteria (LAB) and acid production. Redox potential (Eh) measurements, which are determined by the flux of electrons in a system, could serve as a more accurate tool to monitor...
POTENTIAL ABATEMENT PRODUCTION AND MARKETING OF BYPRODUCT SULFURIC ACID IN THE U.S
The report gives results of an evaluation of the market potential for sulfur and sulfuric acid byproducts of combustion in power plant boilers. (Air quality regulations require control of SOx emissions from power plant boilers. Recovery of sulfur in useful form would avoid waste ...
Plant adaptation to acid soils: the molecular basis for crop aluminum resistance
USDA-ARS?s Scientific Manuscript database
Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...
Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves
USDA-ARS?s Scientific Manuscript database
The seeds of many non-domesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered ...
Process for chemical reaction of amino acids and amides yielding selective conversion products
Holladay, Jonathan E [Kennewick, WA
2006-05-23
The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.
Dietary protein, calcium metabolism and bone health in humans
USDA-ARS?s Scientific Manuscript database
Protein is the major structural constituent of bone (50% by volume). But it is also a major source of metabolic acid, especially protein from animal sources because it contains sulfur amino acids that generate sulfuric acid. Increased potential renal acid load has been closely associated with increa...
Chen, Guan-yuan; Chiu, Huai-hsuan; Lin, Shu-wen; Tseng, Yufeng Jane; Tsai, Sung-jeng; Kuo, Ching-hua
2015-01-01
As fatty acids play an important role in biological regulation, the profiling of fatty acid expression has been used to discover various disease markers and to understand disease mechanisms. This study developed an effective and accurate comparative fatty acid analysis method using differential labeling to speed up the metabolic profiling of fatty acids. Fatty acids were derivatized with unlabeled (D0) or deuterated (D3) methanol, followed by GC-MS analysis. The comparative fatty acid analysis method was validated using a series of samples with different ratios of D0/D3-labeled fatty acid standards and with mouse liver extracts. Using a lipopolysaccharide (LPS)-treated mouse model, we found that the fatty acid profiles after LPS treatment were similar between the conventional single-sample analysis approach and the proposed comparative approach, with a Pearson's correlation coefficient of approximately 0.96. We applied the comparative method to investigate voriconazole-induced hepatotoxicity and revealed the toxicity mechanism as well as the potential of using fatty acids as toxicity markers. In conclusion, the comparative fatty acid profiling technique was determined to be fast and accurate and allowed the discovery of potential fatty acid biomarkers in a more economical and efficient manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K
2010-07-15
Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress. 2010 Elsevier B.V. All rights reserved.
Oral hygiene products and acidic medicines.
Hellwig, E; Lussi, A
2006-01-01
Acidic or EDTA-containing oral hygiene products and acidic medicines have the potential to soften dental hard tissues. The low pH of oral care products increases the chemical stability of some fluoride compounds, favors the incorporation of fluoride ions in the lattice of hydroxyapatite and the precipitation of calcium fluoride on the tooth surface. This layer has some protective effect against an erosive attack. However, when the pH is too low or when no fluoride is present these protecting effects are replaced by direct softening of the tooth surface. Xerostomia or oral dryness can occur as a consequence of medication such as tranquilizers, anti-histamines, anti-emetics and anti-parkinsonian medicaments or of salivary gland dysfunction e.g. due to radiotherapy of the oral cavity and the head and neck region. Above all, these patients should be aware of the potential demineralization effects of oral hygiene products with low pH and high titratable acids. Acetyl salicylic acid taken regularly in the form of multiple chewable tablets or in the form of headache powder as well chewing hydrochloric acids tablets for treatment of stomach disorders can cause erosion. There is most probably no direct association between asthmatic drugs and erosion on the population level. Consumers, patients and health professionals should be aware of the potential of tooth damage not only by oral hygiene products and salivary substitutes but also by chewable and effervescent tablets. Additionally, it can be assumed that patients suffering from xerostomia should be aware of the potential effects of oral hygiene products with low pH and high titratable acids.
1990-12-01
Maximum 200 words) Perfluoro -n-decanoic acid ( PFDA ), a perfluorinated fatty acid was evaluated in in vitro bioassays to assess its potential...PolychlorotrifluoroethyleneDU.TBL PFDA Perfluoro -n-decanoic acid PFOA Perfluoro -n-octanoic acid ..... RI Replicative index rpm Revolutions per minute By...an increase in the amount of S-phase DNA synthesis. The perfluorinated carboxylic acid, perfluoro -n-decanoic acid ( PFDA ), has previously been shown to
Nural, Yahya; Döndaş, H. Ali; Sarı, Hayati; Atabey, Hasan; Belveren, Samet; Gemili, Müge
2014-01-01
The acid dissociation constants of potential bioactive fused ring thiohydantoin-pyrrolidine compounds were determined by potentiometric titration in 20% (v/v) ethanol-water mixed at 25 ± 0.1°C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Proton affinities of potential donor atoms of the ligands were calculated by AM1 and PM3 semiempiric methods. We found, potentiometrically, three different acid dissociation constants for 1a–f. We suggest that these acid dissociation constants are related to the carboxyl, enol, and amino groups. PMID:24799905
Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S
This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, E.; Alleman, T. L.; McCormick, R. L.
Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products duemore » to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.« less
Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere
Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin
2016-01-01
In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713
Kloos, Karin; Schloter, Michael; Meyer, Ortwin
2006-11-01
Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1.
Metabolomics Reveals that Dietary Ferulic Acid and Quercetin Modulate Metabolic Homeostasis in Rats.
Zhang, Limin; Dong, Manyuan; Guangyong Xu; Yuan Tian; Tang, Huiru; Wang, Yulan
2018-02-21
Phenolic compounds ingestion has been shown to have potential preventive and therapeutic effects against various metabolic diseases such as obesity and cancer. To provide a better understanding of these potential benefit effects, we investigated the metabolic alterations in urine and feces of rat ingested ferulic acid (FA) and quercetin (Qu) using NMR-based metabolomics approach. Our results suggested that dietary FA and/or Qu significantly decreased short chain fatty acids and elevated oligosaccharides in the feces, implying that dietary FA and Qu may modulate gut microbial community with inhibition of bacterial fermentation of dietary fibers. We also found that dietary FA and/or Qu regulated several host metabolic pathways including TCA cycle and energy metabolism, bile acid, amino acid, and nucleic acid metabolism. These biological effects suggest that FA and Qu display outstanding bioavailability and bioactivity and could be used for treatment of some metabolic syndromes, such as inflammatory bowel diseases and obesity.
Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise
2016-09-01
Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hall, Damien; Li, Songling; Yamashita, Kazuo; Azuma, Ryuzo; Carver, John A; Standley, Daron M
2015-03-01
RNA-LIM is a procedure that can analyze various pseudo-potentials describing the affinity between single-stranded RNA (ssRNA) ribonucleotides and surface amino acids to produce a coarse-grained estimate of the structure of the ssRNA at the protein interface. The search algorithm works by evolving an ssRNA chain, of known sequence, as a series of walks between fixed sites on a protein surface. Optimal routes are found by application of a set of minimal "limiting" restraints derived jointly from (i) selective sampling of the ribonucleotide amino acid affinity pseudo-potential data, (ii) limited surface path exploration by prior determination of surface arc lengths, and (iii) RNA structural specification obtained from a statistical potential gathered from a library of experimentally determined ssRNA structures. We describe the general approach using a NAST (Nucleic Acid Simulation Tool)-like approximation of the ssRNA chain and a generalized pseudo-potential reflecting the location of nucleic acid binding residues. Minimum and maximum performance indicators of the methodology are established using both synthetic data, for which the pseudo-potential defining nucleic acid binding affinity is systematically degraded, and a representative real case, where the RNA binding sites are predicted by the amplified antisense RNA (aaRNA) method. Some potential uses and extensions of the routine are discussed. RNA-LIM analysis programs along with detailed instructions for their use are available on request from the authors. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.
Nordell, Erik; Hansson, Anna B; Karlsson, Martin
2013-12-01
Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aston, John E.; Apel, William A.; Lee, Brady D.; ...
2015-11-05
Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence ofmore » 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.« less
Extended Gate Field-Effect Transistor Biosensors for Point-Of-Care Testing of Uric Acid.
Guan, Weihua; Reed, Mark A
2017-01-01
An enzyme-free redox potential sensor using off-chip extended-gate field effect transistor (EGFET) with a ferrocenyl-alkanethiol modified gold electrode has been used to quantify uric acid concentration in human serum and urine. Hexacyanoferrate (II) and (III) ions are used as redox reagent. The potentiometric sensor measures the interface potential on the ferrocene immobilized gold electrode, which is modulated by the redox reaction between uric acid and hexacyanoferrate ions. The device shows a near Nernstian response to uric acid and is highly specific to uric acid in human serum and urine. The interference that comes from glucose, bilirubin, ascorbic acid, and hemoglobin is negligible in the normal concentration range of these interferents. The sensor also exhibits excellent long term reliability and is regenerative. This extended gate field effect transistor based sensor is promising for point-of-care detection of uric acid due to the small size, low cost, and low sample volume consumption.
Zainol, Muzakkir Mohammad; Amin, Nor Aishah Saidina; Asmadi, Mohd
2015-08-01
The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sadri, Rad; Hosseini, Maryam; Kazi, S. N.; Bagheri, Samira; Zubir, Nashrul; Ahmadi, Goodarz; Dahari, Mahidzal; Zaharinie, Tuan
2017-05-01
In this study, a facile and eco-friendly covalent functionalization technique is developed to synthesize highly stable graphene nanoplatelets (GNPs) in aqueous media. This technique involves free radical grafting of gallic acid onto the surface of GNPs rather than corrosive inorganic acids. Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy are used to confirm the covalent functionalization of GNPs with gallic acid (GAGNPs). The solubility of the GAGNPs in aqueous media is verified using zeta potential and UV-vis spectra measurements. The nanofluid shows significant improvement in thermo-physical properties, indicating its superb potential for various thermal applications.
Antioxidant activities and phenolics profiling of different parts of Carica papaya by LCMS-MS.
Zunjar, V; Mammen, D; Trivedi, B M
2015-01-01
This article deals with the comparison of the antioxidant activity of aqueous extracts of various parts of Carica papaya L. The evaluation of total phenolic content and total flavonoid content revealed high antioxidant potential of the seeds and fruits. The free radical-scavenging potential of the aqueous extracts indicated the seeds to have better DPPH-scavenging activity than fruits. The results were augmented by the FRAP activity as well. The phenolics present in the extracts were separated and identified as 5-hydroxy feruloyl quinic acid, acetyl p-coumaryl quinic acid, quercetin-3-O-rhamnoside, syringic acid hexoside, 5-hydroxy caffeic quinic acid, peonidin-3-O-glucoside, sinapic acid-O-hexoside, cyaniding-3-O-glucose and methyl feruloyl glycoside by LCMS-MS technique.
Muttucumaru, N; Powers, SJ; Elmore, JS; Briddon, A; Mottram, DS; Halford, NG
2014-01-01
Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential. PMID:25540460
Nocturnal weakly acidic reflux promotes aspiration of bile acids in lung transplant recipients.
Blondeau, Kathleen; Mertens, Veerle; Vanaudenaerde, Bart A; Verleden, Geert M; Van Raemdonck, Dirk E; Sifrim, Daniel; Dupont, Lieven J
2009-02-01
Gastroesophageal reflux (GER) and aspiration of bile acids have been implicated as non-alloimmune risk factors for the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. The aim of our study was to investigate the association between GER and gastric aspiration of bile acids and to establish which reflux characteristics may promote aspiration of bile acids into the lungs and may feature as a potential diagnostic tool in identifying lung transplantation (LTx) patients at risk for aspiration. Twenty-four stable LTx recipients were studied 1 year after transplantation. All patients underwent 24-hour ambulatory impedance-pH recording for the detection of acid (pH <4) and weakly acidic (pH 4 to 7) reflux. On the same day, bronchoalveolar lavage fluid (BALF) was collected and then analyzed for the presence of bile acids (Bioquant enzymatic assay). Increased GER was detected in 13 patients, of whom 9 had increased acid reflux and 4 had exclusively increased weakly acidic reflux. Sixteen patients had detectable bile acids in the BALF (0.6 [0.4 to 1.5] micromol/liter). The 24-hour esophageal volume exposure was significantly increased in patients with bile acids compared to patients without bile acids in the BALF. Acid exposure and the number of reflux events (total, acid and weakly acidic) were unrelated to the presence of bile acids in the BALF. However, both nocturnal volume exposure and the number of nocturnal weakly acidic reflux events were significantly higher in patients with bile acids in the BALF. Weakly acidic reflux events, especially during the night, are associated with the aspiration of bile acids in LTx recipients and may therefore feature as a potential risk factor for the development of BOS.
Lipid profiling of the soybean pathogen Phytophthora sojae using Fatty Acid Methyl Esters (FAMEs).
Yousef, Lina Fayez; Wojno, Michal; Dick, Warren A; Dick, Richard P
2012-05-01
Phytophthora sojae is a destructive soilborne pathogen of soybean, but currently there is no rapid or commercially available testing for its infestation level in soil. For growers, such information would greatly improve their ability to make management decisions to minimize disease damage to soybean crops. Fatty acid profiling of P. sojae holds potential for determining the prevalence of this pathogen in soil. In this study, the Fatty Acid Methyl Ester (FAME) profile of P. sojae was determined in pure culture, and the profile was subsequently evaluated for its potential use in detecting the pathogen in soil. The predominant fatty acids in the FAME profile of P. sojae are the unsaturated 18C fatty acids (18:1ω9 and 18:2ω6) followed by the saturated and unsaturated 16C fatty acids (16:0 and 16:1ω7). FAME analysis of P. sojae zoospores showed two additional long-chain saturated fatty acids (20:0 and 22:0) that were not detected in the mycelium of this organism. Addition of a known number of zoospores of P. sojae to soil demonstrated that fatty acids such as 18:1ω9, 18:2ω6, 20:1ω9, 20:4ω6, and 22:1ω9 could be detected and quantified against the background levels of fatty acids present in soil. These results show the potential for using selected FAMEs of P. sojae as a marker for detecting this pathogen in soybean fields. Copyright © 2012 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Investigation of Amino Acids As Herbicides for Control of Orobanche minor Parasitism in Red Clover.
Fernández-Aparicio, Mónica; Bernard, Alexandre; Falchetto, Laurent; Marget, Pascal; Chauvel, Bruno; Steinberg, Christian; Morris, Cindy E; Gibot-Leclerc, Stephanie; Boari, Angela; Vurro, Maurizio; Bohan, David A; Sands, David C; Reboud, Xavier
2017-01-01
Certain amino acids induce inhibitory effects in plant growth due to feedback inhibition of metabolic pathways. The inhibition patterns depend on plant species and the plant developmental stage. Those amino acids with inhibitory action on specific weeds could be utilized as herbicides, however, their use for weed control has not been put into practice. Orobanche minor is a weed that parasitizes red clover. O. minor germination is stimulated by clover root exudates. The subsequent seedling is an obligated parasite that must attach quickly to the clover root to withdraw its nutrients. Early development of O. minor is vulnerable to amino acid inhibition and therefore, a series of in vitro , rhizotron, and field experiments were conducted to investigate the potential of amino acids to inhibit O. minor parasitism. In in vitro experiments it was found that among a collection of 20 protein amino acids, lysine, methionine and tryptophan strongly interfere with O. minor early development. Field research confirmed their inhibitory effect but revealed that methionine was more effective than lysine and tryptophan, and that two successive methionine applications at 308 and 543 growing degree days inhibited O. minor emergence in red clover up to 67%. We investigated additional effects with potential to influence the practical use of amino acids against broomrape weeds, whether the herbicidal effect may be reversible by other amino acids exuded by host plants or may be amplified by inducing host resistance barriers against O. minor penetration. This paper suggests that amino acids may have the potential to be integrated into biorational programs of broomrape management.
Investigation of Amino Acids As Herbicides for Control of Orobanche minor Parasitism in Red Clover
Fernández-Aparicio, Mónica; Bernard, Alexandre; Falchetto, Laurent; Marget, Pascal; Chauvel, Bruno; Steinberg, Christian; Morris, Cindy E.; Gibot-Leclerc, Stephanie; Boari, Angela; Vurro, Maurizio; Bohan, David A.; Sands, David C.; Reboud, Xavier
2017-01-01
Certain amino acids induce inhibitory effects in plant growth due to feedback inhibition of metabolic pathways. The inhibition patterns depend on plant species and the plant developmental stage. Those amino acids with inhibitory action on specific weeds could be utilized as herbicides, however, their use for weed control has not been put into practice. Orobanche minor is a weed that parasitizes red clover. O. minor germination is stimulated by clover root exudates. The subsequent seedling is an obligated parasite that must attach quickly to the clover root to withdraw its nutrients. Early development of O. minor is vulnerable to amino acid inhibition and therefore, a series of in vitro, rhizotron, and field experiments were conducted to investigate the potential of amino acids to inhibit O. minor parasitism. In in vitro experiments it was found that among a collection of 20 protein amino acids, lysine, methionine and tryptophan strongly interfere with O. minor early development. Field research confirmed their inhibitory effect but revealed that methionine was more effective than lysine and tryptophan, and that two successive methionine applications at 308 and 543 growing degree days inhibited O. minor emergence in red clover up to 67%. We investigated additional effects with potential to influence the practical use of amino acids against broomrape weeds, whether the herbicidal effect may be reversible by other amino acids exuded by host plants or may be amplified by inducing host resistance barriers against O. minor penetration. This paper suggests that amino acids may have the potential to be integrated into biorational programs of broomrape management. PMID:28588599
Maruf, Abdullah Al; Lip, HoYin; Wong, Horace; O'Brien, Peter J
2015-06-05
Glyoxal (GO) and methylglyoxal (MGO) cause protein and nucleic acid carbonylation and oxidative stress by forming reactive oxygen and carbonyl species which have been associated with toxic effects that may contribute to cardiovascular disease, complications associated with diabetes mellitus, Alzheimer's and Parkinson's disease. GO and MGO can be formed through oxidation of commonly used reducing sugars e.g., fructose under chronic hyperglycemic conditions. GO and MGO form advanced glycation end products which lead to an increased potential for developing inflammatory diseases. In the current study, we have investigated the protective effects of ferulic acid and related polyphenols e.g., caffeic acid, p-coumaric acid, methyl ferulate, ethyl ferulate, and ferulaldehyde on GO- or MGO-induced cytotoxicity and oxidative stress (ROS formation, protein carbonylation and mitochondrial membrane potential maintenance) in freshly isolated rat hepatocytes. To investigate and compare the protective effects of ferulic acid and related polyphenols against GO- or MGO-induced toxicity, five hepatocyte models were used: (a) control hepatocytes, (b) GSH-depleted hepatocytes, (c) catalase-inhibited hepatocytes, (d) aldehyde dehydrogenase (ALDH2)-inhibited hepatocytes, and (e) hepatocyte inflammation system (a non-toxic H2O2-generating system). All of the polyphenols tested significantly decreased GO- or MGO-induced cytotoxicity, ROS formation and improved mitochondrial membrane potential in these models. The rank order of their effectiveness was caffeic acid∼ferulaldehyde>ferulic acid>ethyl ferulate>methyl ferulate>p-coumaric acid. Ferulic acid was found to decrease protein carbonylation in GSH-depleted hepatocytes. This study suggests that ferulic acid and related polyphenols can be used therapeutically to inhibit or decrease GO- or MGO-induced hepatotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Invasive species and acid rain cause global environmental problems. Limited information exists, however, concerning the effects of acid rain on the invasiveness of these plants. For example, creeping daisy, an invasive exotic allelopathic weed, has caused great damage in southern China where acid ra...
ACID-BASE ACCOUNT EFFECTIVENESS FOR DETERMINATION OF MINE WASTE POTENTIAL ACIDITY. (R825549C048)
The oxidation of sulfide minerals in mine waste is a widespread source of resource degradation, often resulting in the generation of acidic water and mobilization of heavy metals. The quantity of acid forming minerals present in mine waste, dominantly as pyrite (FeS2
Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai
2016-04-01
Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.
NASA Astrophysics Data System (ADS)
Osterrothová, Kateřina; Jehlička, Jan
2009-08-01
Raman spectroscopy using 785 nm excitation was tested as a nondestructive method for determining the presence of the potential biomarker, usnic acid, in experimentally prepared mineral matrices. Investigated samples consisting of usnic acid mixed with powdered hydrothermal minerals, gypsum and calcite were studied. Various concentrations of usnic acid in the mineral matrix were studied to determine the detection limits of this biomarker. Usnic acid was mixed with gypsum (respectively, calcite) and covered by a UV-transparent crystal of gypsum (CaSO 4·2H 2O), thereby creating artificial inclusions similar to those which could be present in Martian minerals. A Raman usnic acid signal at the concentration level as low as 1 g kg -1 was obtained in the powdered mineral matrix and 5 g kg -1 when analyzed through the monocrystal. The number of registered usnic acid key Raman bands was dependent on the particular mineral matrix. If a similar concentration of usnic acid could persist in Martian samples, then Raman spectroscopy will be able to identify it. Obtained results will aid both in situ Raman analyses on Mars and on Earth.
USDA-ARS?s Scientific Manuscript database
Flavonols and fatty acids in plants has potential to be used as an antioxidant, lowering of cholesterol, and for cancer prevention. Roselle is a photoperiod and frost-sensitive species requiring greenhouse production in the Griffin, GA environment. Six accessions of roselle calyces were evaluated fo...
Reduced carbon sequestration potential of biochar in acidic soil.
Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong
2016-12-01
Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bile acid binding capacity has been related to cholesterol-lowering potential of foods and food fractions. Lowered recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of can...
Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S. P.; Rey, Felisa; Coimbra, Manuel A.; Rosário Domingues, M.; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo
2015-01-01
Geographic traceability of seafood is key for controlling its quality and safeguarding consumers’ interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395
Chen, Yougui; Thiyam-Hollander, Usha; Barthet, Veronique J; Aachary, Ayyappan A
2014-10-08
Valuable phenolic antioxidants are lost during oil refining, but evaluation of their occurrence in refining byproducts is lacking. Rapeseed and canola oil are both rich sources of sinapic acid derivatives and tocopherols. The retention and loss of sinapic acid derivatives and tocopherols in commercially produced expeller-pressed canola oils subjected to various refining steps and the respective byproducts were investigated. Loss of canolol (3) and tocopherols were observed during bleaching (84.9%) and deodorization (37.6%), respectively. Sinapic acid (2) (42.9 μg/g), sinapine (1) (199 μg/g), and canolol (344 μg/g) were found in the refining byproducts, namely, soap stock, spent bleaching clay, and wash water, for the first time. Tocopherols (3.75 mg/g) and other nonidentified phenolic compounds (2.7 mg sinapic acid equivalent/g) were found in deodistillates, a byproduct of deodorization. DPPH radical scavenging confirmed the antioxidant potential of the byproducts. This study confirms the value-added potential of byproducts of refining as sources of endogenous phenolics.
Gawlik-Dziki, Urszula; Dziki, Dariusz; Świeca, Michał; Nowak, Renata
2017-06-15
The aim of this study was to estimate the phenolic composition and xanthine oxidase (XO) inhibitory activity of green coffee beans (GCB) and wholemeal wheat flour (WF). Additionally, the type and strength of interaction (expressed as the combination index, CI) and mode of XO inhibition were analyzed. The major phenolic in GCB was 5-caffeoylquinic acid (39.92mg/g dw). The main phenolic acids in WF were trans- and cis-ferulic acids (257 and 165.57mg/100g dw, respectively). Both ferulic and chlorogenic acids individually inhibited XO, and for their combination moderate synergism was found. Buffer extractable compounds from GCB and WF demonstrated slight synergism (CI=0.92), while potentially bioaccessible and bioavailable compounds acted synergistically (CI=0.43 and 0.54, respectively). Buffer-extractable and potentially bioavailable phytochemicals from GCB acted uncompetitively, whereas potentially bioaccessible compounds acted as noncompetitive XO inhibitors. The addition of 3-5% of GCB to wheat bread significantly increased XO-inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai
2015-02-01
Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rainer, Peter P; Primessnig, Uwe; Harenkamp, Sandra; Doleschal, Bernhard; Wallner, Markus; Fauler, Guenter; Stojakovic, Tatjana; Wachter, Rolf; Yates, Ameli; Groschner, Klaus; Trauner, Michael; Pieske, Burkert M; von Lewinski, Dirk
2013-11-01
High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids. Multicellular human atrial preparations ('trabeculae') were exposed to primary bile acids and the incidence of arrhythmic events was assessed. Bile acid concentrations were measured in serum samples from 250 patients and their association with AF and ECG parameters analysed. Additionally, we conducted electrophysiological studies in murine myocytes. Taurocholic acid (TCA) concentration-dependently induced arrhythmias in atrial trabeculae (14/28 at 300 µM TCA, p<0.01) while ursodeoxycholic acid did not. Patients with AF had significantly decreased serum levels of ursodeoxycholic acid conjugates and increased levels of non-ursodeoxycholic bile acids. In isolated myocytes, TCA depolarised the resting membrane potential, enhanced Na(+)/Ca(2+) exchanger (NCX) tail current density and induced afterdepolarisations. Inhibition of NCX prevented arrhythmias in atrial trabeculae. High TCA concentrations induce arrhythmias in adult human atria while ursodeoxycholic acid does not. AF is associated with higher serum levels of non-ursodeoxycholic bile acid conjugates and low levels of ursodeoxycholic acid conjugates. These data suggest that higher levels of toxic (arrhythmogenic) and low levels of protective bile acids create a milieu with a decreased arrhythmic threshold and thus may facilitate arrhythmic events.
Satpathy, Raghunath; Guru, R K; Behera, R; Nayak, B
2015-01-01
Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound.
Frank, Thomas; Netzel, Gabriele; Kammerer, Dietmar R; Carle, Reinhold; Kler, Adolf; Kriesl, Erwin; Bitsch, Irmgard; Bitsch, Roland; Netzel, Michael
2012-08-15
To evaluate health benefits attributed to Hibiscus sabdariffa L. a randomized, open-label, two-way crossover study was undertaken to compare the impact of an aqueous H. sabdariffa L. extract (HSE) on the systemic antioxidant potential (AOP; assayed by ferric reducing antioxidant power (FRAP)) with a reference treatment (water) in eight healthy volunteers. The biokinetic variables were the areas under the curve (AUC) of plasma FRAP, ascorbic acid and urate that are above the pre-dose concentration, and the amounts excreted into urine within 24 h (Ae(0-24) ) of antioxidants as assayed by FRAP, ascorbic acid, uric acid, malondialdehyde (biomarker for oxidative stress), and hippuric acid (metabolite and potential biomarker for total polyphenol intake). HSE caused significantly higher plasma AUC of FRAP, an increase in Ae(0-24) of FRAP, ascorbic acid and hippuric acid, whereas malondialdehyde excretion was reduced. Furthermore, the main hibiscus anthocyanins as well as one glucuronide conjugate could be quantified in the volunteers' urine (0.02% of the administered dose). The aqueous HSE investigated in this study enhanced the systemic AOP and reduced the oxidative stress in humans. Furthermore, the increased urinary hippuric acid excretion after HSE consumption indicates a high biotransformation of the ingested HSE polyphenols, most likely caused by the colonic microbiota. Copyright © 2012 Society of Chemical Industry.
Çelebi, Emin Ender; Öncel, Mehmet Salim; Kobya, Mehmet
2018-01-01
Weathering of sulfide minerals is a principal source of acid generation. To determine acid-forming potentials of sulfide-bearing materials, two basic approaches named static and kinetic tests are available. Static tests are short-term, and easily undertaken within a few days and in a laboratory. In contrast, kinetic tests are long-term procedures and mostly carried out on site. In this study, experiments were conducted over a medium-term period of 2 months, not as short as static tests and also not as long as kinetic tests. As a result, pH and electrical conductivity oscillations as a function of time, acid-forming potentials and elemental contents of synthetically prepared rainwater leachates of massive sulfides and sulfide-bearing lead-zinc tailings from abandoned and currently used deposition areas have been determined. Although the lowest final pH of 2.70 was obtained in massive pyrite leachate, massive chalcopyrite leachate showed the highest titrable acidity of 1.764 g H 2 SO 4 /L. On the other hand, a composite of currently deposited mine tailings showed no acidic characteristic with a final pH of 7.77. The composite abandoned mine tailing leachate had a final pH of 6.70, close to the final pH of massive galena and sphalerite leachates, and produced a slight titrable acidity of 0.130 g H 2 SO 4 /L.
Faraji, Amir H.; Cui, Jonathan J.; Guy, Yifat; Li, Ling; Weber, Stephen G.
2011-01-01
Electroosmosis is the bulk fluid flow initiated by application of an electric field to an electrolyte solution in contact with immobile objects with a non-zero ζ-potential such as the surface of a porous medium. Electroosmosis may be used to assist analytical separations. Several gel-based systems with varying electroosmotic mobilities have been made in this context. A method was recently developed to determine the ζ-potential of organotypic hippocampal slice cultures (OHSC) as a representative model for normal brain tissue. The ζ-potential of the tissue is significant. However, determining the role of the ζ-potential in solute transport in tissue in an electric field is difficult because the tissue's ζ-potential cannot be altered. We hypothesized that mass transport properties, namely the ζ-potential and tortuosity, could be modulated by controlling the composition of a set of hydrogels. Thus, poly(acrylamide-co-acrylic acid) gels were prepared with three compositions (by monomer weight percent): acrylamide/acrylic acid 100/0, 90/10, and 75/25. The ζ-potentials of these gels at pH 7.4 are distinctly different, and in fact vary approximately linearly with the weight percent of acrylic acid. We discovered that the 25% acrylic acid gel is a respectable model for brain tissue, as its ζ-potential is comparable to the OHSC. This series of gels permits the experimental determination of the importance of electrokinetic properties in a particular experiment or protocol. Additionally, tortuosities were measured electrokinetically and by evaluating diffusion coefficients. Hydrogels with well-defined ζ-potential and tortuosity may find utility in biomaterials, analytical separations, and as a surrogate model for OHSC and living biological tissues. PMID:21905710
Landmeyer, J.E.; Bradley, P.M.; Thomas, J.M.
2000-01-01
The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of tri-halomethanes in drinking water.The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of trihalomethanes in drinking water.Aquifer-storage-recovery injection water often contains disinfection byproducts. Results are presented from a study in which two model disinfection byproducts, chloroform and chloroacetic acid, were used to examine biodegradation by indigenous microorganisms. The recharge system studied was near Las Vegas, NV, where the aquifers are recharged artificially during the winter months. Microcosms were constructed using aquifer material recovered from two layers. Results showed that no significant biodegradation of chloroform occurred under aerobic or anaerobic conditions, but chloroacetic acid was biodegraded under both aerobic and anaerobic conditions.
Andrews, Casey T; Elcock, Adrian H
2014-11-11
We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions-which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)-quantitatively reproduced all of the "target" MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic ( PLoS Comput. Biol. 2014 , 5 , e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP's nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins.
2015-01-01
We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions—which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)—quantitatively reproduced all of the “target” MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic (PLoS Comput. Biol.2014, 5, e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP’s nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins. PMID:25400526
Bartheldyová, Eliška; Effenberg, Roman; Mašek, Josef; Procházka, Lubomír; Knötigová, Pavlína Turánek; Kulich, Pavel; Hubatka, František; Velínská, Kamila; Zelníčková, Jaroslava; Zouharová, Darina; Fojtíková, Martina; Hrebík, Dominik; Plevka, Pavel; Mikulík, Robert; Miller, Andrew D; Macaulay, Stuart; Zyka, Daniel; Drož, Ladislav; Raška, Milan; Ledvina, Miroslav; Turánek, Jaroslav
2018-06-25
New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.
Bortolasci, Chiara Cristina; Vargas, Heber Odebrecht; Vargas Nunes, Sandra Odebrecht; de Melo, Luiz Gustavo Piccoli; de Castro, Márcia Regina Pizzo; Moreira, Estefania Gastaldello; Dodd, Seetal; Barbosa, Décio Sabbatini; Berk, Michael; Maes, Michael
2015-07-01
This study examines the effects of malondialdehyde (MDA) and uric acid on insulin resistance and atherogenicity in subjects with and without mood disorders, the metabolic syndrome (MetS) and tobacco use disorder (TUD). We included 314 subjects with depression and bipolar depression, with and without the MetS and TUD and computed insulin resistance using the updated homeostasis model assessment (HOMA2IR) and atherogenicity using the atherogenic index of plasma (AIP), that is log10 (triglycerides/high density lipoprotein (HDL) cholesterol. HOMA2IR is correlated with body mass index (BMI) and uric acid levels, but not with mood disorders and TUD, while the AIP is positively associated with BMI, mood disorders, TUD, uric acid, MDA and male sex. Uric acid is positively associated with insulin and triglycerides and negatively with HDL cholesterol. MDA is positively associated with triglyceride levels. Comorbid mood disorders and TUD further increase AIP but not insulin resistance. Glucose is positively associated with increasing age, male gender and BMI. The results show that mood disorders, TUD and BMI together with elevated levels of uric acid and MDA independently contribute to increased atherogenic potential, while BMI and uric acid are risk factors for insulin resistance. The findings show that mood disorders and TUD are closely related to an increased atherogenic potential but not to insulin resistance or the MetS. Increased uric acid is a highly significant risk factor for insulin resistance and increased atherogenic potential. MDA, a marker of lipid peroxidation, further contributes to different aspects of the atherogenic potential. Mood disorders and TUD increase triglyceride levels, lower HDL cholesterol and are strongly associated with the atherogenic, but not insulin resistance, component of the MetS. Copyright © 2015 Elsevier B.V. All rights reserved.
Potential impact of acid precipitation on arsenic and selenium.
Mushak, P
1985-01-01
The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling. PMID:4076075
Potential impact of acid precipitation on arsenic and selenium.
Mushak, P
1985-11-01
The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling.
Kilani-Jaziri, Soumaya; Mokdad-Bzeouich, Imen; Krifa, Mounira; Nasr, Nouha; Ghedira, Kamel; Chekir-Ghedira, Leila
2017-10-01
Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses and to reduce damage to the human body. To determine whether phenolic compounds (caffeic, ferulic, and p-coumaric acids) have immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we evaluated their effect on splenocyte proliferation and lysosomal enzyme activity. We also investigated the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In addition, induction of the cellular antioxidant activity in splenocytes, macrophages, and red blood cells was determined by measuring the fluorescence of the DCF product. The study first results indicated that caffeic, ferulic, and p-coumaric acids significantly promote LPS-stimulated splenocyte proliferation, suggesting a potential activation of B cells, and enhanced humoral immune response in hosts treated by the tested natural products. Phenolic acids significantly enhanced the killing activity of isolated NK and CTL cells but had negligible effects on mitogen-induced proliferation of splenic T cells. We showed that caffeic acid enhances lysosomal enzyme activity in murine peritoneal macrophages, suggesting a potential role in activating such cells. Immunomodulatory activity was concomitant with the cellular antioxidant effect in macrophages and splenocytes of caffeic and ferulic acids. We conclude from this study that caffeic, ferulic, and p-coumaric acids exhibited an immunomodulatory effect which could be ascribed, in part, to their cytoprotective effect via their antioxidant capacity. Furthermore, these results suggest that these natural products could be potentially used to modulate immune cell functions in physiological and pathological conditions.
Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage
Vieira, C. P.; Álvares, T. S.; Gomes, L. S.; Torres, A. G.; Paschoalin, V. M. F.; Conte-Junior, C. A.
2015-01-01
Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8g/100g fatty acids) and lower saturated fatty acid (72.7g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality. PMID:26444286
Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage.
Vieira, C P; Álvares, T S; Gomes, L S; Torres, A G; Paschoalin, V M F; Conte-Junior, C A
2015-01-01
Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8 g/100g fatty acids) and lower saturated fatty acid (72.7 g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0 g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.
1994-03-01
other Pickling liquor and other corrosive alkalies corrosive acids Lime wastewater Spent acid Lime and water Spent mixed acid Spent caustic Spent ...acid Spent caustic Spent sulfuric acid Potential Consequences: heat generation; violent reaction. 4 - 161 Appendix 4-6 (continued) Group 2-A Group 2-B1...topical bleach (STB) Ordnance, ammunition, explosives & residues Battery acid & caustics (in unserviceable batteries) Some pharmaceuticals Petroleum, oil
FORMATION AND ENANTIOSELECTIVE BIODEGRADATION OF THE ENANTIOMERS OF BROMOCHLOROACETIC ACID
Bromochloroacetic acid (BCAA) is formed by chlorination of drinking waters containing naturally occurring bromide. This haloacetic acid is a concern to public health because of suspected carcinogenicity and toxicity, and is a potential target of disinfectant byproduct regulations...
Leung, Yat H; Belanger, Francois; Lu, Jennifer; Turgeon, Jacques; Michaud, Veronique
2017-01-01
Drug-induced myopathy is a serious side effect that often requires removal of a medication from a drug regimen. For most drugs, the underlying mechanism of drug-induced myopathy remains unclear. Monocarboxylate transporters (MCTs) mediate L-lactic acid transport, and inhibition of MCTs may potentially lead to perturbation of L-lactic acid accumulation and muscular disorders. Therefore, we hypothesized that L-lactic acid transport may be involved in the development of drug-induced myopathy. The aim of this study was to assess the inhibitory potential of 24 acidic drugs on L-lactic acid transport using breast cancer cell lines Hs578T and MDA-MB-231, which selectively express MCT1 and MCT4, respectively. The influx transport of L-lactic acid was minimally inhibited by all drugs tested. The efflux transport was next examined: loratadine (IC50: 10 and 61 µM) and atorvastatin (IC50: 78 and 41 µM) demonstrated the greatest potency for inhibition of L-lactic acid efflux by MCT1 and MCT4, respectively. Acidic drugs including fluvastatin, cerivastatin, simvastatin acid, lovastatin acid, irbesartan and losartan exhibited weak inhibitory potency on L-lactic acid efflux. Our results suggest that some acidic drugs, such as loratadine and atorvastatin, can inhibit the efflux transport of L-lactic acid. This inhibition may cause an accumulation of intracellular L-lactic acid leading to acidification and muscular disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Goyer, Aymeric; Pellé, Julien
2018-08-01
Blackspot in potato is an internal tissue discoloration that occurs during handling and transport of potato tubers. Blackspot is cosmetically undesirable and represents a huge economic cost for the potato industry. The aim of this study was to test whether concentrations of certain metabolites in the potato tuber cortex could predict blackspot susceptibility. Seven russet potato varieties were stored for eight months at 8.8 °C. Stored tubers were subjected to mechanical impact and evaluated for blackspot susceptibility. A blackspot susceptibility index was calculated for each variety by determining an index for the percentage of the tuber cortex area that was covered with blackspot, and an index for the intensity of blackspot discoloration. Concentrations of tyrosine, chlorogenic acid, phenylalanine, and ascorbic acid, and blackspot biochemical potential of tubers to synthesize pigments were measured in the tuber cortex. Blackspot indices, metabolites concentrations and blackspot biochemical potential varied significantly between varieties. Tyrosine concentrations strongly, significantly, and positively correlated with blackspot biochemical potential. Phenylalanine concentrations showed good, significant, and positive correlation with blackspot biochemical potential and discoloration index. None of the analyzed metabolites correlated with blackspot susceptibility. Concentrations of tyrosine and phenylalanine explained up to ∼80% of the variation in blackspot biochemical potential between varieties but did not correlate with blackspot susceptibility. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
CACODYLIC ACID (DMAV): METABOLISM AND ...
The cacodylic acid (DMAV) issue paper discusses the metabolism and pharmacokinetics of the various arsenical chemicals; evaluates the appropriate dataset to quantify the potential cancer risk to the organic arsenical herbicides; provides an evaluation of the mode of carcinogenic action (MOA) for DMAV including a consideration of the key events for bladder tumor formation in rats, other potential modes of action; and also considers the human relevance of the proposed animal MOA. As part of tolerance reassessment under the Food Quality Protection Act for the August 3, 2006 deadline, the hazard of cacodylic acid is being reassessed.
Zhao, Jinfang; Xu, Liyuan; Wang, Yongze; Zhao, Xiao; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde
2013-06-07
Polylactic acid (PLA), a biodegradable polymer, has the potential to replace (at least partially) traditional petroleum-based plastics, minimizing "white pollution". However, cost-effective production of optically pure L-lactic acid is needed to achieve the full potential of PLA. Currently, starch-based glucose is used for L-lactic acid fermentation by lactic acid bacteria. Due to its competition with food resources, an alternative non-food substrate such as cellulosic biomass is needed for L-lactic acid fermentation. Nevertheless, the substrate (sugar stream) derived from cellulosic biomass contains significant amounts of xylose, which is unfermentable by most lactic acid bacteria. However, the microorganisms that do ferment xylose usually carry out heterolactic acid fermentation. As a result, an alternative strain should be developed for homofermentative production of optically pure L-lactic acid using cellulosic biomass. In this study, an ethanologenic Escherichia coli strain, SZ470 (ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA), was reengineered for homofermentative production of L-lactic acid from xylose (1.2 mole xylose = > 2 mole L-lactic acid), by deleting the alcohol dehydrogenase gene (adhE) and integrating the L-lactate dehydrogenase gene (ldhL) of Pediococcus acidilactici. The resulting strain, WL203, was metabolically evolved further through serial transfers in screw-cap tubes containing xylose, resulting in the strain WL204 with improved anaerobic cell growth. When tested in 70 g L-1 xylose fermentation (complex medium), WL204 produced 62 g L-1 L-lactic acid, with a maximum production rate of 1.631 g L-1 h-1 and a yield of 97% based on xylose metabolized. HPLC analysis using a chiral column showed that an L-lactic acid optical purity of 99.5% was achieved by WL204. These results demonstrated that WL204 has the potential for homofermentative production of L-lactic acid using cellulosic biomass derived substrates, which contain a significant amount of xylose.
Plasma Amino Acids Profiles in Children with Autism: Potential Risk of Nutritional Deficiencies.
ERIC Educational Resources Information Center
Arnold, Georgianne L.; Hyman, Susan L.; Mooney, Robert A.; Kirby, Russell S.
2003-01-01
The plasma amino acid profiles of 10 children with autism on gluten and casein restricted diets and 26 on unrestricted diets were reviewed. There was a trend for the children on restricted diets to have an increased prevalence of essential amino acid deficiencies and lower plasma levels of essential acids. (Contains references.) (Author/CR)
Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter
2013-01-01
In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...
López-Martínez, Luis M.; Santacruz-Ortega, Hisila; Navarro, Rosa-Elena; Sotelo-Mundo, Rogerio R.; González-Aguilar, Gustavo A.
2015-01-01
The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic. PMID:26559189
López-Martínez, Luis M; Santacruz-Ortega, Hisila; Navarro, Rosa-Elena; Sotelo-Mundo, Rogerio R; González-Aguilar, Gustavo A
2015-01-01
The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic.
Nutritional Evaluation of Australian Microalgae as Potential Human Health Supplements
Kent, Megan; Welladsen, Heather M.; Mangott, Arnold; Li, Yan
2015-01-01
This study investigated the biochemical suitability of Australian native microalgal species Scenedesmus sp., Nannochloropsis sp., Dunaliella sp., and a chlorophytic polyculture as nutritional supplements for human health. The four microalgal cultures were harvested during exponential growth, lyophilized, and analysed for proximate composition (moisture, ash, lipid, carbohydrates, and protein), pigments, and amino acid and fatty acid profiles. The resulting nutritional value, based on biochemical composition, was compared to commercial Spirulina and Chlorella products. The Australian native microalgae exhibited similar, and in several cases superior, organic nutritional properties relative to the assessed commercial products, with biochemical profiles rich in high-quality protein, nutritious polyunsaturated fats (such as α-linolenic acid, arachidonic acid, and eicosapentaenoic acid), and antioxidant pigments. These findings indicate that the microalgae assessed have great potential as multi-nutrient human health supplements. PMID:25723496
Omega-3 Fatty Acids and Skeletal Muscle Health
Jeromson, Stewart; Gallagher, Iain J.; Galloway, Stuart D. R.; Hamilton, D. Lee
2015-01-01
Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527
Ibarguren, Maitane; López, David J; Escribá, Pablo V
2014-06-01
This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid
Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...
ERIC Educational Resources Information Center
Williamson, Vickie M.; Hegarty, Mary; Deslongchamps, Ghislain; Williamson, Kenneth C., III
2013-01-01
This pilot study examined students' use of ball-and-stick images versus electrostatic potential maps when asked questions about electron density, positive charge, proton attack, and hydroxide attack with six different molecules (two alcohols, two carboxylic acids, and two hydroxycarboxylic acids). Students' viewing of these dual images…
USDA-ARS?s Scientific Manuscript database
Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...
Choi, Su-In; Park, Jihoon; Kim, Pil
2017-03-28
To investigate the potential applications of bacterial heme, aminolevulinic acid synthase (HemA) was expressed in a Corynebacterium glutamicum HA strain that had been adaptively evolved against oxidative stress. The red pigment from the constructed strain was extracted and it exhibited the typical heme absorbance at 408 nm from the spectrum. To investigate the potential of this strain as an iron additive for swine, a prototype feed additive was manufactured in pilot scale by culturing the strain in a 5 ton fermenter followed by spray-drying the biomass with flour as an excipient (biomass: flour = 1:10 (w/w)). The 10% prototype additive along with regular feed was supplied to a pig, resulting in a 1.1 kg greater increase in weight gain with no diarrhea in 3 weeks as compared with that in a control pig that was fed an additive containing only flour. To verify if C. glutamicum -synthesized heme is a potential electron carrier, lactic acid bacteria were cultured under aerobic conditions with the extracted heme. The biomasses of the aerobically grown Lactococcus lactis , Lactobacillus rhamosus , and Lactobacillus casei were 97%, 15%, and 4% greater, respectively, than those under fermentative growth conditions. As a potential preservative, cultures of the four strains of lactic acid bacteria were stored at 4°C with the extracted heme and living lactic acid bacterial cells were counted. There were more L. lactis and L. plantarum live cells when stored with heme, whereas L. rhamosus and L. casei showed no significant differences in live-cell numbers. The potential uses of the heme from C. glutamicum are further discussed.
Stability of lipid encapsulated phenolic acid particles
USDA-ARS?s Scientific Manuscript database
Phenolic compounds such as ferulic acid and p-coumaric acids are potential bioactive additives for use in animal feeds to replace current antioxidants and antimicrobial compounds. These compounds are ubiquitous in plants and may be obtained from commodity grain crops and waste biomass. Encapsulation...
Perfluorocarboxylic acids (PFCAs), namely perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA), have been identified as persistent, bioaccurnulative and potentially toxic compounds. The structural analog, 8-2 fluorotelomer alcohol (8-2 FTOH) is considered the probable ...
Circadian dysregulation disrupts bile acid homeostasis
USDA-ARS?s Scientific Manuscript database
Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...
A meteorological potential forecast model for acid rain in Fujian Province, China.
Cai, Yi Yong; Lin, Chang Cheng; Liu, Jing Xiong; Wu, De Hui; Lian, Dong Ying; Chen, Bin Bin
2010-05-01
Based on the acid rain and concurrent meteorological observational data during the past 10 years in Fujian Province, China, the dependence of distribution characteristics of acid rain on season, rain rate, weather pattern and dominant airflow in four regions of Fujian Province is analyzed. On the annual average, the acid rain frequency is the highest (above 40%) in the southern and mid-eastern regions, and the lowest (16.2%) in the western region. The acid rain occurs most frequently in spring and winter, and least frequent in summer. The acid rain frequency in general increases with the increase of precipitation. It also depend on the direction of dominant airflows at 850 hPa. In the mid-eastern region, more than 40% acid rains appear when the dominant wind directions are NW, W, SW, S and SE. In the southern region, high acid rain occurrence happens when the dominant wind directions are NW, W, SW and S. In the northern region, 41.8% acid rains occur when the southwesterly is pronounced. In the western region, the southwesterly is associated with a 17% acid rain rate. The examination of meteorological sounding conditions over Fuzhou, Xiamen and Shaowu cities shows that the acid rain frequency increases with increased inversion thickness. Based on the results above, a meteorological potential forecast model for acid rain is established and tested in 2007. The result is encouraging. The model provides an objective basis for the development of acid rain forecasting operation in the province.
Rebai, Olfa; Belkhir, Manel; Sanchez-Gomez, María Victoria; Matute, Carlos; Fattouch, Sami; Amri, Mohamed
2017-12-01
The present study has been designed to explore the molecular mechanism and signaling pathway targets of chlorogenic acid (CGA) and its main hydrolysates, caffeic (CA) and quinic acid in the protective effect against glutamate-excitotoxicity. For this purpose 8-DIV cortical neurons in primary culture were exposed to 50 μM L-glutamic acid plus 10 µM glycine, with or without 10-100 μM tested compounds. Chlorogenic acid and caffeic acid via their antioxidant properties inhibited cell death induced by glutamate in dose depended manner. However, quinic acid slightly protects neurons at a higher dose. DCF, JC-1 and Ca 2+ sensitive fluorescent dye fura-2, were used to measure intracellular ROS accumulation, mitochondrial membrane potential integration and intracellular calcium concentration [Ca 2+ ] i . Results indicate that similarly, CGA acts as a protective agent against glutamate-induced cortical neurons injury by suppressing the accumulation of endogenous ROS and restore the mitochondrial membrane potential, activate the enzymatic antioxidant system by the increase levels of SOD activity and modulate the rise of intracellular calcium levels by increasing the rise of intracellular concentrations of Ca 2+ caused by glutamate overstimulation. PKC signaling cascade appear to be engaged in this protective mechanism. Interseling, CGA and CA also exhibit antiapoptotic properties against glutamate-induced cleaved activation of pro-caspases; caspase 1,8 and 9 and calpain (PD 150606,Calpeptin and MDL 28170).These data suggest that neuroprotective activity of CGA ester may occurs throught its hydrolysate,the caffeic acid and its interaction with intracellular molecules suggesting that CGA exert its neuroprotection via its caffeoly acid group that might potentially be used as a therapeutic agent in neurodegeneratives disorders associated with glutamate excitotoxicity.
Makowski, Mariusz; Liwo, Adam; Sobolewski, Emil; Scheraga, Harold A
2011-05-19
A new model of side-chain-side-chain interactions for charged side-chains of amino acids, to be used in the UNRES force-field, has been developed, in which a side chain consists of a nonpolar and a charged site. The interaction energy between the nonpolar sites is composed of a Gay-Berne and a cavity term; the interaction energy between the charged sites consists of a Lennard-Jones term, a Coulombic term, a generalized-Born term, and a cavity term, while the interaction energy between the nonpolar and charged sites is composed of a Gay-Berne and a polarization term. We parametrized the energy function for the models of all six pairs of natural like-charged amino-acid side chains, namely propionate-propionate (for the aspartic acid-aspartic acid pair), butyrate-butyrate (for the glutamic acid-glutamic acid pair), propionate-butyrate (for the aspartic acid-glutamic acid pair), pentylamine cation-pentylamine cation (for the lysine-lysine pair), 1-butylguanidine cation-1-butylguanidine cation (for the arginine-arginine pair), and pentylamine cation-1-butylguanidine cation (for the lysine-arginine pair). By using umbrella-sampling molecular dynamics simulations in explicit TIP3P water, we determined the potentials of mean force of the above-mentioned pairs as functions of distance and orientation and fitted analytical expressions to them. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules were well represented by analytical expressions for all systems. The values of the parameters of all the energy components are physically reasonable, which justifies use of such potentials in coarse-grain protein-folding simulations. © 2011 American Chemical Society
Gomes, Marilia Brito; Negrato, Carlos Antonio
2014-01-01
Alpha-lipoic acid is a naturally occurring substance, essential for the function of different enzymes that take part in mitochondria's oxidative metabolism. It is believed that alpha-lipoic acid or its reduced form, dihydrolipoic acid have many biochemical functions acting as biological antioxidants, as metal chelators, reducers of the oxidized forms of other antioxidant agents such as vitamin C and E, and modulator of the signaling transduction of several pathways. These above-mentioned actions have been shown in experimental studies emphasizing the use of alpha-lipoic acid as a potential therapeutic agent for many chronic diseases with great epidemiological as well economic and social impact such as brain diseases and cognitive dysfunctions like Alzheimer disease, obesity, nonalcoholic fatty liver disease, burning mouth syndrome, cardiovascular disease, hypertension, some types of cancer, glaucoma and osteoporosis. Many conflicting data have been found concerning the clinical use of alpha-lipoic acid in the treatment of diabetes and of diabetes-related chronic complications such as retinopathy, nephropathy, neuropathy, wound healing and diabetic cardiovascular autonomic neuropathy. The most frequent clinical condition in which alpha-lipoic acid has been studied was in the management of diabetic peripheral neuropathy in patients with type 1 as well type 2 diabetes. Considering that oxidative stress, a imbalance between pro and antioxidants with excessive production of reactive oxygen species, is a factor in the development of many diseases and that alpha-lipoic acid, a natural thiol antioxidant, has been shown to have beneficial effects on oxidative stress parameters in various tissues we wrote this article in order to make an up-to-date review of current thinking regarding alpha-lipoic acid and its use as an antioxidant drug therapy for a myriad of diseases that could have potential benefits from its use.
Ebrahimi, Mahdi; Daeman, Nor Hafizah; Chong, Chou Min; Karami, Ali; Kumar, Vikas; Hoseinifar, Seyed Hossein; Romano, Nicholas
2017-08-01
Dietary organic acids are increasingly being investigated as a potential means of improving growth and nutrient utilization in aquatic animals. A 9-week study was performed to compare equal amounts (2%) of different organic acids (sodium butyrate, acetate, propionate, or formate) on the growth, muscle proximate composition, fatty acid composition, cholesterol and lipid peroxidation, differential cell counts, plasma biochemistry, intestinal short-chain fatty acid (SCFA) level, and liver histopathology to red hybrid tilapia (Oreochromis sp.) (initial mean weight of 2.87 g). A second experiment was performed to determine their effects on lipid peroxidation and trimethylamine (TMA) when added at 1% to tilapia meat and left out for 24 h. The results of the first experiment showed no treatment effect to growth, feeding efficiencies, or muscle fatty acid composition, but all dietary organic acids significantly decreased intestinal SCFA. Dietary butyrate and propionate significantly decreased muscle lipid peroxidation compared to the control group, but the dietary formate treatment had the lowest lipid peroxidation compared to all treatments. Muscle crude protein and lipid in tilapia fed the formate diet were significantly lower and higher, respectively, and showed evidence of stress based on the differential cell counts, significantly higher plasma glucose and liver glycogen, as well as inflammatory responses in the liver. Although a potential benefit of dietary organic acids was a reduction to lipid peroxidation, this could be accomplished post-harvest by direct additions to the meat. In addition, inclusions of butyrate and propionate to tilapia meat significantly decreased TMA, which might be a more cost-effective option to improve the shelf life of tilapia products.
Zhang, Xian-Man; Fry, Albert J.; Bordwell, Frederick G.
1996-06-14
Equilibrium acidities (pK(HA)) of six P-(para-substituted benzyl)triphenylphosphonium (p-GC(6)H(4)CH(2)PPh(3)(+)) cations, P-allyltriphenylphosphonium cation, P-cinnamyltriphenylphosphonium cation, and As-(p-cyanobenzyl)triphenylarsonium cation, together with the oxidation potentials [E(ox)(A(-))] of their conjugate anions (ylides) have been measured in dimethyl sulfoxide (DMSO) solution. The acidifying effects of the alpha-triphenylphosphonium groups on the acidic C-H bonds in toluene and propene were found to be ca 25 pK(HA) units (34 kcal/mol). Introduction of an electron-withdrawing group such as 4-NO(2), 4-CN, or 4-Br into the para position of the benzyl ring in p-GC(6)H(4)CH(2)PPh(3)(+) cations resulted in an additional acidity increase, but introduction of the 4-OEt electron-donating group decreases the acidity. The equilibrium acidities of p-GC(6)H(4)CH(2)PPh(3)(+) cations were nicely linearly correlated with the Hammett sigma(-) constants of the substituents (G) with a slope of 4.78 pK(HA) units (R(2) = 0.992) (Figure 1). Reversible oxidation potentials of the P-(para-substituted benzyl)triphenylphosphonium ylides were obtained by fast scan cyclic voltammetry. The homolytic bond dissociation enthalpies (BDEs) of the acidic C-H bonds in these cations, estimated by combining their equilibrium acidities with the oxidation potentials of their corresponding conjugate anions, showed that the alpha-Ph(3)P(+) groups have negligible stabilizing or destabilizing effects on the adjacent radicals. The equilibrium acidity of As-(p-cyanobenzyl)triphenylarsonium cation is 4 pK(HA) units weaker than that of P-(p-cyanobenzyl)triphenylphosphonium cation, but the BDE of the acidic C-H bond in As-(p-cyanobenzyl)triphenylarsonium cation is ca 2 kcal/mol higher than that in P-(p-cyanobenzyl)triphenylphosphonium cation.
Abu-Gharbieh, Eman; Shehab, Naglaa Gamil
2017-04-18
Hyperglycemia is a complicated condition accompanied with high incidence of infection and dyslipidemia. This study aimed to explore the phyto-constituents of Crataegus azarolus var. eu- azarolus Maire leaves, and to evaluate the therapeutic potentials particularly antimicrobial, antihyperglycemic and antihyperlipidemic of the extract and the isolated compound (3β-O-acetyl ursolic acid). Total phenolics and flavonoidal contents were measured by RP-HPLC analysis. Free radicals scavenging activity of different extraction solvents was tested in-vitro on DPPH free radicals. The antimicrobial activity of the ethanolic extract and its fractions as well as the isolated compounds were evaluated in-vitro on variable microorganisms. Animal models were used to evaluate the antihyperglycemic and antihyperlipidemic activities of the ethanolic extract along with the isolated compound (3β-O acetyl ursolic acid). RP- HPLC analysis of the phenolics revealed high content of rutin, salicylic and ellagic acids. Six compounds belonging to triterpenes and phenolics were isolated from chloroform and n-butanol fractions namely: ursolic acid, 3β-O-acetyl ursolic acid, ellagic acid, quercetin 3-O-β methyl ether, rutin and apigenin7-O-rutinoside. Ethanolic extract showed the highest DPPH radical scavenger activity compared to other solvents. Ethanolic extract, hexane fraction, ursolic acid, 3β-O acetyl ursolic acid and quercetin 3-O-methyl ether showed variable antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Administration of the ethanolic extract or 3β-O acetyl ursolic acid orally to the mice reduced blood glucose significantly in a time- and dose-dependent manner. Ethanolic extract significantly reduced LDL-C, VLDL-C, TC and TG and increased HDL-C in rats. Ethanolic extract and 3β-O acetyl ursolic acid reduced in-vitro activity of pancreatic lipase. This study reveals that Crataegus azarolus var. eu- azarolus Maire has the efficiency to control hyperglycemia with its associated complications. This study is the first to evaluate antihyperglycemic and antihyperlipidemic potentials of 3β-O acetyl ursolic acid.
Change of physical and chemical parameters of fulvic acids at different pH of the system
NASA Astrophysics Data System (ADS)
Dinu, Marina; Kremleva, Tatyana
2017-04-01
Organic substances of humic nature significantly change physicochemical properties at different pH of natural waters. As a consequence, a large number of consecutive and parallel reactions in the structure of organic polymers, and reacting with inorganic anions. The main indicators of changes in the properties of organic acids in natural systems are changes in their IR spectra, changes in the colloid stability (the zeta potential) as well as in the molecular weight and emission spectra (fluorescence emission spectra). The aim of our study was to evaluate of changing in physical and chemical properties of the fulvic acid from soil/water samples in the natural areas of European Russia and Western Siberia (the steppe and the northern taiga zones) at different pH (from 8 to 1.5). Changes in absorption bands of fulvic acid caused by both COOH groups and amino groups with varying degrees of protonation were found. Consequently, we can assume that in an electric field fulvic acid change the sign of their charge at depending on pH. During the lowering of the pH intensity of C-O bands generally decreases, while in the region 1590 cm-1 disappears. In turn, the band at 1700 cm-1 is the most intense; it could mean a complete protonation of the carboxyl groups. According to our data, the values of zeta potential changes depending on pH of the system. The zeta potential becomes more negative with increasing pH and it may be due to ionization of oxygen groups of fulvic acid. For the colloidal polymer systems the value of the zeta potential is strongly negative (less than -20 mV) and strongly positive (over 20 mV) characterize the system as the most stable. Our experimental data for the study of the zeta potential of fulvic acids extracted from the soils and waters of different climatic zones show zonal influence of the qualitative characteristics of organic substances on the surface charge of the high-molecular micelle of fulvic acids. It was found that fulvic acids extracted from objects of the steppes zone have greater stability that soil fulvic the same territory. In turn, the fulvic acids isolated from the northern boreal forest sites have a large size and the saturated positive charge; that can be attributed to their high content of hard Pearson acids ions - sodium, potassium, aluminum, iron, etc. In external influence on the mesomeric energy of the boundary functional groups (change in pH and the influence of transition metal ions) is not only the redistribution of the charge (zeta potential variation), but also changes in the size of the molecule. In the process of acidification of fulvic acid of samples extracted there was a decrease the size an average of 20-25%, due to the formation of a larger number of individual fragments increasingly capable to the elimination of a proton. The work was performed as part of the Grant of the President of the Russian Federation for young scientists № MK-7485.2016.5
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.
An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.
Laino, Carlos Horacio; Garcia, Pilar; Podestá, María Fernanda; Höcht, Christian; Slobodianik, Nora; Reinés, Analía
2014-10-01
We previously reported that combined fluoxetine administration at antidepressant doses renders additive antidepressant effects, whereas non-antidepressant doses potentiate the omega-3 fatty acid antidepressant effect. In the present study, we aimed to evaluate putative pharmacokinetic and brain omega-3 fatty acid-related aspects for fluoxetine potentiation of omega-3 fatty acid antidepressant effect in rats. Coadministration of omega-3 fatty acids with a non-antidepressant dose of fluoxetine (1 mg/kg day) failed to affect both brain fluoxetine concentration and norfluoxetine plasma concentration profile. Fluoxetine plasma concentrations remained below the sensitivity limit of the detection method. Either antidepressant (10 mg/kg day) or non-antidepressant (1 mg/kg day) doses of fluoxetine in combination with omega-3 fatty acids increased hippocampal docosapentaenoic acid (DPA, 22:5 omega-3) levels. Although individual treatments had no effects on DPA concentration, DPA increase was higher when omega-3 were combined with the non-antidepressant dose of fluoxetine. Chronic DPA administration exerted antidepressant-like effects in the forced swimming test while increasing hippocampal docosahexaenoic (22:6 omega-3) and DPA levels. Our results suggest no pharmacokinetic interaction and reveal specific hippocampal DPA changes after fluoxetine and omega-3 combined treatments in our experimental conditions. The DPA role in the synergistic effect of fluoxetine and omega-3 combined treatments will be for sure the focus of future studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3316-3325, 2014. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Simmonds, N J; Millar, A D; Blake, D R; Rampton, D S
1999-03-01
The therapeutic efficacy of 5-aminosalicylic acid in inflammatory bowel disease may be related to its antioxidant properties. To compare in vitro the antioxidant effects of conventional drugs (5-aminosalicylic acid, corticosteroids, metronidazole), with new aminosalicylates (4-aminosalicylic acid, balsalazide) and other potential therapies (ascorbate, N-acetylcysteine, glutathione, verapamil). Compounds were assessed for efficacy in reducing the in vitro production of reactive oxygen species by cell-free systems (using xanthine/xanthine oxidase, with or without myeloperoxidase) and by colorectal biopsies from patients with ulcerative colitis using luminol-amplified chemiluminescence. 5-aminosalicylic acid and balsalazide were more potent antioxidants than 4-aminosalicylic acid or N-acetyl-5-aminosalicylic acid in cell-free systems. 5-aminosalicylic acid (20 mM) and balsalazide (20 mM) inhibited rectal biopsy chemiluminescence by 93% and 100%, respectively, compared with only 59% inhibition by 4-aminosalicylic acid (20 mM). Hydrocortisone, metronidazole and verapamil had no significant effect on chemiluminescence in any system. Ascorbate (20 mM) inhibited chemiluminescence by 100% in cell-free systems and by 60% in rectal biopsies. N-acetyl cysteine (10 mM), and both oxidized and reduced glutathione (10 mM), completely inhibited chemiluminescence in cell-free systems, but not with rectal biopsies. The antioxidant effects of compounds varies between cell-free systems and inflamed colorectal biopsies. The effect of drugs on the chemiluminescence produced by these two assay systems is useful for screening potentially new antioxidant treatments for inflammatory bowel disease. Ascorbate seems worth further study as a novel therapy.
Hydrogen Isotopes in Amino Acids and Soils Offer New Potential to Study Complex Processes
NASA Astrophysics Data System (ADS)
Fogel, M. L.; Newsome, S. D.; Williams, E. K.; Bradley, C. J.; Griffin, P.; Nakamoto, B. J.
2016-12-01
Hydrogen isotopes have been analyzed extensively in the earth and biogeosciences to trace water through various environmental systems. The majority of the measurements have been made on water in rocks and minerals (inorganic) or non-exchangeable H in lipids (organic), important biomarkers that represent a small fraction of the organic molecules synthesized by living organisms. Our lab has been investigating hydrogen isotopes in amino acids and complex soil organic matter, which have traditionally been thought to be too complex to interpret owing to complications from potentially exchangeable hydrogen. For the amino acids, we show how hydrogen in amino acids originates from two sources, food and water, and demonstrate that hydrogen isotopes can be routed directly between organisms. Amino acid hydrogen isotopes may unravel cycling in extremophiles in order to discover novel biochemical pathways central to the organism. For soil organic matter, recent approaches to understanding the origin of soil organic matter are pointing towards root exudates along with microbial biomass as the source, rather than aboveground leaf litter. Having an isotope tracer in very complex, potentially exchangeable organic matter can be handled with careful experimentation. Although no new instrumentation is being used per se, extension of classes of organic matter to isotope measurements has potential to open up new doors for understanding organic matter cycling on earth and in planetary materials.
Pinto, Marcia da Silva; de Carvalho, Joao Ernesto; Lajolo, Franco Maria; Genovese, Maria Inés; Shetty, Kalidas
2010-10-01
Strawberries represent the main source of ellagic acid derivatives in the Brazilian diet, corresponding to more than 50% of all phenolic compounds found in the fruit. There is a particular interest in the determination of the ellagic acid content in fruits because of possible chemopreventive benefits. In the present study, the potential health benefits of purified ellagitannins from strawberries were evaluated in relation to the antiproliferative activity and in vitro inhibition of α-amylase, α-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. Therefore, a comparison among ellagic acid, purified ellagitannins, and a strawberry extract was done to evaluate the possible synergistic effects of phenolics. In relation to the antiproliferative activity, it was observed that ellagic acid had the highest percentage inhibition of cell proliferation. The strawberry extract had lower efficacy in inhibiting the cell proliferation, indicating that in the case of this fruit there is no synergism. Purified ellagitannins had high α-amylase and ACE inhibitory activities. However, these compounds had low α-glucosidase inhibitory activity. These results suggested that the ellagitannins and ellagic acid have good potential for the management of hyperglycemia and hypertension linked to type 2 diabetes. However, further studies with animal and human models are needed to advance the in vitro assay-based biochemical rationale from this study.
REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Koopman, D.
2009-08-01
A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previousmore » review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high aluminum sludge heels may be appropriate as a means of reducing oxalic acid usage. Reagents other than oxalic acid may also be needed for removing actinide elements from the tank heels. A systems engineering evaluation (SEE) was performed on the various alternative chemical cleaning reagents and organic oxidation technologies discussed in the literature review. The objective of the evaluation was to develop a short list of chemical cleaning reagents and oxalic acid destruction methods that should be the focus of further research and development. The results of the SEE found that eight of the thirteen organic oxidation technologies scored relatively close together. Six of the chemical cleaning reagents were also recommended for further investigation. Based on the results of the SEE and plan set out in the TTQAP the following broad areas are recommended for future study as part of the AECC task: (1) Basic Chemistry of Sludge Dissolution in Oxalic Acid: A better understanding of the variables effecting dissolution of sludge species is needed to efficiently remove sludge heels while minimizing the use of oxalic acid or other chemical reagents. Tests should investigate the effects of pH, acid concentration, phase ratios, temperature, and kinetics of the dissolution reactions of sludge components with oxalic acid, mineral acids, and combinations of oxalic/mineral acids. Real waste sludge samples should be characterized to obtain additional data on the mineral phases present in sludge heels. (2) Simulant Development Program: Current sludge simulants developed by other programs for use in waste processing tests, while compositionally similar to real sludge waste, generally have more hydrated forms of the major metal phases and dissolve more easily in acids. Better simulants containing the mineral phases identified by real waste characterization should be developed to test chemical cleaning methods. (3) Oxalic Acid Oxidation Technologies: The two Mn based oxidation methods that scored highly in the SEE should be studied to evaluate long term potential. One of the AOP's (UV/O{sub 3}/Solids Separator) is currently being implemented by the SRS liquid waste organization for use in tank heel chemical cleaning. (4) Corrosion Issues: A program will be needed to address potential corrosion issues from the use of low molarity mineral acids and mixtures of oxalic/mineral acids in the waste tanks for short durations. The addition of corrosion inhibitors to the acids to reduce corrosion rates should be investigated.« less
O'Shea, Eileen F; Cotter, Paul D; Stanton, Catherine; Ross, R Paul; Hill, Colin
2012-01-16
The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance. Copyright © 2011 Elsevier B.V. All rights reserved.
Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells.
Zhao, Yan; Cao, Weijia; Wang, Zhen; Zhang, Bowen; Chen, Kequan; Ouyang, Pingkai
2016-02-01
In this study, Actinobacillus succinogenes NJ113 microbial electrolysis cells (MECs) were used to enhance the reducing power responsible for succinic acid production from corncob hydrolysate. During corncob hydrolysate fermentation, electric MECs resulted in a 1.31-fold increase in succinic acid production and a 1.33-fold increase in the reducing power compared with those in non-electric MECs. When the hydrolysate was detoxified by combining Ca(OH)2, NaOH, and activated carbon, succinic acid production increased from 3.47 to 6.95 g/l. Using a constant potential of -1.8 V further increased succinic acid production to 7.18 g/l. A total of 18.09 g/l of succinic acid and a yield of 0.60 g/g total sugar were obtained after a 60-h fermentation when NaOH was used as a pH regulator. The improved succinic acid yield from corncob hydrolysate fermentation using A. succinogenes NJ113 in electric MECs demonstrates the great potential of using biomass as a feedstock to cost-effectively produce succinate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thupari, J N; Pinn, M L; Kuhajda, F P
2001-07-13
Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy. Copyright 2001 Academic Press.
Ziel, Kristin; Yelverton, Christopher B; Balkrishnan, Rajesh; Feldman, Steven R
2005-01-01
Metronidazole 0.75% gel and azelaic acid 15% gel are commonly used to treat rosacea. Irritation is a common side effect. To assess the cumulative irritation potential of metronidazole 0.75% gel and azelaic acid 15% gel. Metronidazole 0.75% gel, azelaic acid 15% gel, and a white petrolatum negative control were applied under occlusive conditions to the upper back of a total of 33 healthy subjects. There were twelve 24-hour applications (4 times a week) and three 72-hour applications on weekends during a 3-week period. Skin reactions (erythema score +/- other local reaction) were assessed within 15 to 30 minutes of removal of the products. The mean cumulative irritancy index of metronidazole 0.75% gel was significantly lower than that of azelaic acid 15% gel and not significantly higher than the negative control product. There was increasing cumulative irritancy with azelaic acid; no cumulative irritancy was seen for either metronidazole or white petrolatum. Metronidazole 0.75% gel is less irritating in sustained use than azelaic acid 15% gel.
Prospects for nucleic acid-based therapeutics against hepatitis C virus.
Lee, Chang Ho; Kim, Ji Hyun; Lee, Seong-Wook
2013-12-21
In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.
Biomedical applications of ferulic acid encapsulated electrospun nanofibers.
Vashisth, Priya; Kumar, Naresh; Sharma, Mohit; Pruthi, Vikas
2015-12-01
Ferulic acid is a ubiquitous phytochemical that holds enormous therapeutic potential but has not gained much consideration in biomedical sector due to its less bioavailability, poor aqueous solubility and physiochemical instability. In present investigation, the shortcomings associated with agro-waste derived ferulic acid were addressed by encapsulating it in electrospun nanofibrous matrix of poly (d,l-lactide-co-glycolide)/polyethylene oxide. Fluorescent microscopic analysis revealed that ferulic acid predominantly resides in the core of PLGA/PEO nanofibers. The average diameters of the PLGA/PEO and ferulic acid encapsulated PLGA/PEO nanofibers were recorded as 125 ± 65.5 nm and 150 ± 79.0 nm, respectively. The physiochemical properties of fabricated nanofibers are elucidated by IR, DSC and NMR studies. Free radical scavenging activity of fabricated nanofibers were estimated using di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the cytotoxicity of ferulic acid encapsulated nanofibers against hepatocellular carcinoma (HepG2) cells. These ferulic acid encapsulated nanofibers could be potentially explored for therapeutic usage in biomedical sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simic, M.G.; Jovanovic, S.V.
One-electron oxidation of uric acid generates the urate radical, which was studied in aqueous solution by pulse radiolysis and oxygen-uptake measurements. Acid-base properties of the uric acid radical were determined, i.e., pK{sub a1} = 3.1 {plus minus} 0.1 and pK{sub a2} = 9.5 {plus minus} 0.1. The reaction of the radical with oxygen was too slow to be measured, k < 10{sup {minus}2} dm{sup 3} mol{sup {minus}1} s{sup {minus}1}. The one-electron-redox potential vs NHE, E{sub 7} = 0.59 V, was derived from the pH dependence of the redox potential, which was fitted through the values measured at pH 7 andmore » 8.9 and those previously determined at pH 13. Rapid reactions of uric acid with oxidizing species and peroxy radicals were indicative of uric acid as a possible water-soluble physiological antioxidant. Rapid reaction of uric acid with the guanyl radical indicates that uric acid may also act as a repair agent of oxidative damage to DNA bases.« less
A Closer Look at Acid-Base Olfactory Titrations
ERIC Educational Resources Information Center
Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole
2005-01-01
Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.
Acid Precipitation and the Forest Ecosystem
ERIC Educational Resources Information Center
Dochinger, Leon S.; Seliga, Thomas A.
1975-01-01
The First International Symposium on Acid Precipitation and the Forest Ecosystem dealt with the potential magnitude of the global effects of acid precipitation on aquatic ecosystems, forest soils, and forest vegetation. The problem is discussed in the light of atmospheric chemistry, transport, and precipitation. (Author/BT)
Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.
Ya'aini, Nazlina; Amin, Nor Aishah Saidina; Asmadi, Mohd
2012-07-01
Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.
Paolini, Mauro; Ziller, Luca; Laursen, Kristian Holst; Husted, Søren; Camin, Federica
2015-07-01
We present a study deploying compound-specific nitrogen and carbon isotope analysis of amino acids to discriminate between organically and conventionally grown plants. We focused on grain samples of common wheat and durum wheat grown using synthetic nitrogen fertilizers, animal manures, or green manures from nitrogen-fixing legumes. The measurement of amino acid δ(15)N and δ(13)C values, after protein hydrolysis and derivatization, was carried out using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our results demonstrated that δ(13)C of glutamic acid and glutamine in particular, but also the combination of δ(15)N and δ(13)C of 10 amino acids, can improve the discrimination between conventional and organic wheat compared to stable isotope bulk tissue analysis. We concluded that compound-specific stable isotope analysis of amino acids represents a novel analytical tool with the potential to support and improve the certification and control procedures in the organic sector.
Binding of cholesterol and bile acid to hemicelluloses from rice bran.
Hu, Guohua; Yu, Wenjian
2013-06-01
The objective of this study was to investigate the possibility of using hemicellulose from rice bran to scavenge cholesterol and bile acid in vitro study. This paper demonstrates that rice bran hemicellulose A (RBHA), rice bran hemicellulose B (RBHB) and rice bran hemicellulose C (RBHC) have the potential for binding cholesterol and bile acid. The quantity of cholesterol and bile acid bound varies from one rice bran fibre to another. As it can be inferred from the results of the study, RBHB was characterized by the highest capacity for cholesterol binding, followed by RBHC and RBHA. Binding of cholesterol and bile acid to rice bran insoluble dietary fibre (RBDF) and cellulose from rice bran was found to be poor. Lignin from rice bran was the least active fraction for binding cholesterol and bile acid. This confirms that the RBHB preparation from defatted rice bran has great potential in food applications, especially in the development of functional foods.
Bruice, Thomas C.; Maskiewicz, Richard; Job, Robert
1975-01-01
The iron-sulfur cluster compounds Fe4S4(SR)4-2 [where —SR = —SCH3, —S—C(CH3)3, and —S— CH2—CH(CH3)2] have been found to represent the base species of weak acids of pKa comparable to that of carboxylic acids. The acid species Fe4S4(SR)4H- is most subject to reaction with O2 and to acid-catalyzed solvolysis, while the base species Fe4S4(SR)4-2 most readily undergoes ligand exchange. The kinetics for hydrolysis of the isobutyl mercaptide cluster salt has been investigated in detail and a mechanism involving the stepwise process [Formula: see text] has been proposed. The importance of the acid-base equilibria in determining the reactivity of the iron-sulfur clusters and its possible importance as a factor in the determination of the potentials of ferredoxins and high potential iron protein are discussed. PMID:16592211
Interfacial assembly structures and nanotribological properties of saccharic acids.
Shi, Hongyu; Liu, Yuhong; Zeng, Qingdao; Yang, Yanlian; Wang, Chen; Lu, Xinchun
2017-01-04
Saccharides have been recognized as potential bio-lubricants because of their good hydration ability. However, the interfacial structures of saccharides and their derivatives are rarely studied and the molecular details of interaction mechanisms have not been well understood. In this paper, the supramolecular assembly structures of saccharic acids (including galactaric acid and lactobionic acid), mediated by hydrogen bonds O-HN and O-HO, were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing pyridine modulators and were explicitly revealed by using scanning tunneling microscopy (STM). Furthermore, friction forces were measured in the saccharic acid/pyridine co-assembled system by atomic force microscopy (AFM), revealing a larger value than a pristine saccharic acid system, which could be attributed to the stronger tip-assembled molecule interactions that lead to the higher potential energy barrier needed to overcome. The effort on saccharide-related supramolecular self-assembly and nanotribological behavior could provide a novel and promising pathway to explore the interaction mechanisms underlying friction and reveal the structure-property relationship at the molecular level.
Sikora, Małgorzata; Świeca, Michał
2018-01-15
Enzymatic browning limits the postharvest life of minimally processed foods, thus the study selected the optimal inhibitors of polyphenol oxidase (PPO) and evaluated their effect on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. The sprouts treated with 2mM and 20mM ascorbic acid had a lowered PPO activity; compared to the control by 51% and 60%, respectively. The inhibition was reflected in a significant decrease in enzymatic browning. The sprouts treated with 20mM ascorbic acid had 22% and 23% higher phenolic content after 3 and 7days of storage, respectively. Both storage and ascorbic acid treatment increased potential bioaccessibility of phenolics. Generally, there was no effect of the treatments on the antioxidant capacity; however, a significant increase in the reducing potential was determined for the sprouts washed with 20mM ascorbic acid. In conclusion, ascorbic acid treatments may improve consumer quality of stored sprouts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bel-Rhlid, Rachid; Thapa, Dinesh; Kraehenbuehl, Karin; Hansen, Carl Erik; Fischer, Lutz
2013-01-01
The potential of Lactobacillus johnsonii NCC 533 to metabolize chlorogenic acids from green coffee extract was investigated. Two enzymes, an esterase and a hydroxycinnamate decarboxylase (HCD), were involved in this biotransformation. The complete hydrolysis of 5-caffeoylquinic acid (5-CQA) into caffeic acid (CA) by L. johnsonii esterase occurred during the first 16 h of reaction time. No dihydrocaffeic acid was identified in the reaction mixture. The decarboxylation of CA into 4-vinylcatechol (4-VC) started only when the maximum concentration of CA was reached (10 μmol/ml). CA was completely transformed into 4-VC after 48 h of incubation. No 4-vinylphenol or other derivatives could be identified in the reaction media. In this study we demonstrate the capability of L. johnsonii to transform chlorogenic acids from green coffee extract into 4-VC in two steps one pot reaction. Thus, the enzymatic potential of certain lactobacilli might be explored to generate flavor compounds from plant polyphenols.
Acid precipitation and forest soils
C. O. Tamm
1976-01-01
Many soil processes and properties may be affected by a change in chemical climate such as that caused by acidification of precipitation. The effect of additions of acid precipitation depends at first on the extent to which this acid is really absorbed by the soil and on the changes in substances with actual or potential acidity leaving the soil. There is for instance...
USDA-ARS?s Scientific Manuscript database
The metabolic effects of omega-6 polyunsaturated fatty acids (PUFAs) remain contentious, and little evidence is available regarding their potential role in primary prevention of type 2 diabetes. We aimed to assess the associations of linoleic acid and arachidonic acid biomarkers with incident type 2...
Marco Masi; Susan Meyer; Alessio Cimmino; Anna Andolfi; Antonio Evidente
2014-01-01
A new phytotoxic sesquiterpenoid penta-2,4- dienoic acid, named pyrenophoric acid, was isolated from solid wheat seed culture of Pyrenophora semeniperda, a fungal pathogen proposed as a mycoherbicide for biocontrol of cheatgrass (Bromus tectorum) and other annual bromes. These bromes are serious weeds in winter cereals and also on temperate semiarid rangelands....
Carol Clausen
2004-01-01
In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...
Oleic Acid enhances all-trans retinoic Acid loading in nano-lipid emulsions.
Chinsriwongkul, Akhayachatra; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Sila-On, Warisada; Ruktanonchai, Uracha
2010-01-01
The aim of this study was to investigate the enhancement of all-trans retinoic acid (ATRA) loading in nano-lipid emulsions and stability by using oleic acid. The effect of formulation factors including initial ATRA concentration and the type of oil on the physicochemical properties, that is, percentage yield, percentage drug release, and photostability of formulations, was determined. The solubility of ATRA was increased in the order of oleic acid > MCT > soybean oil > water. The physicochemical properties of ATRA-loaded lipid emulsion, including mean particle diameter and zeta potential, were modulated by changing an initial ATRA concentration as well as the type and mixing ratio of oil and oleic acid as an oil phase. The particles of lipid emulsions had average sizes of less than 250 nm and negative zeta potential. The addition of oleic acid in lipid emulsions resulted in high loading capacity. The photodegradation rate was found to be dependent on the initial drug concentration but independent of the type of oily phase used in this study. The release rates were not affected by initial ATRA concentration but were affected by the type of oil, where oleic acid showed the highest release rate of ATRA from lipid emulsions.
Reis, Filipa S; Barros, Lillian; Martins, Anabela; Vasconcelos, M Helena; Morales, Patricia; Ferreira, Isabel C F R
2016-02-20
This work presents the chemical profile of two edible species of mushrooms from the genus Leccinum: Leccinum molle (Bon) Bon and Leccinum vulpinum Watling, both harvested on the outskirts of Bragança (Northeastern Portugal). Both species were prepared and characterized regarding their content in nutrients (i.e., free sugars, fatty acids and vitamins), non-nutrients (i.e., phenolic and other organic acids) and antioxidant activity. To the best of our knowledge, no previous studies on the chemical characterization and bioactivity of these species have been undertaken. Accordingly, this study intends to increase the available information concerning edible mushroom species, as well as to highlight another important factor regarding the conservation of the mycological resources--their potential as sources of nutraceutical/pharmaceutical compounds. Overall, both species revealed similar nutrient profiles, with low fat levels, fructose, mannitol and trehalose as the foremost free sugars, and high percentages of mono- and polyunsaturated fatty acids. They also revealed the presence of bioactive compounds, namely phenolic (e.g., gallic acid, protocatechuic acid and p-hydroxybenzoic acid) and organic acids (e.g., citric and fumaric acids) and presented antioxidant properties.
Lipoic Acid Decreases the Viability of Breast Cancer Cells and Activity of PTP1B and SHP2.
Kuban-Jankowska, Alicja; Gorska-Ponikowska, Magdalena; Wozniak, Michal
2017-06-01
Protein tyrosine phosphatases PTP1B and SHP2 are potential targets for anticancer therapy, because of the essential role they play in the development of tumors. PTP1B and SHP2 are overexpressed in breast cancer cells, thus inhibition of their activity can be potentially effective in breast cancer therapy. Lipoic acid has been previously reported to inhibit the proliferation of colon, breast and thyroid cancer cells. We investigated the effect of alpha-lipoic acid (ALA) and its reduced form of dihydrolipoic acid (DHLA) on the viability of MCF-7 cancer cells and on the enzymatic activity of PTP1B and SHP2 phosphatases. ALA and DHLA decrease the activity of PTP1B and SHP2, and have inhibitory effects on the viability and proliferation of breast cancer cells. ALA and DHLA can be considered as potential agents for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Laboratory studies of sweets re-formulated to improve their dental properties.
Grenby, T H; Mistry, M
1996-03-01
To evaluate the potential dental effects of ten new types of sugar-free sweets formulated with Lycasin or isomalt as bulk sweeteners instead of sugars. Examination of the sweets for their acidity, fermentability by oral microorganisms, influence on the demineralisation of dental enamel, and their influence on human interdental plaque pH, compared with conventional sugar-containing sweets. The importance of reducing the levels of flavouring acids in the sweets was demonstrated. It was not straightforward to evaluate chocolate products in this system, but the potential benefits of re-formulating fruit gums, lollipops, chew-bars, toffee and fudge with Lycasin or isomalt in place of sugars were shown by determining their reduced acidogenicity and fermentability compared with conventional confectionery. The extent of demineralisation of dental enamel was related to both the acidity and the fermentability of the sweets. Re-formulating sweets with reduced acidity levels and bulk sweeteners not fermentable by dental plaque microorganisms can provide a basis for improving their potential dental effects.
Yokotani, Naoki; Uraji, Misugi; Hara, Miyuki; Hihara, Seisuke; Hatanaka, Tadashi; Oda, Kenji
2017-01-01
In peaches, fruit flesh browns unattractively after peeling or cutting. A recently developed cultivar, Okayama PEH7, was distinct from other Japanese cultivars, including Okayama PEH8, with respect to its reduced browning potential. Homogenate prepared from Okayama PEH7 flesh had significantly less reddening during the browning reaction. Okayama PEH7 had less soluble phenolic compounds and higher polyphenol oxidase activity than Okayama PEH8. Reduced browning was observed even when phenols prepared from Okayama PEH7 were incubated with crude extract from Okayama PEH8, suggesting that phenols lower the browning potential of Okayama PEH7. In Okayama PEH7, contents of chlorogenic acid and its isomers were about one-tenth compared to Okayama PEH8. Exogenous addition of chlorogenic acid to Okayama PEH7 homogenate increased the browning potential and visibly enhanced reddening. These results indicate that the reduced browning of Okayama PEH7 flesh is due to a defect in chlorogenic acid accumulation.
Olech, Marta; Nowak, Renata; Pecio, Łukasz; Łoś, Renata; Malm, Anna; Rzymowska, Jolanta; Oleszek, Wiesław
2017-03-01
Rugosa rose provides one of the largest hips frequently used in the preparation of pharmaceutical and food products. The aim of work was to conduct multidirectional study of biological activity and chemical composition of Rosa rugosa hips. Antiradical, cytotoxic (against cervical and breast cancer cell lines), antibacterial (against eight bacterial strains) and antifungal potential of the species in question was evaluated. Total contents of phenolics, phenolic acids, flavonoids, tannins, carotenoids and ascorbic acid were determined. LC-ESI-MS/MS analysis was performed in order to investigate closely phenolic acids and flavonoid glycosides. As a result, interesting selective cytotoxic effects on cervical (HeLa) and breast cancer (T47D) cell lines, significant antiradical activity (EC 50 2.45 mg mg -1 DPPH • ) and moderate antimicrobial potential (MIC 0.625-1.25 mg mL -1 ) were observed. Nine phenolic acids and 11 flavonoid glycosides were qualitatively and quantitatively determined, including 7 compounds previously not reported in R. rugosa hips.
Modulation of mitomycin C-induced genotoxicity by acetyl- and thio- analogues of salicylic acid.
Pawar, Amol Ashok; Vikram, Ajit; Tripathi, Durga Nand; Padmanabhan, Shweta; Ramarao, Poduri; Jena, Gopabandhu
2009-01-01
Recent reports regarding acetylsalicylic acid (ASA) and its metabolites suggest suppressive effects against mitomycin C (MMC)-induced genotoxicity in a mice chromosomal aberration assay. Keeping this in mind, the potential anti-genotoxic effect of the thio-analogue of salicylic acid namely thio-salicylic acid (TSA) was speculated upon. The present study investigated and compared the anti-genotoxic potential of ASA and TSA. The study was performed in male swiss mice (20+/-2 g) using single-cell gel electrophoresis and a peripheral blood micronucleus assay. ASA and TSA (5, 10 or 20 mg/kg) were administered 15 minutes after MMC (1 mg/kg) once daily for 3 or 7 days. Both ASA and TSA significantly decreased the DNA damage induced by MMC as indicated by a decrease in the comet parameters in bone marrow cells and decreased frequencies of micronucleated reticulocytes in peripheral blood. The results clearly demonstrate the anti-genotoxic potential of ASA and TSA.
Assay of lysergic acid diethylamide and its passage from blood into the perfused cerebral ventricles
Dras̆koci, M.
1960-01-01
On the isolated rat uterus, lysergic acid diethylamide had an oxytocic action in a concentration of 2×10-8; in smaller concentrations (10-9 to 10-10), which had no stimulating effect of their own, it potentiated acetylcholine-induced contractions. This potentiating effect was made the basis for assaying minute amounts of lysergic acid diethylamide. The method was used to assay this substance in plasma of cats during its intravenous infusion at a rate of 10 μg./min./kg. During these infusions 0.4 to 2 ng./min. of lysergic acid diethylamide passed into the cerebral ventricles perfused with a salt solution of a composition resembling that of cerebrospinal fluid. PMID:13818017
Investigation of DBS electro-oxidation reaction in the aqueous-organic solution of LiClO4.
Darlewski, Witold; Popiel, Stanisław; Nalepa, Tomasz; Gromotowicz, Waldemar; Szewczyk, Rafał; Stankiewicz, Romuald
2010-03-15
A process of dibutyl sulphide (DBS) electro-oxidation using electrolysis and cyclic voltamperometry was investigated in water-methanol solution using different electrodes (platinum, boron doped diamond, graphite and glassy carbon). Obtained results indicate that the DBS electro-oxidation process is irreversible in voltamperometric conditions. It was shown that during DBS electrolytic oxidation on Pt, at the low anode potential (1.8 V), DBS was oxidized to sulphoxide and sulphone. Electrolysis at higher potential (up to 3.0 V) resulted in complete DBS oxidation and formation of various products, including: butyric acid, sulphuric acid, butanesulphinic acid, butanesulphonic acid, identified using gas chromatography (GC-AED) and mass spectrometry (GC-MS) methods. (c) 2009 Elsevier B.V. All rights reserved.
Maharjan, Anu S.; Pilling, Darrell; Gomer, Richard H.
2011-01-01
Background Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×106 Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8–8×105 Da). Methods and Findings In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP) inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4), or interleukin-13 (IL-13) to promote fibrocyte differentiation. Conclusions We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13. PMID:22022512
Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang
2011-04-01
Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids. Copyright © 2011 SETAC.
Qiao, Liang; Cao, Minghao; Zheng, Jian; Zhao, Yihong; Zheng, Zhi-Liang
2017-10-30
The ratio of sugars to organic acids, two of the major metabolites in fleshy fruits, has been considered the most important contributor to fruit sweetness. Although accumulation of sugars and acids have been extensively studied, whether plants evolve a mechanism to maintain, sense or respond to the fruit sugar/acid ratio remains a mystery. In a prior study, we used an integrated systems biology tool to identify a group of 39 acid-associated genes from the fruit transcriptomes in four sweet orange varieties (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). We reanalyzed the prior sweet orange fruit transcriptome data, leading to the identification of 72 genes highly correlated with the fruit sugar/acid ratio. The majority of these sugar/acid ratio-related genes are predicted to be involved in regulatory functions such as transport, signaling and transcription or encode enzymes involved in metabolism. Surprisingly, only three of these sugar/acid ratio-correlated genes are weakly correlated with sugar level and none of them overlaps with the acid-associated genes. Weighted Gene Coexpression Network Analysis (WGCNA) has revealed that these genes belong to four modules, Blue, Grey, Brown and Turquoise, with the former two modules being unique to the sugar/acid ratio control. Our results indicate that orange fruits contain a possible mechanistically distinct class of genes that may potentially be involved in maintaining fruit sugar/acid ratios and/or responding to the cellular sugar/acid ratio status. Therefore, our analysis of orange transcriptomes provides an intriguing insight into the potentially novel genetic or molecular mechanisms controlling the sugar/acid ratio in fruits.
Pistagremic acid as a broad spectrum natural inhibitor from Pistacia integerrima Stewart.
Rauf, Abdur; Patel, Seema
2017-02-01
Pistagremic acid (PA) is a bioactive tri-terpene isolated in bulk quantity from the galls of Pistacia integerrima. PA has been documented for a broad range of in vitro and in vivo biological properties. This letter documented the bioloigical potential of PA, which directed the researcher to re-isolate this compound and enhanced their biological potential.
Ren, Cong; Bao, Yong-rui; Meng, Xian-sheng; Diao, Yun-peng; Kang, Ting-guo
2013-01-01
Backgroud: To simulate the ischemia-reperfusion injury in vivo, hypoxia/reoxygenation injury model was established in vitro and primary cultured neonatal rat cardiomyocytes were underwent hypoxia with hydrosulfite (Na2S2O4) for 1 h followed by 1 h reoxygenation. Materials and Methods: Determination the cell viability by MTT colorimetric assay. We use kit to detect the activity of lactate dehydrogenase (LDH), Na+-K+-ATPase and Ca2+-ATPase. Do research on the effect which ferulic acid and its drug-containing plasma have to self-discipline, conductivity, action potential duration and other electrophysiological phenomena of myocardial cells by direct observation using a microscope and recording method of intracellular action potential. Results: The experimental datum showed that both can reduce the damage hydrosulfite to myocardial cell damage and improve myocardial viability, reduce the amount of LDH leak, increase activity of Na+-K+-ATPase, Ca2+-ATPase, and increase APA (Action potential amplitude), Vmax (Maximum rate of depolarization) and MPD (Maximum potential diastolic). Conclusion: Taken together, therefore, we can get the conclusion that ferulic acid drug-containing plasma has better protective effect injured myocardial cell than ferulic acid. PMID:23930002
Minhas, Amritpreet K.; Hodgson, Peter; Barrow, Colin J.; Adholeya, Alok
2016-01-01
Microalgal species are potential resource of both biofuels and high-value metabolites, and their production is growth dependent. Growth parameters can be screened for the selection of novel microalgal species that produce molecules of interest. In this context our review confirms that, autotrophic and heterotrophic organisms have demonstrated a dual potential, namely the ability to produce lipids as well as value-added products (particularly carotenoids) under influence of various physico-chemical stresses on microalgae. Some species of microalgae can synthesize, besides some pigments, very-long-chain polyunsaturated fatty acids (VL-PUFA,>20C) such as docosahexaenoic acid and eicosapentaenoic acid, those have significant applications in food and health. Producing value-added by-products in addition to biofuels, fatty acid methyl esters (FAME), and lipids has the potential to improve microalgae-based biorefineries by employing either the autotrophic or the heterotrophic mode, which could be an offshoot of biotechnology. The review considers the potential of microalgae to produce a range of products and indicates future directions for developing suitable criteria for choosing novel isolates through bioprospecting large gene pool of microalga obtained from various habitats and climatic conditions. PMID:27199903
The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes
Mills, SC; Windsor, AC; Knight, SC
2005-01-01
n-3 Polyunsaturated fatty acids (PUFAs) are recognized as having an anti-inflammatory effect, which is initiated and propagated via a number of mechanisms involving the cells of the immune system. These include: eicosanoid profiles, membrane fluidity and lipid rafts, signal transduction, gene expression and antigen presentation. The wide-range of mechanisms of action of n-3 PUFAs offer a number of potential therapeutic tools with which to treat inflammatory diseases. In this review we discuss the molecular, animal model and clinical evidence for manipulation of the immune profile by n-3 PUFAs with respect to inflammatory bowel disease. In addition to providing a potential therapy for inflammatory bowel disease there is also recent evidence that abnormalities in fatty acid profiles, both in the plasma phospholipid membrane and in perinodal adipose tissue, may be a key component in the multi-factorial aetiology of inflammatory bowel disease. Such abnormalities are likely to be the result of a genetic susceptibility to the changing ratios of n-3 : n-6 fatty acids in the western diet. Evidence that the fatty acid components of perinodal adipose are fuelling the pro- or anti-inflammatory bias of the immune response is also reviewed. PMID:16232207
Adnan, Mohd; Patel, Mitesh; Reddy, Mandadi Narsimha; Alshammari, Eyad
2018-01-29
In recent years, fungi have been shown to produce a plethora of new bioactive secondary metabolites of interest, as new lead structures for medicinal and other pharmacological applications. The present investigation was carried out to study the pharmacological properties of a potent and major bioactive compound: xylaranic acid, which was obtained from Xylaria primorskensis (X. primorskensis) terpenoids in terms of antibacterial activity, antioxidant potential against DPPH & H 2 O 2 radicals and anticancer activity against human lung cancer cells. Due to terpenoid nature, low water solubility and wretched bioavailability, its pharmacological use is limited. To overcome these drawbacks, a novel xylaranic acid silver nanoparticle system (AgNPs) is developed. In addition to improving its solubility and bioavailability, other advantageous pharmacological properties has been evaluated. Furthermore, enhanced anticancer activity of xylaranic acid and its AgNPs due to induced apoptosis were also confirmed by determining the expression levels of apoptosis regulatory genes p53, bcl-2 and caspase-3 via qRT PCR method. This is the first study developing the novel xylaranic acid silver nanoparticle system and enlightening its therapeutic significance with its improved physico-chemical properties and augmented bioactive potential.
Yang, Lei; Christakou, Eleni; Vang, Jesper; Lübeck, Mette; Lübeck, Peter Stephensen
2017-03-14
C 4 -dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C 4 -dicarboxylic acids have been with limited success. In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C 4 -dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C 4 -dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C 4 -dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. This study demonstrates that the key to change the citric acid production into production of C 4 -dicarboxylic acids in A. carbonarius is the C 4 -dicarboxylate transporter. Furthermore it shows that the C 4 -dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C 4 -dicarboxylic acid production.
Schierz, A; Zänker, H
2009-04-01
The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.
Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana
2014-01-01
The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249
Enantiomeric and Isotopic Analysis of Organic Compounds in Carbonaceous Meteorites
NASA Technical Reports Server (NTRS)
Cooper, George
2004-01-01
Carbonaceous meteorites are relatively enriched in soluble organic compounds. The Murchison and Murray meteorites contain numerous compounds of interest in the study of early solar system organic chemistry and organic compounds of potential importance for the origin of life. These include: amino acids, amides, carboxylic acids, and polyols. This talk will focus on the enantiomeric and isotopic analysis of individual meteoritic compounds - primarily polyol acids. The analyses will determine if, in addition to certain amino acids from Murchison, another potentially important class of prebiotic compounds also contains enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life. Preliminary enantiomeric and isotopic (C- 13) measurements of Murchison glyceric acid show that it is indeed extraterrestrial. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) has shown that they are also indigenous to the meteorite.
Zadeh-Tahmasebi, Melika; Duca, Frank A; Rasmussen, Brittany A; Bauer, Paige V; Côté, Clémence D; Filippi, Beatrice M; Lam, Tony K T
2016-04-15
Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Chamaerops humilis L. var. argentea André date palm seed oil: a potential dietetic plant product.
Nehdi, Imededdine Arbi; Mokbli, Sadok; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim
2014-04-01
Chamaerops humilis L. var. argentea André (C. humilis) date palm seeds are an underutilized source of vegetable oil, and no studies describing their physicochemical characteristics to indicate the potential uses of this seed or seed oil have been reported. The oil content of the seeds is about 10%, mainly composed of oleic acid (38.71%), lauric acid (21.27%), linoleic acid (15.15%), palmitic acid (9.96%), and stearic acid (7.17%). The tocol (tocopherols and tocotrienols) content is 74 mg/100 g, with δ-tocotrienol as the major contributor (31.91%), followed by α-tocotrienol (29.37%), γ-tocopherol (20.16%), and γ-tocotrienol (11.86%). Furthermore, this oil shows high thermal stability. The differential scanning calorimetery curves revealed that the melting and crystallization points are 9.33 °C and -15.23 °C, respectively. © 2014 Institute of Food Technologists®
Impact of butyric acid on butanol formation by Clostridium pasteurianum.
Regestein, Lars; Doerr, Eric Will; Staaden, Antje; Rehmann, Lars
2015-11-01
The butanol yield of the classic fermentative acetone-butanol-ethanol (ABE) process has been enhanced in the past decades through the development of better strains and advanced process design. Nevertheless, by-product formation and the incomplete conversion of intermediates still decrease the butanol yield. This study demonstrates the potential of increasing the butanol yield from glycerol though the addition of small amounts of butyric acid. The impact of butyric acid was investigated in a 7L stirred tank reactor. The results of this study show the positive impact of butyric acid on butanol yield under pH controlled conditions and the metabolic stages were monitored via online measurement of carbon dioxide formation, pH value and redox potential. Butyric acid could significantly increase the butanol yield at low pH values if sufficient quantities of primary carbon source (glycerol) were present. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination
NASA Technical Reports Server (NTRS)
Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.
2010-01-01
The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.
Sun, Jing; Bostick, Benjamin C.; Mailloux, Brian J.; Ross, James M.; Chillrud, Steven N.
2016-01-01
Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the Dover samples. Therefore, the efficacy of P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As. PMID:26970042
NASA Astrophysics Data System (ADS)
Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.
2017-12-01
Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.
Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.
2016-01-01
In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A. thaliana. This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants. PMID:27849615
Park, Hye-Jin; Cho, Jun-Hyo; Hong, Shin-Hyub; Kim, Dong-Hee; Jung, Hee-Young; Kang, In-Kyu; Cho, Young-Je
2018-01-01
Ferulic acid isolated from Tetragonia tetragonioides was tested for its whitening effect on the B16F10 mouse melanoma cell line and its anti-wrinkle activity on the CCD-986sk human dermal fibroblast cell line. Ferulic acid, one of the primary phenolic compounds that can be isolated from T. tetragonioides, has been reported to show potential as a functional food, for its whitening effect and anti-wrinkle activity. To measure its whitening and anti-wrinkle activities, cells were treated with ferulic acid isolated from T. tetragonioides at concentrations between 5 and 20 μM. Ferulic acid showed no cytotoxicity at concentrations up to 20 μM. Ferulic acid inhibited melanin synthesis, tyrosinase expression, and microphthalmia transcription factor expression in B16F10 cells stimulated with α-melanocyte stimulating hormone. Ferulic acid induced procollagen synthesis, hyaluronic acid synthesis, tissue inhibitor of metalloproteinase synthesis, and inhibited matrix metalloproteinase (MMP)-1 and MMP-9 expression in CCD-986sk cells stimulated with UV-B. On the basis of these results, we conclude that ferulic acid isolated from T. tetragonioides shows potential for use as a functional food, with whitening and anti-wrinkle activities.
Liu, Joe; Obando, Daniel; Schipanski, Liam G; Groebler, Ludwig K; Witting, Paul K; Kalinowski, Danuta S; Richardson, Des R; Codd, Rachel
2010-02-11
Desferrioxamine B (DFOB) conjugates with adamantane-1-carboxylic acid, 3-hydroxyadamantane-1-carboxylic acid, 3,5-dimethyladamantane-1-carboxylic acid, adamantane-1-acetic acid, 4-methylphenoxyacetic acid, 3-hydroxy-2-methyl-4-oxo-1-pyridineacetic acid (N-acetic acid derivative of deferiprone), or 4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid (deferasirox) were prepared and the integrity of Fe(III) binding of the compounds was established from electrospray ionization mass spectrometry and RP-HPLC measurements. The extent of intracellular (59)Fe mobilized by the DFOB-3,5-dimethyladamantane-1-carboxylic acid adduct was 3-fold greater than DFOB alone, and the IC(50) value of this adduct was 6- or 15-fold greater than DFOB in two different cell types. The relationship between logP and (59)Fe mobilization for the DFOB conjugates showed that maximal mobilization of intracellular (59)Fe occurred at a logP value approximately 2.3. This parameter, rather than the affinity for Fe(III), appears to influence the extent of intracellular (59)Fe mobilization. The low toxicity-high Fe mobilization efficacy of selected adamantane-based DFOB conjugates underscores the potential of these compounds to treat iron overload disease in patients with transfusional-dependent disorders such as beta-thalassemia.
Rattanaporn, Kittipong; Tantayotai, Prapakorn; Phusantisampan, Theerawut; Pornwongthong, Peerapong; Sriariyanun, Malinee
2018-04-01
Effective lignocellulosic biomass saccharification is one of the crucial requirements of biofuel production via fermentation process. Organic acid pretreatments have been gained much interests as one of the high potential methods for promoting enzymatic saccharification of lignocellulosic materials due to their lower hazardous properties and lower production of inhibitory by-products of fermentation than typical chemical pretreatment methods. In this study, three organic acids, including acetic acid, oxalic acid, and citric acid, were examined for improvement of enzymatic saccharification and bioethanol production from oil palm trunk biomass. Based on response surface methodology, oxalic acid pretreated biomass released the maximum reducing sugar of 144 mg/g-pretreated biomass at the optimum condition, which was higher than untreated samples for 2.30 times. The released sugar yield of oil palm trunk also corresponded to the results of FT-IR analysis, which revealed the physical modification of cellulose and hemicellulose surface structures of pretreated biomass. Nevertheless, citric acid pretreatment is the most efficient pretreatment method to improve bioethanol fermentation of Saccharomyces cerevisiae TISTR 5606 at 1.94 times higher than untreated biomass. These results highlighted the selection of organic acid pretreatment as a potential method for biofuel production from oil palm trunk feedstocks.
Production of itaconic acid from pentose sugars by Aspergillus terreus
USDA-ARS?s Scientific Manuscript database
Itaconic acid (IA), an unsaturated 5-carbon dicarboxylic acid, is a building block platform chemical that is currently produced industrially with glucose by fermentation with Aspergillus terreus (A. terreus). However, lignocellulosic biomass has the potential to serve as a low cost source of sugars ...
USDA-ARS?s Scientific Manuscript database
With insulin-resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives (markers of incomple...
Characterization of pinto bean high-starch fraction after air classification and extrustion
USDA-ARS?s Scientific Manuscript database
The properties of three bean flours (whole, high-starch fraction, and extruded) were studied to determine their potential applications. Significant differences in moisture, protein, resistant starch, total starch, lipids, ash, phytic acid, amino acid content, and fatty acid profile were observed amo...
REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS
Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...
Production of hydroxyl fatty acids, polyol oils, and diacylglycerol by bioprocess
USDA-ARS?s Scientific Manuscript database
Hydroxy fatty acids (HFA), originally found in plant systems, are good examples of the structurally modified lipids, rendering special properties such as higher viscosity and reactivity compared to normal fatty acids. Based on these properties, HFAs possess high industrial potentials in a wide range...
Hussein, Karam T
2005-08-01
The volatile oil of Calendula micrtantha plant was extracted and the components were identified by Gc/Ms. Adulticidal efficiency of the volatile oil and gibberelic acid "plant growth promoting hormone" as well as their mixture was assessed against the Mediterranean fruit fly Ceratitis capitata. The result showed that the two compounds capable have characteristic resembling to insect juvenile hormones and have suppressive effect on reproductive potential. They induced the significant disturbances in the ovarian protein fraction and the amino acids patterns.
Mallon, Dermot H; Bradley, J Andrew; Winn, Peter J; Taylor, Craig J; Kosmoliaptsis, Vasilis
2015-02-01
We have previously shown that qualitative assessment of surface electrostatic potential of HLA class I molecules helps explain serological patterns of alloantibody binding. We have now used a novel computational approach to quantitate differences in surface electrostatic potential of HLA B-cell epitopes and applied this to explain HLA Bw4 and Bw6 antigenicity. Protein structure models of HLA class I alleles expressing either the Bw4 or Bw6 epitope (defined by sequence motifs at positions 77 to 83) were generated using comparative structure prediction. The electrostatic potential in 3-dimensional space encompassing the Bw4/Bw6 epitope was computed by solving the Poisson-Boltzmann equation and quantitatively compared in a pairwise, all-versus-all fashion to produce distance matrices that cluster epitopes with similar electrostatics properties. Quantitative comparison of surface electrostatic potential at the carboxyl terminal of the α1-helix of HLA class I alleles, corresponding to amino acid sequence motif 77 to 83, produced clustering of HLA molecules in 3 principal groups according to Bw4 or Bw6 epitope expression. Remarkably, quantitative differences in electrostatic potential reflected known patterns of serological reactivity better than Bw4/Bw6 amino acid sequence motifs. Quantitative assessment of epitope electrostatic potential allowed the impact of known amino acid substitutions (HLA-B*07:02 R79G, R82L, G83R) that are critical for antibody binding to be predicted. We describe a novel approach for quantitating differences in HLA B-cell epitope electrostatic potential. Proof of principle is provided that this approach enables better assessment of HLA epitope antigenicity than amino acid sequence data alone, and it may allow prediction of HLA immunogenicity.
A review of toxicity from topical salicylic acid preparations.
Madan, Raman K; Levitt, Jacob
2014-04-01
Topical salicylic acid is often used in dermatologic conditions because of its keratolytic, bacteriostatic, fungicidal, and photoprotective properties. The bioavailability of salicylic acid differs depending on the vehicle used and pH of transcellular fluids. Although rare, salicylic acid toxicity (salicylism) can occur from topical application. Physicians should be mindful of the potential for salicylism or even death from topically applied salicylic acid. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Butyric acid – a well-known molecule revisited
Banasiewicz, Tomasz; Rydzewska, Grażyna
2017-01-01
The properties of butyric acid, and the role it plays in the gastrointestinal tract, have been known for many years. However, the newest research shows that butyric acid still remains a molecule with a potential that has not as yet been fully exploited. The article provides an outline of relevant up-to-date knowledge about butyric acid, and presents the expert position on the clinical benefits of using butyric acid products in the therapy of gastrointestinal diseases. PMID:28702095
Butyric acid - a well-known molecule revisited.
Borycka-Kiciak, Katarzyna; Banasiewicz, Tomasz; Rydzewska, Grażyna
2017-01-01
The properties of butyric acid, and the role it plays in the gastrointestinal tract, have been known for many years. However, the newest research shows that butyric acid still remains a molecule with a potential that has not as yet been fully exploited. The article provides an outline of relevant up-to-date knowledge about butyric acid, and presents the expert position on the clinical benefits of using butyric acid products in the therapy of gastrointestinal diseases.
NASA Astrophysics Data System (ADS)
Shimonishi, Y.; Zhang, T.; Johnson, P.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N.
The stability of a NASICON-type lithium ion conducting solid electrolyte, Li 1+ x+ yTi 2- xAl xP 3- ySi yO 12 (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 °C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH 3COOH + 1/2O 2 = 2CH 3COOLi + H 2O. The energy density of this lithium-air system is calculated to be 1477 Wh kg -1 from the weights of Li and CH 3COOH, and an observed open-circuit voltage of 3.69 V.
Chandrasekhar, Y; Phani Kumar, G; Ramya, E M; Anilakumar, K R
2018-06-01
Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson's disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.
[Combined action of nitrofuran preparations and bile acids on staphylococci].
Tkachuk, N I
1984-03-01
The effect of cholic, glycocholic and deoxycholic bile acids on the antimicrobial activity of furacin, furadonin, furagin and furoxone was studied with the use of collection strains and fresh isolates of staphylococci. The method of dilutions in liquid media was used. Cholic and glycocholic acids lowered the MIC of furacin, furadonin, furoxone and furagin with respect to the collection strains by 4-16, 5, 4-6 and 22-37 times, respectively. The potentiating effect of deoxycholic acid on the nitrofuran drugs was even more pronounced. Thus, when the nitrofurans were used in combination with deoxycholic acid, their MIC dropped by 16-114 times. A significant increase in the antimicrobial activity of the nitrofurans under the effect of the bile acids was also observed with respect to the fresh isolates of Staphylococcus, while it was somewhat lower. The subbacteriostatic doses of cholic, glycocholic and deoxycholic bile acids also increased the bactericidal effect of the nitrofuran drugs. The minimum bactericidal concentrations (MBC) of furacin, furoxone, furadonin and furagin decreased from 12.5, 2.08, 25.0 and 1.82 to 0.78, 0.26, 2.34 and 0.032 micrograms/ml, respectively. The most pronounced decrease in the MBC was observed under the effect of deoxycholic acid. Therefore, the bile acids potentiated the nitrofuran antistaphylococcal activity. The combinations of deoxycholic acid with furagin or furoxone were the most effective.
Material compatibility evaluation for DWPF nitric-glycolic acid-literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J.; Skidmore, E.
2013-06-01
Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.
Kalaycıoğlu, Zeynep; Uzaşçı, Sesil; Dirmenci, Tuncay; Erim, F Bedia
2018-06-05
During the last decade, ursolic and oleanolic acids have been of considerable interest because of their α-glucosidase inhibitory activities and potential effects for treatment of type 2 diabetes. A simple and sensitive reversed-phase HPLC method was developed for the simultaneous determination of ursolic acid and oleanolic acid. The optimal mobile phase was selected as 85% acetonitrile solution. The limit of detection of the method for ursolic acid and oleanolic acid were 14 ng mL -1 and 13 ng mL -1 , respectively. The method showed good precision and accuracy with intra-day and inter-day variations of 0.54% and 7.33% for ursolic acid, intra-day and inter-day variations of 0.51% and 5.26% for oleanolic acid, and overall recoveries of 97.8% and 98.5% for ursolic acid and oleanolic acid, respectively. Application of the method to determine the ursolic acid and oleanolic acid contents in the Salvia species revealed both compounds, with varying amounts between 0.21-9.76 mg g -1 ursolic acid and 0.20-12.7 mg g -1 oleanolic acid, respectively, among 14 Salvia species analyzed. Additionally, the plant extracts were analyzed for their inhibitory activities on α-glucosidase. According to the results of this assay, the extracts showed considerable activity on α-glucosidase with IC 50 values from 17.6 to 173 μg mL -1 . A strong negative correlation was detected between the amounts of both acids and IC 50 values of extracts. Anatolian Salvia species have great potential as functional plants in the management of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Lesquerella (Physaria fendelri) is a potential crop for hydroxy fatty acid (HFA) production. Its seed triacylglcerols (TAGs) contain 55–60% lesquerolic acid (20:1OH), mostly at the sn-1 and the sn-3 positions of TAG. Castor (Ricinus communis) TAGs contain 90% of ricinoleic acid (18:1OH) which is est...
Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate
NASA Technical Reports Server (NTRS)
Kolb, Vera; Orgel, Leslie E.
1996-01-01
The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.
Addition of Tranexamic Acid to the Tactical Combat Casualty Care Guidelines
2011-09-23
ASSISTANT SECRETARY OF DEFENSE (HEAL TH AFFAIRS) SUBJECT: Recommendations Regarding the Addition of Tranexamic Acid to the Tactical Combat Casualty...of the literature (as provided in this report) found that the antifibrinolytic tranexamic acid (TXA) has proven to decrease all cause mortality...following major trauma. In trauma patients experiencing severe hemorrhage on the battlefield, tranexamic acid has the potential to reduce both· mortality
Impact of acetic acid concentration, application volume, and adjuvants on weed control efficacy
USDA-ARS?s Scientific Manuscript database
Vinegar has been identified as a potential organic herbicide, yet additional information is needed to determine the influence of acetic acid concentration, application volume, and adjuvants on weed control. Acetic acid is a contact herbicide, injuring and killing plants by first destroying the cell ...
Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus
USDA-ARS?s Scientific Manuscript database
Itaconic acid (IA), an unsaturated 5-carbon dicarboxylic acid, is a building block platform chemical that is currently produced industrially from glucose by fermentation with Aspergillus terreus. Softwood has the potential to serve as low cost source of sugars for its production. Effective utilizati...
Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...
A direct method for the synthesis of orthogonally protected furyl- and thienyl- amino acids.
Hudson, Alex S; Caron, Laurent; Colgin, Neil; Cobb, Steven L
2015-04-01
The synthesis of unnatural amino acids plays a key part in expanding the potential application of peptide-based drugs and in the total synthesis of peptide natural products. Herein, we report a direct method for the synthesis of orthogonally protected 5-membered heteroaromatic amino acids.
Wu, Lei; Roe, Charles L; Wen, Zhiyou
2013-09-01
Polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6, n-3), eicosapentaenoic acid (EPA, 20:5, n-3), and arachidonic acid (ARA, 20:4 n-6), have multiple beneficial effects on human health and can be used as an important ingredient in dietary supplements, food, feed and pharmaceuticals. A variety of microorganisms has been used for commercial production of these fatty acids. The microorganisms in the Pythium family, particularly Pythium irregulare, are potential EPA producers. The aim of this work is to provide a safety assessment of P. irregulare so that the EPA derived from this species can be potentially used in various commercial applications. The genus Pythium has been widely recognized as a plant pathogen by infecting roots and colonizing the vascular tissues of various plants such as soybeans, corn and various vegetables. However, the majority of the Pythium species (including P. irregulare) have not been reported to infect mammals including humans. The only species among the Pythium family that infects mammals is P. insidiosum. There also have been no reports showing P. irregulare to contain mycotoxins or cause potentially allergenic responses in humans. Based on the safety assessment, we conclude that P. irregulare can be considered a safe source of biomass and EPA-containing oil for use as ingredients in dietary supplements, food, feed and pharmaceuticals.
Tordiffe, Adrian S W; Wachter, Bettina; Heinrich, Sonja K; Reyers, Fred; Mienie, Lodewyk J
2016-01-01
Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity.
Masi, Marco; Meyer, Susan; Clement, Suzette; Pescitelli, Gennaro; Cimmino, Alessio; Cristofaro, Massimo; Evidente, Antonio
2017-10-27
The fungal pathogen Cochliobolus australiensis isolated from infected leaves of the invasive weed buffelgrass (Pennisetum ciliare) was grown in vitro to evaluate its ability to produce phytotoxic metabolites that could potentially be used as natural herbicides against this weed. Two new tetrasubstituted 3-chromanonacrylic acids, named chloromonilinic acids C (1) and D (2), were isolated from the liquid cultures of C. australiensis, together with the known chloromonilinic acid B. Chloromonilinic acids C and D were characterized by spectroscopic and chemical methods as (E)-3-chloro-3-[(5-hydroxy-3-(1-hydroxy-2-methoxy-2-oxoethyl)-7-methyl-4-oxo-4H-chromen-2-yl)]acrylic acid and (Z)-3-chloro-3-[(5-hydroxy-3-(2-methoxy-2-oxoethyl)-7-methyl-4-oxo-4H-chromen-2-yl)]acrylic acid, respectively. The stereochemistry of chloromonilinic acids C and D was determined using a combination of spectroscopic and computational methods, including electronic circular dichroism. The fungus produced these compounds in two different liquid media together with cochliotoxin, radicinin, radicinol, and their 3-epimers. The radicinin-related compounds were also produced when the fungus was grown in wheat seed solid culture, but chloromonilinic acids were not found in the solid culture organic extract. All three chloromonilinic acids were toxic to buffelgrass in a seedling elongation bioassay, with significantly delayed germination and dramatically reduced radicle growth, especially at a concentration of 5 × 10 -3 M.
Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.
Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying
2018-04-01
Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A
2016-08-01
Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. Copyright © 2016 Elsevier B.V. All rights reserved.
Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa
2015-02-14
The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.
Amino acid supplementation alters bone metabolism during simulated weightlessness
NASA Technical Reports Server (NTRS)
Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.
2005-01-01
High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.
Tewari, S; Jindal, R; Kho, Y L; Eo, S; Choi, K
2013-04-01
Pharmaceuticals have been frequently detected in aquatic environment worldwide and suspected for potential ecological consequences. However, occurrences, sources and potential risks of pharmaceutical residues have rarely been investigated in Bangkok, Thailand, one of most densely populated cities in the world. We collected water samples from five wastewater treatment plants (WWTPs), six canals, and in mainstream Chao Phraya River of Bangkok, in three sampling events representing different seasonal flow conditions, i.e., June and September 2011 and January 2012. Fourteen major pharmaceuticals including acetaminophen, acetylsalicylic acid, atenolol, caffeine, ciprofloxacin, diclofenac, ibuprofen, mefenamic acid, naproxen, roxithromycin, sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim were analyzed. Levels of pharmaceutical residues in WWTP influents on average were the highest for acetylsalicylic acid (4700 ng L(-1)), followed by caffeine (2250 ng L(-1)) and ibuprofen (702 ng L(-1)). In effluents, the concentration of caffeine was the highest (307 ng L(-1)), followed by acetylsalicylic acid (261 ng L(-1)) and mefenamic acid (251 ng L(-1)). In surface water, acetylsalicylic acid showed the highest levels (on average 1360 ng L(-1) in canals and 313 ng L(-1) in the river). Removal efficiencies of WWTPs for roxithromycin, sulfamethoxazole and sulfamethazine were determined negligible. For several compounds, the concentrations in ambient water were higher than those detected in the effluents, implying contribution of the WWTPs to be negligible. Hazard quotients estimated for acetylsalicylic acid, ciprofloxacin, diclofenac and mefenamic acid in most of the canals and that of ciprofloxacin in the river, were greater than or close to 1, suggesting potential ecological risks. Ecological implications of the pharmaceutical residues in Bangkok waterway warrant further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Huang, Weisu; Mao, Shuqin; Zhang, Liuquan; Lu, Baiyi; Zheng, Lufei; Zhou, Fei; Zhao, Yajing; Li, Maiquan
2017-11-01
Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R 2 = 0.794-0.924, P < 0.01) and antiproliferative (R 2 = 0.408-0.623, P < 0.05) potential. Moreover, gallic acid may be responsible for the antioxidant potential of seven flowers rich in edible flowers. The antioxidant and antiproliferative potential of 10 edible flowers revealed a clear decrease after digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Geerkens, Christian Hubert; Schweiggert, Ralf Martin; Steingass, Herbert; Boguhn, Jeannette; Rodehutscord, Markus; Carle, Reinhold
2013-06-19
Several food processing byproducts were assessed as potential feed and feed supplements. Since their chemical composition revealed a high nutritional potential for ruminants, the Hohenheim in vitro gas test was used to investigate total gas, methane, and volatile fatty acid production as well as protozoal numbers after ruminal digestion of different substrate levels. Processing byproducts used were low- and high-esterified citrus and apple pectins, integral mango peels, and depectinized mango peels. In addition, the effect of a phenolic mango peel extract and pure gallic acid was investigated. The highest decrease in methane production (19%) was achieved by supplementing high levels of low-esterified citrus pectin to the hay-based diet. Interestingly, total gas production was not affected at the same time. Showing valuable nutritional potential, all byproducts exhibited, e.g., high metabolizable energy (11.9-12.8 MJ/kg DM). In conclusion, all byproducts, particularly low-esterified citrus pectin, revealed promising potential as feed and feed supplements.
Fortification of corn masa flour with folic acid in the United States: an overview of the evidence
Hamner, Heather C.; Tinker, Sarah C.
2015-01-01
Corn masa flour, used to make products such as corn tortillas, is a staple food for Hispanic populations residing in the United States, particularly among Mexican Americans and Central Americans. Research has indicated that Hispanic women in the United States continue to be at a higher risk of having a neural tube defect–affected pregnancy than women of other races/ethnicities, even after the introduction of folic acid fortification of cereal grain products labeled as “enriched.” Corn masa flour has, therefore, been suggested as a potential food vehicle for folic acid in the United States. This paper explores the potential impact that folic acid fortification of corn masa flour could have on the Hispanic population in the United States. PMID:24494975
Fortification of corn masa flour with folic acid in the United States: an overview of the evidence.
Hamner, Heather C; Tinker, Sarah C
2014-04-01
Corn masa flour, used to make products such as corn tortillas, is a staple food for Hispanic populations residing in the United States, particularly among Mexican Americans and Central Americans. Research has indicated that Hispanic women in the United States continue to be at a higher risk of having a neural tube defect-affected pregnancy than women of other races/ethnicities, even after the introduction of folic acid fortification of cereal grain products labeled as "enriched." Corn masa flour has, therefore, been suggested as a potential food vehicle for folic acid in the United States. This paper explores the potential impact that folic acid fortification of corn masa flour could have on the Hispanic population in the United States. © 2014 New York Academy of Sciences.
Reid, C. P. Patrick
1974-01-01
The effect of specific levels of induced water stress on the root exudation of 14C from 9-month-old and 12-month-old ponderosa pine (Pinus ponderosa Laws.) seedlings was examined. Polyethylene glycol (PEG-4000) was used to decrease root solution water potentials by 0, −1.9, −2.6, −5.5, −9.6 and −11.9 bars in either aerated 0.25X Hoagland's nutrient solution or aerated distilled water. Assimilation of 14CO2 by plants under stress and subsequent translocation of 14C label to the roots were both inhibited by a decrease in substrate water potential. Six days after 14CO2 introduction essentially no 14C was detected in the roots of plants maintained at solution potentials of −5.5 bars or below. In subsequent studies 14CO2 was introduced 4 days prior to induction of stress. This allowed sufficient time for distribution of 14C label throughout the root system. Root exudation of 14C-labeled sugars, amino acids, and organic acids from plants in nutrient solution showed an increase from 0 to −1.9 bars, a decline from −1.9 to about −5.5 bars, and then an increase again from −5.5 to −11.9 bars. As substrate potential decreased, sugars as a percentage of total exudate increased, organic acids decreased and amino acids showed a slight decrease. Marked changes in percentages occurred between 0 and −2.6 bars. The exudation of sugars, amino acids, and organic acids from plants in distilled water showed similar trends in response to water stress as those in nutrient solution, but the quantity of total 14C exuded was greater. Images PMID:16658835
In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols.
Yang, Isabelle; Jayaprakasha, Guddarangavvanahally K; Patil, Bhimanagouda
2018-02-21
Kale (Brassica oleracea) is a leafy green vegetable belonging to the Brassicaceae family, and kale leaves have large amounts of dietary fiber and polyphenolics. Dietary fiber can bind bile acids, thus potentially decreasing cholesterol levels; however, whether the polyphenols from kale contribute to in vitro bile acid binding capacity remains unclear. In the present study, kale was extracted with hexane, acetone, and MeOH : water and the dried extracts, as well as the fiber-rich residue, were tested for their bile acid binding capacity. The fiber-rich residue bound total bile acids in amounts equivalent to that bound by raw kale. The lyophilized acetone extract bound significantly more glycochenodeoxycholate and glycodeoxycholate and less of other bile acids. To test whether bile acid binding enhanced the bioaccessibility of polyphenolic compounds from kale, we used ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry to identify chemical constituents and measure their bioaccessibility in an in vitro digestion reaction. This identified 36 phenolic compounds in kale, including 18 kaempferol derivatives, 13 quercetin derivatives, 4 sinapoyl derivatives, and one caffeoylquinic acid. The bioaccessibility of these phenolics was significantly higher (69.4%) in digestions with bile acids. Moreover, bile acids enhanced the bioaccessibility of quercetin by 25 times: only 2.7% of quercetin derivatives were bioaccessible in the digestion without bile acids, but with bile acids, their accessibility increased to 69.5%. Bile acids increased the bioaccessibility of kaempferol from 37.7% to 69.2%. The extractability and biostability of total phenolics in the digested residue increased 1.8 fold in the digestions with bile acids. These results demonstrated the potential use of kale to improve human health.
Fortification of flour with folic acid.
Berry, Robert J; Bailey, Lynn; Mulinare, Joe; Bower, Carol
2010-03-01
After randomized, controlled trials established that consumption of folic acid before pregnancy and during the early weeks of gestation reduces the risk of a neural tube defect (NTD)-affected pregnancy, the United States Public Health Service recommended in 1992 that all women capable of becoming pregnant consume 400 microg folic acid daily. In 1998, folic acid fortification of all enriched cereal grain product flour was fully implemented in the United States and Canada. To provide guidance on national fortification of wheat and maize flours to prevent 50 to 70% of the estimated 300,000 NTD-affected pregnancies worldwide. An expert workgroup reviewed the latest evidence of effectiveness of folic acid flour fortification and the safety of folic acid. Recent estimates show that in the United States and Canada, the additional intake of about 100 to 150 microg/day of folic acid through food fortification has been effective in reducing the prevalence of NTDs at birth and increasing blood folate concentrations in both countries. Most potential adverse effects associated with folic acid are associated with extra supplement use not mandatory fortification. Fortification of wheat flour has a proven record of prevention in other developed countries. In 2009, 51 countries had regulations written for mandatory wheat flour fortification programs that included folic acid. NTDs remain an important cause of perinatal mortality and infantile paralysis worldwide. Mandatory fortification of flour with folic acid has proved to be one of the most successful public health interventions in reducing the prevalence of NTD-affected pregnancies. Most developing countries have few, if any, common sources of folic acid, unlike many developed countries, which have folic acid available from ready-to-eat cereals and supplements. Expanding the number of developed and developing countries with folic acid flour fortification has tremendous potential to safely eliminate most folic acid-preventable NTDs.
Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei
2016-10-01
Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.
2018-04-01
The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com; Sane, Mukta Subhash; Gupta, Chanchal
2011-03-15
Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Ourmore » results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.« less
Changes in oxidative potential of soil and fly ash after reaction with gaseous nitric acid
NASA Astrophysics Data System (ADS)
Zhan, Ying; Ginder-Vogel, Matthew; Shafer, Martin M.; Rudich, Yinon; Pardo, Michal; Katra, Itzhak; Katoshevski, David; Schauer, James J.
2018-01-01
The goal of this study was to examine the impact of simulated atmospheric aging on the oxidative potential of inorganic aerosols comprised primarily of crustal materials. Four soil samples and one coal fly ash sample were artificially aged in the laboratory through exposure to the vapor from 15.8 M nitric acid solution for 24 h at room temperature. Native and acid-aged samples were analyzed with a cellular macrophage and acellular dithionthreitol assays to determine oxidative potential. Additionally, the samples were analyzed to determine the concentration of 50 elements, both total and the water-soluble fraction of these elements by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICMS) and crystalline mineral composition using X-ray Diffraction (XRD). The results show that reactions with gaseous nitric acid increase the water-soluble fraction of many elements, including calcium, iron, magnesium, zinc, and lead. The mineral composition analysis documented that calcium-rich minerals present in the soils (e.g., calcite) are converted into different chemical forms, such as calcium nitrate (Ca(NO3)2). The nitric acid aging process, which can occur in the atmosphere, leads to a 200-600% increase in oxidative potential, as measured by cellular and acellular assays. This laboratory study demonstrates that the toxic effects of aged versus freshly emitted atmospheric dust may be quite different. In addition, the results suggest that mineralogical analysis of atmospheric dust may be useful in understanding its degree of aging.
Wang, Li; Sweet, Douglas H
2012-10-15
Phenolic acids exert beneficial health effects such as anti-oxidant, anti-carcinogenic, and anti-inflammatory activities and show systemic exposure after consumption of common fruits, vegetables, and beverages. However, knowledge regarding which components convey therapeutic benefits and the mechanism(s) by which they cross cell membranes is extremely limited. Therefore, we determined the inhibitory effects of nine food-derived phenolic acids, p-coumaric acid, ferulic acid, gallic acid, gentisic acid, 4-hydroxybenzoic acid, protocatechuic acid, sinapinic acid, syringic acid, and vanillic acid, on human organic anion transporter 1 (hOAT1), hOAT3, and hOAT4. In the present study, inhibition of OAT-mediated transport of prototypical substrates (1 μM) by phenolic acids (100 μM) was examined in stably expressing cell lines. All compounds significantly inhibited hOAT3 transport, while just ferulic, gallic, protocatechuic, sinapinic, and vanillic acid significantly blocked hOAT1 activity. Only sinapinic acid inhibited hOAT4 (~35%). For compounds exhibiting inhibition > ~60%, known clinical plasma concentration levels and plasma protein binding in humans were examined to select compounds to evaluate further with dose-response curves (IC(50) values) and drug-drug interaction (DDI) index determinations. IC(50) values ranged from 1.24 to 18.08 μM for hOAT1 and from 7.35 to 87.36 μM for hOAT3. Maximum DDI indices for gallic and gentisic acid (≫0.1) indicated a very strong potential for DDIs on hOAT1 and/or hOAT3. This study indicates that gallic acid from foods or supplements, or gentisic acid from salicylate-based drug metabolism, may significantly alter the pharmacokinetics (efficacy and toxicity) of concomitant therapeutics that are hOAT1 and/or hOAT3 substrates. Copyright © 2012 Elsevier Inc. All rights reserved.
Kumari, Asha; Parida, Asish K; Rangani, Jaykumar; Panda, Ashok
2017-01-01
Salvadora persica is a medicinally important plant mainly used in oral hygiene. However, little attention has been given towards the nutritional prominence of this plant. This study encloses the proximate and mineral nutrient contents, amino acid composition, metabolite profiling and antioxidant potential of S. persica fruit. The ripen fruit contained substantial amount of sugars, mineral nutrients, carotenoids, polyphenols and flavonoids. The metabolic profiling of the fruit extract by GC-MS revealed a total of 22 metabolites comprising of sugars, sugar alcohols, organic acids, organic base, and aromatic silica compound. The identified metabolites have been previously reported to have potential antioxidant, antimicrobial, anti-hyperglycemic, and antitumor properties. The GC-MS analysis indicated high glucose and glucopyranose (247.62 and 42.90 mg g -1 FW respectively) contents in fruit of S. persica . The fruit extract demonstrated a significantly higher antioxidant and ROS scavenging properties along with high contents of mineral nutrients and essential amino acids. HPLC analysis revealed presence of essential and non-essential amino acid required for healthy body metabolism. The cysteine was found to be in highest amount (733.69 mg 100 g -1 DW) among all amino acids quantified. Specifically, compared to similar medicinal plants, previously reported as a source of non-conventional food and with some of the commercially important fruits, S. persica fruit appears to be a potential source of essential mineral nutrients, amino acids, vitamins (ascorbic acid and carotenoid) and pharmaceutically important metabolites contributing towards fulfilling the recommended daily requirement of these for a healthy human being. This is the first report establishing importance of S. persica fruit as nutraceuticals. The data presented here proposed that fruit of S. persica may be used as functional food or reinvigorating ingredient for processed food to reduce deficiency of nutrients among the vulnerable population group. The phytochemicals identified from S. persica fruit may be used as natural source for pharmaceutical preparations.
Kumari, Asha; Parida, Asish K.; Rangani, Jaykumar; Panda, Ashok
2017-01-01
Salvadora persica is a medicinally important plant mainly used in oral hygiene. However, little attention has been given towards the nutritional prominence of this plant. This study encloses the proximate and mineral nutrient contents, amino acid composition, metabolite profiling and antioxidant potential of S. persica fruit. The ripen fruit contained substantial amount of sugars, mineral nutrients, carotenoids, polyphenols and flavonoids. The metabolic profiling of the fruit extract by GC-MS revealed a total of 22 metabolites comprising of sugars, sugar alcohols, organic acids, organic base, and aromatic silica compound. The identified metabolites have been previously reported to have potential antioxidant, antimicrobial, anti-hyperglycemic, and antitumor properties. The GC-MS analysis indicated high glucose and glucopyranose (247.62 and 42.90 mg g-1 FW respectively) contents in fruit of S. persica. The fruit extract demonstrated a significantly higher antioxidant and ROS scavenging properties along with high contents of mineral nutrients and essential amino acids. HPLC analysis revealed presence of essential and non-essential amino acid required for healthy body metabolism. The cysteine was found to be in highest amount (733.69 mg 100 g-1 DW) among all amino acids quantified. Specifically, compared to similar medicinal plants, previously reported as a source of non-conventional food and with some of the commercially important fruits, S. persica fruit appears to be a potential source of essential mineral nutrients, amino acids, vitamins (ascorbic acid and carotenoid) and pharmaceutically important metabolites contributing towards fulfilling the recommended daily requirement of these for a healthy human being. This is the first report establishing importance of S. persica fruit as nutraceuticals. The data presented here proposed that fruit of S. persica may be used as functional food or reinvigorating ingredient for processed food to reduce deficiency of nutrients among the vulnerable population group. The phytochemicals identified from S. persica fruit may be used as natural source for pharmaceutical preparations. PMID:28261096
Oral hygiene products, medications and drugs - hidden aetiological factors for dental erosion.
Hellwig, Elmar; Lussi, Adrian
2014-01-01
Acidic or EDTA-containing oral hygiene products and acidic medicines have the potential to soften dental hard tissues. The low pH of oral care products increases the chemical stability of some fluoride compounds and favours the incorporation of fluoride ions in the lattice of hydroxyapatite and the precipitation of calcium fluoride on the tooth surface. This layer has some protective effect against an erosive attack. However, when the pH is too low or when no fluoride is present these protecting effects are replaced by direct softening of the tooth surface. Oral dryness can occur as a consequence of medication such as tranquilizers, antihistamines, antiemetics and antiparkinsonian medicaments or of salivary gland dysfunction. Above all, patients should be aware of the potential demineralization effects of oral hygiene products with low pH. Acetyl salicylic acid taken regularly in the form of multiple chewable tablets or in the form of headache powder, as well as chewing hydrochloric acids tablets for the treatment of stomach disorders, can cause erosion. There is most probably no direct association between asthmatic drugs and erosion on the population level. Consumers and health professionals should be aware of the potential of tooth damage not only by oral hygiene products and salivary substitutes but also by chewable and effervescent tablets. Several paediatric medications show a direct erosive potential in vitro. Clinical proof of the occurrence of erosion after use of these medicaments is still lacking. However, regular and prolonged use of these medicaments might bear the risk of causing erosion. Additionally, it can be assumed that patients suffering from xerostomia should be aware of the potential effects of oral hygiene products with low pH and high titratable acidity. © 2014 S. Karger AG, Basel.
Shi, Chao; Zhang, Xiaorong; Sun, Yi; Yang, Miaochun; Song, Kaikuo; Zheng, Zhiwei; Chen, Yifei; Liu, Xin; Jia, Zhenyu; Dong, Rui; Cui, Lu; Xia, Xiaodong
2016-04-01
Cronobacter sakazakii is an opportunistic pathogen transmitted by food that affects mainly newborns, infants, and immune-compromised adults. In this study, the antibacterial activity of ferulic acid was tested against C. sakazakii strains. Minimum inhibitory concentration of ferulic acid against C. sakazakii strains was determined using the agar dilution method. Changes in intracellular pH, membrane potential and intracellular ATP concentration were measured to elucidate the possible antibacterial mechanism. Moreover, SYTO 9 nucleic acid staining was used to assess the effect of ferulic acid on bacterial membrane integrity. Cell morphology changes were observed under a field emission scanning electron microscope. The minimum inhibitory concentrations of ferulic acid against C. sakazakii strains ranged from 2.5 to 5.0 mg/mL. Addition of ferulic acid exerted an immediate and sustained inhibition of C. sakazakii proliferation. Ferulic acid affected the membrane integrity of C. sakazakii, as evidenced by intracellular ATP concentration decrease. Moreover, reduction of intracellular pH and cell membrane hyperpolarization were detected in C. sakazakii after exposure to ferulic acid. Reduction of green fluorescence indicated the injury of cell membrane. Electronic microscopy confirmed that cell membrane of C. sakazakii was damaged by ferulic acid. Our results demonstrate that ferulic acid has moderate antimicrobial activity against C. sakazakii. It exerts its antimicrobial action partly through causing cell membrane dysfunction and changes in cellular morphology. Considering its antimicrobial properties, together with its well-known nutritional functions, ferulic acid has potential to be developed as a supplement in infant formula or other foods to control C. sakazakii.
Spilioti, Eliana; Jaakkola, Mari; Tolonen, Tiina; Lipponen, Maija; Virtanen, Vesa; Chinou, Ioanna; Kassi, Eva; Karabournioti, Sofia; Moutsatsou, Paraskevi
2014-01-01
The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir) contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively) than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively). p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey). We further examined the antioxidant potential (ORAC assay) of the extracts, their ability to influence viability of prostate cancer (PC-3) and breast cancer (MCF-7) cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC). ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001), p-hydroxybenzoic acid (p<0.01), vanillic acid (p<0.05), caffeic acid (p<0.01), p-coumaric acid (p<0.001) and their total phenolic content (p<0.001). Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively). Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively). In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and antiatherogenic activities which may be attributed, at least in part, to their phenolic acid content. PMID:24752205
Sato, Tomohiro; Hashimoto, Noriaki; Honma, Teruki
2017-12-26
To assist in the structural optimization of hit/lead compounds during drug discovery, various computational approaches to identify potentially useful bioisosteric conversions have been reported. Here, the preference of chemical fragments to hydrogen bonds with specific amino acid residues was used to identify potential bioisosteric conversions. We first compiled a data set of chemical fragments frequently occurring in complex structures contained in the Protein Data Bank. We then used a computational approach to determine the amino acids to which these chemical fragments most frequently hydrogen bonded. The results of the frequency analysis were used to hierarchically cluster chemical fragments according to their amino acid preferences. The Euclid distance between amino acid preferences of chemical fragments for hydrogen bonding was then compared to MMP information in the ChEMBL database. To demonstrate the applicability of the approach for compound optimization, the similarity of amino acid preferences was used to identify known bioisosteric conversions of the epidermal growth factor receptor inhibitor gefitinib. The amino acid preference distance successfully detected bioisosteric fragments corresponding to the morpholine ring in gefitinib with a higher ROC score compared to those based on topological similarity of substituents and frequency of MMP in the ChEMBL database.
2017-01-01
Poly- and perfluoroalkyl substances (PFASs) have been detected in an increasing number of water supplies. In many instances, the contamination is associated with the use of PFAS-containing aqueous film-forming foams (AFFF) in firefighting activities. To investigate the potential for remediating AFFF contamination in groundwater with heat-activated persulfate, PFAS oxidation and the generation of transformation products was evaluated under well-controlled conditions. Fluorotelomer- and perfluoroalkyl sulfonamide-based polyfluorinated compounds were transformed to perfluorinated carboxylic acids, which underwent further degradation under acidic conditions produced after persulfate decomposed. The presence of aquifer sediments decreased the efficiency of the remedial process but did not alter the transformation pathways. At high concentrations, the presence of organic solvents, such as those present in AFFF formulations, inhibited transformation of a representative perfluorinated compound, perfluorooctanoic acid. Heat-activated persulfate did not transform perfluorooctanesulfonic acid or perfluorohexanesulfonic acid under any conditions. Despite challenges associated with the creation of acidic conditions in the subsurface, the potential for generation of undesirable transformation products, and the release of toxic metals, heat-activated persulfate may be a useful in situ treatment for sites contaminated with polyfluoroalkyl substances and perfluorocarboxylic acids. PMID:29164864
Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamerly, Timothy; Tripet, Brian; Wurch, Louie
Lipids composed of condensed isoprenyl units connected to glycerol backbones by ether linkages are a distinguishing feature of Archaea. Data suggesting that fatty acids with linear hydrocarbon chains are present in some Archaea have been available for decades. However, lack of genomic and biochemical evidence for the metabolic machinery required to synthesize and degrade fatty acids has left the field unclear on this potentially significant biochemical aspect. Because lipids are energy currency and cell signaling molecules, their presence in Archaea is significant for understanding archaeal biology. A recent large-scale bioinformatics analysis reignited the debate as to the importance of fattymore » acids in Archaea by presenting genetic evidence for the presence of enzymes required for anabolic and catabolic fatty acid metabolism across the archaeal domain. Here, we present direct biochemical evidence from gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy for the presence of fatty acids in two members of the Crenarchaeota,Sulfolobus solfataricusandIgnicoccus hospitalis. Lastly, this is the first report providing biochemical data for the existence of fatty acids in these Crenarchaeota, opening new discussions on energy balance and the potential for the discovery of new thermostable enzymes for industry.« less
Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR
Hamerly, Timothy; Tripet, Brian; Wurch, Louie; Hettich, Robert L.; Podar, Mircea; Bothner, Brian; Copié, Valérie
2015-01-01
Lipids composed of condensed isoprenyl units connected to glycerol backbones by ether linkages are a distinguishing feature of Archaea. Data suggesting that fatty acids with linear hydrocarbon chains are present in some Archaea have been available for decades. However, lack of genomic and biochemical evidence for the metabolic machinery required to synthesize and degrade fatty acids has left the field unclear on this potentially significant biochemical aspect. Because lipids are energy currency and cell signaling molecules, their presence in Archaea is significant for understanding archaeal biology. A recent large-scale bioinformatics analysis reignited the debate as to the importance of fatty acids in Archaea by presenting genetic evidence for the presence of enzymes required for anabolic and catabolic fatty acid metabolism across the archaeal domain. Here, we present direct biochemical evidence from gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy for the presence of fatty acids in two members of the Crenarchaeota, Sulfolobus solfataricus and Ignicoccus hospitalis. This is the first report providing biochemical data for the existence of fatty acids in these Crenarchaeota, opening new discussions on energy balance and the potential for the discovery of new thermostable enzymes for industry. PMID:26880868
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Mihelic, F.
2010-12-22
Nucleic acids theoretically possess a Szilard engine function that can convert the energy associated with the Shannon entropy of molecules for which they have coded recognition, into the useful work of geometric reconfiguration of the nucleic acid molecule. This function is logically reversible because its mechanism is literally and physically constructed out of the information necessary to reduce the Shannon entropy of such molecules, which means that this information exists on both sides of the theoretical engine, and because information is retained in the geometric degrees of freedom of the nucleic acid molecule, a quantum gate is formed through whichmore » multi-state nucleic acid qubits can interact. Entangled biophotons emitted as a consequence of symmetry breaking nucleic acid Szilard engine (NASE) function can be used to coordinate relative positioning of different nucleic acid locations, both within and between cells, thus providing the potential for quantum coherence of an entire biological system. Theoretical implications of understanding biological systems as such 'quantum adaptive systems' include the potential for multi-agent based quantum computing, and a better understanding of systemic pathologies such as cancer, as being related to a loss of systemic quantum coherence.« less
NASA Astrophysics Data System (ADS)
Matthew Mihelic, F.
2010-12-01
Nucleic acids theoretically possess a Szilard engine function that can convert the energy associated with the Shannon entropy of molecules for which they have coded recognition, into the useful work of geometric reconfiguration of the nucleic acid molecule. This function is logically reversible because its mechanism is literally and physically constructed out of the information necessary to reduce the Shannon entropy of such molecules, which means that this information exists on both sides of the theoretical engine, and because information is retained in the geometric degrees of freedom of the nucleic acid molecule, a quantum gate is formed through which multi-state nucleic acid qubits can interact. Entangled biophotons emitted as a consequence of symmetry breaking nucleic acid Szilard engine (NASE) function can be used to coordinate relative positioning of different nucleic acid locations, both within and between cells, thus providing the potential for quantum coherence of an entire biological system. Theoretical implications of understanding biological systems as such "quantum adaptive systems" include the potential for multi-agent based quantum computing, and a better understanding of systemic pathologies such as cancer, as being related to a loss of systemic quantum coherence.
Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR
Hamerly, Timothy; Tripet, Brian; Wurch, Louie; ...
2015-01-01
Lipids composed of condensed isoprenyl units connected to glycerol backbones by ether linkages are a distinguishing feature of Archaea. Data suggesting that fatty acids with linear hydrocarbon chains are present in some Archaea have been available for decades. However, lack of genomic and biochemical evidence for the metabolic machinery required to synthesize and degrade fatty acids has left the field unclear on this potentially significant biochemical aspect. Because lipids are energy currency and cell signaling molecules, their presence in Archaea is significant for understanding archaeal biology. A recent large-scale bioinformatics analysis reignited the debate as to the importance of fattymore » acids in Archaea by presenting genetic evidence for the presence of enzymes required for anabolic and catabolic fatty acid metabolism across the archaeal domain. Here, we present direct biochemical evidence from gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy for the presence of fatty acids in two members of the Crenarchaeota,Sulfolobus solfataricusandIgnicoccus hospitalis. Lastly, this is the first report providing biochemical data for the existence of fatty acids in these Crenarchaeota, opening new discussions on energy balance and the potential for the discovery of new thermostable enzymes for industry.« less
Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougan, A.H.; Lyster, D.M.; Robertson, K.A.
For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoicmore » acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging.« less
Sensitive detection of dopamine via leucodopaminechrome on polyacrylic acid-coated ceria nanorods
NASA Astrophysics Data System (ADS)
Sheng, Weiqin; Zheng, Liang; Liu, Yan; Zhao, Xueqin; Weng, Jian; Zhang, Yang
2017-09-01
The major hurdle in detection of dopamine (DA) by electro-analysis is the presence of physiological interferents with a similar oxidation potential of DA. The conventional method is to enlarge the difference of their oxidation potentials. Here, we report an unconventional method to detect DA via leucodopaminechrome on CeO2 nanorods. Leucodopaminechrome is produced from the cyclization of dopamine-quinone, a product of two-electron oxidation of DA. Thus, its concentration is proportional to the DA concentration. Determining DA is demonstrated by measuring the reduction current of leucodopaminechrome on CeO2 nanorods. CeO2 nanorods demonstrate high electrocatalytic activity for reduction of leucodopaminechrome with a low potential at -0.27 V. The low detection potential of leucodopaminechrome can avoid the interference from ascorbic acid (AA) and uric acid (UA). Therefore, detecting DA via leucodopaminechrome is an effective method to avoid interference from AA and UA, and the suggested biosensor also displays good reproducibility and stability.
Abubacker, Maghdu Nainamohamed; Devi, Palaniyappan Kamala
2014-09-01
To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
In vitro trypanocidal activity of triterpenes from miconia species.
Cunha, Wilson Roberto; Martins, Camila; da Silva Ferreira, Daniele; Crotti, Antonio Eduardo Miller; Lopes, Norberto Peporine; Albuquerque, Sérgio
2003-05-01
The bioassay-guided fractionation of methylene chloride extracts of Miconia fallax DC. and Miconia stenostachya DC. led to the isolation of five triterpene acids. The triterpenes ursolic acid, oleanolic acid and gypsogenic acid were active against blood trypomastigote forms of Trypanosoma cruzi. In contrast, the acetyl and methyl ester derivatives were not found to potentiate the trypanocidal activity. These results suggest the importance of the polar groups for activity.
USDA-ARS?s Scientific Manuscript database
Commercial peracetic acid (PAA) formulations are acidic mixtures of PAA, hydrogen peroxide (H2O2), acetic acid (AA), H2O and stabilizers to maintain equilibrium of the concentrations. Different PAA formulations show diverse PAA/H2O2 ratios, leading to potentially different toxicities at the same con...
Battlefield Trauma Care Research, Development, Test and Evaluation Priorities
2011-06-14
approved them by unanimous vote on March 8, 2011. FINDINGS Non-Compressible Hemorrhage Control-Follow-Up Tranexamic Acid Studies 5. Hemorrhagic shock...received tranexamic acid demonstrated a significant decrease in mortality without any increase in venous occlusive events either accompanied by or at...occlusive events. 8. Tranexarnic acid is a low-cost, FDA-approved agent. 9. The potential benefit and optimal use of tranexamic acid are not yet
Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds
Zhukova, Natalia V.
2014-01-01
The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731
Ozkan, Adile; Sen, Halil Murat; Sehitoglu, Ibrahim; Alacam, Hasan; Guven, Mustafa; Aras, Adem Bozkurt; Akman, Tarik; Silan, Coşkun; Cosar, Murat; Karaman, Handan Isin Ozisik
2015-02-01
Stroke is still a major cause of death and permanent neurological disability. As humic acids are well-known antioxidant molecules, the purpose of this study was to investigate the potential neuroprotective effects of humic acid in a focal cerebral ischemia model. Twenty-four rats were divided equally into three groups. A middle cerebral artery occlusion model was performed in this study where control (group II) and humic acid (group III) were administered intraperitoneally following an ischemic experimental procedure. Group I was evaluated as sham. Malondialdehyde (MDA), superoxide dismutase (SOD), and nuclear respiratory factor-1 (NRF-1) levels were analyzed biochemically on the right side of the ischemic cerebral hemisphere, while ischemic histopathological studies were completed on the left side to investigate the antioxidant status. Biochemical results showed that SOD and NRF-1 levels were significantly increased in the humic acid group (III) compared with the control group (II) while MDA levels were significantly decreased. On histopathological examination, cerebral edema, vacuolization, degeneration, and destruction of neural elements were decreased in the humic acid group (III) compared with the control group (II). Cerebral ischemia was attenuated by humic acid administration. These observations indicate that humic acid may have potential as a therapeutic agent in cerebral ischemia by preventing oxidative stress.
Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An
2018-04-01
Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spatial boundary of urban ‘acid islands’ in southern China
Du, E.; de Vries, W.; Liu, X.; Fang, J.; Galloway, J. N.; Jiang, Y.
2015-01-01
Elevated emissions of sulfur dioxide, nitrogen oxides and ammonia in China have resulted in high levels of sulfur and nitrogen deposition, being contributors to soil acidification, especially in and near large cities. However, knowledge gaps still exist in the way that large cities shape spatial patterns of acid deposition. Here, we assessed the patterns of pH, sulfate, nitrate and ammonium in bulk precipitation and throughfall in southern China’s forests by synthesizing data from published literature. Concentrations and fluxes of sulfate, nitrate and ammonium in bulk precipitation and throughfall exhibited a power-law increase with a closer distance to the nearest large cities, and accordingly pH showed a logarithmic decline. Our findings indicate the occurrence of urban ‘acid islands’ with a critical radius of approximately 70 km in southern China, receiving potential acid loads of more than 2 keq ha−1 yr−1. These urban acid islands covered an area of 0.70 million km2, accounting for nearly 30% of the land area in southern China. Despite a significant capacity to neutralize acids in precipitation, our analysis highlights a substantial contribution of ammonium to potential acid load. Our results suggest a joint control on emissions of multiple acid precursors from urban areas in southern China. PMID:26211880
MULTIRESIDUE DETERMINATION OF ACIDIC PESTICIDES ...
A multiresidue pesticide methodology has been studied and results for acidics are reported here with base/neutral to follow. This work studies a literature procedure as a possible general approach to many pesticides and potentially other analytes that are considered to be liquid chromatographic candidates rather than gas chromatographic ones. The analysis of thesewage effluent of a major southwestern US city serves as an example of the application of the methodology to a real sample. Recovery studies were also conducted to validate the proposed extraction step. A gradient elution program was followed for the high performance liquid chromatography leading to a general approach for acidics. Confirmation of identity was by EI GC/MS after conversion of the acids to the methyl ester (or other appropriate methylation) by means of trimethylsilyldiazomethane. The 3,4-dichlorophenoxyacetic acid was used as an internal standard to monitor the reaction and PCB #19 was used for the quantitation internal standard. Although others have reported similar analyses of acids, conversion to the methyl ester was by means of diazomethane itself rather than by the more convenient and safer trimethylsilyldiazomethane. Thus, the present paper supports the use of trimethylsilyldiazomethane with all of these acids (trimethylsilyldiazomethane has been used in environmental work with some phenoxyacetic acid herbicides) and further supports the usefulness of this reagent as a potential re
Spatial boundary of urban 'acid islands' in southern China.
Du, E; de Vries, W; Liu, X; Fang, J; Galloway, J N; Jiang, Y
2015-07-27
Elevated emissions of sulfur dioxide, nitrogen oxides and ammonia in China have resulted in high levels of sulfur and nitrogen deposition, being contributors to soil acidification, especially in and near large cities. However, knowledge gaps still exist in the way that large cities shape spatial patterns of acid deposition. Here, we assessed the patterns of pH, sulfate, nitrate and ammonium in bulk precipitation and throughfall in southern China's forests by synthesizing data from published literature. Concentrations and fluxes of sulfate, nitrate and ammonium in bulk precipitation and throughfall exhibited a power-law increase with a closer distance to the nearest large cities, and accordingly pH showed a logarithmic decline. Our findings indicate the occurrence of urban 'acid islands' with a critical radius of approximately 70 km in southern China, receiving potential acid loads of more than 2 keq ha(-1) yr(-1). These urban acid islands covered an area of 0.70 million km(2), accounting for nearly 30% of the land area in southern China. Despite a significant capacity to neutralize acids in precipitation, our analysis highlights a substantial contribution of ammonium to potential acid load. Our results suggest a joint control on emissions of multiple acid precursors from urban areas in southern China.
Analysis of the Cytotoxic Potential of Anisomelic Acid Isolated from Anisomeles malabarica
Preethy, Christo Paul; Alshatwi, Ali Abdullah; Gunasekaran, Muthukumaran; Akbarsha, Mohammad Abdulkadher
2013-01-01
Anisomelic acid (AA), one of the major compounds in Anisomeles malabarica, was tested for its cytotoxicity and apoptosis-inducing potential in breast and cervical cancer cells. The MTT assay for cell viability indicated that AA is cytotoxic to all of the four cell lines tested in a dose- and duration-dependent manner. Acridine Orange & Ethidium Bromide (AO & EB) and Hoechst 33258 staining of AA-treated cells revealed typical apoptotic morphology such as condensed chromatin and formation of apoptotic bodies. The comet assay revealed DNA strand break(s), indicating that AA induces DNA damage which culminates in apoptosis. Thus, the study revealed the anti-proliferative and apoptosis-inducing properties of AA in both breast and cervical cancer cells. Therefore, anisomelic acid offers potential for application in breast and cervical cancer therapy. PMID:23833721
Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia
2011-01-01
The last decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of the G protein-coupled receptors. Free Fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. PMID:21663979
Aguilar-Galvez, Ana; Noratto, Giuliana; Chambi, Flor; Debaste, Frédéric; Campos, David
2014-08-01
Gallotannins obtained from tara pod extracts (EE) and from the products of acid hydrolysis for 4 and 9h (HE-4 and HE-9) were characterised for their composition, antioxidant activity, antimicrobial activity (AA) and minimum inhibitory concentration (MIC). Results of AA and MIC showed that EE exerted the highest inhibitory activity against Staphylococcus aureus, followed by Pseudomonas fluorescens; and among these bacteria, the antibacterial potency was enhanced after EE hydrolysis only against S. aureus. The lowest minimum inhibitory concentration (MIC) value (0.13mg gallic acid equivalent (GAE)/ml) was exerted by HE-4 against S. aureus. These results indicate that tara gallotannins have the potential to inhibit pathogenic bacteria with potential application in foods as antimicrobials and their AA can be enhanced by acid hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Meyer, S. L. F.; Huettel, R. N.
1996-01-01
A mutant strain of the fungus Verticillium lecanii and selected bioregulators of Heterodera glycines were evaluated for their potential to reduce population densities of the nematode on soybean under greenhouse conditions. The bioregulators tested were the H. glycines sex pheromone vanillic acid and the pheromone analogs syringic acid, isovanillic acid, ferulic acid, 4-hydroxy-3-methoxybenzonitrile, and methyl vanillate. A V. lecanii-vanillic acid combination and a V. lecanii-syringic acid combination were also applied as treatments. Syringic acid, 4-hydroxy-3-methoxybenzonitrile, V. lecanii, V. lecanii-vanillic acid, and V. lecanii-syringic acid significantly reduced nematode population densities in the greenhouse tests. Results with vanillic acid, isovanillic acid, and ferulic acid treatments were variable. Methyl vanillate did not significantly reduce cyst nematode population densities in the greenhouse tests. PMID:19277343
Quantification of TAG and DAG in lesquerella (Physaria fendleri) oil by HPLC and MS
USDA-ARS?s Scientific Manuscript database
Castor oil has many industrial uses because of its high content (90%) of the hydroxy fatty acid, ricinoleic acid (OH1218:19). Lesquerella oil containing lesquerolic acid (Ls, OH1420:111, 56.5%) is potentially useful in industry. Ten diacylglycerols (DAG) and 74 triacylglycerols (TAG) in the seed oil...
USDA-ARS?s Scientific Manuscript database
The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolite...
Rational Discovery of (+) (S) Abscisic Acid as a Potential Antifungal Agent: a Repurposing Approach.
Khedr, Mohammed A; Massarotti, Alberto; Mohamed, Maged E
2018-06-04
Fungal infections are spreading widely worldwide, and the types of treatment are limited due to the lack of diverse therapeutic agents and their associated side effects and toxicity. The discovery of new antifungal classes is vital and critical. We discovered the antifungal activity of abscisic acid through a rational drug design methodology that included the building of homology models for fungal chorismate mutases and a pharmacophore model derived from a transition state inhibitor. Ligand-based virtual screening resulted in some hits that were filtered using molecular docking and molecular dynamic simulations studies. Both in silico methods and in vitro antifungal assays were used as tools to select and validate the abscisic acid repurposing. Abscisic acid inhibition assays confirmed the inhibitory effect of abscisic acid on chorismate mutase through the inhibition of phenylpyruvate production. The repositioning of abscisic acid, the well-known and naturally occurring plant growth regulator, as a potential antifungal agent because of its suggested action as an inhibitor to several fungal chorismate mutases was the main result of this work.
Lee, Chan-Ho; Yoon, Seong-Jin; Lee, Sun-Mee
2012-01-01
Sepsis is a complex, multifactorial, rapidly progressive disease characterized by an overwhelming activation of the immune system and the countervailing antiinflammatory response. In the current study in murine peritoneal macrophages, chlorogenic acid suppressed endotoxin-induced high mobility group box 1 (HMGB1) release in a concentration-dependent manner. Administration of chlorogenic acid also attenuated systemic HMGB1 accumulation in vivo and prevented mortality induced by endotoxemia and polymicrobial sepsis. The mechanisms of action of chlorogenic acid included attenuation of the increase in toll-like receptor (TLR)-4 expression and suppression of sepsis-induced signaling pathways, such as c-Jun NH2-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB, which are critical for cytokine release. The protection conferred by chlorogenic acid was achieved through modulation of cytokine and chemokine release, suppression of immune cell apoptosis and augmentation of bacterial elimination. Chlorogenic acid warrants further evaluation as a potential therapeutic agent for the treatment of sepsis and other potentially fatal systemic inflammatory disorders. PMID:23168580
Almond, Michael; Suleiman, Mustapha G; Hawkins, Matthew; Winder, Daniel; Robshaw, Thomas; Waddoups, Megan; Humphreys, Paul N; Laws, Andrew P
2018-01-02
Alpha and beta-glucoisosaccharinic acids ((2S,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid and (2R,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid) which are produced when cellulosic materials are treated with aqueous alkali are potentially valuable platform chemicals. Their highly functionalised carbon skeleton, with fixed chirality at C-2 and C-4, makes them ideal starting materials for use in synthesis. In order to assess the potential of these saccharinic acids as platform chemicals we have explored the protecting group chemistry of the lactone form of alpha-glucoisosaccharinic acid (α-GISAL). We report here the use of single and multiple step reaction pathways leading to the regioselective protection of the three different hydroxyl groups of α-GISAL. We report strategies for protecting the three different hydroxyl groups individually or in pairs. We also report the synthesis of a range of tri-O-protected α-GISAL derivatives where a number of the products contain orthogonal protecting groups. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chlorogenic Acid-Enriched Extract of Ilex kudingcha C.J. Tseng Inhibits Angiogenesis in Zebrafish.
Zhong, Tao; Piao, Linghua; Kim, Hyun Jung; Liu, Xiande; Jiang, Shengnan; Liu, Guomin
2017-12-01
Kudingcha is a particularly bitter tasting tea that has been widely used in China to eliminate fever and itching eyes, and to clear blood toxins. Kudingcha is considered of value for its potential anticancer effects that are attributed to the presence of characteristic bioactive ingredients. The chlorogenic acid (CGA) derivatives 3-0-caffeoylquinic acid, 5-0-caffeoylquinic acid, 3,5-0-dicaffeoylquinic acid, and 4,5-0-dicaffeoylquinic acid were separated from Ilex kudingcha C.J. Tseng extract by high-performance liquid chromatography (HPLC)-photodiode array detector (PDA) and HPLC-nuclear magnetic resonance (NMR). In Tg(flk1:EGFP) zebrafish embryos at 52 hours postfertilization (hpf), angiogenesis was significantly inhibited by kudingcha extract (KDCE) at concentrations of 400 and 500 μg/mL and CGA also showed significant inhibition in embryos treated with 80, 100, and 130 μg/mL. Endothelial cell apoptosis showed a dose-dependent increase in response to KDCE and CGA. CGA derivatives from KDCE could have potential as anticancer agents against tumor angiogenesis.
Kim, Ji Yeon; Ok, Elly; Kim, You Jin; Choi, Kyoung-Sook; Kwon, Oran
2013-06-01
We investigated whether the combination of phytochemicals and acetic acid in the form of fruit vinegar provides an additive effect on changes of mRNA levels related to fatty acid oxidation in human hepatocyte (HepG2). Among the seven fruit vinegars (Rubuscoreanus, Opuntia, blueberry, cherry, red ginseng, mulberry, and pomegranate) studied, treatment of HepG2 with pomegranate vinegar (PV) at concentrations containing 1 mM acetic acid showed the highest in vitro potentiating effect on the mRNA expression levels of peroxisome proliferator-activated receptor α, carnitinepalmitoyl transferase-1, and acyl-CoA oxidase compared to the control group (P < 0.05). Reversed-phase liquid chromatography in combination with quadrupole time-of-flight mass spectrometry analysis revealed four potential compounds (punicalagin B, ellagic acid, and two unidentified compounds) responsible for altered gene expression in HepG2 cells treated with PV as compared with the others. Further investigations are warranted to determine if drinking PV beverages may help to maintain a healthy body weight in overweight subjects.
Inhibition effects of perfluoroalkyl acids on progesterone production in mLTC-1.
Zhao, Wei; Cui, Ruina; Wang, Jianshe; Dai, Jiayin
2017-06-01
Perfluoroalkyl substances (PFASs) are a class of fluorine substituted carboxylic acid, sulfonic acid and alcohol, structurally similar to their corresponding parent compounds. Previous study demonstrated the potential endocrine disruption and reproductive toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid, two dominant PFASs in animals and humans. We explored the relationship between eleven perfluoroalkyl acids (PFAAs) with different carbon chain length and their ability to inhibit progesterone production in mouse Leydig tumor cells (mLTC-1). We found an obvious dose-response relationship between progesterone inhibition rate and PFAA exposure concentration in mLTC-1. The relative inhibition rate of progesterone by PFAAs was linearly related to the carbon chain length and molar refractivity of PFAAs. Mitochondrial membrane potential (MMP) decreased after PFAA exposure at the half-maximal inhibitory effect concentration (IC 50 ) of progesterone production in mLTC-1, while the reactive oxygen species (ROS) content increased significantly. These results imply that the inhibition effect of PFAAs on progesterone production might be due, in part, to ROS damage and the decrease in MMP in mLTC-1. Copyright © 2016. Published by Elsevier B.V.
Kreiling, R; Hollnagel, H M; Hareng, L; Eigler, D; Lee, M S; Griem, P; Dreessen, B; Kleber, M; Albrecht, A; Garcia, C; Wendel, A
2008-06-01
The skin sensitization potential of eight unsaturated and one saturated lipid (bio)chemicals was tested in both the LLNA and the GPMT to address the hypothesis that chemicals with unsaturated carbon-carbon double bonds may result in a higher number of unspecific (false positive) results in the LLNA compared to the GPMT. Seven substances (oleic acid, linoleic acid, linolenic acid, undecylenic acid, maleic acid, squalene and octinol) gave clear positive results in the LLNA (stimulation index (SI)> or = 3) and thus would require labelling as skin sensitizer. Fumaric acid and succinic acid gave clearly negative results. In the GPMT, besides some sporadic skin reactions, reproducible skin reactions indicating an allergic response were found in a few animals for four test substances. Based on the GPMT results, only undecylenic acid would have to be classified and labelled as a skin sensitizer according to the European Dangerous Substance Directive (67/548/EEC) (results for linoleic acid were inconclusive), while the other seven test substances would not require labelling. Possible mechanisms for unspecific skin cell stimulation and lymph node responses are discussed. In conclusion, the suitability of the LLNA for unsaturated compounds bearing structural similarity to the tested substances should be carefully considered and the GPMT should remain available as an accepted test method for skin sensitization hazard identification.
Study of the acid-base properties of mineral soil horizons using pK spectroscopy
NASA Astrophysics Data System (ADS)
Shamrikova, E. V.; Vanchikova, E. V.; Ryazanov, M. A.
2007-11-01
The presence of groups 4 and 5 participating in acid-base equilibria was revealed in samples from mineral horizons of the gley-podzolic soil of the Komi Republic using pK spectroscopy (the mathematical processing of potentiometric titration curves for plotting the distribution of acid groups according to their pK values). The specific quantity of acid-base sites in soil samples was calculated. The contribution of organic and mineral soil components to the groups of acid-base sites was estimated. The pK values of groups determining the potential, exchangeable, and unexchangeable acidities were found. The heterogeneity of acid components determining different types of soil acidity was revealed.
Gálvez Ranilla, Lena; Christopher, Ashish; Sarkar, Dipayan; Shetty, Kalidas; Chirinos, Rosana; Campos, David
2017-12-01
Beneficial effects on overall gut health by phenolic bioactives-rich foods are potentially due to their modulation of probiotic gut bacteria and antimicrobial activity against pathogenic bacteria. Based on this rationale, the effect of the free and bound phenolic fractions from a Peruvian purple corn accession AREQ-084 on probiotic lactic acid bacteria such as Lactobacillus helveticus and Bifidobacterium longum and the gastric cancer-related pathogen Helicobacter pylori was evaluated. The free and bound phenolic composition was also determined by ultra-performance liquid chromatography. Anthocyanins were the major phenolic compounds (310.04 mg cyanidin-3-glucoside equivalents/100 g dry weight, DW) in the free phenolic fraction along with hydroxycinnamic acids such as p-coumaric acid derivatives, followed by caffeic and ferulic acid derivatives. The bound phenolic form had only hydroxycinnamic acids such as ferulic acid, p-coumaric acid, and a ferulic acid derivative with ferulic acid being the major phenolic compound (156.30 mg/100 g DW). These phenolic compounds were compatible with beneficial probiotic lactic acid bacteria such as L. helveticus and B. longum as these bacteria were not inhibited by the free and bound phenolic fractions at 10 to 50 mg/mL and 10 mg/mL of sample doses, respectively. However, the pathogenic H. pylori was also not inhibited by both purple corn phenolic forms at same above sample doses. This study provides the preliminary base for the characterization of phenolic compounds of Peruvian purple corn biodiversity and its potential health benefits relevant to improving human gut health. This study provides insights that Peruvian purple corn accession AREQ-084 can be targeted as a potential source of health-relevant phenolic compounds such as anthocyanins along with hydroxycinnamic acids linked to its dietary fiber fraction. Additionally, these phenolic fractions did not affect the gut health associated beneficial bacteria nor the pathogenic H. pylori. Purple corn can be targeted for design of probiotic functional foods integrated with their anthocyanin linked-coloring properties. © 2017 Institute of Food Technologists®.
Production of caffeoylmalic acid from glucose in engineered Escherichia coli.
Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao
2018-07-01
To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.
Antioxidant and antimicrobial activities of cinnamic acid derivatives.
Sova, M
2012-07-01
Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.
Dual potential of microalgae as a sustainable biofuel feedstock and animal feed
2013-01-01
The rise in global population has led to explorations of alternative sources of energy and food. Because corn and soybean are staple food crops for humans, their common use as the main source of dietary energy and protein for food-producing animals directly competes with their allocation for human consumption. Alternatively, de-fatted marine microalgal biomass generated from the potential biofuel production may be a viable replacement of corn and soybean meal due to their high levels of protein, relatively well-balanced amino acid profiles, and rich contents of minerals and vitamins, along with unique bioactive compounds. Although the full-fatted (intact) microalgae represent the main source of omega-3 (n-3) polyunsaturated fatty acids including docohexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the de-fatted microalgal biomass may still contain good amounts of these components for enriching DHA/EPA in eggs, meats, and milk. This review is written to highlight the necessity and potential of using the de-fatted microalgal biomass as a new generation of animal feed in helping address the global energy, food, and environmental issues. Nutritional feasibility and limitation of the biomass as the new feed ingredient for simple-stomached species are elaborated. Potential applications of the biomass for generating value-added animal products are also explored. PMID:24359607
Li, Angzhen; Zhao, Xu; Mao, Ran; Liu, Huijuan; Qu, Jiuhui
2014-04-30
In this study, the disinfection byproduct formation potential (DBPFP) of three surface waters with the dissolved organic carbon (DOC) content of 2.5, 5.2, and 7.9mg/L was investigated. The formation and distribution of trihalomethanes and haloacetic acids were evaluated. Samples collected from three surface waters in China were fractionated based on molecular weight and hydrophobicity. The raw water containing more hydrophobic (Ho) fraction exhibited higher formation potentials of haloacetic acid and trihalomethane. The DBPFP of the surface waters did not correlate with the DOC value. The values of DBPFP per DOC were correlated with the specific ultraviolet absorbance (SUVA) for Ho and Hi fractions. The obtained results suggested that SUVA cannot reveal the ability of reactive sites to form disinfection byproducts for waters with few aromatic structures. Combined with the analysis of FTIR and nuclear magnetic resonance spectra of the raw waters and the corresponding fractions, it was concluded that the Ho fraction with phenolic hydroxyl and conjugated double bonds was responsible for the production of trichloromethanes and trichloroacetic acids. The Hi fraction with amino and carboxyl groups had the potential to form dichloroacetic acids and chlorinated trihalomethanes. Copyright © 2014. Published by Elsevier B.V.
The action of chlorphenesin carbamate on the frog spinal cord.
Aihara, H; Kurachi, M; Nakane, S; Sasajima, M; Ohzeki, M
1980-02-01
Studies were carried out to elucidate the mechanism of action of chlorphenesin carbamate (CPC) and to compare the effect of the drug with that of mephenesin on the isolated bullfrog spinal cord. Ventral and dorsal root potentials were recorded by means of the sucrose-gap method. CPC caused marked hyperpolarizations and depressed spontaneous activities in both of the primary afferent terminals (PAT) and motoneurons (MN). These hyperpolarizations were observed even in high-Mg2+ and Ca2+-free Ringer's solution, suggesting that CPC has direct actions on PAT and MN. Various reflex potentials (dorsal and ventral root potentials elicited by stimulating dorsal and ventral root, respectively) tended to be depressed by CPC as well as by mephenesin. Excitatory amino acids (L-aspartic acid and L-glutamic acid) caused marked depolarizations in PAT and MN, and increased the firing rate in MN. CPC did not modify the depolarization but abolished the motoneuron firing induced by these amino acids. However, mephenesin reduced both the depolarization and the motoneuron firing. The dorsal and ventral root potentials evoked by tetanic stimulation (40 Hz) of the dorsal root were depressed by the drugs. These results indicate that CPC has an apparent depressing action on the spinal neuron, and this action may be ascribed to the slight hyperpolarization and/or the prolongation of refractory period.
Gonzalez-Silvera, Daniel; Pérez, Sandra; Korbee, Nathalie; Figueroa, Félix L; Asencio, Antonia D; Aboal, Marina; López-Jiménez, José Ángel
2017-10-01
Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types. © 2017 Phycological Society of America.
Jadhav, Umesh; Kadu, Sudhir; Thokal, Nilesh; Padul, Manohar; Dawkar, Vishal; Chougale, Ashok; Salve, Abhay; Patil, Manoj
2011-08-01
The focus of the present study is to know the potential of bacterial isolate for tannic acid degradation at low temperature. Also, we tried to evaluate the suitability of phytotoxicity testing protocol for the determination of tannic acid toxicity. Screening for tannic acid degrading bacterial strains was carried out by using microbial isolation techniques. The 16S rDNA amplicon of the isolate was used to identify the isolate. The effect of different concentrations of tannic acid and its degradation products on germination of Vigna unguiculata was evaluated. The study was carried out to determine total sugar and starch content of the used seeds and even to check the presence of α-amylase activity during seed germination. The isolated bacterium was identified as Klebsiella sp NACASA1 and it showed degradation of tannic acid in 40 (±0.85***) h at 15°C and pH 7.0. A gradual decrease in root/shoot length was observed with increasing concentration of tannic acid. There was 95.11 (±0.24**)% inhibition in α-amylase activity at 20,000 ppm tannic acid, as compared to control. No such effects were observed on germination, root-shoot length, and α-amylase activity with tannic acid degradation products. The results obtained confirmed that tannic acid may act as a toxic agent in plant cells. The simple biodegradation process presented in this study was found to be effective in reducing toxicity of tannic acid. Also, it reveals the potential of soil bacterium to degrade tannic acid at low temperature.
Scheven, Lieneke; Joosten, Michel M.; de Jong, Paul E.; Bakker, Stephan J. L.; Gansevoort, Ron T.
2014-01-01
Background Elevated albuminuria as well as an increased serum uric acid concentration is associated with poor cardiovascular outcome. We questioned whether these 2 variables (albuminuria and serum uric concentration) may be interrelated via tubular uric acid reabsorption. Methods and Results Included were 7688 participants of the PREVEND Study, an observational, general population‐based cohort study. Linear regression analyses were used to test associations of baseline albuminuria with baseline serum uric acid concentration and tubular uric acid reabsorption (calculated as [100−fractional uric acid excretion]%). Cox regression analyses were used to study the association of baseline serum uric acid and albuminuria with incident cardiovascular morbidity and mortality. In cross‐sectional analyses, albuminuria was associated positively with serum uric acid concentration, both crude and after adjustment for potential confounders (both P<0.001). Albuminuria was found to be associated positively with tubular uric acid reabsorption, again both crude and after adjustment for potential confounders (both P<0.001). In longitudinal analyses during a median follow‐up of 10.5 years, 702 cardiovascular events occurred. After adjusting for cardiovascular risk factors, both albuminuria and serum uric acid were associated with incident cardiovascular events (Hazard Ratios 1.09 [1.03 to 1.17], P=0.01 and 1.19 [1.09 to 1.30], P<0.001, respectively). A significant interaction between these variables was present (P<0.001), consistent with high serum uric acid being less predictive for cardiovascular morbidity and mortality in the presence of high albuminuria and vice versa. Conclusions Albuminuria is strongly associated with tubular uric acid reabsorption, and consequently with serum uric acid concentration. This phenomenon may explain in part why albuminuria is associated with cardiovascular outcome. PMID:24772520
Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li
2016-09-05
Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Freitas, Cláudia; Neves, Elisabete; Reis, Alberto; Passarinho, Paula C; da Silva, Teresa Lopes
2012-11-01
Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC(6)(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production.
Chen, Zhen; Xu, Yibing; Liu, Tao; Zhang, Lining; Liu, Hongbing; Guan, Huashi
2016-03-29
Sargassum seaweeds produce abundant biomass in China and have long been used as herbal medicine and food. Their characteristic fatty acid (FA) profiles and related potential function in promoting cardiovascular health (CVH) have not been systematically investigated. In this study, FA profiles of four medicinal Sargassum were characterized using GC-MS. Principal component analysis was used to discriminate the four medicinal Sargassum, and orthogonal projection to latent structures discriminant analysis was carried out between the two official species HAI ZAO and between the two folk medicine species HAI QIAN. In all of the algae investigated, the major SFA and MUFA were palmitic and stearic acid, respectively, while the major PUFAs were linoleic, arachidonic, and eicosapentaenoic acid. S. fusiforme and S. horneri had higher concentrations of PUFAs. With respect to CVH, all of the studied species, particularly S. fusiforme, exhibited satisfactory levels such as PUFA/SFA ratio and n-6/n-3 ratio. Each species possesses a unique FA profile and is discriminated clearly. Potential key FA markers (between the two Chinese official species, and between the two folk species) are assessed. The study provides characteristic fatty acid profiles of four Chinese medicinal Sargassum and their related potential function in promoting CVH.
Chen, Zhen; Xu, Yibing; Liu, Tao; Zhang, Lining; Liu, Hongbing; Guan, Huashi
2016-01-01
Sargassum seaweeds produce abundant biomass in China and have long been used as herbal medicine and food. Their characteristic fatty acid (FA) profiles and related potential function in promoting cardiovascular health (CVH) have not been systematically investigated. In this study, FA profiles of four medicinal Sargassum were characterized using GC-MS. Principal component analysis was used to discriminate the four medicinal Sargassum, and orthogonal projection to latent structures discriminant analysis was carried out between the two official species HAI ZAO and between the two folk medicine species HAI QIAN. In all of the algae investigated, the major SFA and MUFA were palmitic and stearic acid, respectively, while the major PUFAs were linoleic, arachidonic, and eicosapentaenoic acid. S. fusiforme and S. horneri had higher concentrations of PUFAs. With respect to CVH, all of the studied species, particularly S. fusiforme, exhibited satisfactory levels such as PUFA/SFA ratio and n-6/n-3 ratio. Each species possesses a unique FA profile and is discriminated clearly. Potential key FA markers (between the two Chinese official species, and between the two folk species) are assessed. The study provides characteristic fatty acid profiles of four Chinese medicinal Sargassum and their related potential function in promoting CVH. PMID:27043581
Li, Da-Wei; Cen, Shi-Ying; Liu, Yu-Hong; Balamurugan, Srinivasan; Zheng, Xin-Yan; Alimujiang, Adili; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye
2016-07-10
Oleaginous microalgae have received a considerable attention as potential biofuel feedstock. However, lack of industry-suitable strain with lipid rich biomass limits its commercial applications. Targeted engineering of lipogenic pathways represents a promising strategy to enhance the efficacy of microalgal oil production. In this study, a type 2 diacylglycerol acyltransferase (DGAT), a rate-limiting enzyme in triacylglycerol (TAG) biosynthesis, was identified and overexpressed in heterokont oleaginous microalga Nannochloropsis oceanica for the first time. Overexpression of DGAT2 in Nannochloropsis increased the relative transcript abundance by 3.48-fold in engineered microalgae cells. TAG biosynthesis was subsequently accelerated by DGAT2 overexpression and neutral lipid content was significantly elevated by 69% in engineered microalgae. The fatty acid profile determined by GC-MS revealed that fatty acid composition was altered in engineered microalgae. Saturated fatty acids and polyunsaturated fatty acids were found to be increased whereas monounsaturated fatty acids content decreased. Furthermore, DGAT2 overexpression did not show negative impact on algal growth parameters. The present investigation showed that the identified DGAT2 would be a potential candidate for enhancing TAG biosynthesis and might facilitate the development of promising oleaginous strains with industrial potential. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yuan; Vestergren, Robin; Shi, Yali; Cao, Dong; Xu, Lin; Cai, Yaqi; Zhao, Xiaoli; Wu, Fengchang
2016-10-18
The use of cyclic perfluoroalkyl acids as anticorrosive agents in hydraulic fluids remains a poorly characterized source of organofluorine compounds to the environment. Here, we investigated the presence of perfluoroethylenecyclohexanesulfonate (PFECHS) isomers in environmental samples for the first time using a combination of high resolution and tandem mass spectrometry. Five distinct peaks attributed to different isomers of PFECHS and perfluoropropylcyclopentanesulfonate (PFPCPeS) were identified in environmental samples. The sum of PFECHS and PFPCPeS isomers displayed logarithmically decreasing spatial trends in water (1.04-324 ng/L) and sediment samples (
Mihajlović, Lj V; Mihajlović, R P; Antonijević, M M; Vukanović, B V
2004-11-15
The possibility of applying natural monocrystaline pyrite as a sensor for the potentiometric titration of weak acids in N,N-dimethylformamide, methylpyrrolidone and pyridine was investigated. The potential of this electrode in N,N-dimethylformamide, methylpyrrolidone and pyridine exhibits a sub-Nernst dependence. In N,N-dimethylformamide the slope (mV/pH) is 39.0 and in methylpyrrolidone it is 45.0. The potential jumps at the titration end-point obtained in the titration of weak acids are higher than those obtained by the application of a glass electrode as the indicator electrode The potential in the course of the titration and at the titration end-point (TEP) are rapidly established. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agents for these titrations. The results obtained in the determination of the investigated weak acids deviate by 0.1-0.35% with respect to those obtained by using a glass electrode as the indicator electrode.
Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory
2016-01-01
Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner. PMID:27621436
Maria John, K M; Enkhtaivan, Gansukh; Kim, Ju Jin; Kim, Doo Hwan
2014-11-15
Secondary metabolic variation of wild apple (Malus prunifolia) was compared with fruits that contained high flavan-3-ol like grapes (GR), apple (App) and the beverage, black tea (BT). The polyphenol contents in wild apple was higher than in GR and App but less than BT. The identified phenolic acids (gallic, protocatechuic, chlorogenic, p-coumaric and ferulic acids) and flavonoids (quercetin and myricetin) indicate that wild apple was higher than that of App. Among all the samples, BT had highest antioxidant potential in terms of 2,2'-Azinobis (3-thylbenzothiazoline-6-sulfonic acid) diammonium salt (95.36%), metal chelating (45.36%) and phosphomolybdenum activity (95.8 mg/g) because of the high flavan-3-ol content. The gallic acid and epigallocatechin gallate were highly correlated with antioxidant potential and these metabolites levels are higher in wild apple than that of App. Wild apples being a non-commercial natural source, a detailed study of this plant will be helpful for the food additive and preservative industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acid-base accounting to predict post-mining drainage quality on surface mines.
Skousen, J; Simmons, J; McDonald, L M; Ziemkiewicz, P
2002-01-01
Acid-base accounting (ABA) is an analytical procedure that provides values to help assess the acid-producing and acid-neutralizing potential of overburden rocks prior to coal mining and other large-scale excavations. This procedure was developed by West Virginia University scientists during the 1960s. After the passage of laws requiring an assessment of surface mining on water quality, ABA became a preferred method to predict post-mining water quality, and permitting decisions for surface mines are largely based on the values determined by ABA. To predict the post-mining water quality, the amount of acid-producing rock is compared with the amount of acid-neutralizing rock, and a prediction of the water quality at the site (whether acid or alkaline) is obtained. We gathered geologic and geographic data for 56 mined sites in West Virginia, which allowed us to estimate total overburden amounts, and values were determined for maximum potential acidity (MPA), neutralization potential (NP), net neutralization potential (NNP), and NP to MPA ratios for each site based on ABA. These values were correlated to post-mining water quality from springs or seeps on the mined property. Overburden mass was determined by three methods, with the method used by Pennsylvania researchers showing the most accurate results for overburden mass. A poor relationship existed between MPA and post-mining water quality, NP was intermediate, and NNP and the NP to MPA ratio showed the best prediction accuracy. In this study, NNP and the NP to MPA ratio gave identical water quality prediction results. Therefore, with NP to MPA ratios, values were separated into categories: <1 should produce acid drainage, between 1 and 2 can produce either acid or alkaline water conditions, and >2 should produce alkaline water. On our 56 surface mined sites, NP to MPA ratios varied from 0.1 to 31, and six sites (11%) did not fit the expected pattern using this category approach. Two sites with ratios <1 did not produce acid drainage as predicted (the drainage was neutral), and four sites with a ratio >2 produced acid drainage when they should not have. These latter four sites were either mined very slowly, had nonrepresentative ABA data, received water from an adjacent underground mine, or had a surface mining practice that degraded the water. In general, an NP to MPA ratio of <1 produced mostly acid drainage sites, between 1 and 2 produced mostly alkaline drainage sites, while NP to MPA ratios >2 produced alkaline drainage with a few exceptions. Using these values, ABA is a good tool to assess overburden quality before surface mining and to predict post-mining drainage quality after mining. The interpretation from ABA values was correct in 50 out of 52 cases (96%), excluding the four anomalous sites, which had acid water for reasons other than overburden quality.
Rethinking the bile acid/gut microbiome axis in cancer
Phelan, John P.; Reen, F. Jerry; Caparros-Martin, Jose A.; O'Connor, Rosemary; O'Gara, Fergal
2017-01-01
Dietary factors, probiotic agents, aging and antibiotics/medicines impact on gut microbiome composition leading to disturbances in localised microbial populations. The impact can be profound and underlies a plethora of human disorders, including the focus of this review; cancer. Compromised microbiome populations can alter bile acid signalling and produce distinct pathophysiological bile acid profiles. These in turn have been associated with cancer development and progression. Exposure to high levels of bile acids, combined with localised molecular/genome instability leads to the acquisition of bile mediated neoplastic alterations, generating apoptotic resistant proliferation phenotypes. However, in recent years, several studies have emerged advocating the therapeutic benefits of bile acid signalling in suppressing molecular and phenotypic hallmarks of cancer progression. These studies suggest that in some instances, bile acids may reduce cancer phenotypic effects, thereby limiting metastatic potential. In this review, we contextualise the current state of the art to propose that the bile acid/gut microbiome axis can influence cancer progression to the extent that classical in vitro cancer hallmarks of malignancy (cell invasion, cell migration, clonogenicity, and cell adhesion) are significantly reduced. We readily acknowledge the existence of a bile acid/gut microbiome axis in cancer initiation, however, in light of recent advances, we focus exclusively on the role of bile acids as potentially beneficial molecules in suppressing cancer progression. Finally, we theorise that suppressing aggressive malignant phenotypes through bile acid/gut microbiome axis modulation could uncover new and innovative disease management strategies for managing cancers in vulnerable cohorts. PMID:29383197
Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2016-01-01
The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.
Valero, Marta; Pereboom, Désirée; Garay, Ricardo P; Alda, José Octavio
2006-12-28
Chloride ions play a key role in smooth muscle contraction, but little is known concerning their role in smooth muscle relaxation. Here we investigated the effect of chloride transport inhibitors on the vasorelaxant responses to nitroprusside in isolated and endothelium-denuded rat aorta, precontracted with phenylephrine 1 muM. Incubation of aortic rings in NO(3)(-) media strongly potentiated the vasorelaxant responses to nitroprusside. Bumetanide, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and acetazolamide strongly potentiated the vasorelaxant responses to nitroprusside (by 70-100%). EC(50) were 2.3+/-0.5 microM for bumetanide, 26+/-15 microM for DIDS and 510+/-118 microM for acetazolamide (n=6 for condition). Niflumic acid, a selective inhibitor of ClCa (calcium-activated chloride channels), potentiated nitroprusside relaxation to a similar extent as chloride transport inhibitors, in a non-additive manner. Zinc and nickel ions, both modestly potentiated nitroprusside vasorelaxation (by 20-30%). Cobaltum had negligible effect on nitroprusside vasorelaxation. CPA (p-chlorophenoxy-acetic acid), an inhibitor of volume-sensitive chloride channels (ClC), slightly potentiated nitroprusside vasorelaxation (by 15%), and the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel inhibitors CFTR(inh)172 (5-[(4-Carboxyphenyl)methylene]-2-thioxo-3-[(3-trifluoromethyl)phenyl-4-thiazolidinone), DPC (diphenylamine-2,2'-dicarboxylic acid) and glibenclamide were without significant effect. In conclusion, inhibition of chloride transport proteins strongly potentiates the vasorelaxant responses to nitroprusside in isolated rat aorta. This effect seems mediated by chloride depletion and inhibition of a chloride channel activated by both, calcium and cyclic GMP (cGMP).
Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.
ERIC Educational Resources Information Center
Bretherick, Leslie
1989-01-01
Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)
[The matrix effects of organic acid compounds in ICP-MS].
Nie, Xi-Du; He, Xiao-Mei; Li, Li-Bo; Xie, Hua-Lin
2007-07-01
The matrix effects arising from oxalic acid, lactic acid, tartaric acid and citric acid in inductively coupled plasma mass spectrometry (ICP-MS) were investigated. It has been proved that the sensitivity of analytes can be significantly enhanced by adding small amounts of organic acid compounds with adjusted nebulizer gas flow-rate, especially for the elements with ionization potential between 9 and 11 eV. The tartaric acid has higher enhancement effect on the signal intensity of the hard-to-ionize elements than oxalic acid, lactic acid and citric acid. The mechanism of the enhancement was investigated. The method has been used to determine Be, Zn, As, Se, Sb and Hg in water standard reference materials (SRM). The analytical results are very close to the certified values.
The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.
Borges, Anabela; Saavedra, Maria J; Simões, Manuel
2012-01-01
The activity of two phenolic acids, gallic acid (GA) and ferulic acid (FA) at 1000 μg ml(-1), was evaluated on the prevention and control of biofilms formed by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. In addition, the effect of the two phenolic acids was tested on planktonic cell susceptibility, bacterial motility and adhesion. Biofilm prevention and control were tested using a microtiter plate assay and the effect of the phenolic acids was assessed on biofilm mass (crystal violet staining) and on the quantification of metabolic activity (alamar blue assay). The minimum bactericidal concentration for P. aeruginosa was 500 μg ml(-1) (for both phenolic acids), whilst for E. coli it was 2500 μg ml(-1) (FA) and 5000 μg ml(-1) (GA), for L. monocytogenes it was >5000 μg ml(-1) (for both phenolic acids), and for S. aureus it was 5000 μg ml(-1) (FA) and >5000 μg ml(-1) (GA). GA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. FA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. Colony spreading of S. aureus was completely inhibited by FA. The interference of GA and FA with bacterial adhesion was evaluated by the determination of the free energy of adhesion. Adhesion was less favorable when the bacteria were exposed to GA (P. aeruginosa, S. aureus and L. monocytogenes) and FA (P. aeruginosa and S. aureus). Both phenolics had preventive action on biofilm formation and showed a higher potential to reduce the mass of biofilms formed by the Gram-negative bacteria. GA and FA promoted reductions in biofilm activity >70% for all the biofilms tested. The two phenolic acids demonstrated the potential to inhibit bacterial motility and to prevent and control biofilms of four important human pathogenic bacteria. This study also emphasizes the potential of phytochemicals as an emergent source of biofilm control products.
Lu, Yonghai; Wang, Yeli; Ong, Choon-Nam; Subramaniam, Tavintharan; Choi, Hyung Won; Yuan, Jian-Min; Koh, Woon-Puay; Pan, An
2016-11-01
Metabolomics has provided new insight into diabetes risk assessment. In this study we characterised the human serum metabolic profiles of participants in the Singapore Chinese Health Study cohort to identify metabolic signatures associated with an increased risk of type 2 diabetes. In this nested case-control study, baseline serum metabolite profiles were measured using LC-MS and GC-MS during a 6-year follow-up of 197 individuals with type 2 diabetes but without a history of cardiovascular disease or cancer before diabetes diagnosis, and 197 healthy controls matched by age, sex and date of blood collection. A total of 51 differential metabolites were identified between cases and controls. Of these, 35 were significantly associated with diabetes risk in the multivariate analysis after false discovery rate adjustment, such as increased branched-chain amino acids (leucine, isoleucine and valine), non-esterified fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) and lysophosphatidylinositol (LPI) species (16:1, 18:1, 18:2, 20:3, 20:4 and 22:6). A combination of six metabolites including proline, glycerol, aminomalonic acid, LPI (16:1), 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid and urea showed the potential to predict type 2 diabetes in at-risk individuals with high baseline HbA1c levels (≥6.5% [47.5 mmol/mol]) with an AUC of 0.935. Combined lysophosphatidylglycerol (LPG) (12:0) and LPI (16:1) also showed the potential to predict type 2 diabetes in individuals with normal baseline HbA1c levels (<6.5% [47.5 mmol/mol]; AUC = 0.781). Our findings show that branched-chain amino acids and NEFA are potent predictors of diabetes development in Chinese adults. Our results also indicate the potential of lysophospholipids for predicting diabetes.
Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions
NASA Astrophysics Data System (ADS)
Sodeau, J.; Oriordan, B.
2003-04-01
CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.
UV-induced solvent free synthesis of truxillic acid-bile acid conjugates
NASA Astrophysics Data System (ADS)
Koivukorpi, Juha; Kolehmainen, Erkki
2009-07-01
The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).
Ahumada, Luis Armando Carvajal; González, Marco Xavier Rivera; Sandoval, Oscar Leonardo Herrera; Olmedo, José Javier Serrano
2016-01-01
The main objective of this article is to demonstrate through experimental means the capacity of the quartz crystal resonator (QCR) to characterize biological samples of aqueous dilutions of hyaluronic acid according to their viscosity and how this capacity may be useful in the potential diagnosis of arthritic diseases. The synovial fluid is viscous due to the presence of hyaluronic acid, synthesized by synovial lining cells (type B), and secreted into the synovial fluid thus making the fluid viscous. In consequence, aqueous dilutions of hyaluronic acid may be used as samples to emulate the synovial fluid. Due to the viscoelastic and pseudo-plastic behavior of hyaluronic acid, it is necessary to use the Rouse model in order to obtain viscosity values comparable with viscometer measures. A Fungilab viscometer (rheometer) was used to obtain reference measures of the viscosity in each sample in order to compare them with the QCR prototype measures. PMID:27879675
NASA Astrophysics Data System (ADS)
Kawaguchi, Kazutomo; Nakagawa, Satoshi; Kurniawan, Isman; Kodama, Koichi; Arwansyah, Muhammad Saleh; Nagao, Hidemi
2018-03-01
We present a simple coarse-grained model of the effective interaction for charged amino acid residues, such as Glu and Lys, in a water solvent. The free-energy profile as a function of the distance between two charged amino acid side-chain analogues in an explicit water solvent is calculated with all-atom molecular dynamics simulation and thermodynamic integration method. The calculated free-energy profile is applied to the coarse-grained potential of the effective interaction between two amino acid residues. The Langevin dynamics simulations with our coarse-grained potential are performed for association of a small protein complex, GCN4-pLI tetramer. The tetramer conformation reproduced by our coarse-grained model is similar to the X-ray crystallographic structure. We show that the effective interaction between charged amino acid residues stabilises association and orientation of protein complex. We also investigate the association pathways of GCN4-pLI tetramer.
Enhancing and targeting nucleic acid delivery by magnetic force.
Plank, Christian; Anton, Martina; Rudolph, Carsten; Rosenecker, Joseph; Krötz, Florian
2003-08-01
Insufficient contact of inherently highly active nucleic acid delivery systems with target cells is a primary reason for their often observed limited efficacy. Physical methods of targeting can overcome this limitation and reduce the risk of undesired side effects due to non-target site delivery. The authors and others have developed a novel means of physical targeting, exploiting magnetic force acting on nucleic acid vectors associated with magnetic particles in order to mediate the rapid contact of vectors with target cells. Here, the principles of magnetic drug and nucleic acid delivery are reviewed, and the facts and potentials of the technique for research and therapeutic applications are discussed. Magnetically enhanced nucleic acid delivery - magnetofection - is universally applicable to viral and non-viral vectors, is extraordinarily rapid, simple and yields saturation level transfection at low dose in vitro. The method is useful for site-specific vector targeting in vivo. Exploiting the full potential of the technique requires an interdisciplinary research effort in magnetic field physics, magnetic particle chemistry, pharmaceutical formulation and medical application.
Fu, Lijun; An, Xinli; Zhang, Bangzhou; Li, Yi; Chen, Zhangran; Zheng, Wei; Yi, Lin; Zheng, Tianling
2014-01-01
Alexandrium tamarense is a notorious bloom-forming dinoflagellate, which adversely impacts water quality and human health. In this study we present a new algicide against A. tamarense, which was isolated from the marine bacterium Vibrio sp. BS02. MALDI-TOF-MS, NMR and algicidal activity analysis reveal that this compound corresponds to palmitoleic acid, which shows algicidal activity against A. tamarense with an EC50 of 40 μg/mL. The effects of palmitoleic acid on the growth of other algal species were also studied. The results indicate that palmitoleic acid has potential for selective control of the Harmful algal blooms (HABs). Over extended periods of contact, transmission electron microscopy shows severe ultrastructural damage to the algae at 40 μg/mL concentrations of palmitoleic acid. All of these results indicate potential for controlling HABs by using the special algicidal bacterium and its active agent. PMID:24626054
Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer
Yadav, Vivek R.; Prasad, Sahdeo; Sung, Bokyung; Kannappan, Ramaswamy; Aggarwal, Bharat B.
2010-01-01
Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”. PMID:22069560
Brown Algae Padina sanctae-crucis Børgesen: A Potential Nutraceutical
Nogueira, Raquel B. S. S.; Tomaz, Anna Cláudia A.; Pessoa, Déborah R.; Xavier, Aline L.; Pita, João Carlos L. R.; Sobral, Marianna V.; Pontes, Marcela L. C.; Pessôa, Hilzeth L. F.; Diniz, Margareth F. F. M.; Miranda, George Emmanuel C.; Vieira, Maria Aparecida R.; Marques, Marcia O. M.; Souza, Maria de Fátima V.; Cunha, Emídio V. L.
2017-01-01
Padina sanctae-crucis Børgesen is distributed worldwide in tropical and subtropical seas; belongs to the Dictyotaceae family, and has proven to be an exceptional source of biologically active compounds. Four compounds were isolated and identified, namely: dolastane diterpene new for the genus Padina; phaeophytin and hidroxy-phaeophytin new for the family Dictyotaceae, and; mannitol first described in this species. Saturated fatty acids as compared to the percentages of unsaturated fatty acids were shown to be present in greater abundance. Palmitic and linolenic acid were the main saturated and unsaturated acids, respectively. Cytotoxic and antioxidant activities were evaluated using human erythrocytes. In vivo evaluations of acute toxicity and genotoxicity were performed in mice. Methanolic extract of P. sanctae-crucis presented antioxidant activity and did not induce cytotoxicity, genotoxicity or acute toxicity. Since Padina sanctae-crucis is already used as food, has essential fatty acids for the nutrition of mammals, does not present toxicity and has antioxidant activity, it can be considered as a potential nutraceutical. PMID:28954390
Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Du, Ming
2018-03-22
In this study, the effects of limited hydrolysis and/or high-pressure homogenization (HPH) treatment in acid conditions on the functional properties of oyster protein isolates (OPI) were studied. Protein solubility, surface hydrophobicity, particle size distribution, zeta potential, foaming, and emulsifying properties were evaluated. The results showed that acid treatment led to the dissociation and unfolding of OPI. Subsequent treatment such as limited proteolysis, HPH, and their combination remarkably improved the functional properties of OPI. Acid treatment produced flexible aggregates, as well as reduced particle size and solubility. On the contrary, limited hydrolysis increased the solubility of OPI. Furthermore, HPH enhanced the effectiveness of the above treatments. The emulsifying and foaming properties of acid- or hydrolysis-treated OPI significantly improved. In conclusion, a combination of acid treatment, limited proteolysis, and HPH improved the functional properties of OPI. The improvements in the functional properties of OPI could potentiate the use of oyster protein and its hydrolysates in the food industry.
Cañibano-Hernández, Alberto; Saenz Del Burgo, Laura; Espona-Noguera, Albert; Orive, Gorka; Hernández, Rosa M; Ciriza, Jesús; Pedraz, Jose Luis
2017-07-03
The potential clinical application of alginate cell microencapsulation has advanced enormously during the past decade. However, the 3D environment created by alginate beads does not mimic the natural extracellular matrix surrounding cells in vivo, responsible of cell survival and functionality. As one of the most frequent macromolecules present in the extracellular matrix is hyaluronic acid, we have formed hybrid beads with alginate and hyaluronic acid recreating a closer in vivo cell environment. Our results show that 1% alginate-0.25% hyaluronic acid microcapsules retain 1.5% alginate physicochemical properties. Moreover, mesenchymal stem cells encapsulated in these hybrid beads show enhanced viability therapeutic protein release and mesenchymal stem cells' potential to differentiate into chondrogenic lineage. Although future studies with additional proteins need to be done in order to approach even more the extracellular matrix features, we have shown that hyaluronic acid protects alginate encapsulated mesenchymal stem cells by providing a niche-like environment and remaining them competent as a sustainable drug delivery system.
Li, Ruoyu; Sabir, Jamal S M; Baeshen, Nabih A; Akoh, Casimir C
2015-11-01
Structured lipids (SLs) containing palmitic, docosahexaenoic (DHA), and gamma-linolenic (GLA) acids were produced using refined olive oil, tripalmitin, and ethyl esters of DHA single cell oil and GLA ethyl esters. Immobilized Lipozyme TL IM lipase was used as the biocatalyst. The SLs were characterized for fatty acid profile, triacylglycerol (TAG) molecular species, solid fat content, oxidative stability index, and melting and crystallization profiles and compared to physical blend of substrates, extracted fat from commercial infant formula (IFF), and milk fat. 49.28 mol% of palmitic acid was found at the sn-2 position of SL TAG and total DHA and GLA composition were 0.73 and 5.00 mol%, respectively. The total oleic acid content was 36.13 mol% which was very close to the 30.49% present in commercial IFF. Comparable solid fat content profiles were also found between SLs and IFF. The SLs produced have potential for use in infant formulas. © 2015 Institute of Food Technologists®
The Carcinogenic Potential of JP-8 and Tungsten in C57BL/6 Mice
2011-01-31
acids ; steroid hormone production PHF20, PHD finger protein 20; possible transcription factor ↓PPAP2A, phosphatidic acid phosphatase...and osmY stress promoter-genes and inhibition of enzymes with nucleic- acid substrates [5]. Recent research has demonstrated variable degrees of in...type 2A; dephosphorylating lysophosphatidic acid (LPA) in platelets which terminates signaling actions of LPA. PPARG, ↓RAD23A, RAD23 homolog
[Combined effect of benzylpenicillin, furagin and bile acids on staphylococci].
Sytnik, I A; Tkachuk, N I
1982-11-01
The results of the study of the effect of benzylpenicillin or furagin in combination with bile acids, such as cholic, glycocholic and desoxycholic on the collection cultures of staphylococci are presented. The study showed that the subbacteriostatic doses of the bile acids increased the bacteriostatic and bactericidal effects of benzylpenicillin and furagin by tens and hundreds times. The highest potentiation effect was attained with the use of the furagin combination and desoxycholic acid.
Crotoxin: Structural Studies, Mechanism of Action and Cloning of Its Gene
1989-12-01
n the acidic subunit was reported In the above reference. The N-terminus was blocked by pyroglutamate , although the residue was refractory to the...immunogens. as 1potential vaccines against crotoxin and its homologs. Acidic and basic suburdts of crotoxin were sequenced and their higher- ordered...and acidic subunits ot crotoxin. The acidic subunit peptides were difficult, since two of the three peptides were blocked at the amino-terminus by
Butyric acid: what is the future for this old substance?
Sossai, Paolo
2012-06-06
In this brief review, we present some data from the literature on butyric acid and some of its more interesting potential uses, especially in the field of gastroenterology. Due to its principal characteristics, butyric acid is primarily used for pathologies of the colon (functional, inflammatory). Although only preliminary data are available, butyric acid may also have interesting extraintestinal applications, such as in the treatment of haematological, metabolic, and neurological pathologies.
Miranda, Jonatan; Arias, Noemi; Fernández-Quintela, Alfredo; del Puy Portillo, María
2014-04-01
Despite its benefits, conjugated linoleic acid (CLA) may cause side effects after long-term administration. Because of this and the controversial efficacy of CLA in humans, alternative biomolecules that may be used as functional ingredients have been studied in recent years. Thus, conjugated linolenic acid (CLNA) has been reported to be a potential anti-obesity molecule which may have additional positive effects related to obesity. According to the results reported in obesity, CLNA needs to be given at higher doses than CLA to be effective. However, because of the few studies conducted so far, it is still difficult to reach clear conclusions about the potential use of these CLNAs in obesity and its related changes (insulin resistance, dyslipidemia, or inflammation). Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.
Moghadam, Sara E; Ebrahimi, Samad N; Salehi, Peyman; Moridi Farimani, Mahdi; Hamburger, Matthias; Jabbarzadeh, Ehsan
2017-09-08
Wound healing is a complex physiological process that is controlled by a well-orchestrated cascade of interdependent biochemical and cellular events, which has spurred the development of therapeutics that simultaneously target these active cellular constituents. We assessed the potential of Parrotia persica (Hamamelidaceae) in wound repair by analyzing the regenerative effects of its two main phenolic compounds, myricetin-3- O -β-rhamnoside and chlorogenic acid. To accomplish this, we performed phytochemical profiling and characterized the chemical structure of pure compounds isolated from P. persica , followed by an analysis of the biological effects of myricetin-3- O -β-rhamnoside and chlorogenic acid on three cell types, including keratinocytes, fibroblasts, and endothelial cells. Myricetin-3- O -β-rhamnoside and chlorogenic acid exhibited complementary pro-healing properties. The percentage of keratinocyte wound closure as measured by a scratch assay was four fold faster in the presence of 10 µg/mL chlorogenic acid, as compared to the negative control. On the other hand, myricetin-3- O -β-rhamnoside at 10 µg/mL was more effective in promoting fibroblast migration, demonstrating a two-fold higher rate of closure compared to the negative control group. Both compounds enhanced the capillary-like tube formation of endothelial cells in an in vitro angiogenesis assay. Our results altogether delineate the potential to synergistically accelerate the fibroblastic and remodelling phases of wound repair by administering appropriate amounts of myricetin-3- O -β-rhamnoside and chlorogenic acid.
Qiu, Shoubei; Zhang, Haixia; Fei, Qianqian; Zhu, Fenxia; Wang, Jing; Jia, Xiaobin; Chen, Bin
2018-04-24
Gynura segetum (GS) is an herbal medicine containing Pyrrolizidine Alkaloids (PAs) that causes hepatic sinusoidal obstruction syndrome (HSOS). To discover potential biomarkers and metabolic mechanisms involved in the hepatotoxicity induced by GS. SD rats were randomly divided into 4 groups including Saline, the decoction of GS high, medium and low dosage at dosages of 3.75g • kg -1 , 7.5g • kg -1 and 15g • kg -1 . A metabolomics approach using Ultraperformance Liquid Chromatography -Quadrupole-Time-of-Flight / Mass Spectrometry (UPLC-Q-TOF/MS) was developed to perform the plasma and urinary metabolic profiling analysis, and identified differential metabolites by comparing the saline control group and decoction of GS groups. The herbal was presented dosage-dependent led to ingravescence of hepatotoxicity after the rats were consecutively given with the decoction of GS at varied dosages. A total of 18 differential metabolites of decoction of GS-induced hepatotoxicity were identified, while 10 of them including arginine, proline, glutamate, creatine, valine, linoleic acid, arachidonic acid, sphinganine, phytosphingosine, and citric acid could be discovered in urine and plasma, and primarily involved in Amino acid metabolism, Lipids metabolism and Energy metabolism. The results suggested that the differential metabolites of arginine, creatine, valine, glutamine and citric acid were verified as potential markers of GS-induced hepatotoxicity via the regulation of multiple metabolic pathways primarily involving in Amino acids metabolism and Energy metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.
Moghadam, Sara E.; Ebrahimi, Samad N.; Salehi, Peyman; Farimani, Mahdi Moridi; Hamburger, Matthias; Jabbarzadeh, Ehsan
2017-01-01
Wound healing is a complex physiological process that is controlled by a well-orchestrated cascade of interdependent biochemical and cellular events, which has spurred the development of therapeutics that simultaneously target these active cellular constituents. We assessed the potential of Parrotia persica (Hamamelidaceae) in wound repair by analyzing the regenerative effects of its two main phenolic compounds, myricetin-3-O-β-rhamnoside and chlorogenic acid. To accomplish this, we performed phytochemical profiling and characterized the chemical structure of pure compounds isolated from P. persica, followed by an analysis of the biological effects of myricetin-3-O-β-rhamnoside and chlorogenic acid on three cell types, including keratinocytes, fibroblasts, and endothelial cells. Myricetin-3-O-β-rhamnoside and chlorogenic acid exhibited complementary pro-healing properties. The percentage of keratinocyte wound closure as measured by a scratch assay was four fold faster in the presence of 10 μg/mL chlorogenic acid, as compared to the negative control. On the other hand, myricetin-3-O-β-rhamnoside at 10 μg/mL was more effective in promoting fibroblast migration, demonstrating a two-fold higher rate of closure compared to the negative control group. Both compounds enhanced the capillary-like tube formation of endothelial cells in an in vitro angiogenesis assay. Our results altogether delineate the potential to synergistically accelerate the fibroblastic and remodelling phases of wound repair by administering appropriate amounts of myricetin-3-O-β-rhamnoside and chlorogenic acid. PMID:28885580
Wachter, Bettina; Heinrich, Sonja K.; Reyers, Fred; Mienie, Lodewyk J.
2016-01-01
Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity. PMID:27992457
Liu, Wai-Nam; Leung, Kwok-Nam
2014-11-01
Conjugated linolenic acids (CLNAs) are a group of naturally occurring positional and geometrical isomers of the C18 polyunsaturated essential fatty acid, linolenic acid (LNA), with three conjugated double bonds (C18:3). Although previous research has demonstrated the growth-inhibitory effects of CLNA on a wide variety of cancer cell lines in vitro, their action mechanisms and therapeutic potential on human myeloid leukemia cells remain poorly understood. In the present study, we found that jacaric acid (8Z,10E,12Z-octadecatrienoic acid), a CLNA isomer which is present in jacaranda seed oil, inhibited the in vitro growth of human eosinophilic leukemia EoL-1 cells in a time- and concentration-dependent manner. Mechanistic studies showed that jacaric acid triggered cell cycle arrest of EoL-1 cells at the G0/G1 phase and induced apoptosis of the EoL-1 cells, as measured by the Cell Death Detection ELISAPLUS kit, Annexin V assay and JC-1 dye staining. Notably, the jacaric acid-treated EoL-1 cells also underwent differentiation as revealed by morphological and phenotypic analysis. Collectively, our results demonstrated the capability of jacaric acid to inhibit the growth of EoL-1 cells in vitro through triggering cell cycle arrest and by inducing apoptosis and differentiation of the leukemia cells. Therefore, jacaric acid might be developed as a potential candidate for the treatment of certain forms of myeloid leukemia with minimal toxicity and few side effects.
Dhar, Gautam; Sen, Suvajit; Chaudhuri, Gautam
2015-01-01
Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target. PMID:25874623
Wójciak, Karolina M; Krajmas, Paweł; Solska, Elżbieta; Dolatowski, Zbigniew J
2015-01-01
The aim of the study was to evaluate the potential of acid whey and set milk as a marinade in the traditional production of fermented eye round. Studies involved assaying pH value, water activity (aw), oxidation-reduction potential and TBARS value, colour parameters in CIE system (L*, a*, b*), assaying the number of lactic acid bacteria and certain pathogenic bacteria after ripening process and after 60-day storing in cold storage. Sensory analysis and analysis of the fatty acids profile were performed after completion of the ripening process. Analysis of pH value in the products revealed that application of acid whey to marinate beef resulted in increased acidity of ripening eye round (5.14). The highest value of the colour parameter a* after ripening process and during storage was observed in sample AW (12.76 and 10.07 respectively), the lowest on the other hand was observed in sample SM (10.06 and 7.88 respectively). The content of polyunsaturated fatty acids (PUFA) was higher in eye round marinated in acid whey by approx. 4% in comparison to other samples. Application of acid whey to marinade beef resulted in increased share of red colour in general colour tone as well as increased oxidative stability of the product during storage. It also increased the content of polyunsaturated fatty acids (PUFA) in the product. All model products had high content of lactic acid bacteria and there were no pathogenic bacteria such as: L. monocytogenes, Y. enterocolitica, S. aureus, Clostridium sp.
Ogundajo, Akintayo; Ashafa, Anofi Tom
2017-01-01
Background: Ehretia cymosa Thonn. is a popular medicinal plant used in different parts of West Africa for the treatment of various ailments including diabetes mellitus. Objective: The current study investigates bioactive constituents and in vitro antioxidant and antidiabetic potentials of fractions from extract of E. cymosa. Materials and Methods: Phytochemical investigation and antioxidant assays were carried out using standard procedures. Antidiabetic potential was assessed by evaluating the inhibitory effects of the fractions on the activities of α-amylase and α-glucosidase, while bioactive constituent's identification was carried out using gas chromatography-mass spectrometric (GC-MS) analysis. Results: The phytochemistry tests of the fractions revealed the presence of tannins, phenols, flavonoids, steroids, terpene, alkaloid, and cardiac glycosides. Methanol fraction shows higher phenolic (27.44 mg gallic acid/g) and flavonoid (235.31 mg quercetin/g) contents, while ethyl acetate fraction revealed higher proanthocyanidins (28.31 mg catechin/g). Methanol fraction displayed higher (P < 0.05) 1,1-diphenyl-2-picryl-hydrazyl (0.47 mg/mL), 2,2-azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid (0.49 mg/mL), and hydroxyl radical (0.55 mg/mL) scavenging activities, while ethyl acetate exhibited strong metal chelating (0.61 mg/mL) and superoxide anion (1.68 mg/mL) scavenging activity. Methanol and ethyl acetate fractions displayed higher inhibition (P < 0.05) against α-glucosidase (0.60 mg/mL) and α-amylase (2.11 mg/mL), respectively. Methanol fraction also inhibited α-amylase and α-glucosidase in competitive and noncompetitive modes, respectively. The GC-MS chromatogram of the methanol fraction revealed 24 compounds, which include phytol (1.78%), stearic acid (1.02%), and 2-hexadecyloxirane (34.18%), which are known antidiabetic and antioxidant agents. Conclusion: The results indicate E. cymosa leaves as source of active phytochemicals with therapeutic potentials in the management of diabetes. SUMMARY E. cymosa fractions possess antioxidant and antidiabetic activities. Hence, it is a source of active phytochemicals with therapeutic potentials in the management of diabetesThe high flavonoid, phenolic, and proanthocyanidin contents of fractions from E. cymosa also contribute to its antioxidant and antidiabetic propertiesMethanol fraction of E. cymosa displayed better antidiabetic activities compared to acarbose as revealed by their half maximal inhibitory concentration valuesMethanol fraction of E. cymosa extract contains phytol, hexadecyl oxirane, and stearic acid, which are reported to possess antidiabetic and antioxidant potentials. Abbreviations used: ABTS: 2,2- Azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid, DPPH: 1,1-diphenyl-2-picryl-hydrazyl, PMS: Phenazine methosulfate, NBT: Nitroblue tetrazolium, NADH: Nicotinamide adenine dinucleotide, TCA: Trichloroacetic acid, TBA: Thiobarbituric acid, DNS: Dinitrosalicylic acid. PMID:29142401
Ogundajo, Akintayo; Ashafa, Anofi Tom
2017-10-01
Ehretia cymosa Thonn. is a popular medicinal plant used in different parts of West Africa for the treatment of various ailments including diabetes mellitus. The current study investigates bioactive constituents and in vitro antioxidant and antidiabetic potentials of fractions from extract of E. cymosa . Phytochemical investigation and antioxidant assays were carried out using standard procedures. Antidiabetic potential was assessed by evaluating the inhibitory effects of the fractions on the activities of α-amylase and α-glucosidase, while bioactive constituent's identification was carried out using gas chromatography-mass spectrometric (GC-MS) analysis. The phytochemistry tests of the fractions revealed the presence of tannins, phenols, flavonoids, steroids, terpene, alkaloid, and cardiac glycosides. Methanol fraction shows higher phenolic (27.44 mg gallic acid/g) and flavonoid (235.31 mg quercetin/g) contents, while ethyl acetate fraction revealed higher proanthocyanidins (28.31 mg catechin/g). Methanol fraction displayed higher ( P < 0.05) 1,1-diphenyl-2-picryl-hydrazyl (0.47 mg/mL), 2,2-azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid (0.49 mg/mL), and hydroxyl radical (0.55 mg/mL) scavenging activities, while ethyl acetate exhibited strong metal chelating (0.61 mg/mL) and superoxide anion (1.68 mg/mL) scavenging activity. Methanol and ethyl acetate fractions displayed higher inhibition ( P < 0.05) against α-glucosidase (0.60 mg/mL) and α-amylase (2.11 mg/mL), respectively. Methanol fraction also inhibited α-amylase and α-glucosidase in competitive and noncompetitive modes, respectively. The GC-MS chromatogram of the methanol fraction revealed 24 compounds, which include phytol (1.78%), stearic acid (1.02%), and 2-hexadecyloxirane (34.18%), which are known antidiabetic and antioxidant agents. The results indicate E. cymosa leaves as source of active phytochemicals with therapeutic potentials in the management of diabetes. E. cymosa fractions possess antioxidant and antidiabetic activities. Hence, it is a source of active phytochemicals with therapeutic potentials in the management of diabetesThe high flavonoid, phenolic, and proanthocyanidin contents of fractions from E. cymosa also contribute to its antioxidant and antidiabetic propertiesMethanol fraction of E. cymosa displayed better antidiabetic activities compared to acarbose as revealed by their half maximal inhibitory concentration valuesMethanol fraction of E. cymosa extract contains phytol, hexadecyl oxirane, and stearic acid, which are reported to possess antidiabetic and antioxidant potentials. Abbreviations used: ABTS: 2,2- Azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid, DPPH: 1,1-diphenyl-2-picryl-hydrazyl, PMS: Phenazine methosulfate, NBT: Nitroblue tetrazolium, NADH: Nicotinamide adenine dinucleotide, TCA: Trichloroacetic acid, TBA: Thiobarbituric acid, DNS: Dinitrosalicylic acid.
Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M
2014-01-01
Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties.
Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.
Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook
2016-06-01
Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.
USDA-ARS?s Scientific Manuscript database
Elevated blood branched-chain amin acids (BCAA)are often assoicated with insulin resistance and type2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metaboli...
Potential heat exchange fluids for use in sulfuric acid vaporizers
NASA Technical Reports Server (NTRS)
Lawson, D. D.; Petersen, G. R.
1979-01-01
A series of perhalocarbons are proposed as candidate heat exchange fluids for service in thermochemical cycles for hydrogen production that involve direct contact of the fluid with sulfuric acid and vaporization of the acid. The required chemical and physical criteria of the liquids are described and the results of some preliminary high temperature test data are presented.
Suitability of hardwood treated with phenoxy and pyridine herbicides for firewood use
P.B. Bush; D.G. Neary; Charles K. McMahon; J.W. Taylor
1987-01-01
Abstract. Potential exposure to pesticide residues resulting from burning wood treated with phenoxyand pyridine herbicides was assessed. Wood samples from trees treated with 2,4-D [2,4-dichlo-rophenoxy acetic acid], dicamba [3,6-dichloro-o-anisic acid], dichlorprop [2-(2,4-dichlorphenoxy) propionic acid], picloram [4-amino-3,5,dtrichloropico-linic...
Omega-3 Fatty Acids for Autistic Spectrum Disorder: A Systematic Review
ERIC Educational Resources Information Center
Bent, Stephen; Bertoglio, Kiah; Hendren, Robert L.
2009-01-01
We conducted a systematic review to determine the safety and efficacy of omega-3 fatty acids for autistic spectrum disorder (ASD). Articles were identified by a search of MEDLINE, EMBASE, and the Cochrane Database using the terms autism or autistic and omega-3 fatty acids. The search identified 143 potential articles and six satisfied all…
Type 2 Diabetes and Uric Acid Nephrolithiasis
NASA Astrophysics Data System (ADS)
Maalouf, Naim M.
2008-09-01
Type 2 diabetes is associated with an increased propensity for uric acid nephrolithiasis. In individuals with diabetes, this increased risk is due to a lower urine pH that results from obesity, dietary factors, and impaired renal ammoniagenesis. The epidemiology and pathogenesis of uric acid stone disease in patients with diabetes are hereby reviewed, and potential molecular mechanisms are proposed.