Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides
Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga
2017-05-17
Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less
Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides
NASA Astrophysics Data System (ADS)
Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.
2017-11-01
Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. Through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.
Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga
Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less
Changes in the anisotropy of oriented membrane dynamics induced by myelin basic protein
NASA Astrophysics Data System (ADS)
Natali, F.; Gliozzi, A.; Rolandi, R.; Relini, A.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P.
We report recent results showing the evidence of the effect induced by physiological amounts of myelin basic protein (MBP) on the dynamics of dimyristoyl L-a-phosphatidic acid (DMPA) membranes. Incoherent elastic neutron scattering scans, performed over a wide temperature range, have shown that the anisotropy of motions in oriented membranes is significantly enhanced by the presence of MBP.
NASA Astrophysics Data System (ADS)
Salhi, A.; Cambon, C.
2007-05-01
Angular phase mixing in rapidly rotating or in strongly stratified flows is quantified for single-time single-point energy components, using linear theory. In addition to potential energy, turbulent kinetic energy is more easily analyzed in terms of its toroidal and poloidal components, and then in terms of vertical and horizontal components. Since the axial symmetry around the direction n (which bears both the system angular velocity and the mean density gradient) is consistent with basic dynamical equations, the input of initial anisotropy is investigated in the axisymmetric case. A general way to construct axisymmetric initial data is used, with a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy e, and a modified expansion for the polarization anisotropy Z, which reflects the unbalance in terms of poloidal and toroidal energy components. The expansion involves Legendre polynomials of arbitrary order, P2n0(cosθ), (n=0,1,2,…,N0), in which the term [cosθ=(k•n)/∣k∣] characterizes the anisotropy in k-wavespace; two sets of parameters, β2n(e) and β2n(z), separately generate the directional anisotropy and the polarization anisotropy. In the rotating case, the phase mixing results in damping the polarization anisotropy, so that toroidal and poloidal energy components asymptotically equilibrate after transient oscillations. Complete analytical solutions are found in terms of Bessel functions. The envelope of these oscillations decay with time like (ft)-2 (f being the Coriolis parameter), whereas those for the vertical and horizontal components decay like (ft)-3. The long-time limit of the ratio of horizontal component to vertical one depends only on β2(e), which is eventually related to a classical component in structure-based modeling, independently of the degree of the expansion of the initial data. For the stratified case, both the degree of initial anisotropy and the initial unbalance in terms of potential and poloidal (or kinetic gravity wave) energy are investigated. The latter unbalance is characterized by a ratio χ /2, assuming initial proportionality between the kinetic energy spectrum and the potential energy one. The phase mixing yields asymptotic equipartition in terms of poloidal and potential energy components, and analytical solutions are found in terms of Weber functions. At large time, the damped oscillations for poloidal, potential and vertical components decay with time like (Nt)-1/2 (N is the buoyancy frequency), while the oscillations for the horizontal component decay with time like (Nt)-3/2. The long-time limit of the ratio of horizontal component to vertical one depends only on the parameters χ, β2(e), β0(z), β2(z), and β4(z).
NASA Technical Reports Server (NTRS)
Kashlinsky, A.
1992-01-01
It is shown here that, by using galaxy catalog correlation data as input, measurements of microwave background radiation (MBR) anisotropies should soon be able to test two of the inflationary scenario's most basic predictions: (1) that the primordial density fluctuations produced were scale-invariant and (2) that the universe is flat. They should also be able to detect anisotropies of large-scale structure formed by gravitational evolution of density fluctuations present at the last scattering epoch. Computations of MBR anisotropies corresponding to the minimum of the large-scale variance of the MBR anisotropy are presented which favor an open universe with P(k) significantly different from the Harrison-Zeldovich spectrum predicted by most inflationary models.
Evidence for gap anisotropy in SmB6
NASA Astrophysics Data System (ADS)
Derr, J.; Knebel, G.; Lapertot, G.; Salce, B.; Kunii, S.; Flouquet, J.
2007-03-01
Resistivity measurements under uniaxial stress have been performed on the intermediate valence compound SmB6 for various directions of the crystal. The experimental technique allows us to explore a limited pressure area (basically 0-3 kbar). Nevertheless, the results clearly show an anisotropy; indeed, the effect of the stress in the decrease of the residual resistivity is much higher in the <1 1 1> direction than in the <1 0 0> and the <1 1 0> orientations. This change is witness to the gap anisotropy which must be linked to the theory of excitonic semiconductors.
Constrained Analysis of Fluorescence Anisotropy Decay:Application to Experimental Protein Dynamics
Feinstein, Efraim; Deikus, Gintaras; Rusinova, Elena; Rachofsky, Edward L.; Ross, J. B. Alexander; Laws, William R.
2003-01-01
Hydrodynamic properties as well as structural dynamics of proteins can be investigated by the well-established experimental method of fluorescence anisotropy decay. Successful use of this method depends on determination of the correct kinetic model, the extent of cross-correlation between parameters in the fitting function, and differences between the timescales of the depolarizing motions and the fluorophore's fluorescence lifetime. We have tested the utility of an independently measured steady-state anisotropy value as a constraint during data analysis to reduce parameter cross correlation and to increase the timescales over which anisotropy decay parameters can be recovered accurately for two calcium-binding proteins. Mutant rat F102W parvalbumin was used as a model system because its single tryptophan residue exhibits monoexponential fluorescence intensity and anisotropy decay kinetics. Cod parvalbumin, a protein with a single tryptophan residue that exhibits multiexponential fluorescence decay kinetics, was also examined as a more complex model. Anisotropy decays were measured for both proteins as a function of solution viscosity to vary hydrodynamic parameters. The use of the steady-state anisotropy as a constraint significantly improved the precision and accuracy of recovered parameters for both proteins, particularly for viscosities at which the protein's rotational correlation time was much longer than the fluorescence lifetime. Thus, basic hydrodynamic properties of larger biomolecules can now be determined with more precision and accuracy by fluorescence anisotropy decay. PMID:12524313
Evolution of the scattering anisotropy of aged foams in the wet-to-dry transition
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Yuvchenko, S. A.; Isaeva, A. A.; Isaeva, E. A.; Samorodina, T. V.
2018-04-01
Empirical data on the diffuse and collimated transmittance of aged liquid foams are discussed in terms of influence of mutual correlations in the scatter positions. This influence can be described introducing the static structure factor of a scattering system and occurs remarkable in the case of wet foams with gas bubbles as the basic scattering units. On the contrary, mutual correlations of basic scattering units (Plateau-Gibbs channels and vertices) in dry foams are negligible due to low values of their volume fraction. This causes dramatic changes of the scattering anisotropy of foam layers in the vicinity of the wet-to-dry transition. Some analogies can be drawn between this effect and a previously reported "optical inversion" of densely packed random media.
Anisotropy tensor of the potential model of steady creep
NASA Astrophysics Data System (ADS)
Annin, B. D.; Ostrosablin, N. I.
2014-01-01
The Kelvin approach describing the structure of the generalized Hooke's law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2018-05-01
It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.
NASA Astrophysics Data System (ADS)
Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.
2018-01-01
The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.
Large anomalous Hall effect in Pt interfaced with perpendicular anisotropy ferrimagnetic insulator
NASA Astrophysics Data System (ADS)
Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Garay, Javier; Shi, Jing; Shines Team
We demonstrate the strain induced perpendicular magnetic anisotropy (PMA) in a ferrimagnetic insulator (FMI), Tm3Fe5O12 (TIG) and the first observation of large anomalous Hall effect (AHE) in TIG/Pt bilayers. Atomically flat TIG films were deposited by a laser molecular beam epitaxy system on (111)-orientated substituted gadolinium gallium garnet substrates. The strength of PMA could be effectively tuned by controlling the oxygen pressure during deposition. Sharp squared anomalous Hall hysteresis loops were observed in bilayers of TIG/Pt over a range of thicknesses of Pt, with the maximum AHE conductivity reaching 1 S/cm at room temperature. The AHE vanishes when a 5 nm Cu layer was inserted between Pt and TIG, strongly indicating the proximity-induced ferromagnetism in Pt. The large AHE in the bilayer structures demonstrates a potential use of PMA-FMI related heterostructures in spintronics. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.
NASA Astrophysics Data System (ADS)
Ivers, D. J.; Phillips, C. G.
2018-03-01
We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found that anisotropic turbulent thermal diffusivity has a strong destabilising effect on magneto-convective instabilities, which may relax the tight energy budget constraining geodynamo models. The enhanced instability is not due to a reduction of the total diffusivity. The anisotropy also strengthens instabilities which break the symmetry of the underlying state, which may facilitate magnetic field reversal. Geostrophic flow appears to suppress the symmetry breaking modes and magnetic instabilities. Through symmetry breaking and the geostrophic flow the anisotropy may provide a mechanism of magnetic field reversal and its suppression in computational dynamo models.
Fabrication and anisotropic wettability of titanium-coated microgrooves
NASA Astrophysics Data System (ADS)
Gui, N.; Xu, W.; Tian, J.; Rosengarten, G.; Brandt, M.; Qian, M.
2018-03-01
Surface wettability plays a critical role in a variety of key areas including orthopaedic implants and chemical engineering. Anisotropy in wettability can arise from surface grooves, which are of particular relevance to orthopaedic implants because they can mimic collagen fibrils that are the basic components of the extracellular matrix. Titanium (Ti) and its alloys have been widely used for orthopaedic and dental implant applications. This study is concerned with the fabrication of Ti-coated microgrooves with different groove widths and the characterisation of the anisotropy in wettability through measuring water contact angles, compared with both the Wenzel and Cassie models. Experimental results revealed that there existed significant anisotropy in the wettability of Ti-coated microgrooves, and the degree of anisotropy (Δθ) increased with an increasing groove width from 5 μm to 20 μm. On average, the contact angle measured parallel to the groove direction (θ//) was about 50°-60° smaller than that measured perpendicular to the groove direction (θ⊥). In general, the Wenzel model predicted the contact angles along the surface groove direction reasonably, and so did the Cassie model for the contact angles perpendicular to the groove direction. Osteoblast spreading was affected by the anisotropy in wettability, which occurred preferably along, rather than perpendicular to, the groove direction. These findings are informative for the design of Ti implant surfaces when anisotropy in wettability matters.
Giant magnetic anisotropy of rare-earth adatoms and dimers adsorbed by graphene oxide.
Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan; Shi, Li-Bin
2017-05-24
Nowadays, transition-metal adatoms and dimers with giant magnetic anisotropy have attracted much attention due to their potential applications in data storage, spintronics and quantum computations. Using density-functional calculations, we investigated the magnetic anisotropy of the rare-earth adatoms and dimers adsorbed by graphene oxide. Our calculations reveal that the adatoms of Tm, Er and Sm possess giant magnetic anisotropy, typically larger than 40 meV. When the dimers of (Tm,Er,Sm)-Ir are adsorbed onto graphene oxide, the magnetic anisotropy even exceeds 200 meV. The magnetic anisotropy can be tuned by the external electric field as well as the environment.
NASA Technical Reports Server (NTRS)
Richards, Paul L.
1998-01-01
Precise measurements of the angular power spectrum of the Cosmic Microwave Background (CMB) anisotropy will revolutionize cosmology. These measurements will discriminate between competing cosmological models and, if the standard inflationary scenario is correct, will determine each of the fundamental cosmological parameters with high precision. The astrophysics community has recognized this potential: the orbital experiments MAP and PLANCK, have been approved to measure CMB anisotropy. Balloon-borne experiments can realize much of this potential before these missions are launched. Additionally, properly designed balloon-borne experiments can complement MAP in frequency and angular resolution and can give the first realistic test of the instrumentation proposed for the high frequency instrument on PLANCK. The MAXIMA experiment is part of the MAXIMA/BOOMERANG collaboration which is doing balloon observations of the angular power spectrum of the Cosmic Microwave Background from l = 10 to l = 800. These experiments are designed to use the benefits of both North American and Antarctic long-duration ballooning to full advantage. We have developed several new technologies that together allow the power spectrum to be measured with unprecedented combination of angular resolution, beam throw, sensitivity, sky coverage and control of systematic effects. These technologies are the basis for the high frequency instrument for the PLANCK mission. Our measurements will strongly discriminate between models of the origin and evolution of structure in the universe and, for many models, will determine the value of the basic cosmological parameters to high precision.
Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy
NASA Astrophysics Data System (ADS)
Gajek, M.; Nowak, J. J.; Sun, J. Z.; Trouilloud, P. L.; O'Sullivan, E. J.; Abraham, D. W.; Gaidis, M. C.; Hu, G.; Brown, S.; Zhu, Y.; Robertazzi, R. P.; Gallagher, W. J.; Worledge, D. C.
2012-03-01
Spin-transfer torque magnetic random access memory (STT-MRAM) is one of the most promising emerging non-volatile memory technologies. MRAM has so far been demonstrated with a unique combination of density, speed, and non-volatility in a single chip, however, without the capability to replace any single mainstream memory. In this paper, we demonstrate the basic physics of spin torque switching in 20 nm diameter magnetic tunnel junctions with perpendicular magnetic anisotropy materials. This deep scaling capability clearly indicates the STT MRAM device itself may be suitable for integration at much higher densities than previously proven.
Structural transitions in vortex systems with anisotropic interactions
Olszewski, Maciej W.; Eskildsen, M. R.; Reichhardt, Charles; ...
2017-12-29
We introduce a model of vortices in type-II superconductors with a four-fold anisotropy in the vortex–vortex interaction potential. Using numerical simulations we show that the vortex lattice undergoes structural transitions as the anisotropy is increased, with a triangular lattice at low anisotropy, a rhombic intermediate state, and a square lattice for high anisotropy. In some cases we observe a multi-q state consisting of an Archimedean tiling that combines square and triangular local ordering. At very high anisotropy, domains of vortex chain states appear. We discuss how this model can be generalized to higher order anisotropy as well as its applicabilitymore » to other particle-based systems with anisotropic particle–particle interactions.« less
A flat Universe from high-resolution maps of the cosmic microwave background radiation
de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield
2000-04-27
The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1995-01-01
Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.
Agra, R; Trizac, E; Bocquet, L
2004-12-01
The electrostatic potential of a highly charged disc (clay platelet) in an electrolyte is investigated in detail. The corresponding non-linear Poisson-Boltzmann (PB) equation is solved numerically, and we show that the far-field behaviour (relevant for colloidal interactions in dilute suspensions) is exactly that obtained within linearized PB theory, with the surface boundary condition of a uniform potential. The latter linear problem is solved by a new semi-analytical procedure and both the potential amplitude (quantified by an effective charge) and potential anisotropy coincide closely within PB and linearized PB, provided the disc bare charge is high enough. This anisotropy remains at all scales; it is encoded in a function that may vary over several orders of magnitude depending on the azimuthal angle under which the disc is seen. The results allow to construct a pair potential for discs interaction, that is strongly orientation dependent.
The imprint of proper motion of nonlinear structures on the cosmic microwave background
NASA Technical Reports Server (NTRS)
Tuluie, Robin; Laguna, Pablo
1995-01-01
We investigate the imprint of nonlinear matter condensations on the cosmic microwave background (CMB) in an Omega = 1, cold dark matter (CDM) model universe. Temperature anisotropies are obtained by numerically evolving matter inhomogeneities and CMB photons from the beginning of decoupling until the present epoch. The underlying density field produced by the inhomogeneities is followed from the linear, through the weakly clustered, into the fully nonlinear regime. We concentrate on CMB temperature distortions arising from variations in the gravitational potentials of nonlinear structures. We find two sources of temperature fluctuations produced by time-varying potentials: (1) anisotropies due to intrinsic changes in the gravitational potentials of the inhomogeneities and (2) anisotropies generated by the peculiar, bulk motion of the structures across the microwave sky. Both effects generate CMB anisotropies in the range of 10(exp -7) approximately less than or equal to (Delta T/T) approximately less than or equal to 10(exp -6) on scales of approximately 1 deg. For isolated structures, anisotropies due to proper motion exhibit a dipole-like signature in the CMB sky that in principle could yield information on the transverse velocity of the structures.
On the Effect of an Anisotropy-Resolving Subgrid-Scale Model on Turbulent Vortex Motions
2014-09-19
sense, the model by Abe (2013) can be named the ”stabilized mixed model” ( SMM , hereafter). Furthermore, considering the basic concept of the mixed model...with SMM . Further investigations of this ex- tended anisotropic SGS model will be necessary in fu- ture studies. 3 Computational Conditions Although the...basic capability of the SMM was val- idated by application to some test cases (Abe, 2013; Abe 2014), there still remain several points to be fur
Observing the Cosmic Microwave Background Radiation: A Unique Window on the Early Universe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary; Fisher, Richard R. (Technical Monitor)
2001-01-01
The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics,of the early universe. Within the framework of inflationary dark matter models observations of the anisotropy on sub-degree angular scales will reveal the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. The validity of inflationary models will be tested and, if agreement is found, accurate values for most of the key cosmological parameters will result. If disagreement is found, we will need to rethink our basic ideas about the physics of the early universe. I will present an overview of the physical processes at work in forming the anisotropy and discuss what we have already learned from current observations. I will conclude with a brief overview of the recently launched Microwave Anisotropy Probe (MAP) mission which will observe the anisotropy over the full sky with 0.21 degree angular resolution. At the time of this meeting, MAP will have just arrived at the L2 Lagrange point, marking the start of its observing campaign. The MAP hardware is being produced by Goddard in partnership with Princeton University.
Strain-Induced Anisotropic Fermi Contour of 2D Holes and Composite Fermions
NASA Astrophysics Data System (ADS)
Jo, Insun; Rosales, K. A. V.; Mueed, M. A.; Padmanabhan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Winkler, R.; Shayegan, M.
We present experimental and theoretical results demonstrating strain-induced Fermi contour anisotropy of two-dimensional (2D) holes and composite fermions (CFs) confined to a (001) GaAs quantum well. We apply a tunable uniaxial strain to a thinned (001) GaAs wafer, glued to a piezoelectric actuator. When the 2D holes are subjected to an in-plane uniaxial strain, their band structure and Fermi contour become anisotropic by about 30% even for a minute amount of strain, on the order of 10-4. Via measurements of commensurability oscillations, we determine the Fermi contour anisotropy for holes near zero magnetic field, and for CFs at high magnetic fields, as a function of uniaxial strain. The measured Fermi contour anisotropy of holes is consistent with the calculation results. The observed CF Fermi contour anisotropy also shows a strong dependence on the applied strain, which we compare quantitatively to that of the low-field holes. Supported by the NSF(Grants DMR-1305691, ECCS-1508925, and MRSEC DMR-1420541), the DOE Basic Energy Sciences (DE-FG02-00-ER45841), the Gordon and Betty Moore Foundation (GBMF4420), and the Keck Foundation. R. W. is supported by the NSF (DMR-1310199).
Submicron scale tissue multifractal anisotropy in polarized laser light scattering
NASA Astrophysics Data System (ADS)
Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya
2018-03-01
The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.
NASA Technical Reports Server (NTRS)
Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola
1992-01-01
A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.
Composite Fermi surface in the half-filled Landau level with anisotropic electron mass
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Geraedts, Scott; Bhatt, Ravindra
We study the problem of interacting electrons in the lowest Landau level at half filling in the quantum Hall regime, when the electron dispersion is given by an anisotropic mass tensor. Based on experimental observations and theoretical arguments, the ground state of the system is expected to consist of composite Fermions filling an elliptical Fermi sea, with the anisotropy of the ellipse determined by the competing effects of the isotropic Coulomb interaction and anisotropic electron mass tensor. We test this idea quantitatively by using a numerical density matrix renormalization group method for quantum Hall systems on an infinitely long cylinder. Singularities in the structure factor allow us to map the Fermi surface of the composite Fermions. We compute the composite Fermi surface anisotropy for several values of the electron mass anisotropy which allow us to deduce the functional dependence of the former on the latter. This research was supported by Department of Energy Office of Basic Energy Sciences through Grant No. DE-SC0002140.
NASA Astrophysics Data System (ADS)
Matsukawa, S.; Makino, T.; Mori, S.; Koyama, D.; Takayanagi, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.
2017-04-01
The bone fracture healing mechanism of the low-intensity pulsed ultrasound technique is not yet clearly understood. In our previous study, the electrical potentials induced in bone were successfully measured by focusing on piezoelectricity in the MHz range. Bone is composed of collagen and hydroxyapatite and has strong anisotropy. The purpose of this study is to investigate the effects of bone anisotropy on the electrical potentials induced by ultrasound irradiation. For this study, ultrasound bone transducers were fabricated using cortical bovine bone plates as piezoelectric devices. An ultrasound of 7.4 kPapeak-peak (i.e., the peak-to-peak pressure value) was used to irradiate the side surface of each bone plate. Electrical potentials induced in the bone plate were then measured by varying the wave propagation direction in the plate. The peak-to-peak values of these ultrasonically induced electrical potentials were found to vary with changes in the ultrasound propagation direction in the bone sample. The potential was maximized at an inclination of approximately 45° to the bone axis but was minimized around the three orthogonal directions. These maxima and minima ranged from 28 to 33 μVpeak-peak and from 5 to 12 μVpeak-peak, respectively. Additionally, our ultrasound results indicated a change in polarity due to bone anisotropy in the MHz range.
Abdollahi, S; Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Barbiellini, G; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bruel, P; Buson, S; Caragiulo, M; Cavazzuti, E; Chekhtman, A; Ciprini, S; Costanza, F; Cuoco, A; Cutini, S; D'Ammando, F; de Palma, F; Desiante, R; Digel, S W; Di Lalla, N; Di Mauro, M; Di Venere, L; Donaggio, B; Drell, P S; Favuzzi, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Green, D; Guiriec, S; Harding, A K; Jogler, T; Jóhannesson, G; Kamae, T; Kuss, M; Larsson, S; Latronico, L; Li, J; Longo, F; Loparco, F; Lubrano, P; Magill, J D; Malyshev, D; Manfreda, A; Mazziotta, M N; Meehan, M; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Negro, M; Nuss, E; Ohsugi, T; Omodei, N; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Principe, G; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strong, A W; Tajima, H; Thayer, J B; Torres, D F; Troja, E; Vandenbroucke, J; Zaharijas, G; Zimmer, S
2017-03-03
The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10^{-3}. We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. The present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.
TANGRA - an experimental setup for basic and applied nuclear research by means of 14.1 MeV neutrons
NASA Astrophysics Data System (ADS)
Ruskov, Ivan; Kopatch, Yury; Bystritsky, Vyacheslav; Skoy, Vadim; Shvetsov, Valery; Hambsch, Franz-Josef; Oberstedt, Stephan; Noy, Roberto Capote; Grozdanov, Dimitar; Zontikov, Artem; Rogov, Yury; Zamyatin, Nikolay; Sapozhnikov, Mikhail; Slepnev, Vyacheslav; Bogolyubov, Evgeny; Sadovsky, Andrey; Barmakov, Yury; Ryzhkov, Valentin; Yurkov, Dimitry; Valković, Vladivoj; Obhođaš, Jasmina; Aliyev, Fuad
2017-09-01
For investigation of the basic characteristics of 14.1 MeV neutron induced nuclear reactions on a number of important isotopes for nuclear science and engineering, a new experimental setup TANGRA has been constructed at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research in Dubna. For testing its performance, the angular distribution of γ-rays (and neutrons) from the inelastic scattering of 14.1 MeV neutrons on high-purity carbon was measured and the angular anisotropy of γ-rays from the reaction 12C(n, n'γ)12C was determined. This reaction is important from fundamental (differential cross-sections) and practical (non-destructive elemental analysis of materials containing carbon) point of view. The preliminary results for the anisotropy of the γ-ray emission from the inelastic scattering of 14.1- MeV neutrons on carbon are compared with already published literature data. A detailed data analysis for determining the correlations between inelastic scattered neutron and γ-ray emission will be published elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawniczak-Jablonska, K.; Liliental-Weber, Z.; Gullikson, E.M.
1997-04-01
Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction bandmore » structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.« less
Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali
Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, aremore » related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.« less
Stochastic Modelling of the Hydraulic Anisotropy of Ash Impoundment Sediment
NASA Astrophysics Data System (ADS)
Slávik, Ivan
2017-12-01
In the case reported here the impoundments of a 400 MW coal heated power plant with an annual production of about 1.5 million tons of fuel ash are of the cross-valley type, operated by the simple and cheap „upstream method”. The aim of the research was to determine overall and local values of the permeability in horizontal as well as in vertical direction and the anisotropy of the thin-layered sedimented ash. The coal ashes are hydraulically transported through pipelines in form of a slurry and periodically floated on the beach of the impoundment. The ashes are deposited in the form of a thin-layered sediment, with random alternation of layers with a coarser or finer granularity. The ash impoundment sediment is anthropogenic sediment with horizontally laminated texture. Therefore, the sediment is anisotropic from the viewpoint of water seepage. The knowledge of the permeability and the seepage anisotropy of the sediment is a basic requirement for the design of an appropriate dewatering system. The seepage anisotropy of the ash sediment has been checked by means of stochastic modelling, based on the correlation between the effective grain diameter and the coefficient of permeability of the ash: the effective grain diameter and the thickness of individual layers have been proposed to be random events.
Oceanic Lithosphere/Asthenosphere Boundary from surface wave dispersion data
NASA Astrophysics Data System (ADS)
Burgos, G.; Montagner, J.; Beucler, E.; Capdeville, Y.; Mocquet, A.
2013-12-01
The nature of Lithosphere-Asthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15-300s), we have developed a 3-D tomographic model (1st order perturbation theory) of the upper-mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, the top of the radial anisotropy positive anomaly and from the changes in orientation of the fast axis of azimuthal anisotropy. The LAB depth determinations of the different proxies are basically consistent for each oceanic region. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120--130 km) old ocean lithosphere. The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub-horizontal profile (70--80 km). LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130--135 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub-horizontal interface with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the formation of oceanic plates.
NASA Astrophysics Data System (ADS)
Forastieri, F.
2017-05-01
Short baseline laboratory (SBL) anomalies have shown preference for light sterile neutrinos with eV masses. These particles, if confirmed, would be produced in the early universe and would add their contribution to the relativistic energy density basically increasing the effective number of extra relativistic species (N eff). It has been shown that when the matter potential produced by the sterile interactions becomes smaller than the vacuum oscillation frequency, sterile neutrinos are plentifully produced by the scattering effects in the sterile neutrino sector. This behaviour, however, leads to a ΔN eff ≃ 1 which is in tension at 3 - 5σ with the actual constraints given by the latest Cosmic Microwave Background radiation (CMB) observations. In order to avoid the thermalization of eV sterile neutrinos in the early universe, secret interactions between the sterile and active sectors mediated by a massive vector boson (MX < MW ) have been proposed. In particular, interactions mediated by a gauge boson having MX < 10 MeV would suppress the sterile neutrino production for T > 0.1 eV and seem to save the cosmological constraints coming from big-bang nucleosynthesis (BBN) and mass bounds. In this framework, cosmological observations represent a powerful tool to constrain neutrino physics complementary to laboratory experiments. In particular, observations of the CMB have the potential to constrain the properties of relic neutrinos, as well as of additional light relic particles in the universe. In this work we present the effects of the strength of the interaction on the neutrino fluid perturbations and on the CMB anisotropies power spectrum.
NASA Astrophysics Data System (ADS)
Luo, X. W.; Xu, P.; Sun, C. W.; Jin, H.; Hou, R. J.; Leng, H. Y.; Zhu, S. N.
2017-06-01
Concurrent spontaneous parametric down-conversion (SPDC) processes have proved to be an appealing approach for engineering the path-entangled photonic state with designable and tunable spatial modes. In this work, we propose a general scheme to construct high-dimensional path entanglement and demonstrate the basic properties of concurrent SPDC processes from domain-engineered quadratic nonlinear photonic crystals, including the spatial modes and the photon flux, as well as the anisotropy of spatial correlation under noncollinear quasi-phase-matching geometry. The overall understanding about the performance of concurrent SPDC processes will give valuable references to the construction of compact path entanglement and the development of new types of photonic quantum technologies.
NASA Astrophysics Data System (ADS)
Gong, Zi-Zhao; Zhang, Wei; He, Wei; Zhang, Xiang-Qun; Liu, Yong; Cheng, Zhao-Hua
2018-05-01
Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701), the National Natural Science Foundation of China (Grant Nos. 91622126, 51427801, and 51671212), and the Natural Science Foundation of Hebei Province, China (Grant No. A2015203021).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabes, B. Shadrack; Yadav, Hari O. S.; Chakravarty, Charusita, E-mail: charus@chemistry.iitd.ac.in
2014-10-21
Fluctuations within the ligand shell of a nanoparticle give rise to a significant degree of anisotropy in effective pair interactions for low grafting densities [B. Bozorgui, D. Meng, S. K. Kumar, C. Chakravarty, and A. Cacciuto, Nano Lett. 13, 2732 (2013)]. Here, we examine the corresponding fluctuation-driven anisotropy for gold nanocrystals densely passivated with short ligands. In particular, we consider gold nanocrystals capped by alkylthiols, both in vacuum and in ethane solvent at high density. As in the preceding study, we show that the anisotropy in the nanoparticle pair potential can be quantified by an angle-dependent correction term to themore » isotropic potential of mean force (PMF). We find that the anisotropy of the ligand shells is distance dependent, and strongly influenced by ligand interdigitation effects as well as expulsion of ligand chains from the interparticle region at short distances. Such fluctuation-driven anisotropy can be significant for alkylthiol-coated gold nanoparticles, specially for longer chain lengths, under good solvent conditions. The consequences of such anisotropy for self-assembly, specially as a function of grafting density, solvent quality and at interfaces, should provide some interesting insights in future work. Our results clearly show that an isotropic two-body PMF cannot adequately describe the thermodynamics and assembly behavior of nanoparticles in this dense grafting regime and inclusion of anisotropic effects, as well as possibly many-body interactions, is necessary. Extensions of this approach to other passivated nanoparticle systems and implications for self-assembly are considered.« less
Abdollahi, S.; Ackermann, M.; Ajello, M.; ...
2017-03-01
We present the Large Area Telescope on board the Fermi Gamma-ray Space Telescope that has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10 -3. We take into account systematic effects that could mimic true anisotropies at thismore » level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. Lastly, the present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.« less
Carrier-dependent magnetic anisotropy of cobalt doped titanium dioxide
Shao, Bin; Feng, Min; Zuo, Xu
2014-01-01
Using first-principles calculations, we predict that the magnetic anisotropy energy of Co-doped TiO2 sensitively depends on carrier accumulation. This magnetoelectric phenomenon provides a potential route to a direct manipulation of the magnetization direction in diluted magnetic semiconductor by external electric-fields. We calculate the band structures and reveal the origin of the carrier-dependent magnetic anisotropy energy in k-space. It is shown that the carrier accumulation shifts the Fermi energy, and consequently, regulates the competing contributions to the magnetic anisotropy energy. The calculations provide an insight to understanding this magnetoelectric phenomenon, and a straightforward way to search prospective materials for electrically controllable spin direction of carriers. PMID:25510846
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew R.
In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test ofmore » the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.« less
Crystal structure and magnetic properties of Cr doped barium hexaferrite
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Pandey, Rabichandra; Pradhan, Lagen Kumar; Kar, Manoranjan
2018-04-01
The Cr3+ substituted BaFe12O19 has been synthesized by modified sol-gel method to tailor the magnetic anisotropy and coercivity for technological applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the M-type hexaferrite. In order to investigate these interactions, BaFe12-xCrxO19 (x = 0.0, 0.5, 1.0, 2.0, and 4.0) M-type hexaferrites were characterized by employing XRD (X-ray Diffractometer). It is confirmed that, all the samples are in nanocrystalline and single phase, no impurity has been detected within the XRD limit. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field were increasing with the increasing Cr3+ content, but after the percolation limit it decreases. The magnetocrystalline anisotropy is increasing with the Cr3+ concentration in samples and high values of magnetocrystalline anisotropy revealed that all samples are hard magnetic materials. Magnetic hysteresis loops were analyzed using the Law of Approach to Saturation method.
Optical characterization of murine model's in-vivo skin using Mueller matrix polarimetric imaging
NASA Astrophysics Data System (ADS)
Mora-Núñez, Azael; Martinez-Ponce, Geminiano; Garcia-Torales, Guillermo
2015-12-01
Mueller matrix polarimetric imaging (MMPI) provides a complete characterization of an anisotropic optical medium. Subsequent single value decomposition allows image interpretation in terms of basic optical anisotropies, such as depolarization, diattenuation, and retardance. In this work, healthy in-vivo skin at different anatomical locations of a biological model (Rattus norvegicus) was imaged by the MMPI technique using 532nm coherent illumination. The body parts under study were back, abdomen, tail, and calvaria. Because skin components are randomly distributed and skin thickness depends on its location, polarization measures arise from the average over a single detection element (pixel) and on the number of free optical paths, respectively. Optical anisotropies over the imaged skin indicates, mainly, the presence of components related to the physiology of the explored region. In addition, a MMPI-based comparison between a tumor on the back of one test subject and proximal healthy skin was made. The results show that the single values of optical anisotropies can be helpful in distinguishing different areas of in-vivo skin and also lesions.
Zhang, Yue; Luo, Shijiang; Yang, Xiaofei; Yang, Chang
2017-05-17
In materials with the gradient of magnetic anisotropy, spin-orbit-torque-induced magnetization behaviour has attracted attention because of its intriguing scientific principle and potential application. Most of the magnetization behaviours microscopically originate from magnetic domain wall motion, which can be precisely depicted using the standard cooperative coordinate method (CCM). However, the domain wall motion in materials with the gradient of magnetic anisotropy using the CCM remains lack of investigation. In this paper, by adopting CCM, we established a set of equations to quantitatively depict the spin-orbit-torque-induced motion of domain walls in a Ta/CoFe nanotrack with weak Dzyaloshinskii-Moriya interaction and magnetic anisotropy gradient. The equations were solved numerically, and the solutions are similar to those of a micromagnetic simulation. The results indicate that the enhanced anisotropy along the track acts as a barrier to inhibit the motion of the domain wall. In contrast, the domain wall can be pushed to move in a direction with reduced anisotropy, with the velocity being accelerated by more than twice compared with that for the constant anisotropy case. This substantial velocity manipulation by anisotropy engineering is important in designing novel magnetic information devices with high reading speeds.
Finite element analyses of two dimensional, anisotropic heat transfer in wood
John F. Hunt; Hongmei Gu
2004-01-01
The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Inputting basic orthogonal properties of the wood material alone are not sufficient for accurate modeling because wood is a combination of porous fiber cells that are aligned and mis-...
Investigation of In Vivo skin stiffness anisotropy in breast cancer related lymphoedema.
Coutts, L V; Miller, N R; Mortimer, P S; Bamber, J C
2016-01-04
There is a limited range of suitable measurement techniques for detecting and assessing breast cancer related lymphoedema (BCRL). This study investigated the suitability of using skin stiffness measurements, with a particular focus on the variation in stiffness with measurement direction (known as anisotropy). In addition to comparing affected tissue with the unaffected tissue on the corresponding site on the opposite limb, volunteers without BCRL were tested to establish the normal variability in stiffness anisotropy between these two corresponding regions of skin on each opposite limb. Multi-directional stiffness was measured with an Extensometer, within the higher stiffness region that skin typically displays at high applied strains, using a previously established protocol developed by the authors. Healthy volunteers showed no significant difference in anisotropy between regions of skin on opposite limbs (mean decrease of 4.7 +/-2.5% between non-dominant and dominant arms), whereas BCRL sufferers showed a significant difference between limbs (mean decrease of 51.0+/-16.3% between unaffected and affected arms). A large difference in anisotropy was apparent even for those with recent onset of the condition, indicating that the technique may have potential to be useful for early detection. This difference also appeared to increase with duration since onset. Therefore, measurement of stiffness anisotropy has potential value for the clinical assessment and diagnosis of skin conditions such as BCRL. The promising results justify a larger study with a larger number of participants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of molecular anisotropy on beam scattering measurements
NASA Technical Reports Server (NTRS)
Goldflam, R.; Green, S.; Kouri, D. J.; Monchick, L.
1978-01-01
Within the energy sudden approximation, the total integral and total differential scattering cross sections are given by the angle average of scattering cross sections computed at fixed rotor orientations. Using this formalism the effect of molecular anisotropy on scattering of He by HCl and by CO is examined. Comparisons with accurate close coupling calculations indicate that this approximation is quite reliable, even at very low collision energies, for both of these systems. Comparisons are also made with predictions based on the spherical average of the interaction. For HCl the anisotropy is rather weak and its main effect is a slight quenching of the oscillations in the differential cross sections relative to predictions of the spherical averaged potential. For CO the anisotropy is much stronger, so that the oscillatory pattern is strongly quenched and somewhat shifted. It appears that the sudden approximation provides a simple yet accurate method for describing the effect of molecular anisotropy on scattering measurements.
NASA Astrophysics Data System (ADS)
Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi
2016-07-01
Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.
Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Bennett, C. L.; Kogut, A.
1995-01-01
We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.
Anisotropy in layered half-metallic Heusler alloy superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam
2016-01-28
We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.
Wilson, S. R.; Mendelev, M. I.
2015-01-08
Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni 50.0Zr 50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni 50.0Zr 50.0alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observedmore » that anisotropies in both the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.« less
Qiu, Cheng-Wei; Li, Le-Wei; Yeo, Tat-Soon; Zouhdi, Saïd
2007-02-01
Vector potential formulation and parametric studies of electromagnetic scattering problems of a sphere characterized by the rotationally symmetric anisotropy are studied. Both epsilon and mu tensors are considered herein, and four elementary parameters are utilized to specify the material properties in the structure. The field representations can be obtained in terms of two potentials, and both TE (TM) modes (with respect to r) inside (outside) the sphere can be derived and expressed in terms of a series of fractional-order (in a real or complex number) Ricatti-Bessel functions. The effects due to either electric anisotropy ratio (Ae=epsilont/epsilonr) or magnetic anisotropy ratio (Am=mut/mur) on the radar cross section (RCS) are considered, and the hybrid effects due to both Ae and Am are also examined extensively. It is found that the material anisotropy affects significantly the scattering behaviors of three-dimensional dielectric objects. For absorbing spheres, however, the Ae or Am no longer plays a significant role as in lossless dielectric spheres and the anisotropic dependence of RCS values is found to be predictable. The hybrid effects of Ae and Am are considered for absorbing spheres as well, but it is found that the RCS can be greatly reduced by controlling the material parameters. Details of the theoretical treatment and numerical results are presented.
Zhang, Jing; Zhong, Zhicheng; Guan, Xiangxiang; Shen, Xi; Zhang, Jine; Han, Furong; Zhang, Hui; Zhang, Hongrui; Yan, Xi; Zhang, Qinghua; Gu, Lin; Hu, Fengxia; Yu, Richeng; Shen, Baogen; Sun, Jirong
2018-05-15
Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La 2/3 Sr 1/3 MnO 3 and brownmillerite LaCoO 2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO 6 octahedra and CoO 4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand.
Kierdaszuk, Borys
2013-03-01
We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.
Howell, Bryan; McIntyre, Cameron C
2016-06-01
Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.
NASA Astrophysics Data System (ADS)
Howell, Bryan; McIntyre, Cameron C.
2016-06-01
Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.
How to manipulate magnetic states of antiferromagnets
NASA Astrophysics Data System (ADS)
Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng
2018-03-01
Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.
Kong, Tai; Meier, William R.; Lin, Qisheng; ...
2016-10-24
Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Tai; Meier, William R.; Lin, Qisheng
Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less
NASA Astrophysics Data System (ADS)
Wilgus, J. T.; Schmandt, B.; Jiang, C.
2017-12-01
The relative importance of potential controls on crustal seismic anisotropy, such as deformational fabrics in polycrystalline crustal rocks and the contemporary state of stress, remain poorly constrained. Recent regional western US lithospheric seismic anisotropy studies have concluded that the distribution of strain in the lower crust is diffuse throughout the Basin and Range (BR) and that deformation in the crust and mantle are largely uncoupled. To further contribute to our understanding of crustal anisotropy we are conducting a detailed local study of seismic anisotropy within the BR using surface waves at the Ruby Mountain Core Complex (RMCC), located in northeast Nevada. The RMCC is one of many distinctive uplifts within the North American cordillera called metamorphic core complexes which consist of rocks exhumed from middle to lower crustal depths adjacent to mylonitic shear zones. The RMCC records exhumation depths up to 30 km indicating an anomalously high degree of extension relative to the BR average. This exhumation, the geologic setting of the RMCC, and the availability of dense broadband data from the Transportable Array (TA) and the Ruby Mountain Seismic Experiment (RMSE) coalesce to form an ideal opportunity to characterize seismic anisotropy as a function of depth beneath RMCC and evaluate the degree to which anisotropy deviates from regional scale properties of the BR. Preliminary azimuthal anisotropy results using Rayleigh waves reveal clear anisotropic signals at periods between 5-40 s, and demonstrate significant rotations of fast orientations relative to prior regional scale results. Moving forward we will focus on quantification of depth-dependent radial anisotropy from inversion of Rayleigh and Love waves. These results will be relevant to identification of the deep crustal distribution of strain associated with RMCC formation and may aid interpretation of controls on crustal anisotropy in other regions.
Wu, Yaobin; Wang, Ling; Guo, Baolin; Ma, Peter X
2017-06-27
Mimicking the anisotropic cardiac structure and guiding 3D cellular orientation play a critical role in designing scaffolds for cardiac tissue regeneration. Significant advances have been achieved to control cellular alignment and elongation, but it remains an ongoing challenge for engineering 3D cardiac anisotropy using these approaches. Here, we present a 3D hybrid scaffold based on aligned conductive nanofiber yarns network (NFYs-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes) within a hydrogel shell for mimicking the native cardiac tissue structure, and further demonstrate their great potential for engineering 3D cardiac anisotropy for cardiac tissue engineering. The NFYs-NET structures are shown to control cellular orientation and enhance cardiomyocytes (CMs) maturation. 3D hybrid scaffolds were then fabricated by encapsulating NFYs-NET layers within hydrogel shell, and these 3D scaffolds performed the ability to promote aligned and elongated CMs maturation on each layer and individually control cellular orientation on different layers in a 3D environment. Furthermore, endothelialized myocardium was constructed by using this hybrid strategy via the coculture of CMs on NFYs-NET layer and endothelial cells within hydrogel shell. Therefore, these 3D hybrid scaffolds, containing NFYs-NET layer inducing cellular orientation, maturation, and anisotropy and hydrogel shell providing a suitable 3D environment for endothelialization, has great potential in engineering 3D cardiac anisotropy.
Collective modes in multicomponent condensates with anisotropy
NASA Astrophysics Data System (ADS)
Pal, Sukla; Roy, Arko; Angom, D.
2018-04-01
We report the effects of anisotropy in the confining potential on two component Bose–Einstein condensates (TBECs) through the properties of the low energy quasiparticle excitations. Starting from generalized Gross–Pitaevskii equation, we obtain the Bogoliubov–de Gennes equation for TBECs using the Hartree–Fock–Bogoliubov theory. Based on this theory, we present the influence of radial anisotropy on TBECs in the immiscible or the phase-separated domain. In particular, the TBECs of 85Rb–87Rb and 133Cs–87Rb TBECs are chosen as specific examples of the two possible interface geometries, shell-structured and side by side, in the immiscible domain. We also show that the dispersion relation for the TBEC shell-structured interface has two branches, and anisotropy modifies the energy scale and structure of the two branches.
White Matter Abnormalities in Autism and Unaffected Siblings.
Jou, Roger J; Reed, Hannah E; Kaiser, Martha D; Voos, Avery C; Volkmar, Fred R; Pelphrey, Kevin A
2016-01-01
This study was conducted to identify a potential neuroendophenotype for autism using diffusion tensor imaging. Whole-brain, voxel-based analysis of fractional anisotropy was conducted in 50 children: 19 with autism, 20 unaffected siblings, and 11 controls. Relative to controls, participants with autism exhibited bilateral reductions in fractional anisotropy across association, commissure, and projection fibers. The most severely affected tracts included the uncinate fasciculus, forceps minor, and inferior fronto-occipital fasciculus. Unaffected siblings also exhibited reductions in fractional anisotropy, albeit less severe with fewer affected tracts, sparing the uncinate fasciculus and forceps minor. These results suggest the presence of a neuroendophenotype for autism.
Probing pre-inflationary anisotropy with directional variations in the gravitational wave background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuya, Yu; Niiyama, Yuki; Sendouda, Yuuiti, E-mail: furuya@tap.st.hirosaki-u.ac.jp, E-mail: niiyama@tap.st.hirosaki-u.ac.jp, E-mail: sendouda@hirosaki-u.ac.jp
We perform a detailed analysis on a primordial gravitational-wave background amplified during a Kasner-like pre-inflationary phase allowing for general triaxial anisotropies. It is found that the predicted angular distribution map of gravitational-wave intensity on large scales exhibits topologically distinctive patterns according to the degree of the pre-inflationary anisotropy, thereby serving as a potential probe for the pre-inflationary early universe with future all-sky observations of gravitational waves. We also derive an observational limit on the amplitude of such anisotropic gravitational waves from the B -mode polarisation of the cosmic microwave background.
Pérez-Hernández, Guillermo; Schmidt, Burkhard
2013-04-14
Effective Lennard-Jones models for the water-carbon interaction are derived from existing high-level ab initio calculations of water adsorbed on graphene models. The resulting potential energy well (εCO + 2εCH ≈ 1 kJ mol(-1)) is deeper than most of the previously used values in the literature on water in carbon nanotubes (CNTs). Moreover, a substantial anisotropy of the water-carbon interaction (εCO ≈ 2εCH) is obtained, which is neglected in most of the literature. We systematically investigate the effect of this anisotropy on structure and dynamics of TIP5P water confined in narrow, single-walled CNTs by means of molecular dynamics simulations for T = 300 K. While for isotropic models water usually forms one-dimensional, ordered chains inside (6,6) CNTs, we find frequent chain ruptures in simulations with medium to strongly anisotropic potentials. Here, the water molecules tend to form denser clusters displaying a liquid-like behaviour, allowing for self-diffusion along the CNT axis, in contrast to all previous simulations employing spherical (εCH = 0) interaction models. For (7,7) CNTs we observe structures close to trigonal, helical ice nanotubes which exhibit a non-monotonous dependence on the anisotropy of the water-carbon interaction. Both for vanishing and for large values of εCH we find increased fluctuations leading to a more liquid-like behaviour, with enhanced axial diffusion. In contrast, structure and dynamics of water inside (8,8) CNTs are found to be almost independent of the anisotropy of the underlying potential, which is attributed to the higher stability of the non-helical fivefold water prisms. We predict this situation to also prevail for larger CNTs, as the influence of the water-water interaction dominates over that of the water-carbon interaction.
Fluorescence anisotropy (polarization): from drug screening to precision medicine
Zhang, Hairong; Wu, Qian; Berezin, Mikhail Y.
2016-01-01
Introduction Fluorescence anisotropy (FA) is one of the major established methods accepted by industry and regulatory agencies for understanding the mechanisms of drug action and selecting drug candidates utilizing a high-throughput format. Areas covered This review covers the basics of FA and complementary methods, such as fluorescence lifetime anisotropy and their roles in the drug discovery process. The authors highlight the factors affecting FA readouts, fluorophore selection, and instrumentation. Furthermore, the authors describe the recent development of a successful, commercially valuable FA assay for Long QT syndrome drug toxicity to illustrate the role that FA can play in the early stages of drug discovery. Expert opinion Despite the success in drug discovery, the FA-based technique experiences competitive pressure from other homogeneous assays. That being said, FA is an established yet rapidly developing technique, recognized by academic institutions, the pharmaceutical industry, and regulatory agencies across the globe. The technical problems encountered in working with small molecules in homogeneous assays are largely solved, and new challenges come from more complex biological molecules and nanoparticles. With that, FA will remain one of the major work-horse techniques leading to precision (personalized) medicine. PMID:26289575
Anisotropic k-essence cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimento, Luis P.; Forte, Monica
We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies.more » The linear case is compatible with an asymptotic potential interpolating between V{sub l}{proportional_to}{phi}{sup -{gamma}{sub l}}, in the shear dominated regime, and V{sub l}{proportional_to}{phi}{sup -2} at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential.« less
ON THE UNIVERSALITY OF THE GLOBAL DENSITY SLOPE-ANISOTROPY INEQUALITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hese, Emmanuel; Baes, Maarten; Dejonghe, Herwig, E-mail: emmanuel.vanhese@gmail.com, E-mail: maarten.baes@ugent.be, E-mail: herwig.dejonghe@ugent.be
2011-01-10
Recently, some intriguing results have led to speculations whether the central density slope-velocity dispersion anisotropy inequality (An and Evans) actually holds at all radii for spherical dynamical systems. We extend these studies by providing a complete analysis of the global slope-anisotropy inequality for all spherical systems in which the augmented density is a separable function of radius and potential. We prove that these systems indeed satisfy the global inequality if their central anisotropy is {beta}{sub 0} {<=} 1/2. Furthermore, we present several systems with {beta}{sub 0}>1/2 for which the inequality does not hold, thus demonstrating that the global density slope-anisotropymore » inequality is not a universal property. This analysis is a significant step toward an understanding of the relation for general spherical systems.« less
Fritz, Nora E; Keller, Jennifer; Calabresi, Peter A; Zackowski, Kathleen M
2017-01-01
At least 85% of individuals with multiple sclerosis report walking dysfunction as their primary complaint. Walking and strength measures are common clinical measures to mark increasing disability or improvement with rehabilitation. Previous studies have shown an association between strength or walking ability and spinal cord MRI measures, and strength measures with brainstem corticospinal tract magnetization transfer ratio. However, the relationship between walking performance and brain corticospinal tract magnetization transfer imaging measures and the contribution of clinical measurements of walking and strength to the underlying integrity of the corticospinal tract has not been explored in multiple sclerosis. The objectives of this study were explore the relationship of quantitative measures of walking and strength to whole-brain corticospinal tract-specific MRI measures and to determine the contribution of quantitative measures of function in addition to basic clinical measures (age, gender, symptom duration and Expanded Disability Status Scale) to structural imaging measures of the corticospinal tract. We hypothesized that quantitative walking and strength measures would be related to brain corticospinal tract-specific measures, and would provide insight into the heterogeneity of brain pathology. Twenty-nine individuals with relapsing-remitting multiple sclerosis (mean(SD) age 48.7 (11.5) years; symptom duration 11.9(8.7); 17 females; median[range] Expanded Disability Status Scale 4.0 [1.0-6.5]) and 29 age and gender-matched healthy controls (age 50.8(11.6) years; 20 females) participated in clinical tests of strength and walking (Timed Up and Go, Timed 25 Foot Walk, Two Minute Walk Test ) as well as 3 T imaging including diffusion tensor imaging and magnetization transfer imaging. Individuals with multiple sclerosis were weaker (p = 0.0024) and walked slower (p = 0.0013) compared to controls. Quantitative measures of walking and strength were significantly related to corticospinal tract fractional anisotropy (r > 0.26; p < 0.04) and magnetization transfer ratio (r > 0.29; p < 0.03) measures. Although the Expanded Disability Status Scale was highly correlated with walking measures, it was not significantly related to either corticospinal tract fractional anisotropy or magnetization transfer ratio (p > 0.05). Walk velocity was a significant contributor to magnetization transfer ratio (p = 0.006) and fractional anisotropy (p = 0.011) in regression modeling that included both quantitative measures of function and basic clinical information. Quantitative measures of strength and walking are associated with brain corticospinal tract pathology. The addition of these quantitative measures to basic clinical information explains more of the variance in corticospinal tract fractional anisotropy and magnetization transfer ratio than the basic clinical information alone. Outcome measurement for multiple sclerosis clinical trials has been notoriously challenging; the use of quantitative measures of strength and walking along with tract-specific imaging methods may improve our ability to monitor disease change over time, with intervention, and provide needed guidelines for developing more effective targeted rehabilitation strategies.
Seismic azimuthal anisotropy in crevasse fields
NASA Astrophysics Data System (ADS)
Lindner, F.; Laske, G.; Walter, F.
2017-12-01
Crevasses and englacial fracture networks route meltwater from a glacier's surface to the subglacial drainage system and thus strongly influence glacial hydraulics. However, rapid fracture growth may also lead to sudden (and potentially hazardous) structural failure of unstable glaciers and ice dams, rifting of ice shelves, or iceberg calving.Here, we use passive seismic recordings from Glacier de la Plaine Morte, Switzerland, to investigate the englacial fracture network. Glacier de la Plaine Morte is the largest plateau glacier in the European Alps and extremely vulnerable to climate change. The annual drainage of an ice-marginal lake gives rise to numerous icequakes, thereby demonstrating the interplay between hydraulics and fracturing. The majority of these naturally occurring events exhibits dispersed, high-frequency Rayleigh waves at about 10 Hz and higher. A wide distribution of events allows us to study azimuthal anisotropy of englacial seismic velocities in regions of preferentially oriented fractures.Results from beamforming applied to a 100m-aperture array show strong (up to 9%) azimuthal anisotropy of Rayleigh wave velocities. We find that the fast direction coincides with the observed surface strike of the fractures and that anisotropy is strongest for high-frequency (around 30 Hz) Rayleigh waves that are sensitive only to the uppermost (few tens of meters) part of the glacier. In addition to these results, we propose to study temporal variations in the anisotropy pattern that can potentially be related to growth, shrinkage, and changing water content of the fractures during the course of the lake drainage or other hydrological events.
NASA Astrophysics Data System (ADS)
Yoshimoto, Shinya; Takahashi, Kohtaro; Suzuki, Mitsuharu; Yamada, Hiroko; Miyahara, Ryosuke; Mukai, Kozo; Yoshinobu, Jun
2017-08-01
We have studied in-plane anisotropy in the field-effect mobility of solution-processed organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene by using independently driven four gallium indium (Ga-In) probes. Liquid-metal Ga-In probes are highly effective for reproducible conductivity measurements of organic thin films. We demonstrated that a high mobility anisotropy of 44 was obtained by using a square four-probe method and a feedback circuit to keep the channel potential constant. The present method minimized the influences of the contact resistance and the insensitivity of anisotropy in a linear arrangement in two-dimensional field-effect transistors.
NASA Astrophysics Data System (ADS)
Wazen, P.; Bourdet, G. L.
1991-01-01
The authors studied the Doppler-broadened 11.76-micron N-15H3 emission line optically pumped in a ring resonator by a CW CO2 laser operating on the 10R(42) line. Behavior related to the optical pumping of gas Doppler-broadened lines is found and shown to be very dependent on the laser parameters. For instance, the laser emission can occur in one direction or two directions simultaneously. A local gain model based on the interaction of two laser fields with a three-level molecular system is used to clarify the emission characteristics of this laser. Basically, the two-photon or Raman process and the Rabi splitting generate a gain anisotropy and an anomalous dispersion curve. The effects lead to a different optical path for the two directions of propagation and, consequently, a simultaneous bidirectional emission with unequal emission frequency.
Giant exchange interaction in mixed lanthanides
Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.
2016-01-01
Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470
Daily quality assurance software for a satellite radiometer system
NASA Technical Reports Server (NTRS)
Keegstra, P. B.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Jackson, P. D.; Kogut, A.; Lineweaver, C.
1992-01-01
Six Differential Microwave Radiometers (DMR) on COBE (Cosmic Background Explorer) measure the large-angular-scale isotropy of the cosmic microwave background (CMB) at 31.5, 53, and 90 GHz. Quality assurance software analyzes the daily telemetry from the spacecraft to ensure that the instrument is operating correctly and that the data are not corrupted. Quality assurance for DMR poses challenging requirements. The data are differential, so a single bad point can affect a large region of the sky, yet the CMB isotropy requires lengthy integration times (greater than 1 year) to limit potential CMB anisotropies. Celestial sources (with the exception of the moon) are not, in general, visible in the raw differential data. A 'quicklook' software system was developed that, in addition to basic plotting and limit-checking, implements a collection of data tests as well as long-term trending. Some of the key capabilities include the following: (1) stability analysis showing how well the data RMS averages down with increased data; (2) a Fourier analysis and autocorrelation routine to plot the power spectrum and confirm the presence of the 3 mK 'cosmic' dipole signal; (3) binning of the data against basic spacecraft quantities such as orbit angle; (4) long-term trending; and (5) dipole fits to confirm the spacecraft attitude azimuth angle.
Determination of In-Situ Stresses Around Underground Excavations by Means of Hydraulic Fracturing
inhomogeneous, precracked variable rock is suitable for hydraulic fracturing as a method of in-situ stress measurement. It was found that basically the Coeur...d’Alene quartzite is amenable to hydraulic fracturing testing. The rock has no consistent anisotropy, but is inhomogeneous with physical property...horizontal stress notwithstanding rock condition. Field stress measurements in the Coeur d’Alene mines using the hydraulic fracturing technique are recommended.
Electrically Anisotropic 35 Ma Pacific Lithosphere
NASA Astrophysics Data System (ADS)
Chesley, C. J.; Key, K.; Constable, S.; Behrens, J.; MacGregor, L.
2017-12-01
Geophysical studies of anisotropy in the oceanic lithosphere and asthenosphere can yield crucial insights into the processes of plate formation and evolution as the plate cools and thickens. While most previous studies have employed seismic methods to investigate anisotropy, here we examine the electrical conductivity anisotropy as constrained by controlled-source electromagnetic (CSEM) data collected during the Anisotropy and Physics of the Pacific Lithosphere Experiment (APPLE). Unlike passive magnetotelluric data, which are not particularly sensitive to the resistive part of the lithosphere or its anisotropy, CSEM data are highly sensitive to anisotropy in both the resistive crust and uppermost mantle. The APPLE data include a 30 km radius circular deep-tow of a Horizontal Electric Dipole (HED) transmitter around orthogonal pairs of HED receivers. The circular tow was optimized to measure azimuthal anisotropy, while radially oriented data at ranges from 14 to 70 km provided constraints on depth dependence of bulk conductivity. We inverted these data with a nonlinear anisotropic inversion that allows for laterally transverse isotropy, with the vertical plane of isotropy aligned orthogonal to the paleo-spreading direction. Our best model shows at least an order of magnitude resistivity difference between the paleo-spreading and paleo-ridge strike directions in both the crust and upper mantle. In the crust, conductivity is higher in the paleo-ridge and vertical directions. The opposite is true in the upper mantle, where conductivity is ten times higher in the paleo-spreading direction. Since the study area is centered on 35 Ma lithosphere, it is unlikely that melt plays a role in the observed anisotropy. Instead we propose that the crustal anisotropy is due to conductive clay minerals in normal faults promoted by hydration during paleo-extension close to the mid-ocean ridge. The upper mantle anisotropy potentially results from a crystal preferred orientation of olivine induced by shear deformation. These findings offer clues about the processes associated with oceanic spreading and may be of import to ophiolite studies.
Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, N.; Maroun, F., E-mail: fouad.maroun@polytechnique.fr; Allongue, P.
2015-03-23
We studied the influence of controlled surface-limited oxidation of electrodeposited epitaxial Co(0001)/Au(111) films on their magnetic anisotropy energy using real time in situ magneto optical Kerr effect and density functional theory (DFT) calculations. We investigated the Co first electrochemical oxidation step which we demonstrate to be completely reversible and determined the structure of this oxide layer. We show that the interface magnetic anisotropy of the Co film increases by 0.36 erg/cm{sup 2} upon Co surface oxidation. We performed DFT calculations to determine the different surface structures in a wide potential range as well as the charge transfer at the Co surface.more » Our results suggest that the magnetic anisotropy change is correlated with a positive charge increase of 0.54 e{sup −} for the Co surface atom upon oxidation.« less
CeCo5 thin films with perpendicular anisotropy grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Sharma, S.; Hildebrandt, E.; Major, M.; Komissinskiy, P.; Radulov, I.; Alff, L.
2018-04-01
Buffer-free, highly textured (0 0 1) oriented CeCo5 thin films showing perpendicular magnetic anisotropy were synthesized on (0 0 1) Al2O3 substrates by molecular beam epitaxy. Ce exists in a mixture of Ce3+ and Ce4+ valence states as shown by X-ray photoelectron spectroscopy. The first anisotropy constant, K1, as measured by torque magnetometry was 0.82 MJ/m3 (8.2 ×106erg /cm3) . A maximum coercivity of 5.16 kOe with a negative temperature coefficient of -0.304%K-1 and a magnetization of 527.30 emu/cm3 was measured perpendicular to the film plane at 5 K. In addition, a large anisotropy of the magnetic moment of 15.5% was observed. These magnetic parameters make CeCo5 a potential candidate material for spintronic and magnetic recording applications.
Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T
2014-01-01
Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.
Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop
NASA Astrophysics Data System (ADS)
McNally, Frank
Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work represents an early attempt at understanding the anisotropy through the study of the spectrum and composition. The high-statistics data set reveals more details on the properties of the anisotropy, potentially able to shed light on the various physical processes responsible for the complex angular structure and energy evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munaò, Gianmarco, E-mail: gmunao@unime.it; Costa, Dino; Caccamo, Carlo
We investigate thermodynamic properties of anisotropic colloidal dumbbells in the frameworks provided by the Reference Interaction Site Model (RISM) theory and an Optimized Perturbation Theory (OPT), this latter based on a fourth-order high-temperature perturbative expansion of the free energy, recently generalized to molecular fluids. Our model is constituted by two identical tangent hard spheres surrounded by square-well attractions with same widths and progressively different depths. Gas-liquid coexistence curves are obtained by predicting pressures, free energies, and chemical potentials. In comparison with previous simulation results, RISM and OPT agree in reproducing the progressive reduction of the gas-liquid phase separation as themore » anisotropy of the interaction potential becomes more pronounced; in particular, the RISM theory provides reasonable predictions for all coexistence curves, bar the strong anisotropy regime, whereas OPT performs generally less well. Both theories predict a linear dependence of the critical temperature on the interaction strength, reproducing in this way the mean-field behavior observed in simulations; the critical density—that drastically drops as the anisotropy increases—turns to be less accurate. Our results appear as a robust benchmark for further theoretical studies, in support to the simulation approach, of self-assembly in model colloidal systems.« less
Anisotropic in-plane spin splitting in an asymmetric (001) GaAs/AlGaAs quantum well
2011-01-01
The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001) GaAs/AlxGa1-xAs quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature. PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe, PMID:21888636
NASA Astrophysics Data System (ADS)
Thakur, Jyoti; Singh, Om Pal; Tomar, Monika; Gupta, Vinay; Kashyap, Manish K.
2018-04-01
ab-initio investigation of magnetocrystalline anisotropy energy (MAE) for Fe2P and CoFeP using density functional theory based full-potential linear augmented plane wave (FPLAPW) is reported. CoFeP alloy exhibits large magnetic moment 13.28 µB and enhanced anisotropy energy reaching as high as 1326 µeV/f.u. This energy is nearly doubled as compared to its parent Fe2P alloy, making this system a promising candidate for a rare earth free permanent magnet. Substituitng Co at Fe-3f site in Fe2P helps in stabilizing the new structure and further improves the magnetic properties.
Application Potential of Nanocrystalline Ribbons Still Pending
NASA Astrophysics Data System (ADS)
Butvin, Pavol; Butvinová, Beata; Švec, Peter; Sitek, Jozef
2010-09-01
Nanocrystalline soft-magnetic ribbons promised a wide-spread practical use when introduced at the beginning of nineties. After 20 years of extensive research there are still unclear material problems which are thought to be the principal reason why these materials show but marginal use. Poorly controllable magnetic anisotropy due to spontaneous intrinsic macroscopic stress that comes from an inevitable heterogeneity of the ribbon materials is pointed to in this work. Certain stress-based mechanisms are shown to induce the unintended anisotropy in the already familiar Finemets as well as in the newer Hitperms. Hysteresis loops, domain structure and power loss is used to reveal the anisotropy consequences and particular connected but still unanswered questions are pinpointed.
Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.
1990-01-01
The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.
Modelling the pressure-strain correlation of turbulence - An invariant dynamical systems approach
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.
1991-01-01
The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.
Protein membrane interaction: effect of myelin basic protein on the dynamics of oriented lipids
NASA Astrophysics Data System (ADS)
Natali, F.; Relini, A.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P.
2003-08-01
We have studied the effect of physiological amounts of myelin basic protein (MBP) on pure dimyristoyl L-α-phosphatidic acid (DMPA) oriented membranes. The investigation has been carried out using several complementary experimental methods to provide a detailed characterization of the proteo-lipid complexes. In particular, taking advantage of the power of the quasi-elastic neutron scattering (QENS) technique as optimal probe in biology, a significant effect is suggested to be induced by MBP on the anisotropy of lipid dynamics across the liquid-gel phase transition. Thus, the enhancement of the spatially restricted, vertical translation motion of DMPA is suggested to be the main responsible for the increased contribution of the out of plane lipid dynamics observed at 340 K.
Characterization of the velocity anisotropy of accreted globular clusters
NASA Astrophysics Data System (ADS)
Bianchini, P.; Sills, A.; Miholics, M.
2017-10-01
Galactic globular clusters (GCs) are believed to have formed in situ in the Galaxy as well as in dwarf galaxies later accreted on to the Milky Way. However, to date, there is no unambiguous signature to distinguish accreted GCs. Using specifically designed N-body simulations of GCs evolving in a variety of time-dependent tidal fields (describing the potential of a dwarf galaxy-Milky Way merger), we analyse the effects imprinted on the internal kinematics of an accreted GC. In particular, we look at the evolution of the velocity anisotropy. Our simulations show that at early phases, the velocity anisotropy is determined by the tidal field of the dwarf galaxy and subsequently the clusters will adapt to the new tidal environment, losing any signature of their original environment in a few relaxation times. At 10 Gyr, GCs exhibit a variety of velocity anisotropy profiles, namely, isotropic velocity distribution in the inner regions and either isotropy or radial/tangential anisotropy in the intermediate and outer regions. Independent of an accreted origin, the velocity anisotropy primarily depends on the strength of the tidal field cumulatively experienced by a cluster. Tangentially anisotropic clusters correspond to systems that have experienced stronger tidal fields and are characterized by higher tidal filling factor, r50/rj ≳ 0.17, higher mass-loss ≳ 60 per cent and relaxation times trel ≲ 109 Gyr. Interestingly, we demonstrate that the presence of tidal tails can significantly contaminate the measurements of velocity anisotropy when a cluster is observed in projection. Our characterization of the velocity anisotropy profiles in different tidal environments provides a theoretical benchmark for the interpretation of the unprecedented amount of three-dimensional kinematic data progressively available for Galactic GCs.
Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere
NASA Astrophysics Data System (ADS)
Gegout, P.; Biancale, R.; Soudarin, L.
2011-10-01
The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range corrections at the measurement level with millimeter accuracy at low elevation. AMF to the azimuthal anisotropy of the neutral atmosphere are designed to adapt to complex weather conditions by adaptively changing their truncations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.
2015-12-28
Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of localmore » field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.« less
NASA Astrophysics Data System (ADS)
Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.
2015-12-01
Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of local field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.
NASA Astrophysics Data System (ADS)
Barnhoorn, Auke; Houben, Maartje; Lie-A-Fat, Joella; Ravestein, Thomas; Drury, Martyn
2015-04-01
In unconventional tough gas reservoirs (e.g. tight sandstones or shales) the presence of fractures, either naturally formed or hydraulically induced, is almost always a prerequisite for hydrocarbon productivity to be economically viable. One of the formations classified so far as a potential interesting formation for shale gas exploration in the Netherlands is the Lower Jurassic Posidonia Shale Formation (PSF). However data of the Posidonia Shale Formation is scarce so far and samples are hard to come by, especially on the variability and heterogeneity of the petrophysical parameters of this shale little is known. Therefore research and sample collection is conducted on a time and depositional analogue of the PSF: the Whitby Mudstone Formation (WMF) in the United Kingdom. A large number of samples along a ~7m stratigraphic section of the Whitby Mudstone Formation have been collected and analysed. Standard petrophysical properties such as porosity and matrix densities are quantified for a number of samples throughout the section, as well as mineral composition analysis based on XRD/XRF and SEM analyses. Seismic velocity measurements are also conducted at multiple heights in the section and in multiple directions to elaborate on anisotropy of the material. Attenuation anisotropy is incorporated as well as Thomsen's parameters combined with elastic parameters, e.g. Young's modulus and Poisson's ratio, to quantify the elastic anisotropy. Furthermore rock mechanical experiments are conducted to determine the elastic constants, rock strength, fracture characteristics, brittleness index, fraccability and rock mechanical anisotropy across the stratigraphic section of the Whitby mudstone formation. Results show that the WMF is highly anisotropic and it exhibits an anisotropy on the large limit of anisotropy reported for US gas shales. The high anisotropy of the Whitby shales has an even larger control on the formation of the fracture network. Furthermore, most petrophysical properties are highly variable. They vary per sample, but even within a sample on a mm-scale, large variations in e.g. the porosity occur. These relatively large variations influence the potential for future shale gas exploration for these Lower Jurassic shales in northern Europe and need to be quantified in detail beforehand. Compositional analyses and rock deformation experiments on the first samples indicate relatively low brittleness indices for the Whitby shale, but variation of these parameters within the stratigraphy are present. All petrophysical analyses combined will provide a complete assessment of the potential for shale gas exploration of these Lower Jurassic shales.
Instabilities excited by an energetic ion beam and electron temperature anisotropy in tandem mirrors
NASA Technical Reports Server (NTRS)
Da Jornada, E. H.; Gaffey, J. D., Jr.; Winske, D.
1985-01-01
Tandem mirrors are magnetic confinement devices, which have the objective to prevent a leaking out of ions in a central (solenoidal) cell at the end. This is accomplished by making use of an electrostatic potential, which is maintained by a denser plasma in mirror end cells. In the Tandem Mirror Experiment (TMX), Correll et al. (1982) have successfully verified the basic concepts involved in the design of the considered device. However, it was also found that the simple tandem mirror could not be easily scaled to a reactor-size device. Approaches for solving the arising problems were studied, taking into account also the utilization of a thermal barrier. In this connection, Winske et al. (1985) studied the nonlinear development of the instability in a finite beta plasma with isotropic electrons. The present investigation is concerned with an extension of the calculations conducted by Winske et al., giving attention to the parameter regime of the TMX. It is found that three instabilities can occur.
Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites.
Ma, Renzhi; Sasaki, Takayoshi
2010-12-01
A wide variety of cation-exchangeable layered transition metal oxides and their relatively rare counterparts, anion-exchangeable layered hydroxides, have been exfoliated into individual host layers, i.e., nanosheets. Exfoliation is generally achieved via a high degree of swelling, typically driven either by intercalation of bulky organic ions (quaternary ammonium cations, propylammonium cations, etc.) for the layered oxides or by solvation with organic solvents (formamide, butanol, etc.) for the hydroxides. Ultimate two-dimensional (2D) anisotropy for the nanosheets, with thickness of around one nanometer versus lateral size ranging from submicrometer to several tens of micrometers, allows them to serve either as an ideal quantum system for fundamental study or as a basic building block for functional assembly. The charge-bearing inorganic macromolecule-like nanosheets can be assembled or organized through various solution-based processing techniques (e.g., flocculation, electrostatic sequential deposition, or the Langmuir-Blodgett method) to produce a range of nanocomposites, multilayer nanofilms, and core-shell nanoarchitectures, which have great potential for electronic, magnetic, optical, photochemical, and catalytic applications.
Crust-mantle mechanical coupling in Eastern Mediterranean and Eastern Turkey
Sinan Özeren, M.
2012-01-01
Present-day crust-mantle coupling in the Eastern Mediterranean and eastern Turkey is studied using the Global Positioning System (GPS) and seismic anisotropy data. The general trend of the shear wave fast-splitting directions in NE Turkey and Lesser Caucaus align well with the geodetic velocities in an absolute plate motion frame of reference pointing to an effective coupling in this part of the region of weak surface deformation. Farther south, underneath the Bitlis Suture, however, there are significant Pn delays with E-W anisotropy axes indicating significant lateral escape. Meanwhile, the GPS reveals very little surface deformation. This mismatch possibly suggests a decoupling along the suture. In the Aegean, the shear wave anisotropy and the Pn anisotropy directions agree with the extensional component of the right-lateral shear strains except under the Crete Basin and other parts of the southern Aegean Sea. This extensional direction matches perfectly also with the southward pulling force vectors across the Hellenic trench; however, the maximum right-lateral shear directions obtained from the GPS data in the Aegean do not match either of these anisotropies. Seismic anisotropy from Rayleigh waves sampled at 15 s, corresponding to the lower crust, match the maximum right-lateral maximum shear directions from the GPS indicating decoupling between the crust and the mantle. This decoupling most likely results from the lateral variations of the gravitational potential energies and the slab-pull forces. PMID:22592788
Crust-mantle mechanical coupling in Eastern Mediterranean and eastern Turkey.
Özeren, M Sinan
2012-05-29
Present-day crust-mantle coupling in the Eastern Mediterranean and eastern Turkey is studied using the Global Positioning System (GPS) and seismic anisotropy data. The general trend of the shear wave fast-splitting directions in NE Turkey and Lesser Caucaus align well with the geodetic velocities in an absolute plate motion frame of reference pointing to an effective coupling in this part of the region of weak surface deformation. Farther south, underneath the Bitlis Suture, however, there are significant Pn delays with E-W anisotropy axes indicating significant lateral escape. Meanwhile, the GPS reveals very little surface deformation. This mismatch possibly suggests a decoupling along the suture. In the Aegean, the shear wave anisotropy and the Pn anisotropy directions agree with the extensional component of the right-lateral shear strains except under the Crete Basin and other parts of the southern Aegean Sea. This extensional direction matches perfectly also with the southward pulling force vectors across the Hellenic trench; however, the maximum right-lateral shear directions obtained from the GPS data in the Aegean do not match either of these anisotropies. Seismic anisotropy from Rayleigh waves sampled at 15 s, corresponding to the lower crust, match the maximum right-lateral maximum shear directions from the GPS indicating decoupling between the crust and the mantle. This decoupling most likely results from the lateral variations of the gravitational potential energies and the slab-pull forces.
Spaggiari, S; Baruffi, S; Macchi, E; Traversa, M; Arisi, G; Taccardi, B
1986-11-01
We tried to establish whether some of the manifestations of electrical anisotropy previously observed on the canine ventricular epicardium during the spread of excitation were also present during repolarization, with the appropriate polarity. To this end we determined the potential distribution on the ventricular surface of exposed dog hearts during ventricular excitation and repolarization. The ventricles were paced by means of epicardial or intramural electrodes. During the early stages of ventricular excitation following epicardial pacing we observed typical, previously described potential patterns, with negative, elliptical equipotential lines surrounding the pacing site, and two maxima aligned along the direction of subepicardial fibers. Intramural pacing gave rise to similar patterns. The axis joining the maxima, however, was oriented along the direction of intramural fibers. The repolarization potential pattern relating to epicardial excitation exhibited some features similar to those observed during the spread of excitation, namely the presence of families of elliptical equipotential lines around the pacing site, with pairs of potential extrema along the major or minor axes of the ellipses or both. The location of the extrema and the distribution of the epicardial potential gradients during repolarization suggested the presence of anisotropic current generators mainly oriented along the direction of deep myocardial fibers, with some contribution from more superficial sources which were oriented along the direction of subepicardial fibers. Deep stimulation elicited more complicated epicardial patterns whose interpretation is still obscure. We conclude that the electrical anisotropy of the heart affects the distribution of repolarization potentials and probably the strength of electrical generators during ventricular repolarization.
Strain-induced friction anisotropy between graphene and molecular liquids
NASA Astrophysics Data System (ADS)
Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent; Vo, Van-Hoang
2017-01-01
In this paper, we study the friction behavior of molecular liquids with anisotropically strained graphene. Due to the changes of lattice and the potential energy surface, the friction is orientation dependent and can be computed by tensorial Green-Kubo formula. Simple quantitative estimations are also proposed for the zero-time response and agree reasonably well with the molecular dynamics results. From simulations, we can obtain the information of structures, dynamics of the system, and study the influence of strain and molecular shapes on the anisotropy degree. It is found that unilateral strain can increase friction in all directions but the strain direction is privileged. Numerical evidences also show that nonspherical molecules are more sensitive to strain and give rise to more pronounced anisotropy effects.
The importance of fracture toughness in ultrafine and nanocrystalline bulk materials
Pippan, R.; Hohenwarter, A.
2016-01-01
ABSTRACT The suitability of high-strength ultrafine and nanocrystalline materials processed by severe plastic deformation methods and aimed to be used for structural applications will strongly depend on their resistance against crack growth. In this contribution some general available findings on the damage tolerance of this material class will be summarized. Particularly, the occurrence of a pronounced fracture anisotropy will be in the center of discussion. In addition, the great potential of this generated anisotropy to obtain high-strength materials with exceptionally high fracture toughness in specific loading and crack growth directions will be enlightened. IMPACT STATEMENT Severely plastically deformed materials are reviewed in light of their damage tolerance. The frequently observed toughness anisotropy allows unprecedented fracture toughness – strength combinations. PMID:27570712
Microwave background anisotropies in quasiopen inflation
NASA Astrophysics Data System (ADS)
García-Bellido, Juan; Garriga, Jaume; Montes, Xavier
1999-10-01
Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.
Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.
Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc
2016-04-04
Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.
NASA Astrophysics Data System (ADS)
Zhong, Xin; Frehner, Marcel; Kunze, Karsten; Zappone, Alba
2014-10-01
A novel electron backscatter diffraction (EBSD) -based finite-element (FE) wave propagation simulation is presented and applied to investigate seismic anisotropy of peridotite samples. The FE model simulates the dynamic propagation of seismic waves along any chosen direction through representative 2D EBSD sections. The numerical model allows separation of the effects of crystallographic preferred orientation (CPO) and shape preferred orientation (SPO). The obtained seismic velocities with respect to specimen orientation are compared with Voigt-Reuss-Hill estimates and with laboratory measurements. The results of these three independent methods testify that CPO is the dominant factor controlling seismic anisotropy. Fracture fillings and minor minerals like hornblende only influence the seismic anisotropy if their volume proportion is sufficiently large (up to 23%). The SPO influence is minor compared to the other factors. The presented FE model is discussed with regard to its potential in simulating seismic wave propagation using EBSD data representing natural rock petrofabrics.
NASA Astrophysics Data System (ADS)
Gross, Lutz; Tyson, Stephen
2015-04-01
Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.
Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F
2016-06-14
Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Batu, Vedat
2015-01-01
In this paper, a new generalized three-dimensional complete analytical solution is presented for any well screen shape in a vertically and horizontally anisotropic confined aquifer in x-y-z Cartesian coordinates system for drawdown by taking into account the three principal hydraulic conductivities (Kx, Ky, and Kz) along the x-y-z coordinate directions. The special solution covers a partially-penetrating inclined parallelepiped as well as an inclined line source well. It has been showed that the rectangular parallelepiped screen case solution of Batu (2012) is a special case of this general solution. Like Batu (2012), the horizontal well case is a special case of this solution as well. The solution takes into account both the vertical anisotropy (azx = Kz/Kx) as well as the horizontal anisotropy (ayx = Ky/Kx) and has potential application areas to analyze pumping test drawdown data from partially-penetrating inclined wells by representing them as tiny parallelepiped as well as line sources. Apart from other verifications, the inclined well solution results have also been compared with the results of MODFLOW with very good agreement. The solution has also potential application areas for a partially-penetrating inclined parallelepiped fracture. With this new solution, both the horizontal anisotropy (ayx = Ky/Kx) as well as the vertical anisotropy (azx = Kz/Kx) can also be determined using observed drawdown data.
Spontaneous Emergence of Legibility in Writing Systems: The Case of Orientation Anisotropy.
Morin, Olivier
2018-03-01
Cultural forms are constrained by cognitive biases, and writing is thought to have evolved to fit basic visual preferences, but little is known about the history and mechanisms of that evolution. Cognitive constraints have been documented for the topology of script features, but not for their orientation. Orientation anisotropy in human vision, as revealed by the oblique effect, suggests that cardinal (vertical and horizontal) orientations, being easier to process, should be overrepresented in letters. As this study of 116 scripts shows, the orientation of strokes inside written characters massively favors cardinal directions, and it is organized in such a way as to make letter recognition easier: Cardinal and oblique strokes tend not to mix, and mirror symmetry is anisotropic, favoring vertical over horizontal symmetry. Phylogenetic analyses and recently invented scripts show that cultural evolution over the last three millennia cannot be the sole cause of these effects. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
Low energy spin dynamics of rare-earth orthoferrites YFeO3 and LaFeO3
NASA Astrophysics Data System (ADS)
Park, Kisoo; Sim, Hasung; Leiner, Jonathan; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Yano, Shinichiro; Gardner, Jason; Park, Je-Geun
YFeO3 and LaFeO3\\ are members of the rare-earth orthoferrites (RFeO3) family with Pbnm space group. With the strong superexchange interaction between Fe3 + ions, both compounds exhibit the room temperature antiferromagnetic order (TN >600 K) with a slight spin canting. Here we report low-energy magnetic excitation of YFeO3 and LaFeO3 using inelastic neutron scattering measurements, showing evidence of magnon mode splitting and a spin anisotropy gap at the zone center. Spin wave calculations with the spin Hamiltonian including both Dzyaloshinsky-Moriya interaction and single-ion anisotropy accounts for the observed features well. Our results offer insight into the underlying physics of other RFeO3\\ with magnetic rare-earth ions or related Fe3+-based multiferroic perovskites such as BiFeO3. The work at the IBS CCES (South Korea) was supported by the research program of the Institute for Basic Science (IBS-R009-G1).
Modelling electro-active polymers with a dispersion-type anisotropy
NASA Astrophysics Data System (ADS)
Hossain, Mokarram; Steinmann, Paul
2018-02-01
We propose a novel constitutive framework for electro-active polymers (EAPs) that can take into account anisotropy with a chain dispersion. To enhance actuation behaviour, particle-filled EAPs become promising candidates nowadays. Recent studies suggest that particle-filled EAPs, which can be cured under an electric field during the manufacturing time, do not necessarily form perfect anisotropic composites, rather they create composites with dispersed chains. Hence in this contribution, an electro-mechanically coupled constitutive model is devised that considers the chain dispersion with a probability distribution function in an integral form. To obtain relevant quantities in discrete form, numerical integration over the unit sphere is utilized. Necessary constitutive equations are derived exploiting the basic laws of thermodynamics that result in a thermodynamically consistent formulation. To demonstrate the performance of the proposed electro-mechanically coupled framework, we analytically solve a non-homogeneous boundary value problem, the extension and inflation of an axisymmetric cylindrical tube under electro-mechanically coupled load. The results capture various electro-mechanical couplings with the formulation proposed for EAP composites.
Bergmair, Michael; Bruno, Giovanni; Cattelan, Denis; Cobet, Christoph; de Martino, Antonello; Fleischer, Karsten; Dohcevic-Mitrovic, Zorana; Esser, Norbert; Galliet, Melanie; Gajic, Rados; Hemzal, Dušan; Hingerl, Kurt; Humlicek, Josef; Ossikovski, Razvigor; Popovic, Zoran V.; Saxl, Ottilia
2009-01-01
This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures. PMID:21170135
Skyrmion-based multi-channel racetrack
NASA Astrophysics Data System (ADS)
Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Xia, Haiyan; Wang, Jianbo; Liu, Qingfang
2017-11-01
Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.
Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging
NASA Astrophysics Data System (ADS)
He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui
2014-03-01
Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.
Non-stationary measurements of Chiral Magnetic Effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, V.I., E-mail: vladimir.i.shevchenko@gmail.com
2013-12-15
We discuss the Chiral Magnetic Effect from the quantum theory of measurements point of view for non-stationary measurements. The effect of anisotropy for fluctuations of electric currents in a magnetic field is addressed. It is shown that anisotropy caused by nonzero axial chemical potential is indistinguishable in this framework from anisotropy caused by finite measurement time or finite lifetime of the magnetic field, and in all cases it is related to abelian triangle anomaly. Possible P-odd effects in central heavy-ion collisions (where the Chiral Magnetic Effect is absent) are discussed in this context. This paper is dedicated to the memorymore » of Professor Mikhail Polikarpov (1952–2013). -- Highlights: •Asymmetry in the response function for vector currents of massless fermions in the magnetic field is computed. •Asymmetry caused by axial chemical potential is practically indistinguishable from the one caused by non-stationarity. •The CME current is non-dissipative in the stationary case and dissipative in the non-stationary case. •Importance of studies of P-odd signatures in central collisions is emphasized.« less
Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses
NASA Astrophysics Data System (ADS)
Dubs, Carsten; Surzhenko, Oleksii; Linke, Ralf; Danilewsky, Andreas; Brückner, Uwe; Dellith, Jan
2017-05-01
Using a liquid phase epitaxy (LPE) technique (1 1 1) yttrium iron garnet (YIG) films with thicknesses of ≈100 nm and surface roughnesses as low as 0.3 nm have been grown on (1 1 1) gadolinium gallium garnet (GGG) substrates as a basic material for spin-wave propagation experiments in microstructured waveguides. The continuously strained films exhibit nearly perfect crystallinity without significant mosaicity and with effective lattice misfits of Δ {{a}\\bot}/{{a}s}≈ {{10}-4} and below. The film/substrate interface is extremely sharp without broad interdiffusion layer formation. All LPE films exhibit a nearly bulk-like saturation magnetization of (1800+/- 20 ) Gs and an ‘easy cone’ anisotropy type with extremely small in-plane coercive fields <0.2 Oe. There is a rather weak in-plane magnetic anisotropy with a pronounced six-fold symmetry observed for the saturation field <1.5 Oe. No significant out-of-plane anisotropy is observed, but a weak dependence of the effective magnetization on the lattice misfit is detected. The narrowest ferromagnetic resonance linewidth is determined to be 1.4 Oe @ 6.5 GHz which is the lowest value reported so far for YIG films of 100 nm thicknesses and below. The Gilbert damping coefficient for investigated LPE films is estimated to be close to 1× {{10}-4} .
Characteristics of trapped proton anisotropy at Space Station Freedom altitudes
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.; Watts, J. W.
1990-01-01
The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness, and radiation effect (silicon rad and rem dose).
Teruel, Jose R; Goa, Pål E; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F
2016-05-01
To compare "standard" diffusion weighted imaging, and diffusion tensor imaging (DTI) of 2(nd) and 4(th) -order for the differentiation of malignant and benign breast lesions. Seventy-one patients were imaged at 3 Tesla with a 16-channel breast coil. A diffusion weighted MRI sequence including b = 0 and b = 700 in 30 directions was obtained for all patients. The image data were fitted to three different diffusion models: isotropic model - apparent diffusion coefficient (ADC), 2(nd) -order tensor model (the standard model used for DTI) and a 4(th) -order tensor model, with increased degrees of freedom to describe anisotropy. The ability of the fitted parameters in the different models to differentiate between malignant and benign tumors was analyzed. Seventy-two breast lesions were analyzed, out of which 38 corresponded to malignant and 34 to benign tumors. ADC (using any model) presented the highest discriminative ability of malignant from benign tumors with a receiver operating characteristic area under the curve (AUC) of 0.968, and sensitivity and specificity of 94.1% and 94.7% respectively for a 1.33 × 10(-3) mm(2) /s cutoff. Anisotropy measurements presented high statistical significance between malignant and benign tumors (P < 0.001), but with lower discriminative ability of malignant from benign tumors than ADC (AUC of 0.896 and 0.897 for fractional anisotropy and generalized anisotropy respectively). Statistical significant difference was found between generalized anisotropy and fractional anisotropy for cancers (P < 0.001) but not for benign lesions (P = 0.87). While anisotropy parameters have the potential to provide additional value for breast applications as demonstrated in this study, ADC exhibited the highest differentiation power between malignant and benign breast tumors. © 2015 Wiley Periodicals, Inc.
Anisotropy-driven transition from the Moore-Read state to quantum Hall stripes
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Sodemann, Inti; Sheng, D. N.; Fu, Liang
2017-05-01
We investigate the nature of the quantum Hall liquid in a half-filled second Landau level (n =1 ) as a function of band mass anisotropy using numerical exact diagonalization and density matrix renormalization group methods. We find increasing the mass anisotropy induces a quantum phase transition from the Moore-Read state to a charge density wave state. By analyzing the energy spectrum, guiding center structure factors, and by adding weak pinning potentials, we show that this charge density wave is a unidirectional quantum Hall stripe, which has a periodicity of a few magnetic lengths and survives in the thermodynamic limit. We find smooth profiles for the guiding center occupation function that reveal the strong coupling nature of the array of chiral Luttinger liquids residing at the stripe edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Gendy, AA; Bertino, M; Clifford, D
Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe2C) of nanoparticles. Structural characterization of the CoFe2C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffraction was alsomore » performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, TB, of 790K for particles with a domain size as small as 5 +/- 1 nm. The particles have magnetocrystalline anisotropy of 4.662 +/- 10 6 J/m(3), which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe2C nanoparticles have huge potential for enhanced magnetic data storage devices. (C) 2015 AIP Publishing LLC.« less
NASA Astrophysics Data System (ADS)
Keppler, Ruth; Behrmann, Jan H.; Stipp, Michael
2017-07-01
Many blueschists and eclogites are inferred to have formed from oceanic basalts in subducted slabs. Knowledge of their elastic behavior is essential for reconstructing the internal structure of subduction zones. The Cycladic blueschist unit, exposed on Syros Island (Greece), contains rocks belonging to an exhumed Tertiary subduction complex. They were possibly part of a subduction channel, a shear zone above the subducting slab in which exhumation is possible during subduction. Intense plastic deformation, forming crystallographic preferred orientations (CPO), accompanied blueschist and eclogite metamorphism. CPO of the constituent minerals in the collected samples was determined by time-of-flight neutron diffraction. Two samples are foliated fine-grained blueschists with strong CPO, rich in glaucophane, zoisite, and phengite. Two coarser-grained eclogite samples rich in omphacite and clinozoisite, or glaucophane, have weaker CPO. Vp and Vs anisotropies were computed from the orientation distribution function and single-crystal elastic constants. All samples show velocity maxima parallel to the mineral lineation, and minima normal to the foliation, providing important constraints on orientations of seismic anisotropy in subduction channels. Vp anisotropies are up to 3 times higher (6.5-12%) in the blueschists than in the eclogites (3-4%), pointing to a potentially important lithological control of elastic anisotropy in subducted oceanic crust.
Search for anisotropy in the Debye-Waller factor of HCP solid 4He
NASA Astrophysics Data System (ADS)
Barnes, Ashleigh L.; Hinde, Robert J.
2016-02-01
The properties of hexagonal close packed (hcp) solid 4He are dominated by large atomic zero point motions. An accurate description of these motions is therefore necessary in order to accurately calculate the properties of the system, such as the Debye-Waller (DW) factors. A recent neutron scattering experiment reported significant anisotropy in the in-plane and out-of-plane DW factors for hcp solid 4He at low temperatures, where thermal effects are negligible and only zero-point motions are expected to contribute. By contrast, no such anisotropy was observed either in earlier experiments or in path integral Monte Carlo (PIMC) simulations of solid hcp 4He. However, the earlier experiments and the PIMC simulations were both carried out at higher temperatures where thermal effects could be substantial. We seek to understand the cause of this discrepancy through variational quantum Monte Carlo simulations utilizing an accurate pair potential and a modified trial wavefunction which allows for anisotropy. Near the melting density, we find no anisotropy in an ideal hcp 4He crystal. A theoretical equation of state is derived from the calculated energies of the ideal crystal over a range of molar volumes from 7.88 to 21.3 cm3, and is found to be in good qualitative agreement with experimental data.
NASA Astrophysics Data System (ADS)
Cyprych, Daria; Piazolo, Sandra; Almqvist, Bjarne S. G.
2017-11-01
We present calculated seismic velocities and anisotropies of mafic granulites and eclogites from the Cretaceous deep lower crust (∼40-65 km) of Fiordland, New Zealand. Both rock types show a distinct foliation defined by cm-scale compositional banding. Seismic properties are estimated using the Asymptotic Expansion Homogenisation - Finite Element (AEH-FE) method that, unlike the commonly used Voigt-Reuss-Hill homogenisation, incorporates the phase boundary network into calculations. The predicted mean P- and S-wave velocities are consistent with previously published data for similar lithologies from other locations (e.g., Kohistan Arc), although we find higher than expected anisotropies (AVP ∼ 5.0-8.0%, AVS ∼ 3.0-6.5%) and substantial S-wave splitting along foliation planes in granulites. This seismic signature of granulites results from a density and elasticity contrast between cm-scale pyroxene ± garnet stringers and plagioclase matrix rather than from crystallographic orientations alone. Banded eclogites do not show elevated anisotropies as the contrast in density and elastic constants of garnet and pyroxene is too small. The origin of compositional banding in Fiordland granulites is primarily magmatic and structures described here are expected to be typical for the base of present day magmatic arcs. Hence, we identify a new potential source of anisotropy within this geotectonic setting.
NASA Astrophysics Data System (ADS)
Wishart, D. N.; Slater, L. D.
2007-05-01
We examined the potential for geophysical characterization of fractured rock anisotropy by combining asymmetric configurations of azimuthal self potential (ASP) and azimuthal resistivity surveys (ARS), as previously demonstrated in the laboratory, at four field sites in the New Jersey Highlands (NJH) Province. There is a striking correlation between ASP measurements and fracture strike orientations at three of four sites investigated. ARS (electrical) data suggest three sites are overall heterogeneous and the fourth is anisotropic. The characteristic anisotropicity at the fourth site is controlled by a master structure; the NE-SW trending Lake Inez Fault Zone (LIFZ) that strikes at N10ºE and parallels the Wanaque River to the east side of the site. Inferred groundwater flow directions are comparable to the (1) positive polarity (+ve) and magnitude of site-specific SP, (2) local surface drainage, and (3) also conformable with the regional northwest and northeast fracture trend of the NJH. The ASP is ineffective at one heterogeneous site where there is a lack of correlation between ASP and fracture strike data, probably due to poor drainage where there are no distinct paths of flow defined along fractures. Quantitative analysis of the magnitude of the energy observed in the odd and even coefficients of the power spectra of self potential (SP) datasets analyzed using a Fourier series was useful for characterizing anisotropic or heterogeneous flow in the fracture network. For anisotropic flow, the odd coefficients (harmonics) were close to zero, whereas heterogeneous flow resulted in significant energy in the odd coefficients. The employment of asymmetric geoelectric arrays has allowed this quantitative distinction between anisotropy and heterogeneity in fractured bedrock. The results of our study suggest the ability to quantify hydraulic anisotropy with azimuthal self potential and the distinction between electrically-anisotropic and electrically-heterogeneous in the subsurface. These results represent a significant advancement over the use of traditional resistivity arrays in site characterization of fracture- dominated systems.
Wishart, D.N.; Slater, L.D.; Schnell, D.L.; Herman, G.C.
2009-01-01
The pneumatic fracturing technique is used to enhance the permeability and porosity of tight unconsolidated soils (e.g. clays), thereby improving the effectiveness of remediation treatments. Azimuthal self potential gradient (ASPG) surveys were performed on a compacted, unconsolidated clay block in order to evaluate their potential to delineate contaminant migration pathways in a mechanically-induced fracture network. Azimuthal resistivity (ARS) measurements were also made for comparative purposes. Following similar procedures to those used in the field, compressed kaolinite sediments were pneumatically fractured and the resulting fracture geometry characterized from strike analysis of visible fractures combined with strike data from optical borehole televiewer (BHTV) imaging. We subsequently injected a simulated treatment (electrolyte/dye) into the fractures. Both ASPG and ARS data exhibit anisotropic geoelectric signatures resulting from the fracturing. Self potentials observed during injection of electrolyte are consistent with electrokinetic theory and previous laboratory results on a fracture block model. Visual (polar plot) analysis and linear regression of cross plots show ASPG lobes are correlated with azimuths of high fracture strike density, evidence that the ASPG anisotropy is a proxy measure of hydraulic anisotropy created by the pneumatic fracturing. However, ARS data are uncorrelated with fracture strike maxima and resistivity anisotropy is probably dominated by enhanced surface conduction along azimuths of weak 'starter paths' formed from pulverization of the clay and increases in interfacial surface area. We find the magnitude of electrokinetic SP scales with the applied N2 gas pressure gradient (??PN2) for any particular hydraulically-active fracture set and that the positive lobe of the ASPG anomaly indicates the flow direction within the fracture network. These findings demonstrate the use of ASPG in characterizing the effectiveness of (1) pneumatic fracturing and (2) defining likely flow directions of remedial treatments in unconsolidated sediments and rock. ?? 2008 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stock, Dennis; Meyer, Sven; Sarli, Eleonora; Bartelmann, Matthias; Balestra, Italo; Grillo, Claudio; Koekemoer, Anton; Mercurio, Amata; Nonino, Mario; Rosati, Piero
2015-12-01
We reconstruct the radial profile of the projected gravitational potential of the galaxy cluster MACS J1206 from 592 spectroscopic measurements of velocities of cluster members. To accomplish this, we use a method we have developed recently based on the Richardson-Lucy deprojection algorithm and an inversion of the spherically-symmetric Jeans equation. We find that, within the uncertainties, our reconstruction agrees very well with a potential reconstruction from weak and strong gravitational lensing as well as with a potential obtained from X-ray measurements. In addition, our reconstruction is in good agreement with several common analytic profiles of the lensing potential. Varying the anisotropy parameter in the Jeans equation, we find that isotropy parameters, which are either small, β ≲ 0.2, or decrease with radius, yield potential profiles that strongly disagree with that obtained from gravitational lensing. We achieve the best agreement between our potential profile and the profile from gravitational lensing if the anisotropy parameter rises steeply to β ≈ 0.6 within ≈ 0.5 Mpc and stays constant further out.
Chow, Yu-Ting; Jiang, Bin-Han; Chang, Cheng-Hsun-Tony; Tsay, Jyh-Shen
2018-01-17
Modifying the interfacial conditions of magnetic layers by capping with overlayers can efficiently enhance the magnetic functionality of a material. However, the mechanisms responsible for this are closely related to the crystalline structure, compositional combinations, and interfacial quality, and are generally complex. In this contribution, we explored the use of Ag ultrathin overlayers on annealed . A method for preparing magnetic layers with different levels of enhanced magnetic anisotropy energy was developed. The method essentially involves simply modifying the contact area of the metallic/magnetic interface. A rougher interface results in a larger contact area between the Ag and Ni layers, resulting in an increase in magnetic anisotropy energy. Moreover, post-annealing treatments led to the segregation of Ni atoms, thus making the enhancement in the coercive force even more efficient. A model permits an understanding of the contact area and a strategy for enhancing the magnetic anisotropy energy and the coercive force was developed. Our approaches and the developed model promise to be helpful in terms of developing potential applications of ultrathin magnetic layers in the area of spintronics.
NASA Astrophysics Data System (ADS)
Krems, R. V.; Buchachenko, A. A.
2005-09-01
Based on measurements of the Zeeman relaxation in a cold gas of He3 [C. I. Hancox, S. C. Doret, M. I. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004)], we show that the electronic interaction anisotropy between rare-earth atoms with nonzero electronic orbital angular momenta and helium is extremely small. The interaction of the rare-earth atoms with He gives rise to several adiabatic potentials with different electronic symmetries. It is demonstrated that the energy splitting between these potentials does not exceed 0.09cm-1 at interatomic distances larger than the turning point for collisions at 0.8K, including the region of the van der Waals interaction minima.
Anisotopic inflation with a non-abelian gauge field in Gauss-Bonnet gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahiri, Sayantani, E-mail: sayantani.lahiri@gmail.com
2017-01-01
In presence of Gauss-Bonnet corrections, we study anisotropic inflation aided by a massless SU(2) gauge field where both the gauge field and the Gauss-Bonnet term are non-minimally coupled to the inflaton. In this scenario, under slow-roll approximations, the anisotropic inflation is realized as an attractor solution with quadratic forms of inflaton potential and Gauss-Bonnet coupling function. We show that the degree of anisotropy is proportional to the additive combination of two slow-roll parameters of the theory. The anisotropy may become either positive or negative similar to the non-Gauss-Bonnet framework, a feature of the model for anisotropic inflation supported by amore » non-abelian gauge field but the effect of Gauss-Bonnet term further enhances or suppresses the generated anisotropy.« less
Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.
Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik
2007-01-01
In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.
Anisotropic etching of platinum electrodes at the onset of cathodic corrosion
Hersbach, Thomas J. P.; Yanson, Alexei I.; Koper, Marc T. M.
2016-01-01
Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of −1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. PMID:27554398
Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin
2016-07-01
A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Gendy, Ahmed A., E-mail: aelgendy@vcu.edu, E-mail: ecarpenter2@vcu.edu, E-mail: snkhanna@vcu.edu; Nanotechnology and Nanometrology Lab., National institute for standards; Bertino, Massimo
Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe{sub 2}C) of nanoparticles. Structural characterization of the CoFe{sub 2}C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffractionmore » was also performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, T{sub B}, of 790 K for particles with a domain size as small as 5 ± 1 nm. The particles have magnetocrystalline anisotropy of 4.6 ± 2 × 10{sup 6 }J/m{sup 3}, which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe{sub 2}C nanoparticles have huge potential for enhanced magnetic data storage devices.« less
Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe 3 GeTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Houlong L.; Kent, P. R. C.; Hennig, Richard G.
Comore » mputationally characterizing magnetic properies of novel two-dimensional (2D) materials serves as an important first step of exploring possible applications. Using density-functional theory, we show that single-layer Fe 3 GeTe 2 is a potential 2D material with sufficiently low formation energy to be synthesized by mechanical exfoliation from the bulk phase with a van der Waals layered structure. In addition, we calculated the phonon dispersion demonstrating that single-layer Fe 3 GeTe 2 is dynamically stable. Furthermore, we find that similar to the bulk phase, 2D Fe 3 GeTe 2 exhibits amagnetic moment that originates from a Stoner instability. In contrast to other 2D materials, we find that single-layer Fe 3 GeTe 2 exhibits a significant uniaxial magnetocrystalline anisotropy energy of 920μ eV per Fe atom originating from spin-orbit coupling. In conclusion, we show that applying biaxial tensile strains enhances the anisotropy energy, which reveals strong magnetostriction in single-layer Fe 3 GeTe 2 with a sizable magneostrictive coefficient. Our results indicate that single-layer Fe 3 GeTe 2 is potentially useful for magnetic storage applications.« less
Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe 3 GeTe 2
Zhuang, Houlong L.; Kent, P. R. C.; Hennig, Richard G.
2016-04-06
Comore » mputationally characterizing magnetic properies of novel two-dimensional (2D) materials serves as an important first step of exploring possible applications. Using density-functional theory, we show that single-layer Fe 3 GeTe 2 is a potential 2D material with sufficiently low formation energy to be synthesized by mechanical exfoliation from the bulk phase with a van der Waals layered structure. In addition, we calculated the phonon dispersion demonstrating that single-layer Fe 3 GeTe 2 is dynamically stable. Furthermore, we find that similar to the bulk phase, 2D Fe 3 GeTe 2 exhibits amagnetic moment that originates from a Stoner instability. In contrast to other 2D materials, we find that single-layer Fe 3 GeTe 2 exhibits a significant uniaxial magnetocrystalline anisotropy energy of 920μ eV per Fe atom originating from spin-orbit coupling. In conclusion, we show that applying biaxial tensile strains enhances the anisotropy energy, which reveals strong magnetostriction in single-layer Fe 3 GeTe 2 with a sizable magneostrictive coefficient. Our results indicate that single-layer Fe 3 GeTe 2 is potentially useful for magnetic storage applications.« less
NASA Astrophysics Data System (ADS)
Batu, Vedat
2012-01-01
SummaryA new generalized three-dimensional analytical solution is developed for a partially-penetrating vertical rectangular parallelepiped well screen in a confined aquifer by solving the three-dimensional transient ground water flow differential equation in x- y- z Cartesian coordinates system for drawdown by taking into account the three principal hydraulic conductivities ( Kx, Ky, and Kz) along the x- y- z coordinate directions. The fully penetrating screen case becomes equivalent to the single vertical fracture case of Gringarten and Ramey (1973). It is shown that the new solution and Gringarten and Ramey solution (1973) match very well. Similarly, it is shown that this new solution for a horizontally tiny fully penetrating parallelepiped rectangular parallelepiped screen case match very well with Theis (1935) solution. Moreover, it is also shown that the horizontally tiny partially-penetrating parallelepiped rectangular well screen case of this new solution match very well with Hantush (1964) solution. This new analytical solution can also cover a partially-penetrating horizontal well by representing its screen interval with vertically tiny rectangular parallelepiped. Also the solution takes into account both the vertical anisotropy ( azx = Kz/ Kx) as well as the horizontal anisotropy ( ayx = Ky/ Kx) and has potential application areas to analyze pumping test drawdown data from partially-penetrating vertical and horizontal wells by representing them as tiny rectangular parallelepiped as well as line sources. The solution has also potential application areas for a partially-penetrating parallelepiped rectangular vertical fracture. With this new solution, the horizontal anisotropy ( ayx = Ky/ Kx) in addition to the vertical anisotropy ( azx = Kz/ Kx) can also be determined using observed drawdown data. Most importantly, with this solution, to the knowledge of the author, it has been shown the first time in the literature that some well-known well hydraulics problems can also be solved in Cartesian coordinates with some additional advantages other than the conventional cylindrical coordinates method.
Shape characteristics of equilibrium and non-equilibrium fractal clusters.
Mansfield, Marc L; Douglas, Jack F
2013-07-28
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other between the viscosity and hydrodynamic radii, as potential measures of shape anisotropy. We also find a strong correlation between anisotropy and effective fractal dimension. These observations should provide new practical methods for quantifying the nature of particle clustering in diverse contexts.
NASA Astrophysics Data System (ADS)
Wang, Xiaoqiang; Chen, Han; Lu, Xinwei; Chi, Haixia; Li, Shixin; Huang, Fang
2018-04-01
Proper translocation, membrane insertion and folding are crucial biophysical steps in the biogenesis of functional transmembrane peptides/proteins (TMPs). ATP-dependent chaperonins are able to regulate each of these processes, but the underlying mechanisms remain unclear. In this work, interaction between the bacterial chaperonin GroEL and a synthetic fluorescent transmembrane peptide was investigated by fluorescence anisotropy. Binding of the peptide with GroEL resulted in increased fluorescence anisotropy and intensity. The dissociation constant and binding stoichiometry, as assessed by titration of the peptide with GroEL, were estimated to be 0.6 ± 0.2 μM and 2.96 ± 0.35, respectively. Complementary study with the single-ring version of GroEL confirmed the high-affinity peptide binding, and indicates that the two GroEL rings may function alternatively in binding the peptides. The co-chaperonin GroES was found to be effective at releasing the peptides initially bound to GroEL with the help of ATP. Moreover, our observation with the single-ring GroEL mutant demonstrated that during the encapsulation of GroEL by GroES, the bound peptides may either be confined in the cage thus formed, or escape outside. Competitive binding experiments indicated that the peptides studied interact with GroEL through the paired helices H and I on its apical domain. Our spectroscopic studies revealed some basic mechanisms of interaction between transmembrane peptides and GroEL, which would be instrumental for deciphering the chaperonin-mediated TMP biogenesis.
Design of Co/Pd multilayer system with antiferromagnetic-to-ferromagnetic phase transition
NASA Astrophysics Data System (ADS)
Thiele, Jan-Ulrich
2009-03-01
Among the known magnetic material systems there are only very few examples of materials that undergo a temperature dependent antiferromagnetic-to-ferromagnetic phase transition, and of these only the chemically ordered alloy FeRh exhibits this transition near room temperature [1, 2]. Here we present a perpendicular anisotropy multilayer structure that mimics FeRh. The basic idea is to use two stacks of Co/Pd multilayers with large perpendicular magnetic anisotropy and high Curie temperature, TC, separated by a layer providing antiferromagnetic coupling, and a CoNi/Pd multilayer with perpendicular anisotropy with a lower TC, interlayer, in the range of the desired AF-FM transition temperature, TAF-FM. At room temperature this system behaves as two antiferromagnetically coupled layers with a low perpendicular remanent magnetic moment. As the temperature is raised to approach TC, interlayer the magnetization of the interlayer is gradually reduced to zero, and consequently its coupling strength is reduced. Eventually, the effective coupling between the two high-KU, high-TC layers becomes dominated by their dipolar fields, resulting in a parallel alignment of their moments and a net remanent magnetic moment equal to the sum of the moments of the two high-TC layers [2]. [4pt] [1] J. S. Kouvel and C. C. Hartelius, J. Appl. Phys. 33 (1962) p1343 [0pt] [2] J.-U. Thiele, E. E. Fullerton, S. Maat, Appl. Phys. Lett. 82 (2003) p2859 [0pt] [3] J.-U. Thiele. T. Hauet. O. Hellwig, Appl. Phys. Lett. 92 (2008) 242502.
Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Liu, Lei
2015-03-21
Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy.more » The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.« less
Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint
NASA Astrophysics Data System (ADS)
She, Cheng-Xue; Sun, Fu-Ting
2018-03-01
The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.
Quantum impurity models for magnetic adsorbates on superconductor surfaces
NASA Astrophysics Data System (ADS)
Žitko, Rok
2018-05-01
Magnetic atoms adsorbed on surfaces have a quenched orbital moment while their ground-state spin multiplet is partially split as a consequence of the spin-orbit coupling which, even if intrinsically weak, has a large effect due to the abrupt change of the potential at the surface. Such metal adsorbates should be modelled using quantum impurity models that include the relevant internal degrees of freedom and the interaction terms, in particular the magnetic anisotropy and the Kondo exchange coupling. When adsorbed on superconducting surfaces, these impurities have complex spectra of sub-gap excitations due to magnetic anisotropy splitting and Kondo screening. Both anisotropy splitting and Zeeman splitting due to the external magnetic field are significantly renormalized by the coupling to the substrate electrons. In this work I discuss the quantum-to-classical crossover and the applicability of classical static-local-spin picture for discussing magnetic nanostructures on superconductors.
Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3
Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun; ...
2017-08-21
Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less
Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun
Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less
Synthesis, anisotropy, and superconducting properties of LiFeAs single crystal
NASA Astrophysics Data System (ADS)
Song, Yoo Jang; Ghim, Jin Soo; Min, Byeong Hun; Kwon, Yong Seung; Jung, Myung Hwa; Rhyee, Jong-Soo
2010-05-01
A LiFeAs single crystal with Tconset˜19.7 K was grown in a sealed tungsten crucible using the Bridgeman method. The electrical resistivity experiments revealed a ratio of room temperature to residual resistivity of approximately 46 and 18 for the in-plane and out-of plane directions, respectively. The estimated anisotropic resistivity, γρ=ρc/ρab, was approximately 3.3 at Tconset. The upper critical fields had large Hc2∥ab and Hc2∥c values of 83.4 T and 72.5 T, respectively, and an anisotropy ratio is γH=Hc2∥ab/Hc2∥c˜1.15. The high upper critical field value and small anisotropy highlight the potential use of LiFeAs in a variety of applications. The calculated critical current density (Jc) from the M-H loop is approximately 103 A/cm2
Pressure Anisotropy Measurements on the Terrestrial Reconnection Experiment
NASA Astrophysics Data System (ADS)
Myers, Rachel; Egedal, Jan; Olson, Joseph; Greess, Samuel; Millet-Ayala, Alexander; Clark, Michael; Nonn, Paul; Wallace, John; Forest, Cary
2017-10-01
The Terrestrial Reconnection Experiment (TREX) at the Wisconsin Plasma Astrophysics Laboratory (WiPAL) studies collisionless magnetic reconnection. In this regime, electron pressure anisotropy should develop, deviating from Hall reconnection dynamics and driving large-scale current layer formation. A multi-tip version of the M-probe of Shadman, containing 32 Langmuir probe tips and two magnetic coils, measures this anisotropy. Each tip is biased to a different potential, simultaneously measuring discrete parts of the I-V characteristic. Pulsing the coil locally increases the magnetic field near the tips, inducing a magnetic mirror force to reflect electrons with large values of v⊥ / v . The change in velocity modifies the I-V characteristic and can be used to infer p∥ /p⊥ . Results and analysis from the probe are presented. This research was conducted with support from a UW-Madison University Fellowship as well as the NSF/DOE award DE-SC0013032.
Pressure Anisotropy Probe for the Terrestrial Reconnection Experiment (TREX)
NASA Astrophysics Data System (ADS)
Myers, Rachel; Egedal, Jan; Olson, Joseph; Greess, Samuel; Clark, Michael; Nonn, Paul; Wallace, John; Forest, Cary
2016-10-01
The Terrestrial Reconnection Experiment (TREX) at the Wisconsin Plasma Astrophysics Laboratory (WiPAL) studies magnetic reconnection primarily in the collisionless regime. In this regime, electron pressure anisotropy is expected to develop, deviating from traditional Hall reconnection dynamics and driving formation of large-scale current layers. In order to measure the anisotropy, a multi-tip electromagnetic probe similar to the M-probe described by Shadman, consisting of 32 Langmuir probe tips and two magnetic coils, has been constructed. Each tip is biased to a different potential, simultaneously measuring discrete parts of the full I-V characteristic. Pulsing the coil then locally increases the magnetic field, creating a magnetic mirror force to reflect electrons with large values of v⊥ / v . The change in electron velocity modifies the I-V characteristics and can be used to infer p∥ /p⊥ . Analysis with the new probe will be presented. DOE Grant DE-SC0010463, University of Wisconsin-Madison University Fellowship.
Sanyal, Arnav; Keaveny, Tony M.
2013-01-01
The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715
NASA Technical Reports Server (NTRS)
Gurgiolo, Chris; Vinas, Adolfo F.
2009-01-01
This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.
The anisotropic Wilson gauge action
NASA Astrophysics Data System (ADS)
Klassen, Timothy R.
1998-11-01
Anisotropic lattices, with a temporal lattice spacing smaller than the spatial one, allow precision Monte Carlo calculations of problems that are difficult to study otherwise: heavy quarks, glueballs, hybrids, and high temperature thermodynamics, for example. We here perform the first step required for such studies with the (quenched) Wilson gauge action, namely, the determination of the renormalized anisotropy Ξ as a function of the bare anisotropy Ξ0 and the coupling. By, essentially, comparing the finite-volume heavy quark potential where the quarks are separated along a spatial direction with that where they are separated along the time direction, we determine the relation between Ξ and Ξ0 to a fraction of 1% for weak and to 1% for strong coupling. We present a simple parameterization of this relation for 1 ⩽ Ξ ⩽ 6 and 5.5 ⩽ β ⩽ ∞, which incorporates the known one-loop result and reproduces our non-perturbative determinations within errors. Besides solving the problem of how to choose the bare anisotropies if one wants to take the continuum limit at fixed renormalized anisotropy, this parameterization also yields accurate estimates of the derivative {∂Ξ 0}/{∂Ξ} needed in thermodynamic studies.
NASA Astrophysics Data System (ADS)
Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy
2016-04-01
The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.
NASA Astrophysics Data System (ADS)
Bilardello, D.; Kodama, K. P.
2007-12-01
Methods to correct for the observed inclination shallowing in sedimentary rocks have been proposed that are based on either models of the geomagnetic field and the resulting directional distribution of paleomagnetic vectors or the magnetic anisotropy of the magnetic minerals carrying the remanence. One limitation of the anisotropy method for hematite-bearing red beds has been the isolation and determination of a rock's detrital hematite individual particle anisotropy. Up to now, our red bed inclination shallowing corrections have been dependent on estimates of hematite individual particle anisotropy using data fit to theoretical correction curves. We have developed a technique for preferentially extracting the detrital hematite particles in a sample in order to directly measure their individual particle anisotropy. The method involves crushing of the sample followed by ball milling and sieving to ensure that the rock particles are smaller than 4Φ. The resulting slurry was then placed in an ultrasonic cleaner for at least 24 hours and finally centrifuged at 1000 rpm for 20 minutes in order to separate the dense, gray iron oxide particles from the red pigmentary grains. The gray, iron oxide-rich slurry was collected by hand and circulated in a magnetic extraction apparatus. The magnetic separate was then collected over a period of two to three weeks. Small amounts of the magnetic separates where mixed in a slow-drying epoxy resin for 24 hours and placed in a DC magnetic field (100 mT to 180 mT) in order to align the grains. The bulk IRM anisotropy of the epoxy samples provides an average individual particle anisotropy for the magnetic grains. Separates were collected from samples of the Mauch Chunk Fm. of Pennsylvania, the Maringouin and the Shepody Fms of New Brunswick/ Nova Scotia and the Kapusaliang Fm. of northwestern China. IRM acquisitions experiments were performed in fields of up to 1.2 T in order to identify the magnetic mineralogies present. Remanence appears to be carried by a low coercivity phase (~50 mT) interpreted to be secondary magnetite and a higher coercivity phase (~350 mT) interpreted to be primary hematite for the Shepody and Maringouin Fms or just one high coercivity component (200- 250 mT) interpreted as primary hematite for the Mauch Chunk and Kapusaliang Fms. Hematite individual particle anisotropy was measured by imparting a 1.2 T IRM to the specimens in 9 different orientations followed by AF demagnetization at 100 mT. Calculated individual particle anisotropy values ranged between 1.28 and 1.45 with bulk anisotropies of ~$40%. Inclination corrections using the directly measured individual particle anisotropies indicate significant inclination shallowing for the Mauch Chunk and Kapusaliang Fms, while more moderate shallowing for the Maringouin and Shepody Fms. Curve fitting techniques with added constraints give a good first order approximation of the individual particle anisotropy, however direct measurement is preferable. The measured particle anisotropies for hematite are low and suggest that there is the potential for significant amounts of shallowing for a hematite DRM. This observation is consistent with redeposition experiments performed by Tauxe and Kent [1984] and the notion that depositional inclination of hematite may suffer from more shallowing than magnetite because of its lower spontaneous magnetization making it more affected by gravitational forces.
A kinetic model of plasma turbulence
NASA Astrophysics Data System (ADS)
Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.
2015-01-01
A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature-anisotropy, commonly observed in space plasmas.
NASA Astrophysics Data System (ADS)
Werwiński, Mirosław; Marciniak, Wojciech
2017-12-01
We present results of ab initio calculations of several L10 FeNi characteristics, such as the summary of the magnetocrystalline anisotropy energies (MAEs), the full potential calculations of the anisotropy constant K 3, and the combined analysis of the Fermi surface and 3D {k} -resolved MAE. Other calculated parameters are the spin and orbital magnetic moments, the magnetostrictive coefficient λ0 0 1 , the bulk modulus B 0, and the lattice parameters. The MAEs summary shows rather big discrepancies among the experimental MAEs from the literature and also among the calculated MAE’s. The MAEs calculated in this work with the full potential and generalized gradient approximation (GGA) are equal to 0.47 MJ m-3 from WIEN2k, 0.34 MJ m-3 from FPLO, and 0.23 MJ m-3 from FP-SPR-KKR code. These results suggest that the MAE in GGA is below 0.5 MJ m-3 . It is expected that due to the limitations of the GGA, this value is underestimated. The L10 FeNi has further potential to improve its MAE by modifications, like e.g. tetragonal strain or alloying. The presented 3D {k} -resolved map of the MAE combined with the Fermi surface gives a complete picture of the MAE contributions in the Brillouin zone. The obtained, from the full potential FP-SPR-KKR method, magnetocrystalline anisotropy constants K 2 and K 3 are several orders of magnitude smaller than the MAE/K 1 and equal to -2.0 kJ m-3 and 110 J m-3 , respectively. The calculated spin and orbital magnetic moments of the L10 FeNi are equal to 2.72 and 0.054 μB for Fe and 0.53 and 0.039 μB for Ni atoms, respectively. The calculations of geometry optimization lead to a c/a ratio equal to 1.0036, B 0 equal to 194 GPa, and λ0 0 1 equal to 9.4 × 10-6.
Structural changes in loaded equine tendons can be monitored by a novel spectroscopic technique
Kostyuk, Oksana; Birch, Helen L; Mudera, Vivek; Brown, Robert A
2004-01-01
This study aimed to investigate the preferential collagen fibril alignment in unloaded and loaded tendons using elastic scattering spectroscopy. The device consisted of an optical probe, a pulsed light source (320–860 nm), a spectrometer and a PC. Two probes with either 2.75 mm or 300 μm source-detector separations were used to monitor deep and superficial layers, respectively. Equine superficial digital flexor tendons were subjected to ex vivo progressive tensional loading. Seven times more backscattered light was detected parallel rather than perpendicular to the tendon axis with the 2.75 mm separation probe in unloaded tendons. In contrast, using the 300 μm separation probe the plane of maximum backscatter (3-fold greater) was perpendicular to the tendon axis. There was no optical anisotropy in the cross-sectional plane of the tendon (i.e. the transversely cut tendon surface), with no structural anisotropy. During mechanical loading (9–14% strain) backscatter anisotropy increased 8.5- to 18.5-fold along the principal strain axis for 2.75 mm probe separation, but almost disappeared in the perpendicular plane (measured using the 300 μm probe separation). Optical (anisotropy) and mechanical (strain) measurements were highly correlated. We conclude that spatial anisotropy of backscattered light can be used for quantitative monitoring of collagen fibril alignment and tissue reorganization during loading, with the potential for minimally invasive real-time structural monitoring of fibrous tissues in normal, pathological or repairing tissues and in tissue engineering. PMID:14578479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10{sup 3} up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole ( ℓ ≤ 4) moments. However, highermore » multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.« less
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration
2016-08-01
The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10-3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
Methods for the analysis of HIV-1 nucleocapsid protein interactions with oligonucleotides.
Stephen, Andrew G; Fisher, Robert J
2009-01-01
HIV-1 Nucleocapsid protein (NC) is a small basic protein that contains two retroviral zinc fingers. It is a highly effective nucleic acid chaperone that plays a critical role in viral replication acting as a cofactor in reverse transcription as well as other aspects of the viral lifecycle. We have used a variety of biophysical techniques to characterize the high affinity binding of NC to a short deoxyoligonucleotide (d(TG)(4)). Here we outline in detail the use of fluorescence anisotropy and surface plasmon resonance spectroscopy to study the binding of NC to d(TG)(4).
Dissociation of heavy quarkonia in an anisotropic hot QCD medium in a quasiparticle model
NASA Astrophysics Data System (ADS)
Jamal, Mohammad Yousuf; Nilima, Indrani; Chandra, Vinod; Agotiya, Vineet Kumar
2018-05-01
The present article is the follow-up work of Phys. Rev. D 94, 094006 (2016), 10.1103/PhysRevD.94.094006, where we have extended the study of quarkonia dissociation in (momentum) anisotropic hot QCD medium. As evident by the experimentally observed collective flow at the RHIC and LHC, the momentum anisotropy is present at almost all the stages after the collision, and therefore, it is important to include its effects in the analysis. Employing the in-medium (corrected) potential while considering the anisotropy (both oblate and prolate cases) in the medium, the thermal widths and the binding energies of the heavy quarkonia states (s -wave charmonia and s -wave bottomonia specifically, for radial quantum numbers n =1 and 2) have been determined. The hot QCD medium effects have been included by employing a quasiparticle description. The presence of anisotropy has modified the potential and then the thermal widths and binding energies of these states in a significant manner. The results show a quite visible shift in the values of dissociation temperatures as compared to the isotropic case. Further, the hot QCD medium interaction effects suppress the dissociation temperature as compared to the case where we consider the medium as a noninteracting ultrarelativistic gas of quarks (antiquarks) and gluons.
Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust
NASA Astrophysics Data System (ADS)
Agius, Matthew R.; Lebedev, Sergei
2014-12-01
Geophysical and geological data suggest that Tibetan middle crust is a partially molten, mechanically weak layer, but it is debated whether this low-viscosity layer is present beneath the entire plateau, what its properties are, how it deforms, and what role it has played in the plateau's evolution. Broad-band seismic surface waves yield resolution in the entire depth range of the Tibetan crust and can be used to constrain its shear-wave velocity structure (indicative of crustal composition, temperature and partial melting) and radial anisotropy (indicative of the patterns of deformation). We measured Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 7-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds of interstation measurements, made with cross-correlation and waveform-inversion methods. Shear-velocity profiles were then determined by extensive series of non-linear inversions of the data, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy. Shear wave speeds within the Tibetan middle crust are anomalously low and, also, show strong lateral variations across the plateau. The lowest mid-crustal shear speeds are found in the north and west of the plateau (˜3.1-3.2 km s-1), within a pronounced low-velocity zone. In southeastern Tibet, crustal shear wave speeds increase gradually towards southeast, whereas in the north, the change across the Kunlun Fault is relatively sharp. The lateral variations of shear speeds within the crust are indicative of those in temperature. A mid-crustal temperature of 800 °C, reported previously, can account for the low shear velocities across Lhasa. In the north, the temperature is higher and exceeds the solidus, resulting in partial melting that we estimate at 3-6 per cent. Strong radial anisotropy is required by the data in western-central Tibet (>5 per cent) but not in northeastern Tibet. The amplitude of radial anisotropy in the crust does not correlate with isotropic-average shear speed (and, by inference, with crustal rock viscosity) or with surface elevation. Instead, radial anisotropy is related to the deformation pattern and is the strongest in regions experiencing extension (crustal flattening), as noted previously. The growth of Tibet by the addition of Indian crustal rocks into its crust from the south is reflected in the higher crustal seismic velocities (and, thus, lower temperatures) in the southern compared to northern parts of the plateau (more recently added rocks having had less time to undergo radioactive heating within the thickened Tibetan crust). Gravity-driven flattening-the basic cause of extension and normal faulting in the southern, western and central Tibet-is evidenced by pervasive radial anisotropy in the middle crust beneath the regions undergoing extension; the overall eastward flow of the crust is directed by the boundaries and motions of the lithospheric blocks that surround Tibet.
Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system.
Henriksson, K O E; Björkas, C; Nordlund, K
2013-11-06
Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides-Fe3C (cementite) and Cr23C6-being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.
Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system
NASA Astrophysics Data System (ADS)
Henriksson, K. O. E.; Björkas, C.; Nordlund, K.
2013-11-01
Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides—Fe3C (cementite) and Cr23C6—being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.
NASA Astrophysics Data System (ADS)
Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.
2017-12-01
The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.
Investigations of stacking fault density in perpendicular recording media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piramanayagam, S. N., E-mail: prem-SN@dsi.a-star.edu.sg; Varghese, Binni; Yang, Yi
In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure andmore » dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.« less
NASA Astrophysics Data System (ADS)
Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.
2014-09-01
Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.
Zhai, Zu Wei; Yip, Sarah W; Morie, Kristen P; Sinha, Rajita; Mayes, Linda C; Potenza, Marc N
2018-04-01
While childhood stress may contribute risk to substance-use initiation and differences in brain white-matter development, understanding of the potential impact of substance-use initiation on the relationship between experienced stress and white-matter microstructure remains limited. This study examined whether substance-use initiation moderated the effect of perceived stress on white-matter differences using measures of primary white-matter fiber anisotropy. Forty adolescents (age 14.75 ± .87 years) were assessed on the Perceived Stress Scale, and 50% were determined to have presence of substance-use initiation. White-matter microstructure was examined using primary-fiber orientations anisotropy, which may reflect white-matter integrity, modeled separately from other fiber orientations in the same voxels. Analyses were conducted on regions of interest previously associated with childhood stress and substance use. Lower perceived stress and presence of substance-use initiation were related to greater right cingulum primary-fiber measures. Substance-use-initiation status moderated the association between perceived stress and right cingulum primary-fiber measures, such that higher perceived stress was associated with lower right cingulum primary-fiber anisotropy in adolescents without substance-use initiation, but not in those with substance-use initiation. Findings in primary-fiber anisotropy suggest differences in right cingulum white-matter integrity is associated with substance-use initiation in higher-stress adolescents. This reflects a possible pre-existing risk factor, an impact of early substance use, or a combination thereof. Examination of potential markers associated with substance-use initiation in white-matter microstructure among stress-exposed youth warrant additional investigation as such biomarkers may inform efforts relating to tailored interventions. (Am J Addict 2018;27:217-224). © 2018 American Academy of Addiction Psychiatry.
Spatio-temporal changes of seismic anisotropy in seismogenic zones
NASA Astrophysics Data System (ADS)
Saade, M.; Montagner, J.; Roux, P.; Paul, C.; Brenguier, F.; Enescu, B.; Shiomi, K.
2013-12-01
Seismic anisotropy plays a key role in the study of stress and strain fields in the earth. Potential temporal change of seismic anisotropy can be interpreted as change of the orientation of cracks in seismogenic zones and thus change of the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes (Durand et al. , 2011) but are still not well understood. In this study, from a numerical point of view, we investigate the variations of the polarization of surface waves in anisotropic media. These variations are related to the elastic properties of the medium, in particular to anisotropy. The technique used is based on the calculation of the whole cross-correlation tensor (CCT) of ambient seismic noise. If the sources are randomly distributed in homogeneous medium, it allows us to reconstruct the Green's tensor between two stations continuously and to monitor the region through the use of its fluctuations. Therefore, the temporal change of the Green's cross-correlation tensor enables the monitoring of stress and strain fields. This technique is applied to synthetic seismograms computed in a transversally isotropic medium with horizontal symmetry axis (hereafter referred to an HTI medium) using a code RegSEM (Cupillard et al. , 2012) based on the spectral element method. We designed an experiment in order to investigate the influence of anisotropy on the CCT. In homogeneous, isotropic medium the off-diagonal terms of the Green's tensor are null. The CCT is computed between each pair of stations and then rotated in order to approximate the Green's tensor by minimizing the off-diagonal components. This procedure permits the calculation of the polarization angle of quasi-Rayleigh and quasi-Love waves, and to observe the azimuthal variation of their polarization. The results show that even a small variation of the azimuth of seismic anisotropy with respect to a certain pair of stations can induce, in some cases, a large variation in the horizontal polarization of surface waves along the direction of this pair of stations. It depends on the relative azimuth angle between the pair of stations and the direction of anisotropy, on the amplitude of anisotropy and the frequency band of the signal. Therefore, it is now possible to explain the large, rapid and very localized variations of surface waves horizontal polarization observed by Durand et al. (2011) during the Parkfield earthquake of 2004. Furthermore, some preliminary results about the investigation of seismic anisotropy change caused by the June 13, 2008 Iwate-Miyagi Nairiku earthquake (Mw = 6.9) will be presented.
Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism
NASA Astrophysics Data System (ADS)
Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh
2017-12-01
Recent X-ray observations of merger shocks in galaxy clusters have shown that the postshock plasma has two temperatures, with the protons hotter than the electrons. By means of two-dimensional particle-in-cell simulations, we study the physics of electron irreversible heating in low-Mach-number perpendicular shocks, for a representative case with sonic Mach number of 3 and plasma beta of 16. We find that two basic ingredients are needed for electron entropy production: (1) an electron temperature anisotropy, induced by field amplification coupled to adiabatic invariance; and (2) a mechanism to break the electron adiabatic invariance itself. In shocks, field amplification occurs at two major sites: at the shock ramp, where density compression leads to an increase of the frozen-in field; and farther downstream, where the shock-driven proton temperature anisotropy generates strong proton cyclotron and mirror modes. The electron temperature anisotropy induced by field amplification exceeds the threshold of the electron whistler instability. The growth of whistler waves breaks the electron adiabatic invariance and allows for efficient entropy production. For our reference run, the postshock electron temperature exceeds the adiabatic expectation by ≃ 15 % , resulting in an electron-to-proton temperature ratio of ≃ 0.45. We find that the electron heating efficiency displays only a weak dependence on mass ratio (less than ≃ 30 % drop, as we increase the mass ratio from {m}i/{m}e=49 up to {m}i/{m}e=1600). We develop an analytical model of electron irreversible heating and show that it is in excellent agreement with our simulation results.
NASA Astrophysics Data System (ADS)
Mahan, Kevin H.; Schulte-Pelkum, Vera; Condit, Cailey; Leydier, Thomas; Goncalves, Philippe; Raju, Anissha; Brownlee, Sarah; Orlandini, Omero F.
2017-04-01
Modern methods for detecting seismic anisotropy offer an array of promising tools for imaging deep crustal deformation but also present challenges, especially with respect to potential biases in both the detection methods themselves as well as in competing processes for localized versus distributed deformation. We address some of these issues from the geophysical perspective by employing azimuthally dependent amplitude and polarity variations in teleseismic receiver functions combined with a compilation of published rock elasticity tensors from middle and deep crustal rocks, and from the geological perspective through studies of shear zone deformation processes. Examples are highlighted at regional and outcrop scales from western North America and the European Alps. First, in regional patterns, strikes of seismically detected fabric from receiver functions in California show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition suggesting these faults have deep ductile roots. In contrast, despite NE-striking shear zones being the most prominent features portrayed on Proterozoic tectonic maps of the southwestern USA, receiver function anisotropy from the central Rocky Mountain region appears to more prominently reflect broadly distributed Proterozoic fabric domains that preceded late-stage localized shear zones. Possible causes for the discrepancy fall into two categories: those that involve a) bias in seismic sampling and/or b) deformation processes that lead to either weaker anisotropy in the shear zones compared to adjacent domains or to a symmetry that is different from that conventionally assumed. Most of these explanations imply that the seismically sampled domains contain important structural information that is distinct from the shear zones. The second set of examples stem from studies of outcrop-scale shear zones in upper amphibolite-facies (0.9-1.0 GPa, 700 °C) mafic metagabbro from Precambrian exposures in Montana (USA) and in greenschist-facies (0.7-0.8 GPa, 450-500 °C) metagranites from the External Crystalline Massifs of the European Central Alps. The shear zones are characterized by strain gradients from undeformed coarse-grained protoliths to very fine grained ultramylonite, and by microstructures dominated by CPO-producing deformation mechanisms in the protomylonite and CPO-weakening mechanisms such as dissolution-precipitation creep and grain boundary sliding in the ultramylonite. In the mafic mylonites, the result is a lower seismic anisotropy ( 2%) in the core of the shear zones despite a well-developed hornblende shape-preferred orientation. Preliminary observations of these examples suggest that marginal gradients may contribute as much or more to the bulk anisotropy signal compared to the higher strained cores of these structures. If true, a similar effect could explain some otherwise puzzling anisotropy studies of larger scale shear zones such as from the Himalaya where anisotropy tilt proximal to the Main Himalayan Thrust is notably steeper than expected. In conclusion, while some anisotropy studies of crustal scale deformation patterns are relatively straightforward, others will require careful consideration of the limitations and potential future improvements to seismic detection methods, including ground truthing based on samples and exposures as well as a better understanding of physical processes involved in deformation localization.
Simulation of clustering and anisotropy due to Co step-edge segregation in vapor-deposited CoPt3
NASA Astrophysics Data System (ADS)
Maranville, B. B.; Schuerman, M.; Hellman, F.
2006-03-01
An atomistic mechanism is proposed for the creation of structural anisotropy and consequent large perpendicular magnetic anisotropy in vapor-deposited films of CoPt3 . Energetic considerations of bonding in Co-Pt suggest that Co segregates to step edges due to their low coordination, for all film orientations, while Pt segregates to the two low index surfaces. Coalescence of islands during growth cause these Co-rich step edges to become flat thin Co platelets in a Pt rich matrix, giving rise to the experimentally observed magnetic anisotropy. This proposed model is tested with kinetic Monte Carlo simulation of the vapor deposition growth. A tight-binding, second-moment approximation to the interatomic potential is used to calculate the probability of an atom hopping from one surface site to another, assuming an Arrhenius-like activation model of surface motion. Growth is simulated by allowing many hopping events per adatom. The simulated as-grown films show an asymmetry in Co-Co bonding between the in-plane and out-of-plane directions, in good agreement with experimental data. The growth temperature dependence found in the simulations is strong and similar to that seen in experiments, and an increase in Co edge segregation with increasing temperature is also observed.
Perpendicular magnetic anisotropy in Mn2VIn (001) films: An ab initio study
NASA Astrophysics Data System (ADS)
Zipporah, Muthui; Robinson, Musembi; Julius, Mwabora; Arti, Kashyap
2018-05-01
First principles study of the magnetic anisotropy of Mn2VIn (001) films show perpendicular magnetic anisotropy (PMA), which increases as a function of the thickness of the film. Density functional theory (DFT) as implemented in the Vienna Ab initio simulation package (VASP) is employed here to perform a comprehensive theoretical investigation of the structural, electronic and magnetic properties of the Mn2VIn(001) films of varying thickness. Our calculations were performed on fully relaxed structures, with five to seventeen mono layers (ML). The degree of spin polarization is higher in the (001) Mn2VIn thin films as compared to the bulk in contrast to what is usually the case and as in Mn2VAl, which is isoelectronic to Mn2VIn as well as inCo2VIn (001) films studied for comparison. Tetragonal distortions are found in all the systems after relaxation. The distortion in the Mn2VIn system persists even for the 17ML thin film, resulting in PMA in the Mn2VIn system. This significant finding has potential to contribute to spin transfer torque (STT) and magnetic random access memory MRAM applications, as materials with PMA derived from volume magnetocrystalline anisotropy are being proposed as ideal magnetic electrodes.
Anisotropies in the cosmic microwave background: an analytic approach
NASA Astrophysics Data System (ADS)
Hu, Wayne; Sugiyama, Naoshi
1995-05-01
We introduce a conceptually simple yet powerful analytic method which traces the structure of cosmic microwave background anisotropies to better than 5%-10% in temperature fluctuations on all scales. It is applicable to any model in which the gravitational potential is known and last scattering is sufficiently early. Moreover, it recovers and explains the presence of the 'Doppler peaks' at degree scales as driven acoustic oscillations of the photon-baryon fluid. We treat in detail such subtleties as the time dependence of the gravitational driving force, anisotropic stress from the neutrino quadrupole, and damping during the recombination process, again all from an analytic standpoint. We apply this formalism to the standard cold dark matter model to gain physical insight into the anisotropies, including the dependence of the peak locations and heights on cosmological parameters such as Omegab and h. Furthermore, the ionization history controls damping due to the finite thickness of the last scattering surface, which is in fact mianly caused by photon diffusion. In addition to being a powerful probe into the nature of anisotropies, this treatment can be used in place of the standard Boltzmann code where 5%-10% accuracy in temperature fluctuations is satisfactory and/or speed is essential. Equally importantly, it can be used as a portable standard by which numerical codes can be tested and compared.
Magnetic anisotropy modulation of epitaxial Fe3O4 films on MgO substrates
NASA Astrophysics Data System (ADS)
Chichvarina, O.; Herng, T. S.; Xiao, W.; Hong, X.; Ding, J.
2015-05-01
Fe3O4 has been widely studied because of its great potential in spintronics and other applications. As a magnetic electrode, it is highly desired if magnetic anisotropy can be controlled. Here, we report the results from our systematic study on the magnetic properties of magnetite (Fe3O4) thin films epitaxially grown on various MgO substrates. Strikingly, we observed a prominent perpendicular magnetic anisotropy in Fe3O4 film deposited on MgO (111) substrate. When measured in out-of-plane direction, the film (40 nm thick) exhibits a well-defined square hysteresis loop with coercivity (Hc) above 1 kOe, while much lower coercivity was obtained in the in-plane orientation. In sharp contrast, the films deposited onto MgO (100) and MgO (110) substrates show in-plane magnetic anisotropy. These films exhibit a typical soft magnet characteristic—Hc lies within the range of 200-400 Oe. All the films showed a clear Verwey transition near 120 K—a characteristic of Fe3O4 material. In addition, a series of magnetoresistance (MR) measurements is performed and the MR results are in good agreement with the magnetic observations. The role of the substrate orientation and film thickness dependency is also investigated.
Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra
2017-05-15
Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D || ], linear anisotropy [CL] and spherical anisotropy [CS], p<0.001, linear mixed-effects model [LMEM]) and the CA3bc (FA, D || , CS, and angle, p<0.001, LMEM; CL and planar anisotropy [CP], p<0.01, LMEM) post SE. The Fourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive detection of microstructural alterations in the hippocampus proper. These alterations may be potential imaging markers for epileptogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Present mantle flow in North China Craton constrained by seismic anisotropy and numerical modelling
NASA Astrophysics Data System (ADS)
Qu, W.; Guo, Z.; Zhang, H.; Chen, Y. J.
2017-12-01
North China Carton (NCC) has undergone complicated geodynamic processes during the Cenozoic, including the westward subduction of the Pacific plate to its east and the collision of the India-Eurasia plates to its southwest. Shear wave splitting measurements in NCC reveal distinct seismic anisotropy patterns at different tectonic blocks, that is, the predominantly NW-SE trending alignment of fast directions in the western NCC and eastern NCC, weak anisotropy within the Ordos block, and N-S fast polarization beneath the Trans-North China Orogen (TNCO). To better understand the origin of seismic anisotropy from SKS splitting in NCC, we obtain a high-resolution dynamic model that absorbs multi-geophysical observations and state-of-the-art numerical methods. We calculate the mantle flow using a most updated version of software ASPECT (Kronbichler et al., 2012) with high-resolution temperature and density structures from a recent 3-D thermal-chemical model by Guo et al. (2016). The thermal-chemical model is obtained by multi-observable probabilistic inversion using high-quality surface wave measurements, potential fields, topography, and surface heat flow (Guo et al., 2016). The viscosity is then estimated by combining the dislocation creep, diffusion creep, and plasticity, which is depended on temperature, pressure, and chemical composition. Then we calculate the seismic anisotropy from the shear deformation of mantle flow by DREX, and predict the fast direction and delay time of SKS splitting. We find that when complex boundary conditions are applied, including the far field effects of the deep subduction of Pacific plate and eastward escaping of Tibetan Plateau, our model can successfully predict the observed shear wave splitting patterns. Our model indicates that seismic anisotropy revealed by SKS is primarily resulting from the LPO of olivine due to the shear deformation from asthenospheric flow. We suggest that two branches of mantle flow may contribute to the observed anisotropy, that are, the westward escaping flow origins from NE Tibet Plateau and/or Mongolia, and the mantle upwelling from the bottom of upper mantle. The proposed mantle flow may also feed the intraplate volcanoes in the TNCO and intensify the erosion to the cratonic keel of Ordos.
Nanofabrication and ion milling introduced effects on magnetic properties in magnetic recording
NASA Astrophysics Data System (ADS)
Sun, Zhenzhong
Perpendicular magnetic nanostructures have played an important role in magnetic recording technologies. In this dissertation, a systematic study on the CoPt magnetic nanostructures from fabrication, characterization to computer simulation has been performed. During the fabrication process, ion irradiation/bombardment in ion mill can cause physical damage to the magnetic nanostructures and degrade their magnetic properties. To study the effect of ion damage on CoPt nanostructures, different degrees of ion damage are introduced into CoPt nanopillars by varying the accelerating voltage in ion mill. The results demonstrate that the ion damage can reduce the coercivity by softening circumferential edge, and therefore changes the switching mechanism from coherent rotation to nucleation followed by rapid domain wall propagation. The SFD of CoPt nanostructures is independent of ion damage and is mainly determined by the intrinsic anisotropy distribution of the film rather than the nanostructure size distribution. Anisotropy-graded bit-patterned media are fabricated and studied based on high anisotropy L10-FePt material system. L10-FePt thin films with linearly and quadratically distributed anisotropy are achieved by varying substrate temperature during film growth. After patterning, the anisotropy-graded L10-FePt nanopillars display a reduced switching field and maintain a good thermal stability compared to the non-graded one. Experimental investigation and comparison further prove the concept of "anisotropy-graded" bit-patterned media and their potential application in the future magnetic recording. During magnetic write head fabrication, ion-beam damage may degrade the performance of the magnetic write pole. A surface sensitive MOKE is used to characterize the magnetic properties of these etched FeCo films. MOKE measurement shows a hard axis hysteresis loop with a high Mr in the high power etched film due to the ion beam introduced defects. The high power etched film also shows the highest RMS by AFM measurement. The geometric peaks at the top surface may have shape anisotropy and serve as the pinning sites. These magnetic pinning sites can prevent the nucleation center forming at the top surface during the switching process and lead to a high Mr in the top surface region.
Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy.
Muzikant, A L; Henriquez, C S
1998-04-01
A bidomain model of cardiac tissue was used to examine the effect of transmural fiber rotation during bipolar stimulation in three-dimensional (3-D) myocardium. A 3-D tissue block with unequal anisotropy and two types of fiber rotation (none and moderate) was stimulated along and across fibers via bipolar electrodes on the epicardial surface, and the resulting steady-state interstitial (phi e) and transmembrane (Vm) potentials were computed. Results demonstrate that the presence of rotated fibers does not change the amount of tissue polarized by the point surface stimuli, but does cause changes in the orientation of phi e and Vm in the depth of the tissue, away from the epicardium. Further analysis revealed a relationship between the Laplacian of phi e, regions of virtual electrodes, and fiber orientation that was dependent upon adequacy of spatial sampling and the interstitial anisotropy. These findings help to understand the role of fiber architecture during extracellular stimulation of cardiac muscle.
Investigation of span-chordwise bending anisotropy of honeybee forewings
Ning, JianGuo; Ma, Yun; Zhang, PengFei
2017-01-01
ABSTRACT In this study, the spanwise and chordwise bending stiffness EI of honeybee forewings were measured by a cantilevered bending test. The test results indicate that the spanwise EI of the forewing is two orders of magnitude larger than the chordwise EI. Three structural aspects result in this span-chordwise bending anisotropy: the distribution of resilin patches, the corrugation along the span and the leading edge vein of the venation. It was found that flexion lines formed by resilin patches revealed through fluorescence microscopy promoted the chordwise bending of the forewing during flapping flight. Furthermore, the corrugation of the wing and leading edge veins of the venation, revealed by micro-computed tomography, determines the relatively greater spanwise EI of the forewing. The span-chordwise anisotropy exerts positive structural and aerodynamic influences on the wing. In summary, this study potentially assists researchers in understanding the bending characteristics of insect wings and might be an important reference for the design and manufacture of bio-inspired wings for flapping micro aerial vehicles. PMID:28396486
NASA Astrophysics Data System (ADS)
Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei
2017-12-01
Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.
Multiferroic composites for magnetic data storage beyond the super-paramagnetic limit
NASA Astrophysics Data System (ADS)
Vopson, M. M.; Zemaityte, E.; Spreitzer, M.; Namvar, E.
2014-09-01
Ultra high-density magnetic data storage requires magnetic grains of <5 nm diameters. Thermal stability of such small magnetic grain demands materials with very large magneto-crystalline anisotropy, which makes data write process almost impossible, even when Heat Assisted Magnetic Recording (HAMR) technology is deployed. Here, we propose an alternative method of strengthening the thermal stability of the magnetic grains via elasto-mechanical coupling between the magnetic data storage layer and a piezo-ferroelectric substrate. Using Stoner-Wohlfarth single domain model, we show that the correct tuning of this coupling can increase the effective magneto-crystalline anisotropy of the magnetic grains making them stable beyond the super-paramagnetic limit. However, the effective magnetic anisotropy can also be lowered or even switched off during the write process by simply altering the applied voltage to the substrate. Based on these effects, we propose two magnetic data storage protocols, one of which could potentially replace HAMR technology, with both schemes promising unprecedented increases in the data storage areal density beyond the super-paramagnetic size limit.
Cuadrado, R; Cerdá, J I
2012-02-29
We present an efficient implementation of the spin-orbit coupling within the density functional theory based SIESTA code (2002 J. Phys.: Condens. Matter 14 2745) using the fully relativistic and totally separable pseudopotential formalism of Hemstreet et al (1993 Phys. Rev. B 47 4238). First, we obtain the spin-orbit splittings for several systems ranging from isolated atoms to bulk metals and semiconductors as well as the Au(111) surface state. Next, and after extensive tests on the accuracy of the formalism, we also demonstrate its capability to yield reliable values for the magnetic anisotropy energy in magnetic systems. In particular, we focus on the L1(0) binary alloys and on two large molecules: Mn(6)O(2)(H -sao)(6)(O(2)CH)(2)(CH(3)OH)(4) and Co(4)(hmp)(4)(CH(3)OH)(4)Cl(4). In all cases our calculated anisotropies are in good agreement with those obtained with full-potential methods, despite the latter being, in general, computationally more demanding.
Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Klein, J.-O.; Chappert, C.
2014-01-20
High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.
Rouillard, Andrew D; Holmes, Jeffrey W
2012-01-01
Effective management of healing and remodelling after myocardial infarction is an important problem in modern cardiology practice. We have recently shown that the level of infarct anisotropy is a critical determinant of heart function following a large anterior infarction, which suggests that therapeutic gains may be realized by controlling infarct anisotropy. However, factors regulating infarct anisotropy are not well understood. Mechanical, structural and chemical guidance cues have all been shown to regulate alignment of fibroblasts and collagen in vitro, and prior studies have proposed that each of these cues could regulate anisotropy of infarct scar tissue, but understanding of fibroblast behaviour in the complex environment of a healing infarct is lacking. We developed an agent-based model of infarct healing that accounted for the combined influence of these cues on fibroblast alignment, collagen deposition and collagen remodelling. We pooled published experimental data from several sources in order to determine parameter values, then used the model to test the importance of each cue for predicting collagen alignment measurements from a set of recent cryoinfarction experiments. We found that although chemokine gradients and pre-existing matrix structures had important effects on collagen organization, a response of fibroblasts to mechanical cues was critical for correctly predicting collagen alignment in infarct scar. Many proposed therapies for myocardial infarction, such as injection of cells or polymers, alter the mechanics of the infarct region. Our modelling results suggest that such therapies could change the anisotropy of the healing infarct, which could have important functional consequences. This model is therefore a potentially important tool for predicting how such interventions change healing outcomes. PMID:22495588
NASA Astrophysics Data System (ADS)
Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Š.; Maksimovic, M.; Trávníček, P. M.
2016-08-01
Estimating the temperature of solar wind particles and their anisotropies is particularly important for understanding the origin of their deviations from thermal equilibrium and the effects this has. In the absence of energetic events, the velocity distribution of electrons reveals a dual structure with a thermal (Maxwellian) core and a suprathermal (kappa) halo. This article presents a detailed observational analysis of these two components, providing estimations of their temperatures and temperature anisotropies, and decoding any potential interdependence that their properties may indicate. The dataset used in this study includes more than 120 000 of the distributions measured by three missions in the ecliptic within an extended range of heliocentric distances from 0.3 to over 4 AU. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analyses and providing valuable clues about the temperature of the kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, which seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anticorrelated anisotropies of the core and halo populations and the increase in their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated, most probably, by the anisotropy-driven instabilities.
High Angular Resolution Measurements of the Anisotropy of Reflectance of Sea Ice and Snow
NASA Astrophysics Data System (ADS)
Goyens, C.; Marty, S.; Leymarie, E.; Antoine, D.; Babin, M.; Bélanger, S.
2018-01-01
We introduce a new method to determine the anisotropy of reflectance of sea ice and snow at spatial scales from 1 m2 to 80 m2 using a multispectral circular fish-eye radiance camera (CE600). The CE600 allows measuring radiance simultaneously in all directions of a hemisphere at a 1° angular resolution. The spectral characteristics of the reflectance and its dependency on illumination conditions obtained from the camera are compared to those obtained with a hyperspectral field spectroradiometer manufactured by Analytical Spectral Device, Inc. (ASD). Results confirm the potential of the CE600, with the suggested measurement setup and data processing, to measure commensurable sea ice and snow hemispherical-directional reflectance factor, HDRF, values. Compared to the ASD, the reflectance anisotropy measured with the CE600 provides much higher resolution in terms of directional reflectance (N = 16,020). The hyperangular resolution allows detecting features that were overlooked using the ASD due to its limited number of measurement angles (N = 25). This data set of HDRF further documents variations in the anisotropy of the reflectance of snow and ice with the geometry of observation and illumination conditions and its spectral and spatial scale dependency. Finally, in order to reproduce the hyperangular CE600 reflectance measurements over the entire 400-900 nm spectral range, a regression-based method is proposed to combine the ASD and CE600 measurements. Results confirm that both instruments may be used in synergy to construct a hyperangular and hyperspectral snow and ice reflectance anisotropy data set.
A new family of distribution functions for spherical galaxies
NASA Astrophysics Data System (ADS)
Gerhard, Ortwin E.
1991-06-01
The present study describes a new family of anisotropic distribution functions for stellar systems designed to keep control of the orbit distribution at fixed energy. These are quasi-separable functions of energy and angular momentum, and they are specified in terms of a circularity function h(x) which fixes the distribution of orbits on the potential's energy surfaces outside some anisotropy radius. Detailed results are presented for a particular set of radially anisotropic circularity functions h-alpha(x). In the scale-free logarithmic potential, exact analytic solutions are shown to exist for all scale-free circularity functions. Intrinsic and projected velocity dispersions are calculated and the expected properties are presented in extensive tables and graphs. Several applications of the quasi-separable distribution functions are discussed. They include the effects of anisotropy or a dark halo on line-broadening functions, the radial orbit instability in anisotropic spherical systems, and violent relaxation in spherical collapse.
Magnetic quantum tunneling: insights from simple molecule-based magnets.
Hill, Stephen; Datta, Saiti; Liu, Junjie; Inglis, Ross; Milios, Constantinos J; Feng, Patrick L; Henderson, John J; del Barco, Enrique; Brechin, Euan K; Hendrickson, David N
2010-05-28
This perspectives article takes a broad view of the current understanding of magnetic bistability and magnetic quantum tunneling in single-molecule magnets (SMMs), focusing on three families of relatively simple, low-nuclearity transition metal clusters: spin S = 4 Ni(II)(4), Mn(III)(3) (S = 2 and 6) and Mn(III)(6) (S = 4 and 12). The Mn(III) complexes are related by the fact that they contain triangular Mn(III)(3) units in which the exchange may be switched from antiferromagnetic to ferromagnetic without significantly altering the coordination around the Mn(III) centers, thereby leaving the single-ion physics more-or-less unaltered. This allows for a detailed and systematic study of the way in which the individual-ion anisotropies project onto the molecular spin ground state in otherwise identical low- and high-spin molecules, thus providing unique insights into the key factors that control the quantum dynamics of SMMs, namely: (i) the height of the kinetic barrier to magnetization relaxation; and (ii) the transverse interactions that cause tunneling through this barrier. Numerical calculations are supported by an unprecedented experimental data set (17 different compounds), including very detailed spectroscopic information obtained from high-frequency electron paramagnetic resonance and low-temperature hysteresis measurements. Comparisons are made between the giant spin and multi-spin phenomenologies. The giant spin approach assumes the ground state spin, S, to be exact, enabling implementation of simple anisotropy projection techniques. This methodology provides a basic understanding of the concept of anisotropy dilution whereby the cluster anisotropy decreases as the total spin increases, resulting in a barrier that depends weakly on S. This partly explains why the record barrier for a SMM (86 K for Mn(6)) has barely increased in the 15 years since the first studies of Mn(12)-acetate, and why the tiny Mn(3) molecule can have a barrier approaching 60% of this record. Ultimately, the giant spin approach fails to capture all of the key physics, although it works remarkably well for the purely ferromagnetic cases. Nevertheless, diagonalization of the multi-spin Hamiltonian matrix is necessary in order to fully capture the interplay between exchange and local anisotropy, and the resultant spin-state mixing which ultimately gives rise to the tunneling matrix elements in the high symmetry SMMs (ferromagnetic Mn(3) and Ni(4)). The simplicity (low-nuclearity, high-symmetry, weak disorder, etc.) of the molecules highlighted in this study proves to be of crucial importance. Not only that, these simple molecules may be considered among the best SMMs: Mn(6) possesses the record anisotropy barrier, and Mn(3) is the first SMM to exhibit quantum tunneling selection rules that reflect the intrinsic symmetry of the molecule.
Anisotropy Induced Switching Field Distribution in High-Density Patterned Media
NASA Astrophysics Data System (ADS)
Talapatra, A.; Mohanty, J.
We present here micromagnetic study of variation of switching field distribution (SFD) in a high-density patterned media as a function of magnetic anisotropy of the system. We consider the manifold effect of magnetic anisotropy in terms of its magnitude, tilt in anisotropy axis and random arrangements of magnetic islands with random anisotropy values. Our calculation shows that reduction in anisotropy causes linear decrease in coercivity because the anisotropy energy tries to align the spins along a preferred crystallographic direction. Tilt in anisotropy axis results in decrease in squareness of the hysteresis loop and hence facilitates switching. Finally, the experimental challenges like lithographic distribution of magnetic islands, their orientation, creation of defects, etc. demanded the distribution of anisotropy to be random along with random repetitions. We have explained that the range of anisotropy values and the number of bits with different anisotropy play a key role over SFD, whereas the position of the bits and their repetitions do not show a considerable contribution.
Study on the mechanism of perpendicular magnetic anisotropy in Ta/CoFeB/MgO system
NASA Astrophysics Data System (ADS)
Lou, Yongle; Zhang, Yuming; Guo, Hui; Xu, Daqing; Yimen, Zhang
2017-06-01
The mechanism of perpendicular magnetic anisotropy (PMA) in a MgO-based magnetic tunnel junction (MTJ) has been studied in this article. By comparing the magnetic properties and elementary composition analysis for different CoFeB-based structures, such as Ta/CoFeB/MgO, Ta/CoFeB/Ta and Ru/CoFeB/MgO structures, it is found that a certain amount of Fe-oxide existing at the interface of CoFeB/MgO is helpful to enhance the PMA and the PMA is originated from the interface of CoFeB/MgO. In addition, Ta film plays an important role to enhance the PMA in Ta/CoFeB/MgO structure. Project supported by the National Defense Advance Research Foundation (No. 9140A08XXXXXX0DZ106), the Basic Research Program of Ministry of Education, China (No. JY10000925005), the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.11JK0912), the Scientific Research Foundation of Xi’an University of Science and Technology (No. 2010011), the Doctoral Research Startup Fund of Xi’an University of Science and Technology (No. 2010QDJ029).
Magnetic properties and macroscopic heterogeneity of FeCoNbB Hitperms
NASA Astrophysics Data System (ADS)
Butvin, Pavol; Butvinová, Beata; Sitek, Jozef; Degmová, Jarmila; Vlasák, Gabriel; Švec, Peter; Janičkovič, Dušan
Nanocrystalline ribbons of Fe 81-xCo xNb 7B 12 (where x ranges from 0 to 40.5 at%) Hitperm alloys have been investigated as to their basic magnetic properties and the influence of the macroscopic heterogeneity. Different crystalline share at surfaces compared with the volume average is observed by conversion electron Mössbauer spectroscopy (CEMS) and Mössbauer spectroscopy (MS), respectively. This marks the presence of macroscopic heterogeneity in these Hitperms. The heterogeneity is generally more significant in Ar-annealed samples than in the vacuum-annealed ones. The characteristic slant hysteresis loops (hard-ribbon-axis) are seen as a rule with few exceptions. An inspection of hysteresis loop response of resin potted samples shows that the surfaces bi-axially squeeze the ribbon interior in heterogeneous Hitperms when the ribbons cool down after annealing. Certain compositions show macroscopic viscous flow prior to crystallization so the heterogeneity gets another chance to induce anisotropy during annealing. The induction attains 1.5 T but saturates poorly due to the heterogeneity and the ensuing anisotropy. Moreover the heterogeneity appears to hamper the crystallization within the ribbon interior. Unlike Finemets, the density of these Hitperms show no pronounced trend with annealing.
NASA Astrophysics Data System (ADS)
Trevino, S., III; Hickey, M. S.; Everett, M. E.
2017-12-01
Controlled-Source Electromagnetics (CSEM) can be used to monitor the movement and extent of injection fluid during a hydraulic fracture. The response of the fluid to energization by a CSEM source is dependent upon the electrical conductivity difference between the fluid and background geological formation. An important property that must be taken into account when modeling and interpreting CSEM responses is that electrical conductivity may be anisotropic. We study the effect of electrical anisotropy in both the background formation and the fluid-injection zone. First, various properties of the background formation can affect anisotropy including variations in grain size, composition and bedding-plane orientation. In certain formations, such as shale, the horizontal component of the conductivity can be more than an order of magnitude larger than the vertical component. We study this effect by computing differences in surface CSEM responses using the analytic 1-D anisotropic primary solution of a horizontal electric dipole positioned at the surface. Second, during hydraulic fracturing, the injected fluid can create new fractures and infill existing natural fractures. To include the explicit fracture geometry in modeling, a large increase in the number of nodes and computational time is required which may not be feasible. An alternative is to instead model the large-scale fracture geometry as a uniform slab with an appropriate bulk conductivity. Micro-scale fracture geometry may cause preferential fluid propagation in a single direction or plane which can be represented by electrical anisotropy of the slab. To study such effects of bulk anisotropy on CSEM responses we present results from multiple scenarios of surface to surface hydraulic fracture monitoring using 3-D finite element modeling. The model uses Coulomb-gauged potentials to solve Maxwell's equations in the frequency domain and we have updated the code to allow a triaxial electrical conductivity tensor to be specified. By allowing for formation and target electrical anisotropy these modeling results contribute to a better understanding and faster interpretation of field data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Gareth C.; Pessah, Martin E., E-mail: gmurphy@nbi.dk, E-mail: mpessah@nbi.dk
The magnetorotational instability (MRI) is thought to play an important role in enabling accretion in sufficiently ionized astrophysical disks. The rate at which MRI-driven turbulence transports angular momentum is intimately related to both the strength of the amplitudes of the fluctuations on various scales and the degree of anisotropy of the underlying turbulence. This has motivated several studies to characterize the distribution of turbulent power in spectral space. In this paper we investigate the anisotropic nature of MRI-driven turbulence using a pseudo-spectral code and introduce novel ways for providing a robust characterization of the underlying turbulence. We study the growth ofmore » the MRI and the subsequent transition to turbulence via parasitic instabilities, identifying their potential signature in the late linear stage. We show that the general flow properties vary in a quasi-periodic way on timescales comparable to ∼10 inverse angular frequencies, motivating the temporal analysis of its anisotropy. We introduce a 3D tensor invariant analysis to quantify and classify the evolution of the anisotropy of the turbulent flow. This analysis shows a continuous high level of anisotropy, with brief sporadic transitions toward two- and three-component isotropic turbulent flow. This temporal-dependent anisotropy renders standard shell averaging especially when used simultaneously with long temporal averages, inadequate for characterizing MRI-driven turbulence. We propose an alternative way to extract spectral information from the turbulent magnetized flow, whose anisotropic character depends strongly on time. This consists of stacking 1D Fourier spectra along three orthogonal directions that exhibit maximum anisotropy in Fourier space. The resulting averaged spectra show that the power along each of the three independent directions differs by several orders of magnitude over most scales, except the largest ones. Our results suggest that a first-principles theory to describe fully developed MRI-driven turbulence will likely have to consider the anisotropic nature of the flow at a fundamental level.« less
Deformation in D″ Beneath North America From Anisotropy
NASA Astrophysics Data System (ADS)
Nowacki, A. J.; Wookey, J.; Kendall, J. M.
2009-12-01
The lowermost few hundred kilometres of the Earth's mantle—known as D″—form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a strong heterogeneity in seismic wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (VS) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. A phase change of MgSiO3-perovskite (pv) to a post-perovskite (ppv) structure at near-core-mantle boundary (CMB) conditions is a compelling mechanism to explain the seismic features of D″. An outstanding question is how this and other mineral phases may deform to produce anisotropy, with different mechanisms possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can potentially determine the other with observations of the resulting seismic anisotropy. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW>5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained—a single azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The same but with a tilted axis is possible (TTI) and would be consistent with inclusions of seismically-distinct material such as melt. TTI planes of isotropy dip south beneath Florida, southwest beneath western USA and southeast beneath Yucatan. However we test other slip systems in MgO, pv and ppv to determine if deformation in these phases can account for the observed anisotropy. The systems [100](010) and [1̅10](110) in ppv are consistent everywhere; pv is not beneath Yucatan. If we assume a general downwelling and displacement of mantle material in the seismically fast D″, corresponding to the impingement of slab material, slip along [100](010) seems more likely, with the possibility that slip along (110) as a transformation texture also occurs in the seismically fastest regions (Walte et al, GRL, 2009). With a new breed of detailed mantle deformation models, or experimental evidence of which system dominates, seismic anisotropy may be used to map deformation in D″ and provide greater insight into Earth's convecting interior.
NASA Astrophysics Data System (ADS)
Zhuravlev, V. A.; Itin, V. I.; Minin, R. V.; Lopushnyak, Yu. M.; Velikanov, D. A.
2018-03-01
The phase structure, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the zol-gel combustion method with subsequent annealing at a temperature of 850°C for 6 h are investigated. The influence of the organic fuel type on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that they depend on the organic fuel type. It is shown that powders synthesized with citric acid used as a fuel have the largest particle sizes and the highest saturation magnetization.
Stokes-correlometry of polarization-inhomogeneous objects
NASA Astrophysics Data System (ADS)
Ushenko, O. G.; Dubolazov, A.; Bodnar, G. B.; Bachynskiy, V. T.; Vanchulyak, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of Stokes-correlometry description of optical anisotropy of biological tissues. It was provided experimentally measured coordinate distributions of modulus (MSV) and phase (PhSV) of complex Stokes vector of skeletal muscle tissue. It was defined the values and ranges of changes of statistic moments of the 1st-4th orders, which characterize the distributions of values of MSV and PhSV. The second part presents the data of statistic analysis of the distributions of modulus MSV and PhSV. It was defined the objective criteria of differentiation of samples with urinary incontinence.
Resonant soft X-ray scattering study of twist bend nematic, cholesteric and blue phases.
NASA Astrophysics Data System (ADS)
Slamonczyk, Miroslaw; Grecka, Ewa; Vaupotic, Natasa; Pociecha, Damian; Gleesom, Jim; Jakli, Antal; Sprunt, Sam; Wang, Cheng; Hexemer, Alexander; Zhu, Chenhui
We have demonstrated that, when operated at carbon K-edge, the linearly polarized soft X-rays can enable bond orientation sensitivity, which can be utilized to probe the otherwise forbidden peak from the helices of twist bend nematic and helical nanofilament phase. Here we show that the same principle can be used to probe blue phase and chiral nematic phase. Furthermore, we discuss the relationship between the incoming linearly polarized X-rays, and the anisotropy in the scattering pattern. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231.
Vasenko, A S; Golubov, A A; Silkin, V M; Chulkov, E V
2017-07-26
We study the effect of the Fermi surface anisotropy on the odd-frequency spin-triplet pairing component of the induced pair potential. We consider a superconductor/ ferromagnetic insulator (S/FI) hybrid structure formed on the 3D topological insulator (TI) surface. In this case three ingredients ensure the possibility of the odd-frequency pairing: (1) the topological surface states, (2) the induced pair potential, and (3) the magnetic moment of a nearby ferromagnetic insulator. We take into account the strong anisotropy of the Dirac point in topological insulators when the chemical potential lies well above the Dirac cone and its constant energy contour has a snowflake shape. Within this model, we propose that the S/FI boundary should be properly aligned with respect to the snowflake constant energy contour to have an odd-frequency symmetry of the corresponding pairing component and to insure the Majorana bound state at the S/FI boundary. For arbitrary orientation of the boundary, the Majorana bound state is absent. This provides a selection rule to the realization of Majorana modes in S/FI hybrid structures, formed on the topological insulator surface.
NASA Astrophysics Data System (ADS)
Kovacheva, M.; Chauvin, A.; Jordanova, N.; Lanos, P.; Karloukovski, V.
2009-06-01
The effect of magnetic anisotropy on the palaeointensity results has been evaluated in different materials, including samples from archaeological structures of various ages, such as baked clay from prehistoric domestic ovens or pottery kilns, burnt soil from ancient fires, and bricks and bricks or tiles used in the kiln's construction. The remanence anisotropy was estimated by the thermoremanent (TRM) anisotropy tensor and isothermal remanence (IRM) tensor methods. The small anisotropy effect (less than 5%) observed in the palaeointensity results of baked clay from the relatively thin prehistoric oven's floors estimated previously through IRM anisotropy was confirmed by TRM anisotropy of this material. The new results demonstrate the possibility of using IRM anisotropy evaluation to correct baked clay palaeointensity data instead of the more difficult to determine TRM anisotropy ellipsoid. This is not always the case for the palaeointensity results from bricks and tiles. The anisotropy correction to palaeointensity results seems negligible for materials other than pottery. It would therefore appear that the palaeointensity determination is more sensitive to the degree of remanence anisotropy P and the angle between the natural remanent magnetization (NRM) vector and the laboratory field direction, than to the angle between the NRM and the maximum axis of the remanence anisotropy ellipsoid (Kmax).
Lock and Key Colloids through Polymerization-Induced Buckling of Monodispersed Silicon Oil Droplets
NASA Astrophysics Data System (ADS)
Sacanna, Stefano; Irvine, William T. M.; Chaikin, Paul M.; Pine, David J.
2010-03-01
Colloidal particles can spontaneously associate into larger structured aggregates when driven by selective and directional interactions. Colloidal organization can be programmed by engineering shapes and interactions of basic building blocks in a manner similar to molecular self-assembly. Examples of successful strategies that allow non-trivial assembly of particles include template-directed patterning, capillary forces and, most commonly, the functionalization of the particle surfaces with ``sticky patches'' of biological or synthetic molecules. The level of complexity of the realizable assemblies, increases when particles with well defined shape anisotropies are used. In particular depletion forces and specific surface treatments in combination with non spherical particles have proven to be powerful tools to self-assembly complex microstructures. We describe a simple, high yield, synthetic pathway to fabricate monodisperse hybrid silica spheres with well defined cavities. Because the particle morphologies are reproducible and tunable with precision, the resulting particles can be used as basic building blocks in the assembly of larger monodisperse clusters. This is demonstrated using depletion to drive the self-assembly.
Seismic Structures in the Earth's Inner Core Below Southeastern Asia
NASA Astrophysics Data System (ADS)
Krasnoshchekov, Dmitry; Kaazik, Petr; Kozlovskaya, Elena; Ovtchinnikov, Vladimir
2016-05-01
Documenting seismic heterogeneities in the Earth's inner core (IC) is important in terms of getting an insight into its history and dynamics. A valuable means for studying properties and spatial structure of such heterogeneities is provided by measurements of body waves refracted in the vicinity of the inner core boundary (ICB). Here, we investigate eastern hemisphere of the solid core by means of PKPBC-PKPDF differential travel times that sample depths from 140 to 360 km below its boundary. We study 292 polar and 133 equatorial residuals measured over the traces that probe roughly the same volume of the IC in both planes. Equatorial residuals show slight spatial variations in the sampled IC volume mostly below the level of 0.5 %, whereas polar residuals are up to three times as big, direction dependent and can exhibit higher local variations. The measurements reveal fast changes in seismic velocity within a restricted volume of the IC. We interpret the observations in terms of anisotropy and check against several anisotropy models few of which have been found capable of fitting the residuals scatter. We particularly quantify the model where a dipping discontinuity separates fully isotropic roof of the IC from its anisotropic body, whereas the depth of isotropy-anisotropy transition increases in southeast direction from 190 km below Southeastern Asia (off the coast of China) to 350 km beneath Australia. Another acceptable model cast in terms of localized anisotropic heterogeneities is valid if 33 largest polar measurements over the rays sampling a small volume below Southeastern Asia and the rest of polar data are treated separately. This model envisages almost isotropic eastern hemisphere of the IC at least down to the depth of 360 km below the ICB and constrains the anisotropic volume only to the ranges of North latitudes from 18° to 23°, East longitudes from 125° to 135° and depths exceeding 170 km. The anisotropy strength in either model is about 2 %. Further effective pursuit of the models presents challenges in terms of resolution and coverage and basically requires a significant dataset extension.
Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams
NASA Astrophysics Data System (ADS)
Startsev, Edward
2006-10-01
Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been developed to study these instabilities. The results of the investigations that identify the instability growth rates, levels of saturations, and conditions for quiescent beam propagation will also be discussed. [1] E.A. Startsev and R.C. Davidson, Phys.Plasmas 10, 4829 (2003). [2] E.A. Startsev, R.C. Davidson and H. Qin, Phys.Rev. ST Accel. Beams 8,124201 (2005).
NASA Astrophysics Data System (ADS)
Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.
2014-03-01
Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.
Functional Adaptation of the Calcaneus in Historical Foot Binding
Reznikov, Natalie; Phillips, Carina; Cooke, Martyn; Garbout, Amin; Ahmed, Farah
2017-01-01
ABSTRACT The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock‐dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long‐sought‐after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc. PMID:28561380
Functional Adaptation of the Calcaneus in Historical Foot Binding.
Reznikov, Natalie; Phillips, Carina; Cooke, Martyn; Garbout, Amin; Ahmed, Farah; Stevens, Molly M
2017-09-01
The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock-dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long-sought-after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys
NASA Astrophysics Data System (ADS)
Chang, P.-H.; Zhuravlev, I. A.; Belashchenko, K. D.
2018-04-01
Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs as a function of concentration. The magnetocrystalline anisotropy in these alloys is studied using first-principles calculations based on the coherent potential approximation and the disordered local moment method. The anisotropy is fairly small and sensitive to the variations in composition and temperature due to the cancellation of large contributions from different parts of the Brillouin zone. Concentration and temperature-driven SRTs are found in reasonable agreement with experimental data. Contributions from specific band-structure features are identified and used to explain the origin of the SRTs.
Anisotropy in the Arrival Directions of Ultrahigh-Energy Cosmic Rays
NASA Astrophysics Data System (ADS)
Villaseñor, Luis
2017-06-01
In this article we illustrate, in an interactive way, the analysis and visualization of anisotropy properties in the arrival directions of ultrahigh-energy cosmic rays detected by the Telescope Array and the Pierre Auger experiments by using data released by both collaborations. We describe the use of several programs that we have written in Python and Julia languages for this purpose. We also discuss the potential sources and analyse the effect of correcting the arrival directions to take into account the deflections of the cosmic rays by the magnetic field of our galaxy for one specific model of the galactic magnetic field under several assumptions about the composition of the primary cosmic rays.
NASA Technical Reports Server (NTRS)
Kowitt, Matt; Cheng, Ed; Silverberg, Bob; Ganga, Ken; Page, Lyman; Jarosik, Norm; Netterfield, Barth; Wilkinson, Dave; Meyer, Stephan; Inman, Casey;
1994-01-01
The observations and results from the FIRS, SK93, and MSAM-1, experiments are discussed. These experiments search for anisotropy in the cosmic microwave background over a range in angular scale from 180 deg to 0.5 deg and a range in frequency from 26 to 680 GHz. Emphasis is placed on the observing strategy and potential systematic errors. Contamination of the data by galactic sources is addressed. Future directions are indicated. The results for all three experiments, as found by us and others, are given in the context of the standard CDM model, Q(sub CDM), and the model-independent band-power estimates.
NASA Astrophysics Data System (ADS)
Wu, Ye; Yang, Jing; Wu, Xiang; Song, Maoshuang; Yoshino, Takashi; Zhai, Shuangmeng; Qin, Shan; Huang, Haijun; Lin, Jung-Fu
2016-08-01
The new hexagonal aluminous phase, named the NAL phase, is expected to be stable at depths of <1200 km in subducted slabs and believed to constitute 10~30 wt% of subducted mid-ocean ridge basalt together with the CaFe2O4-type aluminous phase. Here elasticity of the single-crystal NAL phase is investigated using Brillouin light scattering coupled with diamond anvil cells up to 20 GPa at room temperature. Analysis of the results shows that the substitution of iron lowers the shear modulus of the NAL phase by ~5% (~6 GPa) but does not significantly affect the adiabatic bulk modulus. The NAL phase exhibits high-velocity anisotropies with AVP = 14.7% and AVS = 15.12% for the Fe-bearing phase at ambient conditions. The high AVS of the NAL phase mainly results from the high anisotropy of the faster VS1 (13.9~15.8%), while the slower VS2 appears almost isotropic (0.1~2.8%) at ambient and high pressures. The AVP and AVS of the NAL phase decrease with increasing pressure but still have large values with AVP = 11.4% and AVS = 14.12% for the Fe-bearing sample at 20.4 GPa. The extrapolated AVP and AVS of the Fe-free and Fe-bearing NAL phases at 40 GPa are larger than those of bridgmanite at the same pressure. Together with its spin transition of iron and structural transition to the CF phase, the presence of the NAL phase with high-velocity anisotropies may contribute to the observed seismic anisotropy around subducted slabs in the uppermost lower mantle.
Large-angle cosmic microwave background anisotropies in an open universe
NASA Technical Reports Server (NTRS)
Kamionkowski, Marc; Spergel, David N.
1994-01-01
If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.
NASA Astrophysics Data System (ADS)
Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.
2017-10-01
We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.
Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer.
Liu, Yingxiong; Zhao, Qiang
2017-06-01
Development of simple, sensitive, and rapid method for cocaine detection is important in medicine and drug abuse monitoring. Taking advantage of fluorescence anisotropy and aptamer, this study reports a direct fluorescence anisotropy (FA) assay for cocaine by employing an aptamer probe with tetramethylrhodamine (TMR) labeled on a specific position. The binding of cocaine and the aptamer causes a structure change of the TMR-labeled aptamer, leading to changes of the interaction between labeled TMR and adjacent G bases in aptamer sequence, so FA of TMR varies with increasing of cocaine. After screening different labeling positions of the aptamer, including thymine (T) bases and terminals of the aptamer, we obtained a favorable aptamer probe with TMR labeled on the 25th base T in the sequence, which exhibited sensitive and significant FA-decreasing responses upon cocaine. Under optimized assay conditions, this TMR-labeled aptamer allowed for direct FA detection of cocaine as low as 5 μM. The maximum FA change reached about 0.086. This FA method also enabled the detection of cocaine spiked in diluted serum and urine samples, showing potential for applications. Graphical Abstract The binding of cocaine to the TMR-labeled aptamer causes conformation change and alteration of the intramolecular interaction between TMR and bases of aptamer, leading to variance of fluorescence anisotropy (FA) of TMR, so direct FA analyis of cocaine is achieved.
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.
2017-06-01
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80o and energies in excess of 4 EeV (4 × 1018 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10-5 in the case of the angular power spectrum, and 2.5 × 10-3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.
Fabric and connectivity as field descriptors for deformations in granular media
NASA Astrophysics Data System (ADS)
Wan, Richard; Pouragha, Mehdi
2015-01-01
Granular materials involve microphysics across the various scales giving rise to distinct behaviours of geomaterials, such as steady states, plastic limit states, non-associativity of plastic and yield flow, as well as instability of homogeneous deformations through strain localization. Incorporating such micro-scale characteristics is one of the biggest challenges in the constitutive modelling of granular materials, especially when micro-variables may be interdependent. With this motivation, we use two micro-variables such as coordination number and fabric anisotropy computed from tessellation of the granular material to describe its state at the macroscopic level. In order to capture functional dependencies between micro-variables, the correlation between coordination number and fabric anisotropy limits is herein formulated at the particle level rather than on an average sense. This is the essence of the proposed work which investigates the evolutions of coordination number distribution (connectivity) and anisotropy (contact normal) distribution curves with deformation history and their inter-dependencies through discrete element modelling in two dimensions. These results enter as probability distribution functions into homogenization expressions during upscaling to a continuum constitutive model using tessellation as an abstract representation of the granular system. The end product is a micro-mechanically inspired continuum model with both coordination number and fabric anisotropy as underlying micro-variables incorporated into a plasticity flow rule. The derived plastic potential bears striking resemblance to cam-clay or stress-dilatancy-type yield surfaces used in soil mechanics.
Crustal stress and structure at Kīlauea Volcano inferred from seismic anisotropy: Chapter 12
Johnson, Jessica H.; Swanson, Donald; Roman, Diana C.; Poland, Michael P.; Thelen, Weston A.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Seismic anisotropy, measured through shear wave splitting (SWS) analysis, can be indicative of the state of stress in Earth's crust. Changes in SWS at Kīlauea Volcano, Hawai‘i, associated with the onset of summit eruptive activity in 2008 hint at the potential of the technique for tracking volcanic activity. To use SWS observations as a monitoring tool, however, it is important to understand the cause of seismic anisotropy at the volcano throughout the eruptive cycle. To address this need, we analyzed SWS results from across Kīlauea in combination with macroscopic surface structures (mapped fractures, faults, and fissures) and stress orientations inferred from fault plane solutions. Seismic anisotropy seems to be due to pervasive aligned structures in most regions of the volcano. The upper East and Southwest Rift Zones, however, show a bimodality in stress and SWS, suggesting a stress discontinuity with depth, perhaps related to magma conduits that trend obliquely to the dominant structure. Other areas in and around Kīlauea Caldera display principal stresses of similar magnitudes, indicating that small stress perturbations can rotate the maximum horizontal compressive stress direction by up to 90°. In these locations, static structures generally control SWS, but dynamic conditions due to magmatic activity can override the structural control. Monitoring of SWS may therefore provide important signs of impending volcanism.
Effects of anisotropy on the two-dimensional inversion procedure
NASA Astrophysics Data System (ADS)
Heise, Wiebke; Pous, Jaume
2001-12-01
In this paper we show some of the effects that appear in magnetotelluric measurements over 2-D anisotropic structures, and propose a procedure to recover the anisotropy using 2-D inversion algorithms for isotropic models. First, we see how anisotropy affects the usual interpretation steps: dimensionality analysis and 2-D inversion. Two models containing general 2-D azimuthal anisotropic features were chosen to illustrate this approach: an anisotropic block and an anisotropic layer, both forming part of general 2-D models. In addition, a third model with dipping anisotropy was studied. For each model we examined the influence of various anisotropy strikes and resistivity contrasts on the dimensionality analysis and on the behaviour of the induction arrows. We found that, when the anisotropy ratio is higher than five, even if the strike is frequency-dependent it is possible to decide on a direction close to the direction of anisotropy. Then, if the data are rotated to this angle, a 2-D inversion reproduces the anisotropy reasonably well by means of macro-anisotropy. This strategy was tested on field data where anisotropy had been previously recognized.
Investigation into influence factors of wave velocity anisotropy for TCDP borehole
NASA Astrophysics Data System (ADS)
Wu, C. N.; Dong, J. J.; Yang, C. M.; Wu, W. J.
2015-12-01
The direction of fast horizontal shear wave velocity (FSH direction) is used as an indicator of the direction of maximum horizontal principal stress. However, the wave velocity anisotropy will be simultaneously dominated by the stress induced anisotropy and the inherent anisotropy which includes the effects of sedimentary and tectonic structures. In this study, the influence factors of wave velocity anisotropy will be analyzed in borehole-A of Taiwan Chelungpu-Fault Drilling Project (TCDP). The anisotropic compliance tensors of intact sandstones and mudrocks derived from the laboratory wave measurement are combined with the equivalent continuous model to evaluate the compliance tensor of jointed rock mass. Results show the lithology was identified as the most influential factor on the wave velocity anisotropy. Comparing the FSH direction logging data with our results, the wave velocity anisotropy in sandstones is mostly caused by inherent anisotropy of intact sandstones. The spatial variations of wave velocity anisotropy in mudrocks is caused by other relatively higher influence factors than inherent anisotropy of intact mudrocks. In addition, the dip angle of bedding plans is also important for wave velocity anisotropy of mudrocks because the FSH direction logging data seems dominated by the dip direction of bedding planes when the dip angle becomes steeper (at the depth greater than 1785 m). Surprisingly, the wave velocity anisotropy contributed by joints that we determined by equivalent continuous model is not significant. In this study, based on the TCDP borehole data, we conclude that determining the direction of maximum horizontal principal stress from the FSH directions should consider the influence of inherent anisotropy on rock mass.
Phase space analysis in anisotropic optical systems
NASA Technical Reports Server (NTRS)
Rivera, Ana Leonor; Chumakov, Sergey M.; Wolf, Kurt Bernardo
1995-01-01
From the minimal action principle follows the Hamilton equations of evolution for geometric optical rays in anisotropic media. As in classical mechanics of velocity-dependent potentials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy vector potential, similar to that of linear electromagnetism. Descartes' well known diagram for refraction is generalized and a factorization theorem holds for interfaces between two anisotropic media.
NASA Astrophysics Data System (ADS)
Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin
2018-05-01
An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.
Thermodynamic properties of a layered S = 7/2 Heisenberg magnet Gd(OH)CO3
NASA Astrophysics Data System (ADS)
Orendac, Martin; Ulicny, Martin; Cizmar, Erik; Orendacova, Alzbeta; Chen, Yan-Cong; Meng, Zhao-Sha; Tong, Ming-Liang
2015-03-01
Thermodynamic quantities and ESR spectra of Gd(OH)CO3 (I) are reported. The material may be considered to consist of weakly coupled layers with potentially triangular arrangement of exchange paths within each layer. Different bridging groups and distances among Gd3+ ions may be responsible for spatial anisotropy of magnetic coupling. Preliminary analysis of magnetic susceptibility using Curie-Weiss law yielded θ = -1.05 K indicating weak antiferromagnetic coupling and consequently, spin frustration in (I). More detailed simultaneous analysis of specific heat, susceptibility and magnetization studied down to nominally 0.45 K revealed non-negligible role of single-ion anisotropy. Using the model of weakly interacting S =7/2 trimers, the gross features of measured data may be explained while assuming single-ion anisotropy D /kB ~ 0.6 K and effective intratrimer magnetic coupling | J /kB | ~0.3 K. The obtained D value reasonably reproduces the position and shape of ESR line. The performed analysis suggests that magnetism in (I) is governed predominantly by crystal field effects and frustration plays a minor role. Supported by ITMS26220120005 and VEGA 1/0143/13.
A Mass Diffusion Model for Dry Snow Utilizing a Fabric Tensor to Characterize Anisotropy
NASA Astrophysics Data System (ADS)
Shertzer, Richard H.; Adams, Edward E.
2018-03-01
A homogenization algorithm for randomly distributed microstructures is applied to develop a mass diffusion model for dry snow. Homogenization is a multiscale approach linking constituent behavior at the microscopic level—among ice and air—to the macroscopic material—snow. Principles of continuum mechanics at the microscopic scale describe water vapor diffusion across an ice grain's surface to the air-filled pore space. Volume averaging and a localization assumption scale up and down, respectively, between microscopic and macroscopic scales. The model yields a mass diffusivity expression at the macroscopic scale that is, in general, a second-order tensor parameterized by both bulk and microstructural variables. The model predicts a mass diffusivity of water vapor through snow that is less than that through air. Mass diffusivity is expected to decrease linearly with ice volume fraction. Potential anisotropy in snow's mass diffusivity is captured due to the tensor representation. The tensor is built from directional data assigned to specific, idealized microstructural features. Such anisotropy has been observed in the field and laboratories in snow morphologies of interest such as weak layers of depth hoar and near-surface facets.
NASA Astrophysics Data System (ADS)
Zhou, Cai; Shen, Lvkang; Liu, Ming; Gao, Cunxu; Jia, Chenglong; Jiang, Changjun
2018-01-01
The ability to manipulate the magnetism on interfacing ferromagnetic and ferroelectric materials via electric fields to achieve an emergent multiferroic response has enormous potential for nanoscale devices with novel functionalities. Herein, a strong electric-field control of the magnetism modulation is reported for a single-crystal Co (14 nm )/(001 )Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (PMN-PT) heterostructure by fabricating an epitaxial Co layer on a PMN-PT substrate. Electric-field-tuned ferromagnetic resonance exhibits a large resonance field shift, with a 120-Oe difference between that under positive and negative remanent polarizations, which demonstrates nonvolatile electric-field control of the magnetism. Further, considering the complexity of the twofold symmetry magnetic anisotropy, the linear change of the fourfold symmetry magnetic anisotropy, relating to the single-crystal cubic magnetocrystal anisotropy of the Co thin film, is resolved and quantified to exert a magnon-driven, strong direct magnetoelectric effect on the Co /PMN -PT interface. These results are promising for future multiferroic devices.
Tuning magnetic properties of magnetoelectric BiFeO 3-NiFe 2O 4 nanostructures
NASA Astrophysics Data System (ADS)
Crane, S. P.; Bihler, C.; Brandt, M. S.; Goennenwein, S. T. B.; Gajek, M.; Ramesh, R.
2009-02-01
Multifunctional thin film nanostructures containing soft magnetic materials such as nickel ferrite are interesting for potential applications in microwave signal processing because of the possibility to shrink the size of device architecture and limit device power consumption. An essential prerequisite to future applications of such a system is a firm understanding of its magnetic properties. We show that nanostructures composed of ferrimagnetic NiFe 2O 4 pillars in a multiferroic BiFeO 3 matrix can be tuned magnetically by altering the aspect ratio of the pillars by depositing films of varying thickness. Magnetic anisotropy is studied using ferromagnetic resonance, which shows that the uniaxial magnetic anisotropy in the growth direction changes sign upon increasing the film thickness. The magnitude of this anisotropy contribution can be explained via a combination of shape and magnetostatic effects, using the object-oriented micromagnetic framework (OOMMF). The key factors determining the magnetic properties of the films are shown to be the aspect ratio of individual pillars and magnetostatic interactions between neighboring pillars.
Electronic structure and magnetic anisotropy of Sm2Fe17Nx
NASA Astrophysics Data System (ADS)
Akai, Hisazumi; Ogura, Masako
2014-03-01
Electronic structure and magnetic properties of Sm2Fe17Nx are studies on the basis of the first-principles electronic structure calculation in the framework of the density functional theory within the local density and coherent potential approximations. The magnetic anisotropy of the system as a function of nitrogen concentration x is discussed by taking account not only of the crystal field effects but also of the effects of the f-electron transfer from Sm to the neighboring sites. Also discussed is the magnetic transition temperature that is estimated by mapping the system into a Heisenberg model. The results show the crystalline magnetic anisotropy changes its direction from in-plane to uniaxial ones as x increases. It takes the maximum value near x ~ 2 . 8 and then decreases slightly towards x = 3 . The mechanism for these behaviors is discussed in the light of the results of detailed calculations on the bonding properties between Sm and its neighboring N. This work was partly supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Strain induced parametric pumping of a domain wall and its depinning from a notch
NASA Astrophysics Data System (ADS)
Nepal, Rabindra; Gungordu, Utkan; Kovalev, Alexey
Using Thiele's method and detailed micromagnetic simulations, we study resonant oscillation of a domain wall in a notch of a ferromagnetic nanowire due to the modulation of magnetic anisotropy by external AC strain. Such resonant oscillation results from the parametric pumping of domain wall by AC strain at frequency about double the free domain wall oscillation frequency, which is mainly determined by the perpendicular anisotropy and notch geometry. This effect leads to a substantial reduction in depinning field or current required to depin a domain wall from the notch, and offers a mechanism for efficient domain wall motion in a notched nanowire. Our theoretical model accounts for the pinning potential due to a notch by explicitly calculating ferromagnetic energy as a function of notch geometry parameters. We also find similar resonant domain wall oscillations and reduction in the domain wall depinning field or current due to surface acoustic wave in soft ferromagnetic nanowire without uniaxial anisotropy that energetically favors an in-plane domain wall. DOE Early Career Award DE-SC0014189 and DMR- 1420645.
Fabrication and magnetic properties of granular Co/porous InP nanocomposite materials
2011-01-01
A novel Co/InP magnetic semiconductor nanocomposite was fabricated by electrodeposition magnetic Co nanoparticles into n-type porous InP templates in ethanol solution of cobalt chloride. The content or particle size of Co particles embedded in porous InP increased with increasing deposition time. Co particles had uniform distribution over pore sidewall surface of InP template, which was different from that of ceramic template and may open up new branch of fabrication of nanocomposites. The magnetism of such Co/InP nanocomposites can be gradually tuned from diamagnetism to ferromagnetism by increasing the deposition time of Co. Magnetic anisotropy of this Co/InP nanocomposite with magnetization easy axis along the axis of InP square channel was well realized by the competition between shape anisotropy and magnetocrystalline anisotropy. Such Co/InP nanocomposites with adjustable magnetism may have potential applications in future in the field of spin electronics. PACS: 61.46. +w · 72.80.Tm · 81.05.Rm · 75.75. +a · 82.45.Aa PMID:21711809
Fabrication and magnetic properties of granular Co/porous InP nanocomposite materials.
Zhou, Tao; Cheng, Dandan; Zheng, Maojun; Ma, Li; Shen, Wenzhong
2011-03-31
A novel Co/InP magnetic semiconductor nanocomposite was fabricated by electrodeposition magnetic Co nanoparticles into n-type porous InP templates in ethanol solution of cobalt chloride. The content or particle size of Co particles embedded in porous InP increased with increasing deposition time. Co particles had uniform distribution over pore sidewall surface of InP template, which was different from that of ceramic template and may open up new branch of fabrication of nanocomposites. The magnetism of such Co/InP nanocomposites can be gradually tuned from diamagnetism to ferromagnetism by increasing the deposition time of Co. Magnetic anisotropy of this Co/InP nanocomposite with magnetization easy axis along the axis of InP square channel was well realized by the competition between shape anisotropy and magnetocrystalline anisotropy. Such Co/InP nanocomposites with adjustable magnetism may have potential applications in future in the field of spin electronics.PACS: 61.46. +w · 72.80.Tm · 81.05.Rm · 75.75. +a · 82.45.Aa.
Magneto-optical properties of CoFeB ultrathin films: Effect of Ta buffer and capping layer
NASA Astrophysics Data System (ADS)
Husain, Sajid; Gupta, Nanhe Kumar; Barwal, Vineet; Chaudhary, Sujeet
2018-05-01
The effect of adding Ta as a capping and buffer layer on ultrathin CFB(Co60Fe20B20) thin films has been investigated by magneto-optical Kerr effect. A large difference in the coercivity and saturation field is observed between the single layer CFB(2nm) and Ta(5nm)/CFB(2nm)/Ta(2nm) trilayer structure. In particular, the in-plane anisotropy energy is found to be 90kJ/m3 on CFB(2nm) and 2.22kJ/m3 for Ta(5nm)/CFB(2nm)/Ta(2nm) thin films. Anisotropy energy further reduced to 0.93kJ/m3 on increasing the CFB thinness in trilayer structure i.e., Ta(5nm)/CFB(4nm)/Ta(2nm). Using VSM measurement, the saturation magnetization is found to be 1230±50 kA/m. Low coercivity and anisotropy energy in capped and buffer layer thin films envisage the potential of employing CFB for low field switching applications of the spintronic devices.
NASA Astrophysics Data System (ADS)
Zana, Iulica
In this dissertation the structural and magnetic characterization of high anisotropy Co-rich alloys for magnetic recording and MEMS applications has been carried out. The potential of Co78Sm22 as an ultra-high density recording medium was explored through comprehensive static and dynamic magnetic measurements. It was found out that hard magnetic properties (Hc = 4.5 kOe) can be achieved when CoSm is sputter-deposited on Cr80V 20 underlayer, comparable with those reported for state-of-the-art media at the end of 2002. Furthermore, the chemical stability and reliability of CoSm thin films was studied through combined accelerated aging and electrochemical methods. It was found out that CoSm thin films are more reactive than current recording media (CoPt), and a layer of Si3N4 of at least 6 nm provides satisfactory protection. Electrodeposition of Co80Pt20 onto highly textured Cu seed layer with either {100} or {111} orientation was studied. The influence of Cu texture and plating current density (cd) on the growth, morphology, microstructure, and magnetic properties of the CoPt films was investigated. Epitaxial CoPt thin films with uniform composition across the film thickness were deposited. The microstructure consists in fcc matrix and hcp matrix when plated on Cu(100) and Cu(111), respectively. CoPt hcp single phase films with c-axis normal to the substrate were grown on Cu(111) when plated at cd = 50 mA/cm2. As opposed to the films plated on Cu(100) which show a mostly in-plane magnetic anisotropy, the films plated on Cu(111) develop a well defined perpendicular magnetic anisotropy (PMA) due to the hcp phase with the c-axis normal to the substrate, which yields coercivities as high as 6.1 kOe. The origin of the high PMA was found to lie in the magnetocrystalline anisotropy. CoPt micromagnets have been successfully fabricated by the electrodeposition-through-mask method, which despite the small aspect ratio show a definite PMA. The PMA, together with the hard magnetic properties measured (Hc = 4.7 kOe) demonstrate a strong potential for the utilization of these materials in the MEMS area.
NASA Astrophysics Data System (ADS)
El-Kader, M. S. A.; Godet, J.-L.; El-Sadek, A. A.; Maroulis, G.
2017-10-01
Quantum mechanical line shapes of collision-induced light scattering at room temperature (295 K) and collision-induced absorption at T = 195 K are computed for gaseous mixtures of molecular hydrogen and argon using theoretical values for pair-polarisability trace and anisotropy and induced dipole moments as input. Comparison with other theoretical spectra of isotropic and anisotropic light scattering and measured spectra of absorption shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Ab initio models of the trace and anisotropy polarisability which reproduce the recent spectra of scattering are given. Empirical model of the dipole moment which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and/or experimental line shapes of both absorption and scattering is obtained when the potential model which is constructed from the transport and thermo-physical properties is used.
Roto-translational Raman spectra of pairs of hydrogen molecules from first principles.
Gustafsson, Magnus; Frommhold, Lothar; Li, Xiaoping; Hunt, K L C
2009-04-28
We calculate the collision-induced, roto-translational, polarized, and depolarized Raman spectra of pairs of H(2) molecules. The Schrodinger equation of H(2)-H(2) scattering in the presence of a weak radiation field is integrated in the close-coupled scheme. This permits the accounting for the anisotropy of the intermolecular potential energy surface and thereby it includes mixing of polarizability components. The static polarizability invariants, trace and anisotropy, of two interacting H(2) molecules were obtained elsewhere [Li et al., J. Chem. Phys. 126, 214302 (2007)] from first principles. Here we report the associated spherical tensor components which, along with the potential surface, are input in the calculation of the supramolecular Raman spectra. Special attention is paid to the interferences in the wings of the rotational S(0)(0) and S(0)(1) lines of the H(2) molecule. The calculated Raman pair spectra show reasonable consistency with existing measurements of the polarized and depolarized Raman spectra of pairs of H(2) molecules.
In Silico Measurements of Twist and Bend Moduli for β-Solenoid Protein Self-Assembly Units.
Heinz, Leonard P; Ravikumar, Krishnakumar M; Cox, Daniel L
2015-05-13
We compute potentials of mean force for bend and twist deformations via force pulling and umbrella sampling experiments for four β-solenoid proteins (BSPs) that show promise in nanotechnology applications. In all cases, we find quasi-Hooke's law behavior until the point of rupture. Bending moduli show modest anisotropy for two-sided and three-sided BSPs, and little anisotropy for a four-sided BSP. There is a slight clockwise/counterclockwise asymmetry in the twist potential of mean force, showing greater stiffness when the applied twist follows the intrinsic twist. When we extrapolate to beam theory appropriate for amyloid fibrils of the BSPs, we find bend/twist moduli which are somewhat smaller than those in the literature for other amyloid fibrils. Twist persistence lengths are on the order of a micron, and bend persistence lengths are several microns. Provided the intrinsic twist can be reversed, these results support the usage of BSPs in biomaterials applications.
Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H
2016-01-01
Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas. © 2016 by American Journal of Neuroradiology.
The ionic DTI model (iDTI) of dynamic diffusion tensor imaging (dDTI)
Makris, Nikos; Gasic, Gregory P.; Garrido, Leoncio
2014-01-01
Measurements of water molecule diffusion along fiber tracts in CNS by diffusion tensor imaging (DTI) provides a static map of neural connections between brain centers, but does not capture the electrical activity along axons for these fiber tracts. Here, a modification of the DTI method is presented to enable the mapping of active fibers. It is termed dynamic diffusion tensor imaging (dDTI) and is based on a hypothesized “anisotropy reduction due to axonal excitation” (“AREX”). The potential changes in water mobility accompanying the movement of ions during the propagation of action potentials along axonal tracts are taken into account. Specifically, the proposed model, termed “ionic DTI model”, was formulated as follows.•First, based on theoretical calculations, we calculated the molecular water flow accompanying the ionic flow perpendicular to the principal axis of fiber tracts produced by electrical conduction along excited myelinated and non-myelinated axons.•Based on the changes in molecular water flow we estimated the signal changes as well as the changes in fractional anisotropy of axonal tracts while performing a functional task.•The variation of fractional anisotropy in axonal tracts could allow mapping the active fiber tracts during a functional task. Although technological advances are necessary to enable the robust and routine measurement of this electrical activity-dependent movement of water molecules perpendicular to axons, the proposed model of dDTI defines the vectorial parameters that will need to be measured to bring this much needed technique to fruition. PMID:25431757
NASA Astrophysics Data System (ADS)
Afanasiev, M.; Pratt, R. G.; Kamei, R.; McDowell, G.
2012-12-01
Crosshole seismic tomography has been used by Vale to provide geophysical images of mineralized massive sulfides in the Eastern Deeps deposit at Voisey's Bay, Labrador, Canada. To date, these data have been processed using traveltime tomography, and we seek to improve the resolution of these images by applying acoustic Waveform Tomography. Due to the computational cost of acoustic waveform modelling, local descent algorithms are employed in Waveform Tomography; due to non-linearity an initial model is required which predicts first-arrival traveltimes to within a half-cycle of the lowest frequency used. Because seismic velocity anisotropy can be significant in hardrock settings, the initial model must quantify the anisotropy in order to meet the half-cycle criterion. In our case study, significant velocity contrasts between the target massive sulfides and the surrounding country rock led to difficulties in generating an accurate anisotropy model through traveltime tomography, and our starting model for Waveform Tomography failed the half-cycle criterion at large offsets. We formulate a new, semi-global approach for finding the best-fit 1-D elliptical anisotropy model using simulated annealing. Through random perturbations to Thompson's ɛ parameter, we explore the L2 norm of the frequency-domain phase residuals in the space of potential anisotropy models: If a perturbation decreases the residuals, it is always accepted, but if a perturbation increases the residuals, it is accepted with the probability P = exp(-(Ei-E)/T). This is the Metropolis criterion, where Ei is the value of the residuals at the current iteration, E is the value of the residuals for the previously accepted model, and T is a probability control parameter, which is decreased over the course of the simulation via a preselected cooling schedule. Convergence to the global minimum of the residuals is guaranteed only for infinitely slow cooling, but in practice good results are obtained from a variety of finite-time cooling schedules. We present the results of this approach for real and synthetically generated elastic TI data. After traveltime modelling, near offset data satisfied the half-cycle criterion. This gave us confidence that our horizontal velocity model was satisfactory, and we kept it constant while simulated annealing was run to determine the best-fit anisotropy profile. Once a low temperature was reached (so that minimizations to the objective function became rare), we constructed an average anisotropy model using accepted models which possessed a |E| within one standard deviation of the best fit model. This anisotropy model allowed the starting model for Waveform Tomography to satisfy the half-cycle first break criterion at large offsets. We believe that the success of this method is explained by the multipath nature of finite difference wave propagation, which does not suffer from the errors experienced by traveltime ray-tracing along the sharp velocity gradients present in the model.
Random-anisotropy model: Monotonic dependence of the coercive field on D/J
NASA Astrophysics Data System (ADS)
Saslow, W. M.; Koon, N. C.
1994-02-01
We present the results of a numerical study of the zero-temperature remanence and coercivity for the random anisotropy model (RAM), showing that, contrary to early calculations for this model, the coercive field increases monotonically with increases in the strength D of the random anisotropy relative to the strength J at the exchange field. Local-field adjustments with and without spin flips are considered. Convergence is difficult to obtain for small values of the anisotropy, suggesting that this is the likely source of the nonmonotonic behavior found in earlier studies. For both large and small anisotropy, each spin undergoes about one flip per hysteresis cycle, and about half of the spin flips occur in the vicinity of the coercive field. When only non-spin-flip adjustments are considered, at large anisotropy the coercivity is proportional to the anisotropy. At small anisotropy, the rate of convergence is comparable to that when spin flips are included.
Experimental Overview of Direct Photon Results in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Novitzky, Norbert
2016-07-01
Direct photons are color blind probes and thus they provide unique opportunities to study the colored medium created in heavy ion collisions. There are many different sources of direct photons each probing different physics processes as the system evolves. In basic 2 → 2 processes the prompt photons from primary hard scatterings offer the most precise measurements of the outgoing parton energy in the opposite direction. In heavy ion collisions the created medium emits photons as thermal radiation, whose rate and anisotropies provide a unique prospective on the properties and evolution of the system. Recent results on direct photons from the LHC and RHIC experiments are briefly summarized in this paper.
S=2 quasi-one-dimensional spin waves in CrCl2
NASA Astrophysics Data System (ADS)
Stone, Matthew; Ehlers, Georg; Granroth, Garrett
2014-03-01
We examine the magnetic excitation spectrum in the S = 2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Néel temperature and the ratio of the two largest exchange constants is Jc /Jb = 9 . 1 +/- 2 . 2 . However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase. The research was performed at Oak Ridge National Laboratory's Spallation Neutron Source and was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.
Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations.
Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot
2013-10-01
Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios.
Qiu, Y-W; Su, H-H; Lv, X-F; Jiang, G-H
2015-01-01
Codeine-containing cough syrups have become one of the most popular drugs of abuse in young people in the world. Chronic codeine-containing cough syrup abuse is related to impairments in a broad range of cognitive functions. However, the potential brain white matter impairment caused by chronic codeine-containing cough syrup abuse has not been reported previously. Our aim was to investigate abnormalities in the microstructure of brain white matter in chronic users of codeine-containing syrups and to determine whether these WM abnormalities are related to the duration of the use these syrups and clinical impulsivity. Thirty chronic codeine-containing syrup users and 30 matched controls were evaluated. Diffusion tensor imaging was performed by using a single-shot spin-echo-planar sequence. Whole-brain voxelwise analysis of fractional anisotropy was performed by using tract-based spatial statistics to localize abnormal WM regions. The Barratt Impulsiveness Scale 11 was surveyed to assess participants' impulsivity. Volume-of-interest analysis was used to detect changes of diffusivity indices in regions with fractional anisotropy abnormalities. Abnormal fractional anisotropy was extracted and correlated with clinical impulsivity and the duration of codeine-containing syrup use. Chronic codeine-containing syrup users had significantly lower fractional anisotropy in the inferior fronto-occipital fasciculus of the bilateral temporo-occipital regions, right frontal region, and the right corona radiata WM than controls. There were significant negative correlations among fractional anisotropy values of the right frontal region of the inferior fronto-occipital fasciculus and the right superior corona radiata WM and Barratt Impulsiveness Scale total scores, and between the right frontal region of the inferior fronto-occipital fasciculus and nonplan impulsivity scores in chronic codeine-containing syrup users. There was also a significant negative correlation between fractional anisotropy values of the right frontal region of the inferior fronto-occipital fasciculus and the duration of codeine-containing syrup use in chronic users. Chronic codeine-containing syrup abuse may be associated with disruptions in brain WM integrity. These WM microstructural deficits may be linked to higher impulsivity in chronic codeine-containing syrup users. © 2015 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.
2018-02-01
We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.
Investigation of the photosensitivity of LiNbO3:BaFeO3 crystal
NASA Astrophysics Data System (ADS)
Darwish, Abdalla M.; Koplitz, Brent D.; Jackson, E.; Jalbout, F.; Jalbout, A.; Aggarwal, Mohan D.
2002-01-01
Ferromagnetic resonance (FMR) absorptions from six fine particle-samples of barium ferrite were studied over a temperature range of -195 degree(s)C to 500 degree(s)C. It was found that the shape of the FMR absorption signal is affected by the particle shape and crystalline anisotropy of each sample. From this analysis, the first magnetic anisotropy constant K1 was estimated approximately as a function of temperature. The estimation suggested that the value of K1 was sensitive to the condition of preparation of fine powders. In addition the photosensitivity of the LiNbO3:BaFe doped crystal was enhanced, suggesting the importance of Barium Ferrite powder as a potential candidate with NOL materials.
NASA Astrophysics Data System (ADS)
Lobo, Carlos M. S.; Tosin, Giancarlo; Baader, Johann E.; Colnago, Luiz A.
2017-10-01
In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers.
Thermal conductivity anisotropy in nanostructures and nanostructured materials
NASA Astrophysics Data System (ADS)
Termentzidis, Konstantinos
2018-03-01
Thermal conductivity anisotropy is a subject for both fundamental and application interests. The anisotropy can be induced either by van der Waals forces in bulk systems or by nanostructuration. Here, we will examine four cases in which thermal anisotropy has been observed: (i) Si/Ge superlattices which exhibit higher thermal anisotropy between in-plane and cross-plane directions for the case of smooth interfaces, (ii) amorphous/crystalline superlattices with much higher anisotropy than the crystalline/crystalline superlattices and which can reach a factor of six when the amorphous fraction increases, (iii) the impact of the density of edge and screw dislocations on the thermal anisotropy of defected GaN, and (iv) the influence of the growth direction of Bi2Te3 nanowires on thermal conductivity.
NASA Astrophysics Data System (ADS)
Vech, Daniel; Chen, Christopher
2016-04-01
One of the most important features of the plasma turbulence is the anisotropy, which arises due to the presence of the magnetic field. The understanding of the anisotropy is particularly important to reveal how the turbulent cascade operates. It is well known that anisotropy exists with respect to the mean magnetic field, however recent theoretical studies suggested anisotropy with respect to the radial direction. The purpose of this study is to investigate the variance and spectral anisotropies of the solar wind turbulence with multiple point spacecraft observations. The study includes the Advanced Composition Analyzer (ACE), WIND and Cluster spacecraft data. The second order structure functions are derived for two different spacecraft configurations: when the pair of spacecraft are separated radially (with respect to the spacecraft -Sun line) and when they are separated along the transverse direction. We analyze the effect of the different sampling directions on the variance anisotropy, global spectral anisotropy, local 3D spectral anisotropy and discuss the implications for our understanding of solar wind turbulence.
NASA Astrophysics Data System (ADS)
Li, J. X.; Yu, G. Q.; Tang, C.; Wang, K. L.; Shi, J.
Spin-orbit torque (SOT) has been demonstrated to be efficient to manipulate the magnetization in heavy-metal/ferromagnetic metal (HM/FMM) heterostructures. In HM/magnetic insulator (MI) heterostructures, charge currents do not flow in MI, but pure spin currents generated by the spin Hall effect in HM can enter the MI layer to cause magnetization dynamics. Here we report SOT-induced magnetization switching in Tm3Fe5O12/Pt heterostructures, where Tm3Fe5O12 (TmIG) is a MI grown by pulsed laser deposition with perpendicular magnetic anisotropy. The anomalous Hall signal in Pt is used as a probe to detect the magnetization switching. Effective magnetic fields due to the damping-like and field-like torques are extracted using a harmonic Hall detection method. The experiments are carried out in heterostructures with different TmIG film thicknesses. Both the switching and harmonic measurements indicate a more efficient SOT generation in HM/MI than in HM/FMM heterostructures. Our comprehensive experimental study and detailed analysis will be presented. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. SC0012670.
NASA Astrophysics Data System (ADS)
Hu, Bo; He, Wei; Ye, Jun; Tang, Jin; Syed Sheraz, Ahmad; Zhang, Xiang-Qun; Cheng, Zhao-Hua
2015-01-01
Buffer layer provides an opportunity to enhance the quality of ultrathin magnetic films. In this paper, Co films with different thickness of CoSi2 buffer layers were grown on Si (001) substrates. In order to investigate morphology, structure, and magnetic properties of films, scanning tunneling microscope (STM), low energy electron diffraction (LEED), high resolution transmission electron microscopy (HRTEM), and surface magneto-optical Kerr effect (SMOKE) were used. The results show that the crystal quality and magnetic anisotropies of the Co films are strongly affected by the thickness of CoSi2 buffer layers. Few CoSi2 monolayers can prevent the interdiffusion of Si substrate and Co film and enhance the Co film quality. Furthermore, the in-plane magnetic anisotropy of Co film with optimal buffer layer shows four-fold symmetry and exhibits the two-jumps of magnetization reversal process, which is the typical phenomenon in cubic (001) films. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921801 and 2012CB933102), the National Natural Science Foundation of China (Grant Nos. 11374350, 11034004, 11274361, and 11274033), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131102130005).
Magnetic properties of CoNiFe alloys electrodeposited under potential and current control conditions
NASA Astrophysics Data System (ADS)
Perez, L.; Attenborough, K.; De Boeck, J.; Celis, J. P.; Aroca, C.; Sánchez, P.; López, E.; Sánchez, M. C.
2002-04-01
Electrodeposited CoNiFe alloys have been produced under potential and current control conditions. It was found that composition, crystalline structure and magnetic properties are the same irrespective of which plating control is used. Magnetic anisotropy is present in the softest samples. A study of the dependence of magnetic properties and domain structure on the thickness of the films is also reported.
Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy
Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.
2016-05-12
We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. Finally, the bubble crystal exhibits a quasi-continuous (devil’s staircase) temperature dependent ordering wave-vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.
Shape anisotropy in patterned ferromagnetic GaMnAsP films with perpendicular anisotropy
NASA Astrophysics Data System (ADS)
Liu, X.; Li, X.; Dong, S.-N.; Dobrowolska, M.; Furdyna, J. K.
2018-05-01
We investigate the effects of physical dimensions on the behavior of magnetic anisotropy in lithographically-fabricated nanoscale squares of the ferromagnetic semiconductor GaMnAsP using SQUID magnetometry and ferromagnetic resonance (FMR). Both measurements show that perpendicular magnetic anisotropy is strongly affected by the size of the ferromagnetic nano-scale elements, while their Curie temperature and their in-plane anisotropy remain unchanged in the range studied. In addition to uniform-mode FMR, we observe a series of spin-wave resonances, whose analysis suggests that surface anisotropy plays an important role in determining the properties of nanoscale magnets.
Modelling magnetic anisotropy of single-chain magnets in |d/J| ≥ 1 regime
NASA Astrophysics Data System (ADS)
Haldar, Sumit; Raghunathan, Rajamani; Sutter, Jean-Pascal; Ramasesha, S.
2017-11-01
Single-molecule magnets (SMMs) with single-ion anisotropies comparable to exchange interactions J between spins have recently been synthesised. Here, we provide theoretical insights into the magnetism of such systems. We study spin chains with site-spins, s = 1, 3/2 and 2 and strength of on-site anisotropy comparable to the exchange constants between the spins. We find that large on-site anisotropies lead to crossing of the states with different MS values in the same spin manifold to which they belong in the absence of anisotropy. When on-site anisotropy is increased further, we also find that the MS states of the higher energy spin states descend below the MS states of the ground spin manifold. Giant spin in this limit is no longer conserved and describing the axial and rhombic anisotropies of the molecule, DM and EM, respectively, is not possible. However, the giant spin of the low-lying large MS states is very nearly an integer and, using this spin value, it is possible to construct an effective spin-Hamiltonian and compute the molecular magnetic anisotropy constants DM and EM. We report effect of finite sizes, rotations of site anisotropies and chain dimerisation on the effective anisotropy of the spin chains.
NASA Astrophysics Data System (ADS)
Baldrati, L.; Tan, A. J.; Mann, M.; Bertacco, R.; Beach, G. S. D.
2017-01-01
The magneto-ionic effect is a promising method to control the magnetic properties electrically. Charged mobile oxygen ions can easily be driven by an electric field to modify the magnetic anisotropy of a ferromagnetic layer in contact with an ionic conductor in a solid-state device. In this paper, we report on the room temperature magneto-ionic modulation of the magnetic anisotropy of ultrathin CoFeB films in contact with a GdOx layer, as probed by polar micro-Magneto Optical Kerr Effect during the application of a voltage across patterned capacitors. Both Pt/CoFeB/GdOx films with perpendicular magnetic anisotropy and Ta/CoFeB/GdOx films with uniaxial in-plane magnetic anisotropy in the as-grown state exhibit a sizable dependence of the magnetic anisotropy on the voltage (amplitude, polarity, and time) applied across the oxide. In Pt/CoFeB/GdOx multilayers, it is possible to reorient the magnetic anisotropy from perpendicular-to-plane to in-plane, with a variation of the magnetic anisotropy energy greater than 0.2 mJ m-2. As for Ta/CoFeB/GdOx multilayers, magneto-ionic effects still lead to a sizable variation of the in-plane magnetic anisotropy, but the anisotropy axis remains in-plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Andringa, S.
2017-06-01
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80{sup o} and energies in excess of 4 EeV (4 × 10{sup 18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providingmore » directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p -values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10{sup −5} in the case of the angular power spectrum, and 2.5 × 10{sup −3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less
Marques, D; Miranda, A; Silva, A G; Munro, P R T; DE Beule, P A A
2018-05-01
Some implementations of interference microscopy imaging use digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index maps of weakly scattering, semi-transparent objects, frequently encountered in biological investigations. Reconstruction occurs through application of the object scattering potential which assumes an isotropic refractive index throughout the object. Here, we demonstrate that this assumption can in some circumstances be invalid for biological imaging due to the presence of lipid-induced optical anisotropy. We show that the nanoscale organization of lipids in the observation of cellular endocytosis with polarized light induces a significant change in far-field scattering. We obtain this result by presenting a general solution to Maxwell's equations describing light scattering of core-shell particles near an isotropic substrate covered with an anisotropic thin film. This solution is based on an extension of the Bobbert-Vlieger solution for particle scattering near a substrate delivering an exact solution to the scattering problem in the near field as well as far field. By applying this solution to study light scattering by a lipid vesicle near a lipid bilayer, whereby the lipids are represented through a biaxial optical model, we conclude through ellipsometry concepts that effective amounts of lipid-induced optical anisotropy significantly alter far-field optical scattering in respect to an equivalent optical model that neglects the presence of optical anisotropy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Wang, Xinyi; Zou, Mingjian; Huang, Hongduan; Ren, Yuqian; Li, Limei; Yang, Xiaoda; Li, Na
2013-03-15
We developed a highly differentiating, homogeneous gold nanoparticle (AuNP) enhanced fluorescence anisotropic method for single nucleotide polymorphism (SNP) detection at nanomolar level using toehold-mediated strand-displacement reaction. The template strand, containing a toehold domain with an allele-specific site, was immobilized on the surface of AuNPs, and the solution fluorescence anisotropy was markedly enhanced when the fluorescein-labeled blocking DNA was attached to the AuNP via hybridization. Strand-displacement by the target ssDNA strand resulted in detachment of fluorescein-labeled DNA from AuNPs, and thus decreased fluorescence anisotropy. The drastic kinetic difference in strand-displacement from toehold design was used to distinguish between the perfectly matched and the single-base mismatched strands. Free energy changes were calculated to elucidate the dependence of the differentiation ability on the mutation site in the toehold region. A solid negative signal change can be obtained for single-base mismatched strand in the dynamic range of the calibration curve, and a more than 10-fold signal difference can still be observed in a mixed solution containing 100 times the single-base mismatched strand, indicating the good specificity of the method. This proposed method can be performed with a standard spectrofluorimeter in a homogeneous and cost-effective manner, and has the potential to be extended to the application of fluorescence anisotropy method of SNP detection. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Aglietta, M.
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80(o) and energies in excess of 4 EeV (4 × 10 18 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information onmore » any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured, while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10 -5 in the case of the angular power spectrum, and 2.5 × 10 -3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less
Kinetic Features Observed in the Solar Wind Electron Distributions
NASA Astrophysics Data System (ADS)
Pierrard, V.; Lazar, M.; Poedts, S.
2016-12-01
More than 120 000 of velocity distributions measured by Helios, Cluster and Ulysses in the ecliptic have been analyzed within an extended range of heliocentric distances from 0.3 to over 4 AU. The velocity distribution of electrons reveal a dual structure with a thermal (Maxwellian) core and a suprathermal (Kappa) halo. A detailed observational analysis of these two components provides estimations of their temperatures and temperature anisotropies, and we decode any potential interdependence that their properties may indicate. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analysis and providing valuable clues about the temperature of the Kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, that seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anti-correlated anisotropies of the core and halo populations and the increase of their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated most probably by the anisotropy-driven instabilities. Estimating the temperature of the solar wind particles and their anisotropies is particularly important for understanding the origin of these deviations from thermal equilibrium as well as their effects.
D'Arceuil, Helen; Liu, Christina; Levitt, Pat; Thompson, Barbara; Kosofsky, Barry; de Crespigny, Alex
2008-01-01
Diffusion tensor imaging (DTI) is sensitive to structural ordering in brain tissue particularly in the white matter tracts. Diffusion anisotropy changes with disease and also with neural development. We used high-resolution DTI of fixed rabbit brains to study developmental changes in regional diffusion anisotropy and white matter fiber tract development. Imaging was performed on a 4.7-tesla Bruker Biospec Avance scanner using custom-built solenoid coils and DTI was performed at various postnatal ages. Trace apparent diffusion coefficient, fractional diffusion anisotropy maps and fiber tracts were generated and compared across the ages. The brain was highly anisotropic at birth and white matter anisotropy increased with age. Regional DTI tractography of the internal capsule showed refinement in regional tract architecture with maturation. Interestingly, brains with congenital deficiencies of the callosal commissure showed selectively strikingly different fiber architecture compared to age-matched brains. There was also some evidence of subcortical to cortical fiber connectivity. DTI tractography of the anterior and posterior limbs of the internal capsule showed reproducibly coherent fiber tracts corresponding to known corticospinal and corticobulbar tract anatomy. There was some minor interanimal tract variability, but there was remarkable similarity between the tracts in all animals. Therefore, ex vivo DTI tractography is a potentially powerful tool for neuroscience investigations and may also reveal effects (such as fiber tract pruning during development) which may be important targets for in vivo human studies. Copyright 2007 S. Karger AG, Basel.
Upper mantle seismic anisotropy beneath Northern Peru from shear wave splitting analysis.
NASA Astrophysics Data System (ADS)
Franca, G. S.; Condori, C.; Tavera, H.; Eakin, C. M.; Beck, S. L.
2017-12-01
Beneath much of Peru lies the largest region of flat-slab subduction in the world today. The origins and dynamics of the Peruvian flat-slab however remain elusive, particularly in the north away from the Nazca Ridge. Studies of seismic anisotropy can potentially provide us with insight into the dynamics of recent and past deformational processes in the upper mantle. In this study, we conduct shear wave splitting to investigate seismic anisotropy across the northern extent of the Peruvian flat-slab for the first time. For the analysis, we used arrivals of SKS, SKKS and PKS phases from teleseismic events (88° > Δ < 150°) recorded at 30 broadband seismic stations from the Peruvian permanent and portable seismic networks, and international networks (CTBTO and RSBR-Brazil). The preliminary results reveal a complex anisotropy pattern with variations along strike. In the northernmost region, the average delay times range between 1.0 s and 1.2 s, with fast directions predominantly ENE-WSW oriented in a direction approximately perpendicular to the trench, parallel with subduction of the Nazca plate. Meanwhile towards the central region of Peru, the predominant fast direction changes to SE-NW oblique with the trench, but consistent with the pattern seen previously over the southern extent of the flat-slab by Eakin et al. (2013, 2015). These characteristics suggest a fundamental difference between the anisotropic structures, and therefore underlying mantle processes, beneath the northern and central portions of the Peruvian flat-slab.
Polarization properties of fluorescent BSA protected Au25 nanoclusters.
Raut, Sangram; Chib, Rahul; Rich, Ryan; Shumilov, Dmytro; Gryczynski, Zygmunt; Gryczynski, Ignacy
2013-04-21
BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and studied their steady state and time resolved fluorescence properties including polarization behavior in different solvents: glycerol, propylene glycol and water. We demonstrated that the nanocluster absorption spectrum can be separated from the extinction spectrum by subtraction of Rayleigh scattering. The nanocluster absorption spectrum is well approximated by three Gaussian components. By a comparison of the emissions from BSA Au25 clusters and rhodamine B in water, we estimated the quantum yield of nanoclusters to be higher than 0.06. The fluorescence lifetime of BSA Au25 clusters is long and heterogeneous with an average value of 1.84 μs. In glycerol at -20 °C the anisotropy is high, reaching a value of 0.35. However, the excitation anisotropy strongly depends on the excitation wavelengths indicating a significant overlap of the different transition moments. The anisotropy decay in water reveals a correlation time below 0.2 μs. In propylene glycol the measured correlation time is longer and the initial anisotropy depends on the excitation wavelength. BSA Au25 clusters, due to long lifetime and high polarization, can potentially be used in studying large macromolecules such as protein complexes with large molecular weight.
Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy
Prime, Michael B.
2017-07-01
Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less
Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prime, Michael B.
Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, G.H.; Hu, C.
1988-02-01
The effect of three types of ''quartic'' anisotropy energy (i.e., in the M/sup 4/ term of the magnetic Ginzburg-Landau free energy) on the polarization of the ''spiral magnetic'' state of Blount and Varma is studied near the onset temperature. For a quartic anisotropy with uniaxial symmetry, we find continuous polarization transitions from circular to elliptical and then to linear as the strength of a uni-easy-axis anisotropy is increased. (No transition is found for the uni-hard-axis case.) If the quartic anisotropy has cubic symmetry, we find a discontinuous transition directly between circular and linear, without going through an elliptic stage, whenmore » the sign of the anisotropy energy is to favor the cubic axes. (The polarization stays circular at all strengths of the anisotropy energy if the sign of the latter is to favor the body diagonals.) Finally, we model the anisotropy in primitive tetragonal ErRh/sub 4/B/sub 4/ with a quadratic anisotropy giving a hard c axis, plus a quartic anisotropy in the basal plane with a square symmetry. A first-order polarization transition directly between circular and linear is also obtained for this case, when the quartic anisotropy favors the principal axes in the basal plane. This last case studied provides a plausible explanation for the linear polarization observed in the coexistence state of ErRh/sub 4/B/sub 4/. .AE« less
Tadpole-improved SU(2) lattice gauge theory
NASA Astrophysics Data System (ADS)
Shakespeare, Norman H.; Trottier, Howard D.
1999-01-01
A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in the Landau gauge. Simulations are done with spatial lattice spacings as in the range of about 0.1-0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/as (where at is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in the Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond the tree level.
NASA Astrophysics Data System (ADS)
Alvarez-Prado, L. M.; Cid, R.; Morales, R.; Diaz, J.; Vélez, M.; Rubio, H.; Hierro-Rodriguez, A.; Alameda, J. M.
2018-06-01
Amorphous Nd-Co thin films exhibit stripe shaped periodic magnetic domains with local out-of-plane magnetization components due to their perpendicular magnetic anisotropy. This anisotropy has been quantified in a fairly simple way by reproducing the experimental magnetization curves by means of micromagnetic numerical simulations. The simulations show that the first (K1) and second (K2) anisotropy constants must be used to properly describe the variation of the stripe domains with the in plane applied magnetic field. A strong temperature dependence of both K1 and K2 has been obtained between 10 K and room temperature. This anisotropy behavior is characteristic of two magnetically coupled 3d-4f sublattices with competing anisotropies.
NASA Astrophysics Data System (ADS)
Yuan, K.; Beghein, C.
2018-04-01
Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.
Heliospheric influence on the anisotropy of TeV cosmic rays
Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai
2014-06-26
This article provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. Lastly, the heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less
Heliospheric influence on the anisotropy of TeV cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai, E-mail: mzhang@fit.edu
2014-07-20
This paper provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less
DOT National Transportation Integrated Search
2014-02-01
Anisotropy is an inherent property of soils. The anisotropy could either be induced by applied stress or inherent from particle : eccentricity and preferential deposition. Other than stress and deposition, the anisotropy was also found resulted from ...
Substrate temperature effect on the structural anisotropy in amorphous Tb-Fe films
NASA Astrophysics Data System (ADS)
Harris, V. G.; Hellman, F.; Elam, W. T.; Koon, N. C.
1993-05-01
Using extended x-ray absorption fine structures (EXAFS) measurements we have investigated the atomic environment around the Fe atom in a series of amorphous Tb0.26Fe0.74 films having different magnetic anisotropy energies owing to different deposition temperatures. The polarization properties of synchrotron radiation allowed the separate study of structure parallel and perpendicular to the sample plane. An anisotropy between these two structures was observed. Modeling results indicate this anisotropy is due to anisotropic pair correlations where the Fe-Fe pairs are statistically preferred in-plane and the Fe-Tb pairs out-of-plane. The amplitude of this anisotropy scales with both the substrate temperature and the magnetic anisotropy energy. A ≊1% in-plane compression of the Fe-Fe distance was measured between the in-plane and out-of-plane structure of the sample grown at 77 K. This sample had no detectable local chemical anisotropy suggesting that intrinsic stress plays an important role in determining its magnetic anisotropy.
Thermal conductivity anisotropy of rocks
NASA Astrophysics Data System (ADS)
Lee, Youngmin; Keehm, Youngseuk; Shin, Sang Ho
2013-04-01
The interior heat of the lithosphere of the Earth is mainly transferred by conduction that depends on thermal conductivity of rocks. Many sedimentary and metamorphic rocks have thermal conductivity anisotropy, i.e. heat is preferentially transferred in the direction parallel to the bedding and foliation of these rocks. Deming (JGR, 1994) proposed an empirical relationship between K(perp) and anisotropy (K(par)/K(perp)) using 89 measurements on rock samples from literatures. In Deming's model, thermal conductivity is almost isotropic for K(perp) > 4 W/mK, but anisotropy is exponentially increasing with decreasing K(perp), with final anisotropy of ~2.5 at K(perp) < 1.0 W/mK. However, Davis et al. (JGR, 2007) argued that there is little evidence for Deming's suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for rocks with low thermal conductivity. Davis et al. insisted that Deming's increase in anisotropy for 1 < K(perp) < 4 W/mK with decreasing K(perp) could be due to the fractures filled with air or water, which causes thermal conductivity anisotropy. To test Deming's suggestion and Davis et al.'s argument on thermal conductivity anisotropy, we measured thermal conductivity parallel (K(par)) and perpendicular (K(perp)) to bedding or foliation and performed analytical & numerical modeling. Our measurements on 53 rock samples show the anisotropy range from 0.79 to 1.36 for 1.84 < K(prep) < 4.06 W/mK. Analytical models show that anisotropy can increase or stay the same at the range of 1 < K(perp) < 4 W/mK. Numerical modeling for gneiss shows that anisotropy ranges 1.21 to 1.36 for 2.5 < K(perp) < 4.8 W/mK. Another numerical modeling with interbedded coal layers in high thermal conductivity rocks (3.5 W/mK) shows anisotropy of 1.87 when K(perp) is 1.7 W/mK. Finally, numerical modeling with fractures indicates that the fractures does not seem to affect thermal conductivity anisotropy significantly. In conclusion, our preliminary results imply that thermal conductivity anisotropy can increase or stay at low value in the range of 1.0 < K(perp) < 4.0 W/mK. Both cases are shown to be possible through lab measurements and analytical & numerical modeling.
Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.
Yeboah-Forson, Albert; Whitman, Dean
2014-01-01
Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. © 2013, National Ground Water Association.
The signal of mantle anisotropy in the coupling of normal modes
NASA Astrophysics Data System (ADS)
Beghein, Caroline; Resovsky, Joseph; van der Hilst, Robert D.
2008-12-01
We investigate whether the coupling of normal mode (NM) multiplets can help us constrain mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients of coupled modes in terms of elastic coefficients, including the Love parameters describing radial anisotropy and the parameters describing azimuthal anisotropy (Jc, Js, Kc, Ks, Mc, Ms, Bc, Bs, Gc, Gs, Ec, Es, Hc, Hs, Dc and Ds). We detail the selection rules that describe which modes can couple together and which elastic parameters govern their coupling. We then focus on modes of type 0Sl - 0Tl+1 and determine whether they can be used to constrain mantle anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH). We find that neither isotropic nor radially anisotropic mantle models can fully explain the observed degree two signal. We show that the NM signal that remains after correction for the effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below 400km, its depth extent and distribution is still not well constrained by the data. Consideration of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve our constraints on the individual elastic parameters and the depth location of the azimuthal anisotropy.
Late-time cosmological phase transitions
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
It is shown that the potential galaxy formation and large scale structure problems of objects existing at high redshifts (Z approx. greater than 5), structures existing on scales of 100 M pc as well as velocity flows on such scales, and minimal microwave anisotropies ((Delta)T/T) (approx. less than 10(exp -5)) can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random Gaussian fluctuations and/or topological defects can form. Scale lengths of approx. 100 M pc for large scale structure as well as approx. 1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition.
Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction
NASA Astrophysics Data System (ADS)
Goltz, Mark N.; Huang, Junqi; Close, Murray E.; Flintoft, Mark J.; Pang, Liping
2008-09-01
Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.
Ribeiro, Douglas S
2017-06-01
This study presents computations of three energy related properties for 26 previously published multisite intermolecular potentials of methane: MM2, MM3, MM2en, MM3en, MM2mc, MM3mc, MM3envir, RMK, OPLS all-atom, MUB-2, AMBER, BOYD, Williams, Sheikh, MG, Tsuzuki, E2-Gay, E4-Gay, MP4exp-6(iii), MP4exp-6(iv), Rowley-A, Rowley-B, TraPPE-EH, Ouyang, CLC, and Chao and three united atom potentials: Saager-Fischer (SF), OPLS united atom, and HFD. The three properties analyzed are the second virial coefficients for 14 temperature points in the range of 110 to 623.15 K, the interaction energies for 12 orientations of the methane dimer as a function of distance followed by a comparison to three ab initio data sets and the cohesive energy of the aggregate of 512 methane molecules. The latter computed energies are correlated to latent heat of evaporation of 11 potentials and are proposed as surrogate approximate parameters for ΔH vap for the studied potentials. The 10 best performing potentials are selected by rms order in each one of the properties and three of them are found to be present simultaneously in the three sets: Tsuzuki, MM3mc, and MM2mc. On the basis of the cohesive energy of the aggregate, a quantitative measure of the anisotropy of the potentials is proposed. The results are discussed on the basis of anisotropy, nonadditivity and ability of the potentials to reproduce ab initio data. It is concluded that the nonadditivity of the pair potentials holds and the available ab initio data did not lead to pair potentials that are cohesive enough to reproduce accurately the second virial coefficients.
TRUST84. Sat-Unsat Flow in Deformable Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narasimhan, T.N.
1984-11-01
TRUST84 solves for transient and steady-state flow in variably saturated deformable media in one, two, or three dimensions. It can handle porous media, fractured media, or fractured-porous media. Boundary conditions may be an arbitrary function of time. Sources or sinks may be a function of time or of potential. The theoretical model considers a general three-dimensional field of flow in conjunction with a one-dimensional vertical deformation field. The governing equation expresses the conservation of fluid mass in an elemental volume that has a constant volume of solids. Deformation of the porous medium may be nonelastic. Permeability and the compressibility coefficientsmore » may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may be characterized by hysteresis. The relation between pore pressure change and effective stress change may be a function of saturation. The basic calculational model of the conductive heat transfer code TRUMP is applied in TRUST84 to the flow of fluids in porous media. The model combines an integrated finite difference algorithm for numerically solving the governing equation with a mixed explicit-implicit iterative scheme in which the explicit changes in potential are first computed for all elements in the system, after which implicit corrections are made only for those elements for which the stable time-step is less than the time-step being used. Time-step sizes are automatically controlled to optimize the number of iterations, to control maximum change to potential during a time-step, and to obtain desired output information. Time derivatives, estimated on the basis of system behavior during the two previous time-steps, are used to start the iteration process and to evaluate nonlinear coefficients. Both heterogeneity and anisotropy can be handled.« less
Lamb wave propagation in monocrystalline silicon wafers.
Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard
2018-01-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.
Seismic anisotropy of the D'' layer induced by (001) deformation of post-perovskite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiang; Lin, Jung-Fu; Kaercher, Pamela
Crystallographic preferred orientation (CPO) of post-perovskite (Mg,Fe)SiO 3 (pPv) has been believed to be one potential source of the seismic anisotropic layer at the bottom of the lower mantle (D'' layer). However, the natural CPO of pPv remains ambiguous in the D'' layer. Here we have carried out the deformation experiments of pPv-(Mg 0.75,Fe 0.25)SiO 3 using synchrotron radial X-ray diffraction in a membrane-driven laser-heated diamond anvil cell from 135 GPa and 2,500 K to 154 GPa and 3,000 K. Our results show that the intrinsic texture of pPv-(Mg 0.75,Fe 0.25)SiO 3 should be (001) at realistic P–T conditions ofmore » the D'' layer, which can produce a shear wave splitting anisotropy of ~3.7% with V SH>V SV. Considering the combined effect of both pPv and ferropericlase, we suggest that 50% or less of deformation is sufficient to explain the origin of the shear wave anisotropy observed seismically in the D'' layer beneath the circum-Pacific rim.« less
Conventions and nomenclature for double diffusion encoding NMR and MRI.
Shemesh, Noam; Jespersen, Sune N; Alexander, Daniel C; Cohen, Yoram; Drobnjak, Ivana; Dyrby, Tim B; Finsterbusch, Jurgen; Koch, Martin A; Kuder, Tristan; Laun, Fredrik; Lawrenz, Marco; Lundell, Henrik; Mitra, Partha P; Nilsson, Markus; Özarslan, Evren; Topgaard, Daniel; Westin, Carl-Fredrik
2016-01-01
Stejskal and Tanner's ingenious pulsed field gradient design from 1965 has made diffusion NMR and MRI the mainstay of most studies seeking to resolve microstructural information in porous systems in general and biological systems in particular. Methods extending beyond Stejskal and Tanner's design, such as double diffusion encoding (DDE) NMR and MRI, may provide novel quantifiable metrics that are less easily inferred from conventional diffusion acquisitions. Despite the growing interest on the topic, the terminology for the pulse sequences, their parameters, and the metrics that can be derived from them remains inconsistent and disparate among groups active in DDE. Here, we present a consensus of those groups on terminology for DDE sequences and associated concepts. Furthermore, the regimes in which DDE metrics appear to provide microstructural information that cannot be achieved using more conventional counterparts (in a model-free fashion) are elucidated. We highlight in particular DDE's potential for determining microscopic diffusion anisotropy and microscopic fractional anisotropy, which offer metrics of microscopic features independent of orientation dispersion and thus provide information complementary to the standard, macroscopic, fractional anisotropy conventionally obtained by diffusion MR. Finally, we discuss future vistas and perspectives for DDE. © 2015 Wiley Periodicals, Inc.
Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement.
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-02-19
ReS 2 , a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS 2 for the first time. Few-layer ReS 2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.
Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement
NASA Astrophysics Data System (ADS)
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-04-01
ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.
Stellar Velocity Dispersion and Anisotropy of the Milky Way Inner Halo
NASA Astrophysics Data System (ADS)
King, Charles, III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.
2015-11-01
We measure the three components of velocity dispersion, σR, σθ, σϕ, for stars within 6 < R < 30 kpc of the Milky Way using a new radial velocity sample from the MMT telescope. We combine our measurements with previously published data so that we can more finely sample the stellar halo. We use a maximum likelihood statistical method for estimating mean velocities, dispersions, and covariances assuming only that velocities are normally distributed. The alignment of the velocity ellipsoid is consistent with a spherically symmetric gravitational potential. From the spherical Jeans equation, the mass of the Milky Way is M≤ft(R≤slant 12 {kpc}\\right)=1.3× {10}11 {M}⊙ with an uncertainty of 40%. We also find a region of discontinuity, 15 ≲ R ≲ 25 kpc, where the estimated velocity dispersions and anisotropies diverge from their anticipated values, confirming the break observed by others. We argue that this break in anisotropy is physically explained by coherent stellar velocity structure in the halo, such as the Sgr stream. To significantly improve our understanding of halo kinematics will require combining radial velocities with future Gaia proper motions.
Fabric Development in Sheared Mantle Rocks: The Source of the 'a-c' Switch
NASA Astrophysics Data System (ADS)
Qi, C.; Hansen, L. N.; Holtzman, B. K.; Kohlstedt, D. L.
2014-12-01
Researchers often invoke variations in water content, stress state, and melt distribution to account for the observed variety of olivine crystallographic preferred orientations (CPOs). Since the average direction of [100] axes directly affects seismic anisotropy, there is potential to link observed anisotropy to compositional and thermo-mechanical conditions. It is well established that the (010)[100] is the weakest slip system, and therefore thought to control CPOs, in dry olivine at P < 2 GPa. However, CPOs formed in experiments on olivine plus mid-ocean ridge basalt (MORB) reveal a fabric in which [001] axes form weak point maxima parallel to the shear direction, and [010] axes form strong point maxima perpendicular to the shear plane, indicative of (010)[001] as the weak slip system. To investigate the mechanisms that cause this change in CPO, samples fabricated from fine-grained San Carlos olivine plus MORB were deformed in torsion at T = 1200°C and P = 300 MPa. Samples with starting melt fractions of 0.01, 0.10 and 0.25 were sheared to a maximum strain of γ ≈ 13. We investigate three hypotheses. 1) The easiest slip direction changes from [100] to [001] in partially molten rocks. However, no microstructural evidence for such a change has been found. 2) With the presence of a melt phase, shape preferred orientations (SPOs) play an important role in fabric development. We test this hypothesis by examining the relationship between SPOs and CPOs as a function of strain and melt content. 3) Anisotropy in the melt distribution leads to anisotropy in grain-boundary sliding, thus preferentially favoring grain rotations necessary to produce the observed fabric. We test this hypothesis by detailed analysis of misorientations between neighboring grains. Our results will provide a crucial link between seismic anisotropy and grain-scale deformation processes.
NASA Astrophysics Data System (ADS)
Ketcham, Richard A.
2017-04-01
Anisotropy in three-dimensional quantities such as geometric shape and orientation is commonly quantified using principal components analysis, in which a second order tensor determines the orientations of orthogonal components and their relative magnitudes. This approach has many advantages, such as simplicity and ability to accommodate many forms of data, and resilience to data sparsity. However, when data are sufficiently plentiful and precise, they sometimes show that aspects of the principal components approach are oversimplifications that may affect how the data are interpreted or extrapolated for mathematical or physical modeling. High-resolution X-ray computed tomography (CT) can effectively extract thousands of measurements from a single sample, providing a data density sufficient to examine the ways in which anisotropy on the hand-sample scale and smaller can be quantified, and the extent to which the ways the data are simplified are faithful to the underlying distributions. Features within CT data can be considered as discrete objects or continuum fabrics; the latter can be characterized using a variety of metrics, such as the most commonly used mean intercept length, and also the more specialized star length and star volume distributions. Each method posits a different scaling among components that affects the measured degree of anisotropy. The star volume distribution is the most sensitive to anisotropy, and commonly distinguishes strong fabric components that are not orthogonal. Although these data are well-presented using a stereoplot, 3D rose diagrams are another visualization option that can often help identify these components. This talk presents examples from a number of cases, starting with trabecular bone and extending to geological features such as fractures and brittle and ductile fabrics, in which non-orthogonal principal components identified using CT provide some insight into the origin of the underlying structures, and how they should be interpreted and potentially up-scaled.
Direction control of anisotropy in the soft-magnetic underlayer for L10 Fe-Pt perpendicular media
NASA Astrophysics Data System (ADS)
Suzuki, Toshio
2005-05-01
Induced anisotropy of soft-magnetic underlayers (SUL) were pinned to radial and circumferential directions in double-layered perpendicular media, and effects of the directions on recording properties were studied for Fe-Pt media. A medium with the SUL of radial anisotropy showed a sharper cross-track profile than that of a medium with the SUL of circumferential anisotropy. Furthermore, signal-to-noise ratio (SNR) of the former was found to be 4dB higher than that of the latter at 500kfrpi. A SUL of radial anisotropy with an anisotropy-dispersion narrower could result in suppressing the fluctuation of write-field gradient and lead to further high SNR.
Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir
2017-06-01
We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbationsmore » such as in DBI inflation.« less
NASA Astrophysics Data System (ADS)
Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou
2018-04-01
The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.
Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks
NASA Astrophysics Data System (ADS)
Kaidatzis, A.; Serletis, C.; Niarchos, D.
2017-10-01
We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.
Lobo, Carlos M S; Tosin, Giancarlo; Baader, Johann E; Colnago, Luiz A
2017-10-01
In this article, several studies based on analytical expressions and computational simulations on Hollow Cylindrical Magnets with an external soft ferromagnetic material (HCM magnets) are presented. Electromagnetic configurations, as well as permanent-magnet-based structures, are studied in terms of magnetic field strength and homogeneity. Permanent-magnet-based structures are further analyzed in terms of the anisotropy of the magnetic permeability. It was found that the HCM magnets produce a highly homogeneous magnetic field as long as the magnetic material is isotropic. The dependency of the magnetic field strength and homogeneity in terms of the anisotropy of the magnetic permeability is also explored here. These magnets can potentially be used in medium-resolution NMR spectrometers and high-field NMR spectrometers. Copyright © 2017 Elsevier Inc. All rights reserved.
Ortega, Eduardo; Santiago, Ulises; Giuliani, Jason G; Monton, Carlos; Ponce, Arturo
2018-05-01
Magnetic nanostructures of different size, shape, and composition possess a great potential to improve current technologies like data storage and electromagnetic sensing. In thin ferromagnetic nanowires, their magnetization behavior is dominated by the competition between magnetocrystalline anisotropy (related to the crystalline structure) and shape anisotropy. In this way electron diffraction methods like precession electron diffraction (PED) can be used to link the magnetic behavior observed by Electron Holography (EH) with its crystallinity. Using off-axis electron holography under Lorentz conditions, we can experimentally determine the magnetization distribution over neighboring nanostructures and their diamagnetic matrix. In the case of a single row of nickel nanowires within the alumina template, the thin TEM samples showed a dominant antiferromagnetic arrangement demonstrating long-range magnetostatic interactions playing a major role.
The First Moment of Azimuthal Anisotropy in Nuclear Collisions from AGS to LHC Energies
Singha, Subhash; Shanmuganathan, Prashanth; Keane, Declan
2016-10-01
We reviewmore » topics related to the first moment of azimuthal anisotropy ( v 1 ), commonly known as directed flow, focusing on both charged particles and identified particles from heavy-ion collisions. Beam energies from the highest available, at the CERN LHC, down to projectile kinetic energies per nucleon of a few GeV per nucleon, as studied in experiments at the Brookhaven AGS, fall within our scope. We focus on experimental measurements and on theoretical work where direct comparisons with experiment have been emphasized. The physics addressed or potentially addressed by this review topic includes the study of Quark Gluon Plasma and, more generally, investigation of the Quantum Chromodynamics phase diagram and the equation of state describing the accessible phases.« less
NASA Astrophysics Data System (ADS)
Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar
2017-01-01
The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.
Computing elastic anisotropy to discover gum-metal-like structural alloys
NASA Astrophysics Data System (ADS)
Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.
2017-08-01
The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.
NASA Astrophysics Data System (ADS)
Ortega, Eduardo; Santiago, Ulises; Giuliani, Jason G.; Monton, Carlos; Ponce, Arturo
2018-05-01
Magnetic nanostructures of different size, shape, and composition possess a great potential to improve current technologies like data storage and electromagnetic sensing. In thin ferromagnetic nanowires, their magnetization behavior is dominated by the competition between magnetocrystalline anisotropy (related to the crystalline structure) and shape anisotropy. In this way electron diffraction methods like precession electron diffraction (PED) can be used to link the magnetic behavior observed by Electron Holography (EH) with its crystallinity. Using off-axis electron holography under Lorentz conditions, we can experimentally determine the magnetization distribution over neighboring nanostructures and their diamagnetic matrix. In the case of a single row of nickel nanowires within the alumina template, the thin TEM samples showed a dominant antiferromagnetic arrangement demonstrating long-range magnetostatic interactions playing a major role.
Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity
NASA Astrophysics Data System (ADS)
Lin, Guang; Liu, Jiangguo; Mu, Lin; Ye, Xiu
2014-11-01
This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors. We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.
FW/CADIS-O: An Angle-Informed Hybrid Method for Neutron Transport
NASA Astrophysics Data System (ADS)
Munk, Madicken
The development of methods for deep-penetration radiation transport is of continued importance for radiation shielding, nonproliferation, nuclear threat reduction, and medical applications. As these applications become more ubiquitous, the need for transport methods that can accurately and reliably model the systems' behavior will persist. For these types of systems, hybrid methods are often the best choice to obtain a reliable answer in a short amount of time. Hybrid methods leverage the speed and uniform uncertainty distribution of a deterministic solution to bias Monte Carlo transport to reduce the variance in the solution. At present, the Consistent Adjoint-Driven Importance Sampling (CADIS) and Forward-Weighted CADIS (FW-CADIS) hybrid methods are the gold standard by which to model systems that have deeply-penetrating radiation. They use an adjoint scalar flux to generate variance reduction parameters for Monte Carlo. However, in problems where there exists strong anisotropy in the flux, CADIS and FW-CADIS are not as effective at reducing the problem variance as isotropic problems. This dissertation covers the theoretical background, implementation of, and characteri- zation of a set of angle-informed hybrid methods that can be applied to strongly anisotropic deep-penetration radiation transport problems. These methods use a forward-weighted adjoint angular flux to generate variance reduction parameters for Monte Carlo. As a result, they leverage both adjoint and contributon theory for variance reduction. They have been named CADIS-O and FW-CADIS-O. To characterize CADIS-O, several characterization problems with flux anisotropies were devised. These problems contain different physical mechanisms by which flux anisotropy is induced. Additionally, a series of novel anisotropy metrics by which to quantify flux anisotropy are used to characterize the methods beyond standard Figure of Merit (FOM) and relative error metrics. As a result, a more thorough investigation into the effects of anisotropy and the degree of anisotropy on Monte Carlo convergence is possible. The results from the characterization of CADIS-O show that it performs best in strongly anisotropic problems that have preferential particle flowpaths, but only if the flowpaths are not comprised of air. Further, the characterization of the method's sensitivity to deterministic angular discretization showed that CADIS-O has less sensitivity to discretization than CADIS for both quadrature order and PN order. However, more variation in the results were observed in response to changing quadrature order than PN order. Further, as a result of the forward-normalization in the O-methods, ray effect mitigation was observed in many of the characterization problems. The characterization of the CADIS-O-method in this dissertation serves to outline a path forward for further hybrid methods development. In particular, the response that the O-method has with changes in quadrature order, PN order, and on ray effect mitigation are strong indicators that the method is more resilient than its predecessors to strong anisotropies in the flux. With further method characterization, the full potential of the O-methods can be realized. The method can then be applied to geometrically complex, materially diverse problems and help to advance system modelling in deep-penetration radiation transport problems with strong anisotropies in the flux.
Primordial anisotropies in gauged hybrid inflation
NASA Astrophysics Data System (ADS)
Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan
2014-05-01
We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.
Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion
NASA Astrophysics Data System (ADS)
Debayle, Eric; Kennett, B. L. N.
2000-12-01
Records of both Rayleigh and Love waves have been analyzed to determine the pattern of anisotropy in the Australasian region. The approach is based on a two-stage inversion. Starting from a smooth PREM model with transverse isotropy about a vertical symmetry axis, the first step is an inversion of the waveforms of surface waves to produce path specific one-dimensional (1-D) upper mantle models. Under the assumption that the 1-D models represent averages along the paths, the results from 1584 Love and Rayleigh wave seismograms are combined in a tomographic inversion to provide a representation of three-dimensional structure for wavespeed heterogeneities and anisotropy. Polarization anisotropy with SH faster than SV is retrieved in the upper 200-250 km of the mantle for most of Precambrian Australia. In this depth interval, significant lateral variations in the level of polarization anisotropy are present. Locally, the anisotropy can be large, reaching an extreme value of 9% that is difficult to reconcile with current mineralogical models. However, the discrepancy may be explained in part by the presence of strong lateral heterogeneities along the path, or by effects introduced by the simplifying assumption of transverse isotropy for each path. The consistency between the location of polarization and azimuthal anisotropy in depth suggests that both observations share a common origin. The observation of polarization anisotropy down to at least 200 km supports a two-layered anisotropic model as constrained by the azimuthal anisotropy of SV waves. In the upper layer, 150 km thick, anisotropy would be related to past deformation frozen in the lithosphere while in the lower layer, anisotropy would reflect present day deformation due to plate motion.
Response of Velocity Anisotropy of Shale Under Isotropic and Anisotropic Stress Fields
NASA Astrophysics Data System (ADS)
Li, Xiaying; Lei, Xinglin; Li, Qi
2018-03-01
We investigated the responses of P-wave velocity and associated anisotropy in terms of Thomsen's parameters to isotropic and anisotropic stress fields on Longmaxi shales cored along different directions. An array of piezoelectric ceramic transducers allows us to measure P-wave velocities along numerous different propagation directions. Anisotropic parameters, including the P-wave velocity α along a symmetry axis, Thomsen's parameters ɛ and δ, and the orientation of the symmetry axis, could then be extracted by fitting Thomsen's weak anisotropy model to the experimental data. The results indicate that Longmaxi shale displays weakly intrinsic velocity anisotropy with Thomsen's parameters ɛ and δ being approximately 0.05 and 0.15, respectively. The isotropic stress field has only a slight effect on velocity and associated anisotropy in terms of Thomsen's parameters. In contrast, both the magnitude and orientation of the anisotropic stress field with respect to the shale fabric are important in controlling the evolution of velocity and associated anisotropy in a changing stress field. For shale with bedding-parallel loading, velocity anisotropy is enhanced because velocities with smaller angles relative to the maximum stress increase significantly during the entire loading process, whereas those with larger angles increase slightly before the yield stress and afterwards decrease with the increasing differential stress. For shale with bedding-normal loading, anisotropy reversal is observed, and the anisotropy is progressively modified by the applied differential stress. Before reaching the yield stress, velocities with smaller angles relative to the maximum stress increase more significantly and even exceed the level of those with larger angles. After reaching the yield stress, velocities with larger angles decrease more significantly. Microstructural features such as the closure and generation of microcracks can explain the modification of the velocity anisotropy due to the applied stress anisotropy.
Seismic anisotropy and mantle creep in young orogens
Meissner, R.; Mooney, W.D.; Artemieva, I.
2002-01-01
Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.
Three-dimensional Distribution of Azimuthal and Radial Anisotropy in the Japan Subduction
NASA Astrophysics Data System (ADS)
Ishise, M.; Kawakatsu, H.; Shiomi, K.
2014-12-01
Seismic anisotropy has close relationships with past and present tectonic and dynamic processes. Therefore, detailed description of seismic anisotropy of subduction zones provides important information for our understanding of the subduction system. The most common method of detecting anisotropy is the S-wave splitting measurement. However, conventional S-wave splitting analysis is not an appropriate way to investigate anisotropy in the mantle and slab because the technique has no vertical resolution. Thus, we have improved common traveltime tomography to estimate three-dimensional anisotropic structures of P-wave, assuming that the modeling space is composed of weakly anisotropic medium with a hexagonal symmetry about a horizontal axis (Ishise & Oda, 2005, JGR; Ishise & Oda, 2008, PEPI). Recently, we extended the anisotropic tomography for P-wave radial anisotropy with vertical hexagonal symmetry axis (Ishise & Kawakatsu, 2012 JpGU). In this study, we expand the study area of our previous regional analyses of P-wave azimuthal and radial anisotropic tomography (Ishise & Oda, 2005; Ishise & Kawakatsu, 2012, JpGU; Ishise et al., 2012, SSJ) using Hi-net arrival time data and examine the subduction system around the Japan islands, where two trenches with different strike directions and plate junction are included. Here are some of the remarkable results associated with the PAC slab and mantle structure. (1) N-S-trending fast axis of P-wave anisotropy is dominant in the PAC slab. (2) the mantle wedge shows trench-normal anisotropy across the trench-trench junction. (3) horizontal velocity (PH) tends to be faster than vertical velocity (PV) in the slab. (4) PV tends to be faster than PH in the mantle wedge. The characteristics of the obtained azimuthal and radial anisotropy of the PAC slab and the mantle wedge qualitatively consistent with heterogeneous plate models (e.g., Furumura & Kennet, 2005) and numerical simulations of mantle flow (Morishige & Honda, 2011; 2013). In addition, the azimuthal anisotropy in the PAC slab that we obtained is subparallel to that in the PAC plate before subducting (e.g., Shimamura et al., 1983). Therefore, we suggest that the slab anisotropy is "frozen anisotropy", which is attributed to the episode before subduction, and mantle wedge anisotropy reflects present dynamics.
Conductance and refraction across a Barrier in Phosphorene
NASA Astrophysics Data System (ADS)
Dahal, Dipendra; Gumbs, Godfrey
The transmission coefficient and ballistic conductance for monolayer black phosphorene is calculated when a potential step or square barrier is present. The Landauer-B¨uttiker formalism is employed in our calculations of the conductance. We obtain the refractive index for the step potential barrier when an incident beam of electron travel along different paths so as to observe what role the anisotropy of the energy bands plays. Numerical results are presented for various potential heights and barrier widths and these are compared with those for gapless and gapped graphene.
NASA Astrophysics Data System (ADS)
Padma Rao, B.; Ravi Kumar, M.; Singh, Arun
2017-02-01
The Indian Ocean Geoid Low (IOGL) to the south of Indian subcontinent is the world's largest geoid anomaly. In this study, we investigate the seismic anisotropy of the lowermost mantle beneath the IOGL by analyzing splitting of high-quality ScS phases corrected for source and receiver side upper mantle anisotropy. Results reveal significant anisotropy (˜1.01%) in the D'' layer. The observed fast axis polarization azimuths in the ray coordinate system indicate a TTI (transverse isotropy with a tilted axis of symmetry) style of anisotropy. Lattice Preferred Orientation (LPO) deformation of the palaeo-subducted slabs experiencing high shear strain is a plausible explanation for the observed anisotropy beneath the IOGL.
Mark, A F; Li, W; Sharples, S; Withers, P J
2017-07-01
Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Deformation of phase D and Earth's deep water cycle
NASA Astrophysics Data System (ADS)
Walker, A.; Skelton, R.; Nowacki, A.
2016-12-01
The stability of dense hydrous magnesium silicates such as phase D in subducting slabs provide a potential path for hydrogen transport from the Earth's surface environment into the lower mantle. Recent analysis of source-side shear wave splitting for rays from deep earthquakes around slabs detected a signal of anisotropy that could be attributed to the deformation of phase D [Nowacki et al. 2015; Geochem. Geophys. Geosyst., 16, 764-784]. If this is the case these observations could provide an estimate of the hydrogen flux into the lower mantle at depths beyond shallow recycling through the volcanic arc. However, the processes leading to the deformation of phase D and the generation of seismic anisotropy are not well known and this is a barrier to progress. Here we present initial results of simulations designed to reveal how easily different dislocations move in phase D during deformation and lead to the generation of seismic anisotropy measured by shear wave splitting. In particular, we use atomic scale simulations to calculate the energies of generalised stacking faults in phase D, which are used to parameterise Peierls-Nabarro models of dislocation structures and Peierls stresses at pressures up to 60 GPa. We then use results from these calculations as parameters for models of texture development in polycrystalline aggregates during deformation using the visco-plastic self-consistent approach. In combination with measurement of the distribution of seismic anisotropy around subducting slabs, and an analysis of the strain pattern expected as slabs pass through the transition zone, these results could constrain an important part of Earth's deep water cycle.
Meta-analysis of diffusion metrics for the prediction of tumor grade in gliomas.
Miloushev, V Z; Chow, D S; Filippi, C G
2015-02-01
Diffusion tensor metrics are potential in vivo quantitative neuroimaging biomarkers for the characterization of brain tumor subtype. This meta-analysis analyzes the ability of mean diffusivity and fractional anisotropy to distinguish low-grade from high-grade gliomas in the identifiable tumor core and the region of peripheral edema. A meta-analysis of articles with mean diffusivity and fractional anisotropy data for World Health Organization low-grade (I, II) and high-grade (III, IV) gliomas, between 2000 and 2013, was performed. Pooled data were analyzed by using the odds ratio and mean difference. Receiver operating characteristic analysis was performed for patient-level data. The minimum mean diffusivity of high-grade gliomas was decreased compared with low-grade gliomas. High-grade gliomas had decreased average mean diffusivity values compared with low-grade gliomas in the tumor core and increased average mean diffusivity values in the peripheral region. High-grade gliomas had increased FA values compared with low-grade gliomas in the tumor core, decreased values in the peripheral region, and a decreased fractional anisotropy difference between the tumor core and peripheral region. The minimum mean diffusivity differs significantly with respect to the World Health Organization grade of gliomas. Statistically significant effects of tumor grade on average mean diffusivity and fractional anisotropy were observed, supporting the concept that high-grade tumors are more destructive and infiltrative than low-grade tumors. Considerable heterogeneity within the literature may be due to systematic factors in addition to underlying lesion heterogeneity. © 2015 by American Journal of Neuroradiology.
A user interface for the Kansas Geological Survey slug test model.
Esling, Steven P; Keller, John E
2009-01-01
The Kansas Geological Survey (KGS) developed a semianalytical solution for slug tests that incorporates the effects of partial penetration, anisotropy, and the presence of variable conductivity well skins. The solution can simulate either confined or unconfined conditions. The original model, written in FORTRAN, has a text-based interface with rigid input requirements and limited output options. We re-created the main routine for the KGS model as a Visual Basic macro that runs in most versions of Microsoft Excel and built a simple-to-use Excel spreadsheet interface that automatically displays the graphical results of the test. A comparison of the output from the original FORTRAN code to that of the new Excel spreadsheet version for three cases produced identical results.
Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field
NASA Technical Reports Server (NTRS)
Montgomery, D.; Turner, L.
1981-01-01
A strong external dc magnetic field introduces a basic anisotropy into incompressible magnetohydrodynamic turbulence. The modifications that this is likely to produce in the properties of the turbulence are explored for the high Reynolds number case. The conclusion is reached that the turbulent spectrum splits into two parts: an essentially two dimensional spectrum with both the velocity field and magnetic fluctuations perpendicular to the dc magnetic field, and a generally weaker and more nearly isotropic spectrum of Alfven waves. A minimal characterization of the spectral density tensors is given. Similarities to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrotor Tokamak are remarked upon, as are certain implications for the Belcher and Davis measurements of magnetohydrodynamic turbulence in the solar wind.
Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations
Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot
2014-01-01
Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios. PMID:24729986
3D Mueller-matrix mapping of biological optically anisotropic networks
NASA Astrophysics Data System (ADS)
Ushenko, O. G.; Ushenko, V. O.; Bodnar, G. B.; Zhytaryuk, V. G.; Prydiy, O. G.; Koval, G.; Lukashevich, I.; Vanchuliak, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of azimuthally-invariant Mueller-matrix description of optical anisotropy of biological tissues. It was provided experimentally measured coordinate distributions of Mueller-matrix invariants (MMI) of linear and circular birefringences of skeletal muscle tissue. It was defined the values of statistic moments, which characterize the distributions of amplitudes of wavelet coefficients of MMI at different scales of scanning. The second part presents the data of statistic analysis of the distributions of amplitude of wavelet coefficients of the distributions of linear birefringence of myocardium tissue died after the infarction and ischemic heart disease. It was defined the objective criteria of differentiation of the cause of death.
NASA Astrophysics Data System (ADS)
Sakhnovskiy, M. Yu.; Ushenko, Yu. O.; Ushenko, V. O.; Besaha, R. N.; Pavlyukovich, N.; Pavlyukovich, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of azimuthally-invariant Mueller-matrix description of optical anisotropy of biological tissues. It was provided experimentally measured coordinate distributions of Mueller-matrix invariants (MMI) of linear and circular birefringences of skeletal muscle tissue. It was defined the values of statistic moments, which characterize the distributions of amplitudes of wavelet coefficients of MMI at different scales of scanning. The second part presents the data of statistic analysis of the distributions of amplitude of wavelet coefficients of the distributions of linear birefringence of myocardium tissue died after the infarction and ischemic heart disease. It was defined the objective criteria of differentiation of the cause of death.
Wavelet analysis of birefringence images of myocardium tissue
NASA Astrophysics Data System (ADS)
Sakhnovskiy, M. Yu.; Ushenko, Yu. O.; Kushnerik, L.; Soltys, I. V.; Pavlyukovich, N.; Pavlyukovich, O.
2018-01-01
The paper consists of two parts. The first part presents short theoretical basics of the method of azimuthally-invariant Mueller-matrix description of optical anisotropy of biological tissues. It was provided experimentally measured coordinate distributions of Mueller-matrix invariants (MMI) of linear and circular birefringences of skeletal muscle tissue. It was defined the values of statistic moments, which characterize the distributions of amplitudes of wavelet coefficients of MMI at different scales of scanning. The second part presents the data of statistic analysis of the distributions of amplitude of wavelet coefficients of the distributions of linear birefringence of myocardium tissue died after the infarction and ischemic heart disease. It was defined the objective criteria of differentiation of the cause of death.
Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit.
Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg
2015-08-12
To study the magnetic dynamics of superparamagnetic nanoparticles, we use scanning probe relaxometry and dephasing of the nitrogen vacancy (NV) center in diamond, characterizing the spin noise of a single 10 nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T1) and dephasing (T2) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.
Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit
NASA Astrophysics Data System (ADS)
Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg
2015-08-01
To study the magnetic dynamics of superparamagnetic nanoparticles we use scanning probe relaxometry and dephasing of the nitrogen-vacancy (NV) center in diamond, characterizing the spin-noise of a single 10-nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T 1 ) and dephasing (T 2 ) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning-probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.
Numerical simulation of the nocturnal turbulence characteristics over Rattlesnake Mountain
W.E. Heilman; E.S. Takle
1991-01-01
A two-dimensional second-order turbulence-closure model based on Mellor-Yamada level 3 is used to examine the nocturnal turbulence characteristics over Rattlesnake Mountain in Washington. Simulations of mean horizontal velocities and potential temperatures agree well with data. The equations for the components of the turbulent kinetic energy (TKE) show that anisotropy...
NASA Astrophysics Data System (ADS)
Botha, Andre Erasmus
2003-07-01
This thesis is a theoretical investigation into the spin-resolved transport properties of III-V semiconductor quantum wells. Based on a modified 8 x 8 k · p matrix Hamiltonian, a theory is developed to study the recombination rate in type-II semi metallic quantum wells. The non-parabolicity of the energy band structure and its anisotropy is included via the interband matrix elements and the addition of an anisotropic crystal field potential (parameterized by delta). The effects of externally applied electric and magnetic fields are incorporated into the theory. The electric field is incorporated using a WKB-type approximation. In order to study the anisotropy, the magnetic field is incorporated so that it can be applied at an arbitrary angle theta, with respect to the crystallographic direction c[001]. The case of oblique tunneling (k|| ≠ 0), is also considered. Several interesting results, from calculations of the transmission coefficient, recombination rate, and electron-spin polarization, are presented and discussed for both n-type and p-type single and double quantum wells made from clean InAs and GaSb. For example, in the case of a 150 A wide GaSb/InAs/GaSb quantum well, with B = 4 T, and theta = pi/8, the two maxima in the electron-spin polarization, from the ground and first excited resonant states, are found to be approximately 75%, and 35%, respectively. As theta is varied, a maximum polarization is achieved for a given magnetic field, and this maximum depends on the value of the anisotropy parameter, delta. By using a more sophisticated 14 x 14 band k · p formalism, which explicitly takes into account the coupling between higher bands ( Gc15-Gu 15,Gc1-G u15 , and Gc1-Gc15 ), a theory is developed for the total zero-field spin-splitting and resulting electron-spin polarization in symmetric and asymmetric type-II quantum wells. This theory includes the non-parabolicity, non sphericity, and anisotropy of the energy band structure. The anisotropy in the band structure is introduced via the addition of an anisotropic crystal potential. In the case of an asymmetric GaSb/InAs/GaSb quantum well, it is predicted that the two contributions to the total spin-splitting will be roughly of equal importance. It is also shown that the polarization maxima and minima, for a given resonance state, may not be equal in magnitude. If the resonant state lies close to the forbidden energy gap, the transmission peaks for spin-up and spin-down are skewed. This feature may have potential applications in the design of spintronic filtering and switching devices, in which it is desirable to filter unpolarized electrons (with respect to energy and spin) in order to produce highly polarized, adjustable low-energy beams.
How to Remedy the η-problem of SUSY GUT hybrid inflation via vector backreaction
NASA Astrophysics Data System (ADS)
Lazarides, George
2012-07-01
It is shown that, in supergravity models of inflation where the gauge kinetic function of a gauge field is modulated by the inflaton, we can obtain a new inflationary attractor solution, in which the roll-over of the inflaton suffers additional impedance due to the vector field backreaction. As a result, directions of the scalar potential which, due to strong Kähler corrections, become too steep and curved to normally support slow-roll inflation can now naturally do so. This solves the infamous η problem of inflation in supergravity and also keeps the spectral index of the curvature perturbation mildly red despite η of order unity. This mechanism is applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the curvature perturbation is found to be 0.97 - 0.98, in excellent agreement with data. The gauge field can act as vector curvaton generating statistical anisotropy in the curvature perturbation. However, this anisotropy could be possibly observable only if the gauge coupling constant is unnaturally small.
Diffusion tensor imaging of the brainstem in children with achondroplasia
BOSEMANI, THANGAMADHAN; ORMAN, GUNES; CARSON, KATHRYN A; MEODED, AVNER; HUISMAN, THIERRY A G M; PORETTI, ANDREA
2014-01-01
Aim The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Method Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Result Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo–15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo–14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. Interpretation The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In children with achondroplasia, DTI may serve as a potential biomarker for brainstem white matter injury and aid in the care and management of these patients. PMID:24825324
Diffusion tensor imaging of the brainstem in children with achondroplasia.
Bosemani, Thangamadhan; Orman, Gunes; Carson, Kathryn A; Meoded, Avner; Huisman, Thierry A G M; Poretti, Andrea
2014-11-01
The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial, and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo-15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo-14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In children with achondroplasia, DTI may serve as a potential biomarker for brainstem white matter injury and aid in the care and management of these patients. © 2014 Mac Keith Press.
Harmon, Nicholas
2017-01-01
Abstract Strong, sharp, negative seismic discontinuities, velocity decreases with depth, are observed beneath the Pacific seafloor at ∼60 km depth. It has been suggested that these are caused by an increase in radial anisotropy with depth, which occurs in global surface wave models. Here we test this hypothesis in two ways. We evaluate whether an increase in surface wave radial anisotropy with depth is robust with synthetic resolution tests. We do this by fitting an example surface wave data set near the East Pacific Rise. We also estimate the apparent isotropic seismic velocity discontinuities that could be caused by changes in radial anisotropy in S‐to‐P and P‐to‐S receiver functions and SS precursors using synthetic seismograms. We test one model where radial anisotropy is caused by olivine alignment and one model where it is caused by compositional layering. The result of our surface wave inversion suggests strong shallow azimuthal anisotropy beneath 0–10 Ma seafloor, which would also have a radial anisotropy signature. An increase in radial anisotropy with depth at 60 km depth is not well‐resolved in surface wave models, and could be artificially observed. Shallow isotropy underlain by strong radial anisotropy could explain moderate apparent velocity drops (<6%) in SS precursor imaging, but not receiver functions. The effect is diminished if strong anisotropy also exists at 0–60 km depth as suggested by surface waves. Overall, an increase in radial anisotropy with depth may not exist at 60 km beneath the oceans and does not explain the scattered wave observations. PMID:29097907
Rychert, Catherine A; Harmon, Nicholas
2017-08-01
Strong, sharp, negative seismic discontinuities, velocity decreases with depth, are observed beneath the Pacific seafloor at ∼60 km depth. It has been suggested that these are caused by an increase in radial anisotropy with depth, which occurs in global surface wave models. Here we test this hypothesis in two ways. We evaluate whether an increase in surface wave radial anisotropy with depth is robust with synthetic resolution tests. We do this by fitting an example surface wave data set near the East Pacific Rise. We also estimate the apparent isotropic seismic velocity discontinuities that could be caused by changes in radial anisotropy in S-to-P and P-to-S receiver functions and SS precursors using synthetic seismograms. We test one model where radial anisotropy is caused by olivine alignment and one model where it is caused by compositional layering. The result of our surface wave inversion suggests strong shallow azimuthal anisotropy beneath 0-10 Ma seafloor, which would also have a radial anisotropy signature. An increase in radial anisotropy with depth at 60 km depth is not well-resolved in surface wave models, and could be artificially observed. Shallow isotropy underlain by strong radial anisotropy could explain moderate apparent velocity drops (<6%) in SS precursor imaging, but not receiver functions. The effect is diminished if strong anisotropy also exists at 0-60 km depth as suggested by surface waves. Overall, an increase in radial anisotropy with depth may not exist at 60 km beneath the oceans and does not explain the scattered wave observations.
Johnson, J. H.; Savage, M.K.; Townend, J.
2011-01-01
We have created a benchmark of spatial variations in shear wave anisotropy around Mount Ruapehu, New Zealand, against which to measure future temporal changes. Anisotropy in the crust is often assumed to be caused by stress-aligned microcracks, and the polarization of the fast quasi-shear wave (??) is thus interpreted to indicate the direction of maximum horizontal stress, but can also be due to aligned minerals or macroscopic fractures. Changes in seismic anisotropy have been observed following a major eruption in 1995/96 and were attributed to changes in stress from the depressurization of the magmatic system. Three-component broadband seismometers have been deployed to complement the permanent stations that surround Ruapehu, creating a combined network of 34 three-component seismometers. This denser observational network improves the resolution with which spatial variations in seismic anisotropy can be examined. Using an automated shear wave splitting analysis, we examine local earthquakes in 2008. We observe a strong azimuthal dependence of ?? and so introduce a spatial averaging technique and two-dimensional tomography of recorded delay times. The anisotropy can be divided into regions in which ?? agrees with stress estimations from focal mechanism inversions, suggesting stress-induced anisotropy, and those in which ?? is aligned with structural features such as faults, suggesting structural anisotropy. The pattern of anisotropy that is inferred to be stress related cannot be modeled adequately using Coulomb modeling with a dike-like inflation source. We suggest that the stress-induced anisotropy is affected by loading of the volcano and a lithospheric discontinuity. Copyright 2011 by the American Geophysical Union.
Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration
NASA Astrophysics Data System (ADS)
Glunk, M.; Daeubler, J.; Dreher, L.; Schwaiger, S.; Schoch, W.; Sauer, R.; Limmer, W.; Brandlmaier, A.; Goennenwein, S. T. B.; Bihler, C.; Brandt, M. S.
2009-05-01
We present a systematic study on the influence of epitaxial strain and hole concentration on the magnetic anisotropy in (Ga,Mn)As at 4.2 K. The strain was gradually varied over a wide range from tensile to compressive by growing a series of (Ga,Mn)As layers with 5% Mn on relaxed graded (In,Ga)As/GaAs templates with different In concentration. The hole density, the Curie temperature, and the relaxed lattice constant of the as-grown and annealed (Ga,Mn)As layers turned out to be essentially unaffected by the strain. Angle-dependent magnetotransport measurements performed at different magnetic-field strengths were used to probe the magnetic anisotropy. The measurements reveal a pronounced linear dependence of the uniaxial out-of-plane anisotropy on both strain and hole density. Whereas the uniaxial and cubic in-plane anisotropies are nearly constant, the cubic out-of-plane anisotropy changes sign when the magnetic easy axis flips from in-plane to out-of-plane. The experimental results for the magnetic anisotropy are quantitatively compared with calculations of the free energy based on a mean-field Zener model. Almost perfect agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters of the as-grown samples. In addition, magnetostriction constants are derived from the anisotropy data.
NASA Astrophysics Data System (ADS)
Tak, Heewon; Choi, Jaewon; Jo, Sohyun; Hwang, Sukyeon
2017-04-01
Stress anisotropy analysis is important for estimating both stress regime and fracture geometry for the efficient development of unconventional resources. Despite being within the same play, different areas can have different stress regimes, which can affect drilling decisions. The Montney play is located in Canada between British Columbia and Alberta. In British Columbia it is known for its ductile shale and high horizontal stress anisotropy because of the Rocky Mountains; however, in Alberta, it has different geological characteristics with some studies finding weak horizontal stress anisotropy. Therefore, we studied the horizontal stress anisotropy using full azimuth seismic and well data in the Kakwa area in order to establish a drilling plan. Minimal horizontal anisotropy was discovered within the area and the direction of maximum horizontal anisotropy corresponded with the regional scale (i.e., NE-SW). The induced fractures were assumed to have a normal stress regime because of the large depth (> 3000 m). Additionally, because of the very high brittleness (Young's modulus > 9) and relatively weak horizontal stress anisotropy, the fracture geometry in the Kakwa area was estimated as complex or complex planar, as opposed to simply planar.
NASA Astrophysics Data System (ADS)
Ivankina, T. I.; Zel, I. Yu.; Lokajicek, T.; Kern, H.; Lobanov, K. V.; Zharikov, A. V.
2017-08-01
In this paper we present experimental and theoretical studies on a highly anisotropic layered rock sample characterized by alternating layers of biotite and muscovite (retrogressed from sillimanite) and plagioclase and quartz, respectively. We applied two different experimental methods to determine seismic anisotropy at pressures up to 400 MPa: (1) measurement of P- and S-wave phase velocities on a cube in three foliation-related orthogonal directions and (2) measurement of P-wave group velocities on a sphere in 132 directions The combination of the spatial distribution of P-wave velocities on the sphere (converted to phase velocities) with S-wave velocities of three orthogonal structural directions on the cube made it possible to calculate the bulk elastic moduli of the anisotropic rock sample. On the basis of the crystallographic preferred orientations (CPOs) of major minerals obtained by time-of-flight neutron diffraction, effective media modeling was performed using different inclusion methods and averaging procedures. The implementation of a nonlinear approximation of the P-wave velocity-pressure relation was applied to estimate the mineral matrix properties and the orientation distribution of microcracks. Comparison of theoretical calculations of elastic properties of the mineral matrix with those derived from the nonlinear approximation showed discrepancies in elastic moduli and P-wave velocities of about 10%. The observed discrepancies between the effective media modeling and ultrasonic velocity data are a consequence of the inhomogeneous structure of the sample and inability to perform long-wave approximation. Furthermore, small differences between elastic moduli predicted by the different theoretical models, including specific fabric characteristics such as crystallographic texture, grain shape and layering were observed. It is shown that the bulk elastic anisotropy of the sample is basically controlled by the CPO of biotite and muscovite and their volume proportions in the layers dominated by phyllosilicate minerals.
NASA Astrophysics Data System (ADS)
Latifi, Koorosh; Kaviani, Ayoub; Rümpker, Georg; Mahmoodabadi, Meysam; Ghassemi, Mohammad R.; Sadidkhouy, Ahmad
2018-05-01
The contribution of crustal anisotropy to the observation of SKS splitting parameters is often assumed to be negligible. Based on synthetic models, we show that the impact of crustal anisotropy on the SKS splitting parameters can be significant even in the case of moderate to weak anisotropy within the crust. In addition, real-data examples reveal that significant azimuthal variations in SKS splitting parameters can be caused by crustal anisotropy. Ps-splitting analysis of receiver functions (RF) can be used to infer the anisotropic parameters of the crust. These crustal splitting parameters may then be used to constrain the inversion of SKS apparent splitting parameters to infer the anisotropy of the mantle. The observation of SKS splitting for different azimuths is indispensable to verify the presence or absence of multiple layers of anisotropy beneath a seismic station. By combining SKS and RF observations in different azimuths at a station, we are able to uniquely decipher the anisotropic parameters of crust and upper mantle.
NASA Technical Reports Server (NTRS)
Tatsuoka, R.; Nagashima, K.
1985-01-01
In previous papers, a formulation was presented of cosmic ray daily variations produced from solar anisotropies stationary through a year, and also of their annual (or seasonal) modulation caused by the annual variation of the rotation axis of the Earth relative to that of the Sun. These anisotropies are symmetric for an arbitrary rotation around an axis. From observations of the tri-diurnal variation, it has been suggested that solar anisotropies also contain some axis-asymmetric term of the third order with respect to the IMF-axis. This suggestion has recently found support in a theoretical study by Munakata and Nagashima. According to their results, the terms of axis-asymmetry with respect to IMF-axis appear also in the 2nd order anisotropy, together with some different kinds of axis-symmetric terms. The contribution of these anisotropies to the daily variation is different from that of those discussed previously. The above mentioned formulation is extended to a case of a generalized anisotropy.
Strain control of giant magnetic anisotropy in metallic perovskite SrCoO3-δ thin films.
Hu, Songbai; Cazorla, Claudio; Xiang, Feixiang; Ma, Hongfei; Wang, Jianyuan; Wang, Jianbo; Wang, Xiaolin; Ulrich, Clemens; Chen, Lang; Seidel, Jan
2018-06-08
Magnetic materials with large magnetic anisotropy are essential for workaday applications such as permanent magnets and magnetic data storage. There is widespread interest in finding efficient ways of controlling magnetic anisotropy, among which strain control has proven to be a very powerful technique. Here we demonstrate strain-mediated magnetic anisotropy in SrCoO3-δ thin film, a perovskite oxide that is metallic and adopts a cubic structure at δ ≤ 0.25. We find that the easy-magnetization axis in SrCoO3-δ can be rotated by 90º upon application of moderate epitaxial strains ranging from -1.2% to +1.8%. The magnetic anisotropy in compressive SrCoO3-δ thin films is giant as shown by magnetic hysteresis loops rendering an anisotropy energy density of ~106 erg/cm3. The local variance of magnetic force microscopy (MFM) upon temperature and magnetic field reveals that the evolution of magnetic domains in SCO thin film is strongly dependent on the magnetic anisotropy.
The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials
NASA Astrophysics Data System (ADS)
Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre
Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.
NASA Astrophysics Data System (ADS)
Bokarev, Valery P.; Krasnikov, Gennady Ya
2018-02-01
Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.
Thermodynamics of strong coupling superconductors including the effect of anisotropy
NASA Astrophysics Data System (ADS)
Daams, J. M.; Carbotte, J. P.
1981-05-01
The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.
NASA Astrophysics Data System (ADS)
Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.
2016-11-01
We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.
NASA Astrophysics Data System (ADS)
Malusa', Marco Giovanni; Salimbeni, Simone; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang
2017-04-01
The role of surface and deep-seated processes in controlling the topography of complex plate-boundary areas is a highly debated issue. In the Western Alps, which include the highest summits in Europe, factors controlling topographic uplift still remain poorly understood. In the absence of active convergence, recent works have suggested a potential linkage between slab breakoff and fast uplift, but this hypothesis is ruled out by the down-dip continuity of the Alpine slab documented by recent tomographic images of the upper mantle beneath the Alpine region (Zhao et al. 2016). In order to shed light on this issue, we use a densely spaced array of temporary broadband seismic stations and previously published observations to analyze the seismic anisotropy pattern along the transition zone between the Alps and the Apennines, within the framework of the upper mantle structure unveiled by P wave tomography. Our results show a continuous trend of anisotropy fast axes near-parallel to the western alpine arc, possibly due to an asthenospheric counterflow triggered by the eastward retreat of the Apenninic slab. This trend is located in correspondence of a low velocity anomaly in the European upper mantle, and beneath the Western Alps region characterized by the highest uplift rates, which may suggest a potential impact of mantle dynamics on Alpine topography. We propose that the progressive rollback of the Apenninic slab induced a suction effect and an asthenospheric counterflow at the rear of the unbroken Alpine slab and around its southern tip, as well as an asthenospheric upwelling, mirrored by low P wave velocities, which may have favored the topographic uplift of the Alpine belt from the Mt Blanc to the Ligurian coast. Zhao L. et al., 2016. Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.
Electronic structure and magnetic anisotropies of antiferromagnetic transition-metal difluorides
NASA Astrophysics Data System (ADS)
Corrêa, Cinthia Antunes; Výborný, Karel
2018-06-01
We compare calculations based on density functional theory (DFT) with available experimental data and analyze the origin of magnetic anisotropies in MnF2, FeF2, CoF2, and NiF2. We confirm that the magnetic anisotropy of MnF2 stems almost completely from the dipolar interaction, while magnetocrystalline anisotropy energy (originating in spin-orbit interaction) plays a dominant role in the other three compounds, and discuss how it depends on the details of band structure. The latter is critically compared to available optical measurements. The case of CoF2, where magnetocrystalline anisotropy energy strongly depends on U (the Hubbard parameter in DFT +U ), is put into contrast with FeF2 where theoretical predictions of magnetic anisotropies are nearly quantitative.
Origin of the resistivity anisotropy in the nematic phase of FeSe
Tanatar, M. A.; Bohmer, A. E.; Timmons, E. I.; ...
2016-09-16
The in-plane resistivity anisotropy is studied in strain-detwinned single crystals of FeSe. In contrast to other iron-based superconductors, FeSe does not develop long-range magnetic order below the tetragonal-to-orthorhombic transition at T s ≈ 90 K. This allows for the disentanglement of the contributions to the resistivity anisotropy due to nematic and magnetic orders. Comparing direct transport and elastoresistivity measurements, we extract the intrinsic resistivity anisotropy of strain-free samples. The anisotropy peaks slightly below T s and decreases to nearly zero on cooling down to the superconducting transition. Furthermore, this behavior is consistent with a scenario in which the in-plane resistivitymore » anisotropy is dominated by inelastic scattering by anisotropic spin fluctuations.« less
Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Bechtol, K.
The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6x10{sup 6} cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from {approx}10 deg. up to 90 deg., and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. Themore » upper limits for a dipole anisotropy ranged from {approx}0.5% to {approx}10%.« less
NASA Astrophysics Data System (ADS)
Usui, Y.; Tsuchiya, T.
2011-12-01
Many studies have reported a VSV < VSH anisotropy in various places of the D" layer. However, the depth distribution of the anisotropy is still unclear because the anisotropy has not been investigated above the D" layer. Here, to get a large number of data sets, we used seismic data recorded by new five broad-band stations at East Antarctica. Then we carefully analyzed the shear wave splitting focusing above the D" layer beneath the Antarctic Ocean. Most of the data showed that SH waves arrive earlier than SV waves. We also found that shear wave splitting occurs even above the D" discontinuity. Although the lattice preferred orientation (LPO) of MgSiO3 post-perovskite (PPv) is now thought to be the major source of anisotropy below the discontinuity, this strongly suggests that the anisotropy is caused not only by the PPv phase. The root mean square minimization using seismic waveform modeling has been performed to construct a new transverse isotropic shear wave velocity model. The obtained velocity model has a 2.0 % velocity discontinuity at 2500 km for VSH and undetectable discontinuity for VSV. The anisotropy is estimated to be about 0.5% and 2.5% above and below the discontinuity, respectively. Since perovskite (Pv) and MgO are expected as the primary lower mantle phases and also anisotropic, they could be a source of the anisotropy. However deformation mechanisms of the minerals under high-P,T condition are still under debate. In order to clarify the origin of the anisotropy above/below the discontinuity, we examined the elastic anisotropy of two phase polycrystalline aggregates (Pv + MgO) and (PPv + MgO). We modeled the anisotropy in several different LPO directions with different degree. Results suggest that transversely isotropic aggregate (TIA) of MgO[100] in two phase aggregates (Pv + MgO) reproduces the anisotropy above the discontinuity. This is consistent with a (100) slip plane determined by experiments [Karato, 1998]. Since this system corresponds to TIA of MgO with [100] oriented vertically, the MgO LPO model could explain the anisotropy above the discontinuity. On the other hand, we found that TIA of PPv[001] in the aggregates (PPv + MgO) can explain the anisotropy below the discontinuity. Recent deformation experiment [Miyagi et al., 2010] and theoretical calculation [Metsue and Tsuchiya, 2011] suggest that the deformation texture of PPv is dominated by the (001) slip plane under the lowermost mantle condition. This slip system can make the TIA of PPv with [001] oriented vertically under the stressed condition. Therefore, the TIA of PPv[001] could be a main cause of the anisotropy in the D" layer. The LPO pattern is very limited to explain the observation. The VSV < VSH anisotropy could be caused by horizontal shear in the lowermost mantle. Thus, the shear stress may exist even above D" layer. Research supported by the Ehime Univ. G-COE program "Deep Earth Mineralogy".
NASA Technical Reports Server (NTRS)
Skuza, J. R.; Clavero, C.; Yang, K.; Wincheski, B.; Lukaszew, R. A.
2009-01-01
L1(sub 0)-ordered FePd epitaxial thin films were prepared using dc magnetron sputter deposition on MgO (001) substrates. The films were grown with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy.
Effects of crystal-melt interfacial energy anisotropy on dendritic morphology and growth kinetics
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Singh, N. B.
1989-01-01
Morphological and kinetic studies of succinonitrile, a BCC crystal with a low (0.5 percent) anisotropy and pivalic acid, and FCC crystal with relatively large (5 percent) anisotropy in solid-liquid interfacial energy, show clearly that anisotropy in the solid-liquid interfacial energy does not affect the tip radius-velocity relationship, but has a profound influence on the tip region and the rate of amplification of branching waves. Anisotropy of the solid-liquid interfacial energy may be one of the key factors by which the microstructural characteristics of cast structures reflect individual material behavior, especially crystal symmetry.
Limits on Lorentz Invariance Violation from Coulomb Interactions in Nuclei and Atoms.
Flambaum, V V; Romalis, M V
2017-04-07
Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in _{10}^{21}Ne are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10^{28}.
Seismic Anisotropy of Soft Sands, Offshore Western AUstralia
NASA Astrophysics Data System (ADS)
Urosevic, M.; Gurevich, B.
2007-05-01
Seismic anisotropy is commonly measured in sand shale environment. Intrinsic polar anisotropy of the shale and its effect on seismic data processing and analysis is well established and reasonably well understood. In sandstone, azimuthal anisotropy is often detected and is typically connected to an in situ stress regime and the brittleness of the rock. This type of anisotropy, commonly referred to as fractured induced anisotropy, has been widely and extensively studied as it directly affects both permeability and the strength of the rock. Hence fracture induced anisotropy is not only important for hydrocarbon exploration but also for geotechnical studies, underground mining, etc. Interestingly, in the last few years azimuthal anisotropy has also been detected in soft, poorly consolidated clean sands, mainly by cross-dipole sonic log measurements. This is somewhat surprising as in such soft, typically highly porous and permeable rocks stress induced fractures are unlikely to be abundant. In this study we analyse the anisotropy in such sand class using well-log measurements, three-component VSP data, as well as 2D and 3D surface seismic (reflection) data. High-quality cross-dipole sonic log measurements showed significant shear wave splitting over unconsolidated, highly porous and permeable sand interval. The shear wave anisotropy was computed to be around 10-15%. This is commonly seen as an indication that the rock is fractured and that the fractures are likely to be open. However, image log data over the same sand section suggested dilute most likely non-conductive fractures. Analysis of the shear wave splitting in VSP data also suggested low fracture density. The frequency content of the direct fast and slow shear waves on the VSP data was very similar, not supporting the presence of open fluid saturated fractures. Unfortunately, the evidence from the VSP data is not very compelling because the reservoir is thin compared to the wavelength and sampling interval of the VSP data. Further analysis of the soft sand anisotropy was conducted on surface seismic data. Magnitude of the overlain shale anisotropy was first established by measurements in the dominant horizontal stress direction. Subsequently pre-stack reflection amplitudes measured along several azimuths were matched to expected amplitudes from anisotropic AVO modelling. The results indicate that the anisotropy of the reservoir sands is high (more than 10%) at sonic frequencies but weak (about 2-3%), at seismic frequencies. We think this anisotropy is caused by the preferential closure of compliant inter-granular contacts oriented perpendicular to the principal horizontal stress. The effect is weaker at seismic frequencies since the wavelength in this case involves shales as well as sand. Furthermore, sonic anisotropy could have also been affected by the local stress conditions around the wellbore.
NASA Astrophysics Data System (ADS)
Takei, Yasuko; Holtzman, Benjamin K.
2009-06-01
Viscous constitutive relations of partially molten rocks deforming in the regime of grain boundary (GB) diffusion creep are derived theoretically on the basis of microstructural processes at the grain scale. The viscous constitutive relation developed in this study is based on contiguity as an internal state variable, which enables us to take into account the detailed effects of grain-scale melt distribution observed in experiments. Compared to the elasticities derived previously for the same microstructural model, the viscosities are much more sensitive to the presence of melt and variations in contiguity. As explored in this series of three companion papers, this "contiguity" model predicts that a very small amount of melt (ϕ < 0.01) significantly reduces the bulk and shear viscosities. Furthermore, a large anisotropy in viscosity is produced by anisotropy in contiguity, which occurs in deforming partially molten rocks. These results have important implications for deformation and melt extraction at small melt fractions, as well as for shear-induced melt segregation. The viscous and elastic constitutive relations derived in terms of contiguity bridge microscopic grain-scale and macroscopic continuum properties. These constitutive relations are essential for investigating melt migration dynamics in a forward sense on the basis of the basic equations of two-phase dynamics and in an inverse sense on the basis of seismological observations.
A family of models of partially relaxed stellar systems. I. Dynamical properties
NASA Astrophysics Data System (ADS)
Trenti, M.; Bertin, G.
2005-01-01
Recently we have found that a family of models of partially relaxed, anisotropic stellar systems, inspired earlier by studies of incomplete violent relaxation, exhibits some interesting thermodynamic properties. Here we present a systematic investigation of its dynamical characteristics, in order to establish the basis for a detailed comparison with simulations of collisionless collapse, planned for a separate paper. For a full comparison with the observations of elliptical galaxies, the models should be extended to allow for the presence a sizable dark halo and of significant rotation. In the spherical limit, the family is characterized by two dimensionless parameters, i.e. Ψ, measuring the depth of the galaxy potential, and ν, defining the form of a third global quantity Q, which is argued to be approximately conserved during collisionless collapse (in addition to the total energy and the total number of stars). The family of models is found to have the following properties. The intrinsic density profile beyond the half-mass radius r_M is basically universal and independent of Ψ. The projected density profiles are well fitted by the R1/n law, with n ranging from 2.5 to 8.5, dependent on Ψ, with n close to 4 for concentrated models. All models exhibit radial anisotropy in the pressure tensor, especially in their outer parts, already significant at r ≈ r_M. At fixed values of ν, models with lower Ψ are more anisotropic; at fixed values of Ψ, models with lower ν are more concentrated and more anisotropic. When the global amount of anisotropy, measured by 2K_r/K_T, is large, the models are unstable with respect to the radial-orbit instability; still, a wide region of parameter space (i.e., sufficiently high values of Ψ, for ν > 3/8) is covered by models that are dynamically stable; for these, the line profiles (line-of-sight velocity distribution) are Gaussian at the 5% level, with a general trend of positive values of h_4 at radii larger than the effective radius R_e.
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1999-10-01
Large-eddy simulation (LES) of the atmospheric boundary layer (ABL) using eddy viscosity subgrid-scale (SGS) models is known to poorly predict mean shear at the first few grid cells near the ground, a rough surface with no viscous sublayer. It has recently been shown that convective motions carry this localized error vertically to infect the entire ABL, and that the error is more a consequence of the SGS model than grid resolution in the near-surface inertial layer. Our goal was to determine what first-order errors in the predicted SGS terms lead to spurious expectation values, and what basic dynamics in the filtered equation for resolved scale (RS) velocity must be captured by SGS models to correct the deficiencies. Our analysis is of general relevance to LES of rough-wall high Reynolds number boundary layers, where the essential difficulty in the closure is the importance of the SGS acceleration terms, a consequence of necessary under-resolution of relevant energy-containing motions at the first few grid levels, leading to potentially strong couplings between the anisotropies in resolved velocity and predicted SGS dynamics. We analyze these two issues (under-resolution and anisotropy) in the absence of a wall using two direct numerical simulation datasets of homogeneous turbulence with very different anisotropic structure characteristic of the near-surface ABL: shear- and buoyancy-generated turbulence. We uncover three important issues which should be addressed in the design of SGS closures near rough walls and we provide a priori tests for the SGS model. First, we identify a strong spurious coupling between the anisotropic structure of the resolved velocity field and predicted SGS dynamics which can create a feedback loop to incorrectly enhance certain components of the predicted velocity field. Second, we find that eddy viscosity and "similarity" SGS models do not contain enough degrees of freedom to capture, at a sufficient level of accuracy, both RS-SGS energy flux and SGS-RS dynamics. Third, to correctly capture pressure transport near a wall, closures must be made more flexible to accommodate proper partitioning between SGS stress divergence and SGS pressure gradient.
Microwave absorption studies of magnetic sublattices in microwave sintered Cr3+ doped SrFe12O19
NASA Astrophysics Data System (ADS)
Praveena, K.; Sadhana, K.; Liu, Hsiang-Lin; Bououdina, M.
2017-03-01
The partial substitution of Fe3+ by Cr3+ in strontium hexaferrite has shown to be an effective method to tailor anisotropy for many novel microwave applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the hexaferrite. In order to investigate these interactions, Cr3+ doped SrCrxFe12-xO19 (x=0.0, 0.1, 0.3, 0.5, 0.7 and 0.9) (m-type) hexaferrites were prepared by microwave-hydrothermal (m-H) method and subsequently sintered at 950 °C/90 min using microwave furnace. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field was increasing from 3291 Oe to 7335 Oe with increasing chromium content. This resulting compacts exhibited high squareness ratio (Mr/Ms-80%). The intrinsic coercivity (Hci) above 1,20,000 Oe and high values of magnetocrystalline anisotropy revealed that all samples are magnetically hard materials. A material with high loss as well as high dielectric constant may be desired in applications such as electromagnetic (EM) wave absorbing coatings. The room temperature complex dielectric and magnetic properties (ε‧, ε‧‧, μ‧ and μ‧‧) of Cr3+ doped SrFe12O19 were measured in X-band region. The frequency dependent dielectric and magnetic losses were increasing to large extent. The reflection coefficient varied from -16 to -33 dB at 10.1 GHz as Cr3+ concentration increased from x=0.0 to x=0.9. Ferromagnetic resonance spectra (FMR) were measured in the X-band (9.4 GHz), linewidth decreases with chromium concentration from 1368 to 752 Oe from x=0.0 to x=0.9, which is quite low compared to commercial samples. We also have detailed origins of the FMR linewidth broadenings in terms of some important theoretical models. These results show that chromium doped strontium hexaferrites are useful for microwave absorption in the X-band frequency and also have potential for use in low frequency self-biased microwave/millimeter devices such as circulators and isolators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matcha, R.L.; Pettitt, B.M.; Ramirez, B.I.
1979-07-15
Calculations of Compton profiles and parallel--perpendicular anisotropies in alkali fluorides are presented and analyzed in terms of molecular charge distributions and wave function character. It is found that the parallel profile associated with the valence pi orbital is the principal factor determining the relative shapes of the total profile anisotropies in the low momentum region.
Anisotropy in MHD turbulence due to a mean magnetic field
NASA Technical Reports Server (NTRS)
Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.
1982-01-01
The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.
Quasi-periodic changes in the 3D solar anisotropy of Galactic cosmic rays for 1965-2014
NASA Astrophysics Data System (ADS)
Modzelewska, R.; Alania, M. V.
2018-01-01
Aims: We study features of the 3D solar anisotropy of Galactic cosmic rays (GCR) for 1965-2014 (almost five solar cycles, cycles 20-24). We analyze the 27-day variations of the 2D GCR anisotropy in the ecliptic plane and the north-south anisotropy normal to the ecliptic plane. We study the dependence of the 27-day variation of the 3D GCR anisotropy on the solar cycle and solar magnetic cycle. We demonstrate that the 27-day variations of the GCR intensity and anisotropy can be used as an important tool to study solar wind, solar activity, and heliosphere. Methods: We used the components Ar, Aϕ and At of the 3D GCR anisotropy that were found based on hourly data of neutron monitors (NMs) and muon telescopes (MTs) using the harmonic analyses and spectrographic methods. We corrected the 2D diurnal ( 24-h) variation of the GCR intensity for the influence of the Earth magnetic field. We derived the north-south component of the GCR anisotropy based on the GG index, which is calculated as the difference in GCR intensities of the Nagoya multidirectional MTs. Results: We show that the behavior of the 27-day variation of the 3D anisotropy verifies a stable long-lived active heliolongitude on the Sun. This illustrates the usefulness of the 27-day variation of the GCR anisotropy as a unique proxy to study solar wind, solar activity, and heliosphere. We distinguish a tendency of the 22-yr changes in amplitude of the 27-day variation of the 2D anisotropy that is connected with the solar magnetic cycle. We demonstrate that the amplitudes of the 27-day variation of the north-south component of the anisotropy vary with the 11-yr solar cycle, but a dependence of the solar magnetic polarity can hardly be recognized. We show that the 27-day recurrences of the GG index and the At component are highly positively correlated, and both are highly correlated with the By component of the heliospheric magnetic field.
NASA Astrophysics Data System (ADS)
Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.
2017-12-01
Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10%. In addition, at 60 MPa confining pressure, experimental elastic anisotropy is greater than modelled anisotropy, which could indicate that open microfractures dramatically influence seismic wave anisotropy in the top 3 to 4 km of the crust, or be related to the different resolutions of the two methods.
Ehling, Rainer; Di Pauli, Franziska; Lackner, Peter; Rainer, Carolyn; Kraus, Viktoria; Hegen, Harald; Lutterotti, Andreas; Kuenz, Bettina; De Zordo, Tobias; Schocke, Michael; Glatzl, Susanne; Löscher, Wolfgang N; Deisenhammer, Florian; Reindl, Markus; Berger, Thomas
2015-10-15
Data from in vitro and animal studies support a neuroprotective role of glatiramer acetate (GA) in multiple sclerosis (MS). We investigated prospectively whether treatment with GA leads to clinical and paraclinical changes associated with neuroprotection in patients with relapsing-remitting (RR) MS. Primary aim of this clinical study was to determine serum BDNF levels in RR-MS patients who were started on GA as compared to patients who remained therapy-naive throughout 24 months. Secondary outcomes included relapses and EDSS, cognition, quality of life, fatigue and depression, BDNF expression levels on peripheral immune cells (FACS, RT-PCR), serum anti-myelin basic peptide (MBP) antibody status, evoked potential and cerebral MRI studies. While GA treatment did not alter serum levels or expression levels on peripheral immune cells of BDNF over time it resulted in a transient increase of serum IgG antibody response to MBP, mainly due to subtype IgG1 (p<0.05), after 3 months. However, no significant differences were found between GA treated and therapy-naive patients with regard to serum BDNF and intracellular BDNF expression levels, nerve conduction (including median and tibial nerve somatosensory, pattern-shift visual and upper and lower limb motor evoked potentials) or MRI (including volume of hyperintense lesions, volume of hypointense lesions after CE, mean diffusivity and fractional anisotropy) outcome parameters. In conclusion, our findings do not support a major impact of GA treatment on paraclinical markers of neuroprotection in human RR-MS. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Beghein, Caroline; Trampert, Jeannot
2004-01-01
The presence of radial anisotropy in the upper mantle, transition zone and top of the lower mantle is investigated by applying a model space search technique to Rayleigh and Love wave phase velocity models. Probability density functions are obtained independently for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. The likelihoods for P-wave and S-wave anisotropy beneath continents cannot be explained by a dry olivine-rich upper mantle at depths larger than 220 km. Indeed, while shear-wave anisotropy tends to disappear below 220 km depth in continental areas, P-wave anisotropy is still present but its sign changes compared to the uppermost mantle. This could be due to an increase with depth of the amount of pyroxene relative to olivine in these regions, although the presence of water, partial melt or a change in the deformation mechanism cannot be ruled out as yet. A similar observation is made for old oceans, but not for young ones where VSH> VSV appears likely down to 670 km depth and VPH> VPV down to 400 km depth. The change of sign in P-wave anisotropy seems to be qualitatively correlated with the presence of the Lehmann discontinuity, generally observed beneath continents and some oceans but not beneath ridges. Parameter η shows a similar age-related depth pattern as shear-wave anisotropy in the uppermost mantle and it undergoes the same change of sign as P-wave anisotropy at 220 km depth. The ratio between dln Vs and dln Vp suggests that a chemical component is needed to explain the anomalies in most places at depths greater than 220 km. More tests are needed to infer the robustness of the results for density, but they do not affect the results for anisotropy.
NASA Astrophysics Data System (ADS)
Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing
2017-07-01
The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy of soils and granular rocks during deformation, for instance during landslides, and to use the evolution of the conductivity tensor to monitor mechanical properties.
NASA Astrophysics Data System (ADS)
Behn, M. D.; Conrad, C. P.; Silver, P. G.
2005-12-01
Shear flow in the asthenosphere tends to align olivine crystals in the direction of shear, producing a seismically anisotropic asthenosphere that can be detected using a number of seismic techniques (e.g., shear-wave splitting (SWS) and surface waves). In the ocean basins, where the asthenosphere has a relatively uniform thickness and lithospheric anisotropy appears to be small, observed azimuthal anisotropy is well fit by asthenospheric shear flow in global flow models driven by a combination of plate motions and mantle density heterogeneity. In contrast, beneath the continents both the lithospheric ceiling and asthenospheric thickness may vary considerably across cratonic regions and ocean-continent boundaries. To examine the influence of a continental lithosphere with variable thickness on predictions of continental seismic anisotropy, we impose lateral variations in lithospheric viscosity in global models of mantle flow driven by plate motions and mantle density heterogeneity. For the North American continent, the Farallon slab descends beneath a deep cratonic root, producing downwelling flow in the upper mantle and convergent flow beneath the cratonic lithosphere. We evaluate both the orientation of the predicted azimuthal anisotropy and the depth dependence of radial anisotropy for this downwelling flow and find that the inclusion of a strong continental root provides an improved fit to observed SWS observations beneath the North American craton. Thus, we hypothesize that at least some continental anisotropy is associated with sub-lithospheric viscous shear, although fossil anisotropy in the lithospheric layer may also contribute significantly. Although we do not observe significant variations in the direction of predicted anisotropy with depth, we do find that the inclusion of deep continental roots pushes the depth of the anisotropy layer deeper into the upper mantle. We test several different models of laterally-varying lithosphere and asthenosphere viscosity. These models can be used to separate the contributions of asthenospheric flow and lithospheric fossil fabric in observations of continental anisotropy.
NASA Astrophysics Data System (ADS)
Kern, H.; Ivankina, T. I.; Nikitin, A. N.; Lokajíček, T.; Pros, Z.
2008-10-01
Elastic anisotropy is an important property of crustal and mantle rocks. This study investigates the contribution of oriented microcracks and crystallographic (LPO) and shape preferred orientation (SPO) to the bulk elastic anisotropy of a strongly foliated biotite gneiss, using different methodologies. The rock is felsic in composition (about 70 vol.% SiO 2) and made up by about 40 vol.% quartz, 37 vol.% plagioclase and 23 vol.% biotite. Measurements of compressional (Vp) and shear wave (Vs) velocities on a sample cube in the three foliation-related structural directions (up to 600 MPa) and of the 3D P-wave velocity distribution on a sample sphere (up to 200 MPa) revealed a strong pressure sensitivity of Vp, Vs and P-wave anisotropy in the low pressure range. A major contribution to bulk anisotropy is from biotite. Importantly, intercrystalline and intracrystalline cracks are closely linked to the morphologic sheet plane (001) of the biotite minerals, leading to very high anisotropy at low pressure. Above about 150 MPa the effect of cracks is almost eliminated, due to progressive closure of microcracks. The residual (pressure-independent) part of velocity anisotropy is mainly caused by the strong alignment of the platy biotite minerals, displaying a strong SPO and LPO. Calculation of the 3D velocity distribution based on neutron diffraction texture measurements of biotite, quartz, and plagioclase and their single-crystal properties give evidence for an important contribution of the biotite LPO to the intrinsic velocity anisotropy, confirming the experimental findings that maximum and minimum velocities and shear wave splitting are closely related to foliation. Comparison of the LPO-based calculated anisotropy (about 8%) with measured intrinsic anisotropy (about 15% at 600 MPa) give hints for a major contribution of SPO to the bulk anisotropy of the rock.
NASA Astrophysics Data System (ADS)
Cao, Yi; Jung, Haemyeong; Song, Shuguang
2018-01-01
Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.
Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Guang; Liu, Jiangguo; Mu, Lin
2014-11-01
This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors.more » We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.« less
NASA Astrophysics Data System (ADS)
Wang, Junlin; Xia, Jing; Zhang, Xichao; Zhao, G. P.; Ye, Lei; Wu, Jing; Xu, Yongbing; Zhao, Weisheng; Zou, Zhigang; Zhou, Yan
2018-05-01
Magnetic skyrmions have potential applications in next-generation spintronic devices with ultralow energy consumption. In this work, the current-driven skyrmion motion in a narrow ferromagnetic nanotrack with voltage-controlled magnetic anisotropy (VCMA) is studied numerically. By utilizing the VCMA effect, the transport of skyrmion can be unidirectional in the nanotrack, leading to a one-way information channel. The trajectory of the skyrmion can also be modulated by periodically located VCMA gates, which protects the skyrmion from destruction by touching the track edge. In addition, the location of the skyrmion can be controlled by adjusting the driving pulse length in the presence of the VCMA effect. Our results provide guidelines for practical realization of the skyrmion-based information channel, diode, and skyrmion-based electronic devices such as racetrack memory.
NASA Astrophysics Data System (ADS)
Song, X.; Jordan, T. H.
2017-12-01
The seismic anisotropy of the continental crust is dominated by two mechanisms: the local (intrinsic) anisotropy of crustal rocks caused by the lattice-preferred orientation of their constituent minerals, and the geometric (extrinsic) anisotropy caused by the alignment and layering of elastic heterogeneities by sedimentation and deformation. To assess the relative importance of these mechanisms, we have applied Jordan's (GJI, 2015) self-consistent, second-order theory to compute the effective elastic parameters of stochastic media with hexagonal local anisotropy and small-scale 3D heterogeneities that have transversely isotropic (TI) statistics. The theory pertains to stochastic TI media in which the eighth-order covariance tensor of the elastic moduli can be separated into a one-point variance tensor that describes the local anisotropy in terms of a anisotropy orientation ratio (ξ from 0 to ∞), and a two-point correlation function that describes the geometric anisotropy in terms of a heterogeneity aspect ratio (η from 0 to ∞). If there is no local anisotropy, then, in the limiting case of a horizontal stochastic laminate (η→∞), the effective-medium equations reduce to the second-order equations derived by Backus (1962) for a stochastically layered medium. This generalization of the Backus equations to 3D stochastic media, as well as the introduction of local, stochastically rotated anisotropy, provides a powerful theory for interpreting the anisotropic signatures of sedimentation and deformation in continental environments; in particular, the parameterizations that we propose are suitable for tomographic inversions. We have verified this theory through a series high-resolution numerical experiments using both isotropic and anisotropic wave-propagation codes.
Assessment of Rip-Current Hazards Using Alongshore Topographic Anisotropy at Bondi Beach, Australia
NASA Astrophysics Data System (ADS)
Hartman, K.; Trimble, S. M.; Bishop, M. P.; Houser, C.
2016-12-01
Rip currents are a relatively high-velocity flow of water away from the beach common in coastal environments. As beach morphology adapts to sediment fluxes and wave climate, it is essential to be able to assess rip-current hazard conditions. Furthermore, it is essential to be able to characterize the scale-dependent bathymetric morphology that governs the extent and magnitude of a rip current. Consequently, our primary objective is to assess the alongshore distribution of topographic anisotropy, in order to identify rip-current hazard locations. Specifically, we utilized multi-band satellite imagery to generate a bathymetric digital elevation model (DEM) for Bondi Beach Australia, and collected field data to support our analysis. Scale-dependent spatial analysis of the DEM was conducted to assess the directional dependence of topographic relief, the magnitude of topographic anisotropy, and the degree of anisotropic symmetry. We displayed anisotropy parameters as images and false-color composites to visualize morphological conditions associated with rip channels. Our preliminary results indicate that rip channels generally have a higher anisotropy index and orthogonal orientation compared to dissipative or reflective beach anisotropy and orientation. Scale-dependent variations in anisotropy can be used to assess the spatial extent of rip currents. Furthermore, well-defined rip channels exhibit positive symmetry, while variations in the distribution of symmetry reflect sediment-flux variations alongshore. These results clearly reveal that a well-developed rip channel can be identified and assessed using topographic anisotropy, as scale-dependent anisotropy patterns are unique when compared to the surrounding bathymetry and terrain. In this way, it is possible to evaluate the alongshore distribution of rip currents. Alongshore topographic anisotropy data will be extremely important as input into hazard assessment studies and the development of hazard decision support systems.
Magnetisation reversal in anisotropy graded Co/Pd multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, C. W., E-mail: craig.barton-2@postgrad.manchester.ac.uk; Thomson, T.
2015-08-14
We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol wouldmore » provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.« less
Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles
NASA Astrophysics Data System (ADS)
Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve
2017-02-01
Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.
Seismic properties of lawsonite eclogites from the southern Motagua fault zone, Guatemala
NASA Astrophysics Data System (ADS)
Kim, Daeyeong; Wallis, Simon; Endo, Shunsuke; Ree, Jin-Han
2016-05-01
We present new data on the crystal preferred orientation (CPO) and seismic properties of omphacite and lawsonite in extremely fresh eclogite from the southern Motagua fault zone, Guatemala, to discuss the seismic anisotropy of subducting oceanic crust. The CPO of omphacite is characterized by (010)[001], and it shows P-wave seismic anisotropies (AVP) of 1.4%-3.2% and S-wave seismic anisotropies (AVS) of 1.4%-2.7%. Lawsonite exhibits (001) planes parallel to the foliation and [010] axes parallel to the lineation, and seismic anisotropies of 1.7%-6.6% AVP and 3.4%-14.7% AVS. The seismic anisotropy of a rock mass consisting solely of omphacite and lawsonite is 1.2%-4.1% AVP and 1.8%-6.8% AVS. For events that propagate more or less parallel to the maximum extension direction, X, the fast S-wave velocity (VS) polarization is parallel to the Z in the Y-Z section (rotated from the X-Z section), causing trench-normal seismic anisotropy for orthogonal subduction. Based on the high modal abundance and strong fabric of lawsonite, the AVS of eclogites is estimated as ~ 11.7% in the case that lawsonite makes up ~ 75% of the rock mass. On this basis, we suggest that lawsonite in both blueschist and eclogite may play important roles in the formation of complex pattern of seismic anisotropy observed in NE Japan: weak trench-parallel anisotropy in the forearc basin domains and trench-normal anisotropy in the backarc region.
Simulating the Seismic Signal of Phase Transitions in the Deepest Mantle (Invited)
NASA Astrophysics Data System (ADS)
Walker, A.; Dobson, D. P.; Nowacki, A.; Wookey, J. M.; Forte, A. M.; Kendall, J. M.
2013-12-01
The discovery of the perovskite to post-perovskite phase transition in (Mg,Fe)SiO3 explains many of the seismic observations of the lowermost mantle including the presence of multiple seismic discontinuities and significant seismic anisotropy. However, the explanations of many detailed features remain elusive. The recent discovery of a topotactic relationship between the orientation of perovskite and post-perovskite crystals in a partially transformed analogue opens the possibility of texture inheritance through the phase transition [1]. This must be captured in simulations designed to explain the anisotropy of the lowermost mantle, especially those which link mantle dynamics with seismic observations. We have extended our previous work linking models of flow in the lowermost mantle with simulations of texture development and predictions of seismic anisotropy [2] to account for the topotaxy between perovskite and post-perovskite. In particular, we compare four cases: (1) As in [2], anisotropy is only generated in post-perovskite by dislocation mediated deformation dominated by one of a number of slip systems, phase transitions destroy texture and ferropericlase and perovskite dominated rocks are isotropic. (2) Although phase transitions destroy texture, ferropericlase and/or perovskite deform by dislocation motion permitting the generation of seismic anisotropy in warmer regions of the mantle where post-perovskite is unstable. We account for the possibility of the inversion of slip-system activities in ferropericlase at high pressure as suggested by models of dislocation motion based on atomic scale simulations [3]. (3) Allow texture development by dislocation motion in perovskite and post-perovskite and texture inheritance through phase transitions by the mechanism described in [1]. However, we assume that the bulk of the lower mantle deforms by a mechanism that does not lead to the development of texture and so begin the simulation from a random distribution of crystal orientations the first time the post-perovskite stability field is encountered for downward migrating packages of mantle. (4) Allow the bulk of the lower mantle to deform by dislocation creep such that material entering the lowermost mantle for the first time is already textured, allow this texture to be inherited and further modified by strain and phase transitions. These calculations show clear differences in global and local scale elastic anisotropy in the lowermost mantle between cases where texture is allowed to persist through the phase transitions and those where it is not. On a global scale and when radial anisotropy is imposed the inclusion of topotaxy results in a dramatic decrease in the strength of the degree two signal and better agreement between observations and the model for post-perovskite deformation where dislocations moving on (001) dominate. On a smaller scale we see potential signs of reflectors generated by a change in anisotropy between perovskite that has inherited a strong starting texture from post-perovskite and overlaying perovskite that has never undergone the phase transition. These observations suggest that the incorporation of texture inheritance will be an important feature of future models of anisotropy in the lowermost mantle. [1] Dobson et al. 2013 Nature Geosci. 6:575-578 [2] Walker et al. 2011 Gcubed. 12:Q10006 [3] Cordier et al. 2012 Nature 481:177-180
NASA Astrophysics Data System (ADS)
Bailey, Austin
Amplitude Variation with Angle and Azimuth (AVAZ) is a method that examines the azimuthal change in seismic amplitude to calculate the anisotropy of a horizontally transverse isotropic (HTI) formation. Anisotropy is generally indicative of heterogeneity in the rock fabric, be it fractures, crack-like pores, or local stress changes. The aim of this study as a whole is to examine the relationship between AVAZ anisotropy magnitude from seismic data and pore pressure gradient from wells. Pore pressure is an important reservoir metric that is often used to understand the production variations within a hydrocarbon reservoir. Predicting pore pressure from seismic data can be extremely useful in not only estimating production, but also in predicting the completion and development strategies that may be most effective. However, seismic-based pore pressure prediction methods have not evolved much in the past decade, with the industry standard to rely on the Bowers (1995) or Eaton (1987) method of converting seismic velocities to pore pressure volumes. These methods may fall short as a predictive tool in many cases, due to their lack of spatial resolution and dependency on a stable velocity model, which may not always be available. Therefore, this study was begun in order to examine if an alternative method of detecting pore pressure variations could be found using AVAZ. The AVAZ methodology was applied to a merged 3D seismic dataset in the Anadarko Basin, Oklahoma provided by Cimarex Energy, in order to examine the Woodford Shale. The Woodford has been a key player in hydrocarbon production from the Anadarko Basin for decades, mainly serving as a source rock until the mid-2000's during the "unconventional revolution''. Throughout its extent, the Woodford Formation shows significant heterogeneity due to both the structure and faults of the basin, as well as changes in the rock fabric. This study aims to use the AVAZ methodology to examine heterogeneity in the Woodford and to relate its anisotropy to pore pressure. Before examining the AVAZ effect in the seismic data, forward modeling from well logs was completed to conceptualize a relationship between pore pressure and anisotropy. Theoretically, at higher pore pressures the reservoir fluid may be effectively propping the fractures open, thus having a greater effect on any pressure wave traveling through the fluid. At lower pore pressure, the overburden pressure dominates the fluid-filled fractures and closes them down. Therefore, at higher pore pressure the AVAZ anisotropy would be greater than at lower pore pressure. The forward modeling from dipole sonic well logs confirms this conceptual model by showing a positive relationship between pore pressure and AVAZ anisotropy. Before the results of the AVAZ workflow were obtained, a variety of pre-processing steps and quality controls were done on the merged 3D seismic dataset. Although the pore pressure - anisotropy relationship appears robust in modeling, the AVAZ results from the seismic data do not appear to correlate with pore pressure. It is likely that acquisition-related artifacts in the seismic data, as well as small magnitude of change in pore pressure, contribute to this lack of correlation. However, further interpretation of the AVAZ volumes shows local stress variations near faults as well as a potential secondary stress trend striking to the north-east. Such information has implications for completion and overall development of the Woodford as an unconventional resource play.
NASA Astrophysics Data System (ADS)
Smith, C. I.; Bowfield, A.; Almond, N. J.; Mansley, C. P.; Convery, J. H.; Weightman, P.
2010-10-01
It is demonstrated that the (1 × 1) structure and the (1 × 2) and (1 × 3) surface reconstructions that occur at Au(110)/electrolyte interfaces have unique optical fingerprints. The optical fingerprints are potential, pH and anion dependent and have potential for use in monitoring dynamic changes at this interface. We also observe a specific reflection anisotropy spectroscopy signature that may arise from anions adsorbed on the (1 × 1) structure of Au(110).
On the thermalization achieved in the reactions involving superheavy nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Rajni
In the present study, we aim to explore the role of Coulomb potential on the thermalization achieved in the reactions involving superheavy nuclei. Particularly, we shall study the degree of the equilibrium attained in a reaction by the 3D density plots, anisotropy ratio as well as by the rapidity distribution of the nucleons. Our study reveals that the degree of the equilibrium attained in the central reactions of the superheavy nuclei remains unaffected by the Coulomb potential.
NASA Astrophysics Data System (ADS)
Vargas-Meleza, Liliana; Healy, David; Alsop, G. Ian; Timms, Nicholas E.
2015-01-01
We present the influence of mineralogy and microstructure on the seismic velocity anisotropy of evaporites. Bulk elastic properties and seismic velocities are calculated for a suite of 20 natural evaporite samples, which consist mainly of halite, anhydrite, and gypsum. They exhibit strong fabrics as a result of tectonic and diagenetic processes. Sample mineralogy and crystallographic preferred orientation (CPO) were obtained with the electron backscatter diffraction (EBSD) technique and the data used for seismic velocity calculations. Bulk seismic properties for polymineralic evaporites were evaluated with a rock recipe approach. Ultrasonic velocity measurements were also taken on cube shaped samples to assess the contribution of grain-scale shape preferred orientation (SPO) to the total seismic anisotropy. The sample results suggest that CPO is responsible for a significant fraction of the bulk seismic properties, in agreement with observations from previous studies. Results from the rock recipe indicate that increasing modal proportion of anhydrite grains can lead to a greater seismic anisotropy of a halite-dominated rock. Conversely, it can lead to a smaller seismic anisotropy degree of a gypsum-dominated rock until an estimated threshold proportion after which anisotropy increases again. The difference between the predicted anisotropy due to CPO and the anisotropy measured with ultrasonic velocities is attributed to the SPO and grain boundary effects in these evaporites.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Lee, D. Y.
2017-12-01
In the classic theory of wave-particle resonant interaction, anisotropy parameter of proton distribution is considered as an important factor to determine an instability such as ion cyclotron instability. The particle distribution function is often assumed to be a bi-Maxwellian distribution, for which the anisotropy parameter can be simplified to temperature anisotropy (T⊥/T∥-1) independent of specific energy of particles. In this paper, we studied the proton anisotropy related to EMIC waves using the Van Allen Probes observations in the inner magnetosphere. First, we found that the real velocity distribution of protons is usually not expressed with a simple bi-Maxwellian distribution. Also, we calculated the anisotropy parameter using the exact formula defined by Kennel and Petschek [1966] and investigated the linear instability criterion of them. We found that, for majority of the EMIC wave events, the threshold anisotropy condition for proton cyclotron instability is satisfied in the expected range of resonant energy. We further determined the parallel plasma beta and its inverse relationship with the anisotropy parameter. The inverse relationship exists both during the EMIC wave times and non-EMIC wave times, but with different slopes. Based on this result, we demonstrate that the parallel plasma beta can be a critical factor that determines occurrence of EMIC waves.
Singh, Karamjit; Kadambala, Ravi; Jain, Pradeep; Xu, Qiyong; Townsend, Timothy G
2014-06-01
Waste hydraulic conductivity and anisotropy represent two important parameters controlling fluid movement in landfills, and thus are the key inputs in design methods where predictions of moisture movement are necessary. Although municipal waste hydraulic conductivity has been estimated in multiple laboratory and field studies, measurements of anisotropy, particularly at full scale, are rare, even though landfilled municipal waste is generally understood to be anisotropic. Measurements from a buried liquids injection well surrounded by pressure transducers at a full-scale landfill in Florida were collected and examined to provide an estimate of in-situ waste anisotropy. Liquids injection was performed at a constant pressure and the resulting pore pressures in the surrounding waste were monitored. Numerical fluid flow modeling was employed to simulate the pore pressures expected to occur under the conditions operated. Nine different simulations were performed at three different lateral hydraulic conductivity values and three different anisotropy values. Measured flowrate and pore pressures collected from conditions of approximate steady state were compared with the simulation results to assess the range of anisotropies. The results support that compacted municipal waste in landfills is anisotropic, provide anisotropy estimates greater than previous measurements, and suggest that anisotropy decreases with landfill depth. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Wang, Tao; Song, Xiaodong; Xia, Han H.
2015-03-01
The Earth's solid inner core exhibits strong anisotropy, with wave velocity dependent on the direction of propagation due to the preferential alignment of iron crystals. Variations in the anisotropic structure, laterally and with depth, provide markers for measuring inner-core rotation and offer clues into the formation and dynamics of the inner core. Previous anisotropy models of the inner core have assumed a cylindrical anisotropy in which the symmetry axis is parallel to the Earth's spin axis. An inner part of the inner core with a distinct form of anisotropy has been suggested, but there is considerable uncertainty regarding its existence and characteristics. Here we analyse the autocorrelation of earthquake coda measured by global broadband seismic arrays between 1992 and 2012, and find that the differential travel times of two types of core-penetrating waves vary at low latitudes by up to 10 s. Our findings are consistent with seismic anisotropy in the innermost inner core that has a fast axis near the equatorial plane through Central America and Southeast Asia, in contrast to the north-south alignment of anisotropy in the outer inner core. The different orientations and forms of anisotropy may represent a shift in the evolution of the inner core.
NASA Astrophysics Data System (ADS)
Fu, Mingming; Tang, Weiqing; Wu, Yaping; Ke, Congming; Guo, Fei; Zhang, Chunmiao; Yang, Weihuang; Wu, Zhiming; Kang, Junyong
2018-05-01
Perpendicular magnetic anisotropy is significantly important for realizing a long-term retention of information for spintronics devices. Inspired by 2D graphene with its high charge carrier mobility and long spin diffusion length, we report a first-principles design framework on perpendicular magnetic anisotropy engineering of a Fe atom adsorbed graphene by employing a O-terminated MgO (1 1 1) substrate. Determined by the adsorption sites of the Fe atom, a tunable magnetic anisotropy is realized in Fe/graphene/MgO (1 1 1) structure, with the magnetic anisotropy energy of ‑0.48 meV and 0.23 meV, respectively, corresponding to the in-plane and out of plane easy magnetizations. Total density of states suggest a half-metallicity with a 100% spin polarization in the system. Decomposed densities of Fe-3d states reveal the orbital contributions to the magnetic anisotropy for different Fe adsorption sites. Bonding interaction and charge redistribution regulated by MgO substrate are found responsible for the novel perpendicular magnetic anisotropy engineering in the system. The effective manipulation of perpendicular magnetic anisotropy in present work offers some references for the design and construction of 2D spintronics devices.
NASA Astrophysics Data System (ADS)
Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi
2015-04-01
Considering only isotropic wave propagation and neglecting anisotropy in teleseismic tomography studies is a simplification obviously incongruous with current understanding of the mantle-lithosphere plate dynamics. Furthermore, in solely isotropic high-resolution tomography results, potentially significant artefacts (i.e., amplitude and/or geometry distortions of 3D velocity heterogeneities) may result from such neglect. Therefore, we have undertaken to develop a code for anisotropic teleseismic tomography (AniTomo), which will allow us to invert the relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. To accomplish that, we have modified frequently-used isotropic teleseismic tomography code Telinv (e.g., Weiland et al., JGR, 1995; Lippitsch, JGR, 2003; Karousova et al., GJI, 2013). Apart from isotropic velocity heterogeneities, a weak hexagonal anisotropy is assumed as well to be responsible for the observed P-wave travel-time residuals. Moreover, no limitations to orientation of the symmetry axis are prescribed in the code. We allow a search for anisotropy oriented generally in 3D, which represents a unique approach among recent trials that otherwise incorporate only azimuthal anisotopy into the body-wave tomography. The presented code for retrieving anisotropy in 3D thus enables its direct applications to datasets from tectonically diverse regions. In this contribution, we outline the theoretical background of the AniTomo anisotropic tomography code. We parameterize the mantle lithosphere and asthenosphere with an orthogonal grid of nodes with various values of isotropic velocities, as well as of strength and orientation of anisotropy in 3D, which is defined by azimuth and inclination of either fast or slow symmetry axis of the hexagonal approximation of the media. Careful testing of the new code on synthetics, concentrating on code functionality, strength and weaknesses, is a necessary step before AniTomo is applied to real datasets. We examine various aspects coming along with anisotropic tomography such as setting a starting anisotropic model and parameters controlling the inversion, and particularly influence of a ray coverage on resolvability of individual anisotropic parameters. Synthetic testing also allows investigation of the well-known trade-off between effects of P-wave anisotropy and isotropic heterogeneities. Therefore, the target synthetic models are designed to represent schematically different heterogeneous anisotropic structures of the upper mantle. Testing inversion mode of the AniTomo code, considering an azimuthally quasi-equal distribution of rays and teleseismic P-wave incidences, shows that a separation of seismic anisotropy and isotropic velocity heterogeneities is plausible and that the correct orientation of the symmetry axes in a model can be found within three iterations for well-tuned damping factors.
NASA Technical Reports Server (NTRS)
Smoot, G. F.; Aymon, J.; De Amici, G.; Bennett, C. L.; Kogut, A.; Gulkis, S.; Backus, C.; Galuk, K.; Jackson, P. D.; Keegstra, P.
1991-01-01
The concept and operation of the Differential Microwave Radiometers (DMR) instrument aboard NASA's Cosmic Background Explorer satellite are reviewed, with emphasis on the software identification and subtraction of potential systematic effects. Preliminary results obtained from the first six months of DMR data are presented, and implications for cosmology are discussed.
Age dependent variation of magnetic fabric on dike swarms from Maio Island (Cape Verde)
NASA Astrophysics Data System (ADS)
Moreira, Mário; Madeira, José; Mata, João.; Represas, Patrícia
2010-05-01
Maio is one of the oldest and most eroded islands of Cape Verde Archipelago. It comprises three major geological units: (1) an old raised sea-floor sequence of MORB covered by Jurassic(?)-Cretaceous deep marine sediments; (2) an intrusive 'Central Igneous Complex' (CIC), forming a dome-like structure in the older rocks; and (3) a sequence of initially submarine, then subaerial, extrusive volcanic formations and sediments. Based on the trend distribution of 290 dikes, we performed magnetic sampling on 26 basic and one carbonatite dikes. Anisotropy of magnetic susceptibility (AMS) was measured to infer geometries of magmatic flow. Dikes were sampled in both chilled margins were larger shear acting on particles embedded in the magmatic flow is expected. Sampling involved 11 dikes (N=195) intruding MORB pillows from the Upper Jurassic 'Batalha Formation' (Bt fm); 6 dikes (N=95) intruding the Lower Cretaceous 'Carquejo Formation' (Cq fm), and 10 dikes (N=129) intruding the submarine sequence of the Neogene 'Casas Velhas Formation' (CV fm). The studied hypabissal rocks are usually porphyritic, with phenocrysts of clinopyroxene and/or olivine set on an aphanitic groundmass. Dikes intruding CV fm trend N-S to NE-SW and plunge to SW. In Bt fm, dikes make ≈ 99% of the outcrops, span all directions and include frequent low dip sills. Dikes intruding Cq fm are shallow (mostly parallel to the limestone strata), dip 30o- 40o to the E, and trend N-S to NE-SW. Bulk susceptibility of the 26 basic dikes presents an average value of k = 47 ± 26 (×10-3) SI. The carbonatite dike intruding Bt fm has lower susceptibility: k = 4.6 ± 1.2 (×10-3) SI. More than 80% of the dikes show normal and triaxial magnetic fabric. Anisotropy is usually low, with P' < 1.08, but in CV fm dikes the anisotropy is higher and grows (up to P' ≈ 1.5) towards the centre of the volcano. Dominant magnetic fabric in CV fm is planar but in dikes from Cq fm and Bt fm it varies between oblate and prolate. Carbonatite dike shows low anisotropy (1.01 < P' < 1.06) and a slightly dominant planar fabric. Magnetic foliation is parallel or slightly oblique to the respective margins. Usually, when magnetic imbrication is observed the dihedral angle is small or the imbrications in both margins are scissored relative to the dike axis. Magnetic lineation shows some interesting systematic behaviours. In CV fm, lineation changes from shallow or intermediate plunges (~45o) in southern dikes to more than 60o in northern dikes (close to CIC). In Cq fm, lineation of N-S dikes has intermediate plunge (~40o) to the NE, while NE-SW trending dikes intruding the same formation in the south show shallower inclinations (< 30o). Lineation always falls in E or NE sectors of the projections. In Bt fm, (southeast shore) lineations usually plunge more than 60o. Thermomagnetic magnetic behaviour of rocks from Cv fm dikes indicates the Ti-rich composition of the main oxide phase, while the rocks from Bt fm present either a single magnetite-rich phase, either two phases: titano-magnetite 300o < TC
NASA Astrophysics Data System (ADS)
Mallik, Srijani; Bedanta, Subhankar
2018-01-01
Ultrathin Co films of 3 nm thickness have been prepared on MgO (0 0 1) substrate in presence or absence of substrate pre-annealing. Uniaxial anisotropy is induced in the samples due to the deposition under oblique angle of incidence. Along with the oblique deposition induced anisotropy, another uniaxial anisotropy contribution has been observed due to pre-annealing. However, no cubic anisotropy has been observed here as compared to the thicker films. Angle dependent ferromagnetic resonance (FMR) measurement confirms the presence of two anisotropies in the pre-annealed sample with ∼18° misalignment with each other. The two anisotropy constants were calculated from both superconducting quantum interference device (SQUID) magnetometry and FMR spectroscopy. The magnetization reversal is governed by nucleation dominated aftereffect followed by domain wall motion for the pre-annealed sample. Branched domains are observed for the sample prepared without pre-annealing which indicates grain disorientation of Co. However, in the thicker (25 nm) Co films ripple domains were observed in contrary to ultrathin (3 nm) films.
Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials
Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.; ...
2016-10-24
Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less
Sun, Yang; Di, Weishuai; Li, Yiran; Huang, Wenmao; Wang, Xin; Qin, Meng; Wang, Wei; Cao, Yi
2017-08-01
Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three-way-junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg 2+ binding. In the absence of Mg 2+ , 3WJ-pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg 2+ , the unfolding forces can differ by more than 4-fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ-pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg 2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ-pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Relationships between elastic anisotropy and thermal expansion in A 2Mo 3O 12 materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romao, Carl P.; Donegan, S. P.; Zwanziger, J. W.
Here, we report calculated elastic tensors, axial Grüneisen parameters, and thermal stress distributions in Al 2Mo 3O 12, ZrMgMo 3O 12, Sc 2Mo 3O 12, and Y 2Mo 3O 12, a series of isomorphic materials for which the coefficients of thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises from interactions between thermal expansion and mechanical properties, and both can be highly anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with negative thermal expansion were less compliant. Calculations of axial Grüneisen parameters revealed that the thermal expansion anisotropy in these materialsmore » is in part due to the Poisson effect. Models of thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and leading to lognormal extremes of the thermal stress distributions.« less
IMPRINTS OF EXPANSION ON THE LOCAL ANISOTROPY OF SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdini, Andrea; Grappin, Roland
2015-08-01
We study the anisotropy of II-order structure functions (SFs) defined in a frame attached to the local mean field in three-dimensional (3D) direct numerical simulations of magnetohydrodynamic turbulence, with the solar wind expansion both included and not included. We simulate spacecraft flybys through the numerical domain by taking increments along the radial (wind) direction that form an angle of 45° with the ambient magnetic field. We find that only when expansion is taken into account do the synthetic observations match the 3D anisotropy observed in the solar wind, including the change of anisotropy with scale. Our simulations also show thatmore » the anisotropy changes dramatically when considering increments oblique to the radial directions. Both results can be understood by noting that expansion reduces the radial component of the magnetic field at all scales, thus confining fluctuations in the plane perpendicular to the radial. Expansion is thus shown to affect not only the (global) spectral anisotropy, but also the local anisotropy of second-order SF by influencing the distribution of the local mean field, which enters this higher-order statistics.« less
Effects of oxygen chemical potential on the anisotropy of the adsorption properties of Zr surfaces.
Zhang, Hai-Hui; Xie, Yao-Ping; Yao, Mei-Yi; Xu, Jing-Xiang; Zhang, Jin-Long; Hu, Li-Juan
2018-05-30
The anisotropy of metal oxidation is a fundamental issue, and the oxidation of Zr surfaces also attracts much attention due to the application of Zr alloys as cladding materials for nuclear fuels in nuclear power plants. In this study, we systematically investigate the diagram of O adsorption on low Miller index Zr surfaces by using first-principles calculations based on density functional theory calculations. We find that O adsorption on the basal surface, Zr(0001), is more favourable than that on the prism surfaces, Zr(112[combining macron]0) and Zr(101[combining macron]0), under strong O-reducing conditions, while O adsorption on the prism surface is more favourable than that of the basal surface under weak O-reducing conditions and the O-rich conditions. Our findings reveal that the anisotropy of adsorption properties of O on the Zr surfaces is dependent on the O chemical potential in the environment. Furthermore, the ability of the prism for O adsorption is stronger than that of the basal surface under the O-rich condition, which is consistent with the experimental observation that the oxidation of the prism Zr surface is easier than that of the basal surface. Systematic surveys show the adsorption ability of the surface under strong O-reducing conditions is determined by the low coordination numbers of surface atoms and surface geometrical structures, while the adsorption ability of the surface under weak O-reducing conditions and O-rich conditions is only determined by the low coordination number of surface atoms. These results can provide an atomic scale understanding of the initial oxidation of Zr surfaces, which inevitably affects the growth of protective passivation layers that play critical roles in the corrosion resistance of Zr cladding materials.
Probing in-plane anisotropy in fewlayer ReS2 using low frequency noise measurement.
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-01-31
ReS<sub>2</sub>, a layered two-dimensional material popular for its in-plane anisotropic properties is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of fewlayer ReS<sub>2</sub> for the first time. Fewlayer ReS<sub>2</sub> FET devices show 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also direction dependent. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low noise transistor in future. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad; Kourakis, Ioannis
2017-03-01
The dynamical characteristics of large amplitude ion-acoustic waves are investigated in a magnetized plasma comprising ions presenting space asymmetry in the equation of state and non-Maxwellian electrons. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low theory. An excess in the superthermal component of the electron population is assumed, in agreement with long-tailed (energetic electron) distribution observations in space plasmas; this is modeled via a kappa-type distribution function. Large electrostatic excitations are assumed to propagate in a direction oblique to the external magnetic field. In the linear (small amplitude) regime, two electrostatic modes are shown to exist. The properties of arbitrary amplitude (nonlinear) obliquely propagating ion-acoustic solitary excitations are thus investigated via a pseudomechanical energy balance analogy, by adopting a Sagdeev potential approach. The combined effect of the ion pressure anisotropy and excess superthermal electrons is shown to alter the parameter region where solitary waves can exist. An excess in the suprathermal particles is thus shown to be associated with solitary waves, which are narrower, faster, and of larger amplitude. Ion pressure anisotropy, on the other hand, affects the amplitude of the solitary waves, which become weaker (in strength), wider (in spatial extension), and thus slower in comparison with the cold ion case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina, J.M., E-mail: jmmj@ua.es; Departamento de Física Aplicada, Universidad de Alicante, Ap. 99, E-03080 Alicante; Departamento de Química Inorgánica, Universidad de Alicante, Ap. 99, | E-03080 Alicante
2015-11-15
Within the frame of heat dissipation for electronics, a very interesting family of anisotropic composite materials, fabricated by liquid infiltration of a matrix into preforms of oriented graphite flakes and SiC particles, has been recently proposed. Aiming to investigate the implications of the inherent anisotropy of these composites on their thermal conductivity, and hence on their potential applications, materials with matrices of Al–12 wt.% Si alloy and epoxy polymer have been fabricated. Samples have been cut at a variable angle with respect to the flakes plane and thermal conductivity has been measured by means of two standard techniques, namely, steadymore » state technique and laser flash method. Experimental results are presented and discussed in terms of current models, from which important technological implications for heat sinking design can be derived. - Highlights: • Anisotropy in thermal conductivity of graphite flakes-based composites is evaluated. • Samples are cut in a direction forming a variable angle with the oriented flakes. • For angles 0° and 90°, thermal conductivity does not depend on sample geometry. • For intermediate angles, thermal conductivity strongly depends on sample geometry. • “Thin” samples must be thicker than 600 μm, “thick” samples must be encapsulated.« less
NASA Astrophysics Data System (ADS)
Bhattacharya, Dhritiman; Mamun Al-Rashid, Md; Atulasimha, Jayasimha
2017-10-01
Recent work (P-H Jang et al 2015 Appl. Phys. Lett. 107 202401, J. Sampaio et al 2016 Appl. Phys. Lett. 108 112403) suggests that ferromagnetic reversal with spin transfer torque (STT) requires more current in a system in the presence of Dzyaloshinskii-Moriya interaction (DMI) than switching a typical ferromagnet of the same dimensions and perpendicular magnetic anisotropy (PMA). However, DMI promotes the stabilization of skyrmions and we report that when perpendicular anisotropy is modulated (reduced) for both the skyrmion and ferromagnet, it takes a much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in the same amount of time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current. We show with rigorous micromagnetic simulations that skyrmion switching proceeds along a different path at very low PMA, which results in a significant reduction in the spin current or time required for reversal. This can offer potential for memory applications where a relatively simple modification of the standard STT-RAM (to include a heavy metal adjacent to the soft magnetic layer and with appropriate design of the tunnel barrier) can lead to an energy efficient and fast magnetic memory device based on the reversal of fixed skyrmions.
Atomistic simulations of deformation mechanisms in ultralight weight Mg-Li alloys
NASA Astrophysics Data System (ADS)
Karewar, Shivraj
Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg using atomistic simulations. In the first part, I create a reliable and transferable concentration dependent embedded atom method (CD-EAM) potential for my molecular dynamics study of deformation. This potential describes the Mg-Li phase diagram, which accurately describes the phase stability as a function of Li concentration and temperature. Also, it reproduces the heat of mixing, lattice parameters, and bulk moduli of the alloy as a function of Li concentration. Most importantly, our CD-EAM potential reproduces the variation of stacking fault energy for basal, prismatic, and pyramidal slip systems that in uences the deformation mechanisms as a function of Li concentration. This success of CD-EAM Mg-Li potential in reproducing different properties, as compared to literature data, shows its reliability and transferability. Next, I use this newly created potential to study the effect of Li addition on deformation mechanisms in Mg-Li nanocrystalline (NC) alloys. Mg-Li NC alloys show basal slip, pyramidal type-I slip, tension twinning, and two-compression twinning deformation modes. Li addition reduces the plastic anisotropy between basal and non-basal slip systems by modifying the energetics of Mg-Li alloys. This causes the solid solution softening. The inverse relationship between strength and ductility therefore suggests a concomitant increase in alloy ductility. A comparison of the NC results with single crystal deformation results helps to understand the qualitative and quantitative effect of Li addition in Mg on nucleation stress and fault energies of each deformation mode. The nucleation stress and fault energies of basal dislocations and compression twins in single crystal Mg-Li alloy increase while those for pyramidal dislocations and tension twinning decrease. This variation in respective values explains the reduction in plastic anisotropy and increase in ductility for Mg-Li alloys.
Magnetic anisotropy and magnetization reversal in Co/Cu multilayers nanowires
NASA Astrophysics Data System (ADS)
Ahmad, Naeem; Chen, J. Y.; Shi, D. W.; Iqbal, Javed; Han, Xiufeng
2012-04-01
The Co/Cu multilayer nanowires fabricated in an array using anodized aluminum oxide (AAO) template by electrodeposition method, have been investigated. It has been observed that the magnetization reversal mode and magnetic anisotropy depend upon the Co and Cu layer thicknesses. Magnetization reversal occurs by curling mode at around Co = 400 nm and Cu = 10 nm, while for Co = 30 nm and Cu = 60 nm, magnetization reversal occurs by nucleation mode. A change of magnetic anisotropy from out of plane to in plane is observed when thickness of Cu layer tCu = 60 nm and that of Co tCo = 30 nm. Magnetic anisotropy is lost when thickness of the Co layer tCo = 400 nm and that of Cu tCu= 10 nm. Magnetic properties have been explained by the competition among shape anisotropy, magnetostatic interactions and magnetocrystalline anisotropy. Magnetic properties can be tuned accordingly depending upon the thickness of the Co and Cu nanodisks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Fan W.; Contescu, Cristian I.; Gallego, Nidia C.
Laser ultrasonic line source methods have been used to study elastic anisotropy in nuclear graphites by measuring shear wave birefringence. Depending on the manufacturing processes used during production, nuclear graphites can exhibit various degrees of material anisotropy related to preferred crystallite orientation and to microcracking. In this paper, laser ultrasonic line source measurements of shear wave birefringence on NBG-25 have been performed to assess elastic anisotropy. Laser line sources allow specific polarizations for shear waves to be transmitted – the corresponding wavespeeds can be used to compute bulk, elastic moduli that serve to quantify anisotropy. These modulus values can bemore » interpreted using physical property models based on orientation distribution coefficients and microcrack-modified, single crystal moduli to represent the combined effects of crystallite orientation and microcracking on material anisotropy. Finally, ultrasonic results are compared to and contrasted with measurements of anisotropy based on the coefficient of thermal expansion to show the relationship of results from these techniques.« less
Magnetic anisotropy in permalloy: Hidden quantum mechanical features
NASA Astrophysics Data System (ADS)
Rodrigues, Debora C. M.; Klautau, Angela B.; Edström, Alexander; Rusz, Jan; Nordström, Lars; Pereiro, Manuel; Hjörvarsson, Björgvin; Eriksson, Olle
2018-06-01
By means of relativistic, first principles calculations, we investigate the microscopic origin of the vanishingly low magnetic anisotropy of Permalloy, here proposed to be intrinsically related to the local symmetries of the alloy. It is shown that the local magnetic anisotropy of individual atoms in Permalloy can be several orders of magnitude larger than that of the bulk sample and 5-10 times larger than that of elemental Fe or Ni. We furthermore show that locally there are several easy axis directions that are favored, depending on local composition. The results are discussed in the context of perturbation theory, applying the relation between magnetic anisotropy and orbital moment. Permalloy keeps its pronounced soft ferromagnetic nature due to the exchange energy to be larger than the magnetocrystalline anisotropy. Our results shine light on the magnetic anisotropy of permalloy and of magnetic materials in general, and in addition enhance the understanding of pump-probe measurements and ultrafast magnetization dynamics.
NASA Astrophysics Data System (ADS)
Pandey, Tribhuwan; Du, Mao-Hua; Parker, David S.
2018-03-01
Designing a permanent magnet with reduced critical rare-earth content is of paramount importance in the development of cost-effective modern technologies. By performing comprehensive first-principles calculations, we investigate the potential avenues for reducing the critical rare-earth content in Sm2Fe17N3 and Sm2Fe17C3 by making a La or Ce substitution for Sm. The calculated magnetic properties of base compounds are in good agreement with the previous low-temperature (4.2-K) experimental measurements, and they show a large axial anisotropy. Although La or Ce substitution results in a slight reduction of magnetic anisotropy, the magnetic moments of Fe atoms mostly remain unchanged. Specifically, large axial anisotropies of 7.2 and 4.1 MJ /m3 are obtained for SmCeFe17 N3 and SmLaFe17 N3 , respectively. These values of anisotropies are comparable to the state-of-the-art permanent magnet Nd2 Fe14 B . The foremost limitation of Sm2 Fe17X3 magnets for practical application is the formation nitrogen or carbon vacancies at high temperatures. By calculating the N- (C)- vacancy formation energy, we show that La or Ce substitution enhances the vacancy formation energy. This enhanced vacancy formation energy will likely improve the thermodynamic stability of these alloys at high temperatures. Therefore, La- or Ce-substituted Sm2Fe17C3 and Sm2Fe17N3 compounds are promising candidates for high-performance permanent magnets with substantially reduced rare-earth content.
Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui Lam; Department of Physics, Columbia University, New York, New York 10027; Institute of Theoretical Physics, Chinese University of Hong Kong
2008-03-15
In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e.more » impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.« less
Blood pressure and cerebral white matter share common genetic factors in Mexican Americans.
Kochunov, Peter; Glahn, David C; Lancaster, Jack; Winkler, Anderson; Karlsgodt, Kathrin; Olvera, Rene L; Curran, Joanna E; Carless, Melanie A; Dyer, Thomas D; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John
2011-02-01
Elevated arterial pulse pressure and blood pressure (BP) can lead to atrophy of cerebral white matter (WM), potentially attributable to shared genetic factors. We calculated the magnitude of shared genetic variance between BP and fractional anisotropy of water diffusion, a sensitive measurement of WM integrity in a well-characterized population of Mexican Americans. The patterns of whole-brain and regional genetic overlap between BP and fractional anisotropy were interpreted in the context the pulse-wave encephalopathy theory. We also tested whether regional pattern in genetic pleiotropy is modulated by the phylogeny of WM development. BP and high-resolution (1.7 × 1.7 × 3 mm; 55 directions) diffusion tensor imaging data were analyzed for 332 (202 females; mean age 47.9 ± 13.3 years) members of the San Antonio Family Heart Study. Bivariate genetic correlation analysis was used to calculate the genetic overlap between several BP measurements (pulse pressure, systolic BP, and diastolic BP) and fractional anisotropy (whole-brain and regional values). Intersubject variance in pulse pressure and systolic BP exhibited a significant genetic overlap with variance in whole-brain fractional anisotropy values, sharing 36% and 22% of genetic variance, respectively. Regionally, shared genetic variance was significantly influenced by rates of WM development (r=-0.75; P=0.01). The pattern of genetic overlap between BP and WM integrity was generally in agreement with the pulse-wave encephalopathy theory. Our study provides evidence that a set of pleiotropically acting genetic factors jointly influence phenotypic variation in BP and WM integrity. The magnitude of this overlap appears to be influenced by phylogeny of WM development, suggesting a possible role for genotype-by-age interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Tribhuwan; Du, Mao-Hua; Parker, David S.
Designing a permanent magnet with reduced critical rare-earth content is of paramount importance in the development of cost-effective modern technologies. By performing comprehensive first-principles calculations, we investigate the potential avenues for reducing the critical rare-earth content in Sm 2Fe 17N 3 and Sm 2Fe 17C 3 by making a La or Ce substitution for Sm. The calculated magnetic properties of base compounds are in good agreement with the previous low-temperature (4.2-K) experimental measurements, and they show a large axial anisotropy. Although La or Ce substitution results in a slight reduction of magnetic anisotropy, the magnetic moments of Fe atoms mostlymore » remain unchanged. Specifically, large axial anisotropies of 7.2 and 4.1 MJ/m 3 are obtained for SmCeFe 17N 3 and SmLaFe 17N 3, respectively. These values of anisotropies are comparable to the state-of-the-art permanent magnet Nd 2Fe 14B. The foremost limitation of Sm 2Fe 17X 3 magnets for practical application is the formation nitrogen or carbon vacancies at high temperatures. By calculating the N- (C)- vacancy formation energy, we show that La or Ce substitution enhances the vacancy formation energy. Here, this enhanced vacancy formation energy will likely improve the thermodynamic stability of these alloys at high temperatures. Therefore, La- or Ce-substituted Sm 2Fe 17C 3 and Sm 2Fe 17N 3 compounds are promising candidates for high-performance permanent magnets with substantially reduced rare-earth content.« less
NASA Astrophysics Data System (ADS)
Immoor, J.; Marquardt, H.; Miyagi, L. M.; Lin, F.; Speziale, S.; Merkel, S.; Liermann, H. P.
2017-12-01
Seismic anisotropy in Earth's lowermost mantle, resulting from crystallographic preferred orientation (CPO) of elastically anisotropic minerals, is the most promising observable to map mantle flow patterns. The shear wave anisotropy observed in the lowermost mantle might be caused by CPO of (Mg,Fe)O ferropericlase that is characterized by large elastic anisotropy in the deep lower mantle. However, our understanding of the slip system activities of ferropericlase at conditions of the lowermost mantle is still incomplete. Here, we present results of an experimental study designed to determine slip system activities in (Mg,Fe)O at P-T conditions of the lower mantle. In-situ deformation experiments on powders of (Mg0.8Fe0.2)O were conducted in a graphite heated diamond anvil cell (DAC) up to a temperature of 1400K. Synchrotron x-ray diffraction data were fit with the program MAUD (Materials Analysing Using Diffraction) to extract textures and lattice strains. The experimental results were modelled using the Elasto-Viscoplastic Self Consistent (EVPSC) code. Our data indicate a change in slip system activities from dominant {110} to increasing {100} slip at temperatures above 1150 K and pressures corresponding to the mid-lower mantle. Our findings indicate an effect of both pressure and temperature on the plasticity of (Mg,Fe)O and, hence, pave the way to a better understanding of with a potential change of dominant slip system between 40-60 GPa in MgO predicted from numerical models (Amodeo et al., 2012). We use the results to model the possible contribution of ferropericlase CPO to observed seismic anisotropy in the D'' layer in the lowermost mantle. Amodeo et al. (2012) Phil Mag, 92, 1523-1541
NASA Astrophysics Data System (ADS)
Klammler, Harald; Layton, Leif; Nemer, Bassel; Hatfield, Kirk; Mohseni, Ana
2017-06-01
Hydraulic conductivity and its anisotropy are fundamental aquifer properties for groundwater flow and transport modeling. Current in-well or direct-push field measurement techniques allow for relatively quick determination of general conductivity profiles with depth. However, capabilities for identifying local scale conductivities in the horizontal and vertical directions are very limited. Here, we develop the theoretical basis for estimating horizontal and vertical conductivities from different types of steady-state single-well/probe injection tests under saturated conditions and in the absence of a well skin. We explore existing solutions and a recent semi-analytical solution approach to the flow problem under the assumption that the aquifer is locally homogeneous. The methods are based on the collection of an additional piece of information in the form of a second injection (or recirculation) test at a same location, or in the form of an additional head or flow observation along the well/probe. Results are represented in dimensionless charts for partial validation against approximate solutions and for practical application to test interpretation. The charts further allow for optimization of a test configuration to maximize sensitivity to anisotropy ratio. The two methods most sensitive to anisotropy are found to be (1) subsequent injection from a lateral screen and from the bottom of an otherwise cased borehole, and (2) single injection from a lateral screen with an additional head observation along the casing. Results may also be relevant for attributing consistent divergences in conductivity measurements from different testing methods applied at a same site or location to the potential effects of anisotropy. Some practical aspects are discussed and references are made to existing methods, which appear easily compatible with the proposed procedures.
Pandey, Tribhuwan; Du, Mao-Hua; Parker, David S.
2018-03-05
Designing a permanent magnet with reduced critical rare-earth content is of paramount importance in the development of cost-effective modern technologies. By performing comprehensive first-principles calculations, we investigate the potential avenues for reducing the critical rare-earth content in Sm 2Fe 17N 3 and Sm 2Fe 17C 3 by making a La or Ce substitution for Sm. The calculated magnetic properties of base compounds are in good agreement with the previous low-temperature (4.2-K) experimental measurements, and they show a large axial anisotropy. Although La or Ce substitution results in a slight reduction of magnetic anisotropy, the magnetic moments of Fe atoms mostlymore » remain unchanged. Specifically, large axial anisotropies of 7.2 and 4.1 MJ/m 3 are obtained for SmCeFe 17N 3 and SmLaFe 17N 3, respectively. These values of anisotropies are comparable to the state-of-the-art permanent magnet Nd 2Fe 14B. The foremost limitation of Sm 2Fe 17X 3 magnets for practical application is the formation nitrogen or carbon vacancies at high temperatures. By calculating the N- (C)- vacancy formation energy, we show that La or Ce substitution enhances the vacancy formation energy. Here, this enhanced vacancy formation energy will likely improve the thermodynamic stability of these alloys at high temperatures. Therefore, La- or Ce-substituted Sm 2Fe 17C 3 and Sm 2Fe 17N 3 compounds are promising candidates for high-performance permanent magnets with substantially reduced rare-earth content.« less
NASA Astrophysics Data System (ADS)
Krueger, Hannah E.; Wirth, Erin A.
2017-10-01
The Cascadia subduction zone exhibits along-strike segmentation in structure, processes, and seismogenic behavior. While characterization of seismic anisotropy can constrain deformation processes at depth, the character of seismic anisotropy in Cascadia remains poorly understood. This is primarily due to a lack of seismicity in the subducting Juan de Fuca slab, which limits shear wave splitting and other seismological analyses that interrogate the fine-scale anisotropic structure of the crust and mantle wedge. We investigate lower crustal anisotropy and mantle wedge structure by computing P-to-S receiver functions at 12 broadband seismic stations along the Cascadia subduction zone. We observe P-to-SV converted energy consistent with previously estimated Moho depths. Several stations exhibit evidence of an "inverted Moho" (i.e., a downward velocity decrease across the crust-mantle boundary), indicative of a serpentinized mantle wedge. Stations with an underlying hydrated mantle wedge appear prevalent from northern Washington to central Oregon, but sparse in southern Oregon and northern California. Transverse component receiver functions are complex, suggesting anisotropic and/or dipping crustal structure. To constrain the orientation of crustal anisotropy we compute synthetic receiver functions using manual forward modeling. We determine that the lower crust shows variable orientations of anisotropy along-strike, with highly complex anisotropy in northern Cascadia, and generally NW-SE and NE-SW orientations of slow-axis anisotropy in central and southern Cascadia, respectively. The orientations of anisotropy from this work generally agree with those inferred from shear wave splitting of tremor studies at similar locations, lending confidence to this relatively new method of inferring seismic anisotropy from slow earthquakes.
NASA Astrophysics Data System (ADS)
Roy, Sunil K.; Kumar, M. Ravi; Davuluri, Srinagesh
2017-08-01
This study presents 106 splitting and 40 null measurements of source side anisotropy in subduction zones, utilizing direct S waves registered at two stations sited on the Indian continent, which show null shear wave splitting measurements for SKS phases. Our results suggest that trench-parallel anisotropy is dominant beneath the Philippines, Mariana, Izu-Bonin, and edge of the Java slab, while plate motion-parallel anisotropy is observed beneath the Solomon, Aegean, Japan, and Java slabs. Results from Kuril and Aleutian regions reveal trench-oblique anisotropy. We chose to interpret these observations primarily in terms of mantle flow beneath a subduction zone. While the two-dimensional (2-D) slab entrained flow model offers a simple explanation for trench-normal fast polarization azimuths (FPA), the trench-parallel FPA can be reconciled by extension due to slab rollback. The model that invokes age of the subducting lithosphere can explain anisotropy in the subslab, derived from rays recorded at the updip stations. However, when downdip stations are used, contributions from the slab and supraslab need to be considered. In Japan, anisotropy in the subslab mantle shallower than 300 km might be associated with trench-parallel mantle flow resulting in the alignment of FPA in the same direction. Anisotropy in the deeper part, above the transition zone, is probably associated with 2-D flow resulting in trench-normal FPA. Anisotropy in the Mariana Trench might be associated with trench-parallel mantle flow in the supraslab region, with similar deformation in the upper mantle and the transition zone.
NASA Astrophysics Data System (ADS)
Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi
2017-08-01
A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.
Small Scales Structure of MHD Turbulence, Tubes or Ribbons?
NASA Astrophysics Data System (ADS)
Verdini, A.; Grappin, R.; Alexandrova, O.; Lion, S.
2017-12-01
Observations in the solar wind indicate that turbulent eddies change their anisotropy with scales [1]. At large scales eddies are elongated in direction perpendicular to the mean-field axis. This is the result of solar wind expansion that affects both the anisotropy and single-spacecraft measurments [2,3]. At small scales one recovers the anisotropy expected in strong MHD turbulence and constrained by the so-called critical balance: eddies are elongated along the mean-field axis. However, the actual eddy shape is intermediate between tubes and ribbons, preventing us to discriminate between two concurrent theories that predict 2D axysimmetric anisotropy [4] or full 3D anisotropy [5]. We analyse 10 years of WIND data and apply a numerically-derived criterion to select intervals in which solar wind expansion is expected to be negligible. By computing the anisotropy of structure functions with respect to the local mean field we obtain for the first time scaling relations that are in agreement with full 3D anisotropy, i.e. ribbons-like structures. However, we cannot obtain the expected scaling relations for the alignment angle which, according to the theory, is physically responsible for the departure from axisymmetry. In addition, a further change of anisotropy occurs well above the proton scales. We discuss the implication of our findings and how numerical simulations can help interpreting the observed spectral anisotropy. [1] Chen et al., ApJ, 768:120, 2012 [2] Verdini & Grappin, ApJL, 808:L34, 2015 [3] Vech & Chen, ApJL, 832:L16, 2016 [4] Goldreich & Shridar, ApJ, 438:763, 1995 [5] Boldyrev, ApJL, 626:L37, 2005
Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2014-04-10
We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less
Quantifying seismic anisotropy induced by small-scale chemical heterogeneities
NASA Astrophysics Data System (ADS)
Alder, C.; Bodin, T.; Ricard, Y.; Capdeville, Y.; Debayle, E.; Montagner, J. P.
2017-12-01
Observations of seismic anisotropy are usually used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, seismic anisotropy observed in tomographic models provides important constraints on the geometry of mantle deformation associated with thermal convection and plate tectonics. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. In this paper, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1-D and 2-D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, that is, varying as 1/k, with k the wavenumber of these heterogeneities. The 1-D toy models correspond to simple layered media. In the 2-D case, our models depict marble-cake patterns in which an anomaly in shear wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, that is, apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1-D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1-D and 2-D media. In addition, we predict that 10 per cent of chemical heterogeneities in 2-D marble-cake models can induce more than 3.9 per cent of extrinsic radial S-wave anisotropy. We thus predict that a non-negligible part of the observed anisotropy in tomographic models may be the result of unmapped small-scale heterogeneities in the mantle, mainly in the form of fine layering, and that caution should be taken when interpreting observed anisotropy in terms of LPO and mantle deformation. This effect may be particularly strong in the lithosphere where chemical heterogeneities are assumed to be the strongest.
Probing messenger RNA conformational heterogeneity using single-molecule fluorescence anisotropy
NASA Astrophysics Data System (ADS)
Sinha, Deepak; Sastry, Srikanth; Shivashankar, G. V.
2006-03-01
In this letter we describe a method to probe biomolecular conformations and their dynamics at the single molecule level. We show, using fluorescence anisotropy based methods, that the hydrodynamic volume of biomolecules captures the intrinsic heterogeneity within a population. Population distributions of conformations and their dynamics are studied by making anisotropy measurements on one molecule at a time within a confocal volume. The mean anisotropy of mRNA is lowered on addition of salt while the spread remains the same. The intrinsic heterogeneity is revealed when conformational transitions are frozen, resulting in a drastic increase in the spread of the anisotropy. These studies reveal that mRNA samples a broad range of conformations.
Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt
NASA Astrophysics Data System (ADS)
Stolyar, S. V.; Yaroslavtsev, R. N.; Iskhakov, R. S.; Bayukov, O. A.; Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Ladygina, V. P.; Vorotynov, A. M.; Volochaev, M. N.
2017-03-01
Powders of undoped ferrihydrite nanoparticles and ferrihydrite nanoparticles doped with cobalt in the ratio of 5: 1 have been prepared by hydrolysis of 3 d-metal salts. It has been shown using Mössbauer spectroscopy that cobalt is uniformly distributed over characteristic crystal-chemical positions of iron ions. The blocking temperatures of ferrihydrite nanoparticles have been determined. The nanoparticle sizes, magnetizations, surface anisotropy constants, and bulk anisotropy constants have been estimated. The doping of ferrihydrite nanoparticles with cobalt leads to a significant increase in the anisotropy constant of a nanoparticle and to the formation of surface rotational anisotropy with the surface anisotropy constant K u = 1.6 × 10-3 erg/cm2.
Large-scale anisotropy of the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1981-01-01
Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.
Direction-dependent stability of skyrmion lattice in helimagnets induced by exchange anisotropy
NASA Astrophysics Data System (ADS)
Hu, Yangfan
2018-06-01
Exchange anisotropy provides a direction dependent mechanism for the stability of the skyrmion lattice phase in noncentrosymmetric bulk chiral magnets. Based on the Fourier representation of the skyrmion lattice, we explain the direction dependence of the temperature-magnetic field phase diagram for bulk MnSi through a phenomenological mean-field model incorporating exchange anisotropy. Through quantitative comparison with experimental results, we clarify that the stability of the skyrmion lattice phase in bulk MnSi is determined by a combined effect of negative exchange anisotropy and thermal fluctuation. The effect of exchange anisotropy and the order of Fourier representation on the equilibrium properties of the skyrmion lattice is discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Ananta P.; Mohapatra, Ranjita K.; Saumia, P. S.
2010-03-15
Recently we have shown that there are crucial similarities in the physics of cosmic microwave background radiation (CMBR) anisotropies and the flow anisotropies in relativistic heavy-ion collision experiments (RHICE). We also argued that, following CMBR anisotropy analysis, a plot of root-mean-square values of the flow coefficients, calculated in a laboratory-fixed frame for RHICE, can yield important information about the nature of initial state anisotropies and their evolution. Here we demonstrate the strength of this technique by showing that elliptic flow for noncentral collisions can be directly determined from such a plot without any need for the determination of the eventmore » plane.« less
Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction.
Eixarch, Elisenda; Muñoz-Moreno, Emma; Bargallo, Nuria; Batalle, Dafnis; Gratacos, Eduard
2016-06-01
Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0.409 ± 0.046; P = .016) in both networks were observed in the intrauterine growth restriction group, with no differences in number of streamlines. More importantly, strong specific correlation was found between tractography-related metrics and its relative function in both networks in intrauterine growth restricted children. Motor network metrics were correlated specifically with motor scale results (fractional anisotropy: rho = 0.857; integrity: rho = 0.740); cortico-striatal-thalamic network metrics were correlated with cognitive (fractional anisotropy: rho = 0.793; integrity, rho = 0.762) and socioemotional scale (fractional anisotropy: rho = 0.850; integrity: rho = 0.877). These results support the existence of altered brain connectivity in intrauterine growth restriction demonstrated by altered connectivity in motor and cortico-striatal-thalamic networks, with reduced fractional anisotropy and integrity. The specific correlation between tractography-related metrics and neurodevelopmental outcomes in intrauterine growth restriction shows the potential to use this approach to develop imaging biomarkers to predict specific neurodevelopmental outcome in infants who are at risk because of intrauterine growth restriction and other prenatal diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Quantum Hall ferroelectrics and nematics in multivalley systems
NASA Astrophysics Data System (ADS)
Sodemann, I.; Zhu, Zheng; Fu, Liang
We study broken symmetry states in multivalley quantum Hall systems whose low energy dispersions are anisotropic. Interactions tend to select states that are maximally valley polarized and have nematic character. Interestingly, in certain systems like the recently studied Bismuth (111) surfaces, the formation of these nematic states can be accompanied by appearance of an spontaneous dipole moment, leading to formation of a quantum Hall ferroelectric state. We study these states combining mean field calculations with state of the art DMRG numerical approach, and demonstrate that skyrmion-type charged excitations are extremely robust to the presence of nematic anisotropy. Supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award DE-SC0010526. IS. supported by Pappalardo Fellowship. We used Extreme Science and Engineering Discovery Environment (XSEDE) under NSF Grant ACI-1053575.
Quantum Theory of Rare-Earth Magnets
NASA Astrophysics Data System (ADS)
Miyake, Takashi; Akai, Hisazumi
2018-04-01
Strong permanent magnets mainly consist of rare earths (R) and transition metals (T). The main phase of the neodymium magnet, which is the strongest magnet, is Nd2Fe14B. Sm2Fe17N3 is another magnet compound having excellent magnetic properties comparable to those of Nd2Fe14B. Their large saturation magnetization, strong magnetocrystalline anisotropy, and high Curie temperature originate from the interaction between the T-3d electrons and R-4f electrons. This article discusses the magnetism of rare-earth magnet compounds. The basic theory and first-principles calculation approaches for quantitative description of the magnetic properties are presented, together with applications to typical compounds such as Nd2Fe14B, Sm2Fe17N3, and the recently synthesized NdFe12N.
Three-dimensional superconducting gap in FeSe from angle-resolved photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Kushnirenko, Y. S.; Fedorov, A. V.; Haubold, E.; Thirupathaiah, S.; Wolf, T.; Aswartham, S.; Morozov, I.; Kim, T. K.; Büchner, B.; Borisenko, S. V.
2018-05-01
We present a systematic angle-resolved photoemission spectroscopy study of the superconducting gap in FeSe. The gap function is determined in a full Brillouin zone including all Fermi surfaces and kz dependence. We find significant anisotropy of the superconducting gap in all momentum directions. While the in-plane anisotropy can be explained by both nematicity-induced pairing anisotropy and orbital-selective pairing, the kz anisotropy requires an additional refinement of the theoretical approaches.
NASA Technical Reports Server (NTRS)
Weiland, J.L.; Hill, R.S.; Odegard, 3.; Larson, D.; Bennett, C.L.; Dunkley, J.; Jarosik, N.; Page, L.; Spergel, D.N.; Halpern, M.;
2008-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) is a Medium-Class Explorer (MIDEX) satellite aimed at elucidating cosmology through full-sky observations of the cosmic microwave background (CMB). The WMAP full-sky maps of the temperature and polarization anisotropy in five frequency bands provide our most accurate view to date of conditions in the early universe. The multi-frequency data facilitate the separation of the CMB signal from foreground emission arising both from our Galaxy and from extragalactic sources. The CMB angular power spectrum derived from these maps exhibits a highly coherent acoustic peak structure which makes it possible to extract a wealth of information about the composition and history of the universe. as well as the processes that seeded the fluctuations. WMAP data have played a key role in establishing ACDM as the new standard model of cosmology (Bennett et al. 2003: Spergel et al. 2003; Hinshaw et al. 2007: Spergel et al. 2007): a flat universe dominated by dark energy, supplemented by dark matter and atoms with density fluctuations seeded by a Gaussian, adiabatic, nearly scale invariant process. The basic properties of this universe are determined by five numbers: the density of matter, the density of atoms. the age of the universe (or equivalently, the Hubble constant today), the amplitude of the initial fluctuations, and their scale dependence. By accurately measuring the first few peaks in the angular power spectrum, WMAP data have enabled the following accomplishments: Showing the dark matter must be non-baryonic and interact only weakly with atoms and radiation. The WMAP measurement of the dark matter density puts important constraints on supersymmetric dark matter models and on the properties of other dark matter candidates. With five years of data and a better determination of our beam response, this measurement has been significantly improved. Precise determination of the density of atoms in the universe. The agreement between the atomic density derived from WMAP and the density inferred from the deuterium abundance is an important test of the standard big bang model. Determination of the acoustic scale at redshift z = 1090. Similarly, the recent measurement of baryon acoustic oscillations (BAO) in the galaxy power spectrum (Eisenstein et al. 2005) has determined the acoustic scale at redshift z approx. 0.35. When combined, these standard rulers accurately measure the geometry of the universe and the properties of the dark energy. These data require a nearly flat universe dominated by dark energy consistent with a cosmological constant. Precise determination of the Hubble Constant, in conjunction with BAO observations. Even when allowing curvature (Omega(sub 0) does not equal 1) and a free dark energy equation of state (w does not equal -1), the acoustic data determine the Hubble constant to within 3%. The measured value is in excellent agreement with independent results from the Hubble Key Project (Freedman et al. 2001), providing yet another important consistency test for the standard model. Significant constraint of the basic properties of the primordial fluctuations. The anti-correlation seen in the temperature/polarization (TE) correlation spectrum on 4deg scales implies that the fluctuations are primarily adiabatic and rule out defect models and isocurvature models as the primary source of fluctuations (Peiris et al. 2003).
Stress anisotropy and velocity anisotropy in low porosity shale
NASA Astrophysics Data System (ADS)
Kuila, U.; Dewhurst, D. N.; Siggins, A. F.; Raven, M. D.
2011-04-01
Shales are known for often marked intrinsic anisotropy of many of their properties, including strength, permeability and velocity for example. In addition, it is well known that anisotropic stress fields can also have a significant impact on anisotropy of velocity, even in an isotropic medium. This paper sets out to investigate the ultrasonic velocity response of well-characterised low porosity shales from the Officer Basin in Western Australia to both isotropic and anisotropic stress fields and to evaluate the velocity response to the changing stress field. During consolidated undrained multi-stage triaxial tests on core plugs cut normal to bedding, V pv increases monotonically with increasing effective stress and V s1 behaves similarly although with some scatter. V ph and V sh remain constant initially but then decrease within each stage of the multi-stage test, although velocity from stage to stage at any given differential stress increases. This has the impact of decreasing both P-wave (ɛ) and S-wave anisotropy (γ) through application of differential stress within each loading stage. However, increasing the magnitude of an isotropic stress field has little effect on the velocity anisotropies. The intrinsic anisotropy of the shale remains reasonably high at the highest confining pressures. The results indicate the magnitude and orientation of the stress anisotropy with respect to the shale microfabric has a significant impact on the velocity response to changing stress fields.
Electrical anisotropy in the presence of oceans—a sensitivity study
NASA Astrophysics Data System (ADS)
Cembrowski, Marcel; Junge, Andreas
2018-05-01
Electrical anisotropy in the presence of oceans is particularly relevant at continent-ocean subduction zones (e.g. Cascadian and Andean Margin), where seismic anisotropy has been found with trench-parallel or perpendicular fast direction. The identification of electrical anisotropy at such locations sheds new light on the relation between seismic and electrical anisotropies. At areas confined by two opposite oceans, for example the Pyrenean Area and Central America, we demonstrate that the superposed responses of both oceans generate a uniform and large phase split of the main phase tensor axes. The pattern of the tipper arrows is comparatively complicated and it is often difficult to associate their length and orientation to the coast effect. On the basis of simple forward models involving opposite oceans and anisotropic layers, we show that both structures generate similar responses. In the case of a deep anisotropic layer, the resistivity and phase split generated by the oceans alone will be increased or decreased depending on the azimuth of the conducting horizontal principal axes. The 3-D isotropic inversion of the anisotropic forward responses reproduces the input data reasonably well. The anisotropy is explained by large opposed conductors outside the station grid and by tube-like elongated conductors representing a macroscopic anisotropy. If the conductive direction is perpendicular to the shorelines, the anisotropy is not recovered by 3-D isotropic inversion.
Anisoft - Advanced Treatment of Magnetic Anisotropy Data
NASA Astrophysics Data System (ADS)
Chadima, M.
2017-12-01
Since its first release, Anisoft (Anisotropy Data Browser) has gained a wide popularity in magnetic fabric community mainly due to its simple and user-friendly interface enabling very fast visualization of magnetic anisotropy tensors. Here, a major Anisoft update is presented transforming a rather simple data viewer into a platform offering an advanced treatment of magnetic anisotropy data. The updated software introduces new enlarged binary data format which stores both in-phase and out-of-phase (if measured) susceptibility tensors (AMS) or tensors of anisotropy of magnetic remanence (AMR) together with their respective confidence ellipses and values of F-tests for anisotropy. In addition to the tensor data, a whole array of specimen orientation angles, orientation of mesoscopic foliation(s) and lineation(s) is stored for each record enabling later editing or corrections. The input data may be directly acquired by AGICO Kappabridges (AMS) or Spinner Magnetometers (AMR); imported from various data formats, including the long-time standard binary ran-format; or manually created. Multiple anisotropy files can be combined together or split into several files by manual data selection or data filtering according to their values. Anisotropy tensors are conventionally visualized as principal directions (eigenvectors) in equal-area projection (stereoplot) together with a wide array of quantitative anisotropy parameters presented in histograms or in color-coded scatter plots showing mutual relationship of up to three quantitative parameters. When dealing with AMS in variable low fields, field-independent and field-dependent components of anisotropy can be determined (Hrouda 2009). For a group of specimens, individual principal directions can be contoured, or a mean tensor and respective confidence ellipses of its principal directions can be calculated using either the Hext-Jelinek (Jelinek 1978) statistics or the Bootstrap method (Constable & Tauxe 1990). Each graphical output can be exported into several vector or raster graphical formats or, via clipboard, pasted directly into a presentation or publication manuscript. Calculated principal directions or anisotropy parameters can be exported into various types of text files ready to be visualized or processed by any software of user's choice.
NASA Astrophysics Data System (ADS)
Han, S.; Jung, H.
2016-12-01
Mica is a mineral group that shows the strongest seismic anisotropy among the minerals comprising continental crust of the Earth. It is also noteworthy that alignment of mica can strongly affect magnitude and symmetry of seismic anisotropy if a seismic wave passes through a rock composed of mica more than 20-40%. Thus, it is highly necessary to analyze mica-rich rocks to investigate the origin of seismic anisotropy observed in continental crust. In this study, muscovite-quartz phyllites from Geumseongri and Munjuri Formation in Korea were analyzed using Electron Backscattered Diffraction (EBSD) to measure lattice preferred orientation (LPO) of minerals. The samples are mainly composed of muscovite, quartz, albite, chlorite, and biotite with minor calcite and rutile. The EBSD analysis showed that the muscovite [001] axis was strongly aligned normal to the foliation while both [100] and [010] axes were dispersed parallel to the foliation. Chlorite and biotite also exhibited similar LPO except for the chlorite [001] axis in the sample 2619, dispersed normal to the lineation. LPOs of quartz were weak in most samples. The albite (010) pole in the sample 2363M and (001) pole in the sample 2364Q were aligned normal to the foliation. Seismic anisotropy was calculated based on the LPO and modal composition of the specimens. The anisotropy of P-wave (Vp) for quartz was in the range of 4.3 - 9.3% and 3.3 - 6.7% for albite. The maximum shear wave anisotropy (AVs) was in the range of 5.3 - 11.2% for quartz and 3.9 - 5.4% for albite. The Vp anisotropy and maximum AVs anisotropy of mica were in the range of 19.3 - 53.4% and 11.6 - 62.9%, respectively, which are much larger than those of other minerals. As a result, The Vp and maximum AVs anisotropy for whole rock were in the range of 11.8 - 44% and 11.6 - 51.8%, respectively. These results show that modal composition and alignment of mica mainly control the magnitude and symmetry of seismic anisotropy.
NASA Astrophysics Data System (ADS)
Agius, Matthew R.; Lebedev, Sergei
2013-04-01
Seismic deployments over the last two decades have produced dense broadband data coverage across the Tibetan Plateau. Yet, the lithospheric dynamics of Tibet remains enigmatic, with even its basic features debated and with very different end-member models still advocated today. Most body-wave tomographic models do not resolve any high-velocity anomalies in the upper mantle beneath central and northern Tibet, which motivated the inference that the Indian lithosphere may sink into deep mantle beneath the Himalayas in the south, with parts of it possibly extruded laterally eastward. In contrast, surface-wave tomographic models all show pronounced high-velocity anomalies beneath much of Tibet at depths around 200 km. Uncertainties over the shapes and amplitudes of the anomalies, however, contribute to the uncertainty of their interpretations, ranging from the subduction of India or Asia to the extreme viscous thickening of the Tibetan lithosphere. Within the lithosphere itself, a low-viscosity layer in the mid-lower crust is evidenced by many observations. It is still unclear, however, whether this layer accommodates a large-scale channel flow (which may have uplifted eastern Tibet, according to one model) or if, instead, deformation within it is similar to that observed at the surface. Broad-band surface waves provide resolving power from the upper crust down to the asthenosphere, for both the isotropic-average shear-wave speeds (characterising the composition and thermal state of the lithosphere) and the radial and azimuthal shear-wave anisotropy (indicative, in an actively deforming region, of the current and recent flow). We measured highly accurate Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 5-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds to thousands of inter-station measurements made with cross-correlation and waveform-inversion methods. Robust shear-velocity profiles were then determined by extensive series of non-linear inversions, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy consistent with the data. Temperature anomalies in the upper mantle were estimated from shear-velocity using pre-computed petro-physical relationships. Azimuthal anisotropy in the crust and upper mantle was determined by surface-wave tomography and, also, by sub-array analysis targeting the anisotropy amplitude. Our results show that the prominent high-velocity anomalies in the upper mantle are most consistent with the presence of subducted Indian lithosphere beneath much of Tibet. The large estimated thermal anomalies within the high-velocity features match those to be expected within subducted India. The morphology of India's subduction beneath Tibet is complex and shows pronounced west-east variations. Beneath eastern and northeastern Tibet, in particular, the subducted Indian lithosphere appears to have subducted, at a shallow angle, hundreds of km NNE-wards. Azimuthal anisotropy beneath Tibet is distributed in multiple layers with different fast-propagations directions, which accounts for the complexity of published shear-wave splitting observations. The fast directions within the mid-lower crust are parallel to the extensional components of the current strain rate field at the surface, consistent with similar deformation through the entire crust, rather than channel flow. Anisotropy within the asthenosphere beneath northeastern Tibet (sandwiched between the Tibetan lithosphere above and the subducted Indian lithosphere below) indicates SSW-NNE flow, parallel to the direction of motion of the Indian Plate, including its subducted leading edge.
Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications
NASA Astrophysics Data System (ADS)
Dieny, B.; Chshiev, M.
2017-04-01
Spin electronics is a rapidly expanding field stimulated by a strong synergy between breakthrough basic research discoveries and industrial applications in the fields of magnetic recording, magnetic field sensors, nonvolatile memories [magnetic random access memories (MRAM) and especially spin-transfer-torque MRAM (STT-MRAM)]. In addition to the discovery of several physical phenomena (giant magnetoresistance, tunnel magnetoresistance, spin-transfer torque, spin-orbit torque, spin Hall effect, spin Seebeck effect, etc.), outstanding progress has been made on the growth and nanopatterning of magnetic multilayered films and nanostructures in which these phenomena are observed. Magnetic anisotropy is usually observed in materials that have large spin-orbit interactions. However, in 2002 perpendicular magnetic anisotropy (PMA) was discovered to exist at magnetic metal/oxide interfaces [for instance Co (Fe )/alumina ]. Surprisingly, this PMA is observed in systems where spin-orbit interactions are quite weak, but its amplitude is remarkably large—comparable to that measured at Co /Pt interfaces, a reference for large interfacial anisotropy (anisotropy˜1.4 erg /cm2=1.4 mJ /m2 ). Actually, this PMA was found to be very common at magnetic metal/oxide interfaces since it has been observed with a large variety of amorphous or crystalline oxides, including AlOx, MgO, TaOx, HfOx, etc. This PMA is thought to be the result of electronic hybridization between the oxygen and the magnetic transition metal orbit across the interface, a hypothesis supported by ab initio calculations. Interest in this phenomenon was sparked in 2010 when it was demonstrated that the PMA at magnetic transition metal/oxide interfaces could be used to build out-of-plane magnetized magnetic tunnel junctions for STT-MRAM cells. In these systems, the PMA at the CoFeB /MgO interface can be used to simultaneously obtain good memory retention, thanks to the large PMA amplitude, and a low write current, thanks to a relatively weak Gilbert damping. These two requirements for memories tend to be difficult to reconcile since they rely on the same spin-orbit coupling. PMA-based approaches have now become ubiquitous in the designs for perpendicular STT-MRAM, and major microelectronics companies are actively working on their development with the first goal of addressing embedded FLASH and static random access memory-type of applications. Scalability of STT-MRAM devices based on this interfacial PMA is expected to soon exceed the 20-nm nodes. Several very active new fields of research also rely on interfacial PMA at magnetic metal/oxide interfaces, including spin-orbit torques associated with Rashba or spin Hall effects, record high speed domain wall propagation in buffer/magnetic metal/oxide-based magnetic wires, and voltage-based control of anisotropy. This review deals with PMA at magnetic metal/oxide interfaces from its discovery, by examining the diversity of systems in which it has been observed and the physicochemical methods through which the key roles played by the electronic hybridization at the metal/oxide interface were elucidated. The physical origins of the phenomenon are also covered and how these are supported by ab initio calculations is dealt with. Finally, some examples of applications of this interfacial PMA in STT-MRAM are listed along with the various emerging research topics taking advantage of this PMA.
Anisotropy indices and the effects on the hydric behaviour of natural stone
NASA Astrophysics Data System (ADS)
Fort, Rafael; Alvarez de Buergo, Monica; Varas, Maria Jose; Gomez-Heras, Miguel
2010-05-01
Building stone is an anisotropic material. Each type of rock (granite, limestone, slate, marble, etc.) has a different anisotropy, which is related to its own geological history, i.e. formation conditions and alteration processes. Knowing the anisotropy of natural stone is a matter of interest for determining the most adequate way to extract it from the quarry, for a better use during its manufacture or processing, to determine the quality of elements to be used as ashlars/masonry or as ornamental elements carving, as well to their arrangement in a structure. At the same time, materiaĺs anisotropy will condition the placing of, for instance, anchorages in dressing stone slabs. Anisotropy of natural stone controls water entry and its mobility, together with atmospheric pollutantśs, processes that favour the stone decay in building works, mainly those that shows a marked directional component, as it is the case of capillary water absorption. Water tends to be absorbed differently along the distinct main anisotropy directions, which are principally marked due to the arrangement and distribution of porosity in the rock. The aim of this study is to perform a comparative analysis of the various anisotropy indices commonly used when dealing with natural stone, determined by ultrasonic propagation techniques, in order to establish how anisotropy (by means of these indices) affect the process of capillary water absorption. Different type of natural stones have been selected, according to their traditional use for the construction of buildings in the region of Madrid (Spain). Their petrophysical properties have been determined (density, porosity, water absorption, etc), as well as ultrasonic transmission velocity has been measured along the three spatial directions of the test specimens (from 50 to 100 for each petrological type). According to this, the stone specimens were classified in different anisotropy levels or classes. Results show that stones with the highest anisotropy are those with the highest capillarity coefficient. It can also be observed that for each petrological variety, this capillarity coefficient is higher in the specimens classified as a high level anisotropy class. At the same time, when capillary water is absorbed along the direction perpendicular to the anisotropic planes, the absorption capacity diminishes, no matter the anisotropy level of the stone is. On the contrary, capillary coefficients are higher when measurements are performed in a parallel direction to that of the greatest anisotropy of the stone specimen, where absorption tends to be faster with higher coefficients according to the porosity size and its geometry. These increments are more significant in the stone varieties in which anisotropy is mainly due to fissuring or schistosity planes, or related to stromatolitic planes or oriented minerals accumulation. The arrangement and placing of rocks used as building materials with a significant anisotropy will highly condition the durability and lifetime of a considered element. For that reason, is essential to determine anisotropy indices to obtain the best and most adequate arrangement of stone elements in building works, minimizing water entry and thus, the material decay. Acknowledgements: to both MATERNAS (0505/MAT/0094) and GEOMATERIALES (2009-1629) research programmes, funded by the Regional Government of Madrid; to the CONSOLIDER-INGENIO programme (CSD2007-0058), funded by the Spanish Ministry of Education and Science; and to the Spanish Geological and Mining Institute (IGME) for the specimens preparation and hydric behaviour measurements.
Crystal preferred orientation of amphibole and implications for seismic anisotropy in the crust
NASA Astrophysics Data System (ADS)
Jung, Haemyeong
2016-04-01
Strong seismic anisotropy is often observed in the middle to lower crust and it has been considered to be originated from the crystal preferred orientation (CPO) of anisotropic minerals such as amphibole. Amphibolite is one of the dominant rocks in the middle to lower crust. In this study, crystal preferred orientations of hornblende in amphibolites at Yeoncheon and Chuncheon areas in South Korea were determined by using the electron backscattered diffraction (EBSD)/SEM with HKL Channel 5 software. In Yeoncheon area, hornblende showed two types of CPOs. Type-I CPO is characterized as (100) poles of hornblende aligned subnormal to foliation and [001] axes aligned subparallel to lineation. Type-II CPO is characterized as (100) poles of hornblende aligned subnormal to foliation and (010) poles aligned subparallel to lineation (refer to Ko and Jung, 2015, Nature Communications). In Chuncheon area, three types of CPOs of hornblende were observed. In addition to the type-I and -II CPOs described above, type-III CPO of hornblende was observed in Chuncheon area and it is characterized as (100) poles of hornblende aligned subnormal to foliation and both [001] axes and (010) poles aligned as a girdle subparallel to foliation. Using the observed CPO and the single crystal elastic constant of hornblende, seismic anisotropy of hornblende was calculated. Seismic anisotropy of P-wave was strong in the range of 10.2 - 13.5 %. Seismic anisotropy of S-wave was also strong in the range of 6.9 - 11.2 %. These results show that hornblende deformed in nature can produce a strong CPO, resulting in a strong seismic anisotropy in the middle to lower crust. Taking into account of the CPO of plagioclase in the rock, seismic anisotropies of whole rock turned out to be maximum P-wave anisotropy (Vp) of 9.8% and maximum S-wave anisotropy (Vs) of 8.2%. Therefore, strong seismic anisotropy found in the middle to lower crust in nature can be attributed to the CPO of hornblende in amphibolite.
Optical assessment of tissue anisotropy in ex vivo distended rat bladders
NASA Astrophysics Data System (ADS)
Alali, Sanaz; Aitken, Karen J.; Shröder, Annette; Bagli, Darius J.; Alex Vitkin, I.
2012-08-01
Microstructural remodelling in epithelial layers of various hollow organs, including changes in tissue anisotropy, are known to occur under mechanical distension and during disease processes. In this paper, we analyze how bladder distension alters wall anisotropy using polarized light imaging (followed by Mueller matrix decomposition). Optical retardance values of different regions of normal rat bladders under different distension pressures are derived. Then optical coherence tomography is used to measure local bladder wall thicknesses, enabling the calculation of the tissue birefringence maps as a measure of the tissue anisotropy. Selected two-photon microscopy is also performed to better understand the compositional origins of the obtained anisotropy results. The dome region of the bladder shows maximum birefringence when the bladder is distended to high pressures, whereas the ventral remains roughly isotropic during distension. In addition, the average anisotropy direction is longitudinal, along the urethra to dome. The derived wall anisotropy trends are based on birefringence as an intrinsic property of the tissue organization independent of its thickness, to aid in understanding the structure-functions relation in healthy bladders. These new insights into the wall microstructure of ex vivo distending bladders may help improve the functionality of the artificially engineered bladder tissues.
Giant Perpendicular Magnetic Anisotropy of Graphene-Co Heterostructures
NASA Astrophysics Data System (ADS)
Yang, Hongxin; Hallal, Ali; Chshiev, Mairbek; Spintec theory Team
We report strongly enhanced perpendicular anisotropy (PMA) of Co films by graphene coating via ab-initio calculations. The results show that graphene coating can improve the surface anisotropy of Co film up to twice large of the bare Co case and keep the film effective anisotropy being out-of-plane till 25 Å of Co, in agreement with experiments. Our layer resolved analysis reveals that PMA of Co (Co/Gr) films mainly originates from the adjacent 3 Co layers close to surface (interface) and can be strongly influenced by graphene. Furthermore, orbital hybridization analysis uncovers the origin of the PMA enhancement which is due to graphene-Co bonding causing an inversion of Co 3dz 2 and 3dx 2 - y 2 Bloch states close to Fermi level. Finally, we propose to design Co-graphene heterostructures which possess a linearly increasing surface anisotropy and a constant effective anisotropy. These findings point towards a possible engineering graphene-Co junctions with giant anisotropy, which stands as a hallmark for future spintronic information processing. This work was supported by European Graphene Flagship, European Union-funded STREP project CONCEPT-GRAPHENE, French ANR Projects NANOSIM-GRAPHENE and NMGEM
Anisotropy and Asymmetry of Yield in Magnesium Alloys at Room Temperature
NASA Astrophysics Data System (ADS)
Robson, Joseph
2014-10-01
Mechanical anisotropy and asymmetry are often pronounced in wrought magnesium alloys and are detrimental to formability and service performance. Single crystals of magnesium are highly anisotropic due to the large difference in critical resolved shear stress between the softest and hardest deformation modes. Polycrystalline magnesium alloys exhibit lower anisotropy, influenced by texture, solute level, and precipitates. In this work, a fundamental study of the effects of alloying, precipitate formation, and texture on the change in anisotropy and asymmetry from the pure magnesium single crystal case to polycrystalline alloys has been performed. It is demonstrated that much of the reduction in anisotropy and asymmetry arises from overall strengthening as solute, precipitates, and grain boundary effects are accounted for. Precipitates are predicted to be more effective than solute in reducing anisotropy and asymmetry, but shape and habit are critical since precipitates produce highly anisotropic strengthening. A small deviation from an ideal basal texture (15 deg spread) has a very strong effect in reducing anisotropy and asymmetry, similar in magnitude to the maximum effect produced by precipitation. Elasto-plastic modeling suggests that this is due to a contribution from basal slip to initial plastic deformation, even when global yield is not controlled by this mode.
Cap-Induced Magnetic Anisotropy in Ultra-thin Fe/MgO(001) Films
NASA Astrophysics Data System (ADS)
Brown-Heft, Tobias; Pendharkar, Mihir; Lee, Elizabeth; Palmstrom, Chris
Magnetic anisotropy plays an important role in the design of spintronic devices. Perpendicular magnetic anisotropy (PMA) is preferred for magnetic tunnel junctions because the resulting energy barrier between magnetization states can be very high and this allows enhanced device scalability suitable for magnetic random access memory applications. Interface induced anisotropy is often used to control magnetic easy axes. For example, the Fe/MgO(001) system has been predicted to exhibit PMA in the ultrathin Fe limit. We have used in-situ magneto optic Kerr effect and ex-situ SQUID to study the changes in anisotropy constants between bare Fe/MgO(001) films and those capped with MgO, Pt, and Ta. In some cases in-plane anisotropy terms reverse sign after capping. We also observe transitions from superparamagnetic to ferromagnetic behavior induced by capping layers. Perpendicular anisotropy is observed for Pt/Fe/MgO(001) films after annealing to 300°C. These effects are characterized and incorporated into a magnetic simulation that accurately reproduces the behavior of the films. This work was supported in part by the Semiconductor Research Corporation programs (1) MSR-Intel, and (2) C-SPIN.
Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guihéry, Nathalie; Ruamps, Renaud; Maurice, Rémi
2015-12-31
Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimizationmore » of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.« less
Changes in reflectance anisotropy of wheat crop during different phenophases
NASA Astrophysics Data System (ADS)
Lunagaria, Manoj M.; Patel, Haridas R.
2017-04-01
The canopy structure of wheat changes significantly with growth stages and leads to changes in reflectance anisotropy. Bidirectional reflectance distribution function characterises the reflectance anisotropy of the targets, which can be approximated. Spectrodirectional reflectance measurements on wheat crop were acquired using a field goniometer system. The bidirectional reflectance spectra were acquired at 54 view angles to cover the hemispheric span up to 60° view zenith. The observations were made during early growth stages till maturity of the crop. The anisotropy was not constant for all wavelengths and anisotropic factors clearly revealed spectral dependence, which was more pronounced in near principal plane. In near infrared, wheat canopy expressed less reflectance anisotropy because of higher multiple scattering. The broad hotspot signature was noticeable in reflectance of canopy whenever view and solar angles were close. Distinct changes in bidirectional reflectance distribution function were observed during booting to flowering stages as the canopy achieves more uniformity, height and head emergence. The function clearly reveals bowl shape during heading to early milking growth stages of the crop. Late growth stages show less prominent gap and shadow effects. Anisotropy index revealed that wheat exhibits changes in reflectance anisotropy with phenological development and with spectral bands.
D -Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at s N N = 5.02 TeV
Acharya, S.; Adamová, D.; Adolfsson, J.; ...
2018-03-09
Tmore » he azimuthal anisotropy coefficient v 2 of prompt D 0, D +, D *+, and D$$+\\atop{s}$$ mesons was measured in midcentral (30%-50% centrality class) Pb-Pb collisions at a center-of-mass energy per nucleon pair s NN =5.02 eV, with the ALICE detector at the LHC. he D mesons were reconstructed via their hadronic decays at midrapidity, |y| < 0.8, in the transverse momentum interval 1 < p < 24 GeV/c. he measured D-meson v 2 has similar values as that of charged pions. he D$$+\\atop{s}$$ v 2, measured for the first time, is found to be compatible with that of nonstrange D mesons. he measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically expanding medium and have the potential to constrain medium parameters.« less
D -Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at s N N = 5.02 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, S.; Adamová, D.; Adolfsson, J.
Tmore » he azimuthal anisotropy coefficient v 2 of prompt D 0, D +, D *+, and D$$+\\atop{s}$$ mesons was measured in midcentral (30%-50% centrality class) Pb-Pb collisions at a center-of-mass energy per nucleon pair s NN =5.02 eV, with the ALICE detector at the LHC. he D mesons were reconstructed via their hadronic decays at midrapidity, |y| < 0.8, in the transverse momentum interval 1 < p < 24 GeV/c. he measured D-meson v 2 has similar values as that of charged pions. he D$$+\\atop{s}$$ v 2, measured for the first time, is found to be compatible with that of nonstrange D mesons. he measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically expanding medium and have the potential to constrain medium parameters.« less
Two-photon Microscopy and Polarimetry for Assessment of Myocardial Tissue Organization
NASA Astrophysics Data System (ADS)
Archambault-Wallenburg, Marika
Optical methods can provide useful tissue characterization tools. For this project, two-photon microscopy and polarized light examinations (polarimetry) were used to assess the organizational state of myocardium in healthy, infarcted, and stem-cell regenerated states. Two-photon microscopy visualizes collagen through second-harmonic generation and myocytes through two-photon excitation autofluorescence, providing information on the composition and structure/organization of the tissue. Polarimetry measurements yield a value of linear retardance that can serve as an indicator of tissue anisotropy, and with a dual-projection method, information about the anisotropy axis orientation can also be extracted. Two-photon microscopy results reveal that stem-cell treated tissue retains more myocytes and structure than infarcted myocardium, while polarimetry findings suggest that the injury caused by temporary ligation of a coronary artery is less severe and more diffuse that than caused by a permanent ligation. Both these methods show potential for tissue characterization.
D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at sqrt[s]_{NN}=5.02 TeV.
Acharya, S; Adamová, D; Adolfsson, J; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, N; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Alba, J L B; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altenkamper, L; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andreou, D; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartsch, E; Basile, M; Bastid, N; Basu, S; Batigne, G; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Bratrud, L; Braun-Munzinger, P; Bregant, M; Broker, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cerello, P; Chandra, S; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Chowdhury, T; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Concas, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Doremalen, L V V; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, J; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Haque, M R; Harris, J W; Harton, A; Hassan, H; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hills, C; Hippolyte, B; Hladky, J; Hohlweger, B; Horak, D; Hornung, S; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Iga Buitron, S A; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovsky, J; Jaelani, S; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karczmarczyk, P; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Khabanova, Z; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, B; Kim, D; Kim, D J; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Konyushikhin, M; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lai, Y S; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lim, B; Lindal, S; Lindenstruth, V; Lindsay, S W; Lippmann, C; Lisa, M A; Litichevskyi, V; Ljunggren, H M; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Luhder, J R; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Masson, E; Mastroserio, A; Mathis, A M; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D; Mihaylov, D L; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Mohisin Khan, M; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Myrcha, J W; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Narayan, A; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nobuhiro, A; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Parmar, S; Passfeld, A; Pathak, S P; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pliquett, F; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Rosas, E D; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rueda, O V; Rui, R; Rumyantsev, B; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schmidt, N V; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shahoyan, R; Shaikh, W; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stocco, D; Storetvedt, M M; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Thoresen, F; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Tropp, L; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wenzel, S C; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Willsher, E; Windelband, B; Witt, W E; Yalcin, S; Yamakawa, K; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zmeskal, J; Zou, S
2018-03-09
The azimuthal anisotropy coefficient v_{2} of prompt D^{0}, D^{+}, D^{*+}, and D_{s}^{+} mesons was measured in midcentral (30%-50% centrality class) Pb-Pb collisions at a center-of-mass energy per nucleon pair sqrt[s_{NN}]=5.02 TeV, with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at midrapidity, |y|<0.8, in the transverse momentum interval 1
Cheow, Lih Feng; Viswanathan, Ramya; Chin, Chee-Sing; Jennifer, Nancy; Jones, Robert C; Guccione, Ernesto; Quake, Stephen R; Burkholder, William F
2014-10-07
Homogeneous assay platforms for measuring protein-ligand interactions are highly valued due to their potential for high-throughput screening. However, the implementation of these multiplexed assays in conventional microplate formats is considerably expensive due to the large amounts of reagents required and the need for automation. We implemented a homogeneous fluorescence anisotropy-based binding assay in an automated microfluidic chip to simultaneously interrogate >2300 pairwise interactions. We demonstrated the utility of this platform in determining the binding affinities between chromatin-regulatory proteins and different post-translationally modified histone peptides. The microfluidic chip assay produces comparable results to conventional microtiter plate assays, yet requires 2 orders of magnitude less sample and an order of magnitude fewer pipetting steps. This approach enables one to use small samples for medium-scale screening and could ease the bottleneck of large-scale protein purification.
Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.
Hanni, Matti; Lantto, Perttu; Vaara, Juha
2011-08-14
Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.
Application of Monte-Carlo Analyses for the Microwave Anisotropy Probe (MAP) Mission
NASA Technical Reports Server (NTRS)
Mesarch, Michael A.; Rohrbaugh, David; Schiff, Conrad; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Microwave Anisotropy Probe (MAP) is the third launch in the National Aeronautics and Space Administration's (NASA's) a Medium Class Explorers (MIDEX) program. MAP will measure, in greater detail, the cosmic microwave background radiation from an orbit about the Sun-Earth-Moon L2 Lagrangian point. Maneuvers will be required to transition MAP from it's initial highly elliptical orbit to a lunar encounter which will provide the remaining energy to send MAP out to a lissajous orbit about L2. Monte-Carlo analysis methods were used to evaluate the potential maneuver error sources and determine their effect of the fixed MAP propellant budget. This paper will discuss the results of the analyses on three separate phases of the MAP mission - recovering from launch vehicle errors, responding to phasing loop maneuver errors, and evaluating the effect of maneuver execution errors and orbit determination errors on stationkeeping maneuvers at L2.
D -Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at √{s} N N=5.02 TeV
NASA Astrophysics Data System (ADS)
Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration
2018-03-01
The azimuthal anisotropy coefficient v2 of prompt D0, D+, D*+, and Ds+ mesons was measured in midcentral (30%-50% centrality class) Pb-Pb collisions at a center-of-mass energy per nucleon pair √{sN N}=5.02 TeV , with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at midrapidity, |y |<0.8 , in the transverse momentum interval 1
Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.
2014-01-01
The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.
Electron-positron momentum density in Tl 2Ba 2CuO 6
NASA Astrophysics Data System (ADS)
Barbiellini, B.; Gauthier, M.; Hoffmann, L.; Jarlborg, T.; Manuel, A. A.; Massidda, S.; Peter, M.; Triscone, G.
1994-08-01
We present calculations of the electron-positron momentum density for the high- Tc superconductor Tl 2Ba 2CuO 6, together with some preliminary two-dimensional angular correlation of the annihilation radiation (2D-ACAR) measurements. The calculations are based on the first-principles electronic structure obtained using the full-potential linearized augmented plane wave (FLAPW) and the linear muffin-tin orbital (LMTO) methods. We also use a linear combination of the atomic orbitals-molecular orbital method (LCAO-MO) to discuss orbital contributions to the anisotropies. Some agreement between calculated and measured 2D-ACAR anisotropies encourage sample improvement for further Fermi surface investigations. Indeed, our results indicate a non-negligle overlap of the positron wave function with the CuOo 2 plane electrons. Therefore, this compound may be well suited for investigating the relevant CuO 2 Fermi surface by 2D-ACAR.
Anisotropic two-dimensional electron gas at SrTiO3(110)
Wang, Zhiming; Zhong, Zhicheng; Hao, Xianfeng; Gerhold, Stefan; Stöger, Bernhard; Schmid, Michael; Sánchez-Barriga, Jaime; Varykhalov, Andrei; Franchini, Cesare; Held, Karsten; Diebold, Ulrike
2014-01-01
Two-dimensional electron gases (2DEGs) at oxide heterostructures are attracting considerable attention, as these might one day substitute conventional semiconductors at least for some functionalities. Here we present a minimal setup for such a 2DEG––the SrTiO3(110)-(4 × 1) surface, natively terminated with one monolayer of tetrahedrally coordinated titania. Oxygen vacancies induced by synchrotron radiation migrate underneath this overlayer; this leads to a confining potential and electron doping such that a 2DEG develops. Our angle-resolved photoemission spectroscopy and theoretical results show that confinement along (110) is strikingly different from the (001) crystal orientation. In particular, the quantized subbands show a surprising “semiheavy” band, in contrast with the analog in the bulk, and a high electronic anisotropy. This anisotropy and even the effective mass of the (110) 2DEG is tunable by doping, offering a high flexibility to engineer the properties of this system. PMID:24591596
NASA Astrophysics Data System (ADS)
Meric de Bellefon, G.; van Duysen, J. C.
2018-05-01
A recent finite-element method (FEM)-based study from the present authors quantified the effect of elastic anisotropy of grains on stress intensification at potential intergranular stress corrosion cracking (IGSCC) initiation sites in austenitic stainless steels. In particular, it showed that the auxetic behavior of grains (negative Poisson's ratio) in some directions plays a very important role in IGSCC initiation, since it can induce local stress intensification factors of about 1.6. A similar effect is expected for other fcc alloys such as Ni-based alloys. The present article confirms those results and paves the way to the definition of an IGSCC susceptibility index by identifying grain configurations that are the most favorable for crack initiation. The index will rely on the probability to get those configurations on surface of specimens.
The initial pump-probe polarization anisotropy of colloidal PbS quantum dots
Park, Samuel; Baranov, Dmitry; Ryu, Jisu; ...
2016-07-20
Pump-probe polarization anisotropy measurements with 15 fs pulses are employed to investigate the electronic structure of PbS quantum dots. Here, the initial anisotropy at the bandgap is anomalously low (<0.1) and suggests large electronic couplings.
Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Dubolazov, O. V.; Karachevtcev, A. O.; Zabolotna, N. I.
2011-05-01
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.
Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Dubolazov, A. V.; Karachevtcev, A. O.; Zabolotna, N. I.
2011-09-01
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.
The effects of anisotropy on the nonlinear behavior of bridged cracks in long strips
NASA Technical Reports Server (NTRS)
Ballarini, R.; Luo, H. A.
1994-01-01
A model which can be used to predict the two-dimensional nonlinear behavior of bridged cracks in orthotropic strips is presented. The results obtained using a singular integral equation formulation which incorporates the anisotropy rigorously show that, although the effects of anisotropy are significant, the nondimensional quantities employed by Cox and Marshall can generate nearly universal results (R-curves, for example) for different levels of relative anisotropy. The role of composite constituent properties in the behavior of bridged cracks is clarified.
Fernando L. Dri; Louis G. Jr. Hector; Robert J. Moon; Pablo D. Zavattieri
2013-01-01
In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose IÃ with hydrogen bonding network A was calculated using ab initio...
Shaping the Future of Nanomedicine: Anisotropy in Polymeric Nanoparticle Design
Meyer, Randall A.; Green, Jordan J.
2015-01-01
Nanofabrication and biomedical applications of polymeric nanoparticles have become important areas of research. Biocompatible polymeric nanoparticles have been investigated for their use as delivery vehicles for therapeutic and diagnostic agents. Although polymeric nanoconstructs have traditionally been fabricated as isotropic spheres, anisotropic, non-spherical nanoparticles have gained interest in the biomaterials community due to their unique interactions with biological systems. Polymeric nanoparticles with different forms of anisotropy have been manufactured utilizing a variety of novel methods in recent years. In addition, they have enhanced physical, chemical, and biological properties compared to spherical nanoparticles, including increased targeting avidity and decreased non-specific in vivo clearance. With these desirable properties, anisotropic nanoparticles have been successfully utilized in many biomedical settings and have performed superiorly to analogous spherical nanoparticles. We summarize the current state-of-the-art fabrication methods for anisotropic polymeric nanoparticles including top-down, bottom-up, and microfluidic design approaches. We also summarize the current and potential future applications of these nanoparticles, including drug delivery, biological targeting, immunoengineering, and tissue engineering. Ongoing research into the properties and utility of anisotropic polymeric nanoparticles will prove critical to realizing their potential in nanomedicine. PMID:25981390
Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures
NASA Astrophysics Data System (ADS)
Marchiori, Estefani; Curran, Peter J.; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J.
2017-03-01
High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.
Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures.
Marchiori, Estefani; Curran, Peter J; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J
2017-03-24
High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.
NASA Astrophysics Data System (ADS)
Wu, Junyan; Zhang, Bo; Zhan, Yongzhong
2017-05-01
Using the first-principle calculations, we gained a deep insight of the structural, mechanical, electronic and thermal properties of the TiOs and TiOs-X (X=B, C, N, O and Si) compounds. The calculated results of formation enthalpy Hform and ternary transfer energy EXOs → Ti illustrate that O element exhibits strong Os site preference and all the compounds here are structurally stable. The results of mechanical properties confirm that there is no superhard character in those intermetallics which are mechanically stable. It is noted that the Ti7Os8Si possesses the best mechanical properties. All the compounds here show elastic anisotropy, and the Ti8Os7O exhibits the strongest elastic anisotropy, while the Ti8Os7Si strongly tends to be isotropic. There exists a mixture of covalent, ionic and metallic characters in these compounds. The covalent bond strength of Ti7Os8X is supposed to be better than that of the corresponding Ti8Os7X. Moreover, the minimum thermal conductivity kmin of these compounds are comparatively small and show dependence of directions, and they have potential thermal-insulating application in engineering.
NASA Astrophysics Data System (ADS)
Tarao, H.; Kuisti, H.; Korpinen, L.; Hayashi, N.; Isaka, K.
2012-05-01
Contact currents flow through the human body when a conducting object with different potential is touched. There are limited reports on numerical dosimetry for contact current exposure compared with electromagnetic field exposures. In this study, using an anatomical human adult male model, we performed numerical calculation of internal electric fields resulting from 60 Hz contact current flowing from the left hand to the left foot as a basis case. Next, we performed a variety of similar calculations with varying tissue conductivity and contact area, and compared the results with the basis case. We found that very low conductivity of skin and a small electrode size enhanced the internal fields in the muscle, subcutaneous fat and skin close to the contact region. The 99th percentile value of the fields in a particular tissue type did not reliably account for these fields near the electrode. In the arm and leg, the internal fields for the muscle anisotropy were identical to those in the isotropy case using a conductivity value longitudinal to the muscle fibre. Furthermore, the internal fields in the tissues abreast of the joints such as the wrist and the elbow, including low conductivity tissues, as well as the electrode contact region, exceeded the ICNIRP basic restriction for the general public with contact current as the reference level value.
RADARSAT-2 Polarimetry for Lake Ice Mapping
NASA Astrophysics Data System (ADS)
Pan, Feng; Kang, Kyung-Kuk; Duguay, Claude
2016-04-01
Changes in the ice regime of lakes can be employed to assess long-term climate trends and variability in high latitude regions. Lake ice cover observations are not only useful for climate monitoring, but also for improving ice and weather forecasts using numerical prediction models. In recent years, satellite remote sensing has assumed a greater role in observing lake ice cover for both purposes. Radar remote sensing has become an essential tool for mapping lake ice at high latitudes where cloud cover and polar darkness severely limits ice observations from optical systems. In Canada, there is an emerging interest by government agencies to evaluate the potential of fully polarimetric synthetic aperture radar (SAR) data from RADARSAT-2 (C-band) for lake ice monitoring. In this study, we processed and analyzed the polarization states and scattering mechanisms of fully polarimetric RADARSAT-2 data obtained over Great Bear Lake, Canada, to identify open water and different ice types during the freeze-up and break-up periods. Polarimetric decompositions were employed to separate polarimetric measurements into basic scattering mechanisms. Entropy, anisotropy, and alpha angle were derived to characterize the scattering heterogeneity and mechanisms. Ice classes were then determined based on entropy and alpha angle using the unsupervised Wishart classifier and results evaluated against Landsat 8 imagery. Preliminary results suggest that the RADARSAT-2 polarimetric data offer a strong capability for identifying open water and different lake ice types.
Crustal anisotropy in the forearc of the Northern Cascadia Subduction Zone, British Columbia
NASA Astrophysics Data System (ADS)
Balfour, N. J.; Cassidy, J. F.; Dosso, S. E.
2012-01-01
This paper aims to identify sources and variations of crustal anisotropy from shear-wave splitting measurements in the forearc of the Northern Cascadia Subduction Zone of southwest British Columbia. Over 20 permanent stations and 15 temporary stations were available for shear-wave splitting analysis on ˜4500 event-station pairs for local crustal earthquakes. Results from 1100 useable shear-wave splitting measurements show spatial variations in fast directions, with margin-parallel fast directions at most stations and margin-perpendicular fast directions at stations in the northeast of the region. Crustal anisotropy is often attributed to stress and has been interpreted as the fast direction being related to the orientation of the maximum horizontal compressive stress. However, studies have also shown anisotropy can be complicated by crustal structure. Southwest British Columbia is a complex region of crustal deformation and some of the stations are located near large ancient faults. To use seismic anisotropy as a stress indicator requires identifying which stations are influenced by stress and which by structure. We determine the source of anisotropy at each station by comparing fast directions from shear-wave splitting results to the maximum horizontal compressive stress orientation determined from earthquake focal mechanism inversion. Most stations show agreement between the fast direction and the maximum horizontal compressive stress. This suggests that anisotropy is related to stress-aligned fluid-filled microcracks based on extensive dilatancy anisotropy. These stations are further analysed for temporal variations to lay groundwork for monitoring temporal changes in the stress over extended time periods. Determining the sources of variability in anisotropy can lead to a better understanding of the crustal structure and stress, and in the future may be used as a monitoring and mapping tool.
Layered Crustal Anisotropy in the NE Tibetan Plateau Inferred from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Jiang, C.; Yang, Y.; Zheng, Y.
2016-12-01
The Tibetan Plateau is the highest and largest plateau in the world with an average elevation of 4-5 km and 60-70 km thick crust, about twice of the thickness of average continental crust. Two end-member models have bene invoked to explain the crustal thickening and the growth of the plateau: (1) continuous and uniform thickening of the whole crust and (2) mid/lower crustal channel flow. However, which mechanism dominates the crustal thickening and the growth of the plateau is still under hot debate. Seismic anisotropy can provide observational constraints on deformation mode, which would have distinguished pattern resulting from the two different thickening models. Thus, by studying seismic anisotropy, we can distinguish different models of crustal thickening and plateau growth. In this study, we employ an eikonal tomography method of ambient noise to investigate azimuthal anisotropy of Rayleigh waves in the NE Tibetan Plateau. Our tomography reveals significant anisotropy in the crust. In particular, stratification of crustal azimuthal anisotropy is observed: an upper crustal anisotropic layer characterized by a NE-SW fast direction and a mid/lower crustal anisotropic layer with a NNE-SSW fast direction. The dominantly NE-SW oriented anisotropy in the upper crust is likely caused by shape-preferred orientation (SPO) of faults and fractures in the shallow depths. The anisotropy in the mid/lower crust, however, is nearly orthogonal to that in the shallow crust, suggesting a different mechanism. The NNE-SSW fast direction coincides with the proposed flow direction by the crustal flow model in NE Tibetan Plateau, suggesting anisotropy in the mid/lower crust may be related to the crustal flow. The two-layered crustal stratigraphy observed in the NE Tibetan Plateau is contrary to the continuous thickening model, but favours the crustal flow model.
NASA Astrophysics Data System (ADS)
Bilardello, Dario
2015-08-01
Separating the contribution of different hematite coercivity grains to the magnetic fabric is a standing problem in rock magnetism because of the common occurrence of thermochemical alterations when measuring the anisotropy of thermal remanence. A technique that eliminates this bias is presented, which is useful when there is a need to separate the fabric of detrital from pigmentary hematite, for example. The method is based on stepwise thermal demagnetization of saturation isothermal remanent magnetizations (IRMs) applied orthogonally on three sister specimens, allowing calculation of the anisotropy tensor from the three components of each demagnetized IRM vector, avoiding the necessity of having to apply IRMs to thermochemically altered specimens. Vector subtraction allows determining the anisotropy tensor for specific unblocking-temperature ranges. The anisotropies of the pigmentary, specular and total hematite of the Mauch Chunk Formation red beds of Pennsylvania have been measured from an oriented block sample and results are compared to previous anisotropy measurements performed using the high-field anisotropy of isothermal remanence technique (hf-AIR), which measures total undifferentiated hematite. Experiments were conducted using non-saturating 1 T and fully saturating 5.5 T fields: both experimental sets seem capable of measuring the orientation of the specularite anisotropy principal axes, but 5.5 T are needed to capture the orientation of the higher coercivity pigmentary grains. The magnitudes of the principal axes, instead, are only faithfully measured using 5.5 T fields and yield somewhat higher anisotropies than those measured by hf-AIR. The fundamental requirement for this technique is homogeneous material among the three sister specimens, which is a significant limitation; homogeneity tests allow assessment of applicability of the method and reliability of the results.
Seismic receiver function interpretation: Ps splitting or anisotropic underplating?
NASA Astrophysics Data System (ADS)
Liu, Z.; Park, J. J.
2016-12-01
Crustal anisotropy is crucial to understanding the evolutionary history of Earth's lithosphere. Shear-wave splitting of Moho P-to-s converted phases in receiver functions has often been used to infer crustal anisotropy. In addition to estimating birefringence directly, the harmonic variations of Moho Ps phases in delay times can be used to infer splitting parameters of averaged anisotropy in the crust. However, crustal anisotropy may localize at various levels within the crust due to complex deformational processes. Layered anisotropy requires careful investigation of the distribution of anisotropy before interpreting Moho Ps splitting. In this study, we show results from stations ARU in Russia, KIP in Hawaiian Islands and LSA in Tibetan Plateau, where layered anisotropy is well constrained by intra-crust Ps conversions at high frequencies using harmonic decomposition of multiple-taper correlation receiver functions. Anisotropic velocity models are inferred by forward-modeling decomposed RF waveforms. Our results of ARU and KIP show that the harmonic behavior of Moho Ps phases can be explained by a uniformly anisotropic crust model at lower cut-off frequencies, but higher-resolution RF-signals reveal a thin, highly anisotropic layer at the base of the crust. Station LSA tells a similar story with a twist: a modest Ps birefringence is revealed at high frequencies to stem from multiple thin (5-10-km) layers of localized anisotropy within the middle crust, but no strongly-sheared basal layer is inferred. We suggest that the harmonic variation of Moho Ps phases should always be investigated as a result of anisotropic layering using RFs with frequency content above 1Hz, rather than simply reporting averaged anisotropy of the whole crust.
Upper mantle anisotropy from long-period P polarization
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, Vera; Masters, Guy; Shearer, Peter M.
2001-10-01
We introduce a method to infer upper mantle azimuthal anisotropy from the polarization, i.e., the direction of particle motion, of teleseismic long-period P onsets. The horizontal polarization of the initial P particle motion can deviate by >10° from the great circle azimuth from station to source despite a high degree of linearity of motion. Recent global isotropic three-dimensional mantle models predict effects that are an order of magnitude smaller than our observations. Stations within regional distances of each other show consistent azimuthal deviation patterns, while the deviations seem to be independent of source depth and near-source structure. We demonstrate that despite this receiver-side spatial coherence, our polarization data cannot be fit by a large-scale joint inversion for whole mantle structure. However, they can be reproduced by azimuthal anisotropy in the upper mantle and crust. Modeling with an anisotropic reflectivity code provides bounds on the magnitude and depth range of the anisotropy manifested in our data. Our method senses anisotropy within one wavelength (250 km) under the receiver. We compare our inferred fast directions of anisotropy to those obtained from Pn travel times and SKS splitting. The results of the comparison are consistent with azimuthal anisotropy situated in the uppermost mantle, with SKS results deviating from Pn and Ppol in some regions with probable additional deeper anisotropy. Generally, our fast directions are consistent with anisotropic alignment due to lithospheric deformation in tectonically active regions and to absolute plate motion in shield areas. Our data provide valuable additional constraints in regions where discrepancies between results from different methods exist since the effect we observe is local rather than cumulative as in the case of travel time anisotropy and shear wave splitting. Additionally, our measurements allow us to identify stations with incorrectly oriented horizontal components.
Three-component ambient noise beamforming in the Parkfield area
NASA Astrophysics Data System (ADS)
Löer, Katrin; Riahi, Nima; Saenger, Erik H.
2018-06-01
We apply a three-component beamforming algorithm to an ambient noise data set recorded at a seismic array to extract information about both isotropic and anisotropic surface wave velocities. In particular, we test the sensitivity of the method with respect to the array geometry as well as to seasonal variations in the distribution of noise sources. In the earth's crust, anisotropy is typically caused by oriented faults or fractures and can be altered when earthquakes or human activities cause these structures to change. Monitoring anisotropy changes thus provides time-dependent information on subsurface processes, provided they can be distinguished from other effects. We analyse ambient noise data at frequencies between 0.08 and 0.52 Hz recorded at a three-component array in the Parkfield area, California (US), between 2001 November and 2002 April. During this time, no major earthquakes were identified in the area and structural changes are thus not expected. We compute dispersion curves of Love and Rayleigh waves and estimate anisotropy parameters for Love waves. For Rayleigh waves, the azimuthal source coverage is too limited to perform anisotropy analysis. For Love waves, ambient noise sources are more widely distributed and we observe significant and stable surface wave anisotropy for frequencies between 0.2 and 0.4 Hz. Synthetic data experiments indicate that the array geometry introduces apparent anisotropy, especially when waves from multiple sources arrive simultaneously at the array. Both the magnitude and the pattern of apparent anisotropy, however, differ significantly from the anisotropy observed in Love wave data. Temporal variations of anisotropy parameters observed at frequencies below 0.2 Hz and above 0.4 Hz correlate with changes in the source distribution. Frequencies between 0.2 and 0.4 Hz, however, are less affected by these variations and provide relatively stable results over the period of study.
Ghazikhanlou-Sani, K; Firoozabadi, S M P; Agha-Ghazvini, L; Mahmoodzadeh, H
2016-06-01
There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475-0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.
NASA Astrophysics Data System (ADS)
Ha, Yoonhae; Jung, Haemyeong; Raymond, Loren
2016-04-01
Seismic anisotropy has been observed in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite were very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.
NASA Astrophysics Data System (ADS)
Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard
2016-04-01
Seismic anisotropy data are often used to resolve rock structures and deformation styles in the crust based on compilations of rock properties that may not be representative of the exposed geology. We use teleseismic receiver functions jointly with in situ rock property data to constrain the seismic structure and anisotropy of the crust in the Cyclades, Greece, located in the back arc region of the Hellenic subduction zone. Crystallographic preferred orientations (CPOs) via electron backscatter diffraction (EBSD) analyses were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System; average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by blueschist assemblages, with AVp averaging 20.3% and AVs averaging 14.5% due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localized anisotropies of very high magnitude are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~25% for AVp and AVs. The direction of the fast and slow P-wave velocities occur parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction present in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during back-arc extension. Our results strongly favor radial anisotropy in the Aegean mid-crust over azimuthal anisotropy. The receiver function data indicate that the Moho is relatively flat at 25 km depth in the south and deepens to 33 km in the north, consistent with previous studies, and reveal an intra-crustal discontinuity at depth varying from 3 to 11 km, mostly observed in the south-central Aegean. Harmonic decomposition of the receiver functions further indicates layering of both shallow and deep crustal anisotropy related to crustal structures. We model synthetic receiver functions based on constraints from the in situ rock properties that we measured using the EBSD technique. Our results indicate that the shallow upper crustal layer is characterized by metapelites with ~5% anisotropy, underlain by a 20 km thick and anisotropic layer of possible high-pressure rocks comprising blueschist and eclogite and/or restitic crust as a consequence of Miocene magmatism. Seismic anisotropy models require a sub-vertical axis of hexagonal symmetry in the upper crust (i.e. radial anisotropy), consistent with in situ rock data. Finally, a thinned crust is likely caused by back-arc extension associated with elevated sub-crustal temperatures, in agreement with thermal isostasy models of back arcs. This study demonstrates the importance of integrating rock textural data with seismic velocity profiles in the interpretation of crustal architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard, F.; Schumacher, C.; Gould, C.
NiMnSb is a ferromagnetic half-metal which, because of its rich anisotropy and very low Gilbert damping, is a promising candidate for applications in information technologies. We have investigated the in-plane anisotropy properties of thin, molecular beam epitaxy-grown NiMnSb films as a function of their Mn concentration. Using ferromagnetic resonance to determine the uniaxial and four-fold anisotropy fields, (2K{sub U})/(M{sub s}) and (2K{sub 1})/(M{sub s}) , we find that a variation in composition can change the strength of the four-fold anisotropy by more than an order of magnitude and cause a complete 90° rotation of the uniaxial anisotropy. This provides valuablemore » flexibility in designing new device geometries.« less
ON TEMPORAL VARIATIONS OF THE MULTI-TeV COSMIC RAY ANISOTROPY USING THE TIBET III AIR SHOWER ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenomori, M.; Bi, X. J.; Ding, L. K.
2010-03-01
We analyze the large-scale two-dimensional sidereal anisotropy of multi-TeV cosmic rays (CRs) by the Tibet Air Shower Array, with the data taken from 1999 November to 2008 December. To explore temporal variations of the anisotropy, the data set is divided into nine intervals, each with a time span of about one year. The sidereal anisotropy of magnitude, about 0.1%, appears fairly stable from year to year over the entire observation period of nine years. This indicates that the anisotropy of TeV Galactic CRs remains insensitive to solar activities since the observation period covers more than half of the 23rd solarmore » cycle.« less
Anisotropy and corotation of galactic cosmic rays.
Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X
2006-10-20
The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.
Amenomori, M; Ayabe, S; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, J Y; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mori, S; Mu, J; Munakata, K; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Sakata, M; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Utsugi, T; Wang, B S; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhaxisangzhu; Zhou, X X
2004-08-06
We report on the solar diurnal variation of the galactic cosmic-ray intensity observed by the Tibet III air shower array during the period from 1999 to 2003. In the higher-energy event samples (12 and 6.2 TeV), the variations are fairly consistent with the Compton-Getting anisotropy due to the terrestrial orbital motion around the Sun, while the variation in the lower-energy event sample (4.0 TeV) is inconsistent with this anisotropy. This suggests an additional anisotropy superposed at the multi-TeV energies, e.g., the solar modulation effect. This is the highest-precision measurement of the Compton-Getting anisotropy ever made.
Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma
NASA Astrophysics Data System (ADS)
Kasmaei, Babak S.; Nopoush, Mohammad; Strickland, Michael
2016-12-01
We calculate the quark self-energy in a quark-gluon plasma that possesses an ellipsoidal momentum-space anisotropy in the local rest frame. By introducing additional transverse-momentum anisotropy parameters into the parton distribution functions, we generalize previous results which were obtained for the case of a spheroidal anisotropy. Our results demonstrate that the presence of anisotropies in the transverse directions affects the real and imaginary parts of quark self-energy and, consequently, the self-energy depends on both the polar and azimuthal angles in the local rest frame of the matter. Our results for the quark self-energy set the stage for the calculation of the effects of ellipsoidal momentum-space anisotropy on quark-gluon plasma photon spectra and collective flow.
NASA Astrophysics Data System (ADS)
Deng, Shang; Cilona, Antonino; Morrow, Carolyn; Mapeli, Cesar; Liu, Chun; Lockner, David; Prasad, Manika; Aydin, Atilla
2015-08-01
Previous research revealed that the cross-bedding related anisotropy in Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada, affects the orientation of compaction bands, also known as anti-cracks or closing mode structures. We hypothesize that cross-bedding should have a similar influence on the orientation of the opening mode joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the orientation of cross-beds and the orientation of different categories of joint sets including cross-bed package confined joints and joint zones in the Aztec Sandstone. The field data show that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. In comparison, the roughly N-S trending joint zones appear not to be influenced by the cross-beds in any significant way but frequently truncate against the dune boundaries. To characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples and determined an average P-wave anisotropy to be slightly larger than 13%. From these results, a model based on the generalized Hooke's law for anisotropic materials is used to analyze deformation of cross-bedded sandstone as a transversely isotropic material. In the analysis, the dip angle of cross-beds is assumed to be constant and the strike orientation varying from 0° to 359° in the east (x), north (y), and up (z) coordinate system. We find qualitative agreement between most of the model results and the observed field relations between cross-beds and the corresponding joint sets. The results also suggest that uniaxial extension (εzz > εxx = εyy = 0) and axisymmetric extension (εxx = εyy < εzz and εxx = εyy > εzz) would amplify the influence of cross-bedding associated anisotropy on the joint orientation whereas a triaxial extension (εxx > εyy > εzz) would mitigate this influence. We suggest that the potential implication of different categories of joint sets (i.e., cross-bed package confined joints and joint zones) forming in response to the variation of the boundary conditions (axisymmetric extension and triaxial extension, respectively) and the interplay with the rock anisotropy is significant. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.
Mechanical Anisotropic and Electronic Properties of Amm2-carbon under Pressure*
NASA Astrophysics Data System (ADS)
Xing, Meng-Jiang; Li, Xiao-Zhen; Yu, Shao-Jun; Wang, Fu-Yan
2017-09-01
Structural, electronic properties and mechanical anisotropy of Amm2-carbon are investigated utilizing frist-principles calculations by Cambridge Serial Total Energy Package (CASTEP) code. The work is performed with the generalized gradient approximation in the form of Perdew-Burke-Ernzerhof (PBE), PBEsol, Wu and Cohen (WC) and local density approximation in the form of Ceperley and Alder data as parameterized by Perdew and Zunger (CA-PZ). The mechanical anisotropy calculations show that Amm2-carbon exhibit large anisotropy in elastic moduli, such as Poisson’s ratio, shear modulus and Young’s modulus, and other anisotropy factors, such as the shear anisotropic factor and the universal anisotropic index AU. It is interestingly that the anisotropy in shear modulus and Young’s modulus, universal anisotropic index and the shear anisotropic factor all increases with increasing pressure, but the anisotropy in Poisson’s ratio decreases. The band structure calculations reveal that Amm2-carbon is a direct-band-gap semiconductor at ambient pressure, but with the pressure increasing, it becomes an indirect-band-gap semiconductor.
Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.
Chen, Jige; Chen, Shunda; Gao, Yi
2016-07-07
Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths.
Regulation of pressure anisotropy in the solar wind: processes within inertial range of turbulence
NASA Astrophysics Data System (ADS)
Strumik, M.; Schekochihin, A. A.; Squire, J.; Bale, S. D.
2016-12-01
Dynamics of weakly collisional plasmas may lead to thermal pressure anisotropies that are driven by velocity shear, plasma expansion/compression or temperature gradients. The pressure anisotropies can provide free energy for the growth of micro-scale instabilities, like the mirror of firehose instabilities, that are commonly believed to constrain the pressure anisotropy in the solar wind if appropriate thresholds are exceeded. We discuss possible alternative mechanisms of regulation of the pressure anisotropy in the inertial range of solar wind turbulence that provide β-dependent constraints on the amplitude of fluctuations of pressure components and other quantities. In particular it is shown that double-adiabatic (CGL) closure for magnetohydrodynamic regime leads to 1/β scaling of the amplitude of the pressure component fluctuations and the pressure anisotropy. Both freely decaying and forced turbulence are discussed based on results of 3D numerical simulations and analytical theoretical predictions. The theoretical results are contrasted with WIND spacecraft measurements.
NASA Astrophysics Data System (ADS)
Feng, L.; Xie, J.; Ritzwoller, M. H.
2017-12-01
Two major types of surface wave anisotropy are commonly observed by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. With a full-waveform numerical solver based on the spectral element method (SEM), we verify the validity of the forward theory used for the inversion. We also present two examples, in the US and Tibet, in which we have successfully applied the tomographic method to demonstrate that the two types of apparent anisotropy can be interpreted jointly as a tilted hexagonally symmetric medium.
Radial Anisotropy in the Mantle Transition Zone and Its Implications
NASA Astrophysics Data System (ADS)
Chang, S. J.; Ferreira, A. M.
2016-12-01
Seismic anisotropy is a useful tool to investigate mantle flow, mantle convection, and the presence of melts in mantle, since it provides information on the direction of mantle flow or the orientation of melts by combining it with laboratory results in mineral physics. Although the uppermost and lowermost mantle with strong anisotropy have been well studied, anisotropic properties of the mantle transition zone is still enigmatic. We use a recent global radially anisotropic model, SGLOBE-rani, to examine the patterns of radial anisotropy in the mantle transition zone. Strong faster SV velocity anomalies are found in the upper transition zone beneath subduction zones in the western Pacific, which decrease with depth, thereby nearly isotropic in the lower transition zone. This may imply that the origin for the anisotropy is the lattice-preferred orientation of wadsleyite, the dominant anisotropic mineral in the upper transition zone. The water content in the upper transition zone may be inferred from radial anisotropy because of the report that anisotropic intensity depends on the water content in wadsleyite.
A two-fluid approximation for calculating the cosmic microwave background anisotropies
NASA Technical Reports Server (NTRS)
Seljak, Uros
1994-01-01
We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.
A Dzyaloshinskii-Moriya Anisotropy in nanomagnets with in-plane magnetization
NASA Astrophysics Data System (ADS)
Cubukcu, M.; Sampaio, J.; Khvalkovskiy, A. V.; Apalkov, D.; Cros, V.; Reyren, N.
The Dzyaloshinskii-Moriya interaction (DMI) is known to be a direct manifestation of spin-orbit coupling in systems with broken inversion symmetry. We present a new anisotropy for in-plane-magnetized nanomagnets which is due to the interfacial DMI. This new anisotropy depends on the shape of the magnet, and is perpendicular to the demagnetization shape anisotropy. The DMI anisotropy term that we introduce here results from the DMI energy reduction due to an out-of-plane tilt of the spins at the edges that are oriented perpendicular to the magnetization. For large enough DMI, the reduction of the DMI and anisotropy energies takes over the demagnetization energy cost when magnetization lies along the minor axis of a structure. Our experimental, numerical and analytical results demonstrate this prediction in magnets of elongated shape for small enough volume (and thus quasi-uniform magnetization). Our results also provide the first experimental evidence of the interfacial DMI-induced tilt of the spins at the borders. This work was supported by the Samsung Global MRAM Innovation Program.
Komaromy-Hiller; von Wandruszka R
1996-01-15
The effects of temperature and Triton X-114 (TX-114) concentration on the fluorescence anisotropy of perylene were investigated before and after detergent clouding. The measured anisotropy values were used to estimate the microviscosity of the micellar interior. In the lower detergent concentration range, an anisotropy maximum was observed at the critical micelle concentration (CMC), while the values decreased in the range immediately above the CMC. This was ascribed to the micellar volume increase, which, in the case of TX-114, was not accompanied by a more ordered internal environment. A gradual decrease of anisotropy and microviscosity with increasing temperature below the cloud point was observed. At the cloud point, no abrupt changes were found to occur. Compared to detergents with more flexible hydrophobic moieties, TX-114 micelles have a relatively ordered micellar interior indicated by the microviscosity and calculated fusion energy values. In the separated micellar phase formed after clouding, the probe anisotropy increased as water was eliminated at higher temperatures.
Phase composition, texture, and anisotropy of the properties of Al-Cu-Li-Mg alloy sheets
NASA Astrophysics Data System (ADS)
Betsofen, S. Ya.; Antipov, V. V.; Serebrennikova, N. Yu.; Dolgova, M. I.; Kabanova, Yu. A.
2017-10-01
The formation of the anisotropy of the mechanical properties, the texture, and the phase composition of thin-sheet Al-4.3Cu-1.4Li-0.4Mg and Al-1.8Li-1.8Cu-0.9 Mg alloys have been studied by X-ray diffraction and tensile tests. Various types of anisotropy of the strength properties of the alloys have been revealed: normal anisotropy (strength in the longitudinal direction is higher than that in the transverse direction) in the Al-4.3Cu-1.4Li-0.4Mg alloy and inverse anisotropy in the Al-1.8Li-1.8Cu-0.9Mg alloy. It is shown that the anisotropy of the strength properties is dependent not only on the texture of a solid solution, but also on the content and the texture of the δ' (Al3Li) and T1 (Al2CuLi) phases and their coherency and compatibility of deformation with the matrix.
Precision ESR Measurements of Transverse Anisotropy in the Single-molecule Magnet Ni4
NASA Astrophysics Data System (ADS)
Friedman, Jonathan; Collett, Charles; Allao Cassaro, Rafael
We present a method to precisely determine the transverse anisotropy in a single-molecule magnet (SMM) through electron-spin resonance measurements of a tunnel splitting that arises from the anisotropy via first-order perturbation theory. We demonstrate the technique using the SMM Ni4 diluted via co-crystallization in a diamagnetic isostructural analogue. At 5% dilution, we find markedly narrower resonance peaks than are observed in undiluted samples. Ni4 has a zero-field tunnel splitting of 4 GHz, and we measure that transition at several nearby frequencies using custom loop-gap resonators, allowing a precise determination of the tunnel splitting. Because the transition under investigation arises due to a first-order perturbation from the transverse anisotropy, and lies at zero field, we can relate the splitting to the transverse anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with zero-field tunnel splittings arising from first-order transverse anisotropy perturbations. NSF Grant No. DMR-1310135.
Azimuthal anisotropy of the Pacific region
NASA Astrophysics Data System (ADS)
Maggi, Alessia; Debayle, Eric; Priestley, Keith; Barruol, Guilhem
2006-10-01
Azimuthal anisotropy is the dependence of local seismic properties on the azimuth of propagation. We present the azimuthally anisotropic component of a 3D SV velocity model for the Pacific Ocean, derived from the waveform modeling of over 56,000 multi-mode Rayleigh waves followed by a simultaneous inversion for isotropic and azimuthally anisotropic vsv structure. The isotropic vsv model is discussed in a previous paper (A. Maggi, E. Debayle, K. Priestley, G. Barruol, Multi-mode surface waveform tomography of the Pacific Ocean: a close look at the lithospheric cooling signature, Geophys. J. Int. 166 (3) (2006). doi:10.1111/j.1365-246x.2006.03037.x). The azimuthal anisotropy we find is consistent with the lattice preferred orientation model (LPO): the hypothesis of anisotropy generation in the Earth's mantle by preferential alignment of anisotropic crystals in response to the shear strains induced by mantle flow. At lithospheric depths we find good agreement between fast azimuthal anisotropy orientations and ridge spreading directions recorded by sea-floor magnetic anomalies. At asthenospheric depths we find a strong correlation between fast azimuthal anisotropy orientations and the directions of current plate motions. We observe perturbations in the pattern of seismic anisotropy close to Pacific hot-spots that are consistent with the predictions of numerical models of LPO generation in plume-disturbed plate motion-driven mantle flow. These observations suggest that perturbations in the patterns of azimuthal anisotropy may provide indirect evidence for plume-like upwelling in the mantle.
Phase-field model of vapor-liquid-solid nanowire growth
NASA Astrophysics Data System (ADS)
Wang, Nan; Upmanyu, Moneesh; Karma, Alain
2018-03-01
We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.
Melting of anisotropic colloidal crystals in two dimensions
NASA Astrophysics Data System (ADS)
Eisenmann, C.; Keim, P.; Gasser, U.; Maret, G.
2004-09-01
The crystal structure and melting transition of two-dimensional colloids interacting via an anisotropic magnetic dipole-dipole potential are studied. Anisotropy is achieved by tilting the external magnetic field inducing the dipole moments of the colloidal particles away from the direction perpendicular to the particle plane. We find a centred rectangular lattice and a two-step melting similar to the phase transitions of the corresponding isotropic crystals via a quasi-hexatic phase. The latter is broadened compared to the hexatic phase for isotropic interaction potential due to strengthening of orientational order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matcha, R.L.; Pettitt, B.M.
1979-03-15
An interesting empirical relationship between zero point Compton profile anisotropies ..delta..J (0) and nuclear charges is noted. It is shown that, for alkali halide molecules AB, to a good approximation ..delta..J (0) =N ln(Z/sub b//Z/sub a/).
Measurement of the magnetic anisotropy energy constants for magneto-optical recording media
NASA Technical Reports Server (NTRS)
Hajjar, R. A.; Wu, T. H.; Mansuripur, M.
1992-01-01
Measurement of the magneto-optical polar Kerr effect is performed on rare earth-transition metal (RE-TM) amorphous films using in-plane fields. From this measurement and the measurement of the saturation magnetization using a vibrating sample magnetometer (VSM), the magnetic anisotropy constants are determined. The temperature dependence is presented of the magnetic anisotropy in the range of -175 to 175 C. The results show a dip in the anisotropy near magnetic compensation. This anomaly is explained based on the finite exchange coupling between the rare earth and transition metal subnetworks.
Superposition model analysis of the magnetocrystalline anisotropy of Ba-ferrite
NASA Astrophysics Data System (ADS)
Novák, Pavel
1994-06-01
Theoretical analysis of the first magnetocrystalline anisotropy constantK 1 of BaFe12O19 is performed. Two contributions toK 1 are considered — single ion anisotropy and dipolar anisotropy. ParameterD which determines the magnitude of the single ion contribution is calculated on the basis of the superposition model. It is argued that the disagreement between calculated and observed values ofK 1 is most likely connected with the contribution of Fe3+ ions on bipyramidal sites, for which the value ofD is uncertain.
Bianchi-V string cosmological model with dark energy anisotropy
NASA Astrophysics Data System (ADS)
Mishra, B.; Tripathy, S. K.; Ray, Pratik P.
2018-05-01
The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Hao; de Riese, Tamara; Llorens, Maria-Gema
The forty-year history of the Journal of Structural Geology has recorded an enormous increase in the description, interpretation and modelling of deformation structures. Amongst factors that control deformation and the resulting structures, mechanical anisotropy has proven difficult to tackle. Using a Fast Fourier Transform-based numerical solver for viscoplastic deformation of crystalline materials, we illustrate in this paper how mechanical anisotropy has a profound effect on developing structures, such as crenulation cleavages, porphyroclast geometry and the initiation of shear bands and shear zones.
Site-specific magnetic anisotropies in R2Fe14B systems
NASA Astrophysics Data System (ADS)
Yoshioka, T.; Tsuchiura, H.
2018-04-01
The local magnetic anisotropy of R ions in R2Fe14B (R = Dy, Ho) systems is studied based on a microscopic effective spin model constructed from the information obtained by using first-principles calculations. By taking into account up to 6-th order crystal electric field parameters, the model satisfactory describes the observed magnetization curves and the temperature dependence of anisotropy constants. We found that at low temperatures, the noncollinear structure appears in the Ho2Fe14B system reflecting the local magnetic anisotropy.
A Geometric Interpretation of the Effective Uniaxial Anisotropy Field in Magnetic Films
NASA Astrophysics Data System (ADS)
Kozlov, V. I.
2018-01-01
It is shown that the effective uniaxial anisotropy field that is usually applied in thin magnetic films (TMFs), which is noncollinear to the magnetization vector, is insufficient for deeper understanding of these processes, although it explains many physical processes in films. The analysis of the magnetization discontinuity in films under certain conditions yields the component of the effective uniaxial anisotropy field collinear to the magnetization vector. This component explains the magnetization discontinuity and allows one to speak of the total effective uniaxial anisotropy field in TMFs.
Ran, Hao; de Riese, Tamara; Llorens, Maria-Gema; ...
2018-05-20
The forty-year history of the Journal of Structural Geology has recorded an enormous increase in the description, interpretation and modelling of deformation structures. Amongst factors that control deformation and the resulting structures, mechanical anisotropy has proven difficult to tackle. Using a Fast Fourier Transform-based numerical solver for viscoplastic deformation of crystalline materials, we illustrate in this paper how mechanical anisotropy has a profound effect on developing structures, such as crenulation cleavages, porphyroclast geometry and the initiation of shear bands and shear zones.
NASA Astrophysics Data System (ADS)
Ishise, Motoko; Kawakatsu, Hitoshi; Morishige, Manabu; Shiomi, Katsuhiko
2018-05-01
We investigate slab and mantle structure of the NE Japan subduction zone from P wave azimuthal and radial anisotropy using travel time tomography. Trench normal E-W-trending azimuthal anisotropy (AA) and radial anisotropy (RA) with VPV > VPH are found in the mantle wedge, which supports the existence of small-scale convection in the mantle wedge with flow-induced LPO of mantle minerals. In the subducting Pacific slab, trench parallel N-S-trending AA and RA with VPH > VPV are obtained. Considering the effect of dip of the subducting slab on apparent anisotropy, we suggest that both characteristics can be explained by the presence of laminar structure, in addition to AA frozen-in in the subducting plate prior to subduction.
Field dependent magnetic anisotropy of Fe1-xZnx thin films
NASA Astrophysics Data System (ADS)
Resnick, Damon A.; McClure, A.; Kuster, C. M.; Rugheimer, P.; Idzerda, Y. U.
2013-05-01
Using longitudinal magneto-optical Kerr effect in combination with a variable strength rotating magnetic field, called the Rotational Magneto-Optic Kerr Effect (ROTMOKE) method, we show that the magnetic anisotropy for thin Fe82Zn18 single crystal films, grown on MgO(001) substrates, depends linearly on the strength of the applied magnetic field at low fields but is constant (saturates) at fields greater than 350 Oe. The torque moment curves generated using ROTMOKE are well fit with a model that accounts for the uniaxial and cubic anisotropy with the addition of a cubic anisotropy that depends linearly on the applied magnetic field. The field dependent term is evidence of a large effect on the effective magnetic anisotropy in Fe1-xZnx thin films by the magnetostriction.
Gigantic transverse x-ray magnetic circular dichroism in ultrathin Co in Au/Co/Au(001)
NASA Astrophysics Data System (ADS)
Koide, T.; Mamiya, K.; Asakura, D.; Osatune, Y.; Fujimori, A.; Suzuki, Y.; Katayama, T.; Yuasa, S.
2014-04-01
Transverse-geometry x-ray magnetic circular dichroism (TXMCD) measurements on Au/Co-staircase/Au(001) reveal the orbital origin of intrinsic in-plane magnetic anisotropy A gigantic TXMCD was successfully observed at the Co L3,2 edges for Co thickness (tC0) in the 2-monolayer regime. A TXMCD-sum-rule analysis shows a remarkable enhancement of an orbital-moment anisotropy (Δmorb) and of an in-plane magnetic dipole moment (m||T). Both Δmorb and m||T exhibit close similarity in tCo dependence, reflecting the in-plane magnetic anisotropy These observations evidence that extremely strong, intrinsic, in-plane magnetic anisotropy originates from the anisotropic orbital part of the wave function, dominating the dipole-dipole-interaction-derived, extrinsic, in-plane magnetic anisotropy.
Critical anisotropies of a geometrically frustrated triangular-lattice antiferromagnet
NASA Astrophysics Data System (ADS)
Swanson, M.; Haraldsen, J. T.; Fishman, R. S.
2009-05-01
This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the one-, two-, three-, four-, and eight-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The two-, four-, and eight-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the two-SL/three-SL and three-SL/four-SL phase boundaries, where the three-SL phase has the higher critical anisotropy.
Critical Anisotropies of a Geometrically-Frustrated Triangular-Lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Mason R; Haraldsen, Jason T; Fishman, Randy Scott
2009-01-01
This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the 1, 2, 3, 4, and 8-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The 2, 4, and 8-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the 2-SL/3-SLmore » and 3-SL/4-SL phase boundaries, where the 3-SL phase has the higher critical anisotropy.« less
Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope
Ackermann, M.
2010-11-01
The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6 × 10 6 cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from ~ 10 ° up to 90°, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy’s angularmore » scale. The upper limits for a dipole anisotropy ranged from ~ 0.5 % to ~ 10 % .« less
Juan-Senabre, Xavier J; Porras, Ignacio; Lallena, Antonio M
2013-06-01
A variation of TG-43 protocol for seeds with cylindrical symmetry aiming at a better description of the radial and anisotropy functions is proposed. The TG-43 two dimensional formalism is modified by introducing a new anisotropy function. Also new fitting functions that permit a more robust description of the radial and anisotropy functions than usual polynomials are studied. The relationship between the new anisotropy function and the anisotropy factor included in the one-dimensional TG-43 formalism is analyzed. The new formalism is tested for the (125)I Nucletron selectSeed brachytherapy source, using Monte Carlo simulations performed with PENELOPE. The goodness of the new parameterizations is discussed. The results obtained indicate that precise fits can be achieved, with a better description than that provided by previous parameterizations. Special care has been taken in the description and fitting of the anisotropy factor near the source. The modified formalism shows advantages with respect to the usual one in the description of the anisotropy functions. The new parameterizations obtained can be easily implemented in the clinical planning calculation systems, provided that the ratio between geometry factors is also modified according to the new dose rate expression. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Extrinsic Versus Intrinsic Seismic Anisotropy and Attenuation
NASA Astrophysics Data System (ADS)
Montagner, J. P.; Ricard, Y. R.; Capdeville, Y.; Bodin, T.; Wang, N.
2015-12-01
The apparent large scale anisotropy is the mixing of intrinsic anisotropic minerals (LPO) and extrinsic anisotropy due to materials with fine layering, fluid inclusions, cracks (SPO) . The same issue arises for attenuation (with many different anelastic processes). The proportion of extrinsic and intrinsic anisotropy and attenuation in the Earth mantle is still an open question. The interpretation of observations of seismic anisotropy and attenuation is the subject of controversies and often contradictory according to their intrinsic or extrinsic nature. Fine layering is a good candidate for explaining at the same time a large part of observed radial anisotropy (Wang et al., Geophys. Res. Lett., 2013) and attenuation (Ricard et al., Earth Planet. Sci. Lett., 2014). A plausible model of mixing of materials in a chaotic convecting fluid creates a spectrum of heterogeneity varying like 1/k (k wavenumber of the heterogeneity). A body wave propagating in a finely layered medium will be scattered and its distorted waveform can be interpreted as due to attenuation with a quality factor Q. We showed that, with the specific 1/k spectrum and only 6-9% RMS heterogeneity, the resulting apparent attenuation Q is frequency independent. Aggregates of randomly orientated anisotropic minerals are good candidates for giving rise to this extrinsic apparent attenuation. The relationship for a 1/k spectrum with apparent seismic anisotropy is also explored.
Insights into asthenospheric anisotropy and deformation in Mainland China
NASA Astrophysics Data System (ADS)
Zhu, Tao
2018-03-01
Seismic anisotropy can provide direct constraints on asthenospheric deformation which also can be induced by the inherent mantle flow within our planet. Mantle flow calculations thus have been an effective tool to probe asthenospheric anisotropy. To explore the source of seismic anisotropy, asthenospheric deformation and the effects of mantle flow on seismic anisotropy in Mainland China, mantle flow models driven by plate motion (plate-driven) and by a combination of plate motion and mantle density heterogeneity (plate-density-driven) are used to predict the fast polarization direction of shear wave splitting. Our results indicate that: (1) plate-driven or plate-density-driven mantle flow significantly affects the predicted fast polarization direction when compared with simple asthenospheric flow commonly used in interpreting the asthenospheric source of seismic anisotropy, and thus new insights are presented; (2) plate-driven flow controls the fast polarization direction while thermal mantle flow affects asthenospheric deformation rate and local deformation direction significantly; (3) asthenospheric flow is an assignable contributor to seismic anisotropy, and the asthenosphere is undergoing low, large or moderate shear deformation controlled by the strain model, the flow plane/flow direction model or both in most regions of central and eastern China; and (4) the asthenosphere is under more rapid extension deformation in eastern China than in western China.
Resolving the optical anisotropy of low-symmetry 2D materials.
Shen, Wanfu; Hu, Chunguang; Tao, Jin; Liu, Jun; Fan, Shuangqing; Wei, Yaxu; An, Chunhua; Chen, Jiancui; Wu, Sen; Li, Yanning; Liu, Jing; Zhang, Daihua; Sun, Lidong; Hu, Xiaotang
2018-05-03
Optical anisotropy is one of the most fundamental physical characteristics of emerging low-symmetry two-dimensional (2D) materials. It provides abundant structural information and is crucial for creating diverse nanoscale devices. Here, we have proposed an azimuth-resolved microscopic approach to directly resolve the normalized optical difference along two orthogonal directions at normal incidence. The differential principle ensures that the approach is only sensitive to anisotropic samples and immune to isotropic materials. We studied the optical anisotropy of bare and encapsulated black phosphorus (BP) and unveiled the interference effect on optical anisotropy, which is critical for practical applications in optical and optoelectronic devices. A multi-phase model based on the scattering matrix method was developed to account for the interference effect and then the crystallographic directions were unambiguously determined. Our result also suggests that the optical anisotropy is a probe to measure the thickness with monolayer resolution. Furthermore, the optical anisotropy of rhenium disulfide (ReS2), another class of anisotropic 2D materials, with a 1T distorted crystal structure, was investigated, which demonstrates that our approach is suitable for other anisotropic 2D materials. This technique is ideal for optical anisotropy characterization and will inspire future efforts in BP and related anisotropic 2D nanomaterials for engineering new conceptual nanodevices.
NASA Astrophysics Data System (ADS)
Silva, E. F.; Corrêa, M. A.; Della Pace, R. D.; Plá Cid, C. C.; Kern, P. R.; Carara, M.; Chesman, C.; Alves Santos, O.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M.; Bohn, F.
2017-05-01
We investigate the thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. We go beyond quasi-static measurements and focus on the dynamic magnetic response by considering three complementary techniques: the ferromagnetic resonance, magnetoimpedance and magnetic permeability measurements. We verify remarkable modifications in the magnetic anisotropy, i.e. the well-known behavior of in-plane uniaxial magnetic anisotropy systems gives place to a complex magnetic behavior as the thickness increases, and splits the films in two groups according to the magnetic properties. We identify magnetoimpedance and magnetic permeability curves with multiple resonance peaks, as well as the evolution of the ferromagnetic resonance absorption spectra, as fingerprints of strong changes of the magnetic properties associated to the vanishing of the in-plane magnetic anisotropy and to the emergence of non-homogeneous magnetization configuration, local anisotropies and out-of-plane anisotropy contribution arisen as a consequence of the non-uniformities of the stress stored in the film as the thickness is increased and/or to the columnar growth of the film. We interpret the experimental results in terms of the structural and morphological properties, quasi-static magnetic behavior, magnetic domain structure and different mechanisms governing the magnetization dynamics at distinct frequency ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, G.H.
1988-01-01
The effect of three types of quartic anisotropy energy on the polarization of the spiral-magnetic state of Blount and Varma is studied near the onset temperature. A quartic anisotropy with uniaxial symmetry and a quartic anisotropy with cubic symmetry are studied, and the anisotropy in primitive tetragonal ErRh{sub 4}B{sub 4} is modeled with a quadratic anisotropy giving a hard c-axis, plus a quartic anisotropy in the basal plane with a square symmetry. Details of the magnetizations, wave vectors, and polarizations are presented. Further, using a variational approach, the author investigates the effects, in a slab geometry, of an infinitesimal andmore » finite magnetic field applied parallel to the slab on the spiral magnetic state. By additionally calculating the effects on the normal ferroparamagnetic state and the uniform superconducting state, he studies applied field vs. temperature phase diagrams. Due to the large experimental uncertainty in the material parameters, an extended range of values is studied, producing a number of interesting and physically unique phase diagrams. A categorization of the types of phase diagrams over the selected range of the material parameters is presented. Finally, the effective superconducting penetration depth in the presence of the spiral magnetic state is calculated.« less
Effects of fabric anisotropy on elastic shear modulus of granular soils
NASA Astrophysics Data System (ADS)
Li, Bo; Zeng, Xiangwu
2014-06-01
The fabric anisotropy of a granular soil deposit can strongly influence its engineering properties and behavior. This paper presents the results of a novel experimental study designed to examine the effects of fabric anisotropy on smallstrain stiffness and its evolution with loading on the elastic shear modulus of granular materials under a K 0 condition. Two primary categories of fabric anisotropy, i.e., deposition-induced and particle shape-induced, are investigated. Toyoura sand deposits with relative densities of 40% and 80% were prepared using deposition angles oriented at 0° and 90°. Piezoelectric transducers were used to obtain the elastic shear modulus in the vertical and horizontal directions ( G vh and G hh). The measurements indicate distinct differences in the values of G with respect to the different deposition angles. Particle shapeinduced fabric anisotropy was examined using four selected sands. It was concluded that sphericity is a controlling factor dominating the small-strain stiffness of granular materials. The degree of fabric anisotropy proves to be a good indicatorin the characterization of stress-induced fabric evolution during loading and unloading stress cycles. The experimental data were used to calibrate an existing micromechanical model, which was able to represent the behavior of the granular material and the degree of fabric anisotropy reasonably well.
Damion, Robin A.; Radjenovic, Aleksandra; Ingham, Eileen; Jin, Zhongmin; Ries, Michael E.
2013-01-01
We develop a curvilinear invariant set of the diffusion tensor which may be applied to Diffusion Tensor Imaging measurements on tissues and porous media. This new set is an alternative to the more common invariants such as fractional anisotropy and the diffusion mode. The alternative invariant set possesses a different structure to the other known invariant sets; the second and third members of the curvilinear set measure the degree of orthotropy and oblateness/prolateness, respectively. The proposed advantage of these invariants is that they may work well in situations of low diffusion anisotropy and isotropy, as is often observed in tissues such as cartilage. We also explore the other orthogonal invariant sets in terms of their geometry in relation to eigenvalue space; a cylindrical set, a spherical set (including fractional anisotropy and the mode), and a log-Euclidean set. These three sets have a common structure. The first invariant measures the magnitude of the diffusion, the second and third invariants capture aspects of the anisotropy; the magnitude of the anisotropy and the shape of the diffusion ellipsoid (the manner in which the anisotropy is realised). We also show a simple method to prove the orthogonality of the invariants within a set. PMID:24244366
Setting Directions: Anisotropy in Hierarchically Organized Porous Silica
2017-01-01
Structural hierarchy, porosity, and isotropy/anisotropy are highly relevant factors for mechanical properties and thereby the functionality of porous materials. However, even though anisotropic and hierarchically organized, porous materials are well known in nature, such as bone or wood, producing the synthetic counterparts in the laboratory is difficult. We report for the first time a straightforward combination of sol–gel processing and shear-induced alignment to create hierarchical silica monoliths exhibiting anisotropy on the levels of both, meso- and macropores. The resulting material consists of an anisotropic macroporous network of struts comprising 2D hexagonally organized cylindrical mesopores. While the anisotropy of the mesopores is an inherent feature of the pores formed by liquid crystal templating, the anisotropy of the macropores is induced by shearing of the network. Scanning electron microscopy and small-angle X-ray scattering show that the majority of network forming struts is oriented towards the shearing direction; a quantitative analysis of scattering data confirms that roughly 40% of the strut volume exhibits a preferred orientation. The anisotropy of the material’s macroporosity is also reflected in its mechanical properties; i.e., the Young’s modulus differs by nearly a factor of 2 between the directions of shear application and perpendicular to it. Unexpectedly, the adsorption-induced strain of the material exhibits little to no anisotropy. PMID:28989232
Evidence for a Significant Level of Extrinsic Anisotropy Due to Heterogeneities in the Mantle.
NASA Astrophysics Data System (ADS)
Alder, C.; Bodin, T.; Ricard, Y. R.; Capdeville, Y.; Debayle, E.; Montagner, J. P.
2017-12-01
Observations of seismic anisotropy are used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, it provides important constraints on the geometry of mantle deformation. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. Here, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1D and 2D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, i.e. varying as 1/k, with k the wavenumber of these heterogeneities. The 1D toy models correspond to simple layered media. In the 2D case, our models depict marble-cake patterns in which an anomaly in S-wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, i.e. apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1D and 2D media. In addition, we predict that 10 % of chemical heterogeneities in 2D marble-cake models can induce more than 3.9 % of extrinsic radial S-wave anisotropy. We thus predict that a non-negligible part of the observed anisotropy in tomographic models may be the result of unmapped small-scale heterogeneities in the mantle, mainly in the form of fine layering, and that caution should be taken when interpreting observed anisotropy in terms of LPO and mantle deformation. This effect may be particularly strong in the lithosphere where chemical heterogeneities are assumed to be the strongest.
NASA Astrophysics Data System (ADS)
Huang, Q.; Schmerr, N. C.; Waszek, L.; Beghein, C.; Weidner, E. C.
2017-12-01
Mantle transition zone (MTZ) is delineated by the 410 and 660 km discontinuities and plays an important role in mantle convection. Mineral physics experiments predict that wadsleyite and ringwoodite can have 13% and 2% single-crystal anisotropy respectively, indicating that seismic anisotropy is likely to exist in the upper part of the MTZ when MTZ minerals are aligned by mantle flow (e.g. subducting slabs). Here we use the SS precursors to study the topography change and seismic anisotropy in the vicinity of MTZ discontinuities. An up-to-date SS precursor dataset consisting of 45,624 records was collected to investigate MTZ topography and anisotropy. We stacked the whole dataset into 9 geographical caps to obtain the global topography of 410 and 660 km discontinuities. The MTZ is thickened by 15 km beneath subduction zones (e.g. Japan and South America) and also thinned by 15 km beneath mantle plume regions (e.g. Bowie and Iceland hotspots), which is consistent with thermal heterogeneity in the mid-mantle. We identify four locations with sufficient bounce point density and azimuthal coverage of SS precursors to study azimuthal anisotropy in MTZ; the central Pacific, the northwest Pacific, Greenland and the central Atlantic. We stack the data by the azimuth of SS bounce points falling within the range of 2000 km in these four locations. The goal is to detect the azimuthal dependence of travel time and amplitude of SS precursors, thus to constrain azimuthal anisotropy in MTZ. The central Pacific bin has fast direction at 110° for both S410S and S660S azimuthal stacks, which is interpreted as seismic anisotropy in the overlying upper mantle. We also stack data in subduction zones by the relative azimuths of bounce points compared to mantle flow directions to test the hypothesis that subducting slabs can cause azimuthal anisotropy in MTZ. A trench-parallel fast direction is observed for both S410S and S660S travel times and amplitudes, but not for their differential travel times. This indicates that subducting slabs impart azimuthal anisotropy right above 410 discontinuity, but detectable anisotropy does not extend into the MTZ. We will present results from 3D synthetic modeling based on SPECFEM3D software to further interrogate the effects of anisotropic structures on the waveforms of the SS precursors.