Finite Element Analysis in Concurrent Processing: Computational Issues
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Watson, Brian; Vanderplaats, Garrett
2004-01-01
The purpose of this research is to investigate the potential application of new methods for solving large-scale static structural problems on concurrent computers. It is well known that traditional single-processor computational speed will be limited by inherent physical limits. The only path to achieve higher computational speeds lies through concurrent processing. Traditional factorization solution methods for sparse matrices are ill suited for concurrent processing because the null entries get filled, leading to high communication and memory requirements. The research reported herein investigates alternatives to factorization that promise a greater potential to achieve high concurrent computing efficiency. Two methods, and their variants, based on direct energy minimization are studied: a) minimization of the strain energy using the displacement method formulation; b) constrained minimization of the complementary strain energy using the force method formulation. Initial results indicated that in the context of the direct energy minimization the displacement formulation experienced convergence and accuracy difficulties while the force formulation showed promising potential.
The Utility, Limitations, and Promise of Proteomics in Animal Science
USDA-ARS?s Scientific Manuscript database
Proteomics experiments have the ability to simultaneously identify and quantify potentially thousands of proteins in one experiment. The use of this technology in animal science is still in its infancy, yet it holds significant promise as a method for advancing animal science research. Examples of...
Bakken, Suzanne; Reame, Nancy
2016-01-01
Symptom management research is a core area of nursing science and one of the priorities for the National Institute of Nursing Research, which specifically focuses on understanding the biological and behavioral aspects of symptoms such as pain and fatigue, with the goal of developing new knowledge and new strategies for improving patient health and quality of life. The types and volume of data related to the symptom experience, symptom management strategies, and outcomes are increasingly accessible for research. Traditional data streams are now complemented by consumer-generated (i.e., quantified self) and "omic" data streams. Thus, the data available for symptom science can be considered big data. The purposes of this chapter are to (a) briefly summarize the current drivers for the use of big data in research; (b) describe the promise of big data and associated data science methods for advancing symptom management research; (c) explicate the potential perils of big data and data science from the perspective of the ethical principles of autonomy, beneficence, and justice; and (d) illustrate strategies for balancing the promise and the perils of big data through a case study of a community at high risk for health disparities. Big data and associated data science methods offer the promise of multidimensional data sources and new methods to address significant research gaps in symptom management. If nurse scientists wish to apply big data and data science methods to advance symptom management research and promote health equity, they must carefully consider both the promise and perils.
A simple vitrification method for cryobanking avian testicular tissue
USDA-ARS?s Scientific Manuscript database
Cryopreservation of testicular tissue is a promising method of preserving male reproductive potential for avian species. This study was conducted to assess whether a vitrification method can be used to preserve avian testicular tissue, using the Japanese quail (Coturnix japonica) as a model. A sim...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yubo; Zhang, Jiawei; Wang, Youwei
Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of themore » mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV.« less
Application of near infrared reflectance (NIR) spectroscopy to identify potential PSE meat.
Li, Xiao; Feng, Fang; Gao, Runze; Wang, Lu; Qian, Ye; Li, Chunbao; Zhou, Guanghong
2016-07-01
Pale, soft and exudative (PSE) meat is a quality problem that causes a large economic loss to the pork industry. In the present work, near infrared (NIR) quantification and identification methods were used to investigate the feasibility of differentiating potential PSE meat from normal meat. NIR quantification models were developed to estimate meat pH and colour attributes (L*, a*, b*). Promising results were reported for prediction of muscle pH (R(2) CV = 70.10%, RPDCV = 1.83) and L* (R(2) CV = 77.18%, RPDCV = 1.91), but it is still hard to promote to practical application at this level. The Factorisation Method applied to NIR spectra could differentiate potential PSE meat from normal meat at 3 h post-mortem. Correlation analysis showed significant relationship between NIR data and LF-NMR T2 components that were indicative of water distribution and mobility in muscle. PSE meat had unconventionally faster energy metabolism than normal meat, which caused greater water mobility. NIR spectra coupled with the Factorisation Method could be a promising technology to identify potential PSE meat. The difference in the intensity of H2 O absorbance peaks between PSE and normal meat might be the basis of this identification method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
White, Alec F.; Head-Gordon, Martin; McCurdy, C. William
2017-01-30
The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. Here, we critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the 2Π g shape resonance of N 2 - whichmore » has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We then conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alec F.; Head-Gordon, Martin; McCurdy, C. William
The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. Here, we critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the 2Π g shape resonance of N 2 - whichmore » has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We then conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.« less
RNA Nanostructures – Methods and Protocols | Center for Cancer Research
RNA nanotechnology is a young field with many potential applications. The goal is to utilize designed RNA strands, such that the obtained constructs have specific properties in terms of shape and functionality. RNA has potential functionalities that are comparable to that of proteins, but possesses (compared to proteins) simpler design principles akin to DNA. The promise is
ERIC Educational Resources Information Center
Siegel, Jason T.; Alvaro, Eusebio M.; Jones, Sara Pace
2005-01-01
There is little debate over Hispanics' need for viable organs. Although organ donor registries can potentially assist in alleviating this need, the U.S. Department of Health and Human Services (DHHS) has called on researchers to investigate methods to maximize such potential. This research effort answers the aforementioned call by surveying…
Outsourcing and Libraries--Threat or Promise?
ERIC Educational Resources Information Center
Missingham, Roxanne
1994-01-01
Outsourcing has been proposed as a method for improving effectiveness and productivity in Australian public library service. Developments, drawbacks, and potentials are discussed, and differences between contracting out whole services as opposed to selected activities are examined. (AEF)
Posada, John A; Patel, Akshay D; Roes, Alexander; Blok, Kornelis; Faaij, André P C; Patel, Martin K
2013-05-01
The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, by means of a multi-criteria approach, quantitative and qualitative proxy indicators describing economic, environmental, health and safety and operational aspects. Of twelve derivatives considered, five were categorized as favorable (diethyl ether, 1,3-butadiene, ethyl acetate, propylene and ethylene), two as promising (acetaldehyde and ethylene oxide) and five as unfavorable derivatives (acetic acid, n-butanol, isobutylene, hydrogen and acetone) for an integrated biorefinery concept. Copyright © 2012 Elsevier Ltd. All rights reserved.
RECOVERY OF VOCS FROM SURFACTANT SOLUTION BY PERVAPORATION
Surfactant-based processes are emerging as promising technologies to enhance conventional pump-and-treat methods for remediating soils contaminated with nonaqueous phase liquids (NAPLs), primarily due to the potential to significantly reduce the remediation time. In order to reus...
ERIC Educational Resources Information Center
Boucher, Michael L., Jr.
2017-01-01
The use of photographs in ethnographic education research is an emerging method that promises to enable scholars to collect deeper, more meaningful data from individuals who may otherwise be silenced. When used to empower participants, photo methodologies can remove what Foucault (1980) described as the analytical "gaze," allowing for…
Participatory scenario modeling – an interactive method for visualizing the future – is one of the most promising tools for achieving sustainable land use agreements amongst diverse stakeholder groups. The method has the potential to bridge the gap between the high...
2007-07-01
retina . Our experiments have so far been limited to sheep. Our experiments have been designed to address the following questions: 1. Can ocular spectra...components and reports that the cornea, lens, retina , and optic nerve show promise. Of these, the optic nerve showed the most potential for changes in...investigations so far suggest that the most promising part of the eye for revealing spectroscopic signatures of neurological disease is the retina . Our
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollas, Daniel; Sistik, Lukas; Hohenstein, Edward G.
Here, we show that the floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the widely used complete active space self-consistent field (CASSCF) method in direct nonadiabatic dynamics simulations. We have simulated photodynamics of three archetypal molecules in photodynamics: ethylene, methaniminium cation, and malonaldehyde. We compared the time evolution of electronic populations and reaction mechanisms as revealed by the FOMO-CASCI and CASSCF approaches. Generally, the two approaches provide similar results. Some dynamical differences are observed, but these can be traced back to energetically minor differences in the potential energy surfaces. We suggest thatmore » the FOMO-CASCI method represents, due to its efficiency and stability, a promising approach for direct ab initio dynamics in the excited state.« less
Clinical Potential of Quantum Dots
Iga, Arthur M.; Robertson, John H. P.; Winslet, Marc C.; Seifalian, Alexander M.
2007-01-01
Advances in nanotechnology have led to the development of novel fluorescent probes called quantum dots. Quantum dots have revolutionalized the processes of tagging molecules within research settings and are improving sentinel lymph node mapping and identification in vivo studies. As the unique physical and chemical properties of these fluorescent probes are being unraveled, new potential methods of early cancer detection, rapid spread and therapeutic management, that is, photodynamic therapy are being explored. Encouraging results of optical and real time identification of sentinel lymph nodes and lymph flow using quantum dots in vivo models are emerging. Quantum dots have also superseded many of the limitations of organic fluorophores and are a promising alternative as a research tool. In this review, we examine the promising clinical potential of quantum dots, their hindrances for clinical use and the current progress in abrogating their inherent toxicity. PMID:18317518
Games for health for children—Current status and needed research
USDA-ARS?s Scientific Manuscript database
Videogames for health (G4H) offer exciting, innovative, potentially highly effective methods for increasing knowledge, delivering persuasive messages, changing behaviors, and influencing health outcomes. Although early outcome results are promising, additional research is needed to determine the gam...
Mutual information based feature selection for medical image retrieval
NASA Astrophysics Data System (ADS)
Zhi, Lijia; Zhang, Shaomin; Li, Yan
2018-04-01
In this paper, authors propose a mutual information based method for lung CT image retrieval. This method is designed to adapt to different datasets and different retrieval task. For practical applying consideration, this method avoids using a large amount of training data. Instead, with a well-designed training process and robust fundamental features and measurements, the method in this paper can get promising performance and maintain economic training computation. Experimental results show that the method has potential practical values for clinical routine application.
How Management Information Systems Can Enhance the Air Force Drug Testing Program
1989-12-01
promising processes to positively identify potential system users (46:401). Scope This study will cover issues concerning the Air Force drug testing...7 Scope....................10 Limitations of the Research . . . 10 Investigative Questions ............ 10 Expected Benefits of the Study . . . . 11...Resource Allocation. ....... 41 M1.>ethodology....................44 The Historical Research Method . . .. 44 The Historical Research Method for this Study
The Promise and Potential of Two-Way Immersion in Catholic Schools
ERIC Educational Resources Information Center
Fraga, Luis R.
2016-01-01
Two-Way Immersion (TWI) is a method of instruction designed to facilitate the learning of a second language by non-native speakers. Unlike traditional methods of teaching a second language, TWI is grounded in the equal presence, respect, and value of the two languages and their related cultures. Moreover, the goal of TWI is the building of…
NASA Astrophysics Data System (ADS)
Sahariya, Jagrati; Soni, Amit; Kumar, Pancham
2018-04-01
In this paper, the first principle calculations are performed to analyze the structural, electronic and optical behavior of promising solar materials (Cd,Zn)Ga2Te4. To perform these calculations we have used one of the most accurate Full Potential Linearized Augmented Plane Wave (FP-LAPW) method. The ground state properties of these compounds are confirmed over here after proper examination of energy and charge convergence using Perdew-Burke-Ernzerhof (PBE-sol) exchange correlation potential. The investigations performed such as energy band structure, Density of States (DOS), optical parameters like complex dielectric function and absorption co-efficient are discussed over here to understand the overall response of the chosen system.
Clinical Trials Methods for Evaluation of Potential Reduced Exposure Products
Hatsukami, Dorothy K.; Hanson, Karen; Briggs, Anna; Parascandola, Mark; Genkinger, Jeanine M.; O'Connor, Richard; Shields, Peter
2009-01-01
Potential reduced exposure tobacco products (PREPs) may have promise in reducing tobacco-related morbidity or mortality or may promote greater harm to individuals or the population. Critical to determining the risks or benefits from these products are valid human clinical trial PREP assessment methods. Assessment involves determining the effects of these products on biomarkers of exposure and of effect, which serve as proxies for harm, and assessing the potential for consumer uptake and abuse of the product. This article raises the critical methodological issues associated with PREP assessment, reviews the methods that have been used to assess PREPs, and describes the strengths and limitations of these methods. Additionally, recommendations for clinical trials PREP assessment methods and future research directions in this area based on this review and on the deliberations from a National Cancer Institute sponsored Clinical Trials PREP Methods Workshop are provided. PMID:19959672
Fatima, Nighat; Mukhtar, Usman; Ihsan-Ul-Haq; Ahmed Qazi, Muneer; Jadoon, Muniba; Ahmed, Safia
2016-01-01
Background The endophytes of medicinal plants, such as Justicia adhatoda L., represent a promising and largely underexplored domain that is considered as a repository of biologically active compounds. Objectives The aim of present study was isolation, identification, and biological evaluation of endophytic fungi associated with the J. adhatoda L. plant for the production of antimicrobial, antioxidant, and cytotoxic compounds Materials and Methods Endophytic fungi associated with the J. adhatoda L. plant were isolated from healthy plant parts and taxonomically characterized through morphological, microscopic, and 18S rDNA sequencing methods. The screening for bioactive metabolite production was achieved using ethyl acetate extracts, followed by the optimization of different parameters for maximum production of bioactive metabolites. Crude and partially purified extracts were used to determine the antimicrobial, antioxidant, and cytotoxic potential Results Out of six endophytic fungal isolates, Chaetomium sp. NF15 showed the most promising biological activity and was selected for detailed study. The crude ethyl acetate extract of NF15 isolate after cultivation under optimized culture conditions showed promising antimicrobial activity, with significant inhibition of the clinical isolates of Staphylococcus aureus (87%, n=42), Pseudomonas aeruginosa (> 85%, n = 41), and Candida albicans (62%, n = 24). Conclusions The present study confirms the notion of selecting endophytic fungi of medicinal plant Justicia for the bioassay-guided isolation of its bioactive compounds, and demonstrates that endophytic fungus Chaetomium sp. NF15 could be a potential source of bioactive metabolites PMID:27635208
Promising Themes for Antismoking Campaigns Targeting Youth and Young Adults
Brennan, Emily; Gibson, Laura A.; Kybert-Momjian, Ani; Liu, Jiaying; Hornik, Robert C.
2017-01-01
Objectives Behavior change campaigns typically try to change beliefs that influence behaviors, with targeted beliefs comprising the campaign theme. We present an empirical approach for choosing among a large number of potential themes, and results from the implementation of this approach for campaigns aimed at 4 behavioral targets: (1) preventing smoking initiation among youth, and (2) preventing initiation, (3) stopping progression to daily smoking and (4) encouraging cessation among young adults. Methods An online survey of 13- to 17-year-olds and 18- to 25-year-olds in the United States (US), in which 20 potential campaign themes were represented by 154 beliefs. For each behavioral target, themes were ranked based on the strength of belief-intention and belief-behavior associations and size of the population not already endorsing the beliefs. Results The most promising themes varied across behavioral targets but 3 were consistently promising: consequences of smoking for mood, social acceptance and social popularity. Conclusions Using a robust and systematic approach, this study provides campaign developers with empirical data to inform their selection of promising themes. Findings related to the campaign to prevent initiation among youth informed the development of the US Food and Drug Administration’s “The Real Cost” campaign. PMID:28989949
Ozeki, Tetsuya; Tagami, Tatsuaki
2013-01-01
The development of drug nanoparticles has attracted substantial attention because of their potential to improve the dissolution rate and oral availability of poorly water-soluble drugs. This review summarizes the recent articles that discussed nanoparticle-based oral drug delivery systems. The preparation methods were categorized as top-down and bottom-up methods, which are common methods for preparing drug nanoparticles. In addition, methods of handling drug nanoparticles (e.g., one-step preparation of nanocomposites which are microparticles containing drug nanoparticles) were introduced for the effective preservation of drug nanoparticles. The carrier-based preparation of drug nanoparticles was also introduced as a potentially promising oral drug delivery system.
A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens
Posada, Francisco J.; Vega, Fernando E.
2005-01-01
Fifty Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains isolated from the coffee berry borer were used to develop a novel screening method aimed at selecting strains with the highest biocontrol potential. The screening method is based on percent insect mortality, average survival time, mortality distribution, percent spore germination, fungal life cycle duration, and spore production on the insect. Based on these parameters, only 11 strains merited further study. The use of a sound scientific protocol for the selection of promising fungal entomopathogens should lead to more efficient use of time, labor, and financial resources in biological control programs. PMID:17119619
Microfluidic devices to enrich and isolate circulating tumor cells
Myung, J. H.; Hong, S.
2015-01-01
Given the potential clinical impact of circulating tumor cells (CTCs) in blood as a clinical biomarker for diagnosis and prognosis of various cancers, a myriad of detection methods for CTCs have been recently introduced. Among those, a series of microfluidic devices are particularly promising as these uniquely offer micro-scale analytical systems that are highlighted by low consumption of samples and reagents, high flexibility to accommodate other cutting-edge technologies, precise and well-defined flow behaviors, and automation capability, presenting significant advantages over the conventional larger scale systems. In this review, we highlight the advantages of microfluidic devices and their translational potential into CTC detection methods, categorized by miniaturization of bench-top analytical instruments, integration capability with nanotechnologies, and in situ or sequential analysis of captured CTCs. This review provides a comprehensive overview of recent advances in the CTC detection achieved through application of microfluidic devices and their challenges that these promising technologies must overcome to be clinically impactful. PMID:26549749
Perez, Jessica R; Lee, Sangkyu; Ybarra, Norma; Maria, Ola; Serban, Monica; Jeyaseelan, Krishinima; Wang, Li Ming; Seuntjens, Jan; Naqa, Issam El
2017-08-22
Radiation-induced pulmonary fibrosis (RIPF) is a debilitating side effect that occurs in up to 30% of thoracic irradiations in breast and lung cancer patients. RIPF remains a major limiting factor to dose escalation and an obstacle to applying more promising new treatments for cancer cure. Limited treatment options are available to mitigate RIPF once it occurs, but recently, mesenchymal stem cells (MSCs) and a drug treatment stimulating endogenous stem cells (GM-CSF) have been investigated for their potential in preventing this disease onset. In a pre-clinical rat model, we contrasted the application of longitudinal computed tomography (CT) imaging and classical histopathology to quantify RIPF and to evaluate the potential of MSCs in mitigating RIPF. Our results on histology demonstrate promises when MSCs are injected endotracheally (but not intravenously). While our CT analysis highlights the potential of GM-CSF treatment. Advantages and limitations of both analytical methods are contrasted in the context of RIPF.
NASA Technical Reports Server (NTRS)
Lagow, R. J.; Dumitru, E. T.
1982-01-01
The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. These membranes were successfully fluorinated and are potentially competitive with commercial membranes in performance, and potentially much cheaper in price.
ERIC Educational Resources Information Center
Smith, Leigh K.; Draper, Roni Jo; Sabey, Brenda L.
2005-01-01
This qualitative study examined the use of WebQuests as a teaching tool in problem-based elementary methods courses. We explored the potential of WebQuests to address three dilemmas faced in teacher education: (a) modeling instruction that is based on current learning theory and research-based practices, (b) providing preservice teachers with…
NASA Astrophysics Data System (ADS)
Pirsalami, Sedigheh; Zebarjad, Seyed Mojtaba; Daneshmanesh, Habib
2017-08-01
Transparent conductors (TCs) have a wide range of applications in numerous electronic and optoelectronic devices. This review provides an overview of the emergence of metallic nanowire networks (MNNs) as promising building blocks for the next generation transparent conductors. The fundamental aspects, structure-property relations, fabrication techniques and the corresponding challenges are reviewed. Theoretical and experimental researches suggest that nanowires with smaller diameter, longer length and higher aspect ratio have higher performance. Yet, the development of an efficient synthesis technique for the production of MNNs has remained a challenge. The synthesis method is also crucial to the scalability and the commercial potential of these emerging TCs. The most promising techniques for the synthesis together with their advantages, limitations and the recent findings are here discussed. Finally, we will try to show the promising future research trends in MNNs to have an approach to design the next generation TCs.
Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.
Ren, Jiangtao; Zhao, Yangbing
2017-09-01
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR) T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.
Intuition versus rational thinking: psychological challenges in radiology and a potential solution.
Marcovici, Peter; Blume-Marcovici, Amy
2013-01-01
Humans think overwhelmingly intuitively rather than rationally. We perceive what is apparent to us and attribute differences in perception to the fault of others. Many cognitive biases are unconscious, and we assume they affect others more than ourselves. Radiologists should understand these limitations and seek methods to address them. A potential method is the checklist, which has been used to improve consistency and quality both outside and within medicine. Structured reporting can serve as a checklist and, although promising, has yet to widely demonstrate benefits. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Supermarket sales data: feasibility and applicability in population food and nutrition monitoring.
Tin, Sandar Tin; Mhurchu, Cliona Ni; Bullen, Chris
2007-01-01
Population food and nutrition monitoring plays a critical role in understanding suboptimal nutrition at the population level, yet current monitoring methods such as national surveys are not practical to undertake on a continuous basis. Supermarket sales data potentially address this gap by providing detailed, timely, and inexpensive monitoring data for informing policies and anticipating trends. This paper reviews 22 studies that used supermarket sales data to examine food purchasing patterns. Despite some methodological limitations, feasibility studies showed promising results. The potential and limitations of using supermarket sales data to supplement food and nutrition monitoring methods are discussed.
Electronic-nose devices - Potential for noninvasive early disease-detection applications
Alphus Dan Wilson
2017-01-01
Significant progress in the development of portable electronic devices is showing considerable promise to facilitate clinical diagnostic processes. The increasing global trend of shifts in healthcare policies and priorities toward shortening and improving the effectiveness of diagnostic procedures by utilizing non-invasive methods should provide multiple benefits of...
Topographic Brain Mapping: A Window on Brain Function?
ERIC Educational Resources Information Center
Karniski, Walt M.
1989-01-01
The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…
Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chaochao; Duan, Jicheng; Liu, Tao
2016-05-01
Human biofluids, especially blood plasma or serum, hold great potential as the sources of potential biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge to detect promising low-abundance protein biomarkers. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high and moderate-abundance proteins, thus enabling more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomics applications of different human biofluids. The limitations and future perspective of immunoaffinity separationmore » methods are also discussed.« less
Standoff detection: distinction of bacteria by hyperspectral laser induced fluorescence
NASA Astrophysics Data System (ADS)
Walter, Arne; Duschek, Frank; Fellner, Lea; Grünewald, Karin M.; Hausmann, Anita; Julich, Sandra; Pargmann, Carsten; Tomaso, Herbert; Handke, Jürgen
2016-05-01
Sensitive detection and rapid identification of hazardous bioorganic material with high sensitivity and specificity are essential topics for defense and security. A single method can hardly cover these requirements. While point sensors allow a highly specific identification, they only provide localized information and are comparatively slow. Laser based standoff systems allow almost real-time detection and classification of potentially hazardous material in a wide area and can provide information on how the aerosol may spread. The coupling of both methods may be a promising solution to optimize the acquisition and identification of hazardous substances. The capability of the outdoor LIF system at DLR Lampoldshausen test facility as an online classification tool has already been demonstrated. Here, we present promising data for further differentiation among bacteria. Bacteria species can express unique fluorescence spectra after excitation at 280 nm and 355 nm. Upon deactivation, the spectral features change depending on the deactivation method.
Feeling lucky? Using search engines to assess perceptions of urban sustainability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keirstead, James
2009-02-15
The sustainability of urban environments is an important issue at both local and international scales. Indicators are frequently used by decision-makers seeking to improve urban performance but these metrics can be dependent on sparse quantitative data. This paper explores the potential of an alternative approach, using an internet search engine to quickly gather qualitative data on the key attributes of cities. The method is applied to 21 world cities and the results indicate that, while the technique does shed light on direct and indirect aspects of sustainability, the validity of derived metrics as objective indicators of long-term sustainability is questionable.more » However the method's ability to provide subjective short-term assessments is more promising and it could therefore play an important role in participatory policy exercises such as public consultations. A number of promising technical improvements to the method's performance are also highlighted.« less
Low-cost, light-switched, forward-osmosis desalination system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, John C.
The looming water crisis is the second largest issue facing humanity after energy. In order to meet the increasing demand for clean water, new efficient and low-cost methods of water purification must be developed. A promising method for dry regions with sea borders is the desalination of seawater. While there remain many disadvantages to current desalination techniques, such as environmental pollution and high cost, there is a strong opportunity for new technology development in this area. In this Phase I program, the development of a light-switchable, low-cost desalination system was explored. The system requires photoselective switching of water solubility. Ninemore » new light-switchable spiropyran-based small molecule and polymeric materials were synthesized, and methods to evaluate their desalination potential were developed and utilized. Severable promising spiropyran analogues proved to be photoswitchable, but so far sufficient photoswitchablity of solubility for a commercial desalination system was not achieved. More development is required.« less
Nanostructures as promising tools for delivery of antimicrobial peptides.
Brandelli, A
2012-07-01
Antimicrobial peptides have been extensively investigated for their potential applications as therapeutics and food biopreservatives. The antimicrobial activity may be impaired by the susceptibility for proteolytic degradation and undesirable interactions of the antimicrobial peptide in the biological environment. Development of nanostructures for entrapment and delivery of antimicrobial peptides may represent an alternative to the direct application of these substances. Lipid nanovesicles have been developed for encapsulation of antimicrobial peptides. Phosphatidylcholine is often employed in liposome manufacture, which is mostly achieved by the thin-film hydration method. Nanofibers may allow different physical modes of drug loading, including direct adsorption on the nanofiber surface or the assembly of drug-loaded nanoparticles. Self-assembled peptides reveal attractive features as nanostructures for applications in drug delivery and promising as antimicrobial agent for treatment of brain infections. Magnetic nanoparticles and nanotubules are also potential structures for entrapment of antimicrobial peptides. Nanoparticles can be also chemically modified with specific cell surface ligands to enhance cell adhesion and site specific delivery. This article reviews the most important nanostructures as promising tools for peptide delivery systems.
DNA Base-Calling from a Nanopore Using a Viterbi Algorithm
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-01-01
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (∼98%), even with a poor signal/noise ratio. PMID:22677395
ABSTRACT: There are thousands of environmental chemicals subject to regulatory decisions for endocrine disrupting potential. A promising approach to manage this large universe of untested chemicals is to use a prioritization filter that combines in vitro assays with in silico QSA...
Next Steps for "Big Data" in Education: Utilizing Data-Intensive Research
ERIC Educational Resources Information Center
Dede, Chris
2016-01-01
Data-informed instructional methods offer tremendous promise for increasing the effectiveness of teaching, learning, and schooling. Yet-to-be-developed data science approaches have the potential to dramatically advance instruction for every student and to enhance learning for people of all ages. Next steps that emerged from a recent National…
Comparison of Web-Based and Face-to-Face Standard Setting Using the Angoff Method
ERIC Educational Resources Information Center
Katz, Irvin R.; Tannenbaum, Richard J.
2014-01-01
Web-based standard setting holds promise for reducing the travel and logistical inconveniences of traditional, face-to-face standard setting meetings. However, because there are few published reports of setting standards via remote meeting technology, little is known about the practical potential of the approach, including technical feasibility of…
Feasibility of Jujube peeling using novel infrared radiation heating technology
USDA-ARS?s Scientific Manuscript database
Infrared (IR) radiation heating has a promising potential to be used as a sustainable and effective method to eliminate the use of water and chemicals in the jujube-peeling process and enhance the quality of peeled products. The objective of this study was to investigate the feasibility of use IR he...
Jin, Yu; Kong, Jian
2017-01-01
Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain regions associated with Autism Spectrum Disorder (ASD), trigger neuroimmune modulation and produce treatment effects for comorbid disorders of ASD such as epilepsy and depression. We thus hypothesize that tVNS may be a promising treatment for ASD, not only for comorbid epilepsy and depression, but also for the core symptoms of ASD. The goal of this manuscript is to summarize the findings and rationales for applying tVNS to treat ASD and propose potential parameters for tVNS treatment of ASD. PMID:28163670
NASA Astrophysics Data System (ADS)
Jeong, Chan Jin; Roy, Arup Kumer; Kim, Sung Han; Lee, Jung-Eun; Jeong, Ji Hoon; Insik; Park, Sung Young
2014-11-01
Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04805a
Establishing an ISO 10001-based promise in inpatients care.
Khan, Mohammad Ashiqur Rahman; Karapetrovic, Stanislav
2015-01-01
The purpose of this paper is to explore ISO 10001:2007 in planning, designing and developing a customer satisfaction promise (CSP) intended for inpatients care. Through meetings and interviews with research participants, who included a program manager, unit managers and registered nurses, information about potential promises and their implementation was obtained and analyzed. A number of promises were drafted and one was finally selected to be developed as a CSP. Applying the standard required adaptation and novel interpretation. Additionally, ISO 10002:2004 (Clause 7) was used to design the feedback handling activities. A promise initially chosen for development turned out to be difficult to implement, experience that helped in selecting and developing the final promise. Research participants found the ISO 10001-based method useful and comprehensible. This paper presents a specific health care example of how to adapt a standard's guideline in establishing customer promises. The authors show how a promise can be used in alleviating an existing issue (i.e. communication between carers and patients). The learning can be beneficial in various health care settings. To the knowledge, this paper shows the first example of applying ISO 10001:2007 in a health care case. A few activities suggested by the standard are further detailed, and a new activity is introduced. The integrated use of ISO 10001:2007 and 10002:2004 is presented and how one can be "augmented" by the other is demonstrated.
Methods for Generating Hydrogel Particles for Protein Delivery
Liu, Allen L.; García, Andrés J.
2016-01-01
Proteins represent a major class of therapeutic molecules with vast potential for the treatment of acute and chronic diseases and regenerative medicine applications. Hydrogels have long been investigated for their potential in carrying and delivering proteins. As compared to bulk hydrogels, hydrogel microparticles (microgels) hold promise in improving aspects of delivery owing to their less traumatic route of entry into the body and improved versatility. This review discusses common methods of fabricating microgels, including emulsion polymerization, microfluidic techniques, and lithographic techniques. Microgels synthesized from both natural and synthetic polymers are discussed, as are a series of microgels fashioned from environment-responsive materials. PMID:27160672
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
Here, at room temperature and above, most magnetic materials adopt a spin-disordered (paramagnetic) state whose electronic properties can differ significantly from their low-temperature, spin-ordered counterparts. Yet computational searches for new functional materials usually assume some type of magnetic order. In the present work, we demonstrate a methodology to incorporate spin disorder in computational searches and predict the electronic properties of the paramagnetic phase. We implement this method in a high-throughput framework to assess the potential for thermoelectric performance of 1350 transition-metal sulfides and find that all magnetic systems we identify as promising in the spin-ordered ground state cease to bemore » promising in the paramagnetic phase due to disorder-induced deterioration of the charge carrier transport properties. We also identify promising non-magnetic candidates that do not suffer from these spin disorder effects. In addition to identifying promising materials, our results offer insights into the apparent scarcity of magnetic systems among known thermoelectrics and highlight the importance of including spin disorder in computational searches.« less
Nyman, Samuel R; Adamczewska, Natalia; Howlett, Neil
2018-02-01
The objective of this study was to systematically review the evidence for the potential promise of behaviour change techniques (BCTs) to increase physical activity among people with dementia (PWD). PsychINFO, MEDLINE, CINAHL, and the Cochrane Central Register of Controlled Trials databases were searched 01/01/2000-01/12/2016. Randomized controlled/quasi-randomized trials were included if they recruited people diagnosed/suspected to have dementia, used at least one BCT in the intervention arm, and had at least one follow-up measure of physical activity/adherence. Studies were appraised using the Cochrane Collaboration Risk of Bias Tool, and BCTs were coded using Michie et al., 2013, Annals of Behavioral Medicine, 46, 81. taxonomy. Intervention findings were narratively synthesized as either 'very promising', 'quite promising', or 'non-promising', and BCTs were judged as having potential promise if they featured in at least twice as many very/quite promising than non-promising interventions (as per Gardner et al., 2016, Health Psychology Review, 10, 89). Nineteen articles from nine trials reported physical activity findings on behavioural outcomes (two very promising, one quite promising, and two non-promising) or intervention adherence (one quite promising and four non-promising). Thirteen BCTs were used across the interventions. While no BCT had potential promise to increase intervention adherence, three BCTs had potential promise for improving physical activity behaviour outcomes: goal setting (behaviour), social support (unspecified), and using a credible source. Three BCTs have potential promise for use in future interventions to increase physical activity among PWD. Statement of contribution What is already known on this subject? While physical activity is a key lifestyle factor to enhance and maintain health and wellbeing amongst the general population, adults rarely participate in sufficient levels to obtain these benefits. Systematic reviews suggest that specific behaviour change techniques can increase physical activity, although one review suggested that self-regulatory techniques may be counterproductive when promoting physical activity among older people. Until now, no systematic review has been conducted to assess which behaviour change techniques may be associated with greater participation in physical activity among people with dementia. What does this study add? Interventions showed mixed promise for increasing physical activity and little effect on participant adherence. Goal setting (behaviour), social support (unspecified), and using a credible source are promising approaches. No technique showed promise for increasing adherence to physical activity interventions among people with dementia. © 2017 The British Psychological Society.
One‐dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting
Ge, Mingzheng; Li, Qingsong; Cao, Chunyan; Huang, Jianying; Li, Shuhui; Zhang, Songnan; Chen, Zhong; Zhang, Keqin; Al‐Deyab, Salem S.
2016-01-01
Hydrogen production from water splitting by photo/photoelectron‐catalytic process is a promising route to solve both fossil fuel depletion and environmental pollution at the same time. Titanium dioxide (TiO2) nanotubes have attracted much interest due to their large specific surface area and highly ordered structure, which has led to promising potential applications in photocatalytic degradation, photoreduction of CO2, water splitting, supercapacitors, dye‐sensitized solar cells, lithium‐ion batteries and biomedical devices. Nanotubes can be fabricated via facile hydrothermal method, solvothermal method, template technique and electrochemical anodic oxidation. In this report, we provide a comprehensive review on recent progress of the synthesis and modification of TiO2 nanotubes to be used for photo/photoelectro‐catalytic water splitting. The future development of TiO2 nanotubes is also discussed. PMID:28105391
1994-04-25
103070൚I1, Wohinuoan. oc 20603. 1. AGENCY USE ONLY ILaevo NW) j2. REPORT DATE 3. REPORT TYPE AND DATES COVERED I April 25, 1994 4. TITLE AND SUBTITLE 5...effectively use the radiation of the Na pinch to fully ionize this window and thereby reduce its absorption. One of the most attractive methods to...vacancies is explored. The use of thin multiple layers is a potentially promising method of obtaining information about ionization and (possibly) also
Machine Learning Applications to Resting-State Functional MR Imaging Analysis.
Billings, John M; Eder, Maxwell; Flood, William C; Dhami, Devendra Singh; Natarajan, Sriraam; Whitlow, Christopher T
2017-11-01
Machine learning is one of the most exciting and rapidly expanding fields within computer science. Academic and commercial research entities are investing in machine learning methods, especially in personalized medicine via patient-level classification. There is great promise that machine learning methods combined with resting state functional MR imaging will aid in diagnosis of disease and guide potential treatment for conditions thought to be impossible to identify based on imaging alone, such as psychiatric disorders. We discuss machine learning methods and explore recent advances. Copyright © 2017 Elsevier Inc. All rights reserved.
miRNAs as potential therapeutic targets for age-related macular degeneration.
Wang, Shusheng; Koster, Kyle M; He, Yuguang; Zhou, Qinbo
2012-03-01
Since their recent discovery, miRNAs have been shown to play critical roles in a variety of pathophysiological processes. Such processes include pathological angiogenesis, the oxidative stress response, immune response and inflammation, all of which have been shown to have important and interdependent roles in the pathogenesis and progression of age-related macular degeneration (AMD). Here we present a brief review of the pathological processes involved in AMD and review miRNAs and other noncoding RNAs involved in regulating these processes. Specifically, we discuss several candidate miRNAs that show promise as AMD therapeutic targets due to their direct involvement in choroidal neovascularization or retinal pigment epithelium atrophy. We discuss potential miRNA-based therapeutics and delivery methods for AMD and provide future directions for the field of miRNA research with respect to AMD. We believe the future of miRNAs in AMD therapy is promising.
NLEAP/GIS approach for identifying and mitigating regional nitrate-nitrogen leaching
Shaffer, M.J.; Hall, M.D.; Wylie, B.K.; Wagner, D.G.; Corwin, D.L.; Loague, K.
1996-01-01
Improved simulation-based methodology is needed to help identify broad geographical areas where potential NO3-N leaching may be occurring from agriculture and suggest management alternatives that minimize the problem. The Nitrate Leaching and Economic Analysis Package (NLEAP) model was applied to estimate regional NO3-N leaching in eastern Colorado. Results show that a combined NLEAP/GIS technology can be used to identify potential NO3-N hot spots in shallow alluvial aquifers under irrigated agriculture. The NLEAP NO3-N Leached (NL) index provided the most promising single index followed by NO3-N Available for Leaching (NAL). The same combined technology also shows promise in identifying Best Management Practice (BMP) methods that help minimize NO3-N leaching in vulnerable areas. Future plans call for linkage of the NLEAP/GIS procedures with groundwater modeling to establish a mechanistic analysis of agriculture-aquifer interactions at a regional scale.
Documenting Instructional Practices in Large Introductory STEM Lecture Courses
NASA Astrophysics Data System (ADS)
Vu, Viet Quoc
STEM education reform in higher education is framed around the need to improve student learning outcomes, increase student retention, and increase the number of underrepresented minorities and female students in STEM fields, all of which would ultimately contribute to America's competitiveness and prosperity. To achieve these goals, education reformers call for an increase in the adoption of research-based "promising practices" in classrooms. Despite efforts to increase the adoption of more promising practices in classrooms, postsecondary instructors are still likely to lecture and use traditional teaching approaches. To shed light on this adoption dilemma, a mix-methods study was conducted. First, instructional practices in large introductory STEM courses were identified, followed by an analysis of factors that inhibit or contribute to the use of promising practices. Data were obtained from classroom observations (N = 259) of large gateway courses across STEM departments and from instructor interviews (N = 67). Results show that instructors are already aware of promising practices and that change strategies could move from focusing on the development and dissemination of promising practices to focusing on improving adoption rates. Teaching-track instructors such as lecturers with potential for security of employment (LPSOE) and lecturers with security of employment (LSOE) have adopted promising practices more than other instructors. Interview data show that LPSOEs are also effective at disseminating promising practices to their peers, but opinion leaders (influential faculty in a department) are necessary to promote adoption of promising practices by higher ranking instructors. However, hiring more LPSOEs or opinion leaders will not be enough to shift instructional practices. Variations in the adoption of promising practices by instructors and across departments show that any reform strategy needs to be systematic and take into consideration how information is shared through communication channels, the adoption decision-making process by potential adopters, and the contextual barriers and drivers of adoption. Additionally, the strategy should be designed with multiple stages, with each stage given time for changes to have an effect. Taking a one-size fits all approach to STEM education reform will not work and may only perpetuate the cycle of non-adoption and continued use of teacher-centered instructional practices.
Elastic Face, An Anatomy-Based Biometrics Beyond Visible Cue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Zhang, Y; Kundu, S J
2004-03-29
This paper describes a face recognition method that is designed based on the consideration of anatomical and biomechanical characteristics of facial tissues. Elastic strain pattern inferred from face expression can reveal an individual's biometric signature associated with the underlying anatomical structure, and thus has the potential for face recognition. A method based on the continuum mechanics in finite element formulation is employed to compute the strain pattern. Experiments show very promising results. The proposed method is quite different from other face recognition methods and both its advantages and limitations, as well as future research for improvement are discussed.
DNA base-calling from a nanopore using a Viterbi algorithm.
Timp, Winston; Comer, Jeffrey; Aksimentiev, Aleksei
2012-05-16
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor signal/noise ratio. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Wei, Dongshan; Wang, Feng
2010-08-28
The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.
NASA Astrophysics Data System (ADS)
Wei, Dongshan; Wang, Feng
2010-08-01
The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.
Current Options for the Treatment of Food Allergy
Lanser, Bruce J.; Wright, Benjamin L.; Orgel, Kelly A.; Vickery, Brian P.; Fleischer, David M.
2016-01-01
Food allergy is increasing in prevalence; as a result, there is intense focus on developing safe and effective therapies. Current methods of specific immunotherapy include oral, sublingual, and epicutaneous, while nonspecific methods that have been investigated include: Chinese herbal medicine, probiotics, and anti-IgE antibodies. Although some studies have demonstrated efficacy in inducing desensitization, questions regarding safety and the potential for achieving immune tolerance remain. Although some of these therapies demonstrate promise, further investigation is required before their incorporation into routine clinical practice. PMID:26456449
Diken, Mustafa; Pektor, Stefanie; Miederer, Matthias
2016-10-01
Preclinical imaging has become a powerful method for investigation of in vivo processes such as pharmacokinetics of therapeutic substances and visualization of physiologic and pathophysiological mechanisms. These are important aspects to understand diseases and develop strategies to modify their progression with pharmacologic interventions. One promising intervention is the application of specifically tailored nanoscale particles that modulate the immune system to generate a tumor targeting immune response. In this complex interaction between immunomodulatory therapies, the immune system and malignant disease, imaging methods are expected to play a key role on the way to generate new therapeutic strategies. Here, we summarize examples which demonstrate the current potential of imaging methods and develop a perspective on the future value of preclinical imaging of the immune system.
Haisma, H J; de Hon, O
2006-04-01
Together with the rapidly increasing knowledge on genetic therapies as a promising new branch of regular medicine, the issue has arisen whether these techniques might be abused in the field of sports. Previous experiences have shown that drugs that are still in the experimental phases of research may find their way into the athletic world. Both the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) have expressed concerns about this possibility. As a result, the method of gene doping has been included in the list of prohibited classes of substances and prohibited methods. This review addresses the possible ways in which knowledge gained in the field of genetic therapies may be misused in elite sports. Many genes are readily available which may potentially have an effect on athletic performance. The sporting world will eventually be faced with the phenomena of gene doping to improve athletic performance. A combination of developing detection methods based on gene arrays or proteomics and a clear education program on the associated risks seems to be the most promising preventive method to counteract the possible application of gene doping.
The potential for trichogramma releases to suppress tip moth populations in pine plantations
David B. Orr; Charles P.-C Suh; Michael Philip; Kenneth W. McCravy; Gary L. DeBarr
1999-01-01
Because the Nantucket pine tip moth is a native pest, augmentation (mass-release) of native natural enemies may be the most promising method of tip moth biocontrol. The tip moth has several important egg, larval, and pupal parasitoids. Egg parasitoids are most effective as biocontrol agents because they eliminate the host before it reaches a damaging stage....
Graversen, Veronica Kon; Chavala, Sai H
2016-01-01
Reprogramming fibroblasts into induced pluripotent stem cells (iPSC) remains a promising technique for cell replacement therapy. Diverse populations of somatic cells have been examined for their reprogramming potential. Recently, ocular ciliary body epithelial cells (CECs) have been reprogrammed with high reprogramming efficiency and single transcription factor reprogramming, making them an exciting candidate for cellular reprogramming strategies.
Place Matters: A Mixed Methods Case Study of Institutional Place-Building in Higher Education
ERIC Educational Resources Information Center
Raykes, Jeffrey Stuart
2017-01-01
Colleges and universities are being increasingly recognized as key contributors to the well-being of the places in which they are located. However, in spite of the promise and potential of place-based engagement, there is little agreement about what place and place-building means or how these concepts can be operationalized in within the context…
USDA-ARS?s Scientific Manuscript database
Leafy greens continue to be a significant vector for foodborne pathogens, including Escherichia coli O157:H7. Dielectric barrier discharge atmospheric cold plasma (ACP) treatment is a promising method for microbial decontamination of produce. An important aspect of this technology is the potential f...
Lindborg, Beth A; Brekke, John H; Vegoe, Amanda L; Ulrich, Connor B; Haider, Kerri T; Subramaniam, Sandhya; Venhuizen, Scott L; Eide, Cindy R; Orchard, Paul J; Chen, Weili; Wang, Qi; Pelaez, Francisco; Scott, Carolyn M; Kokkoli, Efrosini; Keirstead, Susan A; Dutton, James R; Tolar, Jakub; O'Brien, Timothy D
2016-07-01
Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. ©AlphaMed Press.
Computational tools for comparative phenomics; the role and promise of ontologies
Gkoutos, Georgios V.; Schofield, Paul N.; Hoehndorf, Robert
2012-01-01
A major aim of the biological sciences is to gain an understanding of human physiology and disease. One important step towards such a goal is the discovery of the function of genes that will lead to better understanding of the physiology and pathophysiology of organisms ultimately providing better understanding, diagnosis, and therapy. Our increasing ability to phenotypically characterise genetic variants of model organisms coupled with systematic and hypothesis-driven mutagenesis is resulting in a wealth of information that could potentially provide insight to the functions of all genes in an organism. The challenge we are now facing is to develop computational methods that can integrate and analyse such data. The introduction of formal ontologies that make their semantics explicit and accessible to automated reasoning promises the tantalizing possibility of standardizing biomedical knowledge allowing for novel, powerful queries that bridge multiple domains, disciplines, species and levels of granularity. We review recent computational approaches that facilitate the integration of experimental data from model organisms with clinical observations in humans. These methods foster novel cross species analysis approaches, thereby enabling comparative phenomics and leading to the potential of translating basic discoveries from the model systems into diagnostic and therapeutic advances at the clinical level. PMID:22814867
The Application of Sheet Technology in Cartilage Tissue Engineering.
Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei
2016-04-01
Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.
Aptamer-Based Analysis: A Promising Alternative for Food Safety Control
Amaya-González, Sonia; de-los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J.; Lobo-Castañón, Maria Jesús
2013-01-01
Ensuring food safety is nowadays a top priority of authorities and professional players in the food supply chain. One of the key challenges to determine the safety of food and guarantee a high level of consumer protection is the availability of fast, sensitive and reliable analytical methods to identify specific hazards associated to food before they become a health problem. The limitations of existing methods have encouraged the development of new technologies, among them biosensors. Success in biosensor design depends largely on the development of novel receptors with enhanced affinity to the target, while being stable and economical. Aptamers fulfill these characteristics, and thus have surfaced as promising alternatives to natural receptors. This Review describes analytical strategies developed so far using aptamers for the control of pathogens, allergens, adulterants, toxins and other forbidden contaminants to ensure food safety. The main progresses to date are presented, highlighting potential prospects for the future. PMID:24287543
Cardiac gene therapy: Recent advances and future directions.
Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa
2015-10-10
Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart. Copyright © 2015 Elsevier B.V. All rights reserved.
Radio-frequency Electrometry Using Rydberg Atoms in Vapor Cells: Towards the Shot Noise Limit
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Fan, Haoquan; Jahangiri, Akbar; Kuebler, Harald; Shaffer, James P.; 5. Physikalisches Institut, Universitat Stuttgart, Germany Collaboration
2016-05-01
Rydberg atoms are a promising candidate for radio frequency (RF) electric field sensing. Our method uses electromagnetically induced transparency with Rydberg atoms in vapor cells to read out the effect that the RF electric field has on the Rydberg atoms. The method has the potential for high sensitivity (pV cm-1 Hz- 1 / 2) and can be self-calibrated. Some of the main factors limiting the sensitivity of RF electric field sensing from reaching the shot noise limit are the residual Doppler effect and the sensitivity of the optical read-out using the probe laser. We present progress on overcoming the residual Doppler effect by using a new multi-photon scheme and reaching the shot noise detection limit using frequency modulated spectroscopy. Our experiments also show promise for studying quantum optical effects such as superradiance in vapor cells using Rydberg atoms. This work is supported by DARPA, ARO, and NRO.
Borycki, Elizabeth M; Kushniruk, Andre W; Kuwata, Shigeki; Kannry, Joseph
2011-01-01
Electronic health records (EHRs) promise to improve and streamline healthcare through electronic entry and retrieval of patient data. Furthermore, based on a number of studies showing their positive benefits, they promise to reduce medical error and make healthcare safer. However, a growing body of literature has clearly documented that if EHRS are not designed properly and with usability as an important goal in their design, rather than reducing error, EHR deployment has the potential to actually increase medical error. In this paper we describe our approach to engineering (and reengineering) EHRs in order to increase their beneficial potential while at the same time improving their safety. The approach described in this paper involves an integration of the methods of usability analysis with video analysis of end users interacting with EHR systems and extends the evaluation of the usability of EHRs to include the assessment of the impact of these systems on work practices. Using clinical simulations, we analyze human-computer interaction in real healthcare settings (in a portable, low-cost and high fidelity manner) and include both artificial and naturalistic data collection to identify potential usability problems and sources of technology-induced error prior to widespread system release. Two case studies where the methods we have developed and refined have been applied at different levels of user-computer interaction are described.
NASA Astrophysics Data System (ADS)
Starovoitova, Valeriia; Foote, Davy; Harris, Jason; Makarashvili, Vakhtang; Segebade, Christian R.; Sinha, Vaibhav; Wells, Douglas P.
2011-06-01
Cu-67 is considered as one of the most promising radioisotopes for cancer therapy with monoclonal antibodies. Current production schemes using high-flux reactors and cyclotrons do not meet potential market need. In this paper we discuss Cu-67 photonuclear production through the reaction Zn-68(γ,p)Cu-67. Computer simulations were done together with experiments to study and optimize Cu-67 yield in natural Zn target. The data confirms that the photonuclear method has potential to produce large quantities of the isotope with sufficient purity to be used in medical field.
Piloting the membranolytic activities of peptides with a self-organizing map.
Lin, Yen-Chu; Hiss, Jan A; Schneider, Petra; Thelesklaf, Peter; Lim, Yi Fan; Pillong, Max; Koehler, Fabian M; Dittrich, Petra S; Halin, Cornelia; Wessler, Silja; Schneider, Gisbert
2014-10-13
Antimicrobial peptides (AMPs) show remarkable selectivity toward lipid membranes and possess promising antibiotic potential. Their modes of action are diverse and not fully understood, and innovative peptide design strategies are needed to generate AMPs with improved properties. We present a de novo peptide design approach that resulted in new AMPs possessing low-nanomolar membranolytic activities. Thermal analysis revealed an entropy-driven mechanism of action. The study demonstrates sustained potential of advanced computational methods for designing peptides with the desired activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermoelectricity in transition metal compounds: The role of spin disorder
Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
2016-11-01
Here, at room temperature and above, most magnetic materials adopt a spin-disordered (paramagnetic) state whose electronic properties can differ significantly from their low-temperature, spin-ordered counterparts. Yet computational searches for new functional materials usually assume some type of magnetic order. In the present work, we demonstrate a methodology to incorporate spin disorder in computational searches and predict the electronic properties of the paramagnetic phase. We implement this method in a high-throughput framework to assess the potential for thermoelectric performance of 1350 transition-metal sulfides and find that all magnetic systems we identify as promising in the spin-ordered ground state cease to bemore » promising in the paramagnetic phase due to disorder-induced deterioration of the charge carrier transport properties. We also identify promising non-magnetic candidates that do not suffer from these spin disorder effects. In addition to identifying promising materials, our results offer insights into the apparent scarcity of magnetic systems among known thermoelectrics and highlight the importance of including spin disorder in computational searches.« less
Kernel methods for large-scale genomic data analysis
Xing, Eric P.; Schaid, Daniel J.
2015-01-01
Machine learning, particularly kernel methods, has been demonstrated as a promising new tool to tackle the challenges imposed by today’s explosive data growth in genomics. They provide a practical and principled approach to learning how a large number of genetic variants are associated with complex phenotypes, to help reveal the complexity in the relationship between the genetic markers and the outcome of interest. In this review, we highlight the potential key role it will have in modern genomic data processing, especially with regard to integration with classical methods for gene prioritizing, prediction and data fusion. PMID:25053743
Interlayer interactions in graphites.
Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian
2013-11-06
Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.
Environmental Detection of Clandestine Nuclear Weapon Programs
NASA Astrophysics Data System (ADS)
Kemp, R. Scott
2016-06-01
Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.
NASA Astrophysics Data System (ADS)
Zhang, Xing; Carter, Emily A.
2018-01-01
We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.
Evaluation of Thermoelectric Performance and Durability of Functionalized Skutterudite Legs
NASA Astrophysics Data System (ADS)
Skomedal, Gunstein; Kristiansen, Nils R.; Sottong, Reinhard; Middleton, Hugh
2017-04-01
Thermoelectric generators are a promising technology for waste heat recovery. As new materials and devices enter a market penetration stage, it is of interest to employ fast and efficient measurement methods to evaluate the long-term stability of thermoelectric materials in combination with metallization and coating (functionalized thermoelectric legs). We have investigated a method for measuring several thermoelectric legs simultaneously. The legs are put under a common temperature gradient, and the electrical characteristics of each leg are measured individually during thermal cycling. Using this method, one can test different types of metallization and coating applied to skutterudite thermoelectric legs and look at the relative changes over time. Postcharacterization of these initial tests with skutterudite legs using a potential Seebeck microprobe and an electron microscope showed that oxidation and interlayer diffusion are the main reasons for the gradual increase in internal resistance and the decrease in open-circuit voltage. Although we only tested skutterudite material in this work, the method is fully capable of testing all kinds of material, metallization, and coating. It is thus a promising method for studying the relationship between failure modes and mechanisms of functionalized thermoelectric legs.
Results-driven approach to improving quality and productivity
John Dramm
2000-01-01
Quality control (QC) programs do not often realize their full potential. Elaborate and expensive QC programs can easily get side tracked by the process of building a program with promises of âSomeday, this will all pay off.â Training employees in QC methods is no guarantee that quality will improve. Several documented cases show that such activity-centered efforts...
Characteristics of a promising new thermoelectric material - Ruthenium silicide
NASA Technical Reports Server (NTRS)
Ohta, Toshitaka; Vining, Cronin B.; Allevato, Camillo E.
1991-01-01
A preliminary study on arc-melted samples has indicated that ruthenium silicide has the potential to obtain figure-of-merit values four times higher than that of conventional silicon-germanium material. In order to realize the high figure-of-merit values, high-quality crystal from the melt is needed. A Bridgman-like method has been employed and has realized much better crystals than arc-melted ones.
A robust gene-stacking method utilizing yeast assembly for plant synthetic biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shih, Patrick M.; Vuu, Khanh; Mansoori, Nasim
The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. But, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. We describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We also demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species. Our approach provides a powerful alternative to conventional strategies formore » stacking genes and traits to address many impending environmental and agricultural challenges.« less
A robust gene-stacking method utilizing yeast assembly for plant synthetic biology
Shih, Patrick M.; Vuu, Khanh; Mansoori, Nasim; ...
2016-10-26
The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. But, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. We describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We also demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species. Our approach provides a powerful alternative to conventional strategies formore » stacking genes and traits to address many impending environmental and agricultural challenges.« less
Study on nasopharyngeal cancer tissue using surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Ge, Xiaosong; Lin, Xueliang; Xu, Zhihong; Wei, Guoqiang; Huang, Wei; Lin, Duo
2016-10-01
Surface-enhanced Raman spectroscopy (SERS) can provide detailed molecular structure and composition information, and has demonstrated great potential in biomedical filed. This spectroscopy technology has become one of the most important optical techniques in the early diagnosis of cancer. Nasopharyngeal cancer (NPC) is a malignant neoplasm arising in the nasopharyngeal epithelial lining, which has relatively high incidence and death rate in Southeast Asia and southern China. This paper reviews the current progress of SERS in the field of cancer diagnostics, including gastric cancer, colorectal cancer, cervical cancer and nasopharyngeal cancer. In addition to above researches, we recently develop a novel NPC detection method based on tissue section using SERS, and obtain primary results. The proposed method has promising potential for the detection of nasopharyngeal carcinoma.
Molecular Targeted Therapies Using Botanicals for Prostate Cancer Chemoprevention.
Kumar, Nagi; Chornokur, Ganna
2012-12-31
In spite of the large number of botanicals demonstrating promise as potential cancer chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving botanical agents to recommendation for clinical use include adopting a systematic, molecular-target based approach and utilizing the same ethical and rigorous methods that are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in suitable cohorts, duration of intervention based on time to progression of pre-neoplastic disease to cancer and using a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must inform the design of clinical trials. Botanicals have been shown to influence multiple biochemical and molecular cascades that inhibit mutagenesis, proliferation, induce apoptosis, suppress the formation and growth of human cancers, thus modulating several hallmarks of carcinogenesis. These agents appear promising in their potential to make a dramatic impact in cancer prevention and treatment, with a significantly superior safety profile than most agents evaluated to date. The goal of this paper is to provide models of translational research based on the current evidence of promising botanicals with a specific focus on targeted therapies for PCa chemoprevention.
Molecular Targeted Therapies Using Botanicals for Prostate Cancer Chemoprevention
Kumar, Nagi; Chornokur, Ganna
2014-01-01
In spite of the large number of botanicals demonstrating promise as potential cancer chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving botanical agents to recommendation for clinical use include adopting a systematic, molecular-target based approach and utilizing the same ethical and rigorous methods that are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in suitable cohorts, duration of intervention based on time to progression of pre-neoplastic disease to cancer and using a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must inform the design of clinical trials. Botanicals have been shown to influence multiple biochemical and molecular cascades that inhibit mutagenesis, proliferation, induce apoptosis, suppress the formation and growth of human cancers, thus modulating several hallmarks of carcinogenesis. These agents appear promising in their potential to make a dramatic impact in cancer prevention and treatment, with a significantly superior safety profile than most agents evaluated to date. The goal of this paper is to provide models of translational research based on the current evidence of promising botanicals with a specific focus on targeted therapies for PCa chemoprevention. PMID:24527269
Suarez-Ulloa, Victoria; Gonzalez-Romero, Rodrigo; Eirin-Lopez, Jose M
2015-09-15
Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Solans, Mariana; Scervino, Jose Martin; Messuti, María Inés; Vobis, Gernot; Wall, Luis Gabriel
2016-11-01
Control of fungal plant diseases by using naturally occurring non-pathogenic microorganisms represents a promising approach to biocontrol agents. This study reports the isolation, characterization, and fungal antagonistic activity of actinobacteria from forage soils in the Flooding Pampa, Argentina. A total of 32 saprophytic strains of actinobacteria were obtained by different isolation methods from rhizospheric soil of Lotus tenuis growing in the Salado River Basin. Based on physiological traits, eight isolates were selected for their biocontrol-related activities such as production of lytic extracellular enzymes, siderophores, hydrogen cyanide (HCN), and antagonistic activity against Cercospora sojina, Macrophomia phaseolina, Phomopsis sp., Fusarium oxysporum, and Fusarium verticilloides. These actinobacteria strains were characterized morphologically, physiologically, and identified by using molecular techniques. The characterization of biocontrol-related activities in vitro showed positive results for exoprotease, phospholipase, fungal growth inhibition, and siderophore production. However, none of the strains was positive for the production of hydrogen cyanide (HCN). Streptomyces sp. MM140 presented the highest index for biocontrol, and appear to be promising pathogenic fungi biocontrol agents. These results show the potential capacity of actinobacteria isolated from forage soils in the Argentine Pampas lowlands as promising biocontrol agents, and their future agronomic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Future directions for H sub x O sub y detection
NASA Technical Reports Server (NTRS)
Crosley, David R. (Editor); Hoell, James M. (Editor)
1986-01-01
The activities and recommendations of the NASA workshop on the Future Directions for H sub x O sub y detection are given. The objective of this workshop was to access future directions for the measurement of the OH radical as well as other H sub x O sub y species. The workshop discussions were focused by two broad questions: (1) What are the capabilities of potential measurement methods? and (2) Will the results from the most promising method be useful in furthering understanding of tropospheric chemistry?
Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.
Wu, Chengtie
2009-05-01
CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.
NASA Technical Reports Server (NTRS)
Smith, D. B. S.
1982-01-01
The potential applications of Automation, Robotics, and Machine Intelligence Systems (ARAMIS) to space projects are investigated, through a systematic method. In this method selected space projects are broken down into space project tasks, and 69 of these tasks are selected for study. Candidate ARAMIS options are defined for each task. The relative merits of these options are evaluated according to seven indices of performance. Logical sequences of ARAMIS development are also defined. Based on this data, promising applications of ARAMIS are
Big data analytics in healthcare: promise and potential.
Raghupathi, Wullianallur; Raghupathi, Viju
2014-01-01
To describe the promise and potential of big data analytics in healthcare. The paper describes the nascent field of big data analytics in healthcare, discusses the benefits, outlines an architectural framework and methodology, describes examples reported in the literature, briefly discusses the challenges, and offers conclusions. The paper provides a broad overview of big data analytics for healthcare researchers and practitioners. Big data analytics in healthcare is evolving into a promising field for providing insight from very large data sets and improving outcomes while reducing costs. Its potential is great; however there remain challenges to overcome.
Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian
2011-09-14
Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems. This journal is © the Owner Societies 2011
Morgan, Matthew M; Piers, Warren E
2016-04-14
Polycyclic aromatic hydrocarbons in which one or more CC units have been replaced by isoelectronic BN units have attracted interest as potentially improved organic materials in various devices. This promise has been hampered by a lack of access to gram quantities of these materials. However, the exploitation of keystone reactions such as ring closing metathesis, borylative cyclization of amino styrenes and electrophilic borylation has lead to strategies for access to workable amounts of material. These strategies can be augmented by judicious postfunctionalization reactions to diversify the library of materials available. This Frontier article highlights some of the recent successes and shows that the long promised applications of BN-doped PAHs are beginning to be explored in a meaningful way.
Accurate complex scaling of three dimensional numerical potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerioni, Alessandro; Genovese, Luigi; Duchemin, Ivan
2013-05-28
The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scalingmore » of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.« less
Design, challenge, and promise of stimuli-responsive nanoantibiotics
NASA Astrophysics Data System (ADS)
Edson, Julius A.; Kwon, Young Jik
2016-10-01
Over the past few years, there have been calls for novel antimicrobials to combat the rise of drug-resistant bacteria. While some promising new discoveries have met this call, it is not nearly enough. The major problem is that although these new promising antimicrobials serve as a short-term solution, they lack the potential to provide a long-term solution. The conventional method of creating new antibiotics relies heavily on the discovery of an antimicrobial compound from another microbe. This paradigm of development is flawed due to the fact that microbes can easily transfer a resistant mechanism if faced with an environmental pressure. Furthermore, there has been some evidence to indicate that the environment of the microbe can provide a hint as to their virulence. Because of this, the use of materials with antimicrobial properties has been garnering interest. Nanoantibiotics, (nAbts), provide a new way to circumvent the current paradigm of antimicrobial discovery and presents a novel mechanism of attack not found in microbes yet; which may lead to a longer-term solution against drug-resistance formation. This allows for environment-specific activation and efficacy of the nAbts but may also open up and create new design methods for various applications. These nAbts provide promise, but there is still ample work to be done in their development. This review looks at possible ways of improving and optimizing nAbts by making them stimuli-responsive, then consider the challenges ahead, and industrial applications.[Figure not available: see fulltext.
Improving surveillance for injuries associated with potential motor vehicle safety defects
Whitfield, R; Whitfield, A
2004-01-01
Objective: To improve surveillance for deaths and injuries associated with potential motor vehicle safety defects. Design: Vehicles in fatal crashes can be studied for indications of potential defects using an "early warning" surveillance statistic previously suggested for screening reports of adverse drug reactions. This statistic is illustrated with time series data for fatal, tire related and fire related crashes. Geographic analyses are used to augment the tire related statistics. Results: A statistical criterion based on the Poisson distribution that tests the likelihood of an expected number of events, given the number of events that actually occurred, is a promising method that can be readily adapted for use in injury surveillance. Conclusions: Use of the demonstrated techniques could have helped to avert a well known injury surveillance failure. This method is adaptable to aid in the direction of engineering and statistical reviews to prevent deaths and injuries associated with potential motor vehicle safety defects using available databases. PMID:15066972
Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells.
Chen, Wei-Ta; Lin, Yin-Kai; Yang, Ting-Ting; Pu, Ying-Chih; Hsu, Yung-Jung
2013-10-04
Au/ZnS core/shell nanocrystals with controllable shell thicknesses were synthesized using a cysteine-assisted hydrothermal method. Incorporating Au/ZnS nanocrystals into the traditional Pt-catalyzed half-cell reaction led to a 43.3% increase in methanol oxidation current under light illumination, demonstrating their promising potential for metal/semiconductor hybrid nanocrystals as the anode photocatalyst in direct methanol fuel cells.
Practical Discrimination Strategies for Application to Live Sites
2009-11-01
evaluate the discrimination potential of the Geonics EM63 at Fort McClellan, AL, when deployed in a cued interrogation mode. Pasion - Oldenburg...the Geonics EM63 at Fort McClellan, AL, when deployed in a cued interrogation mode. Pasion - Oldenburg polarization tensor models were fit to each of... Pasion & Oldenburg, 2001; Zhang et al., 2003a, 2003b; Billings, 2004). The most promising discrimination methods typically proceed by first
2004-12-01
the Japanese art of “ origami ”) involves patterning adjacent 2D membranes that can be lifted off (using methods we have developed) of a silicon...innovative process holds immense potential for the Army’s Objective Force Warrior. Nanostructured Origami enables many practical and promising...Nanostructured Origami allows such devices to be formed from a single, micro/nanofabricated layer. In addition, nanoarchitecture can be added
Downdating a time-varying square root information filter
NASA Technical Reports Server (NTRS)
Muellerschoen, Ronald J.
1990-01-01
A new method to efficiently downdate an estimate and covariance generated by a discrete time Square Root Information Filter (SRIF) is presented. The method combines the QR factor downdating algorithm of Gill and the decentralized SRIF algorithm of Bierman. Efficient removal of either measurements or a priori information is possible without loss of numerical integrity. Moreover, the method includes features for detecting potential numerical degradation. Performance on a 300 parameter system with 5800 data points shows that the method can be used in real time and hence is a promising tool for interactive data analysis. Additionally, updating a time-varying SRIF filter with either additional measurements or a priori information proceeds analogously.
An evolutionary algorithm that constructs recurrent neural networks.
Angeline, P J; Saunders, G M; Pollack, J B
1994-01-01
Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.
Systematic reviews of complementary therapies – an annotated bibliography. Part 3: Homeopathy
Linde, Klaus; Hondras, Maria; Vickers, Andrew; Riet, Gerben ter; Melchart, Dieter
2001-01-01
Background Complementary therapies are widespread but controversial. We aim to provide a comprehensive collection and a summary of systematic reviews of clinical trials in three major complementary therapies (acupuncture, herbal medicine, homeopathy). This article is dealing with homeopathy. Potentially relevant reviews were searched through the register of the Cochrane Complementary Medicine Field, the Cochrane Library, Medline, and bibliographies of articles and books. To be included articles had to review prospective clinical trials of homeopathy; had to describe review methods explicitly; had to be published; and had to focus on treatment effects. Information on conditions, interventions, methods, results and conclusions was extracted using a pretested form and summarized descriptively. Results Eighteen out of 22 potentially relevant reviews preselected in the screening process met the inclusion criteria. Six reviews addressed the question whether homeopathy is effective across conditions and interventions. The majority of available trials seem to report positive results but the evidence is not convincing. For isopathic nosodes for allergic conditions, oscillococcinum for influenza-like syndromes and galphimia for pollinosis the evidence is promising while in other areas reviewed the results are equivocal. Interpretation Reviews on homeopathy often address general questions. While the evidence is promising for some topics the findings of the available reviews are unlikely to end the controversy on this therapy. PMID:11527508
Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential (in MIXED)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woick, B.; Friedrich, R.
1981-09-01
Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.
Ostracod (Ostracoda, Crustacea) genomics - Promises and challenges.
Schön, Isa; Martens, Koen
2016-10-01
Ostracods are well-suited model organisms for evolutionary research. Classic genetic techniques have mostly been used for phylogenetic studies on Ostracoda and were somewhat affected by the lack of large numbers of suitable markers. Genomic methods with their huge potential have so far rarely been applied to this group of crustaceans. We provide relevant examples of genomic studies on other organisms to propose future avenues of genomic ostracod research. At the same time, we suggest solutions to the potential problems in ostracods that the application of genomic techniques might present. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manjot; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay
2018-05-01
Boron carbide (B4C) and carbon nanotubes (CNTs) have the potential to act as electrocatalyst as these material show bifunctional behavior. B4C and CNTs were synthesized using solvothermal method. B4C display great catalytic activity as compared to CNTs. Raman spectra confirmed the formation of nanostructured carbon nanotubes. The observed onset potential was smaller 1.58 V in case of B4C as compared to CNTs i.e. 1.96 V in cyclic voltammetry. B4C material can emerge as a promising bifunctional electrocatalyst for battery applications.
Big Data for cardiology: novel discovery?
Mayer-Schönberger, Viktor
2016-03-21
Big Data promises to change cardiology through a massive increase in the data gathered and analysed; but its impact goes beyond improving incrementally existing methods. The potential of comprehensive data sets for scientific discovery is examined, and its impact on the scientific method generally and cardiology in particular is posited, together with likely consequences for research and practice. Big Data in cardiology changes how new insights are being discovered. For it to flourish, significant modifications in the methods, structures, and institutions of the profession are necessary. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Diagnostic testing for Giardia infections.
Heyworth, Martin F
2014-03-01
The traditional method for diagnosing Giardia infections involves microscopic examination of faecal specimens for Giardia cysts. This method is subjective and relies on observer experience. From the 1980s onwards, objective techniques have been developed for diagnosing Giardia infections, and are superseding diagnostic techniques reliant on microscopy. Detection of Giardia antigen(s) by immunoassay is the basis of commercially available diagnostic kits. Various nucleic acid amplification techniques (NAATs) can demonstrate DNA of Giardia intestinalis, and have the potential to become standard approaches for diagnosing Giardia infections. Of such techniques, methods involving either fluorescent microspheres (Luminex) or isothermal amplification of DNA (loop-mediated isothermal amplification; LAMP) are especially promising.
Manufacture and Drug Delivery Applications of Silk Nanoparticles.
Wongpinyochit, Thidarat; Johnston, Blair F; Seib, F Philipp
2016-10-08
Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles. These nanoparticles are subsequently characterized, drug loaded and explored as a potential anticancer drug delivery system. Briefly, silk cocoons are reverse engineered first by degumming the cocoons, followed by silk dissolution and clean up, to yield an aqueous silk solution. Next, the regenerated silk solution is subjected to nanoprecipitation to yield silk nanoparticles - a simple but powerful method that generates uniform nanoparticles. The silk nanoparticles are characterized according to their size, zeta potential, morphology and stability in aqueous media, as well as their ability to entrap a chemotherapeutic payload and kill human breast cancer cells. Overall, the described methodology yields uniform silk nanoparticles that can be readily explored for a myriad of applications, including their use as a potential nanomedicine.
Lechner, Matthias; Rieder, Josef
2007-01-01
The theoretical use of mass spectrometric profiling of low-molecular-weight volatile compounds, as one possible method to non-invasively and rapidly diagnose a variety of diseases, such as cancer, infection, and metabolic disorders has greatly raised the profile of this technique over the last ten years. Despite a number of promising results, this technique has not been introduced into common clinical practice yet. The use of mass spectrometric profiling of exhaled air is particularly hampered by various technical problems and basic methodological issues which have only been partially overcome. However, breath analysis aside, recently published studies reveal completely new ideas and concepts on how to establish fast and reliable diagnosis by using this valuable tool. These studies focussed on the headspace screening of various bodily fluids and sample fluids obtained during diagnostic procedures, as well as microbial cell cultures and demonstrated the vast diagnostic potential of this technique in a wide variety of settings, predominantly in vitro. It is the aim of the present review to discuss the most commonly detected low-molecular-weight volatile compounds and to summarize the current potential applications, latest developments and future perspectives of this promising diagnostic approach.
Silva, Vanessa Silva e; Moura, Luciana Carvalho; Martins, Luciana Ribeiro; dos Santos, Roberta Cristina Cardoso; Schirmer, Janine; Roza, Bartira de Aguiar
2016-01-01
Abstract Objectives: to report the results of evaluation regarding changes in the number of potential donor referrals, actual donors, and conversion rates after the implementation of an in-house organ and tissue donation for transplantation coordination project. Methods: epidemiological study, both retrospective and transversal, was performed with organ donation data from the Secretariat of Health for the State and the in-house organ donation coordination project of a beneficent hospital. The data was compared using nonparametric statistical Mann-Whitney test, and the Student's t-test, considering a significance level of 5% (p <0.05). Results: there were statistically significant differences (p < 0.05), before and after the implementation of the project on the number of potential donor notification/month (3.05 - 4.7 ), number of actual donor/month (0.78 to 1.60) and rate of conversion ( 24.7 to 34.8 %). The hospitals 1, 2, 7 and 8 had significant results in potential donor, actual donor or conversion rate. Conclusion: the presence of an in-house coordinator is promising and beneficial, the specialist is important to change the indicators of efficiency, which consequently reduces the waiting lists for organ transplants. PMID:27463111
Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research
Kopton, Isabella M.; Kenning, Peter
2014-01-01
Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517
Monitoring of rock glacier dynamics by multi-temporal UAV images
NASA Astrophysics Data System (ADS)
Morra di Cella, Umberto; Pogliotti, Paolo; Diotri, Fabrizio; Cremonese, Edoardo; Filippa, Gianluca; Galvagno, Marta
2015-04-01
During the last years several steps forward have been made in the comprehension of rock glaciers dynamics mainly for their potential evolution into rapid mass movements phenomena. Monitoring the surface movement of creeping mountain permafrost is important for understanding the potential effect of ongoing climate change on such a landforms. This study presents the reconstruction of two years of surface movements and DEM changes obtained by multi-temporal analysis of UAV images (provided by SenseFly Swinglet CAM drone). The movement rate obtained by photogrammetry are compared to those obtained by differential GNSS repeated campaigns on almost fifty points distributed on the rock glacier. Results reveals a very good agreements between both rates velocities obtained by the two methods and vertical displacements on fixed points. Strengths, weaknesses and shrewdness of this methods will be discussed. Such a method is very promising mainly for remote regions with difficult access.
Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges.
Paudel, Shukra Raj; Banjara, Sushant Prasad; Choi, Oh Kyung; Park, Ki Young; Kim, Young Mo; Lee, Jae Woo
2017-12-01
The anaerobic digestion (AD) of agricultural biomass is an attractive second generation biofuel with potential environmental and economic benefits. Most agricultural biomass contains lignocellulose which requires pretreatment prior to AD. For optimization, the pretreatment methods need to be specific to the characteristics of the biomass feedstock. In this review, cereal residue, fruit and vegetable wastes, grasses and animal manure were selected as the agricultural biomass candidates, and the fundamentals and current state of various pretreatment methods used for AD of these feedstocks were investigated. Several nonconventional methods (electrical, ionic liquid-based chemicals, ruminant biological pretreatment) offer potential as targeted pretreatments of lignocellulosic biomass, but each comes with its own challenges. Pursuing an energy-intensive route, a combined bioethanol-biogas production could be a promising a second biofuel refinery option, further emphasizing the importance of pretreatment when lignocellulosic feedstock is used. Copyright © 2017 Elsevier Ltd. All rights reserved.
SELF-BLM: Prediction of drug-target interactions via self-training SVM.
Keum, Jongsoo; Nam, Hojung
2017-01-01
Predicting drug-target interactions is important for the development of novel drugs and the repositioning of drugs. To predict such interactions, there are a number of methods based on drug and target protein similarity. Although these methods, such as the bipartite local model (BLM), show promise, they often categorize unknown interactions as negative interaction. Therefore, these methods are not ideal for finding potential drug-target interactions that have not yet been validated as positive interactions. Thus, here we propose a method that integrates machine learning techniques, such as self-training support vector machine (SVM) and BLM, to develop a self-training bipartite local model (SELF-BLM) that facilitates the identification of potential interactions. The method first categorizes unlabeled interactions and negative interactions among unknown interactions using a clustering method. Then, using the BLM method and self-training SVM, the unlabeled interactions are self-trained and final local classification models are constructed. When applied to four classes of proteins that include enzymes, G-protein coupled receptors (GPCRs), ion channels, and nuclear receptors, SELF-BLM showed the best performance for predicting not only known interactions but also potential interactions in three protein classes compare to other related studies. The implemented software and supporting data are available at https://github.com/GIST-CSBL/SELF-BLM.
Laboratory test methods for evaluating the fire response of aerospace materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.
1979-01-01
The test methods which were developed or evaluated were intended to serve as means of comparing materials on the basis of specific responses under specific sets of test conditions, using apparatus, facilities, and personnel that would be within the capabilities of perhaps the majority of laboratories. Priority was given to test methods which showed promise of addressing the pre-ignition state of a potential fire. These test methods were intended to indicate which materials may present more hazard than others under specific test conditions. These test methods are discussed and arranged according to the stage of a fire to which they are most relevant. Some observations of material performance which resulted from this work are also discussed.
Thostenson, J O; Mourouvin, R; Hawkins, B T; Ngaboyamahina, E; Sellgren, K L; Parker, C B; Deshusses, M A; Stoner, B R; Glass, J T
2018-09-01
Electrochemical disinfection (ECD) has become an important blackwater disinfection technology. ECD is a promising solution for the 2 billion people without access to conventional sanitation practices and in areas deficient in basic utilities (e.g., sewers, electricity, waste treatment). Here, we report on the disinfection of blackwater using potential cycling compared to potentiostatic treatment methods in chloride-containing and chloride-free solutions of blackwater (i.e., untreated wastewater containing feces, urine, and flushwater from a toilet). Potentiodynamic treatment is demonstrated to improve disinfection energy efficiency of blackwater by 24% and 124% compared to static oxidation and reduction methods, respectively. The result is shown to be caused by electrochemical advanced oxidation processes (EAOP) and regeneration of sp 2 -surface-bonded carbon functional groups that serve the dual purpose of catalysts and adsorption sites of oxidant intermediates. Following 24 h electrolysis in blackwater, electrode fouling is shown to be minimized by the potential cycling method when compared to equivalent potentiostatic methods. The potential cycling current density is 40% higher than both the static oxidative and reductive methods. This work enhances the understanding of oxygen reduction catalysts using functionalized carbon materials and electrochemical disinfection anodes, both of which have the potential to bring a cost-effective, energy efficient, and practical solution to the problem of disinfecting blackwater. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules
NASA Astrophysics Data System (ADS)
Hamelberg, Donald; Mongan, John; McCammon, J. Andrew
2004-06-01
Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.
Developing Discontinuous Galerkin Methods for Solving Multiphysics Problems in General Relativity
NASA Astrophysics Data System (ADS)
Kidder, Lawrence; Field, Scott; Teukolsky, Saul; Foucart, Francois; SXS Collaboration
2016-03-01
Multi-messenger observations of the merger of black hole-neutron star and neutron star-neutron star binaries, and of supernova explosions will probe fundamental physics inaccessible to terrestrial experiments. Modeling these systems requires a relativistic treatment of hydrodynamics, including magnetic fields, as well as neutrino transport and nuclear reactions. The accuracy, efficiency, and robustness of current codes that treat all of these problems is not sufficient to keep up with the observational needs. We are building a new numerical code that uses the Discontinuous Galerkin method with a task-based parallelization strategy, a promising combination that will allow multiphysics applications to be treated both accurately and efficiently on petascale and exascale machines. The code will scale to more than 100,000 cores for efficient exploration of the parameter space of potential sources and allowed physics, and the high-fidelity predictions needed to realize the promise of multi-messenger astronomy. I will discuss the current status of the development of this new code.
Designing in vivo concentration gradients with discrete controlled release: a computational model
NASA Astrophysics Data System (ADS)
Walker, Edgar Y.; Barbour, Dennis L.
2010-08-01
One promising neurorehabilitation therapy involves presenting neurotrophins directly into the brain to induce growth of new neural connections. The precise control of neurotrophin concentration gradients deep within neural tissue that would be necessary for such a therapy is not currently possible, however. Here we evaluate the theoretical potential of a novel method of drug delivery, discrete controlled release (DCR), to control effective neurotrophin concentration gradients in an isotropic region of neocortex. We do so by constructing computational models of neurotrophin concentration profiles resulting from discrete release locations into the cortex and then optimizing their design for uniform concentration gradients. The resulting model indicates that by rationally selecting initial neurotrophin concentrations for drug-releasing electrode coatings in a square 16-electrode array, nearly uniform concentration gradients (i.e. planar concentration profiles) from one edge of the electrode array to the other should be obtainable. DCR therefore represents a promising new method of precisely directing neuronal growth in vivo over a wider spatial profile than would be possible with single release points.
Yair, Simo; Ofer, Butnaro; Arik, Eisenkraft; Shai, Shrot; Yossi, Rosman; Tzvika, Dushnitsky; Amir, Krivoy
2008-01-01
One of the major challenges in dealing with chemical warfare agent (CWA) dispersal, whether in the battlefield or after a terror act, is decontamination and rehabilitation of any contaminated area. Organophosphates (OPs) are considered to be among the deadliest CWAs to date. Other OPs are used as pesticides in modern agriculture, and are considered environmentally hazardous. Current methods for OP decontamination are either dangerous or insufficiently effective. As a promising solution for this problem, bioremediation--the use of biocomponents for environmental remediation--is a potentially effective, safe, and environment-friendly method. The technology relies on several enzymatic mechanisms, and can be applied in various ways. We will review recent achievements and potential applications, such as biocatalyst-containing foams and an enzymatic sponge, for environmental as well as personal exterior decontamination.
Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data.
Abram, Samantha V; Helwig, Nathaniel E; Moodie, Craig A; DeYoung, Colin G; MacDonald, Angus W; Waller, Niels G
2016-01-01
Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks.
Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data
Abram, Samantha V.; Helwig, Nathaniel E.; Moodie, Craig A.; DeYoung, Colin G.; MacDonald, Angus W.; Waller, Niels G.
2016-01-01
Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks. PMID:27516732
Pitsiladis, Yannis P; Durussel, Jérôme; Rabin, Olivier
2014-05-01
Administration of recombinant human erythropoietin (rHumanEPO) improves sporting performance and hence is frequently subject to abuse by athletes, although rHumanEPO is prohibited by the WADA. Approaches to detect rHumanEPO doping have improved significantly in recent years but remain imperfect. A new transcriptomic-based longitudinal screening approach is being developed that has the potential to improve the analytical performance of current detection methods. In particular, studies are being funded by WADA to identify a 'molecular signature' of rHumanEPO doping and preliminary results are promising. In the first systematic study to be conducted, the expression of hundreds of genes were found to be altered by rHumanEPO with numerous gene transcripts being differentially expressed after the first injection and further transcripts profoundly upregulated during and subsequently downregulated up to 4 weeks postadministration of the drug; with the same transcriptomic pattern observed in all participants. The identification of a blood 'molecular signature' of rHumanEPO administration is the strongest evidence to date that gene biomarkers have the potential to substantially improve the analytical performance of current antidoping methods such as the Athlete Biological Passport for rHumanEPO detection. Given the early promise of transcriptomics, research using an 'omics'-based approach involving genomics, transcriptomics, proteomics and metabolomics should be intensified in order to achieve improved detection of rHumanEPO and other doping substances and methods difficult to detect such a recombinant human growth hormone and blood transfusions.
Mathematical Research in Materials Science: Opportunities and Perspectives. Part 2
1993-01-01
spheres and Lennard - Jones potentials , but have not been extended to a general framework that will allow input from more complicated interatomic...focuses on directions for potentially promising collaboration between materials scientists and mathematical scientists, and encourages both communities...interface between the mathematical sciences and other fields. The purpose of this report is not only to focus on directions for potentially promising
"Unleashing Aspiration": The Concept of Potential in Education Policy
ERIC Educational Resources Information Center
Sellar, Sam
2015-01-01
This paper examines the promises made in education policy regarding people's future education, employment and social mobility. Specifically, the paper analyses how the term "potential" functions in education policy texts and discourses to make tacit promises at an affective level. Contemporary education policies often invoke the need to…
Hesse-Biber, Sharlene
2016-04-01
Current trends in health care research point to a shift from disciplinary models to interdisciplinary team-based mixed methods inquiry designs. This keynote address discusses the problems and prospects of creating vibrant mixed methods health care interdisciplinary research teams that can harness their potential synergy that holds the promise of addressing complex health care issues. We examine the range of factors and issues these types of research teams need to consider to facilitate efficient interdisciplinary mixed methods team-based research. It is argued that concepts such as disciplinary comfort zones, a lack of attention to team dynamics, and low levels of reflexivity among interdisciplinary team members can inhibit the effectiveness of a research team. This keynote suggests a set of effective strategies to address the issues that emanate from the new field of research inquiry known as team science as well as lessons learned from tapping into research on organizational dynamics. © The Author(s) 2016.
Iterative approach as alternative to S-matrix in modal methods
NASA Astrophysics Data System (ADS)
Semenikhin, Igor; Zanuccoli, Mauro
2014-12-01
The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.
Quantifying the Performance of P-Type Transparent Conducting Oxides by Experimental Methods
Fleischer, Karsten; Norton, Emma; Mullarkey, Daragh; Caffrey, David; Shvets, Igor V.
2017-01-01
Screening for potential new materials with experimental and theoretical methods has led to the discovery of many promising candidate materials for p-type transparent conducting oxides. It is difficult to reliably assess a good p-type transparent conducting oxide (TCO) from limited information available at an early experimental stage. In this paper we discuss the influence of sample thickness on simple transmission measurements and how the sample thickness can skew the commonly used figure of merit of TCOs and their estimated band gap. We discuss this using copper-deficient CuCrO2 as an example, as it was already shown to be a good p-type TCO grown at low temperatures. We outline a modified figure of merit reducing thickness-dependent errors, as well as how modern ab initio screening methods can be used to augment experimental methods to assess new materials for potential applications as p-type TCOs, p-channel transparent thin film transistors, and selective contacts in solar cells. PMID:28862695
Sinkiewicz, Daniel; Friesen, Lendra; Ghoraani, Behnaz
2017-02-01
Cortical auditory evoked potentials (CAEP) are used to evaluate cochlear implant (CI) patient auditory pathways, but the CI device produces an electrical artifact, which obscures the relevant information in the neural response. Currently there are multiple methods, which attempt to recover the neural response from the contaminated CAEP, but there is no gold standard, which can quantitatively confirm the effectiveness of these methods. To address this crucial shortcoming, we develop a wavelet-based method to quantify the amount of artifact energy in the neural response. In addition, a novel technique for extracting the neural response from single channel CAEPs is proposed. The new method uses matching pursuit (MP) based feature extraction to represent the contaminated CAEP in a feature space, and support vector machines (SVM) to classify the components as normal hearing (NH) or artifact. The NH components are combined to recover the neural response without artifact energy, as verified using the evaluation tool. Although it needs some further evaluation, this approach is a promising method of electrical artifact removal from CAEPs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Low-Resistivity Zinc Selenide for Heterojunctions
NASA Technical Reports Server (NTRS)
Stirn, R. J.
1986-01-01
Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.
Multi-capillary based optical sensors for highly sensitive protein detection
NASA Astrophysics Data System (ADS)
Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji
2017-04-01
A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.
Generation of double pulses at the Shanghai soft X-ray free electron laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen; Feng, Chao; Gu, Qiang
2017-01-28
In this paper, we present the promise of a new method generating double electron pulses with the picosecond-scale pulse length and the tunable interpulse spacing at several picoseconds, which has been witnessed an impressive potential of application in pump-probe techniques, two-color X-ray free electron laser (FEL), high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in the linear accelerator. Some comparisons have been made between the new method and the existing ways as well.
Cognitive learning and its future in urology: surgical skills teaching and assessment.
Shafiei, Somayeh B; Hussein, Ahmed A; Guru, Khurshid A
2017-07-01
The aim of this study is to provide an overview of the current status of novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education. Kinematics of end-effector trajectories, as well as cognitive state features of surgeon trainees and mentors have recently been studied as modalities to objectively evaluate the expertise level of trainees and to shorten the learning process. Virtual reality and haptics also have shown promising in research results in improving the surgical learning process by providing feedback to the trainee. 'Cognitive training' is a novel approach to enhance training and surgical performance. The utility of cognitive training in improving motor skills in other fields, including sports and rehabilitation, is promising enough to justify its utilization to improve surgical performance. However, some surgical procedures, especially ones performed during human-robot interaction in robot-assisted surgery, are much more complicated than sport and rehabilitation. Cognitive training has shown promising results in surgical skills-acquisition in complicated environments such as surgery. However, these methods are mostly developed in research groups using limited individuals. Transferring this research into the clinical applications is a demanding challenge. The aim of this review is to provide an overview of the current status of these novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education.
NASA Astrophysics Data System (ADS)
Shen, Ji-Mei; Liu, Jing; Min, Yi; Zhou, Li-Ping
2016-12-01
Using the first-principles method which combines the nonequilibrium Green’s function (NEGF) with density functional theory (DFT), the role of defect, dopant, barrier length and geometric deformation for low-bias negative differential resistance (NDR) in two capped armchair carbon nanotubes (CNTs) sandwiching σ barrier are systematically analyzed. We found that this method can regulate the negative differential resistance (NDR) effects such as current peak and peak position. The adjusting mechanism may originate from orbital interaction and orbital reconstruction. Our calculations try to manipulate the transport characteristics in energy space by simply manipulating the structure in real space, which may promise the potential applications in nanomolecular-electronics in the future.
NASA Technical Reports Server (NTRS)
Shapira, J.
1971-01-01
The raw materials for the synthesis of food for the crew of a spacecraft would be the major metabolic products carbon dioxide and water. Synthetic processes could develop carbohydrates, fats, or proteins. The one potential method of sugar synthesis which has received most attention makes use of the formose reaction. Various aspects of this method are discussed, giving attention also to the nutritional qualities of formose sugars. Questions regarding the utilization of glycerol, propylene glycol, and ethanol as dietary components are also examined. The possibility is considered to use the triglyceride triacetin as food. The use of free amino acids does not appear promising. Methods are described for the synthesis of formaldehyde from carbon dioxide and the synthesis of glycerol from formaldehyde.
Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications.
Neves, Mariana I; Wechsler, Marissa E; Gomes, Manuela E; Reis, Rui L; Granja, Pedro L; Peppas, Nicholas A
2017-02-01
The development of molecularly imprinted polymers (MIPs) using biocompatible production methods enables the possibility to further exploit this technology for biomedical applications. Tissue engineering (TE) approaches use the knowledge of the wound healing process to design scaffolds capable of modulating cell behavior and promote tissue regeneration. Biomacromolecules bear great interest for TE, together with the established recognition of the extracellular matrix, as an important source of signals to cells, both promoting cell-cell and cell-matrix interactions during the healing process. This review focuses on exploring the potential of protein molecular imprinting to create bioactive scaffolds with molecular recognition for TE applications based on the most recent approaches in the field of molecular imprinting of macromolecules. Considerations regarding essential components of molecular imprinting technology will be addressed for TE purposes. Molecular imprinting of biocompatible hydrogels, namely based on natural polymers, is also reviewed here. Hydrogel scaffolds with molecular memory show great promise for regenerative therapies. The first molecular imprinting studies analyzing cell adhesion report promising results with potential applications for cell culture systems, or biomaterials for implantation with the capability for cell recruitment by selectively adsorbing desired molecules.
Preparation of Deep Sea Fish Oil-Based Nanostructured Lipid Carriers with Enhanced Cellular Uptake.
Zhu, Qiu-Yun; Guissi, Fida; Yang, Ru-Ya; Wang, Qian; Wang, Ke; Chen, Dan; Han, Zhi-Hao; Ma, Yi; Zhang, Min; Gu, Yue-Qing
2015-12-01
Nanostructured lipid carriers (NLC) are a promising pharmaceutical delivery system with mean diameter less than 200 nm which are dispersed in an aqueous phase containing emulsifier(s), to increase the water solubility, stability and bioavailability of oil compounds. Herein we prepared a promising NLC with glyceryl monostearate (GMS) as the solid lipid template and deep sea fish oil as the liquid lipid template using melted-ultrasonic method. Fish oil-NLC had a mean size of 84.7 ± 2.6 nm and a zeta potential that ranged from -17.87 mV to -32.91 mV. The nanoparticles exhibited good stability for four weeks with a high encapsulation efficiency of 87.5 ± 5.2%. Afterwards, confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) were used to investigate the contribution of Fish oil-NLC in enhancing fluorescein isothiocyanate (FITC) cellular uptake in comparison with free FITC. The results of this study indicated the possibility of this carrier to overcome the shortcomings of deep sea fish oil and to provide a novel bifunctional carrier with nutritional potential and drug delivery ability.
Engineering Exosomes for Cancer Therapy.
Gilligan, Katie E; Dwyer, Róisín M
2017-05-24
There remains an urgent need for novel therapeutic strategies to treat metastatic cancer, which results in over 8 million deaths annually worldwide. Following secretion, exosomes are naturally taken up by cells, and capable of the stable transfer of drugs, therapeutic microRNAs and proteins. As knowledge of the biogenesis, release and uptake of exosomes continues to evolve, and thus also has interest in these extracellular vesicles as potential tumor-targeted vehicles for cancer therapy. The ability to engineer exosome content and migratory itinerary holds tremendous promise. Studies to date have employed viral and non-viral methods to engineer the parent cells to secrete modified exosomes, or alternatively, to directly manipulate exosome content following secretion. The majority of studies have demonstrated promising results, with decreased tumor cell invasion, migration and proliferation, along with enhanced immune response, cell death, and sensitivity to chemotherapy observed. The studies outlined in this review highlight the exciting potential for exosomes as therapeutic vehicles for cancer treatment. Successful implementation in the clinical setting will be dependent upon establishment of rigorous standards for exosome manipulation, isolation, and characterisation.
Wang, Sen; Chen, Jiazhen; Zhang, Ying; Diao, Ni; Zhang, Shu; Wu, Jing; Lu, Chanyi; Wang, Feifei; Gao, Yan; Shao, Lingyun; Jin, Jialin; Weng, Xinhua; Zhang, Wenhong
2013-01-01
Antigens encoded in the region of difference (RD) of Mycobacterium tuberculosis constitute a potential source of specific immunodiagnostic antigens for distinguishing tuberculosis (TB) infection from BCG vaccination. We evaluated the diagnostic potential of specific T-cell epitopes selected from two immunodominant antigens, Rv1985c and Rv3425, from RD2 and RD11, respectively, on the basis of epitope mapping, in TB patients and BCG-vaccinated healthy individuals. Using a whole-blood gamma interferon release assay, a wide array of epitopes was recognized on both Rv1985c and Rv3425 in TB patients. Those epitopes that could specifically discriminate TB infection from BCG vaccination were carefully selected, and the most promising peptide pools from Rv1985c showed a sensitivity of 53.9% and a specificity of 95.5%. When the novel specific peptides from Rv1985c joined the diagnostic antigens in the QuantiFERON-TB Gold In-Tube (QFT-IT) assay, the sensitivity was increased from 86.4% to 96.2%, with no drop in specificity. These results indicate that the peptide pools selected from Rv1985c and Rv3425 have the potential to diagnose TB infection by a method that may be routinely used in clinical laboratories.
Domestication and Breeding of Jatropha curcas L.
Montes, Juan M; Melchinger, Albrecht E
2016-12-01
Jatropha curcas L. (jatropha) has a high, untapped potential to contribute towards sustainable production of food and bioenergy, rehabilitation of degraded land, and reduction of atmospheric carbon dioxide. Tremendous progress in jatropha domestication and breeding has been achieved during the past decade. This review: (i) summarizes current knowledge about the domestication and breeding of jatropha; (ii) identifies and prioritizes areas for further research; and (iii) proposes strategies to exploit the full genetic potential of this plant species. Altogether, the outlook is promising for accelerating the domestication of jatropha by applying modern scientific methods and novel technologies developed in plant breeding. Copyright © 2016 Elsevier Ltd. All rights reserved.
Computational predictions of zinc oxide hollow structures
NASA Astrophysics Data System (ADS)
Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi
2018-03-01
Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.
Potential application of SERS for arsenic speciation in biological matrices.
Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong
2017-08-01
Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.
LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Goddard III; Yongchun Tang; Patrick Shuler
2004-09-01
This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies tomore » calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher salinity reservoirs. Alkylpropoxy sulfate surfactants are not yet available as large volume commercial products. The results presented herein can provide the needed industrial impetus for extending application (alkyl polyglycoside) or scaling up (alkylpropoxy sulfates) of these two promising surfactants for enhanced oil recovery. Furthermore, the advanced simulations tools presented here can be used to continue to uncover new types of surfactants with promising properties such as inherent low IFT and biodegradability.« less
Guo, Guanlin; Zhou, Qixing; Ma, Lene Q
2006-05-01
The use of low-cost and environmental safety amendments for the in situ immobilization of heavy metals has been investigated as a promising method for contaminated soil remediation. Natural materials and waste products from certain industries with high captive capacity of heavy metals can be obtained and employed. Reduction of extractable metal concentration and phytotoxicity could be evaluated and demonstrated by the feasibility of various amendments in fixing remediation. In this review, an extensive list of references has been compiled to provide a summary of information on a wide range of potentially amendment resources, including organic, inorganic and combined organic-inorganic materials. The assessment based on the economic efficiency and environmental risks brought forth the potential application values and future development directions of this method on solving the soil contamination.
Detection of ventricular fibrillation from multiple sensors
NASA Astrophysics Data System (ADS)
Lindsley, Stephanie A.; Ludeman, Lonnie C.
1992-07-01
Ventricular fibrillation is a potentially fatal medical condition in which the flow of blood through the body is terminated due to the lack of an organized electric potential in the heart. Automatic implantable defibrillators are becoming common as a means for helping patients confronted with repeated episodes of ventricular fibrillation. Defibrillators must first accurately detect ventricular fibrillation and then provide an electric shock to the heart to allow a normal sinus rhythm to resume. The detection of ventricular fibrillation by using an array of multiple sensors to distinguish between signals recorded from single (normal sinus rhythm) or multiple (ventricular fibrillation) sources is presented. An idealistic model is presented and the analysis of data generated by this model suggests that the method is promising as a method for accurately and quickly detecting ventricular fibrillation from signals recorded from sensors placed on the epicardium.
Contributed review: quantum cascade laser based photoacoustic detection of explosives.
Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P
2015-03-01
Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.
Contributed Review: Quantum cascade laser based photoacoustic detection of explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B.; Fischer, H.
2015-03-15
Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacousticmore » spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.« less
Machine Learning Approaches for Clinical Psychology and Psychiatry.
Dwyer, Dominic B; Falkai, Peter; Koutsouleris, Nikolaos
2018-05-07
Machine learning approaches for clinical psychology and psychiatry explicitly focus on learning statistical functions from multidimensional data sets to make generalizable predictions about individuals. The goal of this review is to provide an accessible understanding of why this approach is important for future practice given its potential to augment decisions associated with the diagnosis, prognosis, and treatment of people suffering from mental illness using clinical and biological data. To this end, the limitations of current statistical paradigms in mental health research are critiqued, and an introduction is provided to critical machine learning methods used in clinical studies. A selective literature review is then presented aiming to reinforce the usefulness of machine learning methods and provide evidence of their potential. In the context of promising initial results, the current limitations of machine learning approaches are addressed, and considerations for future clinical translation are outlined.
A review of damage detection methods for wind turbine blades
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Ho, Siu-Chun M.; Song, Gangbing; Ren, Liang; Li, Hongnan
2015-03-01
Wind energy is one of the most important renewable energy sources and many countries are predicted to increase wind energy portion of their whole national energy supply to about twenty percent in the next decade. One potential obstacle in the use of wind turbines to harvest wind energy is the maintenance of the wind turbine blades. The blades are a crucial and costly part of a wind turbine and over their service life can suffer from factors such as material degradation and fatigue, which can limit their effectiveness and safety. Thus, the ability to detect damage in wind turbine blades is of great significance for planning maintenance and continued operation of the wind turbine. This paper presents a review of recent research and development in the field of damage detection for wind turbine blades. Specifically, this paper reviews frequently employed sensors including fiber optic and piezoelectric sensors, and four promising damage detection methods, namely, transmittance function, wave propagation, impedance and vibration based methods. As a note towards the future development trend for wind turbine sensing systems, the necessity for wireless sensing and energy harvesting is briefly presented. Finally, existing problems and promising research efforts for online damage detection of turbine blades are discussed.
Microscopic predictions of fission yields based on the time dependent GCM formalism
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-03-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.
Emirandetti, Amanda; Lewicka, Michalina; Hermanson, Ola; Fisahn, André
2010-01-01
Background Pluripotent and multipotent stem cells hold great therapeutical promise for the replacement of degenerated tissue in neurological diseases. To fulfill that promise we have to understand the mechanisms underlying the differentiation of multipotent cells into specific types of neurons. Embryonic stem cell (ESC) and embryonic neural stem cell (NSC) cultures provide a valuable tool to study the processes of neural differentiation, which can be assessed using immunohistochemistry, gene expression, Ca2+-imaging or electrophysiology. However, indirect methods such as protein and gene analysis cannot provide direct evidence of neuronal functionality. In contrast, direct methods such as electrophysiological techniques are well suited to produce direct evidence of neural functionality but are limited to the study of a few cells on a culture plate. Methodology/Principal Findings In this study we describe a novel method for the detection of action potential-capable neurons differentiated from embryonic NSC cultures using fast voltage-sensitive dyes (VSD). We found that the use of extracellularly applied VSD resulted in a more detailed labeling of cellular processes compared to calcium indicators. In addition, VSD changes in fluorescence translated precisely to action potential kinetics as assessed by the injection of simulated slow and fast sodium currents using the dynamic clamp technique. We further demonstrate the use of a finite element model of the NSC culture cover slip for optimizing electrical stimulation parameters. Conclusions/Significance Our method allows for a repeatable fast and accurate stimulation of neurons derived from stem cell cultures to assess their differentiation state, which is capable of monitoring large amounts of cells without harming the overall culture. PMID:21079795
Schwab-Reese, Laura M; Hovdestad, Wendy; Tonmyr, Lil; Fluke, John
2018-01-20
Collecting child maltreatment data is a complicated undertaking for many reasons. As a result, there is an interest by child maltreatment researchers to develop methodologies that allow for the triangulation of data sources. To better understand how social media and internet-based technologies could contribute to these approaches, we conducted a scoping review to provide an overview of social media and internet-based methodologies for health research, to report results of evaluation and validation research on these methods, and to highlight studies with potential relevance to child maltreatment research and surveillance. Many approaches were identified in the broad health literature; however, there has been limited application of these approaches to child maltreatment. The most common use was recruiting participants or engaging existing participants using online methods. From the broad health literature, social media and internet-based approaches to surveillance and epidemiologic research appear promising. Many of the approaches are relatively low cost and easy to implement without extensive infrastructure, but there are also a range of limitations for each method. Several methods have a mixed record of validation and sources of error in estimation are not yet understood or predictable. In addition to the problems relevant to other health outcomes, child maltreatment researchers face additional challenges, including the complex ethical issues associated with both internet-based and child maltreatment research. If these issues are adequately addressed, social media and internet-based technologies may be a promising approach to reducing some of the limitations in existing child maltreatment data. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
The electrical self-potential method is a non-intrusive snow-hydrological sensor
NASA Astrophysics Data System (ADS)
Thompson, S. S.; Kulessa, B.; Essery, R. L. H.; Lüthi, M. P.
2015-08-01
Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.
Zanatta, Cinthia Fernanda; de Faria Sato, Anne Miwa Callejón; de Camargo, Flavio Bueno; Campos, Patrícia Maria Berardo Gonçalves Maia; Rocha-Filho, Pedro Alves
2010-01-01
It is well known that the Amazon region presents a huge biodiversity; therefore, countless natural resources are being employed in the production of phytocosmetics and phytomedicines. The purpose of this work was to obtain emulsions produced with Buriti oil and non-ionic surfactants. Two surfactant systems were employed (Steareth-2 associated to Ceteareth-5 and to Ceteareth-20) to produce the emulsions using phase diagram method. Emulsions were obtained by echo-planar imaging method at 75°C. Rheological behavior and zeta potential were evaluated, and accelerated stability tests were performed. All emulsions analyzed presented pseudoplastic behavior. Zeta potential values were obtained between -14.2 and -53.3 mV. The formulations did not show changes in either physical stability, pH, or rheological behavior after accelerated stability tests. Significant differences were observed only after temperature cycling test. Based on these results, the emulsions obtained could be considered as promising delivery systems.
Whole Protein Native Fitness Potentials
NASA Astrophysics Data System (ADS)
Faraggi, Eshel; Kloczkowski, Andrzej
2013-03-01
Protein structure prediction can be separated into two tasks: sample the configuration space of the protein chain, and assign a fitness between these hypothetical models and the native structure of the protein. One of the more promising developments in this area is that of knowledge based energy functions. However, standard approaches using pair-wise interactions have shown shortcomings demonstrated by the superiority of multi-body-potentials. These shortcomings are due to residue pair-wise interaction being dependent on other residues along the chain. We developed a method that uses whole protein information filtered through machine learners to score protein models based on their likeness to native structures. For all models we calculated parameters associated with the distance to the solvent and with distances between residues. These parameters, in addition to energy estimates obtained by using a four-body-potential, DFIRE, and RWPlus were used as training for machine learners to predict the fitness of the models. Testing on CASP 9 targets showed that our method is superior to DFIRE, RWPlus, and the four-body potential, which are considered standards in the field.
Effects of advanced selection methods on sperm quality and ART outcome.
Yetunde, I; Vasiliki, M
2013-10-01
In assisted reproductive technology (ART), the role of spermatozoa has evolved over the years. In the past, early methods of selecting sperm for ART only focused on selecting motile and morphologically normal appearing sperm. It has become evident that these methods are inefficient in identifying the most suitable sperm for fertilization. Novel methods have thus been created to identify highly motile, morphologically normal, viable non-apoptotic spermatozoa with intact membranes and high DNA integrity for use in ART. These advanced methods of selection utilize our knowledge of unique characteristics of sperm, such as sperm surface charge, the presence of hyaluronic acid binding sites on sperm, sperm ultramorphology, markers of apoptosis and zona pellucida binding on sperm. These methods have shown potential promise in improving ART outcomes. Future developments may include Raman spectroscopy, confocal light absorption and scattering spectroscopic microscopy, and polarization microscopy. While these novel techniques have potential, they come with a cost burden and further studies are required to demonstrate their impact on ART outcomes. Furthermore, clinicians and human reproductive scientists need to continue to gather knowledge about human fertilization and determine the most physiological methods of sperm selection.
Chapter 11. Community analysis-based methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Wu, C.H.; Andersen, G.L.
2010-05-01
Microbial communities are each a composite of populations whose presence and relative abundance in water or other environmental samples are a direct manifestation of environmental conditions, including the introduction of microbe-rich fecal material and factors promoting persistence of the microbes therein. As shown by culture-independent methods, different animal-host fecal microbial communities appear distinctive, suggesting that their community profiles can be used to differentiate fecal samples and to potentially reveal the presence of host fecal material in environmental waters. Cross-comparisons of microbial communities from different hosts also reveal relative abundances of genetic groups that can be used to distinguish sources. Inmore » increasing order of their information richness, several community analysis methods hold promise for MST applications: phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP), cloning/sequencing, and PhyloChip. Specific case studies involving TRFLP and PhyloChip approaches demonstrate the ability of community-based analyses of contaminated waters to confirm a diagnosis of water quality based on host-specific marker(s). The success of community-based MST for comprehensively confirming fecal sources relies extensively upon using appropriate multivariate statistical approaches. While community-based MST is still under evaluation and development as a primary diagnostic tool, results presented herein demonstrate its promise. Coupled with its inherently comprehensive ability to capture an unprecedented amount of microbiological data that is relevant to water quality, the tools for microbial community analysis are increasingly accessible, and community-based approaches have unparalleled potential for translation into rapid, perhaps real-time, monitoring platforms.« less
Assessment of atmospheric mercury emission reduction measures relevant for application in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlawiczka, S.; Fudala, J.
Fuel combustion for heat and power generation, together with cement production, were the most significant sources of anthropogenic atmospheric mercury emission in Poland in 2003, with 57 and 27% of Hg emission, respectively. It was found that in Poland, Hg emission reduction measures need to be focused on the energy generation sector. Sorbent injection upstream of an electrostatic precipitator or fabric filter, mercury oxidation upstream of a wet or dry flue gas desulphurisation installation, together with Hg capture on sorbents, should be considered as priority in Polish conditions. This refers mainly to fuel combustion processes but also to the productionmore » of cement. For economic reasons it seems advisable that, apart from activated carbons as sorbents, application of zeolites obtained from power plant fly ash should also be considered. Application of primary methods seems to be very promising in Polish conditions, although they should be considered rather as an additional option apart from sorbent injection as the best option. Switching from coal to liquid and gaseous fuels shows the highest potential for reducing Hg emission. For chlorine production using the mercury cell electrolysis method, strict monitoring of Hg emissions and good housekeeping of Hg releasing processes seems a promising approach, but the main activity should focus on changing mercury-based technologies into membrane cell methods. Emission abatement potential for the atmospheric mercury in Poland has been roughly assessed, showing that in perspective of 2015, the emission could be reduced to about 25% of the anthropogenic atmospheric Hg emission in 2003.« less
Signal amplification by rolling circle amplification on DNA microarrays
Nallur, Girish; Luo, Chenghua; Fang, Linhua; Cooley, Stephanie; Dave, Varshal; Lambert, Jeremy; Kukanskis, Kari; Kingsmore, Stephen; Lasken, Roger; Schweitzer, Barry
2001-01-01
While microarrays hold considerable promise in large-scale biology on account of their massively parallel analytical nature, there is a need for compatible signal amplification procedures to increase sensitivity without loss of multiplexing. Rolling circle amplification (RCA) is a molecular amplification method with the unique property of product localization. This report describes the application of RCA signal amplification for multiplexed, direct detection and quantitation of nucleic acid targets on planar glass and gel-coated microarrays. As few as 150 molecules bound to the surface of microarrays can be detected using RCA. Because of the linear kinetics of RCA, nucleic acid target molecules may be measured with a dynamic range of four orders of magnitude. Consequently, RCA is a promising technology for the direct measurement of nucleic acids on microarrays without the need for a potentially biasing preamplification step. PMID:11726701
Chromaticity of the lattice and beam stability in energy-recovery linacs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko, V.N.
2011-12-23
Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current.more » In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.« less
Vibrational Spectroscopy as a Promising Toolbox for Analyzing Functionalized Ceramic Membranes.
Kiefer, Johannes; Bartels, Julia; Kroll, Stephen; Rezwan, Kurosch
2018-01-01
Ceramic materials find use in many fields including the life sciences and environmental engineering. For example, ceramic membranes have shown to be promising filters for water treatment and virus retention. The analysis of such materials, however, remains challenging. In the present study, the potential of three vibrational spectroscopic methods for characterizing functionalized ceramic membranes for water treatment is evaluated. For this purpose, Raman scattering, infrared (IR) absorption, and solvent infrared spectroscopy (SIRS) were employed. The data were analyzed with respect to spectral changes as well as using principal component analysis (PCA). The Raman spectra allow an unambiguous discrimination of the sample types. The IR spectra do not change systematically with functionalization state of the material. Solvent infrared spectroscopy allows a systematic distinction and enables studying the molecular interactions between the membrane surface and the solvent.
a Voxel-Based Metadata Structure for Change Detection in Point Clouds of Large-Scale Urban Areas
NASA Astrophysics Data System (ADS)
Gehrung, J.; Hebel, M.; Arens, M.; Stilla, U.
2018-05-01
Mobile laser scanning has not only the potential to create detailed representations of urban environments, but also to determine changes up to a very detailed level. An environment representation for change detection in large scale urban environments based on point clouds has drawbacks in terms of memory scalability. Volumes, however, are a promising building block for memory efficient change detection methods. The challenge of working with 3D occupancy grids is that the usual raycasting-based methods applied for their generation lead to artifacts caused by the traversal of unfavorable discretized space. These artifacts have the potential to distort the state of voxels in close proximity to planar structures. In this work we propose a raycasting approach that utilizes knowledge about planar surfaces to completely prevent this kind of artifacts. To demonstrate the capabilities of our approach, a method for the iterative volumetric approximation of point clouds that allows to speed up the raycasting by 36 percent is proposed.
VAN method of short-term earthquake prediction shows promise
NASA Astrophysics Data System (ADS)
Uyeda, Seiya
Although optimism prevailed in the 1970s, the present consensus on earthquake prediction appears to be quite pessimistic. However, short-term prediction based on geoelectric potential monitoring has stood the test of time in Greece for more than a decade [VarotsosandKulhanek, 1993] Lighthill, 1996]. The method used is called the VAN method.The geoelectric potential changes constantly due to causes such as magnetotelluric effects, lightning, rainfall, leakage from manmade sources, and electrochemical instabilities of electrodes. All of this noise must be eliminated before preseismic signals are identified, if they exist at all. The VAN group apparently accomplished this task for the first time. They installed multiple short (100-200m) dipoles with different lengths in both north-south and east-west directions and long (1-10 km) dipoles in appropriate orientations at their stations (one of their mega-stations, Ioannina, for example, now has 137 dipoles in operation) and found that practically all of the noise could be eliminated by applying a set of criteria to the data.
Tongue prints: A novel biometric and potential forensic tool.
Radhika, T; Jeddy, Nadeem; Nithya, S
2016-01-01
Tongue is a vital internal organ well encased within the oral cavity and protected from the environment. It has unique features which differ from individual to individual and even between identical twins. The color, shape, and surface features are characteristic of every individual, and this serves as a tool for identification. Many modes of biometric systems have come into existence such as fingerprint, iris scan, skin color, signature verification, voice recognition, and face recognition. The search for a new personal identification method secure has led to the use of the lingual impression or the tongue print as a method of biometric authentication. Tongue characteristics exhibit sexual dimorphism thus aiding in the identification of the person. Emerging as a novel biometric tool, tongue prints also hold the promise of a potential forensic tool. This review highlights the uniqueness of tongue prints and its superiority over other biometric identification systems. The various methods of tongue print collection and the classification of tongue features are also elucidated.
Immunotherapy for food allergy.
Wild, L G; Lehrer, S B
2001-01-01
Food allergy is an important cause of life-threatening hypersensitivity reactions. Avoidance of allergenic foods is the only method of prevention that currently is available for sensitized patients. This method of prevention is difficult and often impossible. With better characterization of allergens and better understanding of the immunologic mechanism, investigators have developed several therapeutic modalities that potentially are applicable to the treatment and prevention of food allergy. Therapeutic options currently under investigation include peptide immunotherapy, DNA immunization, immunization with immunostimulatory sequences, anti-IgE therapy, and genetic modification of foods. These exciting developments hold promise for the safe and effective treatment and prevention of food allergy in the next several years.
NASA Astrophysics Data System (ADS)
Debnath, Ashim Kumar; Chin, Hoong Chor
Navigational safety analysis relying on collision statistics is often hampered because of the low number of observations. A promising alternative approach that overcomes this problem is proposed in this paper. By analyzing critical vessel interactions this approach proactively measures collision risk in port waters. The proposed method is illustrated for quantitative measurement of collision risks in Singapore port fairways, and validated by examining correlations between the measured risks with those perceived by pilots. This method is an ethically appealing alternative to the collision-based analysis for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.
Designing Artificial Enzymes by Intuition and Computation
Nanda, Vikas; Koder, Ronald L.
2012-01-01
The rational design of artificial enzymes either by applying physio-chemical intuition of protein structure and function or with the aid of computation methods is a promising area of research with the potential to tremendously impact medicine, industrial chemistry and energy production. Designed proteins also provide a powerful platform for dissecting enzyme mechanisms of natural systems. Artificial enzymes have come a long way, from simple α-helical peptide catalysts to proteins that facilitate multi-step chemical reactions designed by state-of-the-art computational methods. Looking forward, we examine strategies employed by natural enzymes which could be used to improve the speed and selectivity of artificial catalysts. PMID:21124375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chaochao; Duan, Jicheng; Liu, Tao
Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methodsmore » are also discussed.« less
Kang, Shuli; Li, Qingjiao; Chen, Quan; Zhou, Yonggang; Park, Stacy; Lee, Gina; Grimes, Brandon; Krysan, Kostyantyn; Yu, Min; Wang, Wei; Alber, Frank; Sun, Fengzhu; Dubinett, Steven M; Li, Wenyuan; Zhou, Xianghong Jasmine
2017-03-24
We propose a probabilistic method, CancerLocator, which exploits the diagnostic potential of cell-free DNA by determining not only the presence but also the location of tumors. CancerLocator simultaneously infers the proportions and the tissue-of-origin of tumor-derived cell-free DNA in a blood sample using genome-wide DNA methylation data. CancerLocator outperforms two established multi-class classification methods on simulations and real data, even with the low proportion of tumor-derived DNA in the cell-free DNA scenarios. CancerLocator also achieves promising results on patient plasma samples with low DNA methylation sequencing coverage.
NASA Astrophysics Data System (ADS)
Zhang, Qiankun; Liu, Yinan; Lai, Jiawei; Qi, Shaomian; An, Chunhua; Lu, Yao; Duan, Xuexin; Pang, Wei; Zhang, Daihua; Sun, Dong; Chen, Jian-Hao; Liu, Jing
2018-04-01
Few-layer black phosphorus (FLBP), a recently discovered two-dimensional semiconductor, has attracted substantial attention in the scientific and technical communities due to its great potential in electronic and optoelectronic applications. However, reactivity of FLBP flakes with ambient species limits its direct applications. Among various methods to passivate FLBP in ambient environment, nanocomposites mixing FLBP flakes with stable matrix may be one of the most promising approaches for industry applications. Here, we report a simple one-step procedure to mass produce air-stable FLBP/phospholipids nanocomposite in liquid phase. The resultant nanocomposite is found to have ultralow tunneling barrier for charge carriers which can be described by an Efros-Shklovskii variable range hopping mechanism. Devices made from such mass-produced FLBP/phospholipids nanocomposite show highly stable electrical conductivity and opto-electrical response in ambient conditions, indicating its promising applications in both electronic and optoelectronic applications. This method could also be generalized to the mass production of nanocomposites consisting of other air-sensitive 2D materials, such as FeSe, NbSe2, WTe2, etc.
Electronic Health Records and US Public Health: Current Realities and Future Promise
Parrish, R. Gibson; Ross, David A.
2013-01-01
Electronic health records (EHRs) could contribute to improving population health in the United States. Realizing this potential will require understanding what EHRs can realistically offer to efforts to improve population health, the requirements for obtaining useful information from EHRs, and a plan for addressing these requirements. Potential contributions of EHRs to improving population health include better understanding of the level and distribution of disease, function, and well-being within populations. Requirements are improved population coverage of EHRs, standardized EHR content and reporting methods, and adequate legal authority for using EHRs, particularly for population health. A collaborative national effort to address the most pressing prerequisites for and barriers to the use of EHRs for improving population health is needed to realize the EHR’s potential. PMID:23865646
Improved accuracy for finite element structural analysis via an integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
Tappura, K
2001-08-15
An adjustable-barrier dihedral angle potential was added as an extension to a novel, previously presented soft-core potential to study its contribution to the efficacy of the search of the conformational space in molecular dynamics. As opposed to the conventional soft-core potential functions, the leading principle in the design of the new soft-core potential, as well as of its extension, the soft-core and adjustable-barrier dihedral angle (SCADA) potential (referred as the SCADA potential), was to maintain the main equilibrium properties of the original force field. This qualifies the methods for a variety of a priori modeling problems without need for additional restraints typically required with the conventional soft-core potentials. In the present study, the different potential energy functions are applied to the problem of predicting loop conformations in proteins. Comparison of the performance of the soft-core and SCADA potential showed that the main hurdles for the efficient sampling of the conformational space of (loops in) proteins are related to the high-energy barriers caused by the Lennard-Jones and Coulombic energy terms, and not to the rotational barriers, although the conformational search can be further enhanced by lowering the rotational barriers of the dihedral angles. Finally, different evaluation methods were studied and a few promising criteria found to distinguish the near-native loop conformations from the wrong ones.
Obtaining a Dry Extract from the Mikania laevigata Leaves with Potential for Antiulcer Activity
Pinto, Mariana Viana; Oliveira, Ezequiane Machado; Martins, Jose Luiz Rodrigues; de Paula, Jose Realino; Costa, Elson Alves; da Conceição, Edemilson Cardoso; Bara, Maria Teresa Freitas
2017-01-01
Background: Mikania laevigata leaves are commonly used in Brazil as a medicinal plant. Objective: To obtain hydroalcoholic dried extract by nebulization and evaluate its antiulcerogenic potential. Materials and Methods: Plant material and hydroalcoholic extract were processed and analyzed for their physicochemical characteristics. A method using HPLC was validated to quantify coumarin and o-coumaric acid. Hydroalcoholic extract was spray dried and the powder obtained was characterized in terms of its physicochemical parameters and potential for antiulcerogenic activity. Results: The analytical method proved to be selective, linear, precise, accurate, sensitive, and robust. M. laevigata spray dried extract was obtained using colloidal silicon dioxide as adjuvant and was shown to possess 1.83 ± 0.004% coumarin and 0.80 ± 0.012% o-coumaric acid. It showed significant antiulcer activity in a model of an indomethacin-induced gastric lesion in mice and also produced a gastroprotective effect. Conclusion: This dried extract from M. laevigata could be a promising intermediate phytopharmaceutical product. SUMMARY Research and development of standardized dried extract of Mikania laevigata leaves obtained through spray drying and the production process was monitored by the chemical profile, physicochemical properties and potential for anti-ulcerogenic activity. Abbreviations used: DE: M. laevigata spray dried extract, HE: hydroalcoholic extract. PMID:28216886
Food processing and allergenicity.
Verhoeckx, Kitty C M; Vissers, Yvonne M; Baumert, Joseph L; Faludi, Roland; Feys, Marcel; Flanagan, Simon; Herouet-Guicheney, Corinne; Holzhauser, Thomas; Shimojo, Ryo; van der Bolt, Nieke; Wichers, Harry; Kimber, Ian
2015-06-01
Food processing can have many beneficial effects. However, processing may also alter the allergenic properties of food proteins. A wide variety of processing methods is available and their use depends largely on the food to be processed. In this review the impact of processing (heat and non-heat treatment) on the allergenic potential of proteins, and on the antigenic (IgG-binding) and allergenic (IgE-binding) properties of proteins has been considered. A variety of allergenic foods (peanuts, tree nuts, cows' milk, hens' eggs, soy, wheat and mustard) have been reviewed. The overall conclusion drawn is that processing does not completely abolish the allergenic potential of allergens. Currently, only fermentation and hydrolysis may have potential to reduce allergenicity to such an extent that symptoms will not be elicited, while other methods might be promising but need more data. Literature on the effect of processing on allergenic potential and the ability to induce sensitisation is scarce. This is an important issue since processing may impact on the ability of proteins to cause the acquisition of allergic sensitisation, and the subject should be a focus of future research. Also, there remains a need to develop robust and integrated methods for the risk assessment of food allergenicity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, M.E.; Ritchie, A.B.
1997-12-31
One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less
Aksyonov, S A; Williams, P
2001-01-01
Impact desolvation of electrosprayed microdroplets (IDEM) is a new method for producing gas-phase ions of large biomolecules. Analytes are dissolved in an electrolyte solution which is electrosprayed in vacuum, producing highly charged micron and sub-micron sized droplets (microdroplets). These microdroplets are accelerated through potential differences approximately 5 - 10 kV to velocities of several km/s and allowed to impact a target surface. The energetic impacts vaporize the droplets and release desolvated gas-phase ions of the analyte molecules. Oligonucleotides (2- to 12-mer) and peptides (bradykinin, neurotensin) yield singly and doubly charged molecular ions with no detectable fragmentation. Because the extent of multiple charging is significantly less than in atmospheric pressure electrospray ionization, and the method produces ions largely free of adducts from solutions of high ionic strength, IDEM has some promise as a method for coupling to liquid chromatographic techniques and for mixture analysis. Ions are produced in vacuum at a flat equipotential surface, potentially allowing efficient ion extraction. Copyright 2001 John Wiley & Sons, Ltd.
Optimized effective potential method and application to static RPA correlation
NASA Astrophysics Data System (ADS)
Fukazawa, Taro; Akai, Hisazumi
2015-03-01
The optimized effective potential (OEP) method is a promising technique for calculating the ground state properties of a system within the density functional theory. However, it is not widely used as its computational cost is rather high and, also, some ambiguity remains in the theoretical framework. In order to overcome these problems, we first introduced a method that accelerates the OEP scheme in a static RPA-level correlation functional. Second, the Krieger-Li-Iafrate (KLI) approximation is exploited to solve the OEP equation. Although seemingly too crude, this approximation did not reduce the accuracy of the description of the magnetic transition metals (Fe, Co, and Ni) examined here, the magnetic properties of which are rather sensitive to correlation effects. Finally, we reformulated the OEP method to render it applicable to the direct RPA correlation functional and other, more precise, functionals. Emphasis is placed on the following three points of the discussion: (i) level-crossing at the Fermi surface is taken into account; (ii) eigenvalue variations in a Kohn-Sham functional are correctly treated; and (iii) the resultant OEP equation is different from those reported to date.
Sewer infiltration/inflow: long-term monitoring based on diurnal variation of pollutant mass flux.
Bares, V; Stránský, D; Sýkora, P
2009-01-01
The paper deals with a method for quantification of infiltrating groundwater based on the variation of diurnal pollutant load and continuous water quality and quantity monitoring. Although the method gives us the potential to separate particular components of wastewater hygrograph, several aspects of the method should be discussed. Therefore, the paper investigates the cost-effectiveness, the relevance of pollutant load from surface waters (groundwater) and the influence of measurement time step. These aspects were studied in an experimental catchment of Prague sewer system, Czech Republic, within a three-month period. The results indicate high contribution of parasitic waters on night minimal discharge. Taking into account the uncertainty of the results and time-consuming maintenance of the sensor, the principal advantages of the method are evaluated. The study introduces a promising potential of the discussed measuring concept for quantification of groundwater infiltrating into the sewer system. It is shown that the conventional approach is sufficient and cost-effective even in those catchments, where significant contribution of foul sewage in night minima would have been assumed.
Advancing the research agenda for diagnostic error reduction.
Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep
2013-10-01
Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.
Circulating Tumor Cells: Moving Biological Insights into Detection
Chen, Lichan; Bode, Ann M; Dong, Zigang
2017-01-01
Circulating tumor cells (CTCs) have shown promising potential as liquid biopsies that facilitate early detection, prognosis, therapeutic target selection and monitoring treatment response. CTCs in most cancer patients are low in abundance and heterogeneous in morphological and phenotypic profiles, which complicate their enrichment and subsequent characterization. Several methodologies for CTC enrichment and characterization have been developed over the past few years. However, integrating recent advances in CTC biology into these methodologies and the selection of appropriate enrichment and characterization methods for specific applications are needed to improve the reliability of CTC biopsies. In this review, we summarize recent advances in the studies of CTC biology, including the mechanisms of their generation and their potential forms of existence in blood, as well as the current CTC enrichment technologies. We then critically examine the selection of methods for appropriately enriching CTCs for further investigation of their clinical applications. PMID:28819450
Demand for male contraception.
Dorman, Emily; Bishai, David
2012-10-01
The biological basis for male contraception was established decades ago, but despite promising breakthroughs and the financial burden men increasingly bear due to better enforcement of child support policies, no viable alternative to the condom has been brought to market. Men who wish to control their fertility must rely on female compliance with contraceptives, barrier methods, vasectomy or abstinence. Over the last 10 years, the pharmaceutical industry has abandoned most of its investment in the field, leaving only nonprofit organisations and public entities pursuing male contraception. Leading explanations are uncertain forecasts of market demand pitted against the need for critical investments to demonstrate the safety of existing candidate products. This paper explores the developments and challenges in male contraception research. We produce preliminary estimates of potential market size for a safe and effective male contraceptive based on available data to estimate the potential market for a novel male method.
Primate comparative neuroscience using magnetic resonance imaging: promises and challenges
Mars, Rogier B.; Neubert, Franz-Xaver; Verhagen, Lennart; Sallet, Jérôme; Miller, Karla L.; Dunbar, Robin I. M.; Barton, Robert A.
2014-01-01
Primate comparative anatomy is an established field that has made rich and substantial contributions to neuroscience. However, the labor-intensive techniques employed mean that most comparisons are often based on a small number of species, which limits the conclusions that can be drawn. In this review we explore how new developments in magnetic resonance imaging have the potential to apply comparative neuroscience to a much wider range of species, allowing it to realize an even greater potential. We discuss (1) new advances in the types of data that can be acquired, (2) novel methods for extracting meaningful measures from such data that can be compared between species, and (3) methods to analyse these measures within a phylogenetic framework. Together these developments will allow researchers to characterize the relationship between different brains, the ecological niche they occupy, and the behavior they produce in more detail than ever before. PMID:25339857
Dhayalan, Manikandan; Denison, Michael Immanuel Jesse; L, Anitha Jegadeeshwari; Krishnan, Kathiravan; N, Nagendra Gandhi
2017-02-01
In recent years, the green synthesis of gold (GNPs) and silver (SNPs) nanoparticles has gained great interest among chemists and researchers. The present study reports an eco-friendly, cost-effective, rapid and easy method for the synthesis of gold and silver nanoparticles using the seed extract of Embelia ribes (SEEr) as capping and reducing agent. The synthesised GNPs and SNPs were characterised using the following techniques: UV-vis spectroscopy, DLS, HR-TEM, FT-IR and XRD. The free radical scavenging potential of GNPs and SNPs was measured by DPPH assay and Phosphomolybdenum assay. Further, the antimicrobial activity against two micro-organisms were tested using disc diffusion method and cytotoxicity of GNPs and SNPs was determined against MCF-7 cell lines at different concentrations by MTT assay. Both the GNPs and SNPs prepared from E. ribes comparatively showed promising results thereby proving their clinical importance.
Wood-Derived Ultrathin Carbon Nanofiber Aerogels.
Li, Si-Cheng; Hu, Bi-Cheng; Ding, Yan-Wei; Liang, Hai-Wei; Li, Chao; Yu, Zi-You; Wu, Zhen-Yu; Chen, Wen-Shuai; Yu, Shu-Hong
2018-06-11
Carbon aerogels with 3D networks of interconnected nanometer-sized particles exhibit fascinating physical properties and show great application potential. Efficient and sustainable methods are required to produce high-performance carbon aerogels on a large scale to boost their practical applications. An economical and sustainable method is now developed for the synthesis of ultrathin carbon nanofiber (CNF) aerogels from the wood-based nanofibrillated cellulose (NFC) aerogels via a catalytic pyrolysis process, which guarantees high carbon residual and well maintenance of the nanofibrous morphology during thermal decomposition of the NFC aerogels. The wood-derived CNF aerogels exhibit excellent electrical conductivity, a large surface area, and potential as a binder-free electrode material for supercapacitors. The results suggest great promise in developing new families of carbon aerogels based on the controlled pyrolysis of economical and sustainable nanostructured precursors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modulation of hepcidin to treat iron deregulation: potential clinical applications
Blanchette, Nicole L.; Manz, David H.; Torti, Frank M.
2016-01-01
The secreted peptide hormone hepcidin regulates systemic and local iron homeostasis through degradation of the iron exporter ferroportin. Dysregulation of hepcidin leads to altered iron homeostasis and development of pathological disorders including hemochromatosis, and iron loading and iron restrictive anemias. Therapeutic modulation of hepcidin is a promising method to ameliorate these conditions. Several approaches have been taken to enhance or reduce the effects of hepcidin in vitro and in vivo. Based on these approaches, hepcidin modulating drugs have been developed and are undergoing clinical evaluation. In this article we review the rationale for development of these drugs, the data concerning their safety and efficacy, their therapeutic uses, and potential future prospects. PMID:26669208
Producing fluid flow using 3D carbon electrodes
NASA Astrophysics Data System (ADS)
Rouabah, H. A.; Park, B. Y.; Zaouk, R. B.; Madou, M. J.; Green, Nicolas G.
2008-12-01
Moving and manipulating bio-particles and fluids on the microscale is central to many lab-on-a-chip applications. Techniques for pumping fluids which use electric fields have shown promise using both DC and AC voltages. AC techniques, however, require the use of integrated metal electrodes which have a low resistance but can suffer from unwanted chemical reactions even at low potentials. In this paper we introduce the use of carbon MEMS technology (C-MEMS), a fabrication method which produces 3D conductive polymeric structures. Results are presented of the fabrication of an innovative design of 3D AC-electroosmotic micropump and preliminary experimental measurements which demonstrate the potential of both the technology and the design.
Rapid spectrophotometric method for determining surface free energy of microalgal cells.
Zhang, Xinru; Jiang, Zeyi; Li, Mengyin; Zhang, Xinxin; Wang, Ge; Chou, Aihui; Chen, Liang; Yan, Hai; Zuo, Yi Y
2014-09-02
Microalgae are one of the most promising renewable energy sources with environmental sustainability. The surface free energy of microalgal cells determines their biofouling and bioflocculation behavior and hence plays an important role in microalgae cultivation and harvesting. To date, the surface energetic properties of microalgal cells are still rarely studied. We developed a novel spectrophotometric method for directly determining the surface free energy of microalgal cells. The principles of this method are based on analyzing colloidal stability of microalgae suspensions. We have shown that this method can effectively differentiate the surface free energy of four microalgal strains, i.e., marine Chlorella sp., marine Nannochloris oculata, freshwater autotrophic Chlorella sp., and freshwater heterotrophic Chlorella sp. With advantages of high-throughput and simplicity, this new spectrophotometric method has the potential to evolve into a standard method for measuring the surface free energy of cells and abiotic particles.
Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)
NASA Astrophysics Data System (ADS)
Lenhardt, Nils; Götz, Annette E.
2015-04-01
The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.
NASA Astrophysics Data System (ADS)
Yashiki, Satoshi; Ueda, Kazuo
2011-08-01
Effect of anharmonicity of a cage potential for a magnetic ion vibrating in a metal is investigated by the numerical renormalization group method. The cage potential is assumed to be one-dimensional and of the double-well type. In the absence of the Coulomb interaction, we find continuous crossover among the three limiting cases: Yu--Anderson-type Kondo regime, the double-well-type Kondo one, and the renormalized Fermi chain one. In the entire parameter space of the double-well potential, the ground state is described by a local Fermi liquid. In the Yu--Anderson-type Kondo regime, a quantum phase transition to the ground state with odd parity takes place passing through the two-channel Kondo fixed point when the Coulomb interaction increases. Therefore, the vibration of a magnetic ion in an oversized cage structure is a promising route to the two-channel Kondo effect.
Real-time recognition of feedback error-related potentials during a time-estimation task.
Lopez-Larraz, Eduardo; Iturrate, Iñaki; Montesano, Luis; Minguez, Javier
2010-01-01
Feedback error-related potentials are a promising brain process in the field of rehabilitation since they are related to human learning. Due to the fact that many therapeutic strategies rely on the presentation of feedback stimuli, potentials generated by these stimuli could be used to ameliorate the patient's progress. In this paper we propose a method that can identify, in real-time, feedback evoked potentials in a time-estimation task. We have tested our system with five participants in two different days with a separation of three weeks between them, achieving a mean single-trial detection performance of 71.62% for real-time recognition, and 78.08% in offline classification. Additionally, an analysis of the stability of the signal between the two days is performed, suggesting that the feedback responses are stable enough to be used without the needing of training again the user.
2015-01-01
Natural products remain the best sources of drugs and drug leads and serve as outstanding small-molecule probes to dissect fundamental biological processes. A great challenge for the natural product community is to discover novel natural products efficiently and cost effectively. Here we report the development of a practical method to survey biosynthetic potential in microorganisms, thereby identifying the most promising strains and prioritizing them for natural product discovery. Central to our approach is the innovative preparation, by a two-tiered PCR method, of a pool of pathway-specific probes, thereby allowing the survey of all variants of the biosynthetic machineries for the targeted class of natural products. The utility of the method was demonstrated by surveying 100 strains, randomly selected from our actinomycete collection, for their biosynthetic potential of four classes of natural products, aromatic polyketides, reduced polyketides, nonribosomal peptides, and diterpenoids, identifying 16 talented strains. One of the talented strains, Streptomyces griseus CB00830, was finally chosen to showcase the discovery of the targeted classes of natural products, resulting in the isolation of three diterpenoids, six nonribosomal peptides and related metabolites, and three polyketides. Variations of this method should be applicable to the discovery of other classes of natural products. PMID:24484381
Mathematical Profiles and Problem Solving Abilities of Mathematically Promising Students
ERIC Educational Resources Information Center
Budak, Ibrahim
2012-01-01
Mathematically promising students are defined as those who have the potential to become the leaders and problem solvers of the future. The purpose of this research is to reveal what problem solving abilities mathematically promising students show in solving non-routine problems and type of profiles they present in the classroom and during problem…
Methods of Measurement in epidemiology: Sedentary Behaviour
Atkin, Andrew J; Gorely, Trish; Clemes, Stacy A; Yates, Thomas; Edwardson, Charlotte; Brage, Soren; Salmon, Jo; Marshall, Simon J; Biddle, Stuart JH
2012-01-01
Background Research examining sedentary behaviour as a potentially independent risk factor for chronic disease morbidity and mortality has expanded rapidly in recent years. Methods We present a narrative overview of the sedentary behaviour measurement literature. Subjective and objective methods of measuring sedentary behaviour suitable for use in population-based research with children and adults are examined. The validity and reliability of each method is considered, gaps in the literature specific to each method identified and potential future directions discussed. Results To date, subjective approaches to sedentary behaviour measurement, e.g. questionnaires, have focused predominantly on TV viewing or other screen-based behaviours. Typically, such measures demonstrate moderate reliability but slight to moderate validity. Accelerometry is increasingly being used for sedentary behaviour assessments; this approach overcomes some of the limitations of subjective methods, but detection of specific postures and postural changes by this method is somewhat limited. Instruments developed specifically for the assessment of body posture have demonstrated good reliability and validity in the limited research conducted to date. Miniaturization of monitoring devices, interoperability between measurement and communication technologies and advanced analytical approaches are potential avenues for future developments in this field. Conclusions High-quality measurement is essential in all elements of sedentary behaviour epidemiology, from determining associations with health outcomes to the development and evaluation of behaviour change interventions. Sedentary behaviour measurement remains relatively under-developed, although new instruments, both objective and subjective, show considerable promise and warrant further testing. PMID:23045206
Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.
Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang
2018-06-01
Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.
Bulk properties of solution-synthesized chevron-like graphene nanoribbons.
Vo, Timothy H; Shekhirev, Mikhail; Lipatov, Alexey; Korlacki, Rafal A; Sinitskii, Alexander
2014-01-01
Graphene nanoribbons (GNRs) have received a great deal of attention due to their promise for electronic and optoelectronic applications. Several recent studies have focused on the synthesis of GNRs by the bottom-up approaches that could yield very narrow GNRs with atomically precise edges. One type of GNRs that has received a considerable attention is the chevron-like GNR with a very distinct periodic structure. Surface-assisted and solution-based synthetic approaches for the chevron-like GNRs have been developed, but their electronic properties have not been reported yet. In this work, we synthesized chevron-like GNRs in bulk by a solution-based method, characterized them by a number of spectroscopic techniques and measured their bulk conductivity. We demonstrate that solution-synthesized chevron-like GNRs are electrically conductive in bulk, which makes them a potentially promising material for applications in organic electronics and photovoltaics.
Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability
NASA Astrophysics Data System (ADS)
Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida
2017-02-01
Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.
Plant DNA sequences from feces: potential means for assessing diets of wild primates.
Bradley, Brenda J; Stiller, Mathias; Doran-Sheehy, Diane M; Harris, Tara; Chapman, Colin A; Vigilant, Linda; Poinar, Hendrik
2007-06-01
Analyses of plant DNA in feces provides a promising, yet largely unexplored, means of documenting the diets of elusive primates. Here we demonstrate the promise and pitfalls of this approach using DNA extracted from fecal samples of wild western gorillas (Gorilla gorilla) and black and white colobus monkeys (Colobus guereza). From these DNA extracts we amplified, cloned, and sequenced small segments of chloroplast DNA (part of the rbcL gene) and plant nuclear DNA (ITS-2). The obtained sequences were compared to sequences generated from known plant samples and to those in GenBank to identify plant taxa in the feces. With further optimization, this method could provide a basic evaluation of minimum primate dietary diversity even when knowledge of local flora is limited. This approach may find application in studies characterizing the diets of poorly-known, unhabituated primate species or assaying consumer-resource relationships in an ecosystem. (c) 2007 Wiley-Liss, Inc.
Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.
Cui, Zheng; Han, Yiwei; Huang, Qijin; Dong, Jingyan; Zhu, Yong
2018-04-19
A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc. With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.
RCT of a Promising Vocational/Employment Program for High-Risk Juvenile Offenders
Schaeffer, Cindy M.; Henggeler, Scott W.; Ford, Julian D.; Mann, Marc; Chang, Rocio; Chapman, Jason E.
2013-01-01
Juvenile offenders with substance use problems are at high risk for deleterious long-term outcomes. This study evaluated the capacity of a promising vocational and employment training program in the building sector (i.e., Community Restitution Apprenticeship-Focused Training, CRAFT) to mitigate such outcomes through enhanced employment and education. Participants were 97 high-risk juvenile offenders (mean age = 15.8 years) randomized to CRAFT versus education as usual (EAU) intervention conditions. Multi-method procedures measured employment, education, substance use, mental health, and criminal outcomes through a 30-month post-baseline follow-up. CRAFT was significantly more effective than EAU at increasing rates of youth employment and GED attendance. Intervention effects were not observed, however, for months employed, hours worked, or hourly wage. Measures of youth substance use, mental health symptoms, and criminal activity showed no favorable or iatrogenic effects. The potential of CRAFT was modestly supported, and suggestions were made for future research. PMID:23958035
Niedermaier, Tobias; Weigl, Korbinian; Hoffmeister, Michael; Brenner, Hermann
2017-01-01
Background Colorectal cancer (CRC) is a common but largely preventable cancer. Although fecal immunochemical tests (FITs) detect the majority of CRCs, they miss some of the cancers and most advanced adenomas (AAs). The potential of blood tests in complementing FITs for the detection of CRC or AA has not yet been systematically investigated. Methods We conducted a systematic review of performance of FIT combined with an additional blood test for CRC and AA detection versus FIT alone. PubMed and Web of Science were searched until June 9, 2017. Results Some markers substantially increased sensitivity for CRC when combined with FIT, albeit typically at a major loss of specificity. For AA, no relevant increase in sensitivity could be achieved. Conclusion Combining FIT and blood tests might be a promising approach to enhance sensitivity of CRC screening, but comprehensive evaluation of promising marker combinations in screening populations is needed. PMID:29435309
Massaro, Marina; Colletti, Carmelo G; Noto, Renato; Riela, Serena; Poma, Paola; Guernelli, Susanna; Parisi, Filippo; Milioto, Stefana; Lazzara, Giuseppe
2015-01-30
Halloysite nanotubes were explored as drug carrier for cardanol, which is considered as a promising natural anticancer active species. To this aim, besides the pristine nanoclay, a chemical modification of the nanocarrier was performed by attaching triazolium salts with different hydrophobicity at the outer surface of the hollow nanotubes. The interaction between cardanol and nanotubes was highlighted in solution by HPLC. This method proved the loading of the drug into the nanotubes. The solid dried complexes formed by pristine and modified halloysite with the cardanol were characterized by IR spectroscopy, thermogravimetric analysis as well as water contact angle to evidence the structure, thermal properties and wettability of the obtained materials. The kinetics of cardanol release as well as cell viability experiments provided promising results that put forward a new strategy for potential applications of cardanol as active antiproliferative molecule and clay nanotubes as drug carrier. Copyright © 2015. Published by Elsevier B.V.
Protease activated receptor-2 (PAR2): possible target of phytochemicals.
Kakarala, Kavita Kumari; Jamil, Kaiser
2015-09-01
The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.
A method to assess social sustainability of capture fisheries: An application to a Norwegian trawler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veldhuizen, L.J.L., E-mail: linda.veldhuizen@wur.nl; Berentsen, P.B.M.; Bokkers, E.A.M.
Social sustainability assessment of capture fisheries is, both in terms of method development and measurement, not well developed. The objective of this study, therefore, was to develop a method consisting of indicators and rubrics (i.e. categories that articulate levels of performance) to assess social sustainability of capture fisheries. This method was applied to a Norwegian trawler that targets cod and haddock in the northeast Atlantic. Based on previous research, 13 social sustainability issues were selected. To measure the state of these issues, 17 process and outcome indicators were determined. To interpret indicator values, rubrics were developed for each indicator, usingmore » standards set by international conventions or data retrieved from national statistics, industry agreements or scientific publications that explore rubric scales. The indicators and rubrics were subsequently used in a social sustainability assessment of a Norwegian trawler. This assessment indicated that overall, social sustainability of this trawler is relatively high, with high rubric scores, for example, for worker safety, provisions aboard for the crew and companies' salary levels. The assessment also indicated that the trawler could improve on healthy working environment, product freshness and fish welfare during capture. This application demonstrated that our method provides insight into social sustainability at the level of the vessel and can be used to identify potential room for improvement. This method is also promising for social sustainability assessment of other capture fisheries. - Highlights: • A method was developed for social sustainability assessment of capture fisheries. • This method entailed determining outcome and process indicators for important issues. • To interpret indicator values, a rubric was developed for each indicator. • Use of this method gives insight into social sustainability and improvement options. • This method is promising for social sustainability assessment of capture fisheries.« less
Smoking in film in New Zealand: measuring risk exposure
Gale, Jesse; Fry, Bridget; Smith, Tara; Okawa, Ken; Chakrabarti, Anannya; Ah-Yen, Damien; Yi, Jesse; Townsend, Simon; Carroll, Rebecca; Stockwell, Alannah; Sievwright, Andrea; Dew, Kevin; Thomson, George
2006-01-01
Background Smoking in film is a risk factor for smoking uptake in adolescence. This study aimed to quantify exposure to smoking in film received by New Zealand audiences, and evaluate potential interventions to reduce the quantity and impact of this exposure. Methods The ten highest-grossing films in New Zealand for 2003 were each analysed independently by two viewers for smoking, smoking references and related imagery. Potential interventions were explored by reviewing relevant New Zealand legislation, and scientific literature. Results Seven of the ten films contained at least one tobacco reference, similar to larger film samples. The majority of the 38 tobacco references involved characters smoking, most of whom were male. Smoking was associated with positive character traits, notably rebellion (which may appeal to adolescents). There appeared to be a low threshold for including smoking in film. Legislative or censorship approaches to smoking in film are currently unlikely to succeed. Anti-smoking advertising before films has promise, but experimental research is required to demonstrate cost effectiveness. Conclusion Smoking in film warrants concern from public health advocates. In New Zealand, pre-film anti-smoking advertising appears to be the most promising immediate policy response. PMID:17020623
PRESERVATION OF FOOD BY LOW-DOSE IONIZING ENERGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-01-01
A review is presented of the current status of investigations on the radiation processing of foods. The technical feasibility of this preservation method is well established and the economic feasibility of the method appears promising, particularly in low-dose applications. The current status of development of radiation sources is discussed. Pork has responded best among the meats tested for radiation processing. Sausage, luncheon meats, and chicken demonstrate good potential. Beef appears acceptable at low radiation dose ranges but presents flavor problems at high dosages. The storage life of refrigerated and unrefrigerated marine products is increased by radiation processing, Vegetable s aremore » easily damaged by comparatively small doses of radiation. Shredded cabbage treated at 300,000 rad is an excellent product and asparagus, snap beans, lima beans, broccoli, carrots, and corn are promising vegetables for radiation processing. Radiation treatment inhibits sprouting of potatoes and onions. Radiation processing of strawberries, grapes, peaches, tomatoes, and citrus fruits at doses between 200,000 and 800,000 rad affects molds that cause rotting and increases the storage life of these fruits. Radiation processing of cereal grains, cereal products, and military ration components destroys adult insects, larvae, and eggs of insect pests that infest these foods. No radioactivity has been induced in food products by high radiation doses. Extensive studies have shown that radiation processing has no effect on the wholesomeness of foods. The economic feasibility and potentialities of the radiation processing of foods are discussed. (C.H.)« less
Lu, Wei-Zhen; Wang, Wen-Jian
2005-04-01
Monitoring and forecasting of air quality parameters are popular and important topics of atmospheric and environmental research today due to the health impact caused by exposing to air pollutants existing in urban air. The accurate models for air pollutant prediction are needed because such models would allow forecasting and diagnosing potential compliance or non-compliance in both short- and long-term aspects. Artificial neural networks (ANN) are regarded as reliable and cost-effective method to achieve such tasks and have produced some promising results to date. Although ANN has addressed more attentions to environmental researchers, its inherent drawbacks, e.g., local minima, over-fitting training, poor generalization performance, determination of the appropriate network architecture, etc., impede the practical application of ANN. Support vector machine (SVM), a novel type of learning machine based on statistical learning theory, can be used for regression and time series prediction and have been reported to perform well by some promising results. The work presented in this paper aims to examine the feasibility of applying SVM to predict air pollutant levels in advancing time series based on the monitored air pollutant database in Hong Kong downtown area. At the same time, the functional characteristics of SVM are investigated in the study. The experimental comparisons between the SVM model and the classical radial basis function (RBF) network demonstrate that the SVM is superior to the conventional RBF network in predicting air quality parameters with different time series and of better generalization performance than the RBF model.
Fogleman, Sarah; Santana, Casey; Bishop, Casey; Miller, Alyssa; Capco, David G
2016-01-01
Thousands of mothers are at risk of transmitting mitochondrial diseases to their offspring each year, with the most severe form of these diseases being fatal [1]. With no cure, transmission prevention is the only current hope for decreasing the disease incidence. Current methods of prevention rely on low mutant maternal mitochondrial DNA levels, while those with levels close to or above threshold (>60%) are still at a very high risk of transmission [2]. Two novel approaches may offer hope for preventing and treating mitochondrial disease: mitochondrial replacement therapy, and CRISPR/Cas9. Mitochondrial replacement therapy has emerged as a promising tool that has the potential to prevent transmission in patients with higher mutant mitochondrial loads. This method is the subject of many ethical concerns due its use of a donor embryo to transplant the patient’s nuclear DNA; however, it has ultimately been approved for use in the United Kingdom and was recently declared ethically permissible by the FDA. The leading-edge CRISPR/Cas9 technology exploits the principles of bacterial immune function to target and remove specific sequences of mutated DNA. This may have potential in treating individuals with disease caused by mutant mitochondrial DNA. As the technology progresses, it is important that the ethical considerations herein emerge and become more established. The purpose of this review is to discuss current research surrounding the procedure and efficacy of the techniques, compare the ethical concerns of each approach, and look into the future of mitochondrial gene replacement therapy. PMID:27725916
NASA Astrophysics Data System (ADS)
Wang, Xiaoyu; Yu, Yuan; Zhu, Bin; Gao, Na; Huang, Zhongyue; Xiang, Bo; Zu, Fangqiu
2018-02-01
Thermoelectric technology is regarded as one of the most promising direct power generation techniques via thermoelectric materials. However, the batch production and scale-up application are hindered because of the high-cost and poor performance. In this work, we adopt the free growth method to synthesize a series of the bulk materials of SbI3-doped Bi1.8Sb0.2Te2.85Se0.15 alloys. The structural and component investigations as well as the electrical properties characterization are carried out. The results show that SbI3 promotes the formation of Te-rich regions in the matrix. In addition, the synergistically optimized electrical conductivity and Seebeck coefficient are attained by controlling the SbI3 doping concentration. Thus, the sample with 0.30 wt.% SbI3 displays a highly increased power factor of ˜ 13.57 μW cm-1 K-2, which is nearly 21 times higher than that of the undoped one. Moreover, the free growth method is reproducible, convenient and economical. Therefore, it has great potential as a promising technology for the batch synthesis.
NASA Astrophysics Data System (ADS)
Dai, Duoqian; Zhou, Lu; Zhu, Xiaohong; You, Rong; Zhong, Liangliang
2017-06-01
MutT homolog 1 (MTH1), a nudix phosphohydrolase enzyme participates in the process of repairing of DNA damage by hydrolyzing oxidized deoxy-ribonucleoside triphosphate in cancer cells, is regarded as a potential target for anticancer therapy. In order to seek for promising inhibitor of MTH1, structured-based pharmacophore and 3D-QSAR pharmacophore hypotheses combine with the ADMET analysis and Lipinski's rule of five were used for screening the public molecules libraries (Asinex, Ibscreen and Natural). Then molecular docking studies were performed on screened hits via various docking programs (Glide SP, GOLD and Glide XP), five molecules with three scaffolds were picked out as potential inhibitors against MTH1. Eventually, 20 ns molecular dynamics simulation was implemented on the potential inhibitors. The RMSD (Root Mean Square Deviation) values were used to illustrate bind stability between potential molecules and MTH1. Therefore, the five hits may be considered as promising MTH1 inhibitors by all above studies.
Effect of 3D Cultivation Conditions on the Differentiation of Endodermal Cells
Petrakova, O. S.; Ashapkin, V. V.; Voroteliak, E. A.; Bragin, E. Y.; Shtratnikova, V. Y.; Chernioglo, E. S.; Sukhanov, Y. V.; Terskikh, V. V.; Vasiliev, A. V.
2012-01-01
Cellular therapy of endodermal organs is one of the most important issues in modern cellular biology and biotechnology. One of the most promising directions in this field is the study of the transdifferentiation abilities of cells within the same germ layer. A method for anin vitroinvestigation of the cell differentiation potential (the cell culture in a three-dimensional matrix) is described in this article. Cell cultures of postnatal salivary gland cells and postnatal liver progenitor cells were obtained; their comparative analysis under 2D and 3D cultivation conditions was carried out. Both cell types have high proliferative abilities and can be cultivated for more than 20 passages. Under 2D cultivation conditions, the cells remain in an undifferentiated state. Under 3D conditions, they undergo differentiation, which was confirmed by a lower cell proliferation and by an increase in the differentiation marker expression. Salivary gland cells can undergo hepatic and pancreatic differentiation under 3D cultivation conditions. Liver progenitor cells also acquire a pancreatic differentiation capability under conditions of 3D cultivation. Thus, postnatal salivary gland cells exhibit a considerable differentiation potential within the endodermal germ layer and can be used as a promising source of endodermal cells for the cellular therapy of liver pathologies. Cultivation of cells under 3D conditions is a useful model for thein vitroanalysis of the cell differentiation potential. PMID:23346379
HORSE SPECIES SYMPOSIUM: Use of mesenchymal stem cells in fracture repair in horses.
Govoni, K E
2015-03-01
Equine bone fractures are often catastrophic, potentially fatal, and costly to repair. Traditional methods of healing fractures have limited success, long recovery periods, and a high rate of reinjury. Current research in the equine industry has demonstrated that stem cell therapy is a promising novel therapy to improve fracture healing and reduce the incidence of reinjury; however, reports of success in horses have been variable and limited. Stem cells can be derived from embryonic, fetal, and adult tissue. Based on the ease of collection, opportunity for autologous cells, and proven success in other models, adipose- or bone marrow-derived mesenchymal stem cells (MSC) are often used in equine therapies. Methods for isolation, proliferation, and differentiation of MSC are well established in rodent and human models but are not well characterized in horses. There is recent evidence that equine bone marrow MSC are able to proliferate in culture for several passages in the presence of autologous and fetal bovine serum, which is important for expansion of cells. Mesenchymal stem cells have the capacity to differentiate into osteoblasts, the bone forming cells, and this complex process is regulated by a number of transcription factors including runt-related transcription factor 2 (Runx2) and osterix (Osx). However, it has not been well established if equine MSC are regulated in a similar manner. The data presented in this review support the view that equine bone marrow MSC are regulated by the same transcription factors that control the differentiation of rodent and human MSC into osteoblasts. Although stem cell therapy is promising in equine bone repair, additional research is needed to identify optimal methods for reintroduction and potential manipulations to improve their ability to form new bone.
NASA Astrophysics Data System (ADS)
Jayasheela, K.; Al-Wahaibi, Lamya H.; Periandy, S.; Hassan, Hanan M.; Sebastian, S.; Xavier, S.; Daniel, Joseph C.; El-Emam, Ali A.; Attia, Mohamed I.
2018-05-01
The promising anti-Candida agent, 4-chlorophenyl ({[1E-3(1H-imidazole-1-yl)-1-phenylpropylidene}oxy)methanone (4-CPIPM) was comprehensively characterized by FT-IR, FT-Raman, UV, as well as 1H and 13C spectroscopic techniques. The theoretical calculations in the current study utilized Gaussian 09 W software with DFT approach of the B3LYP/6-311++G(d,p) method. The experimental X-ray diffraction data of the 4-CPIPM molecule were compared with the optimized structure and showed well agreement. Intermolecular electronic interactions and their stabilization energies have been analyzed by natural bond orbital method. Potential energy distribution confirmed the normal fundamental mode of vibration with the aid of MOLVIB software. The chemical shift values of the 1H and 13C spectra of the title compound were computed using gauge independent atomic orbital and the results were compared with the experimental values. The time-dependent density function theory method was used to predict the electronic, absorption wavelength and frontier molecular orbital energies. The HOMO-LUMO plots proved the charge transfer in the molecular system of the title compound through conjugated paths. The molecular electrostatic potential analysis provided the electrophilic and nucleophilic reactive sites in the title molecule which have been analyzed using Hirshfeld surface and two dimensions fingerprint plots. Non covalent interactions were also studied using reduced density gradient analysis and color filled electron density diagram. Molecular docking studies of the ligand-protein interactions along with their binding energies were carried out aiming to explain the potent anti-Candida activity of the title molecule.
NASA Astrophysics Data System (ADS)
Mohapatra, Debananda; Badrayyana, Subramanya; Parida, Smrutiranjan
2017-05-01
Carbon nano onion (CNO) is a promising material for diverse application areas such as energy devices, catalysis, lubrication, biology and gas storage, etc. However, its implementation is fraught with the production of high-quality powders in bulk quantity. Herein, we report a facile scalable and one-step "wick-and-oil" flame synthesis of pure and water dispersible CNO nanopowder. Other forms of carbon did not contaminate the as-prepared CNO; hence, a post processing purification procedure was not necessary. Brunauer Emmett Teller (BET) specific surface area of as-prepared CNO was 218 m2/g, which is higher as compared to other reported flame synthesis methods. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by "dipping and drying" process providing outstanding strechability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102.16 F/g, energy density 14.18 Wh/kg and power density 2448 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge -discharge cycles. Simple preparation of high-purity CNOs and excellent electrochemical behavior of functionalized CNOs make them a promising electrode material for supercapacitor applications. Furthermore, this unique method not only affords binder free - freestanding electrode, but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium ion batteries.
Oliveira, M M; Sousa, L B; Reis, M C; Silva Junior, E G; Cardoso, D B O; Hamawaki, O T; Nogueira, A P O
2017-05-31
The genetic diversity study has paramount importance in breeding programs; hence, it allows selection and choice of the parental genetic divergence, which have the agronomic traits desired by the breeder. This study aimed to characterize the genetic divergence between 24 soybean genotypes through their agronomic traits, using multivariate clustering methods to select the potential genitors for the promising hybrid combinations. Six agronomic traits evaluated were number of days to flowering and maturity, plant height at flowering and maturity, insertion height of the first pod, and yield. The genetic divergence evaluated by multivariate analysis that esteemed first the Mahalanobis' generalized distance (D 2 ), then the clustering using Tocher's optimization methods, and then the unweighted pair group method with arithmetic average (UPGMA). Tocher's optimization method and the UPGMA agreed with the groups' constitution between each other, the formation of eight distinct groups according Tocher's method and seven distinct groups using UPGMA. The trait number of days for flowering (45.66%) was the most efficient to explain dissimilarity between genotypes, and must be one of the main traits considered by the breeder in the moment of genitors choice in soybean-breeding programs. The genetic variability allowed the identification of dissimilar genotypes and with superior performances. The hybridizations UFU 18 x UFUS CARAJÁS, UFU 15 x UFU 13, and UFU 13 x UFUS CARAJÁS are promising to obtain superior segregating populations, which enable the development of more productive genotypes.
Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications.
Krumm, Patrick; Mangold, Stefanie; Gatidis, Sergios; Nikolaou, Konstantin; Nensa, Felix; Bamberg, Fabian; la Fougère, Christian
2018-05-01
Combined PET/MRI is a novel imaging method integrating the advances of functional and morphological MR imaging with PET applications that include assessment of myocardial viability, perfusion, metabolism of inflammatory tissue and tumors, as well as amyloid deposition imaging. As such, PET/MRI is a promising tool to detect and characterize ischemic and non-ischemic cardiomyopathies. To date, the greatest benefit may be expected for diagnostic evaluation of systemic diseases and cardiac masses that remain unclear in cardiac MRI, as well as for clinical and scientific studies in the setting of ischemic cardiomyopathies. Diagnosis and therapeutic monitoring of cardiac sarcoidosis has the potential of a possible 'killer-application' for combined cardiac PET/MRI. In this article, we review the current evidence and discuss current and potential future applications of cardiac PET/MRI.
Khan, Imtiaz; Ibrar, Aliya; Abbas, Naeem; Saeed, Aamer
2014-04-09
Drug development has been a principal driving force in the rapid maturation of the field of medicinal chemistry during the past several decades. During this period, the intriguing and challenging molecular architectures of nitrogen-containing heterocycles with potential bioactive properties have received significant attention from researchers engaged in the areas of natural product synthesis and heterocyclic methodology, and constituted a continuous stimulus for development in bio(organic) chemistry. In this perspective, the current review article is an effort to summarize recent developments in the environmentally benign synthetic methods providing access to quinazoline and quinazolinone scaffolds with promising biological potential. This article also aims to discuss potential future directions on the development of more potent and specific analogues for various biological targets. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Prospective markets and design concepts for civilian remotely piloted aircraft
NASA Technical Reports Server (NTRS)
Nelms, W. P., Jr.; Gregory, T. J.; Aderhold, J. R.
1976-01-01
This paper summarizes a study that examines the technical, economic, and environmental aspects of remotely piloted vehicles (RPVs) in the civil environment. A market survey was conducted in which 35 civil applications of RPVs were identified. For a number of these uses, vehicle and system concepts were defined, benefit and cost comparisons were made with present methods, and the influence of safety and environmental implications was assessed. The results suggest a sizable potential demand for the use of RPVs in the civil sector, and some of the applications show promising cost savings over established methods. A focussed technology effort could provide the safety assurances needed for routine civilian operation of RPVs.
Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids
Wu, Chaochao; Duan, Jicheng; Liu, Tao; ...
2016-01-12
Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methodsmore » are also discussed.« less
On the possibility of singlet fission in crystalline quaterrylene
NASA Astrophysics Data System (ADS)
Wang, Xiaopeng; Liu, Xingyu; Cook, Cameron; Schatschneider, Bohdan; Marom, Noa
2018-05-01
Singlet fission (SF), the spontaneous down-conversion of a singlet exciton into two triplet excitons residing on neighboring molecules, is a promising route to improve organic photovoltaic (OPV) device efficiencies by harvesting two charge carriers from one photon. However, only a few materials have been discovered that exhibit intermolecular SF in the solid state, most of which are acene derivatives. Recently, there has been a growing interest in rylenes as potential SF materials. We use many-body perturbation theory in the GW approximation and the Bethe-Salpeter equation to investigate the possibility of intermolecular SF in crystalline perylene and quaterrylene. A new method is presented for determining the percent charge transfer (%CT) character of an exciton wave-function from double-Bader analysis. This enables relating exciton probability distributions to crystal packing. Based on comparison to known and predicted SF materials with respect to the energy conservation criterion (ES-2ET) and %CT, crystalline quaterrylene is a promising candidate for intermolecular SF. Furthermore, quaterrylene is attractive for OPV applications, thanks to its high stability and narrow optical gap. Perylene is not expected to exhibit SF; however, it is a promising candidate for harvesting sub-gap photons by triplet-triplet annihilation.
On the possibility of singlet fission in crystalline quaterrylene.
Wang, Xiaopeng; Liu, Xingyu; Cook, Cameron; Schatschneider, Bohdan; Marom, Noa
2018-05-14
Singlet fission (SF), the spontaneous down-conversion of a singlet exciton into two triplet excitons residing on neighboring molecules, is a promising route to improve organic photovoltaic (OPV) device efficiencies by harvesting two charge carriers from one photon. However, only a few materials have been discovered that exhibit intermolecular SF in the solid state, most of which are acene derivatives. Recently, there has been a growing interest in rylenes as potential SF materials. We use many-body perturbation theory in the GW approximation and the Bethe-Salpeter equation to investigate the possibility of intermolecular SF in crystalline perylene and quaterrylene. A new method is presented for determining the percent charge transfer (%CT) character of an exciton wave-function from double-Bader analysis. This enables relating exciton probability distributions to crystal packing. Based on comparison to known and predicted SF materials with respect to the energy conservation criterion (E S -2E T ) and %CT, crystalline quaterrylene is a promising candidate for intermolecular SF. Furthermore, quaterrylene is attractive for OPV applications, thanks to its high stability and narrow optical gap. Perylene is not expected to exhibit SF; however, it is a promising candidate for harvesting sub-gap photons by triplet-triplet annihilation.
Christodoulou, Eleni G.; Yang, Hai; Lademann, Franziska; Pilarsky, Christian; Beyer, Andreas; Schroeder, Michael
2017-01-01
Mutated KRAS plays an important role in many cancers. Although targeting KRAS directly is difficult, indirect inactivation via synthetic lethal partners (SLPs) is promising. Yet to date, there are no SLPs from high-throughput RNAi screening, which are supported by multiple screens. Here, we address this problem by aggregating and ranking data over three independent high-throughput screens. We integrate rankings by minimizing the displacement and by considering established methods such as RIGER and RSA. Our meta analysis reveals COPB2 as a potential SLP of KRAS with good support from all three screens. COPB2 is a coatomer subunit and its knock down has already been linked to disabled autophagy and reduced tumor growth. We confirm COPB2 as SLP in knock down experiments on pancreas and colorectal cancer cell lines. Overall, consistent integration of high throughput data can generate candidate synthetic lethal partners, which individual screens do not uncover. Concretely, we reveal and confirm that COPB2 is a synthetic lethal partner of KRAS and hence a promising cancer target. Ligands inhibiting COPB2 may, therefore, be promising new cancer drugs. PMID:28415695
Scalable Production of Graphene-Based Wearable E-Textiles.
Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S
2017-12-26
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.
Kreeft, Davey; Arkenbout, Ewout Aart; Henselmans, Paulus Wilhelmus Johannes; van Furth, Wouter R.; Breedveld, Paul
2017-01-01
A clear visualization of the operative field is of critical importance in endoscopic surgery. During surgery the endoscope lens can get fouled by body fluids (eg, blood), ground substance, rinsing fluid, bone dust, or smoke plumes, resulting in visual impairment. As a result, surgeons spend part of the procedure on intermittent cleaning of the endoscope lens. Current cleaning methods that rely on manual wiping or a lens irrigation system are still far from ideal, leading to longer procedure times, dirtying of the surgical site, and reduced visual acuity, potentially reducing patient safety. With the goal of finding a solution to these issues, a literature review was conducted to identify and categorize existing techniques capable of achieving optically clean surfaces, and to show which techniques can potentially be implemented in surgical practice. The review found that the most promising method for achieving surface cleanliness consists of a hybrid solution, namely, that of a hydrophilic or hydrophobic coating on the endoscope lens and the use of the existing lens irrigation system. PMID:28511635
Methods for monitoring erosion using optical coherence tomography
NASA Astrophysics Data System (ADS)
Chan, Kenneth H.; Chan, Andrew C.; Darling, Cynthia L.; Fried, Daniel
Since optical coherence tomography is well suited for measuring small dimensional changes on tooth surfaces it has great potential for monitoring tooth erosion. The purpose of this study was to explore different approaches for monitoring the erosion of enamel. Application of an acid resistant varnish to protect the tooth surface from erosion has proven effective for providing a reference surface for in vitro studies but has limited potential for in vivo studies. Two approaches which can potentially be used in vivo were investigated. The first approach is to measure the remaining enamel thickness, namely the distance from the tooth surface to the dentinal-enamel junction (DEJ). The second more novel approach is to irradiate the surface with a carbon dioxide laser to create a reference layer which resists erosion. Measuring the remaining enamel thickness proved challenging since the surface roughening and subsurface demineralization that commonly occurs during the erosion process can prevent resolution of the underlying DEJ. The areas irradiated by the laser manifested lower rates of erosion compared to the non-irradiated areas and this method appears promising but it is highly dependent on the severity of the acid challenge.
ERIC Educational Resources Information Center
Budak, Ibrahim; Kaygin, Bulent
2015-01-01
In this study, through the observation of mathematically promising students in regular classrooms, relevant learning environments and the learning needs of promising students, teacher approaches and teaching methods, and the differences between the promising students and their normal ability peers in the same classroom were investigated.…
Constraint methods that accelerate free-energy simulations of biomolecules.
Perez, Alberto; MacCallum, Justin L; Coutsias, Evangelos A; Dill, Ken A
2015-12-28
Atomistic molecular dynamics simulations of biomolecules are critical for generating narratives about biological mechanisms. The power of atomistic simulations is that these are physics-based methods that satisfy Boltzmann's law, so they can be used to compute populations, dynamics, and mechanisms. But physical simulations are computationally intensive and do not scale well to the sizes of many important biomolecules. One way to speed up physical simulations is by coarse-graining the potential function. Another way is to harness structural knowledge, often by imposing spring-like restraints. But harnessing external knowledge in physical simulations is problematic because knowledge, data, or hunches have errors, noise, and combinatoric uncertainties. Here, we review recent principled methods for imposing restraints to speed up physics-based molecular simulations that promise to scale to larger biomolecules and motions.
Potentiation of an anthrax DNA vaccine with electroporation.
Luxembourg, A; Hannaman, D; Nolan, E; Ellefsen, B; Nakamura, G; Chau, L; Tellez, O; Little, S; Bernard, R
2008-09-19
DNA vaccines are a promising method of immunization against biothreats and emerging infections because they are relatively easy to design, manufacture, store and distribute. However, immunization with DNA vaccines using conventional delivery methods often fails to induce consistent, robust immune responses, especially in species larger than the mouse. Intramuscular (i.m.) delivery of a plasmid encoding anthrax toxin protective antigen (PA) using electroporation (EP), a potent DNA delivery method, rapidly induced anti-PA IgG and toxin neutralizing antibodies within 2 weeks following a single immunization in multiple experimental species. The delivery procedure is particularly dose efficient and thus favorable for achieving target levels of response following vaccine administration in humans. These results suggest that EP may be a valuable platform technology for the delivery of DNA vaccines against anthrax and other biothreat agents.
NASA Astrophysics Data System (ADS)
Kamura, Yoshio; Imura, Kohei
2018-06-01
Optical recording on organic thin films with a high spatial resolution is promising for high-density optical memories, optical computing, and security systems. The spatial resolution of the optical recording is limited by the diffraction of light. Electrons can be focused to a nanometer-sized spot, providing the potential for achieving better resolution. In conventional electron-beam lithography, however, optical tuning of the fabricated structures is limited mostly to metals and semiconductors rather than organic materials. In this article, we report a fabrication method of luminescent organic architectures using a focused electron beam. We optimized the fabrication conditions of the electron beam to generate chemical species showing visible photoluminescence via two-photon near-infrared excitations. We utilized this fabrication method to draw nanoscale optical architectures on a polystyrene thin film.
Laser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites
Elsherbini, Alsayed AM; Saber, Mahmoud; Aggag, Mohamed; El-Shahawy, Ahmed; Shokier, Hesham AA
2011-01-01
Introduction The current radiofrequency ablation technique requires invasive needle placement. On the other hand, most of the common photothermal therapeutic methods are limited by lack of accuracy of targeting. Gold and magnetic nanoparticles offer the potential to heat tumor tissue selectively at the cellular level by noninvasive interaction with laser and radiofrequency. Methods Gold nanospheres and gold-coated magnetic nanocomposites were used for inducing hyperthermia to treat subcutaneous Ehrlich carcinoma implanted in female mice. Results In mice treated with gold nanospheres, tumors continued to grow but at a slow rate. In contrast, more than 50% of the tumors treated with gold-coated magnetic nanocomposites completely disappeared. Conclusion This simple and noninvasive method shows great promise as a technique for selective magnetic photothermal treatment. PMID:22114479
Kaur, Surinder; Dhillon, Gurpreet Singh
2014-05-01
Among the biopolymers, chitin and its derivative chitosan (CTS) have been receiving increasing attention. Both are composed of randomly distributed β-(1-4)-linked d-glucosamine and N-acetyl glucosamine units. On commercial scale, CTS is mainly obtained from the crustacean shells. The chemical methods employed for extraction of CTS from crustacean shells are laden with many disadvantages. Waste fungal biomass represents a potential biological source of CTS, in fact with superior physico-chemical properties, such as high degree of deacetylation, low molecular weight, devoid of protein contamination and high bioactivity. Researchers around the globe are attempting to commercialize CTS production and extraction from fungal sources. Fungi are promising and environmentally benign source of CTS and they have the potential to completely replace crustacean-derived CTS. Waste fungal biomass resulting from various pharmaceutical and biotechnological industries is grown on inexpensive agro-industrial wastes and its by-products are a rich and inexpensive source of CTS. CTS is emerging as an important natural polymer having broad range of applications in different fields. In this context, the present review discusses the potential sources of CTS and their advantages and disadvantages. This review also deals with potential applications of CTS in different fields. Finally, the various attributes of CTS sought in different applications are discussed.
[Stem cells--cloning, plasticity, bioethic].
Pflegerl, Pamina; Keller, Thomas; Hantusch, Brigitte; Hoffmann, Thomas Sören; Kenner, Lukas
2008-01-01
Stem cells with certain characteristics have become promising tools for molecular medicine. They have the potential to self-regenerate and to differentiate into specific tissues. Besides their great potential, embryonic stem cells (ESC) run the risk of enhanced tumorigenesis. The use of human embryonic stem cells (hESC) is ethically problematic because their isolation involves the destruction of human embryos. Recently developed methods generate are able to pluripotent stem cells from fibroblasts. Alternatives for ESC are adult stem cells (ASC) derived from bone marrow, cord blood, amniotic fluid and other tissues. The following article is on the basis of testimony of Lukas Kenner for the German Bundestag about the use of ESC for research, therapy and drug development. Ethical aspects are taken into consideration.
Abu-Melha, Sraa
2018-02-15
A new series of 2-amino-5-arylazothiazole derivatives has been designed and synthesized in 61-78% yields and screened as potential antibacterial drug candidates against the Gram negative bacterium Escherichia coli. The geometry of the title compounds were being studied using the Material Studio package and semi-core pseudopods calculations (dspp) were performed with the double numerica basis sets plus polarization functional (DNP) to predict the properties of materials using the hybrid FT/B3LYP method. Modeling calculations, especially the (E H -E L ) difference and the energetic parameters revealed that some of the title compounds may be promising tools for further research work and the activity is structure dependent.
Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V
2012-02-01
Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.
On the nano-hillock formation induced by slow highly charged ions on insulator surfaces
NASA Astrophysics Data System (ADS)
Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.
2007-10-01
We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.
[Nanoscale drug carriers for traditional Chinese medicine research and development].
Yi, Cheng-xue; Yu, Jiang-nan; Xu, Xi-ming
2008-08-01
Nanocarriers generally made of natural or artificial polymers ranging in size from about 10-1 000 nm, possess versatile properties suitable for drug delivery, including good biocompatibility and biodegradability, potential capability of targeted delivery and controlled release of incorporated drugs, and have been extensively used in the development of new drug delivery systems (DDS). These types of nano-DDS have considerable potential to traditional Chinese medicine (TCM), and recently have attracted increasing efforts on the TCM research and development. In this review, the recently published literature worldwide is covered to describe the latest advances in the applications as TCM delivery carriers, and to highlight the characteristics and preparation methods of some selected examples of promising nanocarriers such as nanoparticles, lipid nanoparticles, nanoemulsions, nanomicelles and nanoliposomes.
Electrochemical oxidation for landfill leachate treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yang; Englehardt, James D.
2007-07-01
This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.
Graph-based geometric-iconic guide-wire tracking.
Honnorat, Nicolas; Vaillant, Régis; Paragios, Nikos
2011-01-01
In this paper we introduce a novel hybrid graph-based approach for Guide-wire tracking. The image support is captured by steerable filters and improved through tensor voting. Then, a graphical model is considered that represents guide-wire extraction/tracking through a B-spline control-point model. Points with strong geometric interest (landmarks) are automatically determined and anchored to such a representation. Tracking is then performed through discrete MRFs that optimize the spatio-temporal positions of the control points while establishing landmark temporal correspondences. Promising results demonstrate the potentials of our method.
Silk fibroin-based scaffolds for tissue engineering
NASA Astrophysics Data System (ADS)
Li, Zi-Heng; Ji, Shi-Chen; Wang, Ya-Zhen; Shen, Xing-Can; Liang, Hong
2013-09-01
Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and properties of SF, including of its biocompatibility and biodegradability. It highlights recent researches on the fabrication of various SF-based composites scaffolds that are promising for tissue engineering applications, and discusses synthetic methods of various SF-based composites scaffolds and valuable approaches for controlling cell behaviors to promote the tissue repair. The function of extracellular matrices and their interaction with cells are also reviewed here.
Tran, Thi Ha; Nguyen, Viet Tuyen
2014-01-01
Cupric oxide (CuO), having a narrow bandgap of 1.2 eV and a variety of chemophysical properties, is recently attractive in many fields such as energy conversion, optoelectronic devices, and catalyst. Compared with bulk material, the advanced properties of CuO nanostructures have been demonstrated; however, the fact that these materials cannot yet be produced in large scale is an obstacle to realize the potential applications of this material. In this respect, chemical methods seem to be efficient synthesis processes which yield not only large quantities but also high quality and advanced material properties. In this paper, the effect of some general factors on the morphology and properties of CuO nanomaterials prepared by solution methods will be overviewed. In terms of advanced nanostructure synthesis, microwave method in which copper hydroxide nanostructures are produced in the precursor solution and sequentially transformed by microwave into CuO may be considered as a promising method to explore in the near future. This method produces not only large quantities of nanoproducts in a short reaction time of several minutes, but also high quality materials with advanced properties. A brief review on some unique properties and applications of CuO nanostructures will be also presented. PMID:27437488
Improved accuracy for finite element structural analysis via a new integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
Potential of DNA barcoding for detecting quarantine fungi.
Gao, Ruifang; Zhang, Guiming
2013-11-01
The detection of live quarantine pathogenic fungi plays an important role in guaranteeing regional biological safety. DNA barcoding, an emerging species identification technology, holds promise for the reliable, quick, and accurate detection of quarantine fungi. International standards for phytosanitary guidelines are urgently needed. The varieties of quarantine fungi listed for seven countries/regions, the currently applied detection methods, and the status of DNA barcoding for detecting quarantine fungi are summarized in this study. Two approaches have been proposed to apply DNA barcoding to fungal quarantine procedures: (i) to verify the reliability of known internal transcribed spacer (ITS)/cytochrome c oxidase subunit I (COI) data for use as barcodes, and (ii) to determine other barcodes for species that cannot be identified by ITS/COI. As a unique, standardizable, and universal species identification tool, DNA barcoding offers great potential for integrating detection methods used in various countries/regions and establishing international detection standards based on accepted DNA barcodes. Through international collaboration, interstate disputes can be eased and many problems related to routine quarantine detection methods can be solved for global trade.
Recent advances in micro-vibration isolation
NASA Astrophysics Data System (ADS)
Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming
2015-05-01
Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.
In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method.
Wang, Xiang; Yang, Phillip
2008-07-23
Stem cells have the remarkable potential to develop into many different cell types. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, This promising of science is leading scientists to investigate the possibility of cell-based therapies to treat disease. When culture in suspension without antidifferentiation factors, embryonic stem cells spontaneously differentiate and form three-dimensional multicellular aggregates. These cell aggregates are called embryoid bodies(EB). Hanging drop culture is a widely used EB formation induction method. The rounded bottom of hanging drop allows the aggregation of ES cells which can provide mES cells a good environment for forming EBs. The number of ES cells aggregatied in a hanging drop can be controlled by varying the number of cells in the initial cell suspension to be hung as a drop from the lid of Petri dish. Using this method we can reproducibly form homogeneous EBs from a predetermined number of ES cells.
Cascaded second-order processes for the efficient generation of narrowband terahertz radiation
NASA Astrophysics Data System (ADS)
Cirmi, Giovanni; Hemmer, Michael; Ravi, Koustuban; Reichert, Fabian; Zapata, Luis E.; Calendron, Anne-Laure; Çankaya, Hüseyin; Ahr, Frederike; Mücke, Oliver D.; Matlis, Nicholas H.; Kärtner, Franz X.
2017-02-01
The generation of high-energy narrowband terahertz radiation has gained heightened importance in recent years due to its potentially transformative impact on spectroscopy, high-resolution radar and more recently electron acceleration. Among various applications, such terahertz radiation is particularly important for table-top free electron lasers, which are at the moment a subject of extensive research. Second-order nonlinear optical methods are among the most promising techniques to achieve the required coherent radiation with energy > 10 mJ, peak field > 100 MV m-1, and frequency between 0.1 and 1 THz. However, they are conventionally thought to suffer from low efficiencies < ˜10-3, due to the high ratio between optical and terahertz photon energies, in what is known as the Manley-Rowe limitation. In this paper, we review the current second-order nonlinear optical methods for the generation of narrowband terahertz radiation. We explain how to employ spectral cascading to increase the efficiency beyond the Manley-Rowe limit and describe the first experimental results in the direction of a terahertz-cascaded optical parametric amplifier, a novel technique which promises to fully exploit spectral cascading to generate narrowband terahertz radiation with few percent optical-to-terahertz conversion efficiency.
NASA Astrophysics Data System (ADS)
Vishnubhotla, Ramya; Ping, Jinglei; Johnson, A. T. Charlie; Charlie Johnson Group Team
Graphene field effect transistors (GFETs) are of great interest for biosensing applications, and have shown promising results for small molecular detection due to high sensitivity and electron mobility. We describe the fabrication of a scalable array of GFETs through traditional photolithography using lab-grown graphene via chemical vapor deposition (CVD) for drug detection with an all-electronic read-out. Sensor fabrication produced 52 devices per 2 x 2 cm area, with a yield of over 90%. Our biosensors use a commercially-obtained aptamer, verified to bind to graphene via AFM, to bind to the molecules of the drug Tenofovir, a medication currently used for HIV treatment, and have proven to detect concentrations at 1 ng/mL, 10^3 times lower than standard medical methods. We noted a concentration-dependent shift in the Dirac voltage for Tenofovir, and testing control drugs showed that the aptamer was only highly selective in binding to Tenofovir itself. These results are promising for potential clinical testing with urine samples, as our method is scalable and non-invasive. This work is funded by NIH through the Center for AIDS Research at the University of Pennsylvania. Center for AIDS Research at the University of Pennsylvania.
Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.
Spatari, Sabrina; MacLean, Heather L
2010-11-15
Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO₂ flux from land use change and N₂O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.
NASA Astrophysics Data System (ADS)
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
Stenne, R; Hurlimann, T; Godard, Béatrice
2012-01-01
Nutrigenetics is a promising field, but the achievability of expected benefits is challenged by the methodological limitations that are associated with clinical research in that field. The mere existence of these limitations suggests that promises about potential outcomes may be premature. Thus, benefits claimed in scientific journal articles in which these limitations are not acknowledged might stimulate biohype. This article aims to examine whether nutrigenetics clinical research articles are a potential source of biohype. Of the 173 articles identified, 16 contained claims in which clinical applications were extrapolated from study results. The methodological limitations being incompletely acknowledged, these articles could potentially be a source of biohype.
Ji, Zhenwei; Ma, Yunlei; Li, Wei; Li, Xiaoxiang; Zhao, Guangyi; Yun, Zhe; Qian, Jixian; Fan, Qingyu
2012-01-01
Limb-salvage surgery has been well recognized as a standard treatment and alternative to amputation for patients with malignant bone tumors. Various limb-sparing techniques have been developed including tumor prosthesis, allograft, autograft and graft-prosthesis composite. However, each of these methods has short- and long-term disadvantages such as nonunion, mechanical failures and poor limb function. The technique of intracorporeal devitalization of tumor-bearing bone segment in situ by microwave-induced hyperthermia after separating it from surrounding normal tissues with a safe margin is a promising limb-salvage method, which may avoid some shortcomings encountered by the above-mentioned conventional techniques. The purpose of this study is to assess the healing process and revitalization potential of the devitalized bone segment by this method in a dog model. In addition, the immediate effect of microwave on the biomechanical properties of bone tissue was also explored in an in vitro experiment. We applied the microwave-induced hyperthermia to devitalize the distal femurs of dogs in situ. Using a monopole microwave antenna, we could produce a necrotic bone of nearly 20 mm in length in distal femur. Radiography, bone scintigraphy, microangiography, histology and functional evaluation were performed at 2 weeks and 1, 2, 3, 6, 9 and 12 months postoperatively to assess the healing process. In a biomechanical study, two kinds of bone specimens, 3 and 6 cm in length, were used for compression and three-point bending test respectively immediately after extracorporeally devitalized by microwave. An in vivo study showed that intracorporeally and in situ devitalized bone segment by microwave had great revitalization potential. An in vitro study revealed that the initial mechanical strength of the extracorporeally devitalized bone specimen may not be affected by microwave. Our results suggest that the intracorporeal microwave devitalization of tumor-bearing bone segment in situ may be a promising limb-salvage method.
NASA Astrophysics Data System (ADS)
Lei, Yaguo; Qiao, Zijian; Xu, Xuefang; Lin, Jing; Niu, Shantao
2017-09-01
Most traditional overdamped monostable, bistable and even tristable stochastic resonance (SR) methods have three shortcomings in weak characteristic extraction: (1) their potential structures characterized by single stable-state type are insufficient to match with the complicated and diverse mechanical vibration signals; (2) they vulnerably suffer the interference from multiscale noise and largely depend on the help of highpass filters whose parameters are selected subjectively, probably resulting in false detection; and (3) their rescaling factors are fixed as constants generally, thereby ignoring the synergistic effect among vibration signals, potential structures and rescaling factors. These three shortcomings have limited the enhancement ability of SR. To explore the SR potential, this paper initially investigates the SR in a multistable system by calculating its output spectral amplification, further analyzes its output frequency response numerically, then examines the effect of both damping and rescaling factors on output responses and finally presents a promising underdamped SR method with stable-state matching for incipient bearing fault diagnosis. This method has three advantages: (1) the diversity of stable-state types in a multistable potential makes it easy to match with various vibration signals; (2) the underdamped multistable SR, equivalent to a moving nonlinear bandpass filter that is dependent on the rescaling factors, is able to suppress the multiscale noise; and (3) the synergistic effect among vibration signals, potential structures and rescaling and damping factors is achieved using quantum genetic algorithms whose fitness functions are new weighted signal-to-noise ratio (WSNR) instead of SNR. Therefore, the proposed method is expected to possess good enhancement ability. Simulated and experimental data of rolling element bearings demonstrate its effectiveness. The comparison results show that the proposed method is able to obtain higher amplitude at target frequency and larger output WSNR, and performs better than traditional SR methods.
Development of decellularized scaffolds for stem cell-driven tissue engineering.
Rana, Deepti; Zreiqat, Hala; Benkirane-Jessel, Nadia; Ramakrishna, Seeram; Ramalingam, Murugan
2017-04-01
Organ transplantation is an effective treatment for chronic organ dysfunctioning conditions. However, a dearth of available donor organs for transplantation leads to the death of numerous patients waiting for a suitable organ donor. The potential of decellularized scaffolds, derived from native tissues or organs in the form of scaffolds has been evolved as a promising approach in tissue-regenerative medicine for translating functional organ replacements. In recent years, donor organs, such as heart, liver, lung and kidneys, have been reported to provide acellular extracellular matrix (ECM)-based scaffolds through the process called 'decellularization' and proved to show the potential of recellularization with selected cell populations, particularly with stem cells. In fact, decellularized stem cell matrix (DSCM) has also emerged as a potent biological scaffold for controlling stem cell fate and function during tissue organization. Despite the proven potential of decellularized scaffolds in tissue engineering, the molecular mechanism responsible for stem cell interactions with decellularized scaffolds is still unclear. Stem cells interact with, and respond to, various signals/cues emanating from their ECM. The ability to harness the regenerative potential of stem cells via decellularized ECM-based scaffolds has promising implications for tissue-regenerative medicine. Keeping these points in view, this article reviews the current status of decellularized scaffolds for stem cells, with particular focus on: (a) concept and various methods of decellularization; (b) interaction of stem cells with decellularized scaffolds; (c) current recellularization strategies, with associated challenges; and (iv) applications of the decellularized scaffolds in stem cell-driven tissue engineering and regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Behera, Padma Charan; Ghosh, Manik
2018-01-01
Introduction: Aerva lanata (Linn) of family Amaranthaceae is an important and commonly used plant for its medicinal and pharmacological properties and proving the traditional uses of flowers of A. lanata Linn. Objective: All extracts of A. lanata were further evaluated for antioxidant, antimicrobial, and antiurolithiatic potential to scientifically prove the traditional uses. Materials and Methods: In the present investigation, different solvent extracts of flowers were obtained using a Soxhlet extractor. Microorganisms were obtained from IMTECH, Chandigarh. Antiurolithiatic study was carried out in Albino Research and Training Centre, Hyderabad. Results: Regardless of the antioxidant studied, the methanolic extract presented the highest antioxidant activity and the aqueous extracts offered the lowest, following the order: methanolic extract > ethyl acetate > chloroform > aqueous. The results of this antimicrobial study indicate that methanolic extract of A. lanata could be used as antimicrobial agents. Overall, the methanolic flower extract of A. lanata (Linn) was significantly more promising as antiurolithiatic spectrum. This result also suggested the potential usefulness of the methanolic extract as an antiurolithiatic agent. Conclusion: Henceforward, this research can be acknowledged as a prime new report that focuses on the application of A. lanata (Linn) as an antioxidant, antimicrobial, and antiurolithiatic agent. SUMMARY Overall, methanolic flower extract of Aerva lanata Linn showed promising antioxidant activityAdditionally, methanolic flower extract of A. lanata Linn exhibited remarkable antimicrobial and antiurolithiatic potential. Abbreviations used: IMTECH Chandigarh: Institute of Microbial Technology, Chandigarh; IMMT: Institute of Mineral and Material Technology; CSIR: Council of Scientific & Industrial Research; DPPH: 1,1-diphenyl-2-picrylhydrazyl; MTCC: Microbial Type Culture Collection; BHT: Butylated Hydroxyl Toluene. PMID:29576701
Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics
NASA Astrophysics Data System (ADS)
Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian
2018-05-01
Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.
A Novel Spacecraft Charge Monitor for LEO
NASA Technical Reports Server (NTRS)
Goembel, Luke
2004-01-01
Five years ago we introduced a new method for measuring spacecraft chassis floating potential relative to the space plasma (absolute spacecraft potential) in low Earth orbit. The method, based on a straightforward interpretation of photoelectron spectra, shows promise for numerous applications, but has not yet been tried. In the interest of testing the method, and ultimately supplying another tool for measuring absolute spacecraft charge, we are producing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. Although insight into the technique came from data collected in space over two decades ago, very little data are available. The data indicate that it may be possible to determine spacecraft floating potential to within 0.1 volt each with the SCM second under certain conditions. It is debatable that spacecraft floating potential has ever been measured with such accuracy. The compact, easily deployed SCM also offers the advantage of long-term stability in calibration. Accurate floating potential determinations from the SCM could be used to correct biases in space plasma measurements and evaluate charge mitigation and/or sensing devices. Although this paper focuses on the device's use in low Earth orbit (LEO), the device may also be able to measure spacecraft charge at higher altitudes, in the solar wind, and in orbits around other planets. The flight prototype SCM we are producing for delivery to NASA in the third quarter of 2004 will measure floating potential from 0 to -150 volts with 0.1 volt precision, weigh approximately 600-700 grams, consume approximately 2 watts, and will measure approximately 8 x 10 x 17 cm.
A simple and effective solution to the constrained QM/MM simulations
NASA Astrophysics Data System (ADS)
Takahashi, Hideaki; Kambe, Hiroyuki; Morita, Akihiro
2018-04-01
It is a promising extension of the quantum mechanical/molecular mechanical (QM/MM) approach to incorporate the solvent molecules surrounding the QM solute into the QM region to ensure the adequate description of the electronic polarization of the solute. However, the solvent molecules in the QM region inevitably diffuse into the MM bulk during the QM/MM simulation. In this article, we developed a simple and efficient method, referred to as the "boundary constraint with correction (BCC)," to prevent the diffusion of the solvent water molecules by means of a constraint potential. The point of the BCC method is to compensate the error in a statistical property due to the bias potential by adding a correction term obtained through a set of QM/MM simulations. The BCC method is designed so that the effect of the bias potential completely vanishes when the QM solvent is identical with the MM solvent. Furthermore, the desirable conditions, that is, the continuities of energy and force and the conservations of energy and momentum, are fulfilled in principle. We applied the QM/MM-BCC method to a hydronium ion(H3O+) in aqueous solution to construct the radial distribution function (RDF) of the solvent around the solute. It was demonstrated that the correction term fairly compensated the error and led the RDF in good agreement with the result given by an ab initio molecular dynamics simulation.
Gebreyohannes, Gebreselema; Moges, Feleke; Sahile, Samuel; Raja, Nagappan
2013-01-01
Objective To isolate, evaluate and characterize potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Methods A total of 31 strains of actinomycetes were isolated and tested against Gram positive and Gram negative bacterial strains by primary screening. In the primary screening, 11 promising isolates were identified and subjected to solid state and submerged state fermentation methods to produce crude extracts. The fermented biomass was extracted by organic solvent extraction method and tested against bacterial strains by disc and agar well diffusion methods. The isolates were characterized by using morphological, physiological and biochemical methods. Results The result obtained from agar well diffusion method was better than disc diffusion method. The crude extract showed higher inhibition zone against Gram positive bacteria than Gram negative bacteria. One-way analysis of variance confirmed most of the crude extracts were statistically significant at 95% confidence interval. The minimum inhibitory concentration and minimum bactericidal concentration of crude extracts were 1.65 mg/mL and 3.30 mg/mL against Staphylococcus aureus, and 1.84 mg/mL and 3.80 mg/mL against Escherichia coli respectively. The growth of aerial and substrate mycelium varied in different culture media used. Most of the isolates were able to hydrolysis starch and urea; able to survive at 5% concentration of sodium chloride; optimum temperature for their growth was 30 °C. Conclusions The results of the present study revealed that freshwater actinomycetes of Lake Tana appear to have immense potential as a source of antibacterial compounds. PMID:23730554
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods,more » e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.« less
Determination of amantadine and rimantadine using a sensitive fluorescent probe
NASA Astrophysics Data System (ADS)
Wang, Guang-Quan; Qin, Yan-Fang; Du, Li-Ming; Li, Jun-Fei; Jing, Xu; Chang, Yin-Xia; Wu, Hao
2012-12-01
Amantadine hydrochloride (AMA) and rimantadine hydrochloride (RIM) are non-fluorescent in aqueous solutions. This property makes their determination through direct fluorescent method difficult. The competing reactions and the supramolecular interaction mechanisms between the two drugs and coptisine (COP) as they fight for occupancy of the cucurbit[7]uril (CB[7]) cavity, were studied using spectrofluorimetry, 1H NMR, and molecular modeling calculations. Based on the significant quenching of the supramolecular complex fluorescence intensity, a fluorescent probe method of high sensitivity and selectivity was developed to determine AMA or RIM in their pharmaceutical dosage forms and in urine samples with good precision and accuracy. The linear range of the method was from 0.0040 to 1.0 μg mL-1 with a detection limit ranging from 0.0012 to 0.0013 μg mL-1. This shows that the proposed method has promising potential for therapeutic monitoring and pharmacokinetics and for clinical application.
Al-Bakri, Amal G; Afifi, Fatma U
2007-01-01
The aim of this study was to screen and evaluate the antimicrobial activity of indigenous Jordanian plant extracts, dissolved in dimethylsulfoxide, using the rapid XTT assay and viable count methods. XTT rapid assay was used for the initial screening of antimicrobial activity for the plant extracts. Antimicrobial activity of potentially active plant extracts was further assessed using the "viable plate count" method. Four degrees of antimicrobial activity (high, moderate, weak and inactive) against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively, were recorded. The plant extracts of Hypericum triquetrifolium, Ballota undulata, Ruta chalepensis, Ononis natrix, Paronychia argentea and Marrubium vulgare had shown promising antimicrobial activity. This study showed that while both XTT and viable count methods are comparable when estimating the overall antimicrobial activity of experimental substances, there is no strong linear correlation between the two methods.
Methods for Monte Carlo simulations of biomacromolecules
Vitalis, Andreas; Pappu, Rohit V.
2010-01-01
The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies. PMID:20428473
Controlled assembly of jammed colloidal shells on fluid droplets.
Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A
2005-07-01
Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.
Controlled assembly of jammed colloidal shells on fluid droplets
NASA Astrophysics Data System (ADS)
Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.
2005-07-01
Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.
NASA Astrophysics Data System (ADS)
Rasthofer, U.; Wall, W. A.; Gravemeier, V.
2018-04-01
A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
A novel approach to generating CER hypotheses based on mining clinical data.
Zhang, Shuo; Li, Lin; Yu, Yiqin; Sun, Xingzhi; Xu, Linhao; Zhao, Wei; Teng, Xiaofei; Pan, Yue
2013-01-01
Comparative effectiveness research (CER) is a scientific method of investigating the effectiveness of alternative intervention methods. In a CER study, clinical researchers typically start with a CER hypothesis, and aim to evaluate it by applying a series of medical statistical methods. Traditionally, the CER hypotheses are defined manually by clinical researchers. This makes the task of hypothesis generation very time-consuming and the quality of hypothesis heavily dependent on the researchers' skills. Recently, with more electronic medical data being collected, it is highly promising to apply the computerized method for discovering CER hypotheses from clinical data sets. In this poster, we proposes a novel approach to automatically generating CER hypotheses based on mining clinical data, and presents a case study showing that the approach can facilitate clinical researchers to identify potentially valuable hypotheses and eventually define high quality CER studies.
Tavakolpour, Yousef; Moosavi-Nasab, Marzieh; Niakousari, Mehrdad; Haghighi-Manesh, Soroush
2016-03-01
The essential oil (EO) from dried ground powder leaves and stems of Thymua danesis was extracted using hydrodistillation (HD), ohmic extraction (OE), ultrasound-assisted HD and ultrasound-assisted OE methods. Then, the antioxidant, antimicrobial, and sensory properties of the EO were investigated both in vitro and in food systems. Thyme EO extracted by ultrasound-assisted HD method had promising antibacterial activities against Escherichia coli and Staphylococcus aureus and had the best antioxidant properties when tested in vitro. In food systems, higher concentrations of the EO were needed to exert similar antibacterial and antioxidant effects. Furthermore, thyme EO added yogurt and drink yogurt revealed better sensory properties than the control and fresh samples. Essential oil from Thymua danesis has a good potential to be used as an antioxidant, antimicrobial, and flavoring agent in food systems and the extraction method effects on the antioxidant and antimicrobial properties of the thyme extract.
NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies
NASA Astrophysics Data System (ADS)
Nasuti, Yasin; Nasuti, Aziz
2018-07-01
We develop a new phase-based filter to enhance the edges of geological sources from potential-field data called NTilt, which utilizes the vertical derivative of the analytical signal in different orders to the tilt derivative equation. This will equalize signals from sources buried at different depths. In order to evaluate the designed filter, we compared the results obtained from our filter with those from recently applied methods, testing against both synthetic data, and measured data from the Finnmark region of North Norway were used. The results demonstrate that the new filter permits better definition of the edges of causative anomalies, as well as better highlighting several anomalies that either are not shown in tilt derivative and other methods or not very well defined. The proposed technique also shows improvements in delineation of the actual edges of deep-seated anomalies compared to tilt derivative and other methods. The NTilt filter provides more accurate and sharper edges and makes the nearby anomalies more distinguishable, and also can avoid bringing some additional false edges reducing the ambiguity in potential field interpretations. This filter, thus, appears to be promising in providing a better qualitative interpretation of the gravity and magnetic data in comparison with the more commonly used filters.
Reynolds, Christopher R; Muggleton, Stephen H; Sternberg, Michael J E
2015-01-01
The use of virtual screening has become increasingly central to the drug development pipeline, with ligand-based virtual screening used to screen databases of compounds to predict their bioactivity against a target. These databases can only represent a small fraction of chemical space, and this paper describes a method of exploring synthetic space by applying virtual reactions to promising compounds within a database, and generating focussed libraries of predicted derivatives. A ligand-based virtual screening tool Investigational Novel Drug Discovery by Example (INDDEx) is used as the basis for a system of virtual reactions. The use of virtual reactions is estimated to open up a potential space of 1.21×1012 potential molecules. A de novo design algorithm known as Partial Logical-Rule Reactant Selection (PLoRRS) is introduced and incorporated into the INDDEx methodology. PLoRRS uses logical rules from the INDDEx model to select reactants for the de novo generation of potentially active products. The PLoRRS method is found to increase significantly the likelihood of retrieving molecules similar to known actives with a p-value of 0.016. Case studies demonstrate that the virtual reactions produce molecules highly similar to known actives, including known blockbuster drugs. PMID:26583052
Myung, Ja Hye; Park, Sin-Jung; Wang, Andrew Z; Hong, Seungpyo
2017-12-13
Circulating tumor cells (CTCs) have received a great deal of scientific and clinical attention as a biomarker for diagnosis and prognosis of many types of cancer. Given their potential significance in clinics, a variety of detection methods, utilizing the recent advances in nanotechnology and microfluidics, have been introduced in an effort of achieving clinically significant detection of CTCs. However, effective detection and isolation of CTCs still remain a tremendous challenge due to their extreme rarity and phenotypic heterogeneity. Among many approaches that are currently under development, this review paper focuses on a unique, promising approach that takes advantages of naturally occurring processes achievable through application of nanotechnology to realize significant improvement in sensitivity and specificity of CTC capture. We provide an overview of successful outcome of this biomimetic CTC capture system in detection of tumor cells from in vitro, in vivo, and clinical pilot studies. We also emphasize the clinical impact of CTCs as biomarkers in cancer diagnosis and predictive prognosis, which provides a cost-effective, minimally invasive method that potentially replaces or supplements existing methods such as imaging technologies and solid tissue biopsy. In addition, their potential prognostic values as treatment guidelines and that ultimately help to realize personalized therapy are discussed. Copyright © 2017. Published by Elsevier B.V.
A modified Stillinger-Weber potential for TlBr and its polymorphic extension
Zhou, Xiaowang; Foster, Michael E.; Jones, Reese E.; ...
2015-04-30
TlBr is promising for g- and x- radiation detection, but suffers from rapid performance degradation under the operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past modifications of interatomic potentials cannot always bemore » applied by a broad community because any new analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, embedded-atom method, and any variations (i.e., modified functions) of these potentials. As a result, we have implemented this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD simulations under external electric fields.« less
Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids
NASA Technical Reports Server (NTRS)
Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.
2005-01-01
Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.
Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids
NASA Technical Reports Server (NTRS)
Devarakonda, Angirasa; Anderson, William G.
2004-01-01
Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development in necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500-550 K. Life test data for thermo-chemical compatibility are almost non-existent.
Potential applications of immunoassays in studies of flatfish recruitment
NASA Astrophysics Data System (ADS)
Feller, Robert J.
The fisheries recruitment-stock problem, a lack of correlation between measures of reproductive output of the parent stock and recruitment to the fishery, has several potential biotic and abiotic causes. Immunoassays may be useful in examining several aspects of this and several other problems in flatfish ecology: stock identification, parasitism and disease, and trophic interactions. Given stage-specific antisera capable of recognozing antigenic moieties of, for instance, eggs, larvae, or newly-settled juveniles, it is possible to screen stomach contents of many putative predators ( e.g., shrimp or crabs) rapidly for the presence and amounts of platfish prey. This trophic application of immunological methods has great promise for measuring loss of potential recruits to predation. All immunoassays are limited by the quality of antisera used and the researcher's ability to interpret quantitative data in an ecologically meaningful way. Key references for applications of immunoassays in fish-related questions are provided with recommendations for their utilization.
A critical methodological review of discourse and conversation analysis studies of family therapy.
Tseliou, Eleftheria
2013-12-01
Discourse (DA) and conversation (CA) analysis, two qualitative research methods, have been recently suggested as potentially promising for the study of family therapy due to common epistemological adherences and their potential for an in situ study of therapeutic dialog. However, to date, there is no systematic methodological review of the few existing DA and CA studies of family therapy. This study aims at addressing this lack by critically reviewing published DA and CA studies of family therapy on methodological grounds. Twenty-eight articles in total are reviewed in relation to certain methodological axes identified in the relevant literature. These include choice of method, framing of research question(s), data/sampling, type of analysis, epistemological perspective, content/type of knowledge claims, and attendance to criteria for good quality practice. It is argued that the reviewed studies show "glimpses" of the methods' potential for family therapy research despite the identification of certain "shortcomings" regarding their methodological rigor. These include unclearly framed research questions and the predominance of case study designs. They also include inconsistencies between choice of method, stated or unstated epistemological orientations and knowledge claims, and limited attendance to criteria for good quality practice. In conclusion, it is argued that DA and CA can add to the existing quantitative and qualitative methods for family therapy research. They can both offer unique ways for a detailed study of the actual therapeutic dialog, provided that future attempts strive for a methodologically rigorous practice and against their uncritical deployment. © FPI, Inc.
Musoke, David; Miiro, George; Karani, George; Morris, Keith; Kasasa, Simon; Ndejjo, Rawlance; Nakiyingi-Miiro, Jessica; Guwatudde, David; Musoke, Miph Boses
2015-01-01
Background The World Health Organization recommends use of multiple approaches to control malaria. The integrated approach to malaria prevention advocates the use of several malaria prevention methods in a holistic manner. This study assessed perceptions and practices on integrated malaria prevention in Wakiso district, Uganda. Methods A clustered cross-sectional survey was conducted among 727 households from 29 villages using both quantitative and qualitative methods. Assessment was done on awareness of various malaria prevention methods, potential for use of the methods in a holistic manner, and reasons for dislike of certain methods. Households were classified as using integrated malaria prevention if they used at least two methods. Logistic regression was used to test for factors associated with the use of integrated malaria prevention while adjusting for clustering within villages. Results Participants knew of the various malaria prevention methods in the integrated approach including use of insecticide treated nets (97.5%), removing mosquito breeding sites (89.1%), clearing overgrown vegetation near houses (97.9%), and closing windows and doors early in the evenings (96.4%). If trained, most participants (68.6%) would use all the suggested malaria prevention methods of the integrated approach. Among those who would not use all methods, the main reasons given were there being too many (70.2%) and cost (32.0%). Only 33.0% households were using the integrated approach to prevent malaria. Use of integrated malaria prevention by households was associated with reading newspapers (AOR 0.34; 95% CI 0.22 –0.53) and ownership of a motorcycle/car (AOR 1.75; 95% CI 1.03 – 2.98). Conclusion Although knowledge of malaria prevention methods was high and perceptions on the integrated approach promising, practices on integrated malaria prevention was relatively low. The use of the integrated approach can be improved by promoting use of multiple malaria prevention methods through various communication channels such as mass media. PMID:25837978
A review on EEG-based methods for screening and diagnosing alcohol use disorder.
Mumtaz, Wajid; Vuong, Pham Lam; Malik, Aamir Saeed; Rashid, Rusdi Bin Abd
2018-04-01
The screening test for alcohol use disorder (AUD) patients has been of subjective nature and could be misleading in particular cases such as a misreporting the actual quantity of alcohol intake. Although the neuroimaging modality such as electroencephalography (EEG) has shown promising research results in achieving objectivity during the screening and diagnosis of AUD patients. However, the translation of these findings for clinical applications has been largely understudied and hence less clear. This study advocates the use of EEG as a diagnostic and screening tool for AUD patients that may help the clinicians during clinical decision making. In this context, a comprehensive review on EEG-based methods is provided including related electrophysiological techniques reported in the literature. More specifically, the EEG abnormalities associated with the conditions of AUD patients are summarized. The aim is to explore the potentials of objective techniques involving quantities/features derived from resting EEG, event-related potentials or event-related oscillations data.
NASA Astrophysics Data System (ADS)
Lin, Xueliang; Ge, Xiaosong; Xu, Zhihong; Zheng, Zuci; Huang, Wei; Hong, Quanxing; Lin, Duo
2016-10-01
The early cancer detection is of great significance to increase the patient's survival rate and reduce the risk of cancer development. Surface enhanced Raman spectroscopy (SERS) technique, a rapid, convenient, nondestructive optical detection method, can provide a characteristic "fingerprint" information of target substances, even achieving single molecule detection. Its ultra-high detection sensitivity has made it become one of the most potential biochemical detection methods. Saliva, a multi-constituent oral fluid, contains the bio-markers which is capable of reflecting the systemic health condition of human, showing promising potential as an effect medium for disease monitoring. Compared with the serum samples, the collection and processing of saliva is safer, more convenient and noninvasive. Thus, saliva test is becoming the hotspot issues of the noninvasive cancer research field. This review highlights and analyzes current application progress within the field of SERS saliva test in cancer detection. Meanwhile, the primary research results of SERS saliva for the noninvasive differentiation of nasopharyngeal cancer, normal and rhinitis obtained by our group are shown.
Tidal energy extraction: renewable, sustainable and predictable.
Nicholls-Lee, R F; Turnock, S R
2008-01-01
The tidal flow of sea water induced by planetary motion is a potential source of energy if suitable systems can be designed and operated in a cost-effective manner This paper examines the physical origins of the tides and how the local currents are influenced by the depth of the seabed and presence of land mass and associated coastal features. The available methods of extracting energy from tidal movement are classified into devices that store and release potential energy and those that capture kinetic energy directly. A survey is made of candidate designs and, for the most promising, the likely efficiency of energy conversion and methods of installing them are considered. Overall, the need to reduce CO2 emissions, a likely continued rise in fossil fuel cost will result in a significantly increased use of tidal energy. What is still required, especially for kinetic energy devices, is a much greater understanding of how they can be designed to withstand long-term immersion in the marine environment.
Electric-field-induced modification in Dzyaloshinskii-Moriya interaction of Co monolayer on Pt(111)
NASA Astrophysics Data System (ADS)
Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Ono, Teruo; Weinert, Michael
Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Dzyaloshinskii-Moriya interaction (DMI) for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. With inclusion of the spin-orbit coupling (SOC) by the second variational method for commensurate spin-spiral structures, the DMI constants were estimated from an asymmetric contribution in the total energy with respect to the spin-spiral wavevector. The results predicted that the DMI is modified by the E-field, but the change is found to be small compared to that in the exchange interaction (a symmetric contribution in the total energy) by a factor of ten.
Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)
NASA Astrophysics Data System (ADS)
Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael
2015-03-01
Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.
Optical Oxygen Micro- and Nanosensors for Plant Applications
Ast, Cindy; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd; van Dongen, Joost T.
2012-01-01
Pioneered by Clark's microelectrode more than half a century ago, there has been substantial interest in developing new, miniaturized optical methods to detect molecular oxygen inside cells. While extensively used for animal tissue measurements, applications of intracellular optical oxygen biosensors are still scarce in plant science. A critical aspect is the strong autofluorescence of the green plant tissue that interferes with optical signals of commonly used oxygen probes. A recently developed dual-frequency phase modulation technique can overcome this limitation, offering new perspectives for plant research. This review gives an overview on the latest optical sensing techniques and methods based on phosphorescence quenching in diverse tissues and discusses the potential pitfalls for applications in plants. The most promising oxygen sensitive probes are reviewed plus different oxygen sensing structures ranging from micro-optodes to soluble nanoparticles. Moreover, the applicability of using heterologously expressed oxygen binding proteins and fluorescent proteins to determine changes in the cellular oxygen concentration are discussed as potential non-invasive cellular oxygen reporters. PMID:22969334
Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng
2018-01-01
A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.
NASA Astrophysics Data System (ADS)
Tregubov, A. A.; Sokolov, I. L.; Babenyshev, A. V.; Nikitin, P. I.; Cherkasov, V. R.; Nikitin, M. P.
2018-03-01
Multifunctional hybrid nanocomposites remain to be of great interest in biomedicine as a universal tool in a number of applications. As a promising example, the nanoparticles with magnetic core and porous shell have a potential as theranostic agents combining both the diagnostics probe and drug delivery vehicle properties. However, reported methods of the nanostructure preparation are complex and include tedious time-consuming growth of porous shell by means of layer by layer assembly technique. In this study, we develop new way of fabrication of the superparamagnetic magnetite core @ porous metal organic framework shell nanoparticles and demonstrate their application both as a multimodal (MRI contrasting, magnetometric and optical labeling) and multifunctional (in vivo bioimaging, biotargeting by coupled receptors, lateral flow assay) agents. The easiness of fabrication, controllable bioconjugation properties and low level of non-specific binding indicate high potential of the nanoparticles to be employed as multifunctional agents in theranostics, advanced biosensing and bioimaging.
NASA Astrophysics Data System (ADS)
Noerochim, Lukman; Ginanjar, Edith Setia; Susanti, Diah; Prihandoko, Bambang
2018-04-01
Lithium vanadium oxide (LiV3O8) has been successfully synthesized by hydrothermal method followed by calcination via the reaction of Lithium hydroxide (LiOH) and ammonium metavanade (NH4VO3). The precursors were heated at hydrothermal at 200 °C and then calcined at different calcination temperature in 400, 450, and 500 °C. The characterization by X-ray diffraction (XRD) and scanning electron microscope (SEM) is indicated that LiV3O8 micro-rod have been obtained by this method. The cyclic voltammetry (CV) result showed that redox reaction occur in potential range between 2.42 - 3.57 V for the reduction reaction and oxidation reaction in potential range between 2.01 V-3.69 V. The highest result was obtained for sample 450 °C with specific discharge capacity of 138 mA/g. The result showed that LiV3O8 has a promising candidate as a cathode material for lithium ion batteries.
Characterization and toxicity of citral incorporated with nanostructured lipid carrier.
Nordin, Noraini; Yeap, Swee Keong; Zamberi, Nur Rizi; Abu, Nadiah; Mohamad, Nurul Elyani; Rahman, Heshu Sulaiman; How, Chee Wun; Masarudin, Mas Jaffri; Abdullah, Rasedee; Alitheen, Noorjahan Banu
2018-01-01
The nanoparticle as a cancer drug delivery vehicle is rapidly under investigation due to its promising applicability as a novel drug delivery system for anticancer agents. This study describes the development, characterization and toxicity studies of a nanostructured lipid carrier (NLC) system for citral. Citral was loaded into the NLC using high pressure homogenization methods. The characterizations of NLC-citral were then determined through various methods. Based on Transmission Electron Microscope (TEM) analysis, NLC-Citral showed a spherical shape with an average diameter size of 54.12 ± 0.30 nm and a polydipersity index of 0.224 ± 0.005. The zeta potential of NLC-Citral was -12.73 ± 0.34 mV with an entrapment efficiency of 98.9 ± 0.124%, and drug loading of 9.84 ± 0.041%. Safety profile of the formulation was examined via in vitro and in vivo routes to study its effects toward normal cells. NLC-Citral exhibited no toxic effects towards the proliferation of mice splenocytes. Moreover, no mortality and toxic signs were observed in the treated groups after 28 days of treatment. There were also no significant alterations in serum biochemical analysis for all treatments. Increase in immunomodulatory effects of treated NLC-Citral and Citral groups was verified from the increase in CD4/CD3 and CD8/CD3 T cell population in both NLC-citral and citral treated splenocytes. This study suggests that NLC is a promising drug delivery system for citral as it has the potential in sustaining drug release without inducing any toxicity.
Trosman, Julia R.; Weldon, Christine B.; Kate Kelley, R.; Phillips, Kathryn A.
2015-01-01
Background Next-generation tumor sequencing (NGTS) panels, which include multiple established and novel targets across cancers, are emerging in oncology practice, but lack formal positive coverage by US payers. Lack of coverage may impact access and adoption. This study identified challenges of NGTS coverage by private payers. Methods We conducted semi-structured interviews with 14 NGTS experts on potential NGTS benefits, and with 10 major payers, representing more than 125,000,000 enrollees, on NGTS coverage considerations. We used the framework approach of qualitative research for study design and thematic analyses and simple frequencies to further describe findings. Results All interviewed payers see potential NGTS benefits, but all noted challenges to formal coverage: 80% state that inherent features of NGTS do not fit the medical necessity definition required for coverage, 70% view NGTS as a bundle of targets versus comprehensive tumor characterization and may evaluate each target individually, and 70% express skepticism regarding new evidence methods proposed for NGTS. Fifty percent of payers expressed sufficient concerns about NGTS adoption and implementation that will preclude their ability to issue positive coverage policies. Conclusions Payers perceive that NGTS holds significant promise but, in its current form, poses disruptive challenges to coverage policy frameworks. Proactive multidisciplinary efforts to define the direction for NGTS development, evidence generation, and incorporation into coverage policy are necessary to realize its promise and provide patient access. This study contributes to current literature, as possibly the first study to directly interview US payers on NGTS coverage and reimbursement. PMID:25736008
Characterization and toxicity of citral incorporated with nanostructured lipid carrier
Nordin, Noraini; Yeap, Swee Keong; Zamberi, Nur Rizi; Abu, Nadiah; Mohamad, Nurul Elyani; Rahman, Heshu Sulaiman; How, Chee Wun; Masarudin, Mas Jaffri; Abdullah, Rasedee
2018-01-01
The nanoparticle as a cancer drug delivery vehicle is rapidly under investigation due to its promising applicability as a novel drug delivery system for anticancer agents. This study describes the development, characterization and toxicity studies of a nanostructured lipid carrier (NLC) system for citral. Citral was loaded into the NLC using high pressure homogenization methods. The characterizations of NLC-citral were then determined through various methods. Based on Transmission Electron Microscope (TEM) analysis, NLC-Citral showed a spherical shape with an average diameter size of 54.12 ± 0.30 nm and a polydipersity index of 0.224 ± 0.005. The zeta potential of NLC-Citral was −12.73 ± 0.34 mV with an entrapment efficiency of 98.9 ± 0.124%, and drug loading of 9.84 ± 0.041%. Safety profile of the formulation was examined via in vitro and in vivo routes to study its effects toward normal cells. NLC-Citral exhibited no toxic effects towards the proliferation of mice splenocytes. Moreover, no mortality and toxic signs were observed in the treated groups after 28 days of treatment. There were also no significant alterations in serum biochemical analysis for all treatments. Increase in immunomodulatory effects of treated NLC-Citral and Citral groups was verified from the increase in CD4/CD3 and CD8/CD3 T cell population in both NLC-citral and citral treated splenocytes. This study suggests that NLC is a promising drug delivery system for citral as it has the potential in sustaining drug release without inducing any toxicity. PMID:29312812
Expert views on most suitable monetary incentives on food to stimulate healthy eating.
Waterlander, Wilma E; Steenhuis, Ingrid H M; de Vet, Emely; Schuit, Albertine J; Seidell, Jacob C
2010-06-01
Pricing strategies are an important component in the marketing mix and may also be useful in stimulating healthier food choices. However, due to competing interests and feasibility problems, the introduction of pricing strategies is complicated. For successfully introducing food pricing strategies, it is essential to explore incentives that are not only promising but also realizable and being approved by different sectors. We aimed to assemble a list of pricing strategies by exploring expert views using the Delphi method. Subjects included experts from academia, industry, retail, agriculture, policymakers, consumers and non-governmental organizations. Data were collected in three rounds. In round one, experts designed promising pricing strategies. Based on a time-budget model incorporating Sleep, Leisure, Occupation, Transportation and Home-based activities, these strategies were in the subsequent rounds judged on several criteria. Results were analysed using median and interquartile deviations scores. We found fair consensus levels among experts and a varied list of promising pricing strategies. The panel agreed on the potential success of offering small presents, providing price-cuts on healthy foods and discounting healthier foods more frequently. Also, it was found that experts gave higher rates to pricing strategies for which the implementation responsibilities could be placed elsewhere. The resulted list of promising monetary incentives is an essential first step for the future design of pricing strategies. Following this study, it is important to determine how to make solid agreements on responsibility and implementation issues. Also, consumer perceptions regarding the proposed pricing strategies should be studied.
Highly efficient preparation of sphingoid bases from glucosylceramides by chemoenzymatic method[S
Gowda, Siddabasave Gowda B.; Usuki, Seigo; Hammam, Mostafa A. S.; Murai, Yuta; Igarashi, Yasuyuki; Monde, Kenji
2016-01-01
Sphingoid base derivatives have attracted increasing attention as promising chemotherapeutic candidates against lifestyle diseases such as diabetes and cancer. Natural sphingoid bases can be a potential resource instead of those derived by time-consuming total organic synthesis. In particular, glucosylceramides (GlcCers) in food plants are enriched sources of sphingoid bases, differing from those of animals. Several chemical methodologies to transform GlcCers to sphingoid bases have already investigated; however, these conventional methods using acid or alkaline hydrolysis are not efficient due to poor reaction yield, producing complex by-products and resulting in separation problems. In this study, an extremely efficient and practical chemoenzymatic transformation method has been developed using microwave-enhanced butanolysis of GlcCers and a large amount of readily available almond β-glucosidase for its deglycosylation reaction of lysoGlcCers. The method is superior to conventional acid/base hydrolysis methods in its rapidity and its reaction cleanness (no isomerization, no rearrangement) with excellent overall yield. PMID:26667669
Neděla, Vilém; Tihlaříková, Eva; Hřib, Jiří
2015-01-01
The use of non-standard low-temperature conditions in environmental scanning electron microscopy might be promising for the observation of coniferous tissues in their native state. This study is aimed to analyse and evaluate the method based on the principle of low-temperature sample stabilization. We demonstrate that the upper mucous layer is sublimed and a microstructure of the sample surface can be observed with higher resolution at lower gas pressure conditions, thanks to a low-temperature method. An influence of the low-temperature method on sample stability was also studied. The results indicate that high-moisture conditions are not suitable for this method and often cause the collapse of samples. The potential improvement of stability to beam damage has been demonstrated by long-time observation at different operation parameters. We finally show high applicability of the low-temperature method on different types of conifers and Oxalis acetosella. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rana, Md. Muhit
DNA nanotechnology has shown great promise in molecular diagnostic, bioanalytical and biomedical applications. The great challenge of detecting target analytes, biomarkers and small molecules, in molecular diagnostics is low yield sensitivity. To address this challenge, different nanomaterials have been used for a long time and to date there is no such cost-effective bioanalytical technique which can detect these target biomarkers (DNA, RNA, circulating DNA/miRNA) or environmental heavy metal ions (Hg2+ and Ag+) in a cost-effective and efficient manner. Herein, we initially discuss two possible bioanalytical detection methods- a) colorimetric and b) fluorometric assays which are very popular nowadays due to their distinctive spectroscopic properties. Finally, we report the promising colorimetric assay using a novel DNA based amplification strategy know as hybridization chain reaction (HCR) for potential application in the visual detection of low copies of biomarkers (miRNAs as little as 20 femtomole in an RNA pool and cell extracts in seven different combinations and Ebola virus DNA as low as 400 attomoles in liquid biopsy mimics in sixteen different combinations), environmental and biological heavy metal ions (mercury and silver concentrations as low as 10 pM in water, soil and urine samples) and also successfully applied to a molecular logic gate operation to distinguish OR and AND logic gates. No results showed any false-positive or false-negative information. On the other hand, we also discuss the future possibilities of HCR amplification technology, which is very promising for fluorometric bioanalysis. The HCR based nanoprobe technology has numerous remarkable advantages over other methods. It is re-programmable, simple, inexpensive, easy to assemble and operate and can be performed with visual and spectroscopic read-outs upon recognition of the target analytes. This rapid, specific and sensitive approach for biomarkers and heavy metal ion detection generates an on-site signal while eliminating the use of sophisticated high-maintenance instrumentation. We demonstrate that this state-of-the-art technology and methodology can potentially serve as an alternative approach to detect novel disease biomarkers, small molecules and inorganic compounds. This approach can be combined with the current existing methods for real-time point-of-care molecular diagnostics and is significant for preclinical or clinical studies.
Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products.
José Jara-Palacios, M; Luisa Escudero-Gilete, M; Miguel Hernández-Hierro, J; Heredia, Francisco J; Hernanz, Dolores
2017-04-01
Grape pomace is composed of seeds, skins and stems that are an important source of phenolic substances, which have antioxidant properties and potential benefits to human health. Cyclic voltammetry (CV) has been used to measure the total antioxidant potential of different winemaking by-products. The electrochemical behavior of pomace, seeds, skins and stems was measured by CV and lipid peroxidation inhibition by thiobarbituric acid reactive substances (TBARS) method. Differences for the electrochemical parameter were found between the by-products, pomace and seeds, which presented the greatest voltammetric peak area. Furthermore, the by-products induced inhibition of lipid peroxidation in rat liver homogenates. Pomace and seeds showed higher capacity to inhibit lipid peroxidation than stems and skins, which could be because these by-products are richer in flavanols. Simple regression analyses showed that voltammetric parameters are highly correlated to the values obtained for lipid peroxidation inhibition. CV is a promising technique to estimate the total antioxidant potential of phenolic extract from winemaking by-products. Copyright © 2016 Elsevier B.V. All rights reserved.
PET/MRI for neurologic applications.
Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R
2012-12-01
PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MRI data acquisition allows the spatial and temporal correlation of the measured signals, creating opportunities impossible to realize using stand-alone instruments. This paper reviews the methodologic improvements and potential neurologic and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MRI data to improve the PET data quantification. On the MRI side, we present how improved PET quantification can be used to validate several MRI techniques. Finally, we describe promising research, translational, and clinical applications that can benefit from these advanced tools.
Logic-Based Models for the Analysis of Cell Signaling Networks†
2010-01-01
Computational models are increasingly used to analyze the operation of complex biochemical networks, including those involved in cell signaling networks. Here we review recent advances in applying logic-based modeling to mammalian cell biology. Logic-based models represent biomolecular networks in a simple and intuitive manner without describing the detailed biochemistry of each interaction. A brief description of several logic-based modeling methods is followed by six case studies that demonstrate biological questions recently addressed using logic-based models and point to potential advances in model formalisms and training procedures that promise to enhance the utility of logic-based methods for studying the relationship between environmental inputs and phenotypic or signaling state outputs of complex signaling networks. PMID:20225868
The effect of processing parameters during heat treatment of bulk high-T(sub c) superconductors
NASA Astrophysics Data System (ADS)
Cha, Y. S.; Dorris, S. E.; Hull, J. R.; Poeppel, R. B.
1991-04-01
Plastic extrusion is a promising method for producing the long lengths of high-Tc superconductor that will be necessary to meet many potential applications. A crucial phase of the extrusion method is removal of organic constituents. Incomplete removal can leave residual carbon at grain boundaries, which can adversely affect the superconducting properties, whereas excessively rapid removal of the organics can cause the extruded superconductor to disintegrate completely. In this paper, we analyze the effects of the following aspects of organics removal, as they apply to the firing of extruded YBa2Cu3O(x) coils: (1) total pressure in the furnace, (2) oxygen flow, (3) heat conduction, and (4) diffusion of volatile components during removal of organics.
Cavitation in liquid cryogens. 4: Combined correlations for venturi, hydrofoil, ogives, and pumps
NASA Technical Reports Server (NTRS)
Hord, J.
1974-01-01
The results of a series of experimental and analytical cavitation studies are presented. Cross-correlation is performed of the developed cavity data for a venturi, a hydrofoil and three scaled ogives. The new correlating parameter, MTWO, improves data correlation for these stationary bodies and for pumping equipment. Existing techniques for predicting the cavitating performance of pumping machinery were extended to include variations in flow coefficient, cavitation parameter, and equipment geometry. The new predictive formulations hold promise as a design tool and universal method for correlating pumping machinery performance. Application of these predictive formulas requires prescribed cavitation test data or an independent method of estimating the cavitation parameter for each pump. The latter would permit prediction of performance without testing; potential methods for evaluating the cavitation parameter prior to testing are suggested.
Reconstructing each cell's genome within complex microbial communities-dream or reality?
Clingenpeel, Scott; Clum, Alicia; Schwientek, Patrick; Rinke, Christian; Woyke, Tanja
2014-01-01
As the vast majority of microorganisms have yet to be cultivated in a laboratory setting, access to their genetic makeup has largely been limited to cultivation-independent methods. These methods, namely metagenomics and more recently single-cell genomics, have become cornerstones for microbial ecology and environmental microbiology. One ultimate goal is the recovery of genome sequences from each cell within an environment to move toward a better understanding of community metabolic potential and to provide substrate for experimental work. As single-cell sequencing has the ability to decipher all sequence information contained in an individual cell, this method holds great promise in tackling such challenge. Methodological limitations and inherent biases however do exist, which will be discussed here based on environmental and benchmark data, to assess how far we are from reaching this goal.
NASA Astrophysics Data System (ADS)
Hibbard-Lubow, David Luke
The demands of digital memory have increased exponentially in recent history, requiring faster, smaller and more accurate storage methods. Two promising solutions to this ever-present problem are Bit Patterned Media (BPM) and Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM). Producing these technologies requires difficult and expensive fabrication techniques. Thus, the production processes must be optimized to allow these storage methods to compete commercially while continuing to increase their information storage density and reliability. I developed a process for the production of nanomagnetic devices (which can take the form of several types of digital memory) embedded in thin silicon nitride films. My focus was on optimizing the reactive ion etching recipe required to embed the device in the film. Ultimately, I found that recipe 37 (Power: 250W, CF4 nominal/actual flow rate: 25/25.4 sccm, O2 nominal/actual flow rate: 3.1/5.2 sccm, which gave a maximum pressure around 400 mTorr) gave the most repeatable and anisotropic results. I successfully used processes described in this thesis to make embedded nanomagnets, which could be used as bit patterned media. Another promising application of this work is to make embedded magnetic tunneling junctions, which are the storage medium used in MRAM. Doing so will require still some tweaks to the fabrication methods. Techniques for making these changes and their potential effects are discussed.
Radiogenetic therapy: strategies to overcome tumor resistance.
Marples, B; Greco, O; Joiner, M C; Scott, S D
2003-01-01
The aim of cancer gene therapy is to selectively kill malignant cells at the tumor site, by exploiting traits specific to cancer cells and/or solid tumors. Strategies that take advantage of biological features common to different tumor types are particularly promising, since they have wide clinical applicability. Much attention has focused on genetic methods that complement radiotherapy, the principal treatment modality, or that exploit hypoxia, the most ubiquitous characteristic of most solid cancers. The goal of this review is to highlight two promising gene therapy methods developed specifically to target the tumor volume that can be readily used in combination with radiotherapy. The first approach uses radiation-responsive gene promoters to control the selective expression of a suicide gene (e.g., herpes simplex virus thymidine kinase) to irradiated tissue only, leading to targeted cell killing in the presence of a prodrug (e.g., ganciclovir). The second method utilizes oxygen-dependent promoters to produce selective therapeutic gene expression and prodrug activation in hypoxic cells, which are refractive to conventional radiotherapy. Further refining of tumor targeting can be achieved by combining radiation and hypoxia responsive elements in chimeric promoters activated by either and dual stimuli. The in vitro and in vivo studies described in this review suggest that the combination of gene therapy and radiotherapy protocols has potential for use in cancer care, particularly in cases currently refractory to treatment as a result of inherent or hypoxia-mediated radioresistance.
Guidelines for Synthesis and Processing of Two-Dimensional [2D] Titanium Carbide (Ti 3C 2T x MXene)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhabeb, Mohamed; Maleski, Kathleen; Anasori, Babak
Two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides (MXenes) were discovered in 2011. Since the original discovery, more than 20 different compositions have been synthesized by the selective etching of MAX phase and other precursors and many more theoretically predicted. They offer a variety of different properties, making the family promising candidates in a wide range of applications, such as energy storage, electromagnetic interference shielding, water purification, electrocatalysis, and medicine. These solution-processable materials have the potential to be highly scalable, deposited by spin, spray, or dip coating, painted or printed, or fabricated in a variety of ways. Due to thismore » promise, the amount of research on MXenes has been increasing, and methods of synthesis and processing are expanding quickly. The fast evolution of the material can also be noticed in the wide range of synthesis and processing protocols that determine the yield of delamination, as well as the quality of the 2D flakes produced. Furthermore we describe the experimental methods and best practices we use to synthesize the most studied MXene, titanium carbide (Ti 3C 2T x), using different etchants and delamination methods. We also explain effects of synthesis parameters on the size and quality of Ti 3C 2T x and suggest the optimal processes for the desired application.« less
Guidelines for Synthesis and Processing of Two-Dimensional [2D] Titanium Carbide (Ti 3C 2T x MXene)
Alhabeb, Mohamed; Maleski, Kathleen; Anasori, Babak; ...
2017-08-25
Two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides (MXenes) were discovered in 2011. Since the original discovery, more than 20 different compositions have been synthesized by the selective etching of MAX phase and other precursors and many more theoretically predicted. They offer a variety of different properties, making the family promising candidates in a wide range of applications, such as energy storage, electromagnetic interference shielding, water purification, electrocatalysis, and medicine. These solution-processable materials have the potential to be highly scalable, deposited by spin, spray, or dip coating, painted or printed, or fabricated in a variety of ways. Due to thismore » promise, the amount of research on MXenes has been increasing, and methods of synthesis and processing are expanding quickly. The fast evolution of the material can also be noticed in the wide range of synthesis and processing protocols that determine the yield of delamination, as well as the quality of the 2D flakes produced. Furthermore we describe the experimental methods and best practices we use to synthesize the most studied MXene, titanium carbide (Ti 3C 2T x), using different etchants and delamination methods. We also explain effects of synthesis parameters on the size and quality of Ti 3C 2T x and suggest the optimal processes for the desired application.« less
Efficient differentially private learning improves drug sensitivity prediction.
Honkela, Antti; Das, Mrinal; Nieminen, Arttu; Dikmen, Onur; Kaski, Samuel
2018-02-06
Users of a personalised recommendation system face a dilemma: recommendations can be improved by learning from data, but only if other users are willing to share their private information. Good personalised predictions are vitally important in precision medicine, but genomic information on which the predictions are based is also particularly sensitive, as it directly identifies the patients and hence cannot easily be anonymised. Differential privacy has emerged as a potentially promising solution: privacy is considered sufficient if presence of individual patients cannot be distinguished. However, differentially private learning with current methods does not improve predictions with feasible data sizes and dimensionalities. We show that useful predictors can be learned under powerful differential privacy guarantees, and even from moderately-sized data sets, by demonstrating significant improvements in the accuracy of private drug sensitivity prediction with a new robust private regression method. Our method matches the predictive accuracy of the state-of-the-art non-private lasso regression using only 4x more samples under relatively strong differential privacy guarantees. Good performance with limited data is achieved by limiting the sharing of private information by decreasing the dimensionality and by projecting outliers to fit tighter bounds, therefore needing to add less noise for equal privacy. The proposed differentially private regression method combines theoretical appeal and asymptotic efficiency with good prediction accuracy even with moderate-sized data. As already the simple-to-implement method shows promise on the challenging genomic data, we anticipate rapid progress towards practical applications in many fields. This article was reviewed by Zoltan Gaspari and David Kreil.
Tyagi, Rakesh Kumar
2003-04-01
Although a number of screening methods being used for identifying potential endocrine disruptors have generated a wealth of information, a search for alternative combination of methods is still needed to overcome experimental artefacts. There are no generally accepted or validated screening methods for monitoring and studying impact of environmental endocrine disruptors. Also, no single assay can accurately predict all the deleterious effects of endocrine disruptors. For this reason various environmental protection agencies, mainly European and US, have urged that a battery of tests in current use need to be designed to assess their adequacy in detecting the effects of endocrine disruptors. Some details about endocrine disruptors and screening programs can be found at http://www.epa.gov/scipoly/oscpendo/whatis.htm. Several studies in recent years have used fusion proteins between steroid receptors (estrogen, androgen, progesterone, etc.) and green fluorescent protein (GFP) that can serve as an alternative potent screening method to study intracellular dynamics of receptors in living cells. An approach employing nucleocytoplasmic trafficking of steroid receptors as a parameter in response to potential xenobiotic chemicals in living cells may prove to be promising in terms of being direct, fast, reliable, simple and inexpensive. Copyright 2003 Elsevier Science Ltd.
Geophysical Assessment of Groundwater Potential: A Case Study from Mian Channu Area, Pakistan.
Hasan, Muhammad; Shang, Yanjun; Akhter, Gulraiz; Jin, Weijun
2017-11-17
An integrated study using geophysical method in combination with pumping tests and geochemical method was carried out to delineate groundwater potential zones in Mian Channu area of Pakistan. Vertical electrical soundings (VES) using Schlumberger configuration with maximum current electrode spacing (AB/2 = 200 m) were conducted at 50 stations and 10 pumping tests at borehole sites were performed in close proximity to 10 of the VES stations. The aim of this study is to establish a correlation between the hydraulic parameters obtained from geophysical method and pumping tests so that the aquifer potential can be estimated from the geoelectrical surface measurements where no pumping tests exist. The aquifer parameters, namely, transmissivity and hydraulic conductivity were estimated from Dar Zarrouyk parameters by interpreting the layer parameters such as true resistivities and thicknesses. Geoelectrical succession of five-layer strata (i.e., topsoil, clay, clay sand, sand, and sand gravel) with sand as a dominant lithology was found in the study area. Physicochemical parameters interpreted by World Health Organization and Food and Agriculture Organization were well correlated with the aquifer parameters obtained by geoelectrical method and pumping tests. The aquifer potential zones identified by modeled resistivity, Dar Zarrouk parameters, pumped aquifer parameters, and physicochemical parameters reveal that sand and gravel sand with high values of transmissivity and hydraulic conductivity are highly promising water bearing layers in northwest of the study area. Strong correlation between estimated and pumped aquifer parameters suggest that, in case of sparse well data, geophysical technique is useful to estimate the hydraulic potential of the aquifer with varying lithology. © 2017, National Ground Water Association.
Realizing the promises of marine biotechnology.
Luiten, Esther E M; Akkerman, Ida; Koulman, Albert; Kamermans, Pauline; Reith, Hans; Barbosa, Maria J; Sipkema, Detmer; Wijffels, René H
2003-07-01
High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals, nutritional supplements, (feed-)products for aquaculture and bioremediation solutions) is not the only factor to realise the commercial applications of marine biotechnology. What else is needed to exploit the promising potential of marine biotechnology and to create new industrial possibilities? In the study project 'Ocean Farming-Sustainable exploitation of marine organisms', we explore the possibilities of marine organisms to fulfill needs, such as safe and healthy food, industrial (raw) materials and renewable energy in a sustainable way. One of the three design groups is envisioning the future of strong land-based 'marine' market chains. Marine biotechnology is one of the foci of attention in this design group. This article provides a model of future-oriented thinking in which a variety of experts actively participate.
NASA Astrophysics Data System (ADS)
Panizza, Marco
Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.
NASA Astrophysics Data System (ADS)
Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2018-04-01
A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.
Qi, Kai; Hou, Ruizuo; Zaman, Shahid; Qiu, Yubing; Xia, Bao Yu; Duan, Hongwei
2018-05-30
Metal-organic frameworks (MOFs) hold promising potential in energy storage but are limited by poor conductivity. In this work, a metal-organic framework/polypyrrole hybrid is constructed by a facile one-pot electrodeposition method in the presence of dopamine. An all-solid-state fabric supercapacitor based on this hybrid demonstrates excellent electrochemical energy-storage performance, which achieves a specific capacitance of 10 mF cm -1 (206 mF cm -2 ), a power density of 132 μW cm -1 (2102 μW cm -2 ), and an energy density of 0.8 μWh cm -1 (12.8 μWh cm -2 ). The stable cycling life and excellent mechanical flexibility over a wide range of working temperature are also achieved, which maintains a capacitance retention of 89% over 10 000 charging/discharging cycles, a capacitance decrease of only 4% after 1000 frizzy (360° bending) cycles, and no obvious capacitance loss under 100 repeated heating (100 °C)/cooling (-15 °C) cycles. This fibrous supercapacitor displays promising potential in wearable textile electronics as it can be easily woven into common cotton cloth. Our strategy may shed some valuable light on the construction of MOF-based hybrids for flexible energy-storage electronics.
Cooper, Matthew D; Rosenblat, Joshua D; Cha, Danielle S; Lee, Yena; Kakar, Ron; McIntyre, Roger S
2017-09-01
Objectives Replicated evidence has demonstrated that ketamine exerts rapid-acting and potent antidepressant effects. Notwithstanding, its promise to mitigate depressive symptoms and suicidality in antidepressant-resistant populations, several limitations and safety concerns accompany ketamine including, but not limited to, the potential for abuse and psychotomimetic/dissociative experiences. The focus of the current narrative review is to synthesise available evidence of strategies that may mitigate and fully prevent treatment-emergent psychotomimetic and dissociative effects associated with ketamine administration. Methods PubMed, Google Scholar and ClinicalTrials.gov were searched for relevant articles. Results Potential avenues investigated to minimise psychotomimetic effects associated with ketamine administration include the following: (1) altering dosing and infusion rates; (2) route of administration; (3) enantiomer choice; (4) co-administration with mood stabilisers of antipsychotics; and (5) use of alternative N-methyl-d-aspartate (NMDA)-modulating agents. Emerging evidence indicates that dissociative experiences can be significantly mitigated by using an intranasal route of administration, lower dosages, or use of alternative NMDA-modulating agents, namely lanicemine (AZD6765) and GLYX-13. Conclusions Currently, intranasal administration presents as the most promising strategy to mitigate dissociative and psychotomimetic effects; however, studies of strategies to mitigate the adverse events of ketamine are limited in number and quality and thus further investigation is still needed.
Arrhythmia in Stem Cell Transplantation
Almeida, Shone O.; Skelton, Rhys J.; Adigopula, Sasikanth; Ardehali, Reza
2015-01-01
Synopsis Stem cell regenerative therapies hold promise for treating diseases across the spectrum of medicine. Recent clinical trials have confirmed the safety of stem cell delivery to the heart with promising but variable results. While significant progress has been made in the preclinical stages, the clinical application of cardiac cell therapy is limited by technical challenges, including inability to isolate a pure population of cardiac-specific progenitors capable of robust engraftment and regeneration, lack of appropriate pre-clinical animal models, uncertainty about the best mode of delivery, paucity of adequate imaging modalities, and lack of knowledge about the fate of transplanted cells. The inability of transplanted cells to structurally and functionally integrate into the host myocardium may pose arrhythmogenic risk to patients. This is in part dependent on the type of cell transplanted, where the expression of gap junctions such as connexin-43 is essential not only for electromechanical integration, but has also been found to be protective against electrical instability post-transplant. Additionally, certain methods of cell delivery, such as intramyocardial injection, carry a higher rate of arrhythmias. Other potential contributors to the arrhythmogenicity of cell transplantation include re-entrant pathways due to heterogeneity in conduction velocities between graft and host as well as graft automaticity. In this paper, we discuss the arrhythmogenic potential of cell delivery to the heart. PMID:26002399
The Potential of Knowing More: A Review of Data-Driven Urban Water Management.
Eggimann, Sven; Mutzner, Lena; Wani, Omar; Schneider, Mariane Yvonne; Spuhler, Dorothee; Moy de Vitry, Matthew; Beutler, Philipp; Maurer, Max
2017-03-07
The promise of collecting and utilizing large amounts of data has never been greater in the history of urban water management (UWM). This paper reviews several data-driven approaches which play a key role in bringing forward a sea change. It critically investigates whether data-driven UWM offers a promising foundation for addressing current challenges and supporting fundamental changes in UWM. We discuss the examples of better rain-data management, urban pluvial flood-risk management and forecasting, drinking water and sewer network operation and management, integrated design and management, increasing water productivity, wastewater-based epidemiology and on-site water and wastewater treatment. The accumulated evidence from literature points toward a future UWM that offers significant potential benefits thanks to increased collection and utilization of data. The findings show that data-driven UWM allows us to develop and apply novel methods, to optimize the efficiency of the current network-based approach, and to extend functionality of today's systems. However, generic challenges related to data-driven approaches (e.g., data processing, data availability, data quality, data costs) and the specific challenges of data-driven UWM need to be addressed, namely data access and ownership, current engineering practices and the difficulty of assessing the cost benefits of data-driven UWM.
Rane, Rajesh A; Napahde, Shital; Bangalore, Pavan Kumar; Sahu, Niteshkumar U; Shah, Nishant; Kulkarni, Yogesh A; Barve, Kalyani; Lokare, Leena; Karpoormath, Rajshekhar
2014-11-01
Herein, we report synthesis and screening of a series of twenty derivatives of bromopyrrole alkaloids with aroyl hydrazone feature for antidepressant activity by forced swim test (FST), tail suspension test (TST), and actophotometer method. The molecules were further evaluated for in vitro human MAO's inhibitory activities. The tested compounds exhibited moderate to good antidepressant activity compared with standard fluoxetine. Among these, most promising antidepressant derivatives 5b (%DID = 60.48), 5e (%DID = 59), and 5j (%DID = 74.86) reduced immobility duration of 50-70% at 30 mg/kg dose levels in FST. Further, derivative 5b, 5e, and 5j displayed good antidepressant activity with %DID value of 47.50, 46.62, and 52.49, respectively, in TST compared with standard fluoxetine (66.56% DID). Compound 5b showed high in vitro MAO-A potency and selectivity (Ki MAO-A (μM) = 2.4 ± 0.99, SI = 0.06) with promising pharmacological activity recognizing its potential as antidepressant lead candidate for further drug development. Study revealed that the presence of halogen atoms such as chlorine and fluorine at ortho- and/or para-position of phenyl ring and N-alkylation of pyrrole core is favored features for antidepressant activity. © 2014 John Wiley & Sons A/S.
Lee, Hyo-Ju; Oh, Semi; Cho, Ki-Yeop; Jeong, Woo-Lim; Lee, Dong-Seon; Park, Seong-Ju
2018-04-25
Metal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs. The AgNWs were welded by depositing Ag nanoparticles (AgNPs) on the conducting substrate and then exposing them to water at room temperature. The AgNPs were spontaneously dissolved in water to form Ag + ions, which were then reduced to single-crystal Ag solders selectively at the junctions of the AgNWs. Hence, the welded AgNWs showed higher optoelectronic and stretchable performance compared to that of as-formed AgNWs. These results indicate that electrochemical Ostwald ripening-based welding can be used as a promising method for high-performance metal nanowire electrodes in various next-generation devices such as stretchable solar cells, stretchable displays, organic light-emitting diodes, and skin sensors.
Todd, Neil P M; McLean, Aisha; Paillard, Aurore; Kluk, Karolina; Colebatch, James G
2014-12-01
We report the results of a study to record vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration (IA). In a sample of 12 healthy participants, evoked potentials recorded by 70 channel electroencephalography were obtained by IA stimulation at the nasion and compared with evoked potentials from the same stimulus applied to the forefingers. The nasion stimulation gave rise to a series of positive and negative deflections in the latency range of 26-72 ms, which were dependent on the polarity of the applied IA. In contrast, evoked potentials from the fingers were characterised by a single N50/P50 deflection at about 50 ms and were polarity invariant. Source analysis confirmed that the finger evoked potentials were somatosensory in origin, i.e. were somatosensory evoked potentials, and suggested that the nasion evoked potentials plausibly included vestibular midline and frontal sources, as well as contributions from the eyes, and thus were likely VsEPs. These results show considerable promise as a new method for assessment of the central vestibular system by means of VsEPs produced by IA applied to the head.
Cogo-Moreira, Hugo; de Ávila, Clara Regina Brandão; Ploubidis, George B.; Mari, Jair de Jesus
2013-01-01
Introduction Difficulties in word-level reading skills are prevalent in Brazilian schools and may deter children from gaining the knowledge obtained through reading and academic achievement. Music education has emerged as a potential method to improve reading skills because due to a common neurobiological substratum. Objective To evaluate the effectiveness of music education for the improvement of reading skills and academic achievement among children (eight to 10 years of age) with reading difficulties. Method 235 children with reading difficulties in 10 schools participated in a five-month, randomized clinical trial in cluster (RCT) in an impoverished zone within the city of São Paulo to test the effects of music education intervention while assessing reading skills and academic achievement during the school year. Five schools were chosen randomly to incorporate music classes (n = 114), and five served as controls (n = 121). Two different methods of analysis were used to evaluate the effectiveness of the intervention: The standard method was intention-to-treat (ITT), and the other was the Complier Average Causal Effect (CACE) estimation method, which took compliance status into account. Results The ITT analyses were not very promising; only one marginal effect existed for the rate of correct real words read per minute. Indeed, considering ITT, improvements were observed in the secondary outcomes (slope of Portuguese = 0.21 [p<0.001] and slope of math = 0.25 [p<0.001]). As for CACE estimation (i.e., complier children versus non-complier children), more promising effects were observed in terms of the rate of correct words read per minute [β = 13.98, p<0.001] and phonological awareness [β = 19.72, p<0.001] as well as secondary outcomes (academic achievement in Portuguese [β = 0.77, p<0.0001] and math [β = 0.49, p<0.001] throughout the school year). Conclusion The results may be seen as promising, but they are not, in themselves, enough to make music lessons as public policy. PMID:23544117
A functional U-statistic method for association analysis of sequencing data.
Jadhav, Sneha; Tong, Xiaoran; Lu, Qing
2017-11-01
Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.
Kamarajan, Chella; Pandey, Ashwini K.; Chorlian, David B.; Porjesz, Bernice
2014-01-01
The use of current source density (CSD), the Laplacian of the scalp surface voltage, to map the electrical activity of the brain is a powerful method in studies of cognitive and affective phenomena. During the last few decades, mapping of CSD has been successfully applied to characterize several neuropsychiatric conditions such as alcoholism, schizophrenia, depression, anxiety disorders, childhood/developmental disorders, and neurological conditions (i.e., epilepsy and brain lesions) using electrophysiological data from resting state and during cognitive performance. Use of CSD and Laplacian measures has proven effective in elucidating topographic and activation differences between groups: i) patients with a specific diagnosis vs. healthy controls, ii) subjects at high risk for a specific diagnosis vs. low risk or normal controls, and iii) patients with specific symptom(s) vs. patients without these symptom(s). The present review outlines and summarizes the studies that have employed CSD measures in investigating several neuropsychiatric conditions. The advantages and potential of CSD-based methods in clinical and research applications along with some of the limitations inherent in the CSD-based methods are discussed in the review, as well as future directions to expand the implementation of CSD to other potential clinical applications. As CSD methods have proved to be more advantageous than using scalp potential data to understand topographic and source activations, its clinical applications offer promising potential, not only for a better understanding of a range of psychiatric conditions, but also for a variety of focal neurological disorders, including epilepsy and other conditions involving brain lesions and surgical interventions. PMID:25448264
Toward more versatile and intuitive cortical brain machine interfaces
Andersen, Richard A.; Kellis, Spencer; Klaes, Christian; Aflalo, Tyson
2015-01-01
Brain machine interfaces have great potential in neuroprosthetic applications to assist patients with brain injury and neurodegenerative diseases. One type of BMI is a cortical motor prosthetic which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using 1) recordings from cortical areas outside motor cortex; 2) local field potentials (LFPs) as a source of recorded signals; 3) somatosensory feedback for more dexterous control of robotics; and 4) new decoding methods that work in concert to form an ecology of decode algorithms. These new advances hold promise in greatly accelerating the applicability and ease of operation of motor prosthetics. PMID:25247368
Strategies for prevention of soccer related injuries: a systematic review
Olsen, L; Scanlan, A; MacKay, M; Babul, S; Reid, D; Clark, M; Raina, P
2004-01-01
Methods: Standard systematic review methodology was modified and adopted for this review. Research questions and relevance criteria were developed a priori. Potentially relevant studies were located through electronic and hand searches. Articles were assessed for relevance and quality by two independent assessors, and the results of relevant articles were abstracted and synthesised. Results: A total of 44 potentially relevant articles from electronic (n = 37) and hand (n = 7) searches yielded four that met inclusion criteria. These four studies addressed a range of intervention strategies and varied with respect to results and quality of evidence. Conclusions: Some of the strategies look promising but lack adequate evaluation or require further research among younger players. Practice, policy, and research recommendations are provided as a result of the synthesis. PMID:14751956
Mammary Stem Cells: Premise, Properties, and Perspectives.
Lloyd-Lewis, Bethan; Harris, Olivia B; Watson, Christine J; Davis, Felicity M
2017-08-01
Adult mammary stem cells (MaSCs) drive postnatal organogenesis and remodeling in the mammary gland, and their longevity and potential have important implications for breast cancer. However, despite intense investigation the identity, location, and differentiation potential of MaSCs remain subject to deliberation. The application of genetic lineage-tracing models, combined with quantitative 3D imaging and biophysical methods, has provided new insights into the mammary epithelial hierarchy that challenge classical definitions of MaSC potency and behaviors. We review here recent advances - discussing fundamental unresolved properties of MaSC potency, dynamics, and plasticity - and point to evolving technologies that promise to shed new light on this intractable debate. Elucidation of the physiological mammary differentiation hierarchy is paramount to understanding the complex heterogeneous breast cancer landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.
2013-01-01
Background The burden of disease due to non-communicable diseases (NCDs) is rising in low- and middle-income countries (LMICs) and funding for global health is increasingly limited. As a large contributor of development assistance for health, the US government has the potential to influence overall trends in NCDs. Results-based financing (RBF) has been proposed as a strategy to increase aid effectiveness and efficiency through incentives for positive performance and results in health programs, but its potential for addressing NCDs has not been explored. Methods Qualitative methods including literature review and key informant interviews were used to identify promising RBF mechanisms for addressing NCDs in resource-limited settings. Eight key informants identified by area of expertise participated in semi-structured interviews. Results The majority of RBF schemes to date have been applied to maternal and child health. Evidence from existing RBF programs suggests that RBF principles can be applied to health programs for NCDs. Several options were identified for US involvement with RBF for NCDs. Conclusion There is potential for the US to have a significant impact on NCDs in LMICs through a comprehensive RBF strategy for global health. RBF mechanisms should be tested for use in NCD programs through pilot programs incorporating robust impact evaluations. PMID:23368959
Miranda, Margarida S; Rodrigues, Márcia T; Domingues, Rui M A; Costa, Rui R; Paz, Elvira; Rodríguez-Abreu, Carlos; Freitas, Paulo; Almeida, Bernardo G; Carvalho, Maria Alice; Gonçalves, Carine; Ferreira, Catarina M; Torrado, Egídio; Reis, Rui L; Pedrosa, Jorge; Gomes, Manuela E
2018-05-23
Tuberculosis (TB) is an infectious disease which affects millions of people worldwide. Inhalable polymeric dry powders are promising alternatives as anti-TB drug carriers to the alveoli milieu and infected macrophages, with potential to significantly improve the therapeutics efficiency. Here, the development of a magnetically responsive microparticulate system for pulmonary delivery of an anti-TB drug candidate (P3) is reported. Microparticles (MPs) are developed based on a cast method using calcium carbonate sacrificial templates and incorporate superparamagnetic iron oxide nanoparticles to concentrate MPs in alveoli and enable drug on demand release upon actuation of an external alternate magnetic field (AMF). The MPs are shown to be suitable for P3 delivery to the lower airways and for alveolar macrophage phagocytosis. The developed MPs reveal unique and promising features to be used as an inhalable dry powder allowing the AMF control over dosage and frequency of drug delivery anticipating improved TB treatments. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Berger, Moritz; Nova, Igor; Kallus, Sebastian; Ristow, Oliver; Eisenmann, Urs; Freudlsperger, Christian; Seeberger, Robin; Hoffmann, Jürgen; Dickhaus, Hartmut
2017-03-01
Inaccuracies in orthognathic surgery can be caused during face-bow registration, model surgery on plaster models, and intermaxillary splint manufacturing. Electromagnetic (EM) navigation is a promising method for splintless digitized maxillary positioning. After performing Le Fort I osteotomy on 10 plastic skulls, the target position of the maxilla was guided by an EM navigation system. Specially implemented software illustrated the target position by real-time multistage colored three-dimensional imaging. Accuracy was determined by using pre- and postoperative cone beam computed tomography. The high accuracy of the EM system was underlined by the fact that it had a navigated maxilla position discrepancy of only 0.4 mm, which was verified by postoperative cone beam computed tomography. This preclinical study demonstrates a precise digitized approach for splintless maxillary repositioning after Le Fort I osteotomy. The accuracy and intuitive illustration of the introduced EM navigation system is promising for potential daily use in orthognathic surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Siracusano, Giulio; Lamonaca, Francesco; Tomasello, Riccardo; Garescì, Francesca; Corte, Aurelio La; Carnì, Domenico Luca; Carpentieri, Mario; Grimaldi, Domenico; Finocchio, Giovanni
2016-06-01
The acoustic emission (AE) is a powerful and potential nondestructive testing method for structural monitoring in civil engineering. Here, we show how systematic investigation of crack phenomena based on AE data can be significantly improved by the use of advanced signal processing techniques. Such data are a fundamental source of information that can be used as the basis for evaluating the status of the material, thereby paving the way for a new frontier of innovation made by data-enabled analytics. In this article, we propose a framework based on the Hilbert-Huang Transform for the evaluation of material damages that (i) facilitates the systematic employment of both established and promising analysis criteria, and (ii) provides unsupervised tools to achieve an accurate classification of the fracture type, the discrimination between longitudinal (P-) and traversal (S-) waves related to an AE event. The experimental validation shows promising results for a reliable assessment of the health status through the monitoring of civil infrastructures.
Elasticity of human embryonic stem cells as determined by atomic force microscopy.
Kiss, Robert; Bock, Henry; Pells, Steve; Canetta, Elisabetta; Adya, Ashok K; Moore, Andrew J; De Sousa, Paul; Willoughby, Nicholas A
2011-10-01
The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Young's modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Young's modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.
NASA Astrophysics Data System (ADS)
Amiri, Ahmad; Ahmadi, Goodarz; Shanbedi, Mehdi; Savari, Maryam; Kazi, S. N.; Chew, B. T.
2015-12-01
Capacitive deionization (CDI) is a promising procedure for removing various charged ionic species from brackish water. The performance of graphene-based material in capacitive deionization is lower than the expectation of the industry, so highly-crumpled, few-layered graphene (HCG) and highly-crumpled nitrogen-doped graphene (HCNDG) with high surface area have been introduced as promising candidates for CDI electrodes. Thus, HCG and HCNDG were prepared by exfoliation of graphite in the presence of liquid-phase, microwave-assisted methods. An industrially-scalable, cost-effective, and simple approach was employed to synthesize HCG and HCNDG, resulting in few-layered graphene and nitrogen-doped graphene with large specific surface area. Then, HCG and HCNDG were utilized for manufacturing a new class of carbon nanostructure-based electrodes for use in large-scale CDI equipment. The electrosorption results indicated that both the HCG and HCNDG have fairly large specific surface areas, indicating their huge potential for capacitive deionization applications.
Pluripotent Stem Cells in Research and Treatment of Hemoglobinopathies
Arora, Natasha; Daley, George Q.
2012-01-01
Pluripotent stem cells (PSCs) hold great promise for research and treatment of hemoglobinopathies. In principle, patient-specific induced pluripotent stem cells could be derived from a blood sample, genetically corrected to repair the disease-causing mutation, differentiated into hematopoietic stem cells (HSCs), and returned to the patient to provide a cure through autologous gene and cell therapy. However, there are many challenges at each step of this complex treatment paradigm. Gene repair is currently inefficient in stem cells, but use of zinc finger nucleases and transcription activator-like effector nucleases appear to be a major advance. To date, no successful protocol exists for differentiating PSCs into definitive HSCs. PSCs can be directly differentiated into primitive red blood cells, but not yet in sufficient numbers to enable treating patients, and the cost of clinical scale differentiation is prohibitively expensive with current differentiation methods and efficiencies. Here we review the progress, promise, and remaining hurdles in realizing the potential of PSCs for cell therapy. PMID:22474618
Zhang, Hongjiao; Gao, Yuntao; Xiong, Huabin
2017-04-01
The citric acid fermentation broth was prepared and it was employed to washing remediation of heavy metal-polluted soil. A well-defined washing effect was obtained, the removal percentages using citric acid fermentation broth are that 48.2% for Pb, 30.6% for Cu, 43.7% for Cr, and 58.4% for Cd and higher than that using citric acid solution. The kinetics of heavy metals desorption can be described by the double constant equation and Elovich equation and is a heterogeneous diffusion process. The speciation analysis shows that the citric acid fermentation broth can effectively reduce bioavailability and environmental risk of heavy metals. Spectroscopy characteristics analysis suggests that the washing method has only a small effect on the mineral composition and does not destroy the framework of soil system. Therefore, the citric acid fermentation broth is a promising washing agent and possesses a potential practical application value in the field of remediation of soils with a good washing performance.
Overview of existing cartilage repair technology.
McNickle, Allison G; Provencher, Matthew T; Cole, Brian J
2008-12-01
Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.
Li, Jie; He, Yujun; Han, Yimo; Liu, Kai; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2012-08-08
Because of their excellent electrical and optical properties, carbon nanotubes have been regarded as extremely promising candidates for high-performance electronic and optoelectronic applications. However, effective and efficient distinction and separation of metallic and semiconducting single-walled carbon nanotubes are always challenges for their practical applications. Here we show that metallic and semiconducting single-walled carbon nanotubes on SiO(2) can have obviously different contrast in scanning electron microscopy due to their conductivity difference and thus can be effectively and efficiently identified. The correlation between conductivity and contrast difference has been confirmed by using voltage-contrast scanning electron microcopy, peak force tunneling atom force microscopy, and field effect transistor testing. This phenomenon can be understood via a proposed mechanism involving the e-beam-induced surface potential of insulators and the conductivity difference between metallic and semiconducting SWCNTs. This method demonstrates great promise to achieve rapid and large-scale distinguishing between metallic and semiconducting single-walled carbon nanotubes, adding a new function to conventional SEM.
Sedio, Brian E
2017-05-01
Contents 952 I. 952 II. 953 III. 955 IV. 956 V. 957 957 References 957 SUMMARY: Much of our understanding of the mechanisms by which biotic interactions shape plant communities has been constrained by the methods available to study the diverse secondary chemistry that defines plant relationships with other organisms. Recent innovations in analytical chemistry and bioinformatics promise to reveal the cryptic chemical traits that mediate plant ecology and evolution by facilitating simultaneous structural comparisons of hundreds of unknown molecules to each other and to libraries of known compounds. Here, I explore the potential for mass spectrometry and nuclear magnetic resonance metabolomics to enable unprecedented tests of seminal, but largely untested hypotheses that propose a fundamental role for plant chemical defenses against herbivores and pathogens in the evolutionary origins and ecological coexistence of plant species diversity. © 2017 The Author. New Phytologist © 2017 New Phytologist Trust.
Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes
2013-01-01
In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections. PMID:24516424
Petrolini, Fernanda Villas Boas; Lucarini, Rodrigo; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Cunha, Wilson Roberto; Martins, Carlos Henrique Gomes
2013-01-01
In this study we evaluated the antibacterial activity of the crude hydroalcoholic extracts, fractions, and compounds of two plant species, namely Rosmarinus officinalis and Petroselinum crispum, against the bacteria that cause urinary tract infection. The microdilution method was used for determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The crude hydroalcoholic extract of R. officinalis displayed in vitro activity against Gram-positive bacteria, with satisfactory MBC for the clinical isolate S. saprophyticus. The fractions and the pure compound rosmarinic acid did not furnish promising results for Gram-negative bacteria, whereas fractions 2, 3, and 4 gave encouraging results for Gram-positive bacteria and acted as bactericide against S. epidermidis as well as E. faecalis (ATCC 29212) and its clinical isolate. R. officinalis led to promising results in the case of Gram-positive bacteria, resulting in a considerable interest in the development of reliable alternatives for the treatment of urinary infections.
Wu, Cuiqing; Liu, Qi; Chen, Rongrong; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Takahashi, Kazunobu; Liu, Peili; Wang, Jun
2017-03-29
Superhydrophobic coatings are highly promising for protecting material surfaces and for wide applications. In this study, superhydrophobic composites, comprising a rhombic-dodecahedral zeolitic imidazolate framework (ZIF-8@SiO 2 ), have been manufactured onto AZ31 magnesium alloy via chemical etching and dip-coating methods to enhance stability and corrosion resistance. Herein, we report on a simple strategy to modify hydrophobic hexadecyltrimethoxysilan (HDTMS) on ZIF-8@SiO 2 to significantly improve the property of repelling water. We show that various liquids can be stable on its surface and maintain a contact angle higher than 150°. The morphologies and chemical composition were characterized by means of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FI-IR). In addition, the anticorrosion and antiattrition properties of the film were assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization and HT, respectively. Such a coating shows promising potential as a material for large-scale fabrication.
Tian, Tian; Song, Yanyan; Wei, Lai; Wang, Jiaqi; Fu, Boshi; He, Zhiyong; Yang, Xi-Ran; Wu, Fan; Xu, Guohua; Liu, Si-Min; Li, Conggang
2017-01-01
Abstract Supramolecular chemistry addresses intermolecular forces and consequently promises great flexibility and precision. Biological systems are often the inspirations for supramolecular research. The G-quadruplex (G4) belongs to one of the most important secondary structures in nucleic acids. Until recently, the supramolecular manipulation of the G4 has not been reported. The present study is the first to disclose a supramolecular switch for the reversible control of human telomere G4s. Moreover, this supramolecular switch has been successfully used to manipulate an enzymatic reaction. Using various methods, we show that cucurbit[7]uril preferably locks and encapsulates the positively charged piperidines of Razo through supramolecular interactions. They can switch the conformations of the DNA inhibitor between a flexible state and the rigid G4 and are therefore responsible for the reversible control of the thrombin activity. Thus, our findings open a promising route and exhibit potential applications in future studies of chemical biology. PMID:28115627
White matter biomarkers from diffusion MRI
NASA Astrophysics Data System (ADS)
Nørhøj Jespersen, Sune
2018-06-01
As part of an issue celebrating 2 decades of Joseph Ackerman editing the Journal of Magnetic Resonance, this paper reviews recent progress in one of the many areas in which Ackerman and his lab has made significant contributions: NMR measurement of diffusion in biological media, specifically in brain tissue. NMR diffusion signals display exquisite sensitivity to tissue microstructure, and have the potential to offer quantitative and specific information on the cellular scale orders of magnitude below nominal image resolution when combined with biophysical modeling. Here, I offer a personal perspective on some recent advances in diffusion imaging, from diffusion kurtosis imaging to microstructural modeling, and the connection between the two. A new result on the estimation accuracy of axial and radial kurtosis with axially symmetric DKI is presented. I moreover touch upon recently suggested generalized diffusion sequences, promising to offer independent microstructural information. We discuss the need and some methods for validation, and end with an outlook on some promising future directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez-Vasco, Carlos; Ma, Ruoshui; Quintero, Melissa
This paper reports a new method of applying Deep Eutectic Solvents (DES) for extracting lignin from woody biomass with high yield and high purity. DES mixtures prepared from Choline Chloride (ChCl) and four hydrogen-bond donors–acetic acid, lactic acid, levulinic acid and glycerol–were evaluated for treatment of hardwood (poplar) and softwood (D. fir). It was found that these DES treatments can selectively extract a significant amount of lignin from wood with high yields: 78% from poplar and 58% from D. fir. The extracted lignin has high purity (95%) with unique structural properties. We discover that DES can selectively cleave ether linkagesmore » in wood lignin and facilitate lignin removal from wood. The mechanism of DES cleavage of ether bonds between phenylpropane units was investigated. The results from this study demonstrate that DES is a promising solvent for wood delignification and the production of a new source of lignin with promising potential applications.« less
Evaluation of solar cells and arrays for potential solar power satellite applications
NASA Technical Reports Server (NTRS)
Almgren, D. W.; Csigi, K.; Gaudet, A. D.
1978-01-01
Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.
Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage.
Gao, Liansheng; Xu, Weilin; Li, Tao; Chen, Jingyin; Shao, Anwen; Yan, Feng; Chen, Gao
2018-01-01
Spontaneous intracerebral hemorrhage (ICH) is one type of the most devastating cerebrovascular diseases worldwide, which causes high morbidity and mortality. However, efficient treatment is still lacking. Stem cell therapy has shown good neuroprotective and neurorestorative effect in ICH and is a promising treatment. In this study, our aim was to review the therapeutic effects, strategies, related mechanisms and safety issues of various types of stem cell for ICH treatment. Numerous studies had demonstrated the therapeutic effects of diverse stem cell types in ICH. The potential mechanisms include tissue repair and replacement, neurotrophy, promotion of neurogenesis and angiogenesis, anti-apoptosis, immunoregulation and anti-inflammation and so forth. The microenvironment of the central nervous system (CNS) can also influence the effects of stem cell therapy. The detailed therapeutic strategies for ICH treatment such as cell type, the number of cells, time window, and the routes of medication delivery, varied greatly among different studies and had not been determined. Moreover, the safety issues of stem cell therapy for ICH should not be ignored. Stem cell therapy showed good therapeutic effect in ICH, making it a promising treatment. However, safety should be carefully evaluated, and more clinical trials are required before stem cell therapy can be extensively applied to clinical use.
Scalable Production of Graphene-Based Wearable E-Textiles
2017-01-01
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors. PMID:29185706
Kinesio Taping Fundamentals for the Equine Athlete.
Molle, Sybille
2016-04-01
The Kinesio taping method was developed in Japan for use in humans in 1979. The use of complementary therapies is becoming common in equine athletes and the discovery of Kinesio taping potential brought it into the animal world. Kinesio taping can be used to treat a wide range of clinical conditions, from tendon injuries to neurologic disorders and from muscle contractures to postural insufficiencies. Its use in veterinary medicine is promising, but relies heavily on evidence-based clinical reports. Further scientific research is needed to fully understand the real effectiveness of application. Copyright © 2016 Elsevier Inc. All rights reserved.
Copper Nanowires and Their Applications for Flexible, Transparent Conducting Films: A Review
Nam, Vu Binh; Lee, Daeho
2016-01-01
Cu nanowires (NWs) are attracting considerable attention as alternatives to Ag NWs for next-generation transparent conductors, replacing indium tin oxide (ITO) and micro metal grids. Cu NWs hold great promise for low-cost fabrication via a solution-processed route and show preponderant optical, electrical, and mechanical properties. In this study, we report a summary of recent advances in research on Cu NWs, covering the optoelectronic properties, synthesis routes, deposition methods to fabricate flexible transparent conducting films, and their potential applications. This review also examines the approaches on protecting Cu NWs from oxidation in air environments. PMID:28344304
Identifying Stem-like Cells Using Mitochondrial Membrane Potential | Center for Cancer Research
Therapies that are based on living cells promise to improve treatments for metastatic cancer and for many degenerative diseases. Lasting treatment of these maladies may require the durable persistence of cells. Long-term engraftment of cells – for months or years – and the generation of large numbers of progeny are characteristics of stem cells. Most approaches to isolate viable hematopoetic stem cells and therapeutically active T cells are based on immunophenotyping using highly multicolored flow cytometry. However, these methods do not directly measure the metabolic features of cells, which are known to be important in predicting cell fate.
Plant Antimicrobial Peptides as Potential Anticancer Agents
Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo
2015-01-01
Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333
Recombinant BCG vaccine candidates.
Hernàndez-Pando, Rogelio; Castañòn, Mauricio; Espitia, Clara; Lopez-Vidal, Yolanda
2007-06-01
Given the variable protective efficacy provided by Mycobacterium bovis BCG (Bacillus Calmette-Guérin), there is a concerted effort worldwide to develop better vaccines that could be used to reduce the burden of tuberculosis. Recombinant BCG (rBCG) are vaccine candidates that offer some potential in this area. In this paper, we will discuss the molecular methods used to generate rBCG, and the results obtained with some of these new vaccines as compared with the conventional BCG vaccine in diverse animal models. Tuberculosis vaccine candidates based on rBCG are promising candidates, and some of them are now being tested in clinical trials.
Lithium-Polymer battery based on polybithiophene as cathode material
NASA Astrophysics Data System (ADS)
Chen, J.; Wang, J.; Wang, C.; Too, C. O.; Wallace, G. G.
Stainless-steel mesh electrodes coated with polybithiophene, obtained by electrochemical polymerization (constant potential and constant current), have been investigated as cathode materials in a lithium-polybithiophene rechargeable battery by cyclic voltammetry, electrochemical impedance spectroscopy and long-term charge-discharge cycling process. The effects of different growth methods on the surface morphology of the films and the charge-discharge capacity are discussed in detail. The results show that polybithiophene-hexafluorophosphate is a very promising cathode material for manufacturing lithium-polymer rechargeable batteries with a highly stable discharge capacity of 81.67 mAh g -1 after 50 cycles.
NASA Astrophysics Data System (ADS)
Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi
2015-08-01
Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.
Small Molecule based Musculoskeletal Regenerative Engineering
Lo, Kevin W.-H.; Jiang, Tao; Gagnon, Keith A.; Nelson, Clarke; Laurencin, Cato T.
2014-01-01
Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past four years in the area of small bioactive molecule for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve. PMID:24405851
Instrumentation for motor-current signature analysis using synchronous sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castleberry, K.N.
1996-07-01
Personnel in the Instrumentation and Controls Division at Oak Ridge National Laboratory, in association with the United States Enrichment Corporation, the U.S. Navy, and various Department of Energy sponsors, have been involved in the development and application of motor-current signature analysis for several years. In that time, innovation in the field has resulted in major improvements in signal processing, analysis, and system performance and capabilities. Recent work has concentrated on industrial implementation of one of the most promising new techniques. This report describes the developed method and the instrumentation package that is being used to investigate and develop potential applications.
[The present state and progress of researches on gait recognition].
Xue, Zhaojun; Jin, Jingna; Ming, Dong; Wan, Baikun
2008-10-01
Recognition by gait is a new field for the biometric recognition technology. Its aim is to recognize people and detect physiological, pathological and mental characters by their walk style. The use of gait as a biometric for human identification is promising. The technique of gait recognition, as an attractive research area of biomedical information detection, attracts more and more attention. In this paper is introduced a survey of the basic theory, existing gait recognition methods and potential prospects. The latest progress and key factors of research difficulties are analyzed, and future researches are envisaged.
Narcotic antagonists. Treatment tool for addiction.
Valentine, N M; Meyer, R E
1976-09-01
Narcotic antagonists have recently gained attention through research aimed at evaluating both biochemical effects and treatment potential for opiate addiction. Narcotic antagonists are a classification of drugs which block the euphoric (and all other) effects of opiates. Naltrexone is the most promising narcotic antagonist based on ability to produce blockade, length of duration, and relative absence of side effects. The narcotic antagonists offer an adjunctive or alternative method of treatment for opiate addicts based on Wikler's biobehavioral theory of conditioned abstinence. Narcotic antagonists are presently being investigated at seven research centers throughout the United States and may be available for clinical use in the future.
Peptide targeting of quantum dots to human breast cancer cells
NASA Astrophysics Data System (ADS)
Haglund, Emily M.; Seale-Goldsmith, Mary-Margaret; Dhawan, Deepika; Stewart, Jane; Ramos-Vara, Jose; Cooper, Christy L.; Reece, Lisa M.; Husk, Timothy; Bergstrom, Donald; Knapp, Deborah; Leary, James F.
2008-02-01
Nanomedical approaches to diseases such as cancer provide great promise with respect to diagnostic and therapeutic applications. The impact of nanomedicine versus conventional therapies will be realized with regard to their specific cell targeting capabilities. Semiconductor nanoparticles have distinct advantages due to their chemical conjugation and detection characteristics. The attachment of a peptide sequence, LTVSPWY, was completed. These nanoparticles successfully targeted in vitro and in vivo systems. This technology can be utilized as a base mechanism for the construction of a multifunctional nanomedical system. Nanomedicine has great potential for impacting the treatment of specific diseases and healthcare delivery methods.
Cine CT technique for dynamic airway studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ell, S.R.; Jolles, H.; Keyes, W.D.
1985-07-01
The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.
Petri net modelling of biological networks.
Chaouiya, Claudine
2007-07-01
Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.
Production and detection of atomic hexadecapole at Earth's magnetic field.
Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D
2008-07-21
Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.
Reinert, Zachary E; Horne, W Seth
2014-11-28
A variety of non-biological structural motifs have been incorporated into the backbone of natural protein sequences. In parallel work, diverse unnatural oligomers of de novo design (termed "foldamers") have been developed that fold in defined ways. In this Perspective article, we survey foundational studies on protein backbone engineering, with a focus on alterations made in the context of complex tertiary folds. We go on to summarize recent work illustrating the potential promise of these methods to provide a general framework for the construction of foldamer mimics of protein tertiary structures.
Methods for converging correlation energies within the dielectric matrix formalism
NASA Astrophysics Data System (ADS)
Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario
2018-03-01
Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.
Yedla, Sudhakar; Sindhu, N T
2016-06-01
Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.
Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon
2016-07-27
Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.
Ondersma, Steven J; Grekin, Emily R; Svikis, Dace
2011-01-01
We first provide an overview of the potential of technology in the area of brief interventions for substance use and describe recent projects from our lab that are illustrative of that potential. Second, we present data from a study of during-session predictors of brief intervention response. In a sample of postpartum women (N = 39), several variables showed promise as predictors of later drug use, and a brief index derived from them predicted abstinence with a sensitivity of .7 and a specificity of .89. This promising approach and initial study findings support the importance of future research in this area.
The Oklahoma's Promise Program: A National Model to Promote College Persistence
ERIC Educational Resources Information Center
Mendoza, Pilar; Mendez, Jesse P.
2013-01-01
Using a multi-method approach involving fixed effects and logistic regressions, this study examined the effect of the Oklahoma's Promise Program on student persistence in relation to the Pell and Stafford federal programs and according to socio-economic characteristics and class level. The Oklahoma's Promise is a hybrid state program that pays…
Feketa, Viktor V; Marrelli, Sean P
2015-01-01
Therapeutic hypothermia has emerged as a remarkably effective method of neuroprotection from ischemia and is being increasingly used in clinics. Accordingly, it is also a subject of considerable attention from a basic scientific research perspective. One of the fundamental problems, with which current studies are concerned, is the optimal method of inducing hypothermia. This review seeks to provide a broad theoretical framework for approaching this problem, and to discuss how a novel promising strategy of pharmacological modulation of the thermosensitive ion channels fits into this framework. Various physical, anatomical, physiological and molecular aspects of thermoregulation, which provide the foundation for this text, have been comprehensively reviewed and will not be discussed exhaustively here. Instead, the first part of the current review, which may be helpful for a broader readership outside of thermoregulation research, will build on this existing knowledge to outline possible opportunities and research directions aimed at controlling body temperature. The second part, aimed at a more specialist audience, will highlight the conceptual advantages and practical limitations of novel molecular agents targeting thermosensitive Transient Receptor Potential (TRP) channels in achieving this goal. Two particularly promising members of this channel family, namely TRP melastatin 8 (TRPM8) and TRP vanilloid 1 (TRPV1), will be discussed in greater detail.
Prediction of cassava protein interactome based on interolog method.
Thanasomboon, Ratana; Kalapanulak, Saowalak; Netrphan, Supatcharee; Saithong, Treenut
2017-12-08
Cassava is a starchy root crop whose role in food security becomes more significant nowadays. Together with the industrial uses for versatile purposes, demand for cassava starch is continuously growing. However, in-depth study to uncover the mystery of cellular regulation, especially the interaction between proteins, is lacking. To reduce the knowledge gap in protein-protein interaction (PPI), genome-scale PPI network of cassava was constructed using interolog-based method (MePPI-In, available at http://bml.sbi.kmutt.ac.th/ppi ). The network was constructed from the information of seven template plants. The MePPI-In included 90,173 interactions from 7,209 proteins. At least, 39 percent of the total predictions were found with supports from gene/protein expression data, while further co-expression analysis yielded 16 highly promising PPIs. In addition, domain-domain interaction information was employed to increase reliability of the network and guide the search for more groups of promising PPIs. Moreover, the topology and functional content of MePPI-In was similar to the networks of Arabidopsis and rice. The potential contribution of MePPI-In for various applications, such as protein-complex formation and prediction of protein function, was discussed and exemplified. The insights provided by our MePPI-In would hopefully enable us to pursue precise trait improvement in cassava.
Entropy-Based Search Algorithm for Experimental Design
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon
2018-01-22
The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.
Big Data, Big Problems: A Healthcare Perspective.
Househ, Mowafa S; Aldosari, Bakheet; Alanazi, Abdullah; Kushniruk, Andre W; Borycki, Elizabeth M
2017-01-01
Much has been written on the benefits of big data for healthcare such as improving patient outcomes, public health surveillance, and healthcare policy decisions. Over the past five years, Big Data, and the data sciences field in general, has been hyped as the "Holy Grail" for the healthcare industry promising a more efficient healthcare system with the promise of improved healthcare outcomes. However, more recently, healthcare researchers are exposing the potential and harmful effects Big Data can have on patient care associating it with increased medical costs, patient mortality, and misguided decision making by clinicians and healthcare policy makers. In this paper, we review the current Big Data trends with a specific focus on the inadvertent negative impacts that Big Data could have on healthcare, in general, and specifically, as it relates to patient and clinical care. Our study results show that although Big Data is built up to be as a the "Holy Grail" for healthcare, small data techniques using traditional statistical methods are, in many cases, more accurate and can lead to more improved healthcare outcomes than Big Data methods. In sum, Big Data for healthcare may cause more problems for the healthcare industry than solutions, and in short, when it comes to the use of data in healthcare, "size isn't everything."
Programmable Regulation of DNA Conjugation to Gold Nanoparticles via Strand Displacement.
Zhang, Cheng; Wu, Ranfeng; Li, Yifan; Zhang, Qiang; Yang, Jing
2017-10-31
Methods for conjugating DNA to gold nanoparticles (AuNPs) have recently attracted considerable attention. The ability to control such conjugation in a programmable way is of great interest. Here, we have developed a logic-based method for manipulating the conjugation of thiolated DNA species to AuNPs via cascading DNA strand displacement. Using this method, several logic-based operation systems are established and up to three kinds of DNA signals are introduced at the same time. In addition, a more sensitive catalytic logic-based operation is also achieved based on an entropy-driven process. In the experiment, all of the DNA/AuNPs conjugation results are verified by agrose gel. This strategy promises great potential for automatically conjugating DNA stands onto label-free gold nanoparticles and can be extended to constructing DNA/nanoparticle devices for applications in diagnostics, biosensing, and molecular robotics.
Kinetic energy partition method applied to ground state helium-like atoms.
Chen, Yu-Hsin; Chao, Sheng D
2017-03-28
We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.
Robust bidirectional links for photonic quantum networks
Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can
2016-01-01
Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state–independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory. PMID:26824069
Green chemistry and nanofabrication in a levitated Leidenfrost drop
NASA Astrophysics Data System (ADS)
Abdelaziz, Ramzy; Disci-Zayed, Duygu; Hedayati, Mehdi Keshavarz; Pöhls, Jan-Hendrik; Zillohu, Ahnaf Usman; Erkartal, Burak; Chakravadhanula, Venkata Sai Kiran; Duppel, Viola; Kienle, Lorenz; Elbahri, Mady
2013-10-01
Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal-polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials.
Green chemistry and nanofabrication in a levitated Leidenfrost drop
Abdelaziz, Ramzy; Disci-Zayed, Duygu; Hedayati, Mehdi Keshavarz; Pöhls, Jan-Hendrik; Zillohu, Ahnaf Usman; Erkartal, Burak; Chakravadhanula, Venkata Sai Kiran; Duppel, Viola; Kienle, Lorenz; Elbahri, Mady
2013-01-01
Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal–polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials. PMID:24169567
NASA Astrophysics Data System (ADS)
Rossetti, Cecilia; Świtnicka-Plak, Magdalena A.; Grønhaug Halvorsen, Trine; Cormack, Peter A. G.; Sellergren, Börje; Reubsaet, Léon
2017-03-01
Robust biomarker quantification is essential for the accurate diagnosis of diseases and is of great value in cancer management. In this paper, an innovative diagnostic platform is presented which provides automated molecularly imprinted solid-phase extraction (MISPE) followed by liquid chromatography-mass spectrometry (LC-MS) for biomarker determination using ProGastrin Releasing Peptide (ProGRP), a highly sensitive biomarker for Small Cell Lung Cancer, as a model. Molecularly imprinted polymer microspheres were synthesized by precipitation polymerization and analytical optimization of the most promising material led to the development of an automated quantification method for ProGRP. The method enabled analysis of patient serum samples with elevated ProGRP levels. Particularly low sample volumes were permitted using the automated extraction within a method which was time-efficient, thereby demonstrating the potential of such a strategy in a clinical setting.
Development of a high temperature microbial fermentation process for butanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeor, Jeffery D. St.; Reed, David W.; Daubaras, Dayna L.
2015-08-01
Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donormore » and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.« less
Xu, Jingyang; Zhang, Ziyuan; Zheng, Xiaochun; Bond, John W
2017-05-01
Visualization of latent fingerprints on metallic surfaces by the method of applying electrostatic charging and adsorption is considered as a promising chemical-free method, which has the merit of nondestruction, and is considered to be effective for some difficult situations such as aged fingerprint deposits or those exposed to environmental extremes. In fact, a portable electrostatic generator can be easily accessible in a local forensic technology laboratory, which is already widely used in the visualization of footwear impressions. In this study, a modified version of this electrostatic apparatus is proposed for latent fingerprint development and has shown great potential in visualizing fingerprints on metallic surfaces such as cartridge cases. Results indicate that this experimental arrangement can successfully develop aged latent fingerprints on metal surfaces, and we demonstrate its effectiveness compared with existing conventional fingerprint recovery methods. © 2016 American Academy of Forensic Sciences.
Padilla-Buritica, Jorge I.; Martinez-Vargas, Juan D.; Castellanos-Dominguez, German
2016-01-01
Lately, research on computational models of emotion had been getting much attention due to their potential for understanding the mechanisms of emotions and their promising broad range of applications that potentially bridge the gap between human and machine interactions. We propose a new method for emotion classification that relies on features extracted from those active brain areas that are most likely related to emotions. To this end, we carry out the selection of spatially compact regions of interest that are computed using the brain neural activity reconstructed from Electroencephalography data. Throughout this study, we consider three representative feature extraction methods widely applied to emotion detection tasks, including Power spectral density, Wavelet, and Hjorth parameters. Further feature selection is carried out using principal component analysis. For validation purpose, these features are used to feed a support vector machine classifier that is trained under the leave-one-out cross-validation strategy. Obtained results on real affective data show that incorporation of the proposed training method in combination with the enhanced spatial resolution provided by the source estimation allows improving the performed accuracy of discrimination in most of the considered emotions, namely: dominance, valence, and liking. PMID:27489541
High density event-related potential data acquisition in cognitive neuroscience.
Slotnick, Scott D
2010-04-16
Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.
Wideband optical sensing using pulse interferometry.
Rosenthal, Amir; Razansky, Daniel; Ntziachristos, Vasilis
2012-08-13
Advances in fabrication of high-finesse optical resonators hold promise for the development of miniaturized, ultra-sensitive, wide-band optical sensors, based on resonance-shift detection. Many potential applications are foreseen for such sensors, among them highly sensitive detection in ultrasound and optoacoustic imaging. Traditionally, sensor interrogation is performed by tuning a narrow linewidth laser to the resonance wavelength. Despite the ubiquity of this method, its use has been mostly limited to lab conditions due to its vulnerability to environmental factors and the difficulty of multiplexing - a key factor in imaging applications. In this paper, we develop a new optical-resonator interrogation scheme based on wideband pulse interferometry, potentially capable of achieving high stability against environmental conditions without compromising sensitivity. Additionally, the method can enable multiplexing several sensors. The unique properties of the pulse-interferometry interrogation approach are studied theoretically and experimentally. Methods for noise reduction in the proposed scheme are presented and experimentally demonstrated, while the overall performance is validated for broadband optical detection of ultrasonic fields. The achieved sensitivity is equivalent to the theoretical limit of a 6 MHz narrow-line width laser, which is 40 times higher than what can be usually achieved by incoherent interferometry for the same optical resonator.
Ahlstedt, Jonas; Tran, Thuy A.; Strand, Sven-Erik; Gram, Magnus; Åkerström, Bo
2015-01-01
Peptide receptor radionuclide therapy (PRRT) has been in clinical use for 15 years to treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion of positively charged amino acids is the standard method of kidney protection. Other methods, such as administration of amifostine, are still under evaluation and show promising results. α1-microglobulin (A1M) is a reductase and radical scavenging protein ubiquitously present in plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It has recently been shown in mice that exogenously infused A1M and the somatostatin analogue octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this review we describe the current situation of kidney protection during PRRT, discuss the necessity and implications of more precise dosimetry and present A1M as a new, potential candidate for renal protection during PRRT and related targeted radionuclide therapies. PMID:26694383
Enhanced angular overlap model for nonmetallic f -electron systems
NASA Astrophysics Data System (ADS)
Gajek, Z.
2005-07-01
An efficient method of interpretation of the crystal field effect in nonmetallic f -electron systems, the enhanced angular overlap model (EAOM), is presented. The method is established on the ground of perturbation expansion of the effective Hamiltonian for localized electrons and first-principles calculations related to available experimental data. The series of actinide compounds AO2 , oxychalcogenides AOX , and dichalcogenides UX2 where X=S ,Se,Te and A=U ,Np serve as probes of the effectiveness of the proposed method. An idea is to enhance the usual angular overlap model with ab initio calculations of those contributions to the crystal field potential, which cannot be represented by the usual angular overlap model (AOM). The enhancement leads to an improved fitting and makes the approach intrinsically coherent. In addition, the ab initio calculations of the main, AOM-consistent part of the crystal field potential allows one to fix the material-specific relations for the EAOM parameters in the effective Hamiltonian. Consequently, the electronic structure interpretation based on EAOM can be extended to systems of the lowest point symmetries or/and deficient experimental data. Several examples illustrating the promising capabilities of EAOM are given.
Behavior Correlates of Post-Stroke Disability Using Data Mining and Infographics
Yoon, Sunmoo; Gutierrez, Jose
2015-01-01
Purpose Disability is a potential risk for stroke survivors. This study aims to identify disability risk factors associated with stroke and their relative importance and relationships from a national behavioral risk factor dataset. Methods Data of post-stroke individuals in the U.S (n=19,603) including 397 variables were extracted from a publically available national dataset and analyzed. Data mining algorithms including C4.5 and linear regression with M5s methods were applied to build association models for post-stroke disability using Weka software. The relative importance and relationship of 70 variables associated with disability were presented in infographics for clinicians to understand easily. Results Fifty-five percent of post-stroke patients experience disability. Exercise, employment and satisfaction of life were relatively important factors associated with disability among stroke patients. Modifiable behavior factors strongly associated with disability include exercise (OR: 0.46, P<0.01) and good rest (OR 0.37, P<0.01). Conclusions Data mining is promising to discover factors associated with post-stroke disability from a large population dataset. The findings can be potentially valuable for establishing the priorities for clinicians and researchers and for stroke patient education. The methods may generalize to other health conditions. PMID:26835413
Computational Methods for MOF/Polymer Membranes.
Erucar, Ilknur; Keskin, Seda
2016-04-01
Metal-organic framework (MOF)/polymer mixed matrix membranes (MMMs) have received significant interest in the last decade. MOFs are incorporated into polymers to make MMMs that exhibit improved gas permeability and selectivity compared with pure polymer membranes. The fundamental challenge in this area is to choose the appropriate MOF/polymer combinations for a gas separation of interest. Even if a single polymer is considered, there are thousands of MOFs that could potentially be used as fillers in MMMs. As a result, there has been a large demand for computational studies that can accurately predict the gas separation performance of MOF/polymer MMMs prior to experiments. We have developed computational approaches to assess gas separation potentials of MOF/polymer MMMs and used them to identify the most promising MOF/polymer pairs. In this Personal Account, we aim to provide a critical overview of current computational methods for modeling MOF/polymer MMMs. We give our perspective on the background, successes, and failures that led to developments in this area and discuss the opportunities and challenges of using computational methods for MOF/polymer MMMs. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vossen, Catherine J.; Vossen, Helen G. M.; Marcus, Marco A. E.; van Os, Jim; Lousberg, Richel
2013-01-01
In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing. PMID:24224018
Phase estimation for magnetic resonance imaging near metal prostheses
NASA Astrophysics Data System (ADS)
Bones, Philip J.; King, Laura J.; Millane, Rick P.
2015-09-01
Magnetic resonance imaging (MRI) has the potential to be the best technique for assessing complications in patients with metal orthopedic implants. The presence of fat can obscure definition of the other soft tissues in MRI images, so fat suppression is often required. However, the performance of existing fat suppression techniques is inadequate near implants, due to very significant magnetic field perturbations induced by the metal. The three-point Dixon technique is potentially a method of choice as it is able to suppress fat in the presence of inhomogeneities, but the success of this technique depends on being able to accurately calculate the phase shift. This is generally done using phase unwrapping and/or iterative reconstruction algorithms. Most current phase unwrapping techniques assume that the phase function is slowly varying and phase differences between adjacent points are limited to less than π radians in magnitude. Much greater phase differences can be present near metal implants. We present our experience with two phase unwrapping techniques which have been adapted to use prior knowledge of the implant. The first method identifies phase discontinuities before recovering the phase along paths through the image. The second method employs a transform to find the least squares solution to the unwrapped phase. Simulation results indicate that the methods show promise.
Zhang, Lei; Li, Yin; Guo, Xinfeng; May, Brian H.; Xue, Charlie C. L.; Yang, Lihong; Liu, Xusheng
2014-01-01
Objectives. To apply modern text-mining methods to identify candidate herbs and formulae for the treatment of diabetic nephropathy. Methods. The method we developed includes three steps: (1) identification of candidate ancient terms; (2) systemic search and assessment of medical records written in classical Chinese; (3) preliminary evaluation of the effect and safety of candidates. Results. Ancient terms Xia Xiao, Shen Xiao, and Xiao Shen were determined as the most likely to correspond with diabetic nephropathy and used in text mining. A total of 80 Chinese formulae for treating conditions congruent with diabetic nephropathy recorded in medical books from Tang Dynasty to Qing Dynasty were collected. Sao si tang (also called Reeling Silk Decoction) was chosen to show the process of preliminary evaluation of the candidates. It had promising potential for development as new agent for the treatment of diabetic nephropathy. However, further investigations about the safety to patients with renal insufficiency are still needed. Conclusions. The methods developed in this study offer a targeted approach to identifying traditional herbs and/or formulae as candidates for further investigation in the search for new drugs for modern disease. However, more effort is still required to improve our techniques, especially with regard to compound formulae. PMID:24744808
All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer
Sturm, C.; Tanese, D.; Nguyen, H.S.; Flayac, H.; Galopin, E.; Lemaître, A.; Sagnes, I.; Solnyshkov, D.; Amo, A.; Malpuech, G.; Bloch, J.
2014-01-01
Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields. PMID:24513781
Fibre Optic Sensors for Selected Wastewater Characteristics
Chong, Su Sin; Abdul Aziz, A. R.; Harun, Sulaiman W.
2013-01-01
Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising. PMID:23881131
PET/MRI for Neurological Applications
Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R.
2013-01-01
PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MR data acquisition allows the spatial and temporal correlation of the measured signals, opening up opportunities impossible to realize using stand-alone instruments. This paper reviews the methodological improvements and potential neurological and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MR data to improve the PET data quantification. On the MR side, we present how improved PET quantification could be used to validate a number of MR techniques. Finally, we describe promising research, translational and clinical applications that could benefit from these advanced tools. PMID:23143086
Mechanism, synthesis and modification of nano zerovalent iron in water treatment
NASA Astrophysics Data System (ADS)
Lu, Hai-Jiao; Wang, Jing-Kang; Ferguson, Steven; Wang, Ting; Bao, Ying; Hao, Hong-Xun
2016-05-01
Owing to its strong reducing ability, high reaction activity, excellent adsorption properties, good mobility and relatively low cost, nano zerovalent iron (nZVI) is an extremely promising nanomaterial for use in water treatment. In this paper, the working mechanisms of nZVI in the degradation of various contaminants in water are outlined and discussed. Synthesis methods and their respective advantages and disadvantages are discussed in detail. Furthermore, a variety of modification methods which have been developed to improve the mobility and stability of nZVI as well as to facilitate the separation of nZVI from degraded systems are also summarized and discussed. Numerous studies indicate that nZVI has considerable potential to become an efficient, versatile and practical approach for large-scale water treatment.
Gene therapy in dentistry: tool of genetic engineering. Revisited.
Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish
2015-03-01
Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Application of photodynamic therapy in dentistry – literature review].
Oruba, Zuzanna; Chomyszyn-Gajewska, Maria
Photodynamic therapy (PDT) is based on the principle that the target cells are destroyed by means of toxic reactive oxygen species generated upon the interaction of a photosensitizer, light and oxygen. This method is nowadays widely applied in various branches of medicine, mainly in oncology and dermatology. It is also applied in dentistry in the treatment of oral potentially malignant disorders (like lichen planus or leukoplakia) and infectious conditions (periodontitis, herpetic cheilitis, root canal disinfection). The application of the photodynamic therapy in the abovementioned indications is worth attention, as the method is noninvasive, painless, and the results of the published studies seem promising. The present article aims at presenting the principle of the photodynamic therapy and, based on the literature, the possibilities and results of its application in dentistry.
NASA Astrophysics Data System (ADS)
Su, Yang; Zhou, Hua; Wang, Yiming; Shen, Huiping
2018-03-01
In this paper we propose a new design to demodulate polarization properties induced by pressure using a PBS (polarization beam splitter), which is different with traditional polarimeter based on the 4-detector polarization measurement approach. The theoretical model is established by Muller matrix method. Experimental results confirm the validity of our analysis. Proportional relationships and linear fit are found between output signal and applied pressure. A maximum sensitivity of 0.092182 mv/mv is experimentally achieved and the frequency response exhibits a <0.14 dB variation across the measurement bandwidth. The sensitivity dependence on incident SOP (state of polarization) is investigated. The simple and all-fiber configuration, low-cost and high speed potential make it promising for fiber-based dynamic pressure sensing.
Probability Based hERG Blocker Classifiers.
Wang, Zhi; Mussa, Hamse Y; Lowe, Robert; Glen, Robert C; Yan, Aixia
2012-09-01
The US Food and Drug Administration (FDA) require in vitro human ether-a-go-go related (hERG) ion channel affinity tests for all drug candidates prior to clinical trials. In this study, probabilistic-based methods were employed to develop prediction models on hERG inhibition prediction, which are different from traditional QSAR models that are mainly based on supervised 'hard point' (HP) classification approaches giving 'yes/no' answers. The obtained models can 'ascertain' whether or not a given set of compounds can block hERG ion channels. The results presented indicate that the proposed probabilistic-based method can be a valuable tool for ranking compounds with respect to their potential cardio-toxicity and will be promising for other toxic property predictions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aircraft engine pollution reduction.
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1972-01-01
The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.
Structural and optical properties of Nd- and Tb-doped BaY 2F 8
NASA Astrophysics Data System (ADS)
Valerio, Mário E. G.; Ribeiro, Viviane G.; de Mello, Ana C. S.; dos Santos, Marcos A. C.; Baldochi, Sonia L.; Mazzocchi, Vera L.; Parente, Carlos B. R.; Jackson, Robert A.; Amaral, Jomar B.
2007-09-01
In the present work, we report the optical properties of rare-earth doped BaY2F8 and its potential use as a scintillator in radiation detection. The samples were synthesized and grown by the zone melting method under a HF flow. X-ray powder diffraction was performed and quantitative phase analysis was done using the Rietveld method. Emission and excitation spectra of the doped samples were measured at room temperature. The identification of the transitions was done comparing the excitation and emission peaks with the results obtained from computer modelling. The scintillator properties of the pure and doped samples were checked by measuring the radioluminescence of the sample when excited with different types of radiation, revealing that these materials are promising radiation detectors.
Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules
NASA Astrophysics Data System (ADS)
Ariyasu, Kazumasa; Ishii, Atsuhiro; Umemoto, Taiga; Terakawa, Mitsuhiro
2016-08-01
The controlled release of encapsulated molecules from a microcapsule is a promising method of targeted drug delivery. Laser-triggered methods for the release of encapsulated molecules have the advantage of spatial and temporal controllability. In this study, we demonstrated the release of encapsulated molecules from biodegradable polymer-based microcapsules using near-infrared femtosecond laser pulses. The polylactic-co-glycolic acid microcapsules encapsulating fluorescein isothiocyanate-dextran molecules were fabricated using a dual-coaxial nozzle system. Irradiation of femtosecond laser pulses enhanced the release of the molecules from the microcapsules, which was accompanied by a decrease in the residual ratio of the microcapsules. The laser-induced modification of the surface of the shell of the microcapsules indicated the potential for sustained release as well as burst release.
Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires
NASA Astrophysics Data System (ADS)
Parameswaran, Ramya; Carvalho-de-Souza, João L.; Jiang, Yuanwen; Burke, Michael J.; Zimmerman, John F.; Koehler, Kelliann; Phillips, Andrew W.; Yi, Jaeseok; Adams, Erin J.; Bezanilla, Francisco; Tian, Bozhi
2018-02-01
Optical methods for modulating cellular behaviour are promising for both fundamental and clinical applications. However, most available methods are either mechanically invasive, require genetic manipulation of target cells or cannot provide subcellular specificity. Here, we address all these issues by showing optical neuromodulation with free-standing coaxial p-type/intrinsic/n-type silicon nanowires. We reveal the presence of atomic gold on the nanowire surfaces, likely due to gold diffusion during the material growth. To evaluate how surface gold impacts the photoelectrochemical properties of single nanowires, we used modified quartz pipettes from a patch clamp and recorded sustained cathodic photocurrents from single nanowires. We show that these currents can elicit action potentials in primary rat dorsal root ganglion neurons through a primarily atomic gold-enhanced photoelectrochemical process.
NASA Astrophysics Data System (ADS)
Schaefli, B.; Maraun, D.; Holschneider, M.
2007-12-01
Extreme hydrological events are often triggered by exceptional co-variations of the relevant hydrometeorological processes and in particular by exceptional co-oscillations at various temporal scales. Wavelet and cross wavelet spectral analysis offers promising time-scale resolved analysis methods to detect and analyze such exceptional co-oscillations. This paper presents the state-of-the-art methods of wavelet spectral analysis, discusses related subtleties, potential pitfalls and recently developed solutions to overcome them and shows how wavelet spectral analysis, if combined to a rigorous significance test, can lead to reliable new insights into hydrometeorological processes for real-world applications. The presented methods are applied to detect potentially flood triggering situations in a high Alpine catchment for which a recent re-estimation of design floods encountered significant problems simulating the observed high flows. For this case study, wavelet spectral analysis of precipitation, temperature and discharge offers a powerful tool to help detecting potentially flood producing meteorological situations and to distinguish between different types of floods with respect to the prevailing critical hydrometeorological conditions. This opens very new perspectives for the analysis of model performances focusing on the occurrence and non-occurrence of different types of high flow events. Based on the obtained results, the paper summarizes important recommendations for future applications of wavelet spectral analysis in hydrology.
Vasile, Cornelia; Sivertsvik, Morten; Miteluţ, Amalia Carmen; Brebu, Mihai Adrian; Stoleru, Elena; Rosnes, Jan Thomas; Tănase, Elisabeta Elena; Khan, Waqas; Pamfil, Daniela; Cornea, Călina Petruţa; Irimia, Anamaria; Popa, Mona Elena
2017-01-07
The antifungal, antibacterial, and antioxidant activity of four commercial essential oils (EOs) (thyme, clove, rosemary, and tea tree) from Romanian production were studied in order to assess them as bioactive compounds for active food packaging applications. The chemical composition of the oils was determined with the Folin-Ciocâlteu method and gas chromatography coupled with mass spectrometry and flame ionization detectors, and it was found that they respect the AFNOR/ISO standard limits. The EOs were tested against three food spoilage fungi- Fusarium graminearum , Penicillium corylophilum, and Aspergillus brasiliensis -and three potential pathogenic food bacteria- Staphylococcus aureus , Escherichia coli, and Listeria monocytogenes -using the disc diffusion method. It was found that the EOs of thyme, clove, and tea tree can be used as antimicrobial agents against the tested fungi and bacteria, thyme having the highest inhibitory effect. Concerning antioxidant activity determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS) methods, it has been established that the clove oil exhibits the highest activity because of its high phenolic content. Promising results were obtained by their incorporation into chitosan emulsions and films, which show potential for food packaging. Therefore, these essential oils could be suitable alternatives to chemical additives, satisfying the consumer demand for naturally preserved food products ensuring its safety.
Vasile, Cornelia; Sivertsvik, Morten; Miteluţ, Amalia Carmen; Brebu, Mihai Adrian; Stoleru, Elena; Rosnes, Jan Thomas; Tănase, Elisabeta Elena; Khan, Waqas; Pamfil, Daniela; Cornea, Călina Petruţa; Irimia, Anamaria; Popa, Mona Elena
2017-01-01
The antifungal, antibacterial, and antioxidant activity of four commercial essential oils (EOs) (thyme, clove, rosemary, and tea tree) from Romanian production were studied in order to assess them as bioactive compounds for active food packaging applications. The chemical composition of the oils was determined with the Folin–Ciocâlteu method and gas chromatography coupled with mass spectrometry and flame ionization detectors, and it was found that they respect the AFNOR/ISO standard limits. The EOs were tested against three food spoilage fungi—Fusarium graminearum, Penicillium corylophilum, and Aspergillus brasiliensis—and three potential pathogenic food bacteria—Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes—using the disc diffusion method. It was found that the EOs of thyme, clove, and tea tree can be used as antimicrobial agents against the tested fungi and bacteria, thyme having the highest inhibitory effect. Concerning antioxidant activity determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS) methods, it has been established that the clove oil exhibits the highest activity because of its high phenolic content. Promising results were obtained by their incorporation into chitosan emulsions and films, which show potential for food packaging. Therefore, these essential oils could be suitable alternatives to chemical additives, satisfying the consumer demand for naturally preserved food products ensuring its safety. PMID:28772407
Chambers, David W
2006-11-01
This article explores the twin issues of whether organizations can act as ethical agents and what it means to exert moral influence over others. A discursive perspective is advanced that characterizes ethics as the action of communities based on promises. The received view of ethics as either the universal principles or individual responsibility is criticized as inadequate. Moral influence within community is considered under the various headings of democracy, office, brotherhood, agency, witness, and promise making. Moral influence among communities can include the damaging methods of "the superior position," coercion and misrepresentation, and appeal to third parties and the sound methods of rhetoric and promise making.
The New Gold Rush: Establishing Effective Online Learning Policies
ERIC Educational Resources Information Center
Serim, Ferdi
2007-01-01
Online learning is the fastest growing segment of educational technology, for both the best and worst of reasons. The promise of delivering student-centered education, anytime, anywhere, at any pace provides the best reason. Online learning certainly has the potential to finally deliver on these promises. The temptation to replace highly skilled…
USDA-ARS?s Scientific Manuscript database
The promise of genomic selection is that genetic potential can be accurately predicted from genotypes. Simple deoxyribonucleic acid (DNA) tests might replace low accuracy predictions based on performance and pedigree for expensive or lowly heritable measures of puberty and fertility. The promise i...
Ukpolo, Francis; Ward, Edward; Wilson, Melissa L
2016-01-01
Background Scarce information about clinical research, in particular clinical trials, is among the top reasons why potential participants do not take part in clinical studies. Without volunteers, on the other hand, clinical research and the development of novel approaches to preventing, diagnosing, and treating disease are impossible. Promising digital options such as social media have the potential to work alongside traditional methods to boost the promotion of clinical research. However, investigators and research institutions are challenged to leverage these innovations while saving time and resources. Objective To develop and test the efficiency of a Web-based tool that automates the generation and distribution of user-friendly social media messages about clinical trials. Methods Trial Promoter is developed in Ruby on Rails, HTML, cascading style sheet (CSS), and JavaScript. In order to test the tool and the correctness of the generated messages, clinical trials (n=46) were randomized into social media messages and distributed via the microblogging social media platform Twitter and the social network Facebook. The percent correct was calculated to determine the probability with which Trial Promoter generates accurate messages. Results During a 10-week testing phase, Trial Promoter automatically generated and published 525 user-friendly social media messages on Twitter and Facebook. On average, Trial Promoter correctly used the message templates and substituted the message parameters (text, URLs, and disease hashtags) 97.7% of the time (1563/1600). Conclusions Trial Promoter may serve as a promising tool to render clinical trial promotion more efficient while requiring limited resources. It supports the distribution of any research or other types of content. The Trial Promoter code and installation instructions are freely available online. PMID:27357424
Potential energy surfaces of Polonium isotopes
NASA Astrophysics Data System (ADS)
Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.
2015-11-01
The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.
Toward more versatile and intuitive cortical brain-machine interfaces.
Andersen, Richard A; Kellis, Spencer; Klaes, Christian; Aflalo, Tyson
2014-09-22
Brain-machine interfaces have great potential for the development of neuroprosthetic applications to assist patients suffering from brain injury or neurodegenerative disease. One type of brain-machine interface is a cortical motor prosthetic, which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using: recordings from cortical areas outside motor cortex; local field potentials as a source of recorded signals; somatosensory feedback for more dexterous control of robotics; and new decoding methods that work in concert to form an ecology of decode algorithms. These new advances promise to greatly accelerate the applicability and ease of operation of motor prosthetics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potential Applications of Immobilized β-Galactosidase in Food Processing Industries
Panesar, Parmjit S.; Kumari, Shweta; Panesar, Reeba
2010-01-01
The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry. PMID:21234407
Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.
Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok
2014-10-01
To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.
Active-learning strategies in computer-assisted drug discovery.
Reker, Daniel; Schneider, Gisbert
2015-04-01
High-throughput compound screening is time and resource consuming, and considerable effort is invested into screening compound libraries, profiling, and selecting the most promising candidates for further testing. Active-learning methods assist the selection process by focusing on areas of chemical space that have the greatest chance of success while considering structural novelty. The core feature of these algorithms is their ability to adapt the structure-activity landscapes through feedback. Instead of full-deck screening, only focused subsets of compounds are tested, and the experimental readout is used to refine molecule selection for subsequent screening cycles. Once implemented, these techniques have the potential to reduce costs and save precious materials. Here, we provide a comprehensive overview of the various computational active-learning approaches and outline their potential for drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simpson, John; Raith, Andrea; Rouse, Paul; Ehrgott, Matthias
2017-10-09
Purpose The operations research method of data envelopment analysis (DEA) shows promise for assessing radiotherapy treatment plan quality. The purpose of this paper is to consider the technical requirements for using DEA for plan assessment. Design/methodology/approach In total, 41 prostate treatment plans were retrospectively analysed using the DEA method. The authors investigate the impact of DEA weight restrictions with reference to the ability to differentiate plan performance at a level of clinical significance. Patient geometry influences plan quality and the authors compare differing approaches for managing patient geometry within the DEA method. Findings The input-oriented DEA method is the method of choice when performing plan analysis using the key undesirable plan metrics as the DEA inputs. When considering multiple inputs, it is necessary to constrain the DEA input weights in order to identify potential plan improvements at a level of clinical significance. All tested approaches for the consideration of patient geometry yielded consistent results. Research limitations/implications This work is based on prostate plans and individual recommendations would therefore need to be validated for other treatment sites. Notwithstanding, the method that requires both optimised DEA weights according to clinical significance and appropriate accounting for patient geometric factors is universally applicable. Practical implications DEA can potentially be used during treatment plan development to guide the planning process or alternatively used retrospectively for treatment plan quality audit. Social implications DEA is independent of the planning system platform and therefore has the potential to be used for multi-institutional quality audit. Originality/value To the authors' knowledge, this is the first published examination of the optimal approach in the use of DEA for radiotherapy treatment plan assessment.
Computed tomography of x-ray images using neural networks
NASA Astrophysics Data System (ADS)
Allred, Lloyd G.; Jones, Martin H.; Sheats, Matthew J.; Davis, Anthony W.
2000-03-01
Traditional CT reconstruction is done using the technique of Filtered Backprojection. While this technique is widely employed in industrial and medical applications, it is not generally understood that FB has a fundamental flaw. Gibbs phenomena states any Fourier reconstruction will produce errors in the vicinity of all discontinuities, and that the error will equal 28 percent of the discontinuity. A number of years back, one of the authors proposed a biological perception model whereby biological neural networks perceive 3D images from stereo vision. The perception model proports an internal hard-wired neural network which emulates the external physical process. A process is repeated whereby erroneous unknown internal values are used to generate an emulated signal with is compared to external sensed data, generating an error signal. Feedback from the error signal is then sued to update the erroneous internal values. The process is repeated until the error signal no longer decrease. It was soon realized that the same method could be used to obtain CT from x-rays without having to do Fourier transforms. Neural networks have the additional potential for handling non-linearities and missing data. The technique has been applied to some coral images, collected at the Los Alamos high-energy x-ray facility. The initial images show considerable promise, in some instances showing more detail than the FB images obtained from the same data. Although routine production using this new method would require a massively parallel computer, the method shows promise, especially where refined detail is required.
[Testicular tissue vitrification: evolution or revolution?].
Wyns, C; Abu-Ghannam, G; Poels, J
2013-09-01
Preservation of reproductive health is a major concern for patient long-term quality of life. While sperm freezing has proven to be effective to preserve fertility after puberty, cryopreservation of immature testicular tissue (ITT) is emerging as a promising approach for fertility preservation in young boys. Slow-freezing (SF) is the conventional method used to preserve ITT and has resulted in the birth of mice offspring. In humans, methods to preserve ITT are still at the research stage. Controlled SF using dimethyl sulfoxide showed preservation of proliferative spermatogonia after thawing in a xenotransplantation model used to evaluate the efficiency of freezing and thawing procedures. However, spermatogonial recovery was low and normal differentiation could not be achieved. Both freezing/thawing and the environment of the xenotransplantation model may be implicated. Indeed, with SF, ice crystal formation could damage tissue and cells. For this reason, vitrification, leading to solidification of a liquid without crystallization, may be a promising alternative. ITT vitrification has been investigated in different species and shown spermatogonial survival and differentiation to the round or elongated spermatids stage. Offspring were also recently obtained after vitrification and allotransplantation in avians, confirming the potential of vitrification for fertility preservation. In humans, vitrification appears to be as efficient as SF in terms of spermatogonial survival and initiation of differentiation after xenotransplantation. However, before validation of such fertility preservation methods, completion of normal spermatogenesis and the fertilization capacity of sperm retrieved from cryopreserved and transplanted tissue should be fully investigated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Hunger, Sebastian; Karrasch, Pierre; Wessollek, Christine
2016-10-01
The European Water Framework Directive (Directive 2000/60/EC) is a mandatory agreement that guides the member states of the European Union in the field of water policy to fulfill the requirements for reaching the aim of the good ecological status of water bodies. In the last years several workflows and methods were developed to determine and evaluate the characteristics and the status of the water bodies. Due to their area measurements remote sensing methods are a promising approach to constitute a substantial additional value. With increasing availability of optical and radar remote sensing data the development of new methods to extract information from both types of remote sensing data is still in progress. Since most limitations of these data sets do not agree the fusion of both data sets to gain data with higher spectral resolution features the potential to obtain additional information in contrast to the separate processing of the data. Based thereupon this study shall research the potential of multispectral and radar remote sensing data and the potential of their fusion for the assessment of the parameters of water body structure. Due to the medium spatial resolution of the freely available multispectral Sentinel-2 data sets especially the surroundings of the water bodies and their land use are part of this study. SAR data is provided by the Sentinel-1 satellite. Different image fusion methods are tested and the combined products of both data sets are evaluated afterwards. The evaluation of the single data sets and the fused data sets is performed by means of a maximum-likelihood classification and several statistical measurements. The results indicate that the combined use of different remote sensing data sets can have an added value.
Optical mapping of optogenetically shaped cardiac action potentials.
Park, Sarah A; Lee, Shin-Rong; Tung, Leslie; Yue, David T
2014-08-19
Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation.
Optical mapping of optogenetically shaped cardiac action potentials
Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.
2014-01-01
Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113
Cogo-Moreira, Hugo; Brandão de Ávila, Clara Regina; Ploubidis, George B; Mari, Jair de Jesus
2013-01-01
Difficulties in word-level reading skills are prevalent in Brazilian schools and may deter children from gaining the knowledge obtained through reading and academic achievement. Music education has emerged as a potential method to improve reading skills because due to a common neurobiological substratum. To evaluate the effectiveness of music education for the improvement of reading skills and academic achievement among children (eight to 10 years of age) with reading difficulties. 235 children with reading difficulties in 10 schools participated in a five-month, randomized clinical trial in cluster (RCT) in an impoverished zone within the city of São Paulo to test the effects of music education intervention while assessing reading skills and academic achievement during the school year. Five schools were chosen randomly to incorporate music classes (n = 114), and five served as controls (n = 121). Two different methods of analysis were used to evaluate the effectiveness of the intervention: The standard method was intention-to-treat (ITT), and the other was the Complier Average Causal Effect (CACE) estimation method, which took compliance status into account. The ITT analyses were not very promising; only one marginal effect existed for the rate of correct real words read per minute. Indeed, considering ITT, improvements were observed in the secondary outcomes (slope of Portuguese = 0.21 [p<0.001] and slope of math = 0.25 [p<0.001]). As for CACE estimation (i.e., complier children versus non-complier children), more promising effects were observed in terms of the rate of correct words read per minute [β = 13.98, p<0.001] and phonological awareness [β = 19.72, p<0.001] as well as secondary outcomes (academic achievement in Portuguese [β = 0.77, p<0.0001] and math [β = 0.49, p<0.001] throughout the school year). The results may be seen as promising, but they are not, in themselves, enough to make music lessons as public policy.
Climate change and eHealth: a promising strategy for health sector mitigation and adaptation
Holmner, Åsa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria
2012-01-01
Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT)’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398
Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.
Holmner, Asa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria
2012-01-01
Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.
Machine learning for science: state of the art and future prospects.
Mjolsness, E; DeCoste, D
2001-09-14
Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.
ERIC Educational Resources Information Center
Whitesell, Nancy Rumbaugh; Sarche, Michelle; Keane, Ellen; Mousseau, Alicia C.; Kaufman, Carol E.
2018-01-01
Evidence-based interventions hold promise for reducing gaps in health equity across diverse populations, but evidence about effectiveness within these populations lags behind the mainstream, often leaving opportunities to fulfill this promise unrealized. Mismatch between standard intervention outcomes research methods and the cultural and…
Henry, J L; Kangas, M; Wilson, P H
2001-01-01
The development of valid and reliable methods for assessing psychological aspects of tinnitus continues to be an important goal of research. Such assessment methods are potentially useful in clinical and research contexts. Existing self-report measures have a number of disadvantages, and so a need exists to develop a form of assessment that is less open to response bias and the effects of experimental demand. A new approach, the Psychological Impact of Tinnitus Interview (PITI), is described, and some preliminary data on its psychometric properties are reported. The results suggest that the PITI is capable of providing a measure of separate, relatively independent dimensions of tinnitus-related distress--namely, sleep difficulties, general distress, mood, suicidal aspects, and avoidance of or interference with normal activities. This method may lead to more refined measures of these dimensions of tinnitus-related psychological difficulties. The PITI should be regarded as a promising assessment tool for use in experimental settings, pending further work on its content, coding method, and administration.
Artificial neural network methods in quantum mechanics
NASA Astrophysics Data System (ADS)
Lagaris, I. E.; Likas, A.; Fotiadis, D. I.
1997-08-01
In a previous article we have shown how one can employ Artificial Neural Networks (ANNs) in order to solve non-homogeneous ordinary and partial differential equations. In the present work we consider the solution of eigenvalue problems for differential and integrodifferential operators, using ANNs. We start by considering the Schrödinger equation for the Morse potential that has an analytically known solution, to test the accuracy of the method. We then proceed with the Schrödinger and the Dirac equations for a muonic atom, as well as with a nonlocal Schrödinger integrodifferential equation that models the n + α system in the framework of the resonating group method. In two dimensions we consider the well-studied Henon-Heiles Hamiltonian and in three dimensions the model problem of three coupled anharmonic oscillators. The method in all of the treated cases proved to be highly accurate, robust and efficient. Hence it is a promising tool for tackling problems of higher complexity and dimensionality.
Conventional and dense gas techniques for the production of liposomes: a review.
Meure, Louise A; Foster, Neil R; Dehghani, Fariba
2008-01-01
The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing.
Quantitative characterization of genetic parts and circuits for plant synthetic biology.
Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok
2016-01-01
Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.
Calculation of protein-ligand binding affinities.
Gilson, Michael K; Zhou, Huan-Xiang
2007-01-01
Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.
Wavelet images and Chou's pseudo amino acid composition for protein classification.
Nanni, Loris; Brahnam, Sheryl; Lumini, Alessandra
2012-08-01
The last decade has seen an explosion in the collection of protein data. To actualize the potential offered by this wealth of data, it is important to develop machine systems capable of classifying and extracting features from proteins. Reliable machine systems for protein classification offer many benefits, including the promise of finding novel drugs and vaccines. In developing our system, we analyze and compare several feature extraction methods used in protein classification that are based on the calculation of texture descriptors starting from a wavelet representation of the protein. We then feed these texture-based representations of the protein into an Adaboost ensemble of neural network or a support vector machine classifier. In addition, we perform experiments that combine our feature extraction methods with a standard method that is based on the Chou's pseudo amino acid composition. Using several datasets, we show that our best approach outperforms standard methods. The Matlab code of the proposed protein descriptors is available at http://bias.csr.unibo.it/nanni/wave.rar .
Wehrens, Rik
2015-09-01
This paper explores the potential and relevance of an innovative sociological research method known as the Imitation Game for research in health care. Whilst this method and its potential have until recently only been explored within sociology, there are many interesting and promising facets that may render this approach fruitful within the health care field, most notably to questions about the experiential knowledge or 'expertise' of chronically ill patients (and the extent to which different health care professionals are able to understand this experiential knowledge). The Imitation Game can be especially useful because it provides a way to map this experiential knowledge more systematically, without falling in the dual trap of either over-relying on in-depth, but highly specific phenomenological 'insider'-approaches that are hard to generalize, or, alternatively, problematically reducing the rich life-worlds of patients to a set of indicators in a questionnaire. The main focus of this paper is theoretical and conceptual: explaining the Imitation Game method, discussing its usefulness in the health care domain, and exploring the ways in which the approach can be utilized for chronic illness care. The paper presents both a conceptual and empirical exploration of how the Imitation Game method and its underlying theoretical concepts of 'contributory expertise' and 'interactional expertise' can be transferred from the sociological realm to the field of health care, what kinds of insights can be gained from the method, which methodological issues it may raise, and what potentially fruitful research routes can be explored. I argue that the Imitation Game can be thought of as a 'social learning experiment' that simultaneously enables the participants to learn from each other's perspectives, allows researchers to explore exciting new possibilities, and also offers the tools to intervene in the practice that is being studied.
Ethnography in community psychology: promises and tensions.
Case, Andrew D; Todd, Nathan R; Kral, Michael J
2014-09-01
Community psychology recognizes the need for research methods that illuminate context, culture, diversity, and process. One such method, ethnography, has crossed into multiple disciplines from anthropology, and indeed, community psychologists are becoming community ethnographers. Ethnographic work stands at the intersection of bridging universal questions with the particularities of people and groups bounded in time, geographic location, and social location. Ethnography is thus historical and deeply contextual, enabling a rich, in-depth understanding of communities that is aligned with the values and goals of community psychology. The purpose of this paper is to elucidate the potential of ethnography for community psychology and to encourage its use within the field as a method to capture culture and context, to document process, and to reveal how social change and action occur within and through communities. We discuss the method of ethnography, draw connections to community psychology values and goals, and identify tensions from our experiences doing ethnography. Overall, we assert that ethnography is a method that resonates with community psychology and present this paper as a resource for those interested in using this method in their research or community activism.
Wei, Ting-Yen; Yen, Tzung-Hai; Cheng, Chao-Min
2018-01-01
Acute pesticide intoxication is a common method of suicide globally. This article reviews current diagnostic methods and makes suggestions for future development. In the case of paraquat intoxication, it is characterized by multi-organ failure, causing substantial mortality and morbidity. Early diagnosis may save the life of a paraquat intoxication patient. Conventional paraquat intoxication diagnostic methods, such as symptom review and urine sodium dithionite assay, are time-consuming and impractical in resource-scarce areas where most intoxication cases occur. Several experimental and clinical studies have shown the potential of portable Surface Enhanced Raman Scattering (SERS), paper-based devices, and machine learning for paraquat intoxication diagnosis. Portable SERS and new SERS substrates maintain the sensitivity of SERS while being less costly and more convenient than conventional SERS. Paper-based devices provide the advantages of price and portability. Machine learning algorithms can be implemented as a mobile phone application and facilitate diagnosis in resource-limited areas. Although these methods have not yet met all features of an ideal diagnostic method, the combination and development of these methods offer much promise.
NASA Astrophysics Data System (ADS)
Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping
2017-03-01
Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.
Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping
2017-03-08
Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co 0.54 Fe 0.46 OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co 0.54 Fe 0.46 OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.
Hong, Jingyi; Liu, Yingying; Xiao, Yao; Yang, Xiaofeng; Su, Wenjing; Zhang, Mingzhu; Liao, Yonghong; Kuang, Haixue; Wang, Xiangtao
2017-11-01
Curcumin (CUR) is a promising drug candidate based on its broad bioactivities and good antitumor effect, but the application of CUR is potentially restricted because of its poor solubility and bioavailability. This study aims at developing a simple and effective drug delivery system for CUR to enhance its solubility and bioavailability thus to improve its antitumor efficacy. Curcumin nanosuspensions (CUR-NSps) were prepared by precipitation-ultrasonication method using mPEG2000-DSPE and soybean lecithin as a combined stabilizer. CUR-NSps with a high drug payload of 67.07% were successfully prepared. The resultant CUR-NSps had a mean particle size of 186.33 ± 2.73 nm with a zeta potential of -19.00 ± 1.31 mV. In vitro cytotoxicity assay showed that CUR-NSps exhibited enhanced cytotoxicity compared to CUR solution. The pharmacokinetics results demonstrated that CUR-NSps exhibited a significantly greater AUC 0-24 and prolonged MRT compared to CUR injections after intravenous administration. In the biodistribution study, CUR-NSps demonstrated enhanced biodistribution compared with CUR injections in liver, spleen, kidney, brain, and tumor. The CUR-NSps also showed improved antitumor therapeutic efficacy over the injections (70.34% versus 40.03%, p < 0.01). These results suggest that CUR-NSps might represent a promising drug formulation for intravenous administration of CUR for the treatment of cancer.
PSA and beyond: alternative prostate cancer biomarkers
2016-01-01
Background The use of biomarkers for prostate cancer screening, diagnosis and prognosis has the potential to improve the clinical management of the patients. Owing to inherent limitations of the biomarker prostate-specific antigen (PSA), intensive efforts are currently directed towards a search for alternative prostate cancer biomarkers, particularly those that can predict disease aggressiveness and drive better treatment decisions. Methods A literature search of Medline articles focused on recent and emerging advances in prostate cancer biomarkers was performed. The most promising biomarkers that have the potential to meet the unmet clinical needs in prostate cancer patient management and/or that are clinically implemented were selected. Conclusions With the advent of advanced genomic and proteomic technologies, we have in recent years seen an enormous spurt in prostate cancer biomarker research with several promising alternative biomarkers being discovered that show an improved sensitivity and specificity over PSA. The new generation of biomarkers can be tested via serum, urine, or tissue-based assays that have either received regulatory approval by the US Food and Drug Administration or are available as Clinical Laboratory Improvement Amendments-based laboratory developed tests. Additional emerging novel biomarkers for prostate cancer, including circulating tumor cells, microRNAs and exosomes, are still in their infancy. Together, these biomarkers provide actionable guidance for prostate cancer risk assessment, and are expected to lead to an era of personalized medicine. PMID:26790878
El-Tantawy, Mona E; Shams, Manal M; Afifi, Manal S
2016-01-01
The essential oil from the aerial parts of Nephrolepis exaltata and Nephrolepis cordifolia obtained by hydro-distillation were analyzed by gas chromatography/ mass spectrometry. The essential oils exhibited potential antibacterial and antifungal activities against a majority of the selected microorganisms. NEA oil showed promising cytotoxicity in breast, colon and lung carcinoma cells. The results presented indicate that NEA oil could be useful alternative for the treatment of dermatophytosis. Comparative investigation of hydro-distilled volatile constituents from aerial parts (A) of Nephrolepis exaltata (NE) and Nephrolepis cordifolia (NC) (Family Nephrolepidaceae) was carried out. Gas chromatography/mass spectrometry revealed that oils differ in composition and percentages of components. Oxygenated compounds were dominant in NEA and NCA. 2,4-Hexadien-1-ol (16.1%), nonanal (14.4%), β-Ionone (6.7%) and thymol (2.7%) were predominant in NEA. β-Ionone (8.0%), eugenol (7.2%) and anethol (4.6%) were the main constituents in NCA. Volatile samples were screened for their antibacterial and antifungal activities using agar diffusion method and minimum inhibitory concentrations. The cytotoxic activity was evaluated using viability assay in breast (MCF-7), colon (HCT-116) and lung carcinoma (A-549) cells by the MTT assay. The results revealed that NEA oil exhibited potential antimicrobial activity against most of the tested organisms and showed promising cytotoxicity.
Zhu, Zhehao; Sarker, Pranab; Zhao, Chenqi; Zhou, Lite; Grimm, Ronald L; Huda, Muhammad N; Rao, Pratap M
2017-01-18
Metal oxides with moderate band gaps are desired for efficient production of hydrogen from sunlight and water via photoelectrochemical (PEC) water splitting. Here, we report an α-SnWO 4 photoanode synthesized by hydrothermal conversion of WO 3 films that achieves photon to current conversion at wavelengths up to 700 nm (1.78 eV). This photoanode is promising for overall PEC water-splitting because the flat-band potential and voltage of photocurrent onset are more negative than the potential of hydrogen evolution. Furthermore, the photoanode utilizes a large portion of the solar spectrum. However, the photocurrent density reaches only a small fraction of that which is theoretically possible. Density functional theory based thermodynamic and electronic structure calculations were performed to elucidate the nature and impact of defects in α-SnWO 4 prepared by this synthetic route, from which hole localization at Sn-at-W antisite defects was determined to be a likely cause for the poor photocurrent. Measurements further showed that the photocurrent decreases over time due to surface oxidation, which was suppressed by improving the kinetics of hole transfer at the semiconductor/electrolyte interface. Alternative synthetic methods and the addition of protective coatings and/or oxygen evolution catalysts are suggested to improve the PEC performance and stability of this promising α-SnWO 4 material.
Redler, Gage; Jones, Kevin C.; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C. H.
2018-01-01
Purpose Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. Methods To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Results Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Conclusions Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. PMID:29360151
Improving the prospects of cleavage-based nanopore sequencing engines
NASA Astrophysics Data System (ADS)
Brady, Kyle T.; Reiner, Joseph E.
2015-08-01
Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio Dbulk/Dpore by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.
Preethy, Senthilkumar; Dedeepiya, Vidyasagar Devaprasad; Senthilkumar, Rajappa; Rajmohan, Mathaiyan; Karthick, Ramalingam; Terunuma, Hiroshi; Abraham, Samuel J K
2017-07-04
Immune cell-based therapies are emerging as a promising tool to tackle malignancies, both solid tumors and selected hematological tumors. Vast experiences in literature have documented their safety and added survival benefits when such cell-based therapies are combined with the existing treatment options. Numerous methodologies of processing and in vitro expansion protocols of immune cells, such as the dendritic cells, natural killer (NK) cells, NKT cells, αβ T cells, so-called activated T lymphocytes, γδ T cells, cytotoxic T lymphocytes, and lymphokine-activated killer cells, have been reported for use in cell-based therapies. Among this handful of immune cells of significance, the NK cells stand apart from the rest for not only their direct cytotoxic ability against cancer cells but also their added advantage, which includes their capability of (i) action through both innate and adaptive immune mechanism, (ii) tackling viruses too, giving benefits in conditions where viral infections culminate in cancer, and (iii) destroying cancer stem cells, thereby preventing resistance to chemotherapy and radiotherapy. This review thoroughly analyses the sources of such NK cells, methods for expansion, and the future potentials of taking the in vitro expanded allogeneic NK cells with good cytotoxic ability as a drug for treating cancer and/or viral infection and even as a prophylactic tool for prevention of cancer after initial remission.
Lin, Li; Xu, Xiang; Yin, Jianbo; Sun, Jingyu; Tan, Zhenjun; Koh, Ai Leen; Wang, Huan; Peng, Hailin; Chen, Yulin; Liu, Zhongfan
2016-07-13
Being atomically thin, graphene-based p-n junctions hold great promise for applications in ultrasmall high-efficiency photodetectors. It is well-known that the efficiency of such photodetectors can be improved by optimizing the chemical potential difference of the graphene p-n junction. However, to date, such tuning has been limited to a few hundred millielectronvolts. To improve this critical parameter, here we report that using a temperature-controlled chemical vapor deposition process, we successfully achieved modulation-doped growth of an alternately nitrogen- and boron-doped graphene p-n junction with a tunable chemical potential difference up to 1 eV. Furthermore, such p-n junction structure can be prepared on a large scale with stable, uniform, and substitutional doping and exhibits a single-crystalline nature. This work provides a feasible method for synthesizing low-cost, large-scale, high efficiency graphene p-n junctions, thus facilitating their applications in optoelectronic and energy conversion devices.
Relativistic semiempirical-core-potential calculations in Ca+,Sr+ , and Ba+ ions on Lagrange meshes
NASA Astrophysics Data System (ADS)
Filippin, Livio; Schiffmann, Sacha; Dohet-Eraly, Jérémy; Baye, Daniel; Godefroid, Michel
2018-01-01
Relativistic atomic structure calculations are carried out in alkaline-earth-metal ions using a semiempirical-core-potential approach. The systems are partitioned into frozen-core electrons and an active valence electron. The core orbitals are defined by a Dirac-Hartree-Fock calculation using the grasp2k package. The valence electron is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence electron correlation. The associated equation is solved with the Lagrange-mesh method, which is an approximate variational approach having the form of a mesh calculation because of the use of a Gauss quadrature to calculate matrix elements. Properties involving the low-lying metastable
Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie
2015-12-01
Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (<1.26 mg kg(-1)), with a TF value (the ratio of Cd concentration in stem to root) above 1. Energy dispersive X-ray microanalysis indicated cotton leaf transpiration played a key role in extracting soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.
Double-sided anodic titania nanotube arrays: a lopsided growth process.
Sun, Lidong; Zhang, Sam; Sun, Xiao Wei; Wang, Xiaoyan; Cai, Yanli
2010-12-07
In the past decade, the pore diameter of anodic titania nanotubes was reported to be influenced by a number of factors in organic electrolyte, for example, applied potential, working distance, water content, and temperature. All these were closely related to potential drop in the organic electrolyte. In this work, the essential role of electric field originating from the potential drop was directly revealed for the first time using a simple two-electrode anodizing method. Anodic titania nanotube arrays were grown simultaneously at both sides of a titanium foil, with tube length being longer at the front side than that at the back side. This lopsided growth was attributed to the higher ionic flux induced by electric field at the front side. Accordingly, the nanotube length was further tailored to be comparable at both sides by modulating the electric field. These results are promising to be used in parallel configuration dye-sensitized solar cells, water splitting, and gas sensors, as a result of high surface area produced by the double-sided architecture.
Skorodumova, L O; Muraev, A A; Zakharova, E S; Shepelev, M V; Korobko, I V; Zaderenko, I A; Ivanov, S Iu; Gnuchev, N V; Georgiev, G P; Larin, S S
2012-01-01
Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.
Alternatives to overcoming bacterial resistances: State-of-the-art.
Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M
2016-10-01
Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies promises to be extremely safe and effective. Additionally, vaccination emerges as one of the most promising preventive strategies. All these will be tackled in detail in this review paper. Copyright © 2016. Published by Elsevier GmbH.
Dürsteler, Kenneth M; Berger, Eva-Maria; Strasser, Johannes; Caflisch, Carlo; Mutschler, Jochen; Herdener, Marcus; Vogel, Marc
2015-01-01
Background Cocaine use continues to be a public health problem, yet there is no proven effective pharmacotherapy for cocaine dependence. A promising approach to treating cocaine dependence may be agonist-replacement therapy, which is already used effectively in the treatment of opioid and tobacco dependence. The replacement approach for cocaine dependence posits that administration of a long-acting stimulant medication should normalize the neurochemical and behavioral perturbations resulting from chronic cocaine use. One potential medication to be substituted for cocaine is methylphenidate (MPH), as this stimulant possesses pharmacobehavioral properties similar to those of cocaine. Aim To provide a qualitative review addressing the rationale for the use of MPH as a cocaine substitute and its clinical potential in the treatment of cocaine dependence. Methods We searched MEDLINE for clinical studies using MPH in patients with cocaine abuse/dependence and screened the bibliographies of the articles found for pertinent literature. Results MPH, like cocaine, increases synaptic dopamine by inhibiting dopamine reuptake. The discriminative properties, reinforcing potential, and subjective effects of MPH and cocaine are almost identical and, importantly, MPH has been found to substitute for cocaine in animals and human volunteers under laboratory conditions. When taken orally in therapeutic doses, its abuse liability, however, appears low, which is especially true for extended-release MPH preparations. Though there are promising data in the literature, mainly from case reports and open-label studies, the results of randomized controlled trials have been disappointing so far and do not corroborate the use of MPH as a substitute for cocaine dependence in patients without attention deficit hyperactivity disorder. Conclusion Clinical studies evaluating MPH substitution for cocaine dependence have provided inconsistent findings. However, the negative findings may be explained by specific study characteristics, among them dosing, duration of treatment, or sample size. This needs to be considered when discussing the potential of MPH as replacement therapy for cocaine dependence. Finally, based on the results, we suggest possible directions for future research. PMID:26124696
Analysis of Hydropower Potential Utilization of Watercourses in Slovakia
NASA Astrophysics Data System (ADS)
Gejguš, Mirko; Aschbacher, Christine; Sablik, Jozef
2017-09-01
This article analyzes the hydropower potential of watercourses in Slovakia, defining water as the most promising and most used renewable energy source. The hydro-energetic potential as a source of energy is determined by the calculation of the technically feasible potential of the watercourses, which is divided into exploited and unused. It also identifies the potential of utilizing the unused technical hydro-energetic potential.
American Society for Laser Medicine and Surgery
... Sep 26, 2017 Promising Results for Noninvasive Facial Fat Reduction JOURNAL | POSTED: Oct 16, 2017 November Issue ... of Acne Scaring Promising Results for Noninvasive Facial Fat Reduction New Method Tested for Diagnosing and Assessing ...
Masías, Víctor H.; Krause, Mariane; Valdés, Nelson; Pérez, J. C.; Laengle, Sigifredo
2015-01-01
Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice. PMID:25914657
Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets
NASA Astrophysics Data System (ADS)
Yoon, Hyeun Joong; Kim, Tae Hyun; Zhang, Zhuo; Azizi, Ebrahim; Pham, Trinh M.; Paoletti, Costanza; Lin, Jules; Ramnath, Nithya; Wicha, Max S.; Hayes, Daniel F.; Simeone, Diane M.; Nagrath, Sunitha
2013-10-01
The spread of cancer throughout the body is driven by circulating tumour cells (CTCs). These cells detach from the primary tumour and move from the bloodstream to a new site of subsequent tumour growth. They also carry information about the primary tumour and have the potential to be valuable biomarkers for disease diagnosis and progression, and for the molecular characterization of certain biological properties of the tumour. However, the limited sensitivity and specificity of current methods for measuring and studying these cells in patient blood samples prevents the realization of their full clinical potential. The use of microfluidic devices is a promising method for isolating CTCs. However, the devices are reliant on three-dimensional structures, which limits further characterization and expansion of cells on the chip. Here we demonstrate an effective approach to isolating CTCs from blood samples of pancreatic, breast and lung cancer patients, by using functionalized graphene oxide nanosheets on a patterned gold surface. CTCs were captured with high sensitivity at a low concentration of target cells (73 +/- 32.4% at 3-5 cells per ml blood).
'Fly Like This': Natural Language Interface for UAV Mission Planning
NASA Technical Reports Server (NTRS)
Chandarana, Meghan; Meszaros, Erica L.; Trujillo, Anna; Allen, B. Danette
2017-01-01
With the increasing presence of unmanned aerial vehicles (UAVs) in everyday environments, the user base of these powerful and potentially intelligent machines is expanding beyond exclusively highly trained vehicle operators to include non-expert system users. Scientists seeking to augment costly and often inflexible methods of data collection historically used are turning towards lower cost and reconfigurable UAVs. These new users require more intuitive and natural methods for UAV mission planning. This paper explores two natural language interfaces - gesture and speech - for UAV flight path generation through individual user studies. Subjects who participated in the user studies also used a mouse-based interface for a baseline comparison. Each interface allowed the user to build flight paths from a library of twelve individual trajectory segments. Individual user studies evaluated performance, efficacy, and ease-of-use of each interface using background surveys, subjective questionnaires, and observations on time and correctness. Analysis indicates that natural language interfaces are promising alternatives to traditional interfaces. The user study data collected on the efficacy and potential of each interface will be used to inform future intuitive UAV interface design for non-expert users.
Attitude coordination of multi-HUG formation based on multibody system theory
NASA Astrophysics Data System (ADS)
Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin
2017-04-01
Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.
Masías, Víctor H; Krause, Mariane; Valdés, Nelson; Pérez, J C; Laengle, Sigifredo
2015-01-01
Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice.
Barua, Neil U; Gill, Steven S; Love, Seth
2014-03-01
Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD). © 2013 International Society of Neuropathology.
Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review.
Panchalingam, Krishna M; Jung, Sunghoon; Rosenberg, Lawrence; Behie, Leo A
2015-11-23
Human mesenchymal stem cells (hMSCs), also called mesenchymal stromal cells, have been of great interest in regenerative medicine applications because of not only their differentiation potential but also their ability to secrete bioactive factors that can modulate the immune system and promote tissue repair. This potential has initiated many early-phase clinical studies for the treatment of various diseases, disorders, and injuries by using either hMSCs themselves or their secreted products. Currently, hMSCs for clinical use are generated through conventional static adherent cultures in the presence of fetal bovine serum or human-sourced supplements. However, these methods suffer from variable culture conditions (i.e., ill-defined medium components and heterogeneous culture environment) and thus are not ideal procedures to meet the expected future demand of quality-assured hMSCs for human therapeutic use. Optimizing a bioprocess to generate hMSCs or their secreted products (or both) promises to improve the efficacy as well as safety of this stem cell therapy. In this review, current media and methods for hMSC culture are outlined and bioprocess development strategies discussed.
Sousa, Giovana D; Kishishita, Juliana; Aquino, Kátia A S; Presgrave, Octávio A F; Leal, Leila B; Santana, Davi P
2017-07-01
The aim of this study was to compare the biopharmaceutical characteristics and irritation potentials of microemulsions (MEs) and conventional systems (CSs) containing oil from Syagrus cearensis for topical delivery of Amphotericin B (AmB). Pseudo-ternary phase diagrams were constructed using a water titration method to develop the MEs, and the CSs were prepared according to the classical technique of phase inversion. In the skin permeation and retention study, dermatomed pig skin without stratum corneum was used as an alternative disturbed skin model. The irritation potential was evaluated using three different methods, chorioallantoic membrane assays (HET-CAM and CAM-TBS), and bovine corneal opacity and permeability (BCOP) test. The optimized formulation (ME1) consisting of 0.1% (w/w) Amphotericin B, 9.1% (w/w) catolé oil, 81% (w/w) Smix (1:1, Tween 20 and Kolliphor EL) possessed droplet size of 31.02 ± 0.9 nm, zeta potential of -23.4 mV, and viscosity 0.63 ± 0.1 Pa.s. ME1 exhibited greater retention of AmB in to skin layers (84.79 ± 2.08 μg cm -2 ) than all the others formulations. In general, MEs showed higher drug release and retention than CSs and all of the formulations showed greater retentivity than permeability. Only MEs developed using Labrasol/Plurol Oleique (L/PO) as the surfactant and co-surfactant exhibited a moderate irritation potential; all other MEs and CSs were classified as non-irritants or slight irritants. The results indicate that formulations containing oil from S. cearensis are promising alternatives for the delivery of AmB targeting the treatment of cutaneous leishmaniasis.
Penetrating the Blood-Brain Barrier: Promise of Novel Nanoplatforms and Delivery Vehicles.
Ali, Iqbal Unnisa; Chen, Xiaoyuan
2015-10-27
Multifunctional nanoplatforms combining versatile therapeutic modalities with a variety of imaging options have the potential to diagnose, monitor, and treat brain diseases. The promise of nanotechnology can only be realized by the simultaneous development of innovative brain-targeting delivery vehicles capable of penetrating the blood-brain barrier without compromising its structural integrity.
Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel
2012-01-01
The potential of a headspace device coupled to multi-capillary column-ion mobility spectrometry has been studied as a screening system to differentiate virgin olive oils ("lampante," "virgin," and "extra virgin" olive oil). The last two types are virgin olive oil samples of very similar characteristics, which were very difficult to distinguish with the existing analytical method. The procedure involves the direct introduction of the virgin olive oil sample into a vial, headspace generation, and automatic injection of the volatiles into a gas chromatograph-ion mobility spectrometer. The data obtained after the analysis by duplicate of 98 samples of three different categories of virgin olive oils, were preprocessed and submitted to a detailed chemometric treatment to classify the virgin olive oil samples according to their sensory quality. The same virgin olive oil samples were also analyzed by an expert's panel to establish their category and use these data as reference values to check the potential of this new screening system. This comparison confirms the potential of the results presented here. The model was able to classify 97% of virgin olive oil samples in their corresponding group. Finally, the chemometric method was validated obtaining a percentage of prediction of 87%. These results provide promising perspectives for the use of ion mobility spectrometry to differentiate virgin olive oil samples according to their quality instead of using the classical analytical procedure.
The Electrical Self-Potential Method as a Non-Intrusive Snow-Hydrological Sensor
NASA Astrophysics Data System (ADS)
Kulessa, B.; Thompson, S. S.; Luethi, M. P.; Essery, R.
2015-12-01
Building on growing momentum in the application of geophysical techniques to snow problems and, specifically, on new theory and an electrical geophysical snow hydrological model published recently; we demonstrate for the first time that the electrical self-potential geophysical technique can sense in-situ bulk meltwater fluxes. This has broad and immediate implications for snow measurement practice, modelling and operational snow forecasting. Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.
Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods
Manovic, Vasilije; Anthony, Edward J.
2010-01-01
This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use. PMID:20948952
Chowdhary, J; Keyes, T
2002-02-01
Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.
NASA Technical Reports Server (NTRS)
Carmichael, B. H.
1979-01-01
The potential of natural laminar flow for significant drag reduction and improved efficiency for aircraft is assessed. Past experience with natural laminar flow as reported in published and unpublished data and personal observations of various researchers is summarized. Aspects discussed include surface contour, waviness, and smoothness requirements; noise and vibration effects on boundary layer transition, boundary layer stability criteria; flight experience with natural laminar flow and suction stabilized boundary layers; and propeller slipstream, rain, frost, ice and insect contamination effects on boundary layer transition. The resilient leading edge appears to be a very promising method to prevent leading edge insect contamination.
Microbial Consortia Engineering for Cellular Factories: in vitro to in silico systems
Bernstein, Hans C; Carlson, Ross P
2012-01-01
This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery. PMID:24688677
Towards a magnetoresistive platform for neural signal recording
NASA Astrophysics Data System (ADS)
Sharma, P. P.; Gervasoni, G.; Albisetti, E.; D'Ercoli, F.; Monticelli, M.; Moretti, D.; Forte, N.; Rocchi, A.; Ferrari, G.; Baldelli, P.; Sampietro, M.; Benfenati, F.; Bertacco, R.; Petti, D.
2017-05-01
A promising strategy to get deeper insight on brain functionalities relies on the investigation of neural activities at the cellular and sub-cellular level. In this framework, methods for recording neuron electrical activity have gained interest over the years. Main technological challenges are associated to finding highly sensitive detection schemes, providing considerable spatial and temporal resolution. Moreover, the possibility to perform non-invasive assays would constitute a noteworthy benefit. In this work, we present a magnetoresistive platform for the detection of the action potential propagation in neural cells. Such platform allows, in perspective, the in vitro recording of neural signals arising from single neurons, neural networks and brain slices.
Elements of Designing for Cost
NASA Technical Reports Server (NTRS)
Dean, Edwin B.; Unal, Resit
1992-01-01
During recent history in the United States, government systems development has been performance driven. As a result, systems within a class have experienced exponentially increasing cost over time in fixed year dollars. Moreover, little emphasis has been placed on reducing cost. This paper defines designing for cost and presents several tools which, if used in the engineering process, offer the promise of reducing cost. Although other potential tools exist for designing for cost, this paper focuses on rules of thumb, quality function deployment, Taguchi methods, concurrent engineering, and activity based costing. Each of these tools has been demonstrated to reduce cost if used within the engineering process.
Anderson, Kash; Poulter, Benjamin; Dudgeon, John; Li, Shu-En; Ma, Xiang
2017-08-05
A novel and highly sensitive nonenzymatic glucose biosensor was developed by nucleating colloidal silver nanoparticles (AgNPs) on MoS₂. The facile fabrication method, high reproducibility (97.5%) and stability indicates a promising capability for large-scale manufacturing. Additionally, the excellent sensitivity (9044.6 μA mM -1 cm -2 ), low detection limit (0.03 μM), appropriate linear range of 0.1-1000 μM, and high selectivity suggests that this biosensor has a great potential to be applied for noninvasive glucose detection in human body fluids, such as sweat and saliva.
NASA Astrophysics Data System (ADS)
Zhang, Ke-Xin; Wen, Xing; Yao, Cheng-Bao; Li, Jin; Zhang, Meng; Li, Qiang-Hua; Sun, Wen-Jun; Wu, Jia-Da
2018-04-01
Silver (Ag) nanoparticles decorated Zinc oxide (A-ZnO) nanowires have been successfully synthesized by two-step chemical vapour deposition and magnetron sputtering method. The X-ray diffraction patterns revealed their hexagonal wurtzite structure. SEM images indicated the Ag nanoparticles are distributed uniformly on the surface of A-ZnO nanowires. By extending the sputtering time, the atomic percent of Ag increased gradually. Moreover, the photoluminescence results demonstrated two major emission peaks for the A-ZnO nanowires. Where, the visible emission peaks were stronger than those of unmodified ZnO nanowires. These studies promise their potential applications in multifunctional optical devices.
The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery
Kilgore, Matthew B.; Kutchan, Toni M.
2015-01-01
Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4′-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS). PMID:27340382
Confocal microscopy to guide laser ablation of basal cell carinoma: a preliminary feasibility study
NASA Astrophysics Data System (ADS)
Larson, Bjorg A.; Sierra, Heidy; Chen, Jason; Rajadhyaksha, Milind
2013-03-01
Laser ablation may be a promising method for removal of skin lesions, with the potential for better cosmetic outcomes and reduced scarring and infection. An obstacle to implementing laser ablation is that the treatment leaves no tissue for histopathological analysis. Pre-operative and intra-operative mapping of BCCs using confocal microscopy may guide the ablation of the tumor until all tumor is removed. We demonstrate preliminary feasibility of confocal microscopy to guide laser ablation of BCCs in freshly excised tissue from Mohs surgery. A 2940 nm Er:YAG laser provides efficient ablation of tumor with reduced thermal damage to the surrounding tissue.
Graded junction termination extensions for electronic devices
NASA Technical Reports Server (NTRS)
Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)
2006-01-01
A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.
Graded junction termination extensions for electronic devices
NASA Technical Reports Server (NTRS)
Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)
2007-01-01
A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.
ZnO nanoparticles applied to bioimaging and drug delivery.
Xiong, Huan-Ming
2013-10-04
The last decade has seen significant achievements in biomedical diagnosis and therapy at the levels of cells and molecules. Nanoparticles with luminescent or magnetic properties are used as detection probes and drug carriers, both in vitro and in vivo. ZnO nanoparticles, due to their good biocompatibility and low cost, have shown promising potential in bioimaging and drug delivery. The recent exciting progress on the biomedical applications of ZnO-based nanomaterials is reviewed here, along with discussions on the advantages and limitations of these advanced materials and suggestions for improving methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Growth and characterization of a Li2Mg2(MoO4)3 scintillating bolometer
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Degoda, V. Ya.; Dulger, L. L.; Dumoulin, L.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Pavlyuk, A. A.; Poda, D. V.; Trifonov, V. A.; Yushina, I. V.; Zolotarova, A. S.
2018-05-01
Lithium magnesium molybdate (Li2Mg2(MoO4)3) crystals were grown by the low-thermal-gradient Czochralski method. Luminescence properties of the material (emission spectra, thermally stimulated luminescence, dependence of intensity on temperature, phosphorescence) have been studied under X-ray excitation in the temperature interval from 8 to 400 K, while at the same being operated as a scintillating bolometer at 20 mK for the first time. We demonstrated that Li2Mg2(MoO4)3 crystals are a potentially promising detector material to search for neutrinoless double beta decay of 100Mo.
Applications of absorption spectroscopy using quantum cascade lasers.
Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli
2014-01-01
Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.
Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui
2014-03-24
We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.
Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.
Dávila-Ibáñez, Ana B; Buurma, Niklaas J; Salgueiriño, Verónica
2013-06-07
The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.
Improving the Aircraft Design Process Using Web-Based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)
2000-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Improving the Aircraft Design Process Using Web-based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.
2003-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Elements of designing for cost
NASA Technical Reports Server (NTRS)
Dean, Edwin B.; Unal, Resit
1992-01-01
During recent history in the United States, government systems development has been performance driven. As a result, systems within a class have experienced exponentially increasing cost over time in fixed year dollars. Moreover, little emphasis has been placed on reducing cost. This paper defines designing for cost and presents several tools which, if used in the engineering process, offer the promise of reducing cost. Although other potential tools exist for designing for cost, this paper focuses on rules of thumb, quality function deployment, Taguchi methods, concurrent engineering, and activity-based costing. Each of these tools has been demonstrated to reduce cost if used within the engineering process.
Testing Saliency Parameters for Automatic Target Recognition
NASA Technical Reports Server (NTRS)
Pandya, Sagar
2012-01-01
A bottom-up visual attention model (the saliency model) is tested to enhance the performance of Automated Target Recognition (ATR). JPL has developed an ATR system that identifies regions of interest (ROI) using a trained OT-MACH filter, and then classifies potential targets as true- or false-positives using machine-learning techniques. In this project, saliency is used as a pre-processing step to reduce the space for performing OT-MACH filtering. Saliency parameters, such as output level and orientation weight, are tuned to detect known target features. Preliminary results are promising and future work entails a rigrous and parameter-based search to gain maximum insight about this method.
Single-crystalline δ-Ni2Si nanowires with excellent physical properties
2013-01-01
In this article, we report the synthesis of single-crystalline nickel silicide nanowires (NWs) via chemical vapor deposition method using NiCl2·6H2O as a single-source precursor. Various morphologies of δ-Ni2Si NWs were successfully acquired by controlling the growth conditions. The growth mechanism of the δ-Ni2Si NWs was thoroughly discussed and identified with microscopy studies. Field emission measurements show a low turn-on field (4.12 V/μm), and magnetic property measurements show a classic ferromagnetic characteristic, which demonstrates promising potential applications for field emitters, magnetic storage, and biological cell separation. PMID:23782805
Towards Run-time Assurance of Advanced Propulsion Algorithms
NASA Technical Reports Server (NTRS)
Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy
2014-01-01
This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.
Materials technology for an advanced space power nuclear reactor concept: Program summary
NASA Technical Reports Server (NTRS)
Gluyas, R. E.; Watson, G. K.
1975-01-01
The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).
The Drug Targets and Antiviral Molecules for Treatment of Ebola Virus Infection.
Wu, Wenjiao; Liu, Shuwen
2017-01-01
Ebola virus (EBOV) is a highly pathogenic virus causing severe hemorrhagic fever with a high case fatality rate of 50% - 90% in humans. Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. As with the increase of outbreaks, a significant effort has been made to develop promising countermeasures for the prevention and treatment of Ebola virus infection. In this review, development of therapeutics and potential inhibitors for Ebola virus infection will be discussed.
de Abreu, Letícia Coli Louvisse; Todaro, Valerio; Sathler, Plinio Cunha; da Silva, Luiz Cláudio Rodrigues Pereira; do Carmo, Flávia Almada; Costa, Cleonice Marques; Toma, Helena Keiko; Castro, Helena Carla; Rodrigues, Carlos Rangel; de Sousa, Valeria Pereira; Cabral, Lucio Mendes
2016-12-01
The aim of this work was the development and characterization of nisin-loaded nanoparticles and the evaluation of its potential antifungal activity. Candidiasis is a fungal infection caused by Candida sp. considered as one of the major public health problem currently. The discovery of antifungal agents that present a reduced or null resistance of Candida sp. and the development of more efficient drug release mechanisms are necessary for the improvement of candidiasis treatment. Nisin, a bacteriocin commercially available for more than 50 years, exhibits antibacterial action in food products with potential antifungal activity. Among several alternatives used to modulate antifungal activity of bacteriocins, polymeric nanoparticles have received great attention due to an effective drug release control and reduction of therapeutic dose, besides the minimization of adverse effects by the preferential accumulation in specific tissues. The nisin nanoparticles were prepared by double emulsification and solvent evaporation methods. Nanoparticles were characterized by dynamic light scattering, zeta potential, Fourier transform infrared, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. Antifungal activity was accessed by pour plate method and cell counting using Candida albicans strains. The in vitro release profile and in vitro permeation studies were performed using dialysis bag method and pig vaginal mucosa in Franz diffusion cell, respectively. The results revealed nisin nanoparticles (300 nm) with spherical shape and high loading efficiency (93.88 ± 3.26%). In vitro test results suggest a promising application of these nanosystems as a prophylactic agent in recurrent vulvovaginal candidiasis and other gynecological diseases.
Modelling challenges for battery materials and electrical energy storage
NASA Astrophysics Data System (ADS)
Muller, Richard P.; Schultz, Peter A.
2013-10-01
Many vital requirements in world-wide energy production, from the electrification of transportation to better utilization of renewable energy production, depend on developing economical, reliable batteries with improved performance characteristics. Batteries reduce the need for gasoline and liquid hydrocarbons in an electrified transportation fleet, but need to be lighter, longer-lived and have higher energy densities, without sacrificing safety. Lighter and higher-capacity batteries make portable electronics more convenient. Less expensive electrical storage accelerates the introduction of renewable energy to electrical grids by buffering intermittent generation from solar or wind. Meeting these needs will probably require dramatic changes in the materials and chemistry used by batteries for electrical energy storage. New simulation capabilities, in both methods and computational resources, promise to fundamentally accelerate and advance the development of improved materials for electric energy storage. To fulfil this promise significant challenges remain, both in accurate simulations at various relevant length scales and in the integration of relevant information across multiple length scales. This focus section of Modelling and Simulation in Materials Science and Engineering surveys the challenges of modelling for energy storage, describes recent successes, identifies remaining challenges, considers various approaches to surmount these challenges and discusses the potential of these methods for future battery development. Zhang et al begin with atoms and electrons, with a review of first-principles studies of the lithiation of silicon electrodes, and then Fan et al examine the development and use of interatomic potentials to the study the mechanical properties of lithiated silicon in larger atomistic simulations. Marrocchelli et al study ionic conduction, an important aspect of lithium-ion battery performance, simulated by molecular dynamics. Emerging high-throughput methods allow rapid screening of promising new candidates for battery materials, illustrated for Li-ion olivine phosphates by Hajiyani et al . This collection includes descriptions of new techniques to model the chemistry at an electrode-electrolyte interface; Gunceler et al demonstrate coupling an electronic description of the electrode chemistry with the fluid electrolyte in a joint density functional theory method. Bridging to longer length scales to probe mechanical properties and transport, Preiss et al present a proof-of-concept phase field approach for a permeation model at an electrochemical interface, An and Jiang examine finite element simulations for transient deformation and transport in electrodes, and Haftabaradaran et al study the application of an analytical model to investigate the critical thickness for fracture in thick film electrodes. The focus section concludes with a study by Chung et al which combines modelling and experiment, examining the validity of the Bruggeman relation for porous electrodes. All of the papers were peer-reviewed following the standard procedure established by the Editorial Board of Modelling and Simulation in Materials Science and Engineering .
Advances in borehole geophysics for hydrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, P.H.
1982-01-01
Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems themore » most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.« less
2013-01-01
Influenza virus-like particle vaccines are one of the most promising ways to respond to the threat of future influenza pandemics. VLPs are composed of viral antigens but lack nucleic acids making them non-infectious which limit the risk of recombination with wild-type strains. By taking advantage of the advancements in cell culture technologies, the process from strain identification to manufacturing has the potential to be completed rapidly and easily at large scales. After closely reviewing the current research done on influenza VLPs, it is evident that the development of quantification methods has been consistently overlooked. VLP quantification at all stages of the production process has been left to rely on current influenza quantification methods (i.e. Hemagglutination assay (HA), Single Radial Immunodiffusion assay (SRID), NA enzymatic activity assays, Western blot, Electron Microscopy). These are analytical methods developed decades ago for influenza virions and final bulk influenza vaccines. Although these methods are time-consuming and cumbersome they have been sufficient for the characterization of final purified material. Nevertheless, these analytical methods are impractical for in-line process monitoring because VLP concentration in crude samples generally falls out of the range of detection for these methods. This consequently impedes the development of robust influenza-VLP production and purification processes. Thus, development of functional process analytical techniques, applicable at every stage during production, that are compatible with different production platforms is in great need to assess, optimize and exploit the full potential of novel manufacturing platforms. PMID:23642219
Kreilinger, Alex; Hiebel, Hannah; Müller-Putz, Gernot R
2016-03-01
This work aimed to find and evaluate a new method for detecting errors in continuous brain-computer interface (BCI) applications. Instead of classifying errors on a single-trial basis, the new method was based on multiple events (MEs) analysis to increase the accuracy of error detection. In a BCI-driven car game, based on motor imagery (MI), discrete events were triggered whenever subjects collided with coins and/or barriers. Coins counted as correct events, whereas barriers were errors. This new method, termed ME method, combined and averaged the classification results of single events (SEs) and determined the correctness of MI trials, which consisted of event sequences instead of SEs. The benefit of this method was evaluated in an offline simulation. In an online experiment, the new method was used to detect erroneous MI trials. Such MI trials were discarded and could be repeated by the users. We found that, even with low SE error potential (ErrP) detection rates, feasible accuracies can be achieved when combining MEs to distinguish erroneous from correct MI trials. Online, all subjects reached higher scores with error detection than without, at the cost of longer times needed for completing the game. Findings suggest that ErrP detection may become a reliable tool for monitoring continuous states in BCI applications when combining MEs. This paper demonstrates a novel technique for detecting errors in online continuous BCI applications, which yields promising results even with low single-trial detection rates.
Potential markets for application of space medicine achievements
NASA Astrophysics Data System (ADS)
Orlov, Oleg; Belakovskiy, Mark; Kussmaul, Anna
2014-11-01
The Institute of Biomedical Problems (IBMP) is the lead institution of the Russian Federation in the area of space biology and medicine. It has successfully implemented a set of innovation-based activities and projects to develop and introduce promising space products and technologies into the practices of Earth health care. To this end, various investigative methods developed for the medical selection of cosmonauts have been successfully applied in ophthalmology, gastroenterology, and cardiology. Axial loading ;Regent; suits and soil simulators of bearing load have proved their efficiency in rehabilitating patients with motor disorders. Developmental prototypes of versatile training devices and technologies of their application are used for rehabilitation and purposeful development of physical status in people of various age groups. The application of telemedicine technologies allows one to diagnose and treat diseases in people who are in remote locations from medical centers or happen to be in extreme conditions. In cooperation with leading national medical institutions, other developments by the Institute have been also introduced into clinical practice: for example, the method of assessing the human functional state on the basis of computerized analysis of cardiac rhythm indices; methods of diagnosing, treating and preventing osteoporosis and metabolic osteopathias; methods of treating cardiorespiratory diseases using warmed-up heliox mixtures; methods of prophylactic examination and assessing the physical health status of the population; methods of monitoring the functional state and enhancing the physical capacity of athletes; developmental models of devices for simulating the effects of artificial gravity for refining methods of treatment and rehabilitation of patients; and systems of IV anesthesia with an option of a remote control. The effective management of innovation-based activities and the issues of commercialization of promising developments and objects of intellectual property are playing an ever-growing role in an effort to develop a scientific center in particular and a branch on the whole. The range and spectrum of applications of space medicine and biology achievements in sports, extreme, and rehabilitation medicine and preventive maintenance has expanded from year to year.
OLED Lighting Products: Capabilities, Challenges, Potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, N. J.; Leon, F. A.
A report that focuses on the potential for architectural OLED lighting – describing currently available OLED products as well as promised improvements, and addressing the technology and market hurdles that have thus far prevented wider use of OLEDs.
Jin, H; Wu, Y; Tan, X
2017-08-01
Pancreatic cancer is one of the most deadly cancers, with dismal prognosis due to its poor early detection rate and high metastatic rate. Thus, elucidation of the molecular mechanisms accounting for its metastasis and discovery of competent biomarkers is required. Exosomes are multivesicular body-derived small extracellular vesicles released by various cell types that serve as important message carriers during intercellular communication. They are also known to play critical roles during cancer-genesis, cancer-related immune reactions, and metastasis. They also possess promising potential as novel biomarkers for cancer early detection. Therefore, extensive studies on pancreatic cancer-derived exosomes are currently being performed because they hold the promising potential of elevating the overall survival rate of patients with pancreatic cancer. In the present review, we focus on the role of exosomes in pancreatic cancer-related immune reactions, metastasis, and complications, and on their potential application as pancreatic cancer biomarkers.