NASA Astrophysics Data System (ADS)
Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Itoh, Yuji; Iramina, Keiji
2014-05-01
The present study analyzed the effects of monophasic magnetic stimulation to the motor cortex. The effects of magnetic stimulation were evaluated by analyzing the motor evoked potentials (MEPs). The amplitude and latency of MEPs on the abductor pollicis brevis muscle were used to evaluate the effects of repetitive magnetic stimulation. A figure eight-shaped flat coil was used to stimulate the region over the primary motor cortex. The intensity of magnetic stimulation was 120% of the resting motor threshold, and the frequency of magnetic stimulation was 0.1 Hz. In addition, the direction of the current in the brain was posterior-anterior (PA) or anterior-posterior (AP). The latency of MEP was compared with PA and AP on initial magnetic stimulation. The results demonstrated that a stimulus in the AP direction increased the latency of the MEP by approximately 2.5 ms. MEP amplitude was also compared with PA and AP during 60 magnetic stimulations. The results showed that a stimulus in the PA direction gradually increased the amplitude of the MEP. However, a stimulus in the AP direction did not modulate the MEP amplitude. The average MEP amplitude induced from every 10 magnetic pulses was normalized by the average amplitude of the first 10 stimuli. These results demonstrated that the normalized MEP amplitude increased up to approximately 150%. In terms of pyramidal neuron indirect waves (I waves), magnetic stimulation inducing current flowing backward to the anterior preferentially elicited an I1 wave, and current flowing forward to the posterior elicited an I3 wave. It has been reported that the latency of the I3 wave is approximately 2.5 ms longer than the I1 wave elicitation, so the resulting difference in latency may be caused by this phenomenon. It has also been reported that there is no alteration of MEP amplitude at a frequency of 0.1 Hz. However, this study suggested that the modulation of MEP amplitude depends on stimulation strength and stimulation direction.
Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia.
Belvisi, Daniele; Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Parvez, Ahmad Khandker; Agostino, Rocco; Fabbrini, Giovanni; Berardelli, Alfredo
2013-02-01
Idiopathic focal hand dystonia (FHD) arises from abnormal plasticity in the primary motor cortex (M1) possibly reflecting abnormal sensori-motor integration processes. In this transcranial magnetic stimulation (TMS) study in FHD, we evaluated changes in motor evoked potentials (MEPs) after intermittent theta burst stimulation (iTBS) and paired associative stimulation (PAS), techniques that elicit different forms of experimentally-induced long-term potentiation (LTP)-like plasticity in M1. We also examined behaviorally-induced LTP-like plasticity as reflected by early motor learning of a simple motor task. We studied 14 patients with FHD and 14 healthy subjects. MEPs were recorded before and after iTBS and PAS at the 25 ms interstimulus interval (PAS(25)) in separate sessions. Subjects did a simple motor task entailing repetitive index finger abductions. To measure early motor learning we tested practice-related improvement in peak velocity and peak acceleration. In FHD patients iTBS failed to elicit the expected MEP changes and PAS(25) induced abnormally increased MEPs in target and non-target muscles. In the experiment testing early motor learning, patients lacked the expected practice-related changes in kinematic variables. In FHD, the degree of early motor learning correlated with patients' clinical features. We conclude that experimentally-induced (iTBS and PAS) and behaviorally-induced LTP-like plasticity are both altered in FHD. Copyright © 2012 Elsevier Inc. All rights reserved.
Achilles tendon vibration-induced changes in plantar flexor corticospinal excitability.
Lapole, Thomas; Temesi, John; Gimenez, Philippe; Arnal, Pierrick J; Millet, Guillaume Y; Petitjean, Michel
2015-02-01
Daily Achilles tendon vibration has been shown to increase muscle force, likely via corticospinal neural adaptations. The aim of the present study was to determine the extent by which corticospinal excitability is influenced during direct Achilles tendon vibration. Motor-evoked potentials (MEPs) were elicited in the soleus (SOL), gastrocnemius medialis (GM) and tibialis anterior (TA) by transcranial magnetic stimulation of the motor cortical area of the leg with and without Achilles tendon vibration at various frequencies (50, 80 and 110 Hz). Contralateral homologues were also investigated. SOL and GM MEP amplitude significantly increased by 226 ± 188 and 66 ± 39%, respectively, during Achilles tendon vibration, without any difference between the tested frequencies. No MEP changes were reported for TA or contralateral homologues. Increased SOL and GM MEP amplitude suggests increased vibration-induced corticospinal excitability independent of vibration frequency.
Boulogne, Sébastien; Andre-Obadia, Nathalie; Kimiskidis, Vasilios K; Ryvlin, Philippe; Rheims, Sylvain
2016-11-01
Paired-pulse (PP) paradigms are commonly employed to assess in vivo cortical excitability using transcranial magnetic stimulation (TMS) to stimulate the primary motor cortex and modulate the induced motor evoked potential (MEP). Single-pulse cortical direct electrical stimulation (DES) during intracerebral EEG monitoring allows the investigation of brain connectivity by eliciting cortico-cortical evoked potentials (CCEPs). However, PP paradigm using intracerebral DES has rarely been reported and has never been previously compared with TMS. The work was intended (i) to verify that the well-established modulations of MEPs following PP TMS remain similar using DES in the motor cortex, and (ii) to evaluate if a similar pattern could be observed in distant cortico-cortical connections through modulations of CCEP. Three patients undergoing intracerebral EEG monitoring with electrodes implanted in the central region were studied. Single-pulse DES (1-3 mA, 1 ms, 0.2 Hz) and PP DES using six interstimulus intervals (5, 15, 30, 50, 100, and 200 ms) in the motor cortex with concomitant recording of CCEPs and MEPs in contralateral muscles were performed. Finally, a navigated PP TMS session targeted the intracranial stimulation site to record TMS-induced MEPs in two patients. MEP modulations elicited by PP intracerebral DES proved similar among the three patients and to those obtained by PP TMS. CCEP modulations elicited by PP intracerebral DES usually showed a pattern comparable to that of MEP, although a different pattern could be observed occasionally. PP intracerebral DES seems to involve excitatory and inhibitory mechanisms similar to PP TMS and allows the recording of intracortical inhibition and facilitation modulation on cortico-cortical connections. Hum Brain Mapp 37:3767-3778, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sykes, Matthew; Matheson, Natalie A; Brownjohn, Philip W; Tang, Alexander D; Rodger, Jennifer; Shemmell, Jonathan B H; Reynolds, John N J
2016-01-01
Repetitive transcranial magnetic stimulation (rTMS) is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs) are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted muscle, and the amplitude of this twitch provides an indirect measure of the current state of the cortex. When applied to the motor cortex, rTMS can alter MEP amplitude, however, results are variable between participants and across studies. In addition, the mechanisms underlying any change and its locus are poorly understood. In order to better understand these effects, MEPs have been investigated in vivo in animal models, primarily in rats. One major difference in protocols between rats and humans is the use of general anesthesia in animal experiments. Anesthetics are known to affect plasticity-like mechanisms and so may contaminate the effects of an rTMS protocol. In the present study, we explored the effect of anesthetic on MEP amplitude, recorded before and after intermittent theta burst stimulation (iTBS), a patterned rTMS protocol with reported facilitatory effects. MEPs were assessed in the brachioradialis muscle of the upper forelimb under two anesthetics: a xylazine/zoletil combination and urethane. We found MEPs could be induced under both anesthetics, with no differences in the resting motor threshold or the average baseline amplitudes. However, MEPs were highly variable between animals under both anesthetics, with the xylazine/zoletil combination showing higher variability and most prominently a rise in amplitude across the baseline recording period. Interestingly, application of iTBS did not facilitate MEP amplitude under either anesthetic condition. Although it is important to underpin human application of TMS with mechanistic examination of effects in animals, caution must be taken when selecting an anesthetic and in interpreting results during prolonged TMS recording.
Sykes, Matthew; Matheson, Natalie A.; Brownjohn, Philip W.; Tang, Alexander D.; Rodger, Jennifer; Shemmell, Jonathan B. H.; Reynolds, John N. J.
2016-01-01
Repetitive transcranial magnetic stimulation (rTMS) is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs) are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted muscle, and the amplitude of this twitch provides an indirect measure of the current state of the cortex. When applied to the motor cortex, rTMS can alter MEP amplitude, however, results are variable between participants and across studies. In addition, the mechanisms underlying any change and its locus are poorly understood. In order to better understand these effects, MEPs have been investigated in vivo in animal models, primarily in rats. One major difference in protocols between rats and humans is the use of general anesthesia in animal experiments. Anesthetics are known to affect plasticity-like mechanisms and so may contaminate the effects of an rTMS protocol. In the present study, we explored the effect of anesthetic on MEP amplitude, recorded before and after intermittent theta burst stimulation (iTBS), a patterned rTMS protocol with reported facilitatory effects. MEPs were assessed in the brachioradialis muscle of the upper forelimb under two anesthetics: a xylazine/zoletil combination and urethane. We found MEPs could be induced under both anesthetics, with no differences in the resting motor threshold or the average baseline amplitudes. However, MEPs were highly variable between animals under both anesthetics, with the xylazine/zoletil combination showing higher variability and most prominently a rise in amplitude across the baseline recording period. Interestingly, application of iTBS did not facilitate MEP amplitude under either anesthetic condition. Although it is important to underpin human application of TMS with mechanistic examination of effects in animals, caution must be taken when selecting an anesthetic and in interpreting results during prolonged TMS recording. PMID:27766073
Gedankien, Tamara; Fried, Peter J; Pascual-Leone, Alvaro; Shafi, Mouhsin M
2017-12-01
We studied the correlation between motor evoked potentials (MEPs) and early TMS-evoked EEG potentials (TEPs) from single-pulse TMS before and after intermittent Theta Burst Stimulation (iTBS) to the left primary motor cortex (M1) in 17 healthy older participants. TMS was targeted to the hand region of M1 using a MRI-guided navigated brain stimulation system and a figure-of-eight biphasic coil. MEPs were recorded from the right first dorsal interosseous muscle using surface EMG. TEPs were extracted from a 61-channel EEG recording. Participants received 90 single TMS pulses at 120% of resting motor threshold before and after iTBS. Across all participants, the change in N15-P30 TEP and MEP amplitudes were significantly correlated (r=0.69; p<0.01). Average TEP responses did not change significantly after iTBS, whereas MEP amplitudes showed a significant increase. Changes in corticospinal reactivity and cortical reactivity induced by iTBS are related. However, the effect of iTBS on TEPs, unlike MEPs, is not straightforward. Our findings help elucidate the relationship between changes in cortical and corticospinal excitability in healthy older individuals. Going forward, TEPs may be used to evaluate the effects of theta-burst stimulation in non-motor brain regions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Characterization of dengue virus 2 growth in megakaryocyte–erythrocyte progenitor cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kristina B.; Hsiao, Hui-Mien; Bassit, Leda
Megakaryocyte–erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectiousmore » DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis. - Highlights: • DenV replicates efficiently in undifferentiated megakaryocyte–erythrocyte progenitors. • MEP produced DenV differs in protein content from Vero produced DenV. • MEP produced DenV may be more difficult to neutralize relative to Vero DenV.« less
Ambron, Elisabetta; White, Nicole; Faseyitan, Olufunsho; Kessler, Sudha K; Medina, Jared; Coslett, H Branch
2018-04-18
Changes in the perceived size of a body part using magnifying lenses influence tactile perception and pain. We investigated whether the visual magnification of one's hand also influences the motor system, as indexed by transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). In Experiment 1, MEPs were measured while participants gazed at their hand with and without magnification of the hand. MEPs were significantly larger when participants gazed at a magnified image of their hand. In Experiment 2, we demonstrated that this effect is specific to the hand that is visually magnified. TMS of the left motor cortex did not induce an increase of MEPs when participants looked at their magnified left hand. Experiment 3 was performed to determine if magnification altered the topography of the cortical representation of the hand. To that end, a 3 × 5 grid centered on the cortical hot spot (cortical location at which a motor threshold is obtained with the lowest level of stimulation) was overlaid on the participant's MRI image, and all 15 sites in the grid were stimulated with and without magnification of the hand. We confirmed the increase in the MEPs at the hot spot with magnification and demonstrated that MEPs significantly increased with magnification at sites up to 16.5 mm from the cortical hot spot. In Experiment 4, we used paired-pulse TMS to measure short-interval intracortical inhibition and intracortical facilitation. Magnification was associated with an increase in short-interval intracortical inhibition. These experiments demonstrate that the visual magnification of one's hand induces changes in motor cortex excitability and generates a rapid remapping of the cortical representation of the hand that may, at least in part, be mediated by changes in short-interval intracortical inhibition.
NASA Astrophysics Data System (ADS)
Liu, J. B.; Johnson, D. D.
2009-04-01
Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd , the PES is described by coupled shear (γ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,γ) . We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while not able to induce shear) dramatically alters the MEP to drive reconstruction by a shuffle-only mode at ≤30GPa , as observed. Finally, we relate our polynomial-based results to Landau and nudge-elastic-band approaches and show they yield incorrect MEP in general.
Zhang, Xueqing; Ji, Wenzhen; Li, Lancui; Yu, Changshen; Wang, Wanjun; Liu, Shoufeng; Gao, Chunlin; Qiu, Lina; Tong, Xiaoguang; Wang, Jinhuan; Wu, Jialing
2016-07-01
The predictive value of neurophysiologic assessment on patients' outcome after acute cerebral infarction is poorly understood. The aim of this study was to investigate the prognostic value of motor-evoked potentials (MEPs) and the silent period (SP) on clinical outcome. A total of 202 patients with acute cerebral infarction were prospectively recruited. MEP and SP were recorded from the abductor pollicis brevis of the affected side within 10 days after stroke onset. Patient outcome was measured as the dependency rate. Cortical MEP was induced in 78 patients whereas it was absent in 82 patients. The initial NIHSS (National Institutes of Health Stroke Scale) score was significantly lower in patients with MEP than in those without MEP (P < .001). Regression analysis demonstrated that a left-sided lesion (OR = .391, 95% CI .178-.858, P = .019), NIHSS at admission (OR = .826, 95% CI .744-.917, P < .001), and presence of MEP (OR = 3.918, 95% CI 1.770-8.672, P < .001) were independent predictors of outcome 3 months after stroke. Among patients with MEP, only the contralateral cortical SP value was significantly shorter in the good outcome subgroup (t = 2.541, P = .013). Receiver operating characteristic curve analysis demonstrated that SP was able to predict patients at higher risk of unfavorable outcome 3 months after stroke onset (area under the curve .721, 95% CI .58-.86, P = .008). These data suggested that MEP and SP were useful tools to predict patients' acute outcomes following cerebral infarction. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Swayne, Orlando B C; Teo, James T H; Greenwood, Richard J; Rothwell, John C
2009-08-01
Intermittent theta burst stimulation (iTBS) is increasingly widely used as a means of facilitating corticospinal excitability in the human primary motor cortex. This form of facilitatory plasticity within the stimulated cortex may occur by induction of long term potentiation (LTP). In animal models, agonists of nicotinic acetylcholine receptors have been shown to modulate or induce LTP; we thus sought to test whether nicotine may modulate the effects of iTBS on corticospinal excitability in humans. A double-blind placebo-controlled cross-over design study was conducted with 10 healthy subjects. iTBS was delivered 60min after subjects took either 4mg nicotine or placebo lozenges, and motor-evoked potentials (MEPs) were then recorded for 40min after the end of stimulation. In the placebo arm, iTBS produced an increase in the amplitudes of MEPs which lasted for 5min. In the nicotine arm, iTBS produced a more pronounced facilitation of MEPs that was still present at 40min. In a control experiment, nicotine alone had no effect on MEP amplitudes when given in the absence of iTBS. These data indicate that the effects of iTBS can be enhanced and prolonged by nicotine. These results are consistent with animal models demonstrating nicotinic modulation of facilitatory plasticity, and will be of interest to investigators seeking to enhance artificially induced changes in cortical excitability.
Gilio, Francesca; Iacovelli, Elisa; Frasca, Vittorio; Gabriele, Maria; Giacomelli, Elena; De Lena, Carlo; Cipriani, Anna Maria; Inghilleri, Maurizio
2009-05-08
Repetitive transcranial magnetic stimulation (rTMS) delivered in short trains at 5Hz frequency and suprathreshold intensity over the primary motor cortex (M1) in healthy subjects facilitates the motor-evoked potential (MEP) amplitude by increasing cortical excitability through mechanisms resembling short-term synaptic plasticity. In this study, to investigate whether rTES acts through similar mechanisms we compared the effects of rTMS and repetitive transcranial electrical stimulation (rTES) (10 stimuli-trains, 5Hz frequency, suprathreshold intensity) delivered over the M1 on the MEP amplitude. Four healthy subjects were studied in two separate sessions in a relaxed condition. rTMS and anodal rTES were delivered in trains to the left M1 over the motor area for evoking a MEP in the right first dorsal interosseous muscle. Changes in MEP size and latency during the course of the rTMS and rTES trains were compared. The possible effects of muscle activation on MEP amplitude were evaluated, and the possible effects of cutaneous trigeminal fibre activation on corticospinal excitability were excluded in a control experiment testing the MEP amplitude before and after supraorbital nerve repetitive electrical stimulation. Repeated measures analysis of variance (ANOVA) showed that rTES and rTMS trains elicited similar amplitude first MEPs and a similar magnitude MEP amplitude facilitation during the trains. rTES elicited a first MEP with a shorter latency than rTMS, without significant changes during the course of the train of stimuli. The MEP elicited by single-pulse TES delivered during muscle contraction had a smaller amplitude than the last MEP in the rTES trains. Repetitive supraorbital nerve stimulation left the conditioned MEP unchanged. Our results suggest that 5 Hz-rTES delivered in short trains increases cortical excitability and does so by acting on the excitatory interneurones probably through mechanisms similar to those underlying the rTMS-induced MEP facilitation.
2013-01-01
Background The cortical silent period (CSP) elicited by transcranial magnetic stimulation (TMS) is affected by changes in TMS intensity. Some studies have shown that CSP is shortened or prolonged by short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), Those studies, however, used different TMS intensities to adjust the amplitude of the motor evoked potential (MEP). Therefore, it is unclear whether changes in CSP duration are induced by changes in TMS intensities or by SICI and ICF. The purpose of this study was to confirm the effects of muscle contractions and stimulus intensities on MEP amplitude and the duration of CSP induced by single-pulse TMS and to clarify the effects of SICI and ICF on CSP duration. MEP evoked by TMS was detected from the right first dorsal interosseous muscle in 15 healthy subjects. First, MEP and CSP were induced by single-pulse TMS with an intensity of 100% active motor threshold (AMT) at four muscle contraction levels [10%, 30%, 50%, and 70% electromyogram (EMG)]. Next, MEP and CSP were induced by seven TMS intensities (100%, 110%, 120%, 130%, 140%, 150%, and 160% AMT) during muscle contraction of 10% EMG. Finally, SICI and ICF were recorded at the four muscle contraction levels (0%, 10%, 30%, and 50% EMG). Results MEP amplitudes increased with increases in muscle contraction and stimulus intensity. However, CSP duration did not differ at different muscle contraction levels and was prolonged with increases in stimulus intensity. CSP was shortened with SICI compared with CSP induced by single-pulse TMS and with ICF at all muscle contraction levels, whereas CSP duration was not significantly changed with ICF. Conclusions We confirmed that CSP duration is affected by TMS intensity but not by the muscle contraction level. This study demonstrated that CSP is shortened with SICI, but it is not altered with ICF. These results indicate that after SICI, CSP duration is affected by the activity of inhibitory intermediate neurons that are activated by the conditioning SICI stimulus. PMID:23547559
Ulkatan, Sedat; Jaramillo, Ana Maria; Téllez, Maria J; Kim, Jinu; Deletis, Vedran; Seidel, Kathleen
2017-04-01
OBJECTIVE The purpose of this study was to investigate the incidence of seizures during the intraoperative monitoring of motor evoked potentials (MEPs) elicited by electrical brain stimulation in a wide spectrum of surgeries such as those of the orthopedic spine, spinal cord, and peripheral nerves, interventional radiology procedures, and craniotomies for supra- and infratentorial tumors and vascular lesions. METHODS The authors retrospectively analyzed data from 4179 consecutive patients who underwent surgery or an interventional radiology procedure with MEP monitoring. RESULTS Of 4179 patients, only 32 (0.8%) had 1 or more intraoperative seizures. The incidence of seizures in cranial procedures, including craniotomies and interventional neuroradiology, was 1.8%. In craniotomies in which transcranial electrical stimulation (TES) was applied to elicit MEPs, the incidence of seizures was 0.7% (6/850). When direct cortical stimulation was additionally applied, the incidence of seizures increased to 5.4% (23/422). Patients undergoing craniotomies for the excision of extraaxial brain tumors, particularly meningiomas (15 patients), exhibited the highest risk of developing an intraoperative seizure (16 patients). The incidence of seizures in orthopedic spine surgeries was 0.2% (3/1664). None of the patients who underwent surgery for conditions of the spinal cord, neck, or peripheral nerves or who underwent cranial or noncranial interventional radiology procedures had intraoperative seizures elicited by TES during MEP monitoring. CONCLUSIONS In this largest such study to date, the authors report the incidence of intraoperative seizures in patients who underwent MEP monitoring during a wide spectrum of surgeries such as those of the orthopedic spine, spinal cord, and peripheral nerves, interventional radiology procedures, and craniotomies for supra- and infratentorial tumors and vascular lesions. The low incidence of seizures induced by electrical brain stimulation, particularly short-train TES, demonstrates that MEP monitoring is a safe technique that should not be avoided due to the risk of inducing seizures.
Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.
Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo
2012-03-01
No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.
Real-time changes in corticospinal excitability related to motor imagery of a force control task.
Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki; Osawa, Ryuji; Yamaguchi, Tomofumi; Tanabe, Shigeo; Kondo, Kunitsugu; Otaka, Yohei; Sugawara, Kenichi
2017-09-29
To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion (Increasing phase), the peak value of the sine wave, during the gradual reduction (Decreasing phase), and after completion of the task. The MEP ratio, as the ratio of imaged MEPs to resting-state, was compared between pre- and post-training at each time point. In the ECR muscle, the MEP ratio significantly increased during the Increasing phase and at the peak force of dorsiflexion imagery after training. Moreover, the MEP ratio was significantly greater in the Increasing phase than in the Decreasing phase. In the FCR, there were no significant consistent changes. Corticospinal excitability during motor imagery in an isometric contraction task was modulated in relation to the phase of force control after image construction. Copyright © 2017 Elsevier B.V. All rights reserved.
Bhalodia, Vidya M; Schwartz, Daniel M; Sestokas, Anthony K; Bloomgarden, Gary; Arkins, Thomas; Tomak, Patrick; Gorelick, Judith; Wijesekera, Shirvinda; Beiner, John; Goodrich, Isaac
2013-10-01
Deltoid muscle weakness due to C-5 nerve root injury following cervical spine surgery is an uncommon but potentially debilitating complication. Symptoms can manifest upon emergence from anesthesia or days to weeks following surgery. There is conflicting evidence regarding the efficacy of spontaneous electromyography (spEMG) monitoring in detecting evolving C-5 nerve root compromise. By contrast, transcranial electrical stimulation-induced motor evoked potential (tceMEP) monitoring has been shown to be highly sensitive and specific in identifying impending C-5 injury. In this study the authors sought to 1) determine the frequency of immediate versus delayed-onset C-5 nerve root injury following cervical spine surgery, 2) identify risk factors associated with the development of C-5 palsies, and 3) determine whether tceMEP and spEMG neuromonitoring can help to identify acutely evolving C-5 injury as well as predict delayed-onset deltoid muscle paresis. The authors retrospectively reviewed the neuromonitoring and surgical records of all patients who had undergone cervical spine surgery involving the C-4 and/or C-5 level in the period from 2006 to 2008. Real-time tceMEP and spEMG monitoring from the deltoid muscle was performed as part of a multimodal neuromonitoring protocol during all surgeries. Charts were reviewed to identify patients who had experienced significant changes in tceMEPs and/or episodes of neurotonic spEMG activity during surgery, as well as those who had shown new-onset deltoid weakness either immediately upon emergence from the anesthesia or in a delayed fashion. Two hundred twenty-nine patients undergoing 235 cervical spine surgeries involving the C4-5 level served as the study cohort. The overall incidence of perioperative C-5 nerve root injury was 5.1%. The incidence was greatest (50%) in cases with dual corpectomies at the C-4 and C-5 spinal levels. All patients who emerged from anesthesia with deltoid weakness had significant and unresolved changes in tceMEPs during surgery, whereas only 1 had remarkable spEMG activity. Sensitivity and specificity of tceMEP monitoring for identifying acute-onset deltoid weakness were 100% and 99%, respectively. By contrast, sensitivity and specificity for spEMG were only 20% and 92%, respectively. Neither modality was effective in identifying patients who demonstrated delayed-onset deltoid weakness. The risk of new-onset deltoid muscle weakness following cervical spine surgery is greatest for patients undergoing 2-level corpectomies involving C-4 and C-5. Transcranial electrical stimulation-induced MEP monitoring is a highly sensitive and specific technique for detecting C-5 radiculopathy that manifests immediately upon waking from anesthesia. While the absence of sustained spEMG activity does not rule out nerve root irritation, the presence of excessive neurotonic discharges serves both to alert the surgeon of such potentially injurious events and to prompt neuromonitoring personnel about the need for additional tceMEP testing. Delayed-onset C-5 nerve root injury cannot be predicted by intraoperative neuromonitoring via either modality.
Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou
2004-06-01
A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.
Young-Bernier, Marielle; Tanguay, Annick N; Davidson, Patrick S R; Tremblay, François
2014-01-01
Cortical plasticity, including long-term potentiation (LTP)-like plasticity, can be assessed non-invasively with repetitive transcranial magnetic stimulation (rTMS) protocols. In this study, we examined age differences in responses to intermittent theta burst stimulation (iTBS) in a group of 20 young and 18 healthy older adults. Because the cholinergic system plays a role in the neural processes underlying learning and memory, including LTP, we also investigated whether short latency afferent inhibition (SAI), a neurophysiological marker of central cholinergic activity, would be associated with age-related differences in LTP-like plasticity induced by iTBS. SAI was first assessed by examining the modulation of motor evoked potentials (MEPs) in response to median nerve conditioning 20 ms prior to TMS. Participants then underwent iTBS (3 pulses at 50 Hz every 200 ms for 2 s with 8 s between trains, repeated 20 times). MEP responses (120% resting motor threshold (RMT)) were assessed immediately after iTBS and 5, 10, and 20 min post-application. Responses to iTBS were quite variable in both age groups, with only approximately 60% of the participants (n = 13 young and 10 older adults) showing the expected facilitation of MEP responses. There were no significant age group differences in MEP facilitation following iTBS. Although older adults exhibited reduced SAI, individual variations were not associated with susceptibility to express LTP-like induced plasticity after iTBS. Overall, these results are consistent with reports of high inter-individual variability in responses to iTBS. Although SAI was reduced in older adults, consistent with a deterioration of the cholinergic system with age, SAI levels were not associated with LTP-like plasticity as assessed with iTBS.
Young-Bernier, Marielle; Tanguay, Annick N.; Davidson, Patrick S. R.; Tremblay, François
2014-01-01
Cortical plasticity, including long-term potentiation (LTP)-like plasticity, can be assessed non-invasively with repetitive transcranial magnetic stimulation (rTMS) protocols. In this study, we examined age differences in responses to intermittent theta burst stimulation (iTBS) in a group of 20 young and 18 healthy older adults. Because the cholinergic system plays a role in the neural processes underlying learning and memory, including LTP, we also investigated whether short latency afferent inhibition (SAI), a neurophysiological marker of central cholinergic activity, would be associated with age-related differences in LTP-like plasticity induced by iTBS. Methods: SAI was first assessed by examining the modulation of motor evoked potentials (MEPs) in response to median nerve conditioning 20 ms prior to TMS. Participants then underwent iTBS (3 pulses at 50 Hz every 200 ms for 2 s with 8 s between trains, repeated 20 times). MEP responses (120% resting motor threshold (RMT)) were assessed immediately after iTBS and 5, 10, and 20 min post-application. Results: Responses to iTBS were quite variable in both age groups, with only approximately 60% of the participants (n = 13 young and 10 older adults) showing the expected facilitation of MEP responses. There were no significant age group differences in MEP facilitation following iTBS. Although older adults exhibited reduced SAI, individual variations were not associated with susceptibility to express LTP-like induced plasticity after iTBS. Conclusion: Overall, these results are consistent with reports of high inter-individual variability in responses to iTBS. Although SAI was reduced in older adults, consistent with a deterioration of the cholinergic system with age, SAI levels were not associated with LTP-like plasticity as assessed with iTBS. PMID:25147523
Mixed QM/MM molecular electrostatic potentials.
Hernández, B; Luque, F J; Orozco, M
2000-05-01
A new method is presented for the calculation of the Molecular Electrostatic Potential (MEP) in large systems. Based on the mixed Quantum Mechanics/Molecular Mechanics (QM/MM) approach, the method assumes both a quantum and classical description for the molecule, and the calculation of the MEP in the space surrounding the molecule is made using this dual treatment. The MEP at points close to the molecule is computed using a full QM formalism, while a pure classical evaluation of the MEP is used for points located at large distances from the molecule. The algorithm allows the user to select the desired level of accuracy in the MEP, so that the definition of the regions where the MEP is computed at the classical or QM levels is adjusted automatically. The potential use of this QM/MM MEP in molecular modeling studies is discussed.
Hamada, Masashi; Hanajima, Ritsuko; Terao, Yasuo; Arai, Noritoshi; Furubayashi, Toshiaki; Inomata-Terada, Satomi; Yugeta, Akihiro; Matsumoto, Hideyuki; Shirota, Yuichiro; Ugawa, Yoshikazu
2007-12-01
Repetitive paired-pulse transcranial magnetic stimulation (TMS) at I-wave periodicity has been shown to induce a motor-evoked potential (MEP) facilitation. We hypothesized that a greater enhancement of motor cortical excitability is provoked by increasing the number of pulses per train beyond those by paired-pulse stimulation (PPS). We explored motor cortical excitability changes induced by repetitive application of trains of four monophasic magnetic pulses (quadro-pulse stimulation: QPS) at 1.5-ms intervals, repeated every 5s over the motor cortex projecting to the hand muscles. The aftereffects of QPS were evaluated with MEPs to a single-pulse TMS, motor threshold (MT), and responses to brain-stem stimulation. These effects were compared to those after PPS. To evaluate the QPS safety, we also studied the spread of excitation and after discharge using surface electromyograms (EMGs) of hand and arm muscles. Sizes of MEPs from the hand muscle were enhanced for longer than 75min after QPS; they reverted to the baseline at 90min. Responses to brain-stem stimulation from the hand muscle and cortical MEPs from the forearm muscle were unchanged after QPS over the hand motor area. MT was unaffected by QPS. No spreads of excitation were detected after QPS. The appearance rate of after discharges during QPS was not different from that during sham stimulation. Results show that QPS can safely induce long-lasting, topographically specific enhancement of motor cortical excitability. QPS is more effective than PPS for inducing motor cortical plasticity.
Goldsworthy, Mitchell R; Vallence, Ann-Maree; Hodyl, Nicolette A; Semmler, John G; Pitcher, Julia B; Ridding, Michael C
2016-01-01
To determine whether the intensity of transcranial magnetic stimulation (TMS) used to probe changes in corticospinal excitability influences the measured plasticity response to theta burst stimulation (TBS) of the human primary motor cortex. Motor evoked potential (MEP) input/output (I/O) curves were recorded before and following continuous TBS (cTBS) (Experiment 1; n=18) and intermittent TBS (iTBS) (Experiment 2; n=18). The magnitude and consistency of MEP depression induced by cTBS was greatest when probed using stimulus intensities at or above 150% of resting motor threshold (RMT). In contrast, facilitation of MEPs following iTBS was strongest and most consistent at 110% of RMT. The plasticity response to both cTBS and iTBS is influenced by the stimulus intensity used to probe the induced changes in corticospinal excitability. The results highlight the importance of the test stimulus intensity used to assess TBS-induced changes in corticospinal excitability when interpreting neuroplasticity data, and suggest that a number of test intensities may be required to reliably probe the plasticity response. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Lee, Minji; Kim, Yun-Hee; Im, Chang-Hwan; Kim, Jung-Hoon; Park, Chang-hyun; Chang, Won Hyuk; Lee, Ahee
2015-01-01
Transcranial direct current stimulation (tDCS) non-invasively modulates brain function by inducing neuronal excitability. The conventional hot spot for inducing the highest current density in the hand motor area may not be the optimal site for effective stimulation. In this study, we investigated the influence of the center position of the anodal electrode on changes in motor cortical excitability. We considered three tDCS conditions in 16 healthy subjects: (i) real stimulation with the anodal electrode located at the conventional hand motor hot spot determined by motor evoked potentials (MEPs); (ii) real stimulation with the anodal electrode located at the point with the highest current density in the hand motor area as determined by electric current simulation; and (iii) sham stimulation. Motor cortical excitability as measured by MEP amplitude increased after both real stimulation conditions, but not after sham stimulation. Stimulation using the simulation-derived anodal electrode position, which was found to be posterior to the MEP hot spot for all subjects, induced higher motor cortical excitability. Individual positioning of the anodal electrode, based on the consideration of anatomical differences between subjects, appears to be important for maximizing the effects of tDCS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
McIntyre, Ian W; Francis, Lisa; McAuliffe, John J
2016-01-01
There is a general belief that somatosensory-evoked potentials (SSEPs) are more easily obtained than transcranial motor-evoked potentials (TcMEPs) in children younger than 6 years. We tested this assumption and the assumption that motor-evoked potentials are rarely obtained in children younger than 2 years. The records of all patients who were monitored during surgical procedures between April 1, 2010, and June 30, 2013, were reviewed and those who were younger than 72 months at the time of surgery were identified and analyzed for the rate of obtaining clinically useful SSEPs and motor-evoked potentials. Subgroup analysis was performed by age. A total of 146 patients were identified, 9 had SSEPs without TcMEPs monitored, 117 had both TcMEPs and SSEPs monitored, and the remainder had only electromyographic monitoring. All patients who were to have TcMEPs recorded received a total IV anesthetic. Among the 117 patients who had both SSEPs and TcMEPs monitored, clinically relevant TcMEPs were obtained more frequently than SSEPs (110/117 vs 89/117; χ = 14.82; P = 0.00012). There were significant differences between the rates of obtaining SSEPs and TcMEPs in the 0- to 23-month (P = 0.0038) and 24- to 47-month (P = 0.0056) age groups. Utilization of a double-train stimulation technique facilitated obtaining TcMEPs in the youngest patients. TcMEPs can be obtained more easily than SSEPs in patients younger than 72 months if a permissive anesthetic technique is used. The success rate for obtaining TcMEPs can be further enhanced by the use of a temporal facilitation (double-train) stimulation technique.
Rittig-Rasmussen, Bjarne; Kasch, Helge; Fuglsang-Frederiksen, Anders; Jensen, Troels S; Svensson, Peter
2013-07-15
Experimental investigation of short-term and long-term corticomotor effects of specific neck training, coordination training, and no training. To determine the effects of different training programs on the motor neurons controlling the neck muscles as well as the effects of training on muscle strength and muscle fatigue, and the correlations between corticomotor control and motor learning. Training is usually recommended for unspecific neck pain and consists of neck and upper body coordination, strengthening, and endurance exercises. However, it is unclear which type of training is the most effective. No studies have previously investigated the neural effect of neck training and the possible differential effect of specific versus coordination training on corticomotor control. Transcranial magnetic stimulation and electromyography were used to elicit and monitor motor evoked potentials (MEPs) from the trapezius and thumb muscles before and 30 minutes, 1 hour, and 7 days after training. Parameters measured were MEP amplitude, MEP latency, strength, learning effects, and muscle fatigue. Only specific neck training yielded a 67% increase in MEP amplitudes for up to 7 days after training compared with baseline (P < 0.001). No significant changes were seen after coordination training, no training, and in the within-subject control muscle. The mean muscle strength increased immediately after specific neck training from 56.6 to 61 kg (P < 0.001). No subjective or objective measures of fatigue were observed. Specific neck training induced a sustained hyperexcitability of motor neurons controlling the neck muscles compared with coordination training and controls. These findings may prove valuable in the process of developing more effective clinical training programs for unspecific neck pain.
Strategies and Pitfalls of Motor-Evoked Potential Monitoring during Supratentorial Aneurysm Surgery.
Maruta, Yuichi; Fujii, Masami; Imoto, Hirochika; Nomura, Sadahiro; Tanaka, Nobuhiro; Inamura, Akinori; Sadahiro, Hirokazu; Oka, Fumiaki; Goto, Hisaharu; Shirao, Satoshi; Ideguchi, Makoto; Yoneda, Hiroshi; Suehiro, Eiichi; Koizumi, Hiroyasu; Ishihara, Hideyuki; Suzuki, Michiyasu
2016-02-01
The aims of this study were to reveal the strategies and pitfalls of motor-evoked potential (MEP) monitoring methods during supratentorial aneurysm surgery, and to discuss the drawbacks and advantages of each method by reviewing our experiences. Intraoperative MEP monitoring was performed in 250 patients. Results from 4 monitoring techniques using combinations of 2 stimulation sites and 2 recording sites were analyzed retrospectively. MEP was recorded successfully in 243 patients (97.2%). Direct cortical stimulation (DCS)-spinal recorded MEP (sMEP) was used in 134 patients, DCS-muscle recorded MEP (mMEP) in 97, transcranial electrical stimulation (TES)-mMEP in 11 and TES-sMEP in 1. TES-mMEP during closure of the skull was used in 21 patients. DCS-mMEP was able to detect waveforms from upper and/or lower limb muscles. Alternatively, DCS-sMEP (direct [D]-wave) could accurately estimate amplitude changes. A novel "early warning sign" indicating ischemia was found in 21 patients, which started with a transiently increased amplitude of D-wave and then decreased after proximal interruption of major arteries. False-negative findings in MEP monitoring in 2 patients were caused by a blood insufficiency in the lenticulostriate artery and by a TES-sMEP recording, respectively. The results of this study suggest that to perform accurate MEP monitoring, DCS-mMEP or DCS-sMEP recording should be used as the situation demands, with combined use of TES-mMEP recording during closure of the skull. DCS-sMEP is recommended for accurate analysis of waveforms. We also propose a novel "early warning sign" of blood insufficiency in the D-wave. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Short-term and long-term plasticity interaction in human primary motor cortex.
Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Li Voti, Pietro; Bologna, Matteo; Berardelli, Alfredo
2011-05-01
Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short- and long-term forms of synaptic plasticity, resembling short-term potentiation (STP) and long-term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5-Hz rTMS interferes with LTP/LTD-like plasticity induced by intermittent and continuous theta-burst stimulation (iTBS and cTBS). The effects induced by 5-Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5-Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5-Hz rTMS. Interactions between 5-Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5-Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5-Hz rTMS and TBS, and delivering one and ten 5-Hz rTMS trains. We also investigated whether 5-Hz rTMS induces changes in intracortical excitability tested with paired-pulse transcranial magnetic stimulation. When given alone, 5-Hz rTMS induced short-lasting and iTBS/cTBS induced long-lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5-Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS-induced after-effects disappeared. The 5-Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5-Hz rTMS abolishes iTBS/cTBS-induced LTP/LTD-like plasticity through non-homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short-term and long-term rTMS-induced plasticity in human M1. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chen; Perez, Danny; Voter, Arthur F.
Hyperdynamics is a powerful method to significantly extend the time scales amenable to molecular dynamics simulation of infrequent events. One outstanding challenge, however, is the development of the so-called bias potential required by the method. In this work, we design a bias potential using information about all minimum energy pathways (MEPs) out of the current state. While this approach is not suitable for use in an actual hyperdynamics simulation, because the pathways are generally not known in advance, it allows us to show that it is possible to come very close to the theoretical boost limit of hyperdynamics while maintainingmore » high accuracy. We demonstrate this by applying this MEP-based hyperdynamics (MEP-HD) to metallic surface diffusion systems. In most cases, MEP-HD gives boost factors that are orders of magnitude larger than the best existing bias potential, indicating that further development of hyperdynamics bias potentials could have a significant payoff. Lastly, we discuss potential practical uses of MEP-HD, including the possibility of developing MEP-HD into a true hyperdynamics.« less
The effect of rolling massage on the excitability of the corticospinal pathway.
Aboodarda, Saied J; Greene, Rebecca M; Philpott, Devin T; Jaswal, Ramandeep S; Millet, Guillaume Y; Behm, David G
2018-04-01
The aim of the present study was to investigate the alterations of corticospinal excitability (motor evoked potential, MEP) and inhibition (silent period, SP) following rolling massage of the quadriceps muscles. Transcranial magnetic and femoral nerve electrical stimuli were used to elicit MEPs and compound muscle action potential (Mmax) in the vastus lateralis and vastus medialis muscles prior to and following either (i) 4 sets of 90-s rolling massage (ROLLING) or (ii) rest (CONTROL). One series of neuromuscular evaluations, performed after each set of ROLLING or CONTROL, included 3 MEPs and 1 Mmax elicited every 4 s during 15-s submaximal contractions at 10% (experiment 1, n = 16) and 50% (experiment 2, n = 10) of maximal voluntary knee extensions (MVC). The MEP/Mmax ratio and electromyographic activity recorded from vastus lateralis at 10% MVC demonstrated significantly lower values during ROLLING than CONTROL (P < 0.05). The ROLLING did not elicit any significant changes in muscle excitability (Mmax area) and duration of transcranial magnetic stimulation-induced SP recorded from any muscle or level of contraction (P > 0.05). The findings suggest that rolling massage can modulate the central excitability of the circuitries innervating the knee extensors; however, the observed effects are dependent on the background contraction intensity during which the neuromuscular measurements are recorded.
Early effects of carbachol on the morphology of motor endplates of mammalian skeletal muscle fibers.
Voigt, Tilman
2010-03-01
Long-term disturbance of the calcium homeostasis of motor endplates (MEPs) causes necrosis of muscle fibers. The onset of morphological changes in response to this disturbance, particularly in relation to the fiber type, is presently unknown. Omohyoid muscles of mice were incubated for 1-30 minutes in 0.1 mM carbachol, an acetylcholine agonist that causes an inward calcium current. In these muscles, the structural changes of the sarcomeres and the MEP sarcoplasm were evaluated at the light- and electron-microscopic level. Predominantly in type I fibers, carbachol incubation resulted in strong contractures of the sarcomeres underlying the MEPs. Owing to these contractures, the usual beret-like form of the MEP-associated sarcoplasm was deformed into a mushroom-like body. Consequently, the squeezed MEPs partially overlapped the adjacent muscle fiber segments. There are no signs of contractures below the MEPs if muscles were incubated in carbachol in calcium-free Tyrode's solution. Carbachol induced inward calcium current and produced fiber-type-specific contractures. This finding points to differences in the handling of calcium in MEPs. Possible mechanisms for these fiber-type-specific differences caused by carbachol-induced calcium entry are assessed.
Pavoni, V; Gianesello, L; De Scisciolo, G; Provvedi, E; Horton, D; Barbagli, R; Conti, P; Conti, R; Giunta, F
2012-05-01
Sugammadex is the first of a new class of selective relaxant binding drugs developed for the rapid and complete reversal of neuromuscular blockade (NMB) induced by the aminosteroid neuromuscular blocking drugs rocuronium and vecuronium. Neuromuscular blocking drugs block the transmission from the peripheral nerve to the muscle units, with reduction and disappearance of the evoked electromyographic activity. Usually, neuromuscular monitoring for the investigational reversal drug is performed by calibrated acceleromyography. The efficacy of sugammadex in reversing profound and "deep" residual rocuronium-induced NMB using myogenic motor evoked potentials (mMEPs) monitoring was evaluated. In this prospective trial, 30 consenting patients undergoing propofol-remifentanil anesthesia for spine surgery were enrolled and divided into two groups: Group 1, reversal of profound NMB (sugammadex 16 mg/Kg, 3 minutes after rocuronium 1.2 mg/Kg) and Group 2, reversal of "deep" residual NMB (sugammadex 4 mg/Kg, 15 minutes after rocuronium 0.6 mg/Kg). Myogenic MEPs registrations of upper and lower limbs and the diaphragm were performed, as well as TOF monitoring. After injection of 4 mg/Kg of sugammadex, the means of recovery time of the basal mMEPs amplitudes (diaphragm, and lower limbs and upper limbs) were 124±9.6, 143±163, 151±207 sec, respectively whereas after 16 mg/Kg of sugammadex the times were 109±13.8, 124±0.6, and 135±14.1 sec. Times to TOF ratio 0.9 were 114±75 and 186±105 sec in Group 1 and 2, respectively. No serious adverse effects related to sugammadex and to electrical stimulation were reported. No reoccurrence of neuromuscular block was observed. Neurophysiological monitoring using mMEPs confirmed that sugammadex provided a complete recovery from profound and "deep" residual rocuronium-induced neuromuscular blockade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanna, Nina; Zhou, Nan; Fridley, David
Since China introduced its first mandatory minimum energy performance standards (MEPS) for eight major household products in 1989, its MEPS program has expanded significantly to cover nearly 60 residential, industrial and commercial products. In June of 2012, the pace of standards development for new and revised standards was further accelerated with the launch of the national “100 Energy Efficiency Standards.” Initiatives. An unprecedented 21 MEPS were adopted by China from 2012 to 2013, compared to only 7 MEPS adopted from 2010 to 2011. The Chinese MEPS program now covers 15 products in the residential sector, 15 types of commercial andmore » office equipment, 14 types of industrial equipment and 13 lighting products, making it one of the most comprehensive MEPS program in the world. This study provides an updated prospective evaluation of the potential energy and CO 2 impact of 23 of the 28 MEPS adopted by China from 2010 to 2013. This study updates a previous analysis (Zhou et al. 2011) by quantifying the additional potential energy and CO 2 reductions from the newest standards that have been adopted since 2010. The most recent actual and projected sales, usage, and efficiency data were collected for 14 product categories covered under 23 MEPS adopted between 2010 and 2013. Three scenarios are then used to quantify the energy and CO 2 reduction potential of the one-time implementation of these 23 MEPS, including a baseline counterfactual scenario, the actual MEPS scenario and a best available technologies efficiency scenario. The setting of the baseline efficiency is crucial to determining the savings potential of the new and revised MEPS and international best available technology efficiency levels, as it reflects the market average in the absence of MEPS. For this study, the average baseline is based on either the reported 2010 market-average efficiency if sales-weighted efficiency data is available for new product MEPS and selected products with revised MEPS, or the minimum efficiency requirement of the previous MEPS for products with revised MEPS from 2010 to 2013 that do not have sales-weighted efficiency data. Using sales-weighted efficiency data for the baseline help capture market transformation that has already occurred prior to the implementation of the MEPS, and can better differentiate the savings that are attributable to MEPS. The efficiency levels of best available technologies are taken from recent reviews of international commercially available best available technologies.« less
Hyperdynamics boost factor achievable with an ideal bias potential
Huang, Chen; Perez, Danny; Voter, Arthur F.
2015-08-20
Hyperdynamics is a powerful method to significantly extend the time scales amenable to molecular dynamics simulation of infrequent events. One outstanding challenge, however, is the development of the so-called bias potential required by the method. In this work, we design a bias potential using information about all minimum energy pathways (MEPs) out of the current state. While this approach is not suitable for use in an actual hyperdynamics simulation, because the pathways are generally not known in advance, it allows us to show that it is possible to come very close to the theoretical boost limit of hyperdynamics while maintainingmore » high accuracy. We demonstrate this by applying this MEP-based hyperdynamics (MEP-HD) to metallic surface diffusion systems. In most cases, MEP-HD gives boost factors that are orders of magnitude larger than the best existing bias potential, indicating that further development of hyperdynamics bias potentials could have a significant payoff. Lastly, we discuss potential practical uses of MEP-HD, including the possibility of developing MEP-HD into a true hyperdynamics.« less
Kanosue, Kazuyuki
2017-01-01
The object of this study was to clarify whether corticospinal excitability controlling hand muscles changes concurrently with increases in the imagined contraction level of foot dorsiflexion. Twelve participants performed actual and imagined dorsiflexion of their right foot at three different EMG levels (10, 40 or 80% of the maximum voluntary contraction). During isometric actual- or imagined- dorsiflexion, transcranial magnetic stimulation (TMS) was delivered to the right hand area of the left primary motor cortex. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). During actual contraction, MEP amplitudes of ECR and FCR increased with an increased EMG level of dorsiflexion. Similarly, during imagery contraction, MEP amplitudes of ECR and FCR increased with the intensity of imagery contraction. Furthermore, a correlation between MEP amplitude during actual contraction and imagery contraction was observed for both ECR and FCR. Motor imagery of foot contraction induced an enhancement of corticospinal excitability for hand muscles that was dependent on the imagined contraction levels, just as what was observed when there was an actual contraction. PMID:28957398
Effect of training on corticomotor excitability in clinical neck pain.
Rittig-Rasmussen, B; Kasch, H; Fuglsang-Frederiksen, A; Svensson, P; Jensen, T S
2014-09-01
Corticomotor excitability has been shown to correlate with motor learning and functional recovery. The aim of the present study was to monitor changes in excitability of the corticomotor pathways induced by neck training and to compare the effects in patients with neck or knee pain and pain-free participants. Corticomotor excitability was assessed using transcranial magnetic stimulation and electromyography at baseline, after 30 min and 1 h, and at a 1-week follow-up visit. The primary outcome measures were changes in amplitudes and latencies of motor evoked potentials (MEPs) at 1-week follow-up. MEP responses induced by neck training yielded significantly different outcomes in the three groups. In the group with neck pain and training, MEP amplitudes were significantly reduced between baseline and 30 min (p ≤ 0.05), but with no significant difference between baseline, 1 h (p = 0.178) and 1 week (p = 0.067). In the group with knee pain and training, MEP amplitudes significantly increased between baseline and 30 min (p ≤ 0.01) and 1 h (p < 0.001), but not after 1 week (p = 0.524) compared with baseline. In the pain-free group, there were no changes over time. Neck training reduced neuroplastic responsiveness of corticomotor pathways in neck pain patients in contrast to knee pain patients and pain-free participants. Increased attention to adaptive and maladaptive neuroplastic responses induced by training may prove valuable in the process of optimizing clinical outcomes. © 2014 European Pain Federation - EFIC®
Moriuchi, Takefumi; Iso, Naoki; Sagari, Akira; Ogahara, Kakuya; Kitajima, Eiji; Tanaka, Koji; Tabira, Takayuki; Higashi, Toshio
2014-01-01
Introduction The aim of the present study was to investigate how the speed of observed action affects the excitability of the primary motor cortex (M1), as assessed by the size of motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS). Methods Eighteen healthy subjects watched a video clip of a person catching a ball, played at three different speeds (normal-, half-, and quarter-speed). MEPs were induced by TMS when the model's hand had opened to the widest extent just before catching the ball (“open”) and when the model had just caught the ball (“catch”). These two events were locked to specific frames of the video clip (“phases”), rather than occurring at specific absolute times, so that they could easily be compared across different speeds. MEPs were recorded from the thenar (TH) and abductor digiti minimi (ADM) muscles of the right hand. Results The MEP amplitudes were higher when the subjects watched the video clip at low speed than when they watched the clip at normal speed. A repeated-measures ANOVA, with the factor VIDEO-SPEED, showed significant main effects. Bonferroni's post hoc test showed that the following MEP amplitude differences were significant: TH, normal vs. quarter; ADM, normal vs. half; and ADM, normal vs. quarter. Paired t-tests showed that the significant MEP amplitude differences between TMS phases under each speed condition were TH, “catch” higher than “open” at quarter speed; ADM, “catch” higher than “open” at half speed. Conclusions These results indicate that the excitability of M1 was higher when the observed action was played at low speed. Our findings suggest that the action observation system became more active when the subjects observed the video clip at low speed, because the subjects could then recognize the elements of action and intention in others. PMID:25479161
Acute effects of muscle vibration on sensorimotor integration.
Lapole, Thomas; Tindel, Jérémy
2015-02-05
Projections from the somesthetic cortex are believed to be involved in the modulation of motor cortical excitability by muscle vibration. The aim of the present pilot study was to analyse the effects of a vibration intervention on short-latency afferent inhibition (SAI), long-latency afferent inhibition (LAI), and afferent facilitation (AF), three intracortical mechanisms reflecting sensorimotor integration. Abductor pollicis brevis (APB) SAI, AF and LAI were investigated on 10 subjects by conditioning test transcranial magnetic stimulation pulses with median nerve electrical stimulation at inter-stimuli intervals in the range 15-25 ms, 25-60 ms, and 100-200 ms, respectively. Test motor evoked potentials (MEPs) were compared to unconditioned MEPs. Measurements were performed before and just after 15 min of vibration applied to the muscle belly of APB at a frequency of 80 Hz. SAI and LAI responses were significantly reduced compared to unconditioned test MEPs (P=0.039 and P<0.001, respectively). AF MEP amplitude was greater than SAI and LAI one (P=0.009 and P=0.004, respectively), but not different from test MEP (P=0.511). There was no significant main effect of vibration (P=0.905). However, 4 subjects were clearly identified as responders. Their mean vibration-induced increase was 324 ± 195% in APB SAI MEP amplitude, and 158 ± 53% and 319 ± 80% in AF and LAI, respectively. Significant differences in SAI, AF and LAI vibration-induced changes were found for responders when compared to non-responders (P=0.019, P=0.038, and P=0.01, respectively). A single session of APB vibration may increase sensorimotor integration, via decreased inhibition and increased facilitation. However, such results were not observed for all subjects, suggesting that other factors (such as attention to the sensory inputs) may have played a role. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Role of Corticospinal Suppression during Motor Preparation
Ivry, Richard B.
2009-01-01
Behavior arises from a constant competition between potential actions. For example, movements performed unimanually require selecting one hand rather than the other. Corticospinal (CS) excitability of the nonselected hand is typically decreased prior to movement initiation, suggesting that response selection may involve mechanisms that inhibit nonselected candidate movements. To examine this hypothesis, participants performed a reaction time task, responding with the left, right, or both indexes. Transcranial magnetic stimulation was applied over the right primary motor cortex (M1) to induce motor-evoked potentials (MEPs) in a left hand muscle at various stages during response preparation. To vary the time of response selection, an imperative signal was preceded by a preparatory cue that was either informative or uninformative. Left MEPs decreased following the cue. Surprisingly, this decrease was greater when an informative cue indicated that the response might require the left hand than when it indicated a right hand response. In the uninformative condition, we did not observe additional attenuation of left MEP after an imperative indicating a right hand response. These results argue against the “deselection” hypothesis. Rather, CS suppression seems to arise from “impulse control” mechanisms that ensure that responses associated with potentially selected actions are not initiated prematurely. PMID:19126798
Methanolic extract of Pterocarpus santalinus induces apoptosis in HeLa cells.
Kwon, H J; Hong, Y K; Kim, K H; Han, C H; Cho, S H; Choi, J S; Kim, Byung-Woo
2006-04-21
Ptercarpus santalinus (Fabaceae) has been used as a folk remedy in Korea, and it has been shown to exhibit antiinflammations, antiulcers and anticancer effects. In this study, therefore, we report the cytotoxic activity and the mechanism of cell death exhibited by the methanol extract of Ptercarpus santalinus (MEPS) against human cervical adenocarcinoma cell line, HeLa. Treatment of HeLa cells with various concentrations of MEPS resulted in growth inhibition and induction of apoptosis in a dose-dependent manner as determined by cell viability, chromatin condensation, DNA fragmentation and sub-G1 phase accumulation. In Western blot analysis, apoptosis in the HeLa cells was associated with the release of cytochrome C from mitochondria into the cytosol, activation of caspases-3, -8, -9 and proteolytic cleavage of PARP. These results suggest that MEPS exhibits antiproliferative effect on HeLa cells via apoptosis, and it may be a potential candidate in field of anticancer drug discovery.
An evaluation of motor evoked potential surrogate endpoints during intracranial vascular procedures.
Holdefer, R N; MacDonald, D B; Guo, L; Skinner, S A
2016-02-01
MEPs are used as surrogate endpoints to predict the effectiveness of interventions, made in response to MEP deterioration, in avoiding new postoperative deficits. MEP performance in capturing intervention effects on these outcomes was investigated. A meta-analysis of studies using MEPs during intracranial vascular surgeries between 2003 and 2014 was performed. MEP diagnostic performance and relative risk of new postoperative deficits for reversible compared with irreversible MEP changes were determined. Intervention efficacy in reversing MEP deterioration and postoperative outcomes was compared across studies. MEP diagnostic performance compared favorably with that of other tests used in medicine, with all likelihood ratios >10. The summary relative risk comparing reversible and irreversible changes was 0.40, indicating a 60% decrease in new deficits for reversible MEP changes. The proportion of MEP deteriorations which recovered was negatively correlated with the proportion of new postoperative deficits (r=-0.81, p<.005). The effectiveness of interventions in recovering an MEP decline was predictive of preserved neurologic status. MEPs are provisionally qualified as surrogate endpoints given potentially major harms to the patient if they are not used, compared to the minimal harms and costs associated with their use. The performance of MEPs as substitute, or surrogate, endpoints during intracranial vascular surgeries for new deficits in motor strength in the immediate postoperative period was directly assessed for ten recent studies. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Collins, Michael A; Neafsey, Edward J; Wang, Kewei; Achille, Nicholas J; Mitchell, Robert M; Sivaswamy, Sreevidya
2010-06-01
There is no question that chronic alcohol (ethanol) abuse, a leading worldwide problem, causes neuronal dysfunction and brain damage. However, various epidemiologic studies in recent years have indicated that in comparisons with abstainers or never-drinkers, light/moderate alcohol consumers have lower risks of age-dependent cognitive decline and/or dementia, including Alzheimer's disease (AD). Such reduced risks have been variously attributed to favorable circulatory and/or cerebrovascular effects of moderate ethanol intake, but they could also involve ethanol "preconditioning" phenomena in brain glia and neurons. Here we summarize our experimental studies showing that moderate ethanol preconditioning (MEP; 20-30 mM ethanol) of rat brain cultures prevents neurodegeneration due to beta-amyloid, an important protein implicated in AD, and to other neuroinflammatory proteins such as gp120, the human immunodeficiency virus 1 envelope protein linked to AIDS dementia. The MEP neuroprotection is associated with suppression of neurotoxic protein-evoked initial increases in [Ca(+2)](i) and proinflammatory mediators--e.g., superoxide anion, arachidonic acid, and glutamate. Applying a sensor --> transducer --> effector model to MEP, we find that onset of neuroprotection correlates temporally with elevations in "effector" heat shock proteins (HSP70, HSP27, and phospho-HSP27). The effector status of HSPs is supported by the fact that inhibiting HSP elevations due to MEP largely restores gp120-induced superoxide potentiation and subsequent neurotoxicity. As upstream mediators, synaptic N-methyl-d-aspartate receptors may be initial prosurvival sensors of ethanol, and protein kinase C epsilon and focal adhesion kinase are likely transducers during MEP that are essential for protective HSP elevations. Regarding human consumption, we speculate that moderate ethanol intake might counter incipient cognitive deterioration during advanced aging or AD by exerting preconditioning-like suppression of ongoing neuroinflammation related to amyloidogenic protein accumulation.
ERIC Educational Resources Information Center
Sugawara, Kenichi; Tanabe, Shigeo; Higashi, Toshio; Tsurumi, Takamasa; Kasai, Tatsuya
2011-01-01
The aim of this study is to investigate excitability changes in the human motor cortex induced by variable therapeutic electrical stimulations (TESs) with or without voluntary drive. We recorded motor-evoked potentials (MEPs) from extensor and flexor carpi radialis (FCR) muscles at rest and during FCR muscle contraction after the application of…
Gallasch, Eugen; Rafolt, Dietmar; Postruznik, Magdalena; Fresnoza, Shane; Christova, Monica
2018-04-19
Rotation of a static magnet over the motor cortex (MC) generates a transcranial alternating magnetic field (tAMF), and a linked alternating electrical field. The aim of this transcranial magnetic stimulation (TMS) study is to investigate whether such fields are able to influence MC excitability, and whether there are parallels to tACS induced effects. Fourteen healthy volunteers received 20 Hz tAMF stimulation over the MC, over the vertex, and 20 Hz tACS over the MC, each with a duration of 15 min. TMS assessments were performed before and after the interventions. Changes in motor evoked potentials (MEP), short interval intra-cortical inhibition (SICI) and intra-cortical facilitation (ICF) were evaluated. The tACS and the tAMF stimulation over the MC affected cortical excitability in a different way. After tAMF stimulation MEP amplitudes and ICF decreased and the effect of SICI increased. After tACS MEP amplitudes increased and there were no effects on SICI and ICF. The recorded single and paired pulse MEPs indicate a general decrease of MC excitability following 15 min of tAMF stimulation. The effects demonstrate that devices based on rotating magnets are potentially suited to become a novel brain stimulation tool in clinical neurophysiology. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Lack of LTP-like plasticity in primary motor cortex in Parkinson's disease.
Suppa, A; Marsili, L; Belvisi, D; Conte, A; Iezzi, E; Modugno, N; Fabbrini, G; Berardelli, A
2011-02-01
In this study in patients with Parkinson's disease (PD), off and on dopaminergic therapy, with and without L-dopa-induced dyskinesias (LIDs), we tested intermittent theta-burst stimulation (iTBS), a technique currently used for non-invasively inducing long-term potentiation (LTP)-like plasticity in primary motor cortex (M1). The study group comprised 20 PD patients on and off dopaminergic therapy (11 patients without and 9 patients with LIDs), and 14 age-matched healthy subjects. Patients had mild-to-moderate PD, and no additional neuropsychiatric disorders. We clinically evaluated patients using the Unified Parkinson's Disease Rating Scale (UPDRS) and the Unified Dyskinesia Rating Scale (UDysRS). The left M1 was conditioned with iTBS at 80% active motor threshold intensity. Twenty motor evoked potentials (MEPs) were recorded from right first interosseous muscle before and at 5, 15 and 30 min after iTBS. Between-group analysis of variance (ANOVA) testing healthy subjects versus patients with and without LIDs, on and off therapy showed a significant interaction between factors "Group" and "Time". After iTBS, MEP amplitudes in healthy subjects increased significantly at 5, 15 and 30 min (p<0.01 at all time-points) but in PD patients with and without LIDs, on and off therapy, remained unchanged. In PD patients with and without LIDs, on and off therapy iTBS fails to increase MEP responses. This finding suggests lack of iTBS-induced LTP-like plasticity in M1 in PD regardless of patients' clinical features. Copyright © 2010 Elsevier Inc. All rights reserved.
Kong, Guangyao; Rajagopalan, Adhithi; Lu, Li; Song, Jingming; Hussaini, Mohamed; Zhang, Xinmin; Ranheim, Erik A.; Liu, Yangang; Wang, Jinyong; Gao, Xin; Chang, Yuan-I; Johnson, Kirby D.; Zhou, Yun; Yang, David; Bhatnagar, Bhavana; Lucas, David M.; Bresnick, Emery H.; Zhong, Xuehua; Padron, Eric
2017-01-01
Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53−/− mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53−/− bone marrow cells rapidly develop a highly penetrant AML. We find that p53−/− cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53−/− MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53−/− synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML. PMID:27815262
Kim, Sung-Hoon; Jin, Seok-Joon; Karm, Myong-Hwan; Moon, Young-Jin; Jeong, Hye-Won; Kim, Jae-Won; Ha, Seung-Il; Kim, Joung-Uk
2016-08-01
Although the elicited responses of motor evoked potential (MEP) monitoring are very sensitive to suppression by anesthetic agents and muscle relaxants, the use of neuromuscular blockade (NMB) during MEP monitoring is still controversial because of serious safety concerns and diagnostic accuracy. Here, we evaluated the incidence of unacceptable movement and compared false-negative MEP results between no and partial NMB during cerebral aneurysm clipping surgery. We reviewed patient medical records for demographic data, anesthesia regimen, neurophysiology event logs, MEP results, and clinical outcomes. Patients were divided into 2 groups according to the intraoperative use of NMB: no NMB group (n = 276) and partial NMB group (n = 409). We compared the diagnostic accuracy of MEP results to predict postoperative outcomes between both groups. Additionally, we evaluated unwanted patient movement during MEP monitoring in both groups. Of the 685 patients, 622 (90.8%) manifested no intraoperative changes in MEP and no postoperative motor deficits. Twenty patients showed postoperative neurologic deficits despite preserved intraoperative MEP. False-positive MEP results were 3.6% in the no NMB group and 3.9% in the partial NMB group (P = 1.00). False-negative MEP results were 1.1% in the no NMB group and 4.2% in the partial NMB group (P = 0.02). No spontaneous movement or spontaneous respiration was observed in either group. Propofol/remifentanil-based anesthesia without NMB decreases the stimulation intensity of MEPs, which may reduce the false-negative ratio of MEP monitoring during cerebral aneurysm surgery. Our anesthetic protocol enabled reliable intraoperative MEP recording and patient immobilization during cerebral aneurysm clipping surgery.
Conte, Antonella; Barbanti, Piero; Frasca, Vittorio; Iacovelli, Elisa; Gabriele, Maria; Giacomelli, Elena; Aurilia, Cinzia; Pichiorri, Floriana; Gilio, Francesca; Inghilleri, Maurizio
2010-01-01
To find out more about glutamatergic and gabaergic transmission in migraine, in this study we investigated glutamate-dependent short-term synaptic potentiation and GABA-dependent inhibitory cortical interneuron excitability as assessed by 5Hz-rTMS delivered over primary motor cortex (M1) (motor evoked potential, MEP, amplitude facilitation and cortical silent period, CSP, duration lengthening) in migraine patients with (MA) and without aura (MwoA) and healthy controls. We studied 37 patients with migraine (19 MA and 18 MwoA) and 19 healthy control subjects. 5Hz-rTMS was delivered at 120% resting motor threshold to the hand motor area of the left hemisphere with the target muscle at rest and during contraction. Three of the MA patients were also tested at the end of visual aura during a spontaneous migraine attack. ANOVA showed that the MEP significantly increased in size and CSP significantly lengthened during 5Hz-rTMS in the three groups tested. The 5Hz-rTMS-induced MEP facilitation differed significantly being highest in MA patients. In the three patients tested both ictally and interictally the MEP increased during the interictal session but remained unchanged when the visual aura ended. Our study shows that the neurophysiological feature that differentiates MA patients from MwoA patients and healthy controls is an abnormal M1 susceptibility to 5Hz-rTMS both outside and during the attack suggesting that glutamate-dependent short-term M1 cortical potentiation patterns differ in migraine with and without aura. Copyright 2009 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Cuppen, Inge; Geerdink, Niels; Rotteveel, Jan J; Mullaart, Reinier; Roeleveld, Nel; Pasman, Jaco W
2013-03-01
MEPs and CMAPs as prognostic tools for spina bifida. The aim of this prospective study was to determine the prognostic value of neurophysiological investigations compared to clinical neurological examination in infants with spina bifida. Thirty-six neonates born with spina bifida between 2002 and 2007 were evaluated and followed for 2 years. Lumbar motor evoked potentials (MEPs) and compound muscle action potentials (CMAPs) were obtained at the median age of 2 days old before surgical closure of the spinal anomaly. MEPs were recorded from the quadriceps femoris, tibialis anterior, and gastrocnemius muscles and CMAPs from the latter two muscles. Areas under the curve and latencies of the MEPs and CMAPs were measured. Clinical neurological outcome at the age of 2 years was described using Muscle Function Classes (MFCs) and ambulation status. The areas under the curve of MEPs and CMAPs in the legs were associated with lower neonatal levels of motor and sensory impairment. Better muscle function class of the lower limbs at 2 years of age was associated with larger MEP and CMAP areas of the gastrocnemius and tibialis anterior muscles at neonatal age. MEPs and CMAPs of the gastrocnemius and tibialis anterior muscles are of prognostic value for clinical neurological outcome in neonates born with spina bifida. Copyright © 2012 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Occlusion of LTP-Like Plasticity in Human Primary Motor Cortex by Action Observation
Lepage, Jean-François; Morin-Moncet, Olivier; Beaulé, Vincent; de Beaumont, Louis; Champoux, Francois; Théoret, Hugo
2012-01-01
Passive observation of motor actions induces cortical activity in the primary motor cortex (M1) of the onlooker, which could potentially contribute to motor learning. While recent studies report modulation of motor performance following action observation, the neurophysiological mechanism supporting these behavioral changes remains to be specifically defined. Here, we assessed whether the observation of a repetitive thumb movement – similarly to active motor practice – would inhibit subsequent long-term potentiation-like (LTP) plasticity induced by paired-associative stimulation (PAS). Before undergoing PAS, participants were asked to either 1) perform abductions of the right thumb as fast as possible; 2) passively observe someone else perform thumb abductions; or 3) passively observe a moving dot mimicking thumb movements. Motor evoked potentials (MEP) were used to assess cortical excitability before and after motor practice (or observation) and at two time points following PAS. Results show that, similarly to participants in the motor practice group, individuals observing repeated motor actions showed marked inhibition of PAS-induced LTP, while the “moving dot” group displayed the expected increase in MEP amplitude, despite differences in baseline excitability. Interestingly, LTP occlusion in the action-observation group was present even if no increase in cortical excitability or movement speed was observed following observation. These results suggest that mere observation of repeated hand actions is sufficient to induce LTP, despite the absence of motor learning. PMID:22701704
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Odagaki, Masato; Hiwaki, Osamu
Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) vary in their amplitude from trial to trial. To investigate the functions of motor cortex by TMS, it is necessary to confirm the causal relationship between stimulated sites and variable MEPs. We created artificial neural networks to classify sets of variable MEP signals and finger forces into the corresponding stimulated sites. We conducted TMS at three different positions over M1 and measured MEPs of hand and forearm muscles and forces of the index finger in four subjects. We estimated the sites within motor cortex stimulated by TMS based on cortical columnar structure and nerve excitation properties. Finally, we tried to classify the various MEPs and finger forces into three groups using artificial neural networks. MEPs and finger forces varied from trial to trial, even if the stimulating coil was fixed on the subject's head. Our proposed neural network was able to identify the MEPs and finger forces with the corresponding stimulated sites in M1. We proposed the artificial neural networks to confirm the TMS-stimulated sites using various MEPs and evoked finger forces.
Frequency-dependent changes in sensorimotor and pain affective systems induced by empathy for pain.
Motoyama, Yoshimasa; Ogata, Katsuya; Hoka, Sumio; Tobimatsu, Shozo
2017-01-01
Empathy for pain helps us to understand the pain of others indirectly. To better comprehend the processing of empathic pain, we report the frequency-dependent modulation of cortical oscillations induced by watching movies depicting pain using high-density electroencephalography (EEG), magnetoencephalography (MEG), and motor evoked potentials (MEP). Event-related desynchronization of EEG and MEG was assessed while participants viewed videos of painful (needle) or neutral (cotton swab) situations. The amplitudes of MEPs were also compared between the needle and cotton swab conditions. The degree of suppression in α/β band power was significantly increased, whereas that of γ band power was significantly decreased, in the needle condition compared with the cotton swab condition. EEG revealed that significant differences in α/β band were distributed in the right frontocentral and left parietooccipital regions, whereas significant γ band differences were distributed predominantly over the right hemisphere, which were confirmed by source estimation using MEG. There was a significant positive correlation between the difference in γ power of the two conditions and the visual analog scale subjective rating of aversion, but not in the α/β band. The amplitude of MEPs decreased in the needle condition, which confirmed the inhibition of the primary motor cortex. MEP suppression supports that modulation of cortical oscillations by viewing movies depicting pain involves sensorimotor processing. Our results suggest that α/β oscillations underlie the sensory qualities of others' pain, whereas the γ band reflects the cognitive aspect. Therefore, α/β and γ band oscillations are differentially involved in empathic pain processing under the condition of motor cortical suppression.
Trebbastoni, A; Gilio, F; D'Antonio, F; Cambieri, C; Ceccanti, M; de Lena, C; Inghilleri, M
2012-05-01
To investigate changes in cortical excitability and short-term synaptic plasticity we delivered 5 Hz repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex in 11 patients with mild-to-moderate Alzheimer's disease (AD) before and after chronic therapy with rivastigmine. Resting motor threshold (RMT), motor evoked potential (MEP), cortical silent period (CSP) after single stimulus and MEP facilitation during rTMS trains were tested three times during treatment. All patients underwent neuropsychological tests before and after receiving rivastigmine. rTMS data in patients were compared with those from age-matched healthy controls. At baseline, RMT was significantly lower in patients than in controls whereas CSP duration and single MEP amplitude were similar in both groups. In patients, rTMS failed to induce the normal MEP facilitation during the trains. Chronic rivastigmine intake significantly increased MEP amplitude after a single stimulus, whereas it left the other neurophysiological variables studied unchanged. No significant correlation was found between patients' neuropsychological test scores and TMS measures. Chronic treatment with rivastigmine has no influence on altered cortical excitability and short-term synaptic plasticity as tested by 5 Hz-rTMS. The limited clinical benefits related to cholinesterase inhibitor therapy in patients with AD depend on factors other than improved plasticity within the cortical glutamatergic circuits. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Shirota, Yuichiro; Terney, Daniella; Antal, Andrea; Paulus, Walter
2017-01-01
Transcranial direct current stimulation (tDCS) has been reported to have bidirectional influence on the amplitude of motor-evoked potentials (MEPs) in resting participants in a polarity-specific manner: anodal tDCS increased and cathodal tDCS decreased them. More recently, the effects of tDCS have been shown to depend on a number of additional factors. We investigated whether a small variety of movements involving target and non-target muscles could differentially modify the efficacy of tDCS. MEPs were elicited from the right first dorsal interosseous muscle, defined as the target muscle, by single pulse transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). During M1 tDCS, which lasted for 10 min applying anodal, cathodal, or sham condition, the participants were instructed to squeeze a ball with their right hand (Task 1), to move their right index finger only in the medial (Task 2), in the lateral direction (Task 3), or in medial and lateral direction alternatively (Task 4). Anodal tDCS reduced MEP amplitudes measured in Task 1 and Task 2, but to a lesser extent in the latter. In Task 3, anodal tDCS led to greater MEP amplitudes than cathodal stimulation. Alternating movements resulted in no effect of tDCS on MEP amplitude (Task 4). The results are congruent with the current notion that the aftereffects of tDCS are highly variable relying on a number of factors including the type of movements executed during stimulation.
Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability.
Kraus, Dominic; Naros, Georgios; Bauer, Robert; Leão, Maria Teresa; Ziemann, Ulf; Gharabaghi, Alireza
2016-01-15
Brain-robot interfaces (BRI) are studied as novel interventions to facilitate functional restoration in patients with severe and persistent motor deficits following stroke. They bridge the impaired connection in the sensorimotor loop by providing brain-state dependent proprioceptive feedback with orthotic devices attached to the hand or arm of the patients. The underlying neurophysiology of this BRI neuromodulation is still largely unknown. We investigated changes of corticospinal excitability with transcranial magnetic stimulation in thirteen right-handed healthy subjects who performed 40min of kinesthetic motor imagery receiving proprioceptive feedback with a robotic orthosis attached to the left hand contingent to event-related desynchronization of the right sensorimotor cortex in the β-band (16-22Hz). Neural correlates of this BRI intervention were probed by acquiring the stimulus-response curve (SRC) of both motor evoked potential (MEP) peak-to-peak amplitudes and areas under the curve. In addition, a motor mapping was obtained. The specificity of the effects was studied by comparing two neighboring hand muscles, one BRI-trained and one control muscle. Robust changes of MEP amplitude but not MEP area occurred following the BRI intervention, but only in the BRI-trained muscle. The steep part of the SRC showed an MEP increase, while the plateau of the SRC showed an MEP decrease. MEP mapping revealed a distributed pattern with a decrease of excitability in the hand area of the primary motor cortex, which controlled the BRI, but an increase of excitability in the surrounding somatosensory and premotor cortex. In conclusion, the BRI intervention induced a complex pattern of modulated corticospinal excitability, which may boost subsequent motor learning during physiotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Modulation of soleus corticospinal excitability during Achilles tendon vibration.
Lapole, Thomas; Temesi, John; Arnal, Pierrick J; Gimenez, Philippe; Petitjean, Michel; Millet, Guillaume Y
2015-09-01
Soleus (SOL) corticospinal excitability has been reported to increase during Achilles tendon vibration. The aim of the present study was to further investigate SOL corticospinal excitability and elucidate the changes to intracortical mechanisms during Achilles tendon vibration. Motor-evoked potentials (MEPs) were elicited in the SOL by transcranial magnetic stimulation (TMS) of the corresponding motor cortical area of the leg with and without 50-Hz Achilles tendon vibration. SOL input-output curves were determined. Paired-pulse protocols were also performed to investigate short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) by conditioning test TMS pulses with sub-threshold TMS pulses at inter-stimulus intervals of 3 and 13 ms, respectively. During Achilles tendon vibration, motor threshold was lower than in the control condition (43 ± 13 vs. 49 ± 11 % of maximal stimulator output; p = 0.008). Input-output curves were also influenced by vibration, i.e. there was increased maximal MEP amplitude (0.694 ± 0.347 vs. 0.268 ± 0.167 mV; p < 0.001), decreased TMS intensity to elicit a MEP of half the maximal MEP amplitude (100 ± 13 vs. 109 ± 9 % motor threshold; p = 0.009) and a strong tendency for decreased slope constant (0.076 ± 0.04 vs. 0.117 ± 0.04; p = 0.068). Vibration reduced ICF (98 ± 61 vs. 170 ± 105 % of test MEP amplitude; p = 0.05), but had no effect on SICI (53 ± 26 vs. 48 ± 22 % of test MEP amplitude; p = 0.68). The present results further document the increased vibration-induced corticospinal excitability in the soleus muscle and suggest that this increase is not mediated by changes in SICI or ICF.
Corticospinal Excitability during the Observation of Social Behavior
ERIC Educational Resources Information Center
Bucchioni, Giulia; Cavallo, Andrea; Ippolito, Davide; Marton, Gianluca; Castiello, Umberto
2013-01-01
Evidence suggests that the observation of an action induces in the observers an enhancement of motor evoked potentials (MEPs) recorded by the observer's muscles corresponding to those involved in the observed action. Although this is a well-studied phenomenon, it remains still unclear how the viewer's motor facilitation is influenced by the social…
Morris, Susan H; Howard, Jason J; El-Hawary, Ron
2017-03-15
Randomized controlled study comparing the efficacy of intraoperative somatosensory-evoked potentials (SSEPs) versus transcranial motor-evoked potentials (TcMEPs) as early indicators of neural compromise and predictors of postoperative function in a rat model of spinal cord compression. To compare the relative efficacy of SSEPs and TcMEPs to detect spinal cord compromise and predict postoperative functional deficit after spinal cord compression. There is controversy regarding the efficacy of SSEPs versus TcMEPs to detect intraoperative spinal cord compromise and predict functional outcomes. Previous trials provide some guidance as to the role of each modality in spinal cord monitoring but randomized controlled trials, which are not feasible in humans, are lacking. Twenty-four adult male Wistar rats were evenly divided into three experimental groups and one control group. The experimental groups were determined according to the length of time that 100% TcMEP signal loss was maintained: 0, 5, or 15 minutes. All animals had standardized preoperative functional testing. Spinal cord compromise was initiated utilizing a validated protocol, which involved compression via a balloon catheter introduced into the thoracic sublaminar space. Both SSEPs and TcMEPs were recorded during cord compression for each experimental group. Functional behavioral testing using two validated methods (tilt and modified Tarlov) was repeated 24 hours after termination of spinal cord compression. Post hoc, animals were redistributed into two functional subgroups, noncompromised and compromised, for statistical analysis. TcMEPs consistently detected spinal cord compromise either in advance of or at the same time as SSEPs; however, the delay in SSEP response was not significant for cases when compromised postoperative function resulted. Both SSEP and TcMEP amplitude recovery correlated well with postoperative functional scores. TcMEPs are more sensitive to spinal cord compromise than SSEPs, but the recovery profiles of both SSEP and TcMEP amplitudes are good predictors of postoperative function. 2.
Effects of theta burst stimulation on motor cortex excitability in Parkinson's disease.
Zamir, Orit; Gunraj, Carolyn; Ni, Zhen; Mazzella, Filomena; Chen, Robert
2012-04-01
Long-term potentiation (LTP)-like plasticity induced by paired associative stimulation (PAS) is impaired in Parkinson's disease (PD). Intermittent theta burst stimulation (iTBS) is another rTMS protocol that produces LTP-like effects and increases cortical excitability but its effects are independent of afferent input. The aim of the present study was to examine the effects of iTBS on cortical excitability in PD. iTBS was applied to the motor cortex in 10 healthy subjects and 12 PD patients ON and OFF dopaminergic medications. Motor evoked potential (MEP) before and for 60 min after iTBS were used to examine the changes in cortical excitability induced by iTBS. Paired-pulse TMS was used to test whether intracortical circuits, including short interval intracortical inhibition, intracortical facilitation, short and long latency afferent inhibition, were modulated by iTBS. After iTBS, the control, PD ON and OFF groups had similar increases in MEP amplitude compared to baseline over the course of 60 min. Changes in intracortical circuits induced by iTBS were also similar for the different groups. iTBS produced similar effects on cortical excitability for PD patients and controls. Spike-timing dependent heterosynaptic LTP-like plasticity induced by PAS may be more impaired in PD than frequency dependent homosynaptic LTP-like plasticity induced by iTBS. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans.
Mackey, Ann S; Uttaro, Denise; McDonough, Maureen P; Krivis, Lisa I; Knikou, Maria
2016-01-01
Integration between descending and ascending inputs at supraspinal and spinal levels is a key characteristic of neural control of movement. In this study, we characterized convergence of the flexor reflex and corticospinal inputs on the tibialis anterior (TA) network in healthy human subjects. Specifically, we characterized the modulation profiles of the spinal TA flexor reflex following subthreshold and suprathreshold transcranial magnetic stimulation (TMS). We also characterized the modulation profiles of the TA motor evoked potentials (MEPs) following medial arch foot stimulation at sensory and above reflex threshold. TA flexor reflexes were evoked following stimulation of the medial arch of the foot with a 30 ms pulse train at innocuous intensities. TA MEPs were evoked following TMS of the leg motor cortex area. TMS at 0.7 and at 1.2 MEP resting threshold increased the TA flexor reflex when TMS was delivered 40-100 ms after foot stimulation, and decreased the TA flexor reflex when TMS was delivered 25-110 ms before foot stimulation. Foot stimulation at sensory and above flexor reflex threshold induced a similar time-dependent modulation in resting TA MEPs, that were facilitated when foot stimulation was delivered 40-100 ms before TMS. The flexor reflex and MEPs recorded from the medial hamstring muscle were modulated in a similar manner to that observed for the TA flexor reflex and MEP. Cutaneomuscular afferents from the distal foot can increase the output of the leg motor cortex area. Descending motor volleys that directly or indirectly depolarize flexor motoneurons increase the output of the spinal FRA interneuronal network. The parallel facilitation of flexor MEPs and flexor reflexes is likely cortical in origin. Afferent mediated facilitation of corticospinal excitability can be utilized to strengthen motor cortex output in neurological disorders. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Gallina, Alessio; Peters, Sue; Neva, Jason L; Boyd, Lara A; Garland, S Jayne
2017-06-01
The objective of this study was to determine whether motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation and measured with conventional bipolar electromyography (EMG) are influenced by crosstalk from non-target muscles. MEPs were recorded in healthy participants using conventional EMG electrodes placed over the extensor carpi radialis muscle (ECR) and high-density surface EMG (HDsEMG). Fifty MEPs at 120% resting and active motor threshold were recorded. To determine the contribution of ECR to the MEPs, the amplitude distribution across HDsEMG channels was correlated with EMG activity recorded during a wrist extension task. Whereas the conventional EMG identified MEPs from ECR in >90% of the stimulations, HDsEMG revealed that spatial amplitude distribution representative of ECR activation was observed less frequently at rest than while holding a contraction (P < 0.001). MEPs recorded with conventional EMG may contain crosstalk from non-target muscles, especially when the stimulation is applied at rest. Muscle Nerve 55: 828-834, 2017. © 2016 Wiley Periodicals, Inc.
Stinson, L W; Murray, M J; Jones, K A; Assef, S J; Burke, M J; Behrens, T L; Lennon, R L
1994-02-01
A microcomputer-controlled closed-loop infusion system (MCCLIS) has been developed that provides stable intraoperative levels of partial neuromuscular blockade. Complete neuromuscular blockade interferes with intraoperative motor-evoked potential (MEP) monitoring used for patients undergoing surgical procedures that place them at risk for spinal cord ischemia. Nine patients were studied during which the MCCLIS maintained stable levels of partial neuromuscular blockade and allowed transcranial magnetic motor-evoked potential (TcM-MEP) monitoring during thoracoabdominal aortic aneurysmectomy. The use of TcM-MEP for monitoring intraoperative spinal cord function was balanced against surgical considerations for muscle relaxation with 80% to 90% neuromuscular blockade fulfilling each requirement. Intraoperative adjustment of partial neuromuscular blockade to facilitate TcM-MEP monitoring was also possible with the MCCLIS. The MCCLIS should allow for further investigation into the sensitivity, specificity, and predictability of TcM-MEP monitoring for any patient at risk for intraoperative spinal cord ischemia including those undergoing thoracoabdominal aortic aneurysmectomy.
Azabou, Eric; Manel, Véronique; Abelin-Genevois, Kariman; Andre-Obadia, Nathalie; Cunin, Vincent; Garin, Christophe; Kohler, Remi; Berard, Jérôme; Ulkatan, Sedat
2014-07-01
Combined monitoring of muscle motor evoked potentials elicited by transcranial electric stimulation (TES-mMEP) and cortical somatosensory evoked potentials (cSSEPs) is safe and effective for spinal cord monitoring during scoliosis surgery. However, TES-mMEP/cSSEP is not always feasible. Predictors of feasibility would help to plan the monitoring strategy. To identify predictors of the feasibility of TES-mMEP/cSSEP during scoliosis surgery. Prospective cohort study in a clinical neurophysiology unit and pediatric orthopedic department of a French university hospital. A total of 103 children aged 2 to 19 years scheduled for scoliosis surgery. Feasibility rate of intraoperative TES-mMEP/cSSEP monitoring. All patients underwent a preoperative neurological evaluation and preoperative mMEP and cSSEP recordings at both legs. For each factor associated with feasibility, we computed sensitivity, specificity, positive predictive value (PPV), and negative predictive value. A decision tree was designed. Presence of any of the following factors was associated with 100% feasibility, 100% specificity, and 100% PPV: idiopathic scoliosis, normal preoperative neurological findings, and normal preoperative mMEP and cSSEP recordings. Feasibility was 0% in the eight patients with no recordable mMEPs or cSSEPs during preoperative testing. A decision tree involving three screening steps can be used to identify patients in whom intraoperative TES-mMEP/cSSEP is feasible. Preoperative neurological and neurophysiological assessments are helpful for identifying patients who can be successfully monitored by TES-mMEP/cSSEP during scoliosis surgery. Copyright © 2014 Elsevier Inc. All rights reserved.
Glasby, Michael A; Tsirikos, Athanasios I; Henderson, Lindsay; Horsburgh, Gillian; Jordan, Brian; Michaelson, Ciara; Adams, Christopher I; Garrido, Enrique
2017-08-01
To compare measurements of motor evoked potential latency stimulated either magnetically (mMEP) or electrically (eMEP) and central motor conduction time (CMCT) made pre-operatively in conscious patients using transcranial and intra-operatively using electrical cortical stimulation before and after successful instrumentation for the treatment of adolescent idiopathic scoliosis. A group initially of 51 patients with adolescent idiopathic scoliosis aged 12-19 years was evaluated pre-operatively in the outpatients' department with transcranial magnetic stimulation. The neurophysiological data were then compared statistically with intra-operative responses elicited by transcranial electrical stimulation both before and after successful surgical intervention. MEPs were measured as the cortically evoked compound action potentials of Abductor hallucis. Minimum F-waves were measured using conventional nerve conduction methods and the lower motor neuron conduction time was calculated and this was subtracted from MEP latency to give CMCT. Pre-operative testing was well tolerated in our paediatric/adolescent patients. No neurological injury occurred in any patient in this series. There was no significant difference in the values of mMEP and eMEP latencies seen pre-operatively in conscious patients and intra-operatively in patients under anaesthetic. The calculated quantities mCMCT and eCMCT showed the same statistical correlations as the quantities mMEP and eMEP latency. The congruency of mMEP and eMEP and of mCMCT and eCMCT suggests that these measurements may be used comparatively and semi-quantitatively for the comparison of pre-, intra-, and post-operative spinal cord function in spinal deformity surgery.
Kullmann, Marcel; Tatagiba, Marcos; Liebsch, Marina; Feigl, Guenther C
2016-11-01
The predictive value of changes in intraoperatively acquired motor-evoked potentials (MEPs) of the lower cranial nerves (LCN) IX-X (glossopharyngeal-vagus nerve) and CN XII (hypoglossal nerve) on operative outcomes was investigated. MEPs of CN IX-X and CN XII were recorded intraoperatively in 63 patients undergoing surgery of the posterior cranial fossa. We correlated the changes of the MEPs with postoperative nerve function. For CN IX-X, we found a correlation between the amplitude of the MEP ratio and uvula deviation (P = 0.028) and the amplitude duration of the MEP and gag reflex function (P = 0.027). Patients with an MEP ratio of the glossopharyngeal-vagus amplitude ≤1.47 μV had a 3.4 times increased risk of developing a uvula deviation. Patients with a final MEP duration of the CN IX-X ≤11.6 milliseconds had a 3.6 times increased risk for their gag reflex to become extinct. Our study greatly contributes to the current knowledge of intraoperative MEPs as a predictor for postoperative cranial nerve function. We were able to extent previous findings on MEP values of the facial nerve on postoperative nerve function to 3 additional cranial nerves. Finding reliable predictors for postoperative nerve function is of great importance to the overall quality of life for a patient undergoing surgery of the posterior cranial fossa. Copyright © 2016 Elsevier Inc. All rights reserved.
Wakefulness delta waves increase after cortical plasticity induction.
Assenza, G; Pellegrino, G; Tombini, M; Di Pino, G; Di Lazzaro, V
2015-06-01
Delta waves (DW) are present both during sleep and in wakefulness. In the first case, DW are considered effectors of synaptic plasticity, while in wakefulness, when they appear in the case of brain lesions, their functional meaning is not unanimously recognized. To throw light on the latter, we aimed to investigate the impact on DW exerted by the cortical plasticity-inducing protocol of intermittent theta burst stimulation (iTBS). Twenty healthy subjects underwent iTBS (11 real iTBS and nine sham iTBS) on the left primary motor cortex with the aim of inducing long-term potentiation (LTP)-like phenomena. Five-minute resting open-eye 32-channel EEG, right opponens pollicis motor-evoked potentials (MEPs), and alertness behavioral scales were collected before and up to 30 min after the iTBS. Power spectral density (PSD), interhemispheric coherence between homologous sensorimotor regions, and intrahemispheric coherence were calculated for the frequency bands ranging from delta to beta. Real iTBS induced a significant increase of both MEP amplitude and DW PSD lasting up to 30 min after stimulation, while sham iTBS did not. The DW increase was evident over frontal areas ipsilateral and close to the stimulated cortex (electrode F3). Neither real nor sham iTBS induced significant modifications in the PSD of theta, alpha, and beta bands and in the interhemispheric coherence. Behavioral visuo-analogic scales score did not demonstrate changes in alertness after stimulations. No correlations were found between MEP amplitude and PSD changes in the delta band. Our data showed that LTP induction in the motor cortex during wakefulness, by means of iTBS, is accompanied by a large and enduring increase of DW over the ipsilateral frontal cortex. The present results are strongly in favor of a prominent role of DW in the neural plasticity processes taking place during the awake state. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Training voluntary motor suppression with real-time feedback of motor evoked potentials.
Majid, D S Adnan; Lewis, Christina; Aron, Adam R
2015-05-01
Training people to suppress motor representations voluntarily could improve response control. We evaluated a novel training procedure of real-time feedback of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) over motor cortex. On each trial, a cue instructed participants to use a mental strategy to suppress a particular finger representation without overt movement. A single pulse of TMS was delivered over motor cortex, and an MEP-derived measure of hand motor excitability was delivered visually to the participant within 500 ms. In experiment 1, we showed that participants learned to reduce the excitability of a particular finger beneath baseline (selective motor suppression) within 30 min of practice. In experiment 2, we performed a double-blind study with 2 training groups (1 with veridical feedback and 1 with matched sham feedback) to show that selective motor suppression depends on the veridical feedback itself. Experiment 3 further demonstrated the importance of veridical feedback by showing that selective motor suppression did not arise from mere mental imagery, even when incentivized with reward. Thus participants can use real-time feedback of TMS-induced MEPs to discover an effective mental strategy for selective motor suppression. This high-temporal-resolution, trial-by-trial-feedback training method could be used to help people better control response tendencies and may serve as a potential therapy for motor disorders such as Tourette's and dystonia. Copyright © 2015 the American Physiological Society.
Dickins, Daina S. E.
2017-01-01
Older adults have been shown to exhibit a reduction in the lateralization of neural activity. Although neuroplasticity induced by noninvasive brain stimulation has been reported to be attenuated in the targeted motor cortex of older adults, it remains possible that the plasticity effects may instead manifest in a more distributed (bilateral) network. Furthermore, attention, which modulates neuroplasticity in young adults, may influence these effects. To address these questions, plasticity was induced in young (19–32 years) and older (65–78 years) adults using transcranial magnetic stimulation (TMS) paired with peripheral nerve stimulation. The plasticity effects induced by this paired associative stimulation (PAS) protocol in the targeted and nontargeted hemispheres were probed using TMS-induced motor-evoked potentials (MEPs) recorded from the abductor pollicis brevis (APB) muscle of each hand. PAS-induced effects were highly variable across individuals, with only half of the participants in each group demonstrating the expected increase in MEP amplitude. Contrary to predictions, however, PAS-induced corticospinal plasticity manifests predominately in the targeted hemisphere for both young and older adults. Attention to the target hand did not enhance corticospinal plasticity. The results suggest that plasticity does not manifest differently across bilateral corticospinal pathways between young and older adults. PMID:29147586
Nettekoven, Charlotte; Volz, Lukas J.; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K.; Eickhoff, Simon B.; Fink, Gereon R.
2014-01-01
Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. PMID:24828639
Frequency-dependent changes in sensorimotor and pain affective systems induced by empathy for pain
Motoyama, Yoshimasa; Ogata, Katsuya; Hoka, Sumio; Tobimatsu, Shozo
2017-01-01
Background Empathy for pain helps us to understand the pain of others indirectly. To better comprehend the processing of empathic pain, we report the frequency-dependent modulation of cortical oscillations induced by watching movies depicting pain using high-density electroencephalography (EEG), magnetoencephalography (MEG), and motor evoked potentials (MEP). Methods Event-related desynchronization of EEG and MEG was assessed while participants viewed videos of painful (needle) or neutral (cotton swab) situations. The amplitudes of MEPs were also compared between the needle and cotton swab conditions. Results The degree of suppression in α/β band power was significantly increased, whereas that of γ band power was significantly decreased, in the needle condition compared with the cotton swab condition. EEG revealed that significant differences in α/β band were distributed in the right frontocentral and left parietooccipital regions, whereas significant γ band differences were distributed predominantly over the right hemisphere, which were confirmed by source estimation using MEG. There was a significant positive correlation between the difference in γ power of the two conditions and the visual analog scale subjective rating of aversion, but not in the α/β band. The amplitude of MEPs decreased in the needle condition, which confirmed the inhibition of the primary motor cortex. Conclusion MEP suppression supports that modulation of cortical oscillations by viewing movies depicting pain involves sensorimotor processing. Our results suggest that α/β oscillations underlie the sensory qualities of others’ pain, whereas the γ band reflects the cognitive aspect. Therefore, α/β and γ band oscillations are differentially involved in empathic pain processing under the condition of motor cortical suppression. PMID:28615963
Lasting depression in corticomotor excitability associated with local scalp cooling.
Tremblay, François; Remaud, Anthony; Mekonnen, Abeye; Gholami-Boroujeny, Shiva; Racine, Karl-Édouard; Bolic, Miodrag
2015-07-23
In this study, we investigated the effect of local scalp cooling on corticomotor excitability with transcranial magnetic simulation (TMS). Participants (healthy male adults, n=12) were first assessed with TMS to derive baseline measure of excitability from motor evoked potentials (MEPs) using the right first dorsal interosseous as the target muscle. Then, local cooling was induced on the right hemi-scalp (upper frontal region ∼ 15 cm(2)) by means of a cold wrap. The cooling was maintained for 10-15 min to get a decrease of at least 10°C from baseline temperature. In the post-cooling period, both scalp temperature and MEPs were reassessed at specific time intervals (i.e., T0, T10, T20 and T30 min). Scalp surface temperatures dropped on average by 12.5°C from baseline at T0 (p<0.001) with partial recovery at T10 (p<0.05) and full recovery at T20. Parallel analysis of post-cooling variations in MEP amplitude revealed significant reductions relative to baseline at T0, T10 and T20. No concurrent change in MEP latency was observed. A secondary control experiment was performed in a subset of participants (n=5) to account for the mild discomfort associated with the wrapping procedure without the cooling agent. Results showed no effect on any of the dependent variables (temperature, MEP amplitude and latency). To our knowledge, this report provides the first neurophysiological evidence linking changes in scalp temperature with lasting changes in corticomotor excitability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.
Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki
2017-01-01
Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wu, Sherry Y; Yang, Xianbin; Gharpure, Kshipra M; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H; Nagaraja, Archana S; Miyake, Takahito M; Rupaimoole, Rajesha; Pecot, Chad V; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J; Previs, Rebecca A; Armaiz-Pena, Guillermo N; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J; Kovvali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A J; Overwijk, Willem W; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A; Lopez-Berestein, Gabriel; Ram, Prahlad T; Nawrot, Barbara; Sood, Anil K
2014-03-12
Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2'-O-Methyl (2'-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2'-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM domain containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumours following MePS2-modified siRNA treatment, leading to a synergistic anti-tumour effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types.
Cortical inhibition and excitation by bilateral transcranial alternating current stimulation.
Cancelli, Andrea; Cottone, Carlo; Zito, Giancarlo; Di Giorgio, Marina; Pasqualetti, Patrizio; Tecchio, Franca
2015-01-01
Transcranial electric stimulations (tES) with amplitude-modulated currents are promising tools to enhance neuromodulation effects. It is essential to select the correct cortical targets and inhibitory/excitatory protocols to reverse changes in specific networks. We aimed at assessing the dependence of cortical excitability changes on the current amplitude of 20 Hz transcranial alternating current stimulation (tACS) over the bilateral primary motor cortex. We chose two amplitude ranges of the stimulations, around 25 μA/cm2 and 63 μA/cm2 from peak to peak, with three values (at steps of about 2.5%) around each, to generate, respectively, inhibitory and excitatory effects of the primary motor cortex. We checked such changes online through transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). Cortical excitability changes depended upon current density (p = 0.001). Low current densities decreased MEP amplitudes (inhibition) while high current densities increased them (excitation). tACS targeting bilateral homologous cortical areas can induce online inhibition or excitation as a function of the current density.
Reduced cortico-motor facilitation in a normal sample with high traits of autism.
Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo; Fitzgerald, Paul B
2009-12-25
Recent research in social neuroscience proposes a link between mirror neuron system (MNS) and social cognition. The MNS has been proposed to be the neural mechanism underlying action recognition and intention understanding and more broadly social cognition. Pre-motor MNS has been suggested to modulate the motor cortex during action observation. This modulation results in an enhanced cortico-motor excitability reflected in increased motor evoked potentials (MEPs) at the muscle of interest during action observation. Anomalous MNS activity has been reported in the autistic population whose social skills are notably impaired. It is still an open question whether traits of autism in the normal population are linked to the MNS functioning. We measured TMS-induced MEPs in normal individuals with high and low traits of autism as measured by the autistic quotient (AQ), while observing videos of hand or mouth actions, static images of a hand or mouth or a blank screen. No differences were observed between the two while they observed a blank screen. However participants with low traits of autism showed significantly greater MEP amplitudes during observation of hand/mouth actions relative to static hand/mouth stimuli. In contrast, participants with high traits of autism did not show such a MEP amplitude difference between observation of actions and static stimuli. These results are discussed with reference to MNS functioning.
Neurofunctional changes after a single mirror therapy intervention in chronic ischemic stroke.
Novaes, Morgana M; Palhano-Fontes, Fernanda; Peres, Andre; Mazzetto-Betti, Kelley; Pelicioni, Maristela; Andrade, Kátia C; Dos Santos, Antonio Carlos; Pontes-Neto, Octavio; Araujo, Draulio
2018-03-20
Mirror therapy (MT) is becoming an alternative rehabilitation strategy for various conditions, including stroke. Although recent studies suggest the positive benefit of MT in chronic stroke motor recovery, little is known about its neural mechanisms. To identify functional brain changes induced by a single MT intervention in ischemic stroke survivors, assessed by both transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI). TMS and fMRI were used to investigate 15 stroke survivors immediately before and after a single 30-min MT session. We found statistically significant increase in post-MT motor evoked potential (MEP) amplitude (increased excitability) from the affected primary motor cortex (M1), when compared to pre-MT MEP. Post-MT fMRI maps were associated with a more organized and constrained pattern, with a more focal M1 activity within the affected hemisphere after MT, limited to the cortical area of hand representation. Furthermore, we find a change in the balance of M1 activity toward the affected hemisphere. In addition, significant correlation was found between decreased fMRI β-values and increased MEP amplitude post-MT, in the affected hemisphere. Our study suggests that a single MT intervention in stroke survivors is related to increased MEP of the affected limb, and a more constrained activity of the affected M1, as if activity had become more constrained and limited to the affected hemisphere.
Towards assessing corticospinal excitability bilaterally: Validation of a double-coil TMS method.
Grandjean, Julien; Derosiere, Gerard; Vassiliadis, Pierre; Quemener, Louise; Wilde, Ysaline de; Duque, Julie
2018-01-01
For several decades, Transcranial magnetic stimulation (TMS) has been used to monitor corticospinal excitability (CSE) changes in various contexts. Habitually, single-coil TMS is applied over one primary motor cortex (M1), eliciting motor-evoked potentials (MEPs) in a contralateral limb muscle, usually a hand effector. However, in many situations, it would be useful to obtain MEPs in both hands simultaneously, to track CSE bilaterally. Such an approach requires stimulating both M1 concurrently while avoiding interference between the two descending stimuli. We examined MEPs obtained at rest using a double-coil TMS approach where the two M1 are stimulated with a 1ms inter-pulse interval (double-coil 1ms ). MEPs were acquired using double-coil 1ms (MEP double ) or single-coil (MEP single ) TMS, at five different intensities of stimulation (100, 115, 130, 145 or 160% of the resting motor threshold, rMT). Given the 1ms inter-pulse interval in double-coil 1ms trials, MEP double were either evoked by a 1st (MEP double-1 ) or a 2nd (MEP double-2 ) TMS pulse. All MEP TYPE (MEP TYPE =MEP single , MEP double-1 and MEP double-2 ) were equivalent, regardless of the hand within which they were elicited, the intensity of stimulation or the pulse order. This method allows one to observe state-related CSE changes for the two hands simultaneously on a trial-by-trial basis. These results infer the absence of any neural interactions between the two cortico-spinal volleys with double-coil 1ms TMS. Hence, this technique can be reliably used to assess CSE bilaterally, opening new research perspectives for scientists interested in physiological markers of activity in the motor output system. Copyright © 2017 Elsevier B.V. All rights reserved.
Arm posture-dependent changes in corticospinal excitability are largely spinal in origin.
Nuzzo, James L; Trajano, Gabriel S; Barry, Benjamin K; Gandevia, Simon C; Taylor, Janet L
2016-04-01
Biceps brachii motor evoked potentials (MEPs) from cortical stimulation are influenced by arm posture. We used subcortical stimulation of corticospinal axons to determine whether this postural effect is spinal in origin. While seated at rest, 12 subjects assumed several static arm postures, which varied in upper-arm (shoulder flexed, shoulder abducted, arm hanging to side) and forearm orientation (pronated, neutral, supinated). Transcranial magnetic stimulation over the contralateral motor cortex elicited MEPs in resting biceps and triceps brachii, and electrical stimulation of corticospinal tract axons at the cervicomedullary junction elicited cervicomedullary motor evoked potentials (CMEPs). MEPs and CMEPs were normalized to the maximal compound muscle action potential (Mmax). Responses in biceps were influenced by upper-arm and forearm orientation. For upper-arm orientation, biceps CMEPs were 68% smaller (P= 0.001), and biceps MEPs 31% smaller (P= 0.012), with the arm hanging to the side compared with when the shoulder was flexed. For forearm orientation, both biceps CMEPs and MEPs were 34% smaller (both P< 0.046) in pronation compared with supination. Responses in triceps were influenced by upper-arm, but not forearm, orientation. Triceps CMEPs were 46% smaller (P= 0.007) with the arm hanging to the side compared with when the shoulder was flexed. Triceps MEPs and biceps and triceps MEP/CMEP ratios were unaffected by arm posture. The novel finding is that arm posture-dependent changes in corticospinal excitability in humans are largely spinal in origin. An interplay of multiple reflex inputs to motoneurons likely explains the results. Copyright © 2016 the American Physiological Society.
Arm posture-dependent changes in corticospinal excitability are largely spinal in origin
Nuzzo, James L.; Trajano, Gabriel S.; Barry, Benjamin K.; Gandevia, Simon C.
2016-01-01
Biceps brachii motor evoked potentials (MEPs) from cortical stimulation are influenced by arm posture. We used subcortical stimulation of corticospinal axons to determine whether this postural effect is spinal in origin. While seated at rest, 12 subjects assumed several static arm postures, which varied in upper-arm (shoulder flexed, shoulder abducted, arm hanging to side) and forearm orientation (pronated, neutral, supinated). Transcranial magnetic stimulation over the contralateral motor cortex elicited MEPs in resting biceps and triceps brachii, and electrical stimulation of corticospinal tract axons at the cervicomedullary junction elicited cervicomedullary motor evoked potentials (CMEPs). MEPs and CMEPs were normalized to the maximal compound muscle action potential (Mmax). Responses in biceps were influenced by upper-arm and forearm orientation. For upper-arm orientation, biceps CMEPs were 68% smaller (P = 0.001), and biceps MEPs 31% smaller (P = 0.012), with the arm hanging to the side compared with when the shoulder was flexed. For forearm orientation, both biceps CMEPs and MEPs were 34% smaller (both P < 0.046) in pronation compared with supination. Responses in triceps were influenced by upper-arm, but not forearm, orientation. Triceps CMEPs were 46% smaller (P = 0.007) with the arm hanging to the side compared with when the shoulder was flexed. Triceps MEPs and biceps and triceps MEP/CMEP ratios were unaffected by arm posture. The novel finding is that arm posture-dependent changes in corticospinal excitability in humans are largely spinal in origin. An interplay of multiple reflex inputs to motoneurons likely explains the results. PMID:26864764
Pavoni, Vittorio; Gianesello, Lara; Martinelli, Cristiana; Horton, Andrew; Nella, Alessandra; Gori, Gabriele; Simonelli, Martina; De Scisciolo, Giuseppe
2016-09-01
The aim of this study was to evaluate the efficacy of sugammadex in reversing profound rocuronium-induced neuromuscular block at the laryngeal adductor muscles using motor-evoked potentials (mMEPs). A prospective observational study. University surgical center. Twenty patients with American Society of Anesthesiologists physical class I-II status who underwent propofol-remifentanil anesthesia for the surgery of the thyroid gland. Patients were enrolled for reversal of profound neuromuscular block (sugammadex 16 mg/kg, 3 minutes after rocuronium 1.2 mg/kg). To prevent laryngeal nerve injury during the surgical procedures, all patients underwent neurophysiologic monitoring using mMEPs from vocal muscles. At the same time, the registration of TOF-Watch acceleromyograph at the adductor pollicis muscle response to ulnar nerve stimulation was performed; recovery was defined as a train-of-four (TOF) ratio ≥0.9. After injection of 16 mg/kg of sugammadex, the mean time to recovery of the basal mMEPs response at the laryngeal adductor muscles was 70 ± 18.2 seconds. The mean time to recovery of the TOF ratio to 0.9 was 118 ± 80 seconds. In the postoperative period, 12 patients received follow-up evaluation of the vocal cords and no lesions caused by the surface laryngeal electrode during electrophysiological monitoring were noted. Recovery from profound rocuronium-induced block on the larynx is fast and complete with sugammadex. In urgent scenarios, "early" extubation can be performed, even with a TOF ratio ≤0.9. However, all procedures to prevent postoperative residual curarization should still be immediately undertaken. Copyright © 2016 Elsevier Inc. All rights reserved.
[Evaluation of the role of combined TES-MEP and CSEP monitoring during the spinal surgery].
Chen, Yu-guang; Peng, Xin-sheng; Wan, Yong; Yang, Jun-lin; Zheng, Zhao-min; Zou, Xue-nong; Li, Fo-bao; Shu, Hai-hua; Xia, Jie-hua; Dou, Yun-ling
2010-02-01
To evaluate of the role of transcranial electrical stimulation motor evoked potential (TES-MEP) in combination with cortical somatosensory evoked potential (CSEP) monitoring during the spinal surgery. TES-MEP on bilateral anterior tibial muscle and flexor hallucal brevis and CSEP on bilateral posterior tibial nerve were observed simultaneously on 293 patients during spinal surgery from July 2006 to April 2009. Intravenous anesthesia was employed in all the patients, a part of which were added low dose of sevoflurane or muscle relaxant. The results of TES-MEP, CSEP and combined monitoring were analyzed statistically. Pre-operative and post-operative motor and sensory functions of spinal cord were compared. Success rate of TES-MEP, CSEP and combined monitoring was 90.8%, 96.9% and 100% respectively. For the judgment of motor function of spinal cord, the sensitivity of TES-MEP and CSEP was 100% and 89.3% respectively and the specificity of 98.4% and 96.9%. The Youden index of the two methods was 0.984 and 0.862. For sensory function, the sensitivity of them was 76.7% and 93.3% respectively and the specificity of 98.7% and 98.0%. The Youden index was 0.754 and 0.913. The sensitivity of combined monitoring was 100%, with the specificity of 96.9%. The Youden index was 0.969. The precision of monitoring motor function of spinal cord with TES-MEP is higher than that with CSEP, however, for sensory function, CSEP is more precise. The sensitivity and precision of combined monitoring for spinal cord function were apparently better than that of unitary TES-MEP or CSEP. The combined TES-MEP and CSEP monitoring is a relatively ideal method.
Yang, Chaoqun; Xu, Jianguang; Chen, Jie; Li, Shulin; Cao, Yu; Zhu, Yi; Xu, Lei
2017-08-01
We sought to investigate the reliability of a new electrodiagnostic method for identifying Electrodiagnosis of Brachial Plexus & Vessel Compression Syndrome (BPVCS) in rats that involves the application of transcranial electrical stimulation motor evoked potentials (TES-MEPs) combined with peripheral nerve stimulation compound muscle action potentials (PNS-CMAPs). The latencies of the TES-MEP and PNS-CMAP were initially elongated in the 8-week group. The amplitudes of TES-MEP and PNS-CMAP were initially attenuated in the 16-week group. The isolateral amplitude ratio of the TES-MEP to the PNS-CMAP was apparently decreased, and spontaneous activities emerged at 16 weeks postoperatively. Superior and inferior trunk models of BPVCS were created in 72 male Sprague Dawley (SD) rats that were divided into six experimental groups. The latencies, amplitudes and isolateral amplitude ratios of the TES-MEPs and PNS-CMAPs were recorded at different postoperative intervals. Electrophysiological and histological examinations of the rats' compressed brachial plexus nerves were utilized to establish preliminary electrodiagnostic criteria for BPVCS.
Grover, Helen J; Thornton, Rachel; Lutchman, Lennel N; Blake, Julian C
2016-06-01
The authors report a case of unilateral loss of intraoperative transcranial electrical motor evoked potentials (TES MEP) associated with a spinal cord injury during scoliosis correction and the subsequent use of extraoperative transcranial magnetic stimulation to monitor the recovery of spinal cord function. The authors demonstrate the absence of TES MEPs and absent transcranial magnetic stimulation responses in the immediate postoperative period, and document the partial recovery of transcranial magnetic stimulation responses, which corresponded to partial recovery of TES MEPs. Intraoperative TES MEPs were enhanced using spatial facilitation technique, which enabled the patient to undergo further surgery to stabilize the spine and correct her scoliosis. This case report supports evidence of the use of extraoperative transcranial magnetic stimulation to predict the presence of intraoperative TES responses and demonstrates the usefulness of spatial facilitation to monitor TES MEPs in a patient with a preexisting spinal cord injury.
Stimulus uncertainty enhances long-term potentiation-like plasticity in human motor cortex.
Sale, Martin V; Nydam, Abbey S; Mattingley, Jason B
2017-03-01
Plasticity can be induced in human cortex using paired associative stimulation (PAS), which repeatedly and predictably pairs a peripheral electrical stimulus with transcranial magnetic stimulation (TMS) to the contralateral motor region. Many studies have reported small or inconsistent effects of PAS. Given that uncertain stimuli can promote learning, the predictable nature of the stimulation in conventional PAS paradigms might serve to attenuate plasticity induction. Here, we introduced stimulus uncertainty into the PAS paradigm to investigate if it can boost plasticity induction. Across two experimental sessions, participants (n = 28) received a modified PAS paradigm consisting of a random combination of 90 paired stimuli and 90 unpaired (TMS-only) stimuli. Prior to each of these stimuli, participants also received an auditory cue which either reliably predicted whether the upcoming stimulus was paired or unpaired (no uncertainty condition) or did not predict the upcoming stimulus (maximum uncertainty condition). Motor evoked potentials (MEPs) evoked from abductor pollicis brevis (APB) muscle quantified cortical excitability before and after PAS. MEP amplitude increased significantly 15 min following PAS in the maximum uncertainty condition. There was no reliable change in MEP amplitude in the no uncertainty condition, nor between post-PAS MEP amplitudes across the two conditions. These results suggest that stimulus uncertainty may provide a novel means to enhance plasticity induction with the PAS paradigm in human motor cortex. To provide further support to the notion that stimulus uncertainty and prediction error promote plasticity, future studies should further explore the time course of these changes, and investigate what aspects of stimulus uncertainty are critical in boosting plasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Farajidavar, Aydin; Seifert, Jennifer L; Delgado, Mauricio R; Sparagana, Steven; Romero-Ortega, Mario I; Chiao, J-C
2016-02-01
Intraoperative neurophysiological monitoring (IONM) is utilized to minimize neurological morbidity during spine surgery. Transcranial motor evoked potentials (TcMEPs) are principal IONM signals in which the motor cortex of the subject is stimulated with electrical pulses and the evoked potentials are recorded from the muscles of interest. Currently available monitoring systems require the connection of 40-60 lengthy lead wires to the patient. These wires contribute to a crowded and cluttered surgical environment, and limit the maneuverability of the surgical team. In this work, it was demonstrated that the cumbersome wired system is vulnerable to electromagnetic interference (EMI) produced by operating room (OR) equipment. It was hypothesized that eliminating the lengthy recording wires can remove the EMI induced in the IONM signals. Hence, a wireless system to acquire TcMEPs was developed and validated through bench-top and animal experiments. Side-by-side TcMEPs acquisition from the wired and wireless systems in animal experiments under controlled conditions (absence of EMI from OR equipment) showed comparable magnitudes and waveforms, thus demonstrating the fidelity in the signal acquisition of the wireless solution. The robustness of the wireless system to minimize EMI was compared with a wired-system under identical conditions. Unlike the wired-system, the wireless system was not influenced by the electromagnetic waves from the C-Arm X-ray machine and temperature management system in the OR. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Master environmental plan for Fort Devens, Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biang, C.A.; Peters, R.W.; Pearl, R.H.
Argonne National Laboratory has prepared a master environmental plan (MEP) for Fort Devens, Massachusetts, for the US Army Toxic and Hazardous Materials Agency. The MEP is an assessment based on environmental laws and regulations of both the federal government and the Commonwealth of Massachusetts. The MEP assess the physical and environmental status of 58 potential hazardous waste sites, including 54 study areas (SAs) that pose a potential for releasing contamination into the environment and 4 areas of concern (AOCs) that are known to have substantial contamination. For each SA or AOC, this MEP describes the known history and environment, identifiesmore » additional data needs, and proposes possible response actions. Most recommended response actions consist of environmental sampling and monitoring and other characterization studies. 74 refs., 63 figs., 50 tabs.« less
Johnson, L. Jeffrey
2012-01-01
Isoprenoid biosynthesis is essential for survival of all living organisms. More than 50,000 unique isoprenoids occur naturally, with each constructed from two simple five-carbon precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Two pathways for the biosynthesis of IPP and DMAPP are found in nature. Humans exclusively use the mevalonate (MVA) pathway, while most bacteria, including all Gram-negative and many Gram-positive species, use the unrelated methylerythritol phosphate (MEP) pathway. Here we report the development of a novel, whole-cell phenotypic screening platform to identify compounds that selectively inhibit the MEP pathway. Strains of Salmonella enterica serovar Typhimurium were engineered to have separately inducible MEP (native) and MVA (nonnative) pathways. These strains, RMC26 and CT31-7d, were then used to differentiate MVA pathway- and MEP pathway-specific perturbation. Compounds that inhibit MEP pathway-dependent bacterial growth but leave MVA-dependent growth unaffected represent MEP pathway-selective antibacterials. This screening platform offers three significant results. First, the compound is antibacterial and is therefore cell permeant, enabling access to the intracellular target. Second, the compound inhibits one or more MEP pathway enzymes. Third, the MVA pathway is unaffected, suggesting selectivity for targeting the bacterial versus host pathway. The cell lines also display increased sensitivity to two reported MEP pathway-specific inhibitors, further biasing the platform toward inhibitors selective for the MEP pathway. We demonstrate development of a robust, high-throughput screening platform that combines phenotypic and target-based screening that can identify MEP pathway-selective antibacterials simply by monitoring optical density as the readout for cell growth/inhibition. PMID:22777049
Thirumala, Parthasarathy D; Crammond, Donald J; Loke, Yoon K; Cheng, Hannah L; Huang, Jessie; Balzer, Jeffrey R
2017-03-01
OBJECTIVE The goal of this study was to evaluate the efficacy of intraoperative transcranial motor evoked potential (TcMEP) monitoring in predicting an impending neurological deficit during corrective spinal surgery for patients with idiopathic scoliosis (IS). METHODS The authors searched the PubMed and Web of Science database for relevant lists of retrieved reports and/or experiments published from January 1950 through October 2014 for studies on TcMEP monitoring use during IS surgery. The primary analysis of this review fit the operating characteristic into a hierarchical summary receiver operating characteristic curve model to determine the efficacy of intraoperative TcMEP-predicted change. RESULTS Twelve studies, with a total of 2102 patients with IS were included. Analysis found an observed incidence of neurological deficits of 1.38% (29/2102) in the sample population. Of the patients who sustained a neurological deficit, 82.8% (24/29) also had irreversible TcMEP change, whereas 17.2% (5/29) did not. The pooled analysis using the bivariate model showed TcMEP change with sensitivity (mean 91% [95% CI 34%-100%]) and specificity (mean 96% [95% CI 92-98%]). The diagnostic odds ratio indicated that it is 250 times more likely to observe significant TcMEP changes in patients who experience a new-onset motor deficit immediately after IS correction surgery (95% CI 11-5767). TcMEP monitoring showed high discriminant ability with an area under the curve of 0.98. CONCLUSIONS A patient with a new neurological deficit resulting from IS surgery was 250 times more likely to have changes in TcMEPs than a patient without new deficit. The authors' findings from 2102 operations in patients with IS show that TcMEP monitoring is a highly sensitive and specific test for detecting new spinal cord injuries in patients undergoing corrective spinal surgery for IS. They could not assess the value of TcMEP monitoring as a therapeutic adjunct owing to the limited data available and their study design.
Cortical oscillatory activity and the induction of plasticity in the human motor cortex.
McAllister, Suzanne M; Rothwell, John C; Ridding, Michael C
2011-05-01
Repetitive transcranial magnetic stimulation paradigms such as continuous theta burst stimulation (cTBS) induce long-term potentiation- and long-term depression-like plasticity in the human motor cortex. However, responses to cTBS are highly variable and may depend on the activity of the cortex at the time of stimulation. We investigated whether power in different electroencephalogram (EEG) frequency bands predicted the response to subsequent cTBS, and conversely whether cTBS had after-effects on the EEG. cTBS may utilize similar mechanisms of plasticity to motor learning; thus, we conducted a parallel set of experiments to test whether ongoing electroencephalography could predict performance of a visuomotor training task, and whether training itself had effects on the EEG. Motor evoked potentials (MEPs) provided an index of cortical excitability pre- and post-intervention. The EEG was recorded over the motor cortex pre- and post-intervention, and power spectra were computed. cTBS reduced MEP amplitudes; however, baseline power in the delta, theta, alpha or beta frequencies did not predict responses to cTBS or learning of the visuomotor training task. cTBS had no effect on delta, theta, alpha or beta power. In contrast, there was an increase in alpha power following visuomotor training that was positively correlated with changes in MEP amplitude post-training. The results suggest that the EEG is not a useful state-marker for predicting responses to plasticity-inducing paradigms. The correlation between alpha power and changes in corticospinal excitability following visuomotor training requires further investigation, but may be related to disengagement of the somatosensory system important for motor memory consolidation. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Hayashi, Kazuko
2016-12-01
Recently, NuVasive NV-M5 nerve monitoring system, a new transcranial motor-evoked potential (TcMEP) monitor, has been introduced with the spread of flank-approach spinal operations such as extreme lateral interbody fusion, to prevent nerve damage. Conventional TcMEP monitors use changes in MEP wave patterns, such as amplitude and/or latency, whereas the NV-M5 nerve monitor system first measures the MEP baseline waveform from the transcranial-evoked potential then measures the electric current necessary to obtain the standard of the previous baseline wave pattern at subsequent monitoring times. The NV-M5 monitor determines nerve damage according to the increase in necessary electric current threshold. The NV-M5 monitor also uses a local electrical stimulation mode to monitor the safety of setting screws into the lumbar vertebrae. In this way, various electrical stimulations with various durations and frequencies are used, and electrical noise may result in unpredictable interference with cardiac pacemakers. We performed anesthetic management of extreme lateral interbody fusion surgery using the NV-M5 in a patient with an implanted pacemaker, during which TcMEP stimulation caused interference with the implanted pacemaker. Copyright © 2016 Elsevier Inc. All rights reserved.
Gazzeri, Roberto; Faiola, Andrea; Neroni, Massimiliano; Fiore, Claudio; Callovini, Giorgio; Pischedda, Mauro; Galarza, Marcelo
2013-09-01
Intraoperative motor evoked potentials (MEP) and electromyography (EMG) monitoring in patients with spinal and cranial lesions is a valuable tool for prevention of postoperative motor deficits. The purpose of this study was to determine whether electrophysiological monitoring during skull base, spinal cord, and spinal surgery might be useful for predicting postoperative motor deterioration. From January 2012 to March 2013, thirty-three consecutive patients were studied using intraoperative monitoring (Nuvasive NV-M5 System) to check the integrity of brainstem, spinal cord, and nerve roots, recording transcranial motor evoked potentials (TcMEPs) and electromyography. Changes in MEPs and EMGs were related to postoperative deficits. Preoperative diagnosis included skull base and brainstem lesions (6 patients), spinal tumors (11 patients), spinal deformity (16 cases). Using TcMEPs and EMG is a practicable and safe method. MEPs are useful in any surgery in which the brainstem and spinal cord are at risk. EMG stimulation helps to identify an optimal trans-psoas entry point for an extreme lateral lumbar interbody fusion (XLIF) approach to protect against potential nerve injury. This neural navigation technique via a surgeon-interpreted interface assists the surgical team in safely removing lesions and accessing the intervertebral disc space for minimally invasive spinal procedures.
Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Tsuiki, Shota; Miyaguchi, Shota; Kojima, Sho; Masaki, Mitsuhiro; Otsuru, Naofumi; Onishi, Hideaki
2016-01-01
Transcranial direct current stimulation (tDCS) is a representative non-invasive brain stimulation method (NIBS). tDCS increases cortical excitability not only in healthy individuals, but also in stroke patients where it contributes to motor function improvement. Recently, two additional types of transcranial electrical stimulation (tES) methods have been introduced that may also prove beneficial for stimulating cortical excitability; these are transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS). However, comparison of tDCS with tRNS and tACS, in terms of efficacy in cortical excitability alteration, has not been reported thus far. We compared the efficacy of the three different tES methods for increasing cortical excitability using the same subject population and same current intensity. Fifteen healthy subjects participated in this study. Similar stimulation patterns (1.0 mA and 10 min) were used for the three conditions of stimulation (tDCS, tRNS, and tACS). Cortical excitability was explored via single-pulse TMS elicited motor evoked potentials (MEPs). Compared with pre-measurements, MEPs significantly increased with tDCS, tACS, and tRNS ( p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with tRNS and tACS ( p < 0.05), but not with tDCS. In addition, a significant correlation of the mean stimulation effect was observed between tRNS and tACS ( p = 0.019, r = 0.598). tRNS induced a significant increase in MEP compared with the Pre or Sham at all time points. tRNS resulted in the largest significant increase in MEPs. These findings suggest that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients.
Journée, Sanne Lotte; Journée, Henricus Louis; de Bruijn, Cornelis Marinus; Delesalle, Cathérine John Ghislaine
2018-04-03
There are indications that transcranial electrical stimulation (TES) assesses the motor function of the spinal cord in horses in a more sensitive and reproducible fashion than transcranial magnetic stimulation (TMS). However, no normative data of TES evoked motor potentials (MEP) is available. In this prospective study normative data of TES induced MEP wave characteristics (motor latency times (MLT); amplitude and waveform) was obtained from the extensor carpi radialis (ECR) and tibial cranialis (TC) muscles in a group of healthy horses to create a reference frame for functional diagnostic purposes. For the 12 horses involved in the study 95% confidence intervals for MLTs were 16.1-22.6 ms and 31.9-41.1 ms for ECR and TC muscles respectively. Intra-individual coefficients of variation (CV) and mean of MLTs were: ECR: 2.2-8,2% and 4.5% and TC: 1.4-6.3% and 3.5% respectively. Inter-individual CVs for MLTs were higher, though below 10% on all occasions. The mean ± sd of MEP amplitudes was respectively 3.61 ± 2.55 mV (ECR muscle left) and 4.53 ± 3.1 mV (right) and 2.66 ± 2.22 mV (TC muscle left) and 2.55 ± 1.85 mV (right). MLTs showed no significant left versus right differences. All MLTs showed significant (p < 0.05) voltage dependent decreases with slope coefficients of linear regression for ECR: - 0.049; - 0.061 ms/V and TC: - 0.082; - 0.089 ms/V (left; right). There was a positive correlation found between height at withers and MLTs in all 4 muscle groups. Finally, reliable assessment of MEP characteristics was for all muscle groups restricted to a transcranial time window of approximately 15-19 ms. TES is a novel and sensitive technique to assess spinal motor function in horses. It is easy applicable and highly reproducible. This study provides normative data in healthy horses on TES induced MEPs in the extensor carpi radialis and tibialis cranialis muscles bilaterally. No significant differences between MLTs of the left and right side could be demonstrated. A significant effect of stimulation voltage on MLTs was found. No significant effect of height at the withers could be found based upon the results of the current study. A study in which both TMS and TES are applied on the same group of horses is needed.
[Recommendations for the clinical use of motor evoked potentials in multiple sclerosis].
Fernández, V; Valls-Sole, J; Relova, J L; Raguer, N; Miralles, F; Dinca, L; Taramundi, S; Costa-Frossard, L; Ferrandiz, M; Ramió-Torrentà, Ll; Villoslada, P; Saiz, A; Calles, C; Antigüedad, A; Alvarez-Cermeño, J C; Prieto, J M; Izquierdo, G; Montalbán, X; Fernández, O
2013-09-01
To establish clinical guidelines for the clinical use and interpretation of motor evoked potentials (MEP) in diagnosing and monitoring patients with multiple sclerosis (MS). Recommendations for MEP use and interpretation will help us rationalise and optimise resources used in MS patient diagnosis and follow up. We completed an extensive literature review and pooled our own data to produce a consensus statement with recommendations for the clinical use of MEPs in the study of MS. MEPs, in addition to spinal and cranial magnetic resonance imaging (MRI), help us diagnose and assess MS patients whose disease initially presents as spinal cord syndrome and those with non-specific brain MRI findings, or a normal brain MRI and clinical signs of MS. Whenever possible, a multimodal evoked potential study should be performed on patients with suspected MS in order to demonstrate involvement of the motor pathway which supports a diagnosis of dissemination in space. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Wu, Sherry Y.; Yang, Xianbin; Gharpure, Kshipra M.; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H.; Nagaraja, Archana S.; Miyake, Takahito M.; Rupaimoole, Rajesha; Pecot, Chad V.; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J.; Previs, Rebecca A.; Armaiz-Pena, Guillermo N.; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J.; Kowali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A.J.; Overwijk, Willem W.; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A.; Lopez-Berestein, Gabriel; Ram, Prahlad T.; Nawrot, Barbara; Sood, Anil K.
2014-01-01
Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2’-O-Methyl (2’-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2’-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM Domain Containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumors following MePS2-modified siRNA treatment, leading to a synergistic anti-tumor effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types. PMID:24619206
Corticospinal excitability during the observation of social behavior.
Bucchioni, Giulia; Cavallo, Andrea; Ippolito, Davide; Marton, Gianluca; Castiello, Umberto
2013-03-01
Evidence suggests that the observation of an action induces in the observers an enhancement of motor evoked potentials (MEPs) recorded by the observer's muscles corresponding to those involved in the observed action. Although this is a well-studied phenomenon, it remains still unclear how the viewer's motor facilitation is influenced by the social content characterizing the observed scene. In the present study we investigated the facilitation of the corticospinal system during the observation of either an action that does not imply a social interaction (i.e., an actor throwing a ball against a wall), or an action which implies a social interaction (i.e., an actor passing a ball to a partner). Results indicate that MEPs amplitude is enhanced during the observation of a social rather than an individual action. We contend that the increase in MEPs activation might reflect an enhancement of the simulative activity stemming from the mirror system during the observation of social interactions. Altogether these findings show that the human corticospinal system is sensitive to social interactions and may support the role of the mirror neurons system in social cognition. Copyright © 2012 Elsevier Inc. All rights reserved.
Ambrus, Géza Gergely; Chaieb, Leila; Stilling, Roman; Rothkegel, Holger; Antal, Andrea; Paulus, Walter
2016-03-11
The measurement of the motor evoked potential (MEP) amplitudes using single pulse transcranial magnetic stimulation (TMS) is a common method to observe changes in motor cortical excitability. The level of cortical excitability has been shown to change during motor learning. Conversely, motor learning can be improved by using anodal transcranial direct current stimulation (tDCS). In the present study, we aimed to monitor cortical excitability changes during an implicit motor learning paradigm, a version of the serial reaction time task (SRTT). Responses from the first dorsal interosseous (FDI) and forearm flexor (FLEX) muscles were recorded before, during and after the performance of the SRTT. Online measurements were combined with anodal, cathodal or sham tDCS for the duration of the SRTT. Negative correlations between the amplitude of online FDI MEPs and SRTT reaction times (RTs) were observed across the learning blocks in the cathodal condition (higher average MEP amplitudes associated with lower RTs) but no significant differences in the anodal and sham conditions. tDCS did not have an impact on SRTT performance, as would be predicted based on previous studies. The offline before-after SRTT MEP amplitudes showed an increase after anodal and a tendency to decrease after cathodal stimulation, but these changes were not significant. The combination of different interventions during tDCS might result in reduced efficacy of the stimulation that in future studies need further attention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A novel model incorporating two variability sources for describing motor evoked potentials
Goetz, Stefan M.; Luber, Bruce; Lisanby, Sarah H.; Peterchev, Angel V.
2014-01-01
Objective Motor evoked potentials (MEPs) play a pivotal role in transcranial magnetic stimulation (TMS), e.g., for determining the motor threshold and probing cortical excitability. Sampled across the range of stimulation strengths, MEPs outline an input–output (IO) curve, which is often used to characterize the corticospinal tract. More detailed understanding of the signal generation and variability of MEPs would provide insight into the underlying physiology and aid correct statistical treatment of MEP data. Methods A novel regression model is tested using measured IO data of twelve subjects. The model splits MEP variability into two independent contributions, acting on both sides of a strong sigmoidal nonlinearity that represents neural recruitment. Traditional sigmoidal regression with a single variability source after the nonlinearity is used for comparison. Results The distribution of MEP amplitudes varied across different stimulation strengths, violating statistical assumptions in traditional regression models. In contrast to the conventional regression model, the dual variability source model better described the IO characteristics including phenomena such as changing distribution spread and skewness along the IO curve. Conclusions MEP variability is best described by two sources that most likely separate variability in the initial excitation process from effects occurring later on. The new model enables more accurate and sensitive estimation of the IO curve characteristics, enhancing its power as a detection tool, and may apply to other brain stimulation modalities. Furthermore, it extracts new information from the IO data concerning the neural variability—information that has previously been treated as noise. PMID:24794287
Handedness-related asymmetry in transmission in a system of human cervical premotoneurones.
Marchand-Pauvert, V; Mazevet, D; Pierrot-Deseilligny, E; Pol, S; Pradat-Diehl, P
1999-04-01
The possibility was investigated that human handedness is associated with an asymmetrical cortical and/or peripheral control of the cervical premotoneurones (PreMNs) that have been shown to mediate part of the descending command to motoneurones of forearm muscles. Heteronymous facilitation evoked in the ongoing voluntary extensor carpi radialis (ECR) electromyographic activity (EMG) by weak (0.8 times motor threshold) stimulation of the musculo-cutaneous (MC) nerve was assessed during tonic co-contraction of biceps and ECR. Suppression evoked by stimulation of a cutaneous nerve (superficial radial, SR) at 4 times perception threshold in both the voluntary EMG and in the motor evoked potential (MEP) elicited in ECR by transcranial magnetic stimulation (TMS) was investigated during isolated ECR contraction. Measurements were performed within time windows or at interstimulus intervals where peripheral and cortical inputs may interact at the level of PreMNs. Results obtained on both sides were compared in consistent right- and left-handers. MC-induced facilitation of the voluntary ECR EMG was significantly larger on the preferred side, whereas there was no asymmetry in the SR-evoked depression of the ongoing ECR EMG. In addition, the suppression of the ECR MEP by the same SR stimulation was more pronounced on the dominant side during unilateral, but not during bilateral, ECR contraction. It is argued that (1) asymmetry in MC-induced facilitation of the voluntary EMG reflects a greater efficiency of the peripheral heteronymous volley in facilitating PreMNs on the dominant side; (2) asymmetry in SR-induced suppression of the MEP during unilateral ECR contraction, which is not paralleled by a similar asymmetry of voluntary EMG suppression, reflects a higher excitability of cortical neurones controlling inhibitory spinal pathways to cervical PreMNs on the preferred side.
Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A
2013-04-01
Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI and ICF towards inhibition. No significant changes were observed in the other protocols. Sham tDCS did not induce significant MEP alterations. These results suggest that an enhancement of tDCS intensity does not necessarily increase efficacy of stimulation, but might also shift the direction of excitability alterations. This should be taken into account for applications of the stimulation technique using different intensities and durations in order to achieve stronger or longer lasting after-effects.
Nettekoven, Charlotte; Volz, Lukas J; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian
2014-05-14
Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. Copyright © 2014 the authors 0270-6474/14/346849-11$15.00/0.
Fatigue-induced change in corticospinal drive to back muscles in elite rowers.
Fulton, Rick C; Strutton, Paul H; McGregor, Alison H; Davey, Nick J
2002-09-01
This study examined post-exercise changes in corticospinal excitability in five 'elite' rowers and six nonrowers. Transcranial magnetic stimulation (TMS) was delivered to the motor cortex and bilateral electromyographic (EMG) recordings were made from erector spinae (ES) muscles at L3/L4 spinal level and from the first dorsal interosseous (FDI) muscle of the dominant hand. Each subject completed two exercise protocols on a rowing ergometer: a light exercise protocol at a sub-maximal output for 10 min and an intense exercise protocol at maximum output for 1 min. A trial of ten magnetic stimuli was delivered before each of the protocols and, on finishing exercise, further trials of ten stimuli were delivered every 2 min for a 16 min period. Amplitudes of motor-evoked potentials (MEPs) in each of the three test muscles were measured before exercise and during the recovery period after exercise. The non-rowers showed a brief facilitation of MEPs in ES 2 min after light and intense exercise that was only present in the elite rowers after intense exercise. In the period 4-16 min after light exercise, the mean (+/- S.E.M.) MEP amplitude (relative to pre-exercise levels) was less depressed in the elite rowers (79.4 +/- 2.1%) than in the non-rowers (60.9 +/- 2.5%) in the left ES but not significantly so in the right ES. MEP amplitudes in FDI were significantly larger in the elite rowers, averaging 119.0 +/- 3.1% pre-exercise levels, compared with 101.2 +/- 5.8% in the non-rowers. Pre-exercise MEP latencies were no different in the two groups. After light exercise MEP latencies became longer in the elite rowers (left ES, 16.1 +/- 0.5 ms; right ES, 16.1 +/- 0.4 ms; dominant FDI, 23.4 +/- 0.2 ms) than in the non-rowers (left ES, 15.0 +/- 0.3 ms; right ES, 15.2 +/- 0.3 ms; dominant FDI, 21.5 +/- 0.2 ms). There were no differences in MEP depression or latency between elite rowers and non-rowers after intense exercise. We conclude that the smaller degree of MEP depression in the elite rowers after light exercise reflects less central fatigue within corticospinal control pathways than that seen in the non-rowers. The longer latency of MEPs seen in the elite rowers may reflect recruitment of more slower-conducting fatigue-resistant motor units compared with the non-rowers. These differences may be because the energy requirements for the non-rowers during light exercise are closer to their maximum capacity, leading to more fatigue. This notion is supported by the lack of any difference between groups following intense exercise when both groups were working at their own maximum.
Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito
2017-10-01
During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Chun, Kwang-Soo; Lee, Yong-Taek; Park, Jong-Wan; Lee, Joon-Youn; Park, Chul-Hyun
2016-01-01
Objective To compare diffusion tensor tractography (DTT) and motor evoked potentials (MEPs) for estimation of clinical status in patients in the subacute stage of stroke. Methods Patients with hemiplegia due to stroke who were evaluated using both DTT and MEPs between May 2012 and April 2015 were recruited. Clinical assessments investigated upper extremity motor and functional status. Motor status was evaluated using Medical Research Council grading and the Fugl-Meyer Assessment of upper limb and hand (FMA-U and FMA-H). Functional status was measured using the Modified Barthel Index (MBI). Patients were classified into subgroups according to DTT findings, MEP presence, fractional anisotropy (FA) value, FA ratio (rFA), and central motor conduction time (CMCT). Correlations of clinical assessments with DTT parameters and MEPs were estimated. Results Fifty-five patients with hemiplegia were recruited. In motor assessments (FMA-U), MEPs had the highest sensitivity and negative predictive value (NPV) as well as the second highest specificity and positive predictive value (PPV). CMCT showed the highest specificity and PPV. Regarding functional status (MBI), FA showed the highest sensitivity and NPV, whereas CMCT had the highest specificity and PPV. Correlation analysis showed that the resting motor threshold (RMT) ratio was strongly associated with motor status of the upper limb, and MEP parameters were not associated with MBI. Conclusion DTT and MEPs could be suitable complementary modalities for analyzing the motor and functional status of patients in the subacute stage of stroke. The RMT ratio was strongly correlated with motor status. PMID:26949679
Comparison of the Wake-up Test and Combined TES-MEP and CSEP Monitoring in Spinal Surgery.
Chen, Bailing; Chen, Yuguang; Yang, Junlin; Xie, Denghui; Su, Haihua; Li, Fobao; Wan, Yong; Peng, Xinsheng; Zheng, Zhaomin
2015-11-01
A retrospective clinical analysis. The aim of this study was to compare the effectiveness of the wake-up test with that of combined monitoring of transcranial electrical stimulation motor evoked potentials (TES-MEP) and cortical somatosensory evoked potentials (CSEP) in spinal surgery. TES-MEP/CSEP combined monitoring is being increasingly recognized as the ideal approach to detect spinal neurophysiological compromise during spinal surgery; however, as a result the merit of the wake-up test is now in doubt. TES-MEP/CSEP combined monitoring was performed simultaneously in 426 patients who underwent spinal surgery at our department, and wake-up tests were conducted on 23 patients because of positive neurophysiological monitoring results with uncertain causes or persistent positive monitoring findings after all potential causes had been resolved. Preoperative and postoperative neurological examinations were performed as the gold standard to detect irreversible spinal function compromise. All data were collected to compare the efficiency of TES-MEP/CSEP combined monitoring with that of the wake-up test. Positive results of TES-MEP/CSEP combined monitoring were recorded in 64 cases. Among them, the positive monitoring findings agreed with the results of the neurological examination in 51 cases, and the monitoring results did not match that of neurological examination in 13 cases. No false-negative result was observed. The sensitivity of TES-MEP/CSEP monitoring was 100%, the specificity was 96.5%, and the Youden index was 0.965. Wake-up tests were conducted in 23 cases. In 8 patients the positive monitoring findings completely matched the postoperative neurological examination results. In contrast, in the other 15 cases with negative neurophysiological monitoring results, only 9 patients retained intact neurological function and 6 patients suffered compromised neurological function. The sensitivity of the wake-up test was 57.1%, the specificity was 100%, and the Youden index was 0.571. Combined TES-MEP and CSEP monitoring, with its high sensitivity and specificity, is an effective method for monitoring spinal function during surgery and should be the preferred choice. The wake-up test is a useful complementary method for monitoring because of its high specificity.
Cheng, Yuanyuan; Tang, Yu-Ting; Nathanail, C Paul
2017-04-12
The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China's growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10 -6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10 -5 . During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM's significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China's citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.
Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T
2015-12-01
This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet
2013-01-01
Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)–derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis. PMID:24363312
Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet
2013-12-01
Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.
Eleraky, Mohammed A; Setzer, Matthias; Papanastassiou, Ioannis D; Baaj, Ali A; Tran, Nam D; Katsares, Kiesha M; Vrionis, Frank D
2010-05-01
The vascular supply of the thoracic spinal cord depends on the thoracolumbar segmental arteries. Because of the small size and ventral course of these arteries in relation to the dorsal root ganglion and ventral root, they cannot be reliably identified during surgery by anatomic or morphologic criteria. Sacrificing them will most likely result in paraplegia. The goal of this study was to evaluate a novel method of intraoperative testing of a nerve root's contribution to the blood supply of the thoracic spinal cord. This is a clinical retrospective study of 49 patients diagnosed with thoracic spine tumors. Temporary nerve root clipping combined with motor-evoked potential (MEP) and somatosensory-evoked potential (SSEP) monitoring was performed; additionally, postoperative clinical evaluation was done and reported in all cases. All cases were monitored by SSEP and MEPs. The nerve root to be sacrificed was temporarily clipped using standard aneurysm clips, and SSEP/MEP were assessed before and after clipping. Four nerve roots were sacrificed in four cases, three nerve roots in eight cases, and two nerve roots in 22 cases. Nerve roots were sacrificed bilaterally in 12 cases. Most patients (47/49) had no changes in MEP/SSEP and had no neurological deficit postoperatively. One case of a spinal sarcoma demonstrated changes in MEP after temporary clipping of the left T11 nerve root. The nerve was not sacrificed, and the patient was neurologically intact after surgery. In another case of a sarcoma, MEPs changed in the lower limbs after ligation of left T9 nerve root. It was felt that it was a global event because of anesthesia. Postoperatively, the patient had complete paraplegia but recovered almost completely after 6 months. Temporary nerve root clipping combined with MEP and SSEP monitoring may enhance the impact of neuromonitoring in the intraoperative management of patients with thoracic spine tumors and favorably influence neurological outcome. Copyright 2010 Elsevier Inc. All rights reserved.
Lamy, Jean-Charles; Russmann, Heike; Shamim, Ejaz A; Meunier, Sabine; Hallett, Mark
2010-08-01
Enhancements in the strength of corticospinal projections to muscles are induced in conscious humans by paired associative stimulation (PAS) to the motor cortex. Although most of the previous studies support the hypothesis that the increase of the amplitude of motor evoked potentials (MEPs) by PAS involves long-term potentiation (LTP)-like mechanism in cortical synapses, changes in spinal excitability after PAS have been reported, suggestive of parallel modifications in both cortical and spinal excitability. In a first series of experiments (experiment 1), we confirmed that both flexor carpi radialis (FCR) MEPs and FCR H reflex recruitment curves are enhanced by PAS. To elucidate the mechanism responsible for this change in the H reflex amplitude, we tested, using the same subjects, the hypothesis that enhanced H reflexes are caused by a down-regulation of the efficacy of mechanisms controlling Ia afferent discharge, including presynaptic Ia inhibition and postactivation depression. To address this question, amounts of both presynaptic Ia inhibition of FCR Ia terminals (D1 and D2 inhibitions methods; experiment 2) and postactivation depression (experiment 3) were determined before and after PAS. Results showed that PAS induces a significant decrease of presynaptic Ia inhibition of FCR terminals, which was concomitant with the facilitation of the H reflex. Postactivation depression was unaffected by PAS. It is argued that enhancement of segmental excitation by PAS relies on a selective effect of PAS on the interneurons controlling presynaptic inhibition of Ia terminals.
The effects of individualized theta burst stimulation on the excitability of the human motor system.
Brownjohn, Philip W; Reynolds, John N J; Matheson, Natalie; Fox, Jonathan; Shemmell, Jonathan B H
2014-01-01
Theta burst stimulation (TBS) is a pattern of repetitive transcranial magnetic stimulation that has been demonstrated to facilitate or suppress human corticospinal excitability when applied intermittently (iTBS) or continuously (cTBS), respectively. While the fundamental pattern of TBS, consisting of bursts of 50 Hz stimulation repeated at a 5 Hz theta frequency, induces synaptic plasticity in animals and in vitro preparations, the relationship between TBS and underlying cortical firing patterns in the human cortex has not been elucidated. To compare the effects of 5 Hz iTBS and cTBS with individualized TBS paradigms on corticospinal excitability and intracortical inhibitory circuits. Participants received standard and individualized iTBS (iTBS 5; iTBS I) and cTBS (cTBS 5; cTBS I), and sham TBS, in a randomised design. For individualized paradigms, the 5 Hz theta component of the TBS pattern was replaced by the dominant cortical frequency (4-16 Hz; upper frequency restricted by technical limitations) for each individual. We report that iTBS 5 and iTBS I both significantly facilitated motor evoked potential (MEP) amplitude to a similar extent. Unexpectedly, cTBS 5 and cTBS I failed to suppress MEP amplitude. None of the active TBS protocols had any significant effects on intracortical circuits when compared with sham TBS. In summary, iTBS facilitated MEP amplitude, an effect that was not improved by individualizing the theta component of the TBS pattern, while cTBS, a reportedly inhibitory paradigm, produced no change, or facilitation of MEP amplitude in our hands. Copyright © 2014 Elsevier Inc. All rights reserved.
Cheng, Jason S; Ivan, Michael E; Stapleton, Christopher J; Quinones-Hinojosa, Alfredo; Gupta, Nalin; Auguste, Kurtis I
2014-06-01
Intraoperative dorsal column mapping, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) have been used in adults to assist with the resection of intramedullary spinal cord tumors (IMSCTs) and to predict postoperative motor deficits. The authors sought to determine whether changes in MEP and SSEP waveforms would similarly predict postoperative motor deficits in children. The authors reviewed charts and intraoperative records for children who had undergone resection for IMSCTs as well as dorsal column mapping and TcMEP and SSEP monitoring. Motor evoked potential data were supplemented with electromyography data obtained using a Kartush microstimulator (Medtronic Inc.). Motor strength was graded using the Medical Research Council (MRC) scale during the preoperative, immediate postoperative, and follow-up periods. Reductions in SSEPs were documented after mechanical traction, in response to maneuvers with the cavitational ultrasonic surgical aspirator (CUSA), or both. Data from 12 patients were analyzed. Three lesions were encountered in the cervical and 7 in the thoracic spinal cord. Two patients had lesions of the cervicomedullary junction and upper spinal cord. Intraoperative MEP changes were noted in half of the patients. In these cases, normal polyphasic signals converted to biphasic signals, and these changes correlated with a loss of 1-2 grades in motor strength. One patient lost MEP signals completely and recovered strength to MRC Grade 4/5. The 2 patients with high cervical lesions showed neither intraoperative MEP changes nor motor deficits postoperatively. Dorsal columns were mapped in 7 patients, and the midline was determined accurately in all 7. Somatosensory evoked potentials were decreased in 7 patients. Two patients each had 2 SSEP decreases in response to traction intraoperatively but had no new sensory findings postoperatively. Another 2 patients had 3 traction-related SSEP decreases intraoperatively, and both had new postoperative sensory deficits that resolved. One additional patient had a CUSA-related SSEP decrease intraoperatively, which resolved postoperatively, and the last patient had 3 traction-related sensory deficits and a CUSA-related sensory deficit postoperatively, none of which resolved. Intraoperative TcMEPs and SSEPs can predict the degree of postoperative motor deficit in pediatric patients undergoing IMSCT resection. This technique, combined with dorsal column mapping, is particularly useful in resecting lesions of the upper cervical cord, which are generally considered to be high risk in this population. Furthermore, the spinal cord appears to be less tolerant of repeated intraoperative SSEP decreases, with 3 successive insults most likely to yield postoperative sensory deficits. Changes in TcMEPs and SSEP waveforms can signal the need to guard against excessive manipulation thereby increasing the safety of tumor resection.
Rogers, Lynn M.; Brown, David A.; Stinear, James W.
2012-01-01
Objective Paired associative stimulation (PAS) modulates bilateral distal lower limb motor pathways during walking. We assessed the effects of inhibitory PAS applied to the vastus medialis (VM) motor pathways of chronic stroke patients. Methods PAS consisted of 120 electrical stimuli applied to the femoral nerve paired with transcranial magnetic stimulation (TMS) of the lower limb primary motor cortex so that the estimated arrival of the afferent volley occurred 8 ms after delivery of the magnetic stimulus. Stimulus pairs were delivered to the non-paretic VM motor system of 11 chronic stroke patients and the right limb motor system of 11 non-impaired subjects at 0.19 Hz. The effects of PAS on VM motor pathway excitability and muscle activity were assessed during pedaling. TMS-induced motor evoked potential (MEP) amplitudes and the percent of VM activity in the flexion phase of active pedaling (%FLEXVM) was examined before and after PAS. Results Inhibitory PAS reduced VM MEP amplitudes in the target limb (p < 0.05) of both groups, while post-PAS paretic VM MEP amplitudes increased for some patients and decreased for others. Group mean paretic limb %FLEXVM was not altered by inhibitory PAS. Conclusions These results indicate PAS can be used to manipulate motor cortical excitability in proximal lower limb representations, however the sign of induced modulation was unpredictable and cyclic muscle activity was not modified. Significance The study has important implications for the development of therapies involving non-invasive brain stimulation to modify abnormal motor behavior following stroke. PMID:21130032
Impairment of sensory-motor plasticity in mild Alzheimer's disease.
Terranova, Carmen; Carmen, Terranova; SantAngelo, Antonino; Antonino, Sant'Angelo; Morgante, Francesca; Francesca, Morgante; Rizzo, Vincenzo; Vincenzo, Rizzo; Allegra, Roberta; Roberta, Allegra; Arena, Maria Grazia; Grazia, Arena Maria; Ricciardi, Lucia; Lucia, Ricciardi; Ghilardi, Marie Felice; Felice, Ghilardi Maria; Girlanda, Paolo; Paolo, Girlanda; Quartarone, Angelo; Angelo, Quartarone
2013-01-01
Primary motor cortex (M1) is relatively spared in the early stages of Alzheimer's disease (AD). Aim of the present study was to investigate whether abnormal M1 synaptic plasticity is present at an early stage of AD. We employed an electrophysiological protocol, named rapid paired associative stimulation (rPAS), involving repetitive transcranial magnetic stimulation (rTMS) paired with electrical stimulation of the contralateral median nerve, that modifies corticospinal excitability and short latency afferent inhibition (SAI). We studied 10 patients with a diagnosis of probable mild AD according to the Mini Mental State Examination score (minimum 21) and 14 age-matched control subjects. Motor evoked potentials (MEP) amplitudes and short-afferent inhibition (SAI) were measured at baseline before and for up to 60 min after 5Hz-rPAS in abductor pollicis brevis (APB). rPAS consisted of 600 pairs of transcranial magnetic stimuli, at a rate of 5 Hz for 2 min, coupled with electrical median nerve stimulation preceding TMS over the contralateral M1 at an inter-stimulus interval of 25 ms. Baseline SAI was significantly reduced in AD patients. In the control subjects rPAS induced a significant increase in MEP amplitudes and a decrease of SAI in the APB muscle persistently for up to 1 h. Conversely 5Hz-rPAS did not induce any significant changes in MEP amplitudes and SAI in mild AD patients. Sensory-motor plasticity is impaired in the motor cortex of AD at an early stage of the disease. Copyright © 2013 Elsevier Inc. All rights reserved.
Rogers, Lynn M; Brown, David A; Stinear, James W
2011-06-01
Paired associative stimulation (PAS) modulates bilateral distal lower limb motor pathways during walking. We assessed the effects of inhibitory PAS applied to the vastus medialis (VM) motor pathways of chronic stroke patients. PAS consisted of 120 electrical stimuli applied to the femoral nerve paired with transcranial magnetic stimulation (TMS) of the lower limb primary motor cortex so that the estimated arrival of the afferent volley occurred 8 ms after delivery of the magnetic stimulus. Stimulus pairs were delivered to the non-paretic VM motor system of 11 chronic stroke patients and the right limb motor system of 11 non-impaired subjects at 0.19 Hz. The effects of PAS on VM motor pathway excitability and muscle activity were assessed during pedaling. TMS-induced motor evoked potential (MEP) amplitudes and the percent of VM activity in the flexion phase of active pedaling (% FLEXVM) was examined before and after PAS. Inhibitory PAS reduced VM MEP amplitudes in the target limb (p<0.05) of both groups, while post-PAS paretic VM MEP amplitudes increased for some patients and decreased for others. Group mean paretic limb % FLEXVM was not altered by inhibitory PAS. These results indicate PAS can be used to manipulate motor cortical excitability in proximal lower limb representations, however the sign of induced modulation was unpredictable and cyclic muscle activity was not modified. The study has important implications for the development of therapies involving non-invasive brain stimulation to modify abnormal motor behavior following stroke. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Transcranial electric motor evoked potential monitoring during spine surgery: is it safe?
Schwartz, Daniel M; Sestokas, Anthony K; Dormans, John P; Vaccaro, Alexander R; Hilibrand, Alan S; Flynn, John M; Li, P Mark; Shah, Suken A; Welch, William; Drummond, Denis S; Albert, Todd J
2011-06-01
Retrospective review. To report on the safety of repetitive transcranial electric stimulation (RTES) for eliciting motor-evoked potentials during spine surgery. Theoretical concerns over the safety of RTES have hindered broader acceptance of transcranial electric motor-evoked potentials (tceMEP), despite successful implementation of spinal cord monitoring with tceMEPs in many large spine centers, as well as their apparent superiority over mixed-nerve somatosensory-evoked potentials (SSEP) for detection of spinal cord injury. The records of 18,862 consecutive patients who met inclusion criteria and underwent spine surgery with tceMEP monitoring were reviewed for RTES-related complications. This large retrospective review identified only 26 (0.14%) cases with RTES-related complications; all but one of these were tongue lacerations, most of which were self-limiting. The results demonstrate that RTES is a highly safe modality for monitoring spinal cord motor tract function intraoperatively.
Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei V.; Tunik, Eugene
2017-01-01
Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability. PMID:28553218
Use of mep HyperCel for polishing of human serum albumin.
McCann, Karl B; Vucica, Yvonne; Wu, John; Bertolini, Joseph
2014-10-15
The manufacture of human serum albumin by chromatographic procedures involves gel filtration chromatography as a final polishing step. Despite this step being essential to remove high molecular weight impurity proteins and thus ensure a stable and safe final product, it is relatively inefficient. This paper explores the use of hydrophobic charge induction chromatographic media, MEP HyperCel as an alternative to Sephacryl S200HR gel filtration for the polishing of human serum albumin derived by ion exchange chromatographic purification of Cohn Supernatant I. The use of MEP HyperCel results in a product with a higher purity than achieved with gel filtration and in a less time consuming manner and with potential resource savings. MEP HyperCel appears to have great potential for incorporation into downstream processes in the plasma fractionation industry as an efficient means of achieving polishing of intermediates or capture of proteins of interest. Copyright © 2014 Elsevier B.V. All rights reserved.
Lai, Chih-Jou; Wang, Chih-Pin; Tsai, Po-Yi; Chan, Rai-Chi; Lin, Shan-Hui; Lin, Fu-Gong; Hsieh, Chin-Yi
2015-01-01
To identify the effective predictors for therapeutic outcomes based on intermittent theta-burst stimulation (iTBS). A sham-controlled, double-blind parallel study design. A tertiary hospital. People with stroke (N=72) who presented with unilateral hemiplegia. Ten consecutive sessions of real or sham iTBS were implemented with the aim of enhancing hand function. Patients were categorized into 4 groups according to the presence (MEP+) or absence (MEP-) of motor-evoked potentials (MEPs) and grip strength according to the Medical Research Council (MRC) scale. Cortical excitability, Wolf Motor Function Test (WMFT), finger-tapping task (FT), and simple reaction time were performed before and after the sessions. MEPs and the MRC scale were predictive of iTBS therapeutic outcomes. Group A (MEP+, MRC>1) exhibited the greatest WMFT change (7.6±2.3, P<.001), followed by group B (MEP-, MRC>1; 5.2±2.2 score change) and group C (MEP-, MRC=0; 2.3±1.5 score change). These improvements were correlated significantly with baseline motor function and ipsilesional maximum MEP amplitude. The effectiveness of iTBS modulation for poststroke motor enhancement depends on baseline hand grip strength and the presence of MEPs. Our findings indicate that establishing neurostimulation strategies based on the proposed electrophysiological and clinical criteria can allow iTBS to be executed with substantial precision. Effective neuromodulatory strategies can be formulated by using electrophysiological features and clinical presentation information as guidelines. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Sale, Martin V.; Rogasch, Nigel C.; Nordstrom, Michael A.
2016-01-01
The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs. PMID:27014031
Effect of methylparaben in Artemia franciscana.
Comeche, Amparo; Martín-Villamil, María; Picó, Yolanda; Varó, Inma
2017-09-01
In this study, the toxicity of methylparaben (MeP) an emerging contaminant, was analysed in the sexual species Artemia franciscana, due to its presence in coastal areas and marine saltworks in the Mediterranean region. The acute toxicity (24h-LC 50 ) of MeP in nauplii was tested and its chronic effect (9days) evaluated by measuring survival and growth under two sublethal concentrations (0.0085 and 0.017mg/L). Also, the effect on several key enzymes involved in: antioxidant defences (catalase (CAT) and gluthathion-S-transferase (GST)), neural activity (cholinesterase (ChE)) and xenobiotic biotransformation (carboxylesterase (CbE), was assessed after 48h under sublethal exposure. The results of acute exposure indicate that MeP is harmful to A. franciscana (24h-LC 50 =36.7mg/L). MeP causes a decrease in CAT activity after 48h exposure to both concentration tested, that points out at the oxidative stress effect of MeP in A. franciscana. However, no significant effect on ChE, CbE and GST activities was found. In addition, MeP does not affect survival and growth in chronic exposure at the sublethal concentrations tested. The results of this study indicate that MeP is not a threat for A. franciscana under the experimental conditions used. Additional studies should be done considering long-term exposure and reproduction studies to analyse the potential risk of MeP as emerging contaminant in marine and hypersaline environments. Published by Elsevier Inc.
Tsuda, Kazumasa; Shiiya, Norihiko; Takahashi, Daisuke; Ohkura, Kazuhiro; Yamashita, Katsushi; Kando, Yumi
2015-08-01
Specificity of transcranial motor-evoked potentials (MEPs) is low because amplitude fluctuation is common, which seems due to several technical and fundamental reasons including difficulty in electrodes positioning and fixation for transcranial stimulation and susceptibility to anaesthesia. This study aimed to investigate the feasibility, safety and stability of our novel technique of transoesophageal spinal cord stimulation to improve the stability of MEPs. Ten anaesthetized adult beagle dogs were used. Transoesophageal stimulation was performed between the oesophageal luminal surface electrode (cathode) and a subcutaneous needle electrode (anode) at the fourth to fifth thoracic vertebra level. Stimulation was achieved with a train of five pulses delivered at 2.0-ms intervals. Compound muscle action potentials were recorded from four limbs and external anal sphincter muscles. Stability to anaesthetic agents was tested at varying speeds of propofol and remifentanil, and effects of varying concentration of sevoflurane inhalation were also evaluated. Transoesophageal MEPs could be recorded without difficulty in all dogs. Fluoroscopic evaluation showed that electrodes misalignment up to 5 cm cranially or caudally could be tolerated. Stimulus intensity to achieve maximum amplitude of hindlimb muscle potentials on both sides was significantly lower by transoesophageal stimulation than by transcranial stimulation (383 ± 41 vs 533 ± 121 V, P = 0.02) and had less interindividual variability. Latency of transoesophageal MEPs was shorter than that of transcranial MEPs at every recording point. No arrhythmia was provoked during stimulation. Animals that were allowed to recover showed no neurological abnormality. In the two sacrificed animals, the explanted oesophagus showed no mucosal injury. Stability to varying dose of anaesthetic agents was similar between transoesophageal and transcranial stimulation, except for the potentials of forelimbs by transoesophageal stimulation that were resistant to anaesthetic depression. Transoesophageal stimulation for MEPs monitoring was feasible without difficulty and safe. Although its stability to anaesthetic agents was similar to that of transcranial stimulation, its technical ease and small interindividual variability warrants further studies on the response to spinal cord ischaemia. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Mitchell, Robert M; Tajuddin, Nuzhath; Campbell, Edward M; Neafsey, Edward J; Collins, Michael A
2016-07-01
Epidemiological studies indicate that light-moderate alcohol (ethanol) consumers tend to have reduced risks of cognitive impairment and progression to dementia during aging. Exploring possible mechanisms, we previously found that moderate ethanol preconditioning (MEP, 20-30mM) of rat brain cultures for several days instigated neuroprotection against β-amyloid peptides. Our biochemical evidence implicated the NMDA receptor (NMDAR) as a potential neuroprotective "sensor", specifically via synaptic NMDAR signaling. It remains unclear how ethanol modulates the receptor and its downstream targets to engender neuroprotection. Here we confirm with deconvolution microscopy that MEP of rat mixed cerebellar cultures robustly increases synaptic NMDAR localization. Phospho-activation of the non-receptor tyrosine kinases Src and Pyk2, known to be linked to synaptic NMDAR, is also demonstrated. Additionally, the preconditioning enhances levels of an antioxidant protein, peroxiredoxin 2 (Prx2), reported to be downstream of synaptic NMDAR signaling, and NMDAR antagonism with memantine (earlier found to abrogate MEP neuroprotection) blocks the Prx2 elevations. To further link Prx2 with antioxidant-based neuroprotection, we circumvented the ethanol preconditioning-NMDAR pathway by pharmacologically increasing Prx2 with the naturally-occurring cruciferous compound, 3H-1,2-dithiole-3-thione (D3T). Thus, D3T pretreatment elevated Prx2 expression to a similar extent as MEP, while concomitantly preventing β-amyloid neurotoxicity; D3T also protected the cultures from hydrogen peroxide toxicity. The findings support a mechanism that couples synaptic NMDAR signaling, Prx2 expression and augmented antioxidant defenses in ethanol preconditioning-induced neuroprotection. That this mechanism can be emulated by a cruciferous vegetable constituent suggests that such naturally-occurring "neutraceuticals" may be useful in therapy for oxidative stress-related dementias. Copyright © 2016 Elsevier B.V. All rights reserved.
Baarbé, Julianne K.; Yielder, Paul; Haavik, Heidi; Holmes, Michael W. R.
2018-01-01
The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI). Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation) would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18–27 years) or sham control (13 participants, 19–24 years). Twelve healthy controls (20–27 years) also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP) vs. healthy controls who disinhibited (98 ± 49% of test MEP, P<0.001), while the spinal manipulation group facilitated (146 ± 95% of test MEP, P<0.001). Greater inhibition in neck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain. PMID:29489878
Effects of Passive Finger Movement on Cortical Excitability
Nakagawa, Masaki; Sasaki, Ryoki; Tsuiki, Shota; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki
2017-01-01
This study examined the effects of joint angle and passive movement direction on corticospinal excitability. The subjects were 14 healthy adults from whom consent could be obtained. We performed two experiments. In Experiment 1, we measured motor evoked potential (MEP) amplitude, F-wave and M-wave at 0° and 20° adduction during adduction or abduction movement, in the range of movement from 10° abduction to 30° adduction. In Experiment 2, MEPs were measured at static 0° and 20° adduction during passive adduction from 10° adduction to 30° adduction and static 20° adduction. MEP, F-waves and M-waves were recorded from the right first dorsal interosseous (FDI) muscle. Experiment 1 revealed significantly increased MEP amplitude at 0° during passive adduction compared to static 0° (p < 0.01). No other significant differences in MEP, M-wave and F-wave parameters were observed. In Experiment 2, MEP amplitude was significantly higher at 20° adduction during passive adduction compared with static 0° (p < 0.01). Based on these findings, it appears that fluctuations in MEP amplitude values during passive movement are not influenced by joint angle, but rather it is possible that it is due to intracortical afferent facilitation (AF) dependent on afferent input due to the start of movement and interstimulus interval (ISI) of transcranial magnetic stimulation (TMS). PMID:28515687
Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects.
Bawa, P; Hamm, J D; Dhillon, P; Gross, P A
2004-10-01
Anatomical and behavioural work on primates has shown bilateral innervation of axial and proximal limb muscles, and contralateral control of distal limb muscles. The following study examined if a clear boundary exists between the distal and proximal upper limb muscles that are controlled contralaterally or bilaterally. The right motor cortical area representing the upper limb was stimulated, while surface EMG was recorded bilaterally from various upper limb muscles during rest and phasic voluntary contractions. Peak-to-peak amplitude of motor evoked potential (MEP) was measured for each muscle on both sides. The ratio R = (ipsilateral MEP: contralateral MEP) was calculated for seven pairs of muscles. For each of the seven pairs, R was less than 1.0, implying that for each muscle and subject, the contralateral control is stronger. The boundary where R changed from almost zero to a clearly measurable magnitude depended on the subject. Ipsilateral MEPs from trapezius and pectoralis could be recorded with a small background contraction from almost all subjects; on the other hand, in deltoid and biceps brachii, ipsilateral MEPs were observed only with bimanual phasic contractions. The forearm and hand muscles, in general, did not show any ipsilateral MEPs. Major differences between subjects lay in the presence or the absence of ipsilateral MEPs in biceps brachii and deltoid, without defining a sharp boundary between proximal and distal muscles.
Martínez-Araya, Jorge Ignacio
2013-07-01
The intrinsic reactivity of cyanide when interacting with a silver cation was rationalized using the dual descriptor (DD) as a complement to the molecular electrostatic potential (MEP) in order to predict interactions at the local level. It was found that DD accurately explains covalent interactions that cannot be explained by MEP, which focuses on essentially ionic interactions. This allowed the rationalization of the reaction mechanism that yields silver cyanide in the gas phase. Other similar reaction mechanisms involving a silver cation interacting with water, ammonia, and thiosulfate were also explained by the combination of MEP and DD. This analysis provides another example of the usefulness of DD as a tool for gaining a deeper understanding of any reaction mechanism that is mainly governed by covalent interactions.
Cueto-Rojas, Hugo F; Milne, Nicholas; van Helmond, Ward; Pieterse, Mervin M; van Maris, Antonius J A; Daran, Jean-Marc; Wahl, S Aljoscha
2017-04-17
Microbial production of nitrogen containing compounds requires a high uptake flux and assimilation of the N-source (commonly ammonium), which is generally coupled with ATP consumption and negatively influences the product yield. In the industrial workhorse Saccharomyces cerevisiae, ammonium (NH 4 + ) uptake is facilitated by ammonium permeases (Mep1, Mep2 and Mep3), which transport the NH 4 + ion, resulting in ATP expenditure to maintain the intracellular charge balance and pH by proton export using the plasma membrane-bound H + -ATPase. To decrease the ATP costs for nitrogen assimilation, the Mep genes were removed, resulting in a strain unable to uptake the NH 4 + ion. Subsequent analysis revealed that growth of this ∆mep strain was dependent on the extracellular NH 3 concentrations. Metabolomic analysis revealed a significantly higher intracellular NH X concentration (3.3-fold) in the ∆mep strain than in the reference strain. Further proteomic analysis revealed significant up-regulation of vacuolar proteases and genes involved in various stress responses. Our results suggest that the uncharged species, NH 3 , is able to diffuse into the cell. The measured intracellular/extracellular NH X ratios under aerobic nitrogen-limiting conditions were consistent with this hypothesis when NH x compartmentalization was considered. On the other hand, proteomic analysis indicated a more pronounced N-starvation stress response in the ∆mep strain than in the reference strain, which suggests that the lower biomass yield of the ∆mep strain was related to higher turnover rates of biomass components.
Ando, Kei; Kobayashi, Kazuyoshi; Ito, Kenyu; Tsushima, Mikito; Morozumi, Masayoshi; Tanaka, Satoshi; Machino, Masaaki; Ota, Kyotaro; Nishida, Yoshihiro; Ishiguro, Naoki; Imagama, Shiro
2018-03-29
There is little information on intraoperative neuromonitoring during correction fusion surgery for syndromic scoliosis. To investigate intraoperative TcMEPs and conditions (body temperature and blood pressure) for syndromic scoliosis. The subjects were 23 patients who underwent 25 surgeries for corrective fusion using TcMEP. Patients were divided into groups based on a decrease (DA+) or no decrease (DA-) of the amplitude of the TcMEP waveform of ≥70%. The groups were compared for age, sex, disease, type of surgery, fusion area, operation time, estimated blood loss, body temperature, blood pressure, Cobb angle, angular curve (Cobb angle/number of vertebra), bending flexibility, correction rate, and recovery. The mean Cobb angles before and after surgery were 85.2° and 29.1°, giving a correction rate of 68.2%. There were 16 surgeries (64.0%) with intraoperative TcMEP wave changes. The DA+ and DA- groups had similar intraoperative conditions, but the short angular curve differed significantly between these groups. Amplitude deterioration occurred in 4 cases during first rod placement, in 8 during rotation, and in 3 during second rod placement after rotation. Seven patients had complete loss of TcMEP. However, most TcMEP changes recovered after pediclectomy or decreased correction. The preoperative angular curve differed significantly between patients with and without TcMEP changes (P < .05). Intraoperative TcMEP wave changes occurred in 64.0% of surgeries for corrective fusion, and all but one of these changes occurred during the correction procedure. The angular curve was a risk factor for intraoperative motor deficit.
Golaszewski, Stefan; Schwenker, Kerstin; Bergmann, Jürgen; Brigo, Francesco; Christova, Monica; Trinka, Eugen; Nardone, Raffaele
2016-01-01
We used repetitive transcranial magnetic stimulation (rTMS) to further investigate motor cortex excitability in 13 patients with Becker muscular dystrophy (BMD), six of them with slight mental retardation. RTMS delivered at 5Hz frequency and suprathreshold intensity progressively increases the size of motor evoked potentials (MEPs) in healthy subjects; the rTMS-induced facilitation of MEPs was significantly reduced in the BMD patients mentally retarded or classified as borderline when compared with age-matched control subjects and the BMD patients with normal intelligence. The increase in the duration of the cortical silent period was similar in both patient groups and controls. These findings suggest an altered cortical short-term synaptic plasticity in glutamate-dependent excitatory circuits within the motor cortex in BMD patients with intellectual disabilities. RTMS studies may shed new light on the physiological mechanisms of cortical involvement in dystrophinopathies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tsutsui, Shunji; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Yoshida, Munehito
2013-12-01
Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. However, they are much smaller and more variable in amplitude than responses evoked by maximal peripheral nerve stimulation, suggesting that a limited number of spinal motor neurons to the target muscle are excited by transcranial stimulation. The aim of this study was to quantify the proportion of motor neurons recruited during TcMEP monitoring under general anesthesia. In twenty patients who underwent thoracic and/or lumbar spinal surgery with TcMEP monitoring, the triple stimulation technique (TST) was applied to the unilateral upper arm intraoperatively. Total intravenous anesthesia was employed. Trains of four stimuli were delivered with maximal intensity and an inter-pulse interval of 1.5 ms. TST responses were recorded from the abductor digiti minimi muscle, and the negative peak amplitude and area were measured and compared between the TST test (two collisions between transcranial and proximal and distal peripheral stimulation) and control response (two collisions between two proximal and one distal peripheral stimulation). The highest degree of superimposition of the TST test and control responses was chosen from several trials per patient. The average ratios (test:control) were 17.1 % (range 1.8-38 %) for the amplitudes and 21.6 % (range 2.9-40 %) for the areas. The activity of approximately 80 % of the motor units to the target muscle cannot be detected by TcMEP monitoring. Therefore, changes in evoked potentials must be interpreted cautiously when assessing segmental motor function with TcMEP monitoring.
Yamanaka, K; Yamamoto, S; Nakazawa, K; Yano, H; Suzuki, Y; Fukunaga, T
1999-07-01
Maximal H-reflex amplitude (Hmax) compared with maximal M-response (Mmax) has been generally used to assess the efficacy of the monosynaptic transmission from Ia afferents to alpha motoneurons in spinal cord. In previous studies, it has been demonstrated that H-reflex in soleus muscle (SOL) is inhibited during free standing due to an increase in presynaptic inhibition of the Ia afferent terminals to SOL motoneurones (Katz et al. 1988, Koceja et al. 1993). Transcranial magnetic stimulation (TMS) of human motor cortex excites the corticospinal system monosynapticaly connecting to spinal alpha motoneurones. However, it is not clear whether or not the motor evoked potentials (MEPs) in SOL and tibialis anterior (TA) muscles induced by TMS are modulated during standing (Ackermann et al. 1991, Lavoie et al. 1995). Considering that postural control functions change with exposure to weightlessness, we supposed that the excitability of SOL and TA spinal motoneurons from Ia afferents and/or corticospinal tracts during free standing would change after long-term bed rest (BR). The aim of this study was to investigate the effect of BR on H-reflex and MEP in SOL and TA during free standing.
2014-01-01
Background Cis-regulatory modules (CRMs), or the DNA sequences required for regulating gene expression, play the central role in biological researches on transcriptional regulation in metazoan species. Nowadays, the systematic understanding of CRMs still mainly resorts to computational methods due to the time-consuming and small-scale nature of experimental methods. But the accuracy and reliability of different CRM prediction tools are still unclear. Without comparative cross-analysis of the results and combinatorial consideration with extra experimental information, there is no easy way to assess the confidence of the predicted CRMs. This limits the genome-wide understanding of CRMs. Description It is known that transcription factor binding and epigenetic profiles tend to determine functions of CRMs in gene transcriptional regulation. Thus integration of the genome-wide epigenetic profiles with systematically predicted CRMs can greatly help researchers evaluate and decipher the prediction confidence and possible transcriptional regulatory functions of these potential CRMs. However, these data are still fragmentary in the literatures. Here we performed the computational genome-wide screening for potential CRMs using different prediction tools and constructed the pioneer database, cisMEP (cis-regulatory module epigenetic profile database), to integrate these computationally identified CRMs with genomic epigenetic profile data. cisMEP collects the literature-curated TFBS location data and nine genres of epigenetic data for assessing the confidence of these potential CRMs and deciphering the possible CRM functionality. Conclusions cisMEP aims to provide a user-friendly interface for researchers to assess the confidence of different potential CRMs and to understand the functions of CRMs through experimentally-identified epigenetic profiles. The deposited potential CRMs and experimental epigenetic profiles for confidence assessment provide experimentally testable hypotheses for the molecular mechanisms of metazoan gene regulation. We believe that the information deposited in cisMEP will greatly facilitate the comparative usage of different CRM prediction tools and will help biologists to study the modular regulatory mechanisms between different TFs and their target genes. PMID:25521507
Tse, Nga Yan; Goldsworthy, Mitchell R; Ridding, Michael C; Coxon, James P; Fitzgerald, Paul B; Fornito, Alex; Rogasch, Nigel C
2018-06-04
This study assessed the effect of interval duration on the direction and magnitude of changes in cortical excitability and inhibition when applying repeated blocks of intermittent theta burst stimulation (iTBS) over motor cortex. 15 participants received three different iTBS conditions on separate days: single iTBS; repeated iTBS with a 5 minute interval (iTBS-5-iTBS); and with a 15 minute interval (iTBS-15-iTBS). Changes in cortical excitability and short-interval cortical inhibition (SICI) were assessed via motor-evoked potentials (MEPs) before and up to 60 mins following stimulation. iTBS-15-iTBS increased MEP amplitude for up to 60 mins post stimulation, whereas iTBS-5-iTBS decreased MEP amplitude. In contrast, MEP amplitude was not altered by single iTBS. Despite the group level findings, only 53% of individuals showed facilitated MEPs following iTBS-15-iTBS, and only 40% inhibited MEPs following iTBS-5-iTBS. Modulation of SICI did not differ between conditions. These results suggest interval duration between spaced iTBS plays an important role in determining the direction of plasticity on excitatory, but not inhibitory circuits in human motor cortex. While repeated iTBS can increase the magnitude of MEP facilitation/inhibition in some individuals compared to single iTBS, the response to repeated iTBS appears variable between individuals in this small sample.
Using a Double-Coil TMS Protocol to Assess Preparatory Inhibition Bilaterally.
Vassiliadis, Pierre; Grandjean, Julien; Derosiere, Gerard; de Wilde, Ysaline; Quemener, Louise; Duque, Julie
2018-01-01
Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), elicits motor-evoked potentials (MEPs) in contralateral limb muscles which are valuable indicators of corticospinal excitability (CSE) at the time of stimulation. So far, most studies have used single-coil TMS over one M1, yielding MEPs in muscles of a single limb-usually the hand. However, tracking CSE in the two hands simultaneously would be useful in many contexts. We recently showed that, in the resting state, double-coil stimulation of the two M1 with a 1 ms inter-pulse interval (double-coil 1 ms TMS) elicits MEPs in both hands that are comparable to MEPs obtained using single-coil TMS. To further evaluate this new technique, we considered the MEPs elicited by double-coil 1 ms TMS in an instructed-delay choice reaction time task where a prepared response has to be withheld until an imperative signal is displayed. Single-coil TMS studies have repetitively shown that in this type of task, the motor system is transiently inhibited during the delay period, as evident from the broad suppression of MEP amplitudes. Here, we aimed at investigating whether a comparable inhibitory effect can be observed with MEPs elicited using double-coil 1 ms TMS. To do so, we compared the amplitude as well as the coefficient of variation (CV) of MEPs produced by double-coil 1 ms or single-coil TMS during action preparation. We observed that MEPs were suppressed (smaller amplitude) and often less variable (smaller CV) during the delay period compared to baseline. Importantly, these effects were equivalent whether single-coil or double-coil 1 ms TMS was used. This suggests that double-coil 1 ms TMS is a reliable tool to assess CSE, not only when subjects are at rest, but also when they are involved in a task, opening new research horizons for scientists interested in the corticospinal correlates of human behavior.
Schneider, Cyril; Lavoie, Brigitte A; Barbeau, Hugues; Capaday, Charles
2004-12-01
Seated subjects were instructed to react to an auditory cue by simultaneously contracting the tibialis anterior (TA) muscle of each ankle isometrically. Focal transcranial magnetic stimulation of the leg area of the motor cortex (MCx) was used to determine the time course of changes in motor-evoked potential amplitude (MEP) during the reaction time (RT). In one condition the voluntary contraction was superimposed on tonic EMG activity maintained at 10% of maximal voluntary contraction. In the other condition the voluntary contraction was made starting from rest. MEPs in the TA contralateral to the stimulation coil were evoked at various times during the RT in each condition. These were compared to the control MEPs evoked during tonic voluntary activity or with the subject at rest. The RT was measured trial by trial from the EMG activity of the TA ipsilateral to the magnetic stimulus, taking into account the nearly constant time difference between the two sides. The MEPs became far greater than control MEPs during the RT (mean = 332%, SD = 44 %, of control MEPs, P < 0.001) without any measurable change in the background level of EMG activity. The onset of this facilitation occurred on average 12.80 ms (SD = 7.55 ms) before the RT. There was no difference in the onset of facilitation between the two conditions. Because MEPs were facilitated without a change in the background EMG activity, it is concluded that this facilitation is specifically due to an increase of MCx excitability just before voluntary muscle activation. This conclusion is further reinforced by the observation that MEPs evoked by near-threshold anodal stimuli to the MCx were not facilitated during the RT, in contrast to those evoked by near-threshold transcranial magnetic stimulation. However, several observations in the present and previous studies indicate that MEP amplitude may be more sensitive to alpha-motoneuron activity than to motor cortical neuron activity, an idea that has important methodological implications.
Using a Double-Coil TMS Protocol to Assess Preparatory Inhibition Bilaterally
Vassiliadis, Pierre; Grandjean, Julien; Derosiere, Gerard; de Wilde, Ysaline; Quemener, Louise; Duque, Julie
2018-01-01
Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), elicits motor-evoked potentials (MEPs) in contralateral limb muscles which are valuable indicators of corticospinal excitability (CSE) at the time of stimulation. So far, most studies have used single-coil TMS over one M1, yielding MEPs in muscles of a single limb—usually the hand. However, tracking CSE in the two hands simultaneously would be useful in many contexts. We recently showed that, in the resting state, double-coil stimulation of the two M1 with a 1 ms inter-pulse interval (double-coil1 ms TMS) elicits MEPs in both hands that are comparable to MEPs obtained using single-coil TMS. To further evaluate this new technique, we considered the MEPs elicited by double-coil1 ms TMS in an instructed-delay choice reaction time task where a prepared response has to be withheld until an imperative signal is displayed. Single-coil TMS studies have repetitively shown that in this type of task, the motor system is transiently inhibited during the delay period, as evident from the broad suppression of MEP amplitudes. Here, we aimed at investigating whether a comparable inhibitory effect can be observed with MEPs elicited using double-coil1 ms TMS. To do so, we compared the amplitude as well as the coefficient of variation (CV) of MEPs produced by double-coil1 ms or single-coil TMS during action preparation. We observed that MEPs were suppressed (smaller amplitude) and often less variable (smaller CV) during the delay period compared to baseline. Importantly, these effects were equivalent whether single-coil or double-coil1 ms TMS was used. This suggests that double-coil1 ms TMS is a reliable tool to assess CSE, not only when subjects are at rest, but also when they are involved in a task, opening new research horizons for scientists interested in the corticospinal correlates of human behavior. PMID:29568258
Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation.
Kumru, Hatice; Albu, Sergiu; Rothwell, John; Leon, Daniel; Flores, Cecilia; Opisso, Eloy; Tormos, Josep Maria; Valls-Sole, Josep
2017-10-01
Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS ('magnetic-PAS') on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle. Eleven healthy subjects underwent three 10min stimulation sessions: 10HzrPMS alone, applied in trains of 5 stimuli every 10s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2ms and intracortical facilitation (ICF) at an ISI of 15ms before and immediately after each intervention. Magnetic-PAS , but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle. Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle. Application of magnetic-PAS might be relevant for motor rehabilitation. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.
Püschel, Anja; Ebel, Rasmus; Fuchs, Patricia; Hofmann, Janet; Schubert, Jochen K; Roesner, Jan P; Bergt, Stefan; Wree, Andreas; Vollmar, Brigitte; Klar, Ernst; Bünger, Carsten M; Kischkel, Sabine
2018-05-01
Paraplegia due to spinal cord ischemia (SCI) is a serious complication after repair of thoracoabdominal aortic aneurysms. For prevention and early treatment of spinal ischemia, intraoperative monitoring of spinal cord integrity is essential. This study was intended to improve recognition of SCI through a combination of transcranial motor-evoked potentials (tc-MEPs), serum markers, and innovative breath analysis. In 9 female German Landrace pigs, tc-MEPs were captured, markers of neuronal damage were determined in blood, and volatile organic compounds (VOCs) were analyzed in exhaled air. After thoraco-phrenico-laparotomy, SCI was initiated through sequential clamping (n = 4) or permanently ligating (n = 5) SAs of the abdominal and thoracic aorta in caudocranial orientation until a drop in the tc-MEPs to at least 25% of the baseline was recorded. VOCs in breath were determined by means of solid-phase microextraction coupled with gas chromatography-mass spectrometry. After waking up, clinical and neurological status was evaluated (Tarlov score). Spinal cord histology was obtained in postmortem. Permanent vessel ligature induced a worse neurological outcome and a higher number of necrotic motor neurons compared to clamping. Changes of serum markers remained unspecific. After laparotomy, exhaled acetone and isopropanol showed highest concentrations, and pentane and hexane increased during ischemia-reperfusion injury. To mimic spinal ischemia occurring in humans during aortic aneurysm repair, animal models have to be meticulously evaluated concerning vascular anatomy and function. Volatiles from breath indicated metabolic stress during surgery and oxidative damage through ischemia reperfusion. Breath VOCs may provide complimentary information to conventional monitoring methods. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Saravanan, R. R.; Seshadri, S.; Gunasekaran, S.; Mendoza-Meroño, R.; Garcia-Granda, S.
2015-03-01
Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide (MPET) are investigated. From conformational analysis the examination of the positions of a molecule taken and the energy changes is observed. The docking studies of the ligand MPET with target protein showed that this is a good molecule which docks well with target related to HMG-CoA. Hence MPET can be considered for developing into a potent anti-cholesterol drug. MEP assists in optimization of electrostatic interactions between the protein and the ligand. The MEP surface displays the molecular shape, size and electrostatic potential values. The optimized geometry of the compound was calculated from the DFT-B3LYP gradient calculations employing 6-31G (d, p) basis set and calculated vibrational frequencies are evaluated via comparison with experimental values.
Krieg, Sandro M; Schäffner, Michael; Shiban, Ehab; Droese, Doris; Obermüller, Thomas; Gempt, Jens; Meyer, Bernhard; Ringel, Florian
2013-06-01
Resection of gliomas in or adjacent to the motor system is widely performed using intraoperative neuromonitoring (IOM). For resection of cerebral metastases in motor-eloquent regions, however, data are sparse and IOM in such cases is not yet widely described. Since recent studies have shown that cerebral metastases infiltrate surrounding brain tissue, this study was undertaken to assess the value and influence of IOM during resection of supratentorial metastases in motor-eloquent regions. Between 2006 and 2011, the authors resected 206 consecutive supratentorial metastases, including 56 in eloquent motor areas with monitoring of monopolar direct cortically stimulated motor evoked potentials (MEPs). The authors evaluated the relationship between the monitoring data and the course of surgery, clinical data, and postoperative imaging. Motor evoked potential monitoring was successful in 53 cases (93%). Reduction of MEP amplitude correlated better with postoperative outcomes when the threshold for significant amplitude reduction was set at 80% (only > 80% reduction was considered significant decline) than when it was set at 50% (> 50% amplitude reduction was considered significant decline). Evidence of residual tumor was seen on MR images in 28% of the cases with significant MEP reduction. No residual tumor was seen in any case of stable MEP monitoring. Moreover, preoperative motor deficit, recursive partitioning analysis Class 3, and preoperative radiotherapy were independent risk factors for a new surgery-related motor weakness (occurring in 64% of patients with and 11% of patients without radiotherapy, p > 0.01). Continuous MEP monitoring provides reliable monitoring of the motor system and also influences the course of operation in resection of cerebral metastases. However, in establishing warning criteria, only an amplitude decline > 80% of the baseline should be considered significant.
Sidhu, Simranjit K.; Weavil, Joshua C.; Mangum, Tyler S.; Jessop, Jacob E.; Richardson, Russell S.; Morgan, David E.; Amann, Markus
2017-01-01
Objective To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. Methods Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. Results While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13 ± 3% higher (P < 0.05), resulting in a decrease in MEP/CMEP (P < 0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (−53 ± 3% vs. −39 ± 3%; P < 0.01), the reduction in voluntary muscle activation was smaller (−2 ± 2% vs. −10 ± 2%; P < 0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13 ± 3% and 25 ± 6% in FENT (P < 0.05). Conclusion During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. Significance Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans. PMID:27866119
Sidhu, Simranjit K; Weavil, Joshua C; Mangum, Tyler S; Jessop, Jacob E; Richardson, Russell S; Morgan, David E; Amann, Markus
2017-01-01
To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13±3% higher (P<0.05), resulting in a decrease in MEP/CMEP (P<0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (-53±3% vs. -39±3%; P<0.01), the reduction in voluntary muscle activation was smaller (-2±2% vs. -10±2%; P<0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13±3% and 25±6% in FENT (P<0.05). During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.
Development of a NASA 2018 Mars Landed Mission Concept
NASA Technical Reports Server (NTRS)
Wilson, M. G.; Salvo, C. G.; Abilleira, F.; Sengstacken, A. J.; Allwood, A. G.; Backes, P. G.; Lindemann, R. A.; Jordan, J. F.
2010-01-01
Fundamental to NASA's Mars Exploration Program (MEP) is an ongoing development of an integrated and coordinated set of possible future candidate missions that meet fundamental science and programmatic objectives of NASA and the Mars scientific community. In the current planning horizon of the NASA MEP, a landed mobile surface exploration mission launching in the 2018 Mars launch opportunity exists as a candidate project to meet MEP in situ science and exploration objectives. This paper describes the proposed mission science objectives and the mission implementation concept developed for the 2018 opportunity. As currently envisioned, this mission concept seeks to explore a yet-to-be-selected site with high preservation potential for physical and chemical biosignatures, evaluate paleoenvironmental conditions, characterize the potential for preservation of biosignatures, and access multiple sequences of geological units in a search for evidence of past life and/or prebiotic chemistry at a site on Mars.
Ozaki, Isamu; Kurata, Kiyoshi
2015-11-01
To investigate the effects of voluntary deep breathing on the excitability of the hand area in the primary motor cortex (M1). We applied near-threshold transcranial magnetic stimulation (TMS) over M1 during the early phase of inspiration or expiration in both normal automatic and voluntary deep, but not "forced", breathing in eight healthy participants at rest. We monitored exhaled CO2 levels continuously, and recorded motor-evoked potentials (MEPs) simultaneously from the abductor pollicis brevis, first dorsal interosseous, abductor digiti minimi, flexor digitorum superficialis, and extensor incidis muscles. We observed that, during voluntary deep breathing, MEP amplitude increased by up to 50% for all recorded muscles and the latency of MEPs decreased by approximately 1ms, compared with normal automatic breathing. We found no difference in the amplitude or latency of MEPs between inspiratory and expiratory phases in either normal automatic or voluntary deep breathing. Voluntary deep breathing at rest facilitates MEPs following TMS over the hand area of M1, and MEP enhancement occurs throughout the full respiratory cycle. The M1 hand region is continuously driven by top-down neural signals over the entire respiratory cycle of voluntary deep breathing. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Harris-Love, Michelle L.; Morton, Susanne M.; Perez, Monica A.; Cohen, Leonardo G.
2011-01-01
Background The neurophysiological mechanisms underlying improved upper-extremity motor skills have been partially investigated in patients with good motor recovery but are poorly understood in more impaired individuals, the majority of stroke survivors. Objective The authors studied changes in primary motor cortex (M1) excitability (motor evoked potentials [MEPs], contralateral and ipsilateral silent periods [CSPs and ISPs] using transcranial magnetic stimulation [TMS]) associated with training-induced reaching improvement in stroke patients with severe arm paresis (n = 11; Upper-Extremity Fugl-Meyer score (F-M) = 27 ± 6). Methods All patients underwent a single session of reaching training focused on moving the affected hand from a resting site to a target placed at 80% of maximum forward reaching amplitude in response to a visual “GO” cue. Triceps contribute primarily as agonist and biceps primarily as antagonist to the trained forward reaching movement. Response times were recorded for each reaching movement. Results Preceding training (baseline), greater interhemispheric inhibition (measured by ISP) in the affected triceps muscle, reflecting inhibition from the nonlesioned to the lesioned M1, was observed in patients with lower F-M scores (more severe motor impairment). Training-induced improvements in reaching were greater in patients with slower response times at baseline. Increased MEP amplitudes and decreased ISPs and CSPs were observed in the affected triceps but not in the biceps muscle after training. Conclusion These results indicate that along with training-induced motor improvements, training-specific modulation of intrahemispheric and interhemispheric mechanisms occurs after reaching practice in chronic stroke patients with substantial arm impairment. PMID:21343522
Takakura, Tomokazu; Muragaki, Yoshihiro; Tamura, Manabu; Maruyama, Takashi; Nitta, Masayuki; Niki, Chiharu; Kawamata, Takakazu
2017-10-01
OBJECTIVE The aim of the present study was to evaluate the usefulness of navigated transcranial magnetic stimulation (nTMS) as a prognostic predictor for upper-extremity motor functional recovery from postsurgical neurological deficits. METHODS Preoperative and postoperative nTMS studies were prospectively applied in 14 patients (mean age 39 ± 12 years) who had intraparenchymal brain neoplasms located within or adjacent to the motor eloquent area in the cerebral hemisphere. Mapping by nTMS was done 3 times, i.e., before surgery, and 1 week and 3 weeks after surgery. To assess the response induced by nTMS, motor evoked potential (nTMS-MEP) was recorded using a surface electromyography electrode attached to the abductor pollicis brevis (APB). The cortical locations that elicited the largest electromyography response by nTMS were defined as hotspots. Hotspots for APB were confirmed as positive responsive sites by direct electrical stimulation (DES) during awake craniotomy. The distances between hotspots and lesions (D HS-L ) were measured. Postoperative neurological deficits were assessed by manual muscle test and dynamometer. To validate the prognostic value of nTMS in recovery from upper-extremity paresis, the following were investigated: 1) the correlation between D HS-L and the serial grip strength change, and 2) the correlation between positive nTMS-MEP at 1 week after surgery and the serial grip strength change. RESULTS From the presurgical nTMS study, MEPs from targeted muscles were identified in 13 cases from affected hemispheres. In one case, MEP was not evoked due to a huge tumor. Among 9 cases from which intraoperative DES mapping for hand motor area was available, hotspots for APB identified by nTMS were concordant with DES-positive sites. Compared with the adjacent group (D HS-L < 10 mm, n = 6), the nonadjacent group (D HS-L ≥ 10 mm, n = 7) showed significantly better recovery of grip strength at 3 months after surgery (p < 0.01). There were correlations between D HS-L and recovery of grip strength at 1 week, 3 weeks, and 3 months after surgery (r = 0.74, 0.68, and 0.65, respectively). Postsurgical nTMS was accomplished in 13 patients. In 9 of 13 cases, nTMS-MEP from APB muscle was positive at 1 week after surgery. Excluding the case in which nTMS-MEP was negative from the presurgical nTMS study, recoveries in grip strength were compared between 2 groups, in which nTMS-MEP at 1 week after surgery was positive (n = 9) or negative (n = 3). Significant differences were observed between the 2 groups at 1 week, 3 weeks, and 3 months after surgery (p < 0.01). Positive nTMS-MEP at 1 week after surgery correlated well with the motor recovery at 1 week, 3 weeks, and 3 months after surgery (r = 0.87, 0.88, and 0.77, respectively). CONCLUSIONS Navigated TMS is a useful tool for identifying motor eloquent areas. The results of the present study have demonstrated the predictive value of nTMS in upper-extremity motor function recovery from postsurgical neurological deficits. The longer D HS-L and positive nTMS-MEP at 1 week after surgery have prognostic values of better recovery from postsurgical neurological deficits.
Associative plasticity in intracortical inhibitory circuits in human motor cortex.
Russmann, Heike; Lamy, Jean-Charles; Shamim, Ejaz A; Meunier, Sabine; Hallett, Mark
2009-06-01
Paired associative stimulation (PAS) is a transcranial magnetic stimulation technique inducing Hebbian-like synaptic plasticity in the human motor cortex (M1). PAS is produced by repetitive pairing of a peripheral nerve shock and a transcranial magnetic stimulus (TMS). Its effect is assessed by a change in size of a motor evoked response (MEP). MEP size results from excitatory and inhibitory influences exerted on cortical pyramidal cells, but no robust effects on inhibitory networks have been demonstrated so far. In 38 healthy volunteers, we assessed whether a PAS intervention influences three intracortical inhibitory circuits: short (SICI) and long (LICI) intracortical inhibitions reflecting activity of GABA(A) and GABA(B) interneurons, respectively, and long afferent inhibition (LAI) reflecting activity of somatosensory inputs. After PAS, MEP sizes, LICI and LAI levels were significantly changed while changes of SICI were inconsistent. The changes in LICI and LAI lasted 45 min after PAS. Their direction depended on the delay between the arrival time of the afferent volley at the cortex and the TMS-induced cortical activation during the PAS. PAS influences inhibitory circuits in M1. PAS paradigms can demonstrate Hebbian-like plasticity at selected inhibitory networks as well as excitatory networks.
Seidel, Kathleen; Beck, Jürgen; Stieglitz, Lennart; Schucht, Philippe; Raabe, Andreas
2013-02-01
Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST. A consecutive cohort of 100 patients underwent tumor surgery adjacent to the CST while simultaneous subcortical motor mapping and DCS-MEP monitoring was used. Evaluation was done regarding the lowest subcortical mapping threshold (monopolar stimulation, train of 5 stimuli, interstimulus interval 4.0 msec, pulse duration 500 μsec) and signal changes in DCS-MEPs (same parameters, 4 contact strip electrode). Motor function was assessed 1 day after surgery, at discharge, and at 3 months postoperatively. The lowest individual motor thresholds (MTs) were as follows (MT in mA, number of patients): > 20 mA, n = 12; 11-20 mA, n = 13; 6-10 mA, n = 20; 4-5 mA, n = 30; and 1-3 mA, n = 25. Direct cortical stimulation showed stable signals in 70 patients, unspecific changes in 18, irreversible alterations in 8, and irreversible loss in 4 patients. At 3 months, 5 patients had a postoperative new or worsened motor deficit (lowest mapping MT 20 mA, 13 mA, 6 mA, 3 mA, and 1 mA). In all 5 patients DCS-MEP monitoring alterations were documented (2 sudden irreversible threshold increases and 3 sudden irreversible MEP losses). Of these 5 patients, 2 had vascular ischemic lesions (MT 20 mA, 13 mA) and 3 had mechanical CST damage (MT 1 mA, 3 mA, and 6 mA; in the latter 2 cases the resection continued after mapping and severe DCS-MEP alterations occurred thereafter). In 80% of patients with a mapping MT of 1-3 mA and in 75% of patients with a mapping MT of 1 mA, DCS-MEPs were stable or showed unspecific reversible changes, and none had a permanent motor worsening at 3 months. In contrast, 25% of patients with irreversible DCS-MEP changes and 75% of patients with irreversible DCS-MEP loss had permanent motor deficits. Mapping should primarily guide tumor resection adjacent to the CST. DCS-MEP is a useful predictor of deficits, but its value as a warning sign is limited because signal alterations were reversible in only approximately 60% of the present cases and irreversibility is a post hoc definition. The true safe mapping MT is lower than previously thought. The authors postulate a mapping MT of 1 mA or less where irreversible DCS-MEP changes and motor deficits regularly occur. Therefore, they recommend stopping tumor resection at an MT of 2 mA at the latest. The limited spatial and temporal coverage of contemporary mapping may increase error and may contribute to false, higher MTs.
Network connectivity and individual responses to brain stimulation in the human motor system.
Cárdenas-Morales, Lizbeth; Volz, Lukas J; Michely, Jochen; Rehme, Anne K; Pool, Eva-Maria; Nettekoven, Charlotte; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian
2014-07-01
The mechanisms driving cortical plasticity in response to brain stimulation are still incompletely understood. We here explored whether neural activity and connectivity in the motor system relate to the magnitude of cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Twelve right-handed volunteers underwent functional magnetic resonance imaging during rest and while performing a simple hand motor task. Resting-state functional connectivity, task-induced activation, and task-related effective connectivity were assessed for a network of key motor areas. We then investigated the effects of intermittent theta-burst stimulation (iTBS) on motor-evoked potentials (MEP) for up to 25 min after stimulation over left primary motor cortex (M1) or parieto-occipital vertex (for control). ITBS-induced increases in MEP amplitudes correlated negatively with movement-related fMRI activity in left M1. Control iTBS had no effect on M1 excitability. Subjects with better response to M1-iTBS featured stronger preinterventional effective connectivity between left premotor areas and left M1. In contrast, resting-state connectivity did not predict iTBS aftereffects. Plasticity-related changes in M1 following brain stimulation seem to depend not only on local factors but also on interconnected brain regions. Predominantly activity-dependent properties of the cortical motor system are indicative of excitability changes following induction of cortical plasticity with rTMS. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
BDNF and LTP-/LTD-like plasticity of the primary motor cortex in Gilles de la Tourette syndrome.
Marsili, L; Suppa, A; Di Stasio, F; Belvisi, D; Upadhyay, N; Berardelli, I; Pasquini, M; Petrucci, S; Ginevrino, M; Fabbrini, G; Cardona, F; Defazio, G; Berardelli, A
2017-03-01
Gilles de la Tourette syndrome (GTS) is characterized by motor and vocal tics and often associated with obsessive-compulsive disorder (OCD). Responses to intermittent/continuous theta-burst stimulation (iTBS/cTBS), which probe long-term potentiation (LTP)-/depression (LTD)-like plasticity in the primary motor cortex (M1), are reduced in GTS. ITBS-/cTBS-induced M1 plasticity can be affected by brain-derived neurotrophic factor (BDNF) polymorphism. We investigated whether the BDNF polymorphism influences iTBS-/cTBS-induced LTP-/LTD-like M1 plasticity in 50 GTS patients and in 50 age- and sex-matched healthy subjects. In GTS patients, motor and psychiatric (OCD) symptom severity was rated using the Yale Global Tic Severity Scale (YGTSS) and the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). We compared M1 iTBS-/cTBS-induced plasticity in healthy subjects and in patients with GTS. We also compared responses to TBS according to BDNF polymorphism (Val/Val vs Met carriers) in patients and controls. Fourteen healthy subjects and 13 GTS patients were Met carriers. When considering the whole group of controls, as expected, iTBS increased whereas cTBS decreased MEPs. Differently, iTBS/cTBS failed to induce LTP-/LTD-like plasticity in patients with GTS. When comparing responses to TBS according to BDNF polymorphism, in healthy subjects, Met carriers showed reduced MEP changes compared with Val/Val individuals. Conversely, in patients with GTS, responses to iTBS/cTBS were comparable in Val/Val individuals and Met carriers. YGTSS and Y-BOCS scores were comparable in Met carriers and in Val/Val subjects. We conclude that iTBS and cTBS failed to induce LTP-/LTD-like plasticity in patients with GTS, and this was not affected by BDNF genotype.
Giovannelli, Fabio; Banfi, Chiara; Borgheresi, Alessandra; Fiori, Elisa; Innocenti, Iglis; Rossi, Simone; Zaccara, Gaetano; Viggiano, Maria Pia; Cincotta, Massimo
2013-03-01
Transcranial magnetic stimulation (TMS) and neuroimaging studies suggest a functional link between the emotion-related brain areas and the motor system. It is not well understood, however, whether the motor cortex activity is modulated by specific emotions experienced during music listening. In 23 healthy volunteers, we recorded the motor evoked potentials (MEP) following TMS to investigate the corticospinal excitability while subjects listened to music pieces evoking different emotions (happiness, sadness, fear, and displeasure), an emotionally neutral piece, and a control stimulus (musical scale). Quality and intensity of emotions were previously rated in an additional group of 30 healthy subjects. Fear-related music significantly increased the MEP size compared to the neutral piece and the control stimulus. This effect was not seen with music inducing other emotional experiences and was not related to changes in autonomic variables (respiration rate, heart rate). Current data indicate that also in a musical context, the excitability of the corticomotoneuronal system is related to the emotion expressed by the listened piece. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lucente, Giuseppe; Lam, Steven; Schneider, Heike; Picht, Thomas
2018-02-01
Non-invasive pre-surgical mapping of eloquent brain areas with navigated transcranial magnetic stimulation (nTMS) is a useful technique linked to the improvement of surgical planning and patient outcomes. The stimulator output intensity and subsequent resting motor threshold determination (rMT) are based on the motor-evoked potential (MEP) elicited in the target muscle with an amplitude above a predetermined threshold of 50 μV. However, a subset of patients is unable to achieve complete relaxation in the target muscles, resulting in false positives that jeopardize mapping validity with conventional MEP determination protocols. Our aim is to explore the feasibility and reproducibility of a novel mapping approach that investigates how an increase of the MEP amplitude threshold to 300 and 500 μV affects subsequent motor maps. Seven healthy subjects underwent motor mapping with nTMS. RMT was calculated with the conventional methodology in conjunction with experimental 300- and 500-μV MEP amplitude thresholds. Motor mapping was performed with 105% of rMT stimulator intensity using the FDI as the target muscle. Motor mapping was possible in all patients with both the conventional and experimental setups. Motor area maps with a conventional 50-μV threshold showed poor correlation with 300-μV (α = 0.446, p < 0.001) maps, but showed excellent consistency with 500-μV motor area maps (α = 0.974, p < 0.001). MEP latencies were significantly less variable (23 ms for 50 μV vs. 23.7 ms for 300 μV vs. 23.7 ms for 500 μV, p < 0.001). A slight but significant increase of the electric field (EF) value was found (EF: 60.8 V/m vs. 64.8 V/m vs. 66 V/m p < 0.001). Our study demonstrates the feasibility of increasing the MEP detection threshold to 500 μV in rMT determination and motor area mapping with nTMS without losing precision.
Investigation of binding features: effects on the interaction between CYP2A6 and inhibitors.
Ai, Chunzhi; Li, Yan; Wang, Yonghua; Li, Wei; Dong, Peipei; Ge, Guangbo; Yang, Ling
2010-07-15
A computational investigation has been carried out on CYP2A6 and its naphthalene inhibitors to explore the crucial molecular features contributing to binding specificity. The molecular bioactive orientations were obtained by docking (FlexX) these compounds into the active site of the enzyme. And the density functional theory method was further used to optimize the molecular structures with the subsequent analysis of molecular lipophilic potential (MLP) and molecular electrostatic potential (MEP). The minimal MLPs, minimal MEPs, and the band gap energies (the energy difference between the highest occupied molecular orbital and lowest unoccupied molecular orbital) showed high correlations with the inhibition activities (pIC(50)s), illustrating their significant roles in driving the inhibitor to adopt an appropriate bioactive conformation oriented in the active site of CYP2A6 enzyme. The differences in MLPs, MEPs, and the orbital energies have been identified as key features in determining the binding specificity of this series of compounds to CYP2A6 and the consequent inhibitory effects. In addition, the combinational use of the docking, MLP and MEP analysis is also demonstrated as a good attempt to gain an insight into the interaction between CYP2A6 and its inhibitors. Copyright 2010 Wiley Periodicals, Inc.
Guo, LanJun; Li, Yan; Han, Ruquan; Gelb, Adrian W
2018-01-01
Motor evoked potentials (MEPs) are commonly used during surgery for spinal cord tumor resection. However, it can be difficult to record reliable MEPs from the muscles of the lower extremities during surgery in patients with preoperative weakness due to spinal cord compression. In this study, motor function of patients' lower extremities and their association with intraoperative MEP recording were compared. Patients undergoing thoracic spinal cord tumor resection were studied. Patients' motor function was checked immediately before the surgical procedure. MEP responses were recorded from the tibialis anterior and foot muscles, and the hand muscles were used as control. Electrical current with train of eight pulses, 200 to 500 V was delivered through 2 corkscrews placed at C3' and C4' sites. Anesthesia was maintained by total intravenous anesthesia using a combination of propofol and remifentanil after induction with intravenous propofol, remifentanil, and rocuronium. Rocuronium was not repeated. Bispectral Index was maintained between 40 to 50. From 178 lower limbs of 89 patients, myogenic MEPs could be recorded from 100% (105/105) of the patients with 5 of 5 motor strength in lower extremity; 90% (36/40) from the patients with 4/5 motor strength; only 25% (5/20) with 3/5; and 12.5% (1/8) with 2/5 motor strength; none (0/5) were able to be recorded if the motor strength was 1/5. The ability to record myogenic MEPs is closely associated with the patient's motor function. They are difficult to obtain if motor function is 3/5 motor strength in the lower extremity. They are almost impossible to record if motor function is worse than 3/5.
Reconstruction and Evaluation of the Synthetic Bacterial MEP Pathway in Saccharomyces cerevisiae
Partow, Siavash; Siewers, Verena; Daviet, Laurent; Schalk, Michel; Nielsen, Jens
2012-01-01
Isoprenoids, which are a large group of natural and chemical compounds with a variety of applications as e.g. fragrances, pharmaceuticals and potential biofuels, are produced via two different metabolic pathways, the mevalonate (MVA) pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we attempted to replace the endogenous MVA pathway in Saccharomyces cerevisiae by a synthetic bacterial MEP pathway integrated into the genome to benefit from its superior properties in terms of energy consumption and productivity at defined growth conditions. It was shown that the growth of a MVA pathway deficient S. cerevisiae strain could not be restored by the heterologous MEP pathway even when accompanied by the co-expression of genes erpA, hISCA1 and CpIscA involved in the Fe-S trafficking routes leading to maturation of IspG and IspH and E. coli genes fldA and fpr encoding flavodoxin and flavodoxin reductase believed to be responsible for electron transfer to IspG and IspH. PMID:23285068
Masini, Tiziana; Hirsch, Anna K H
2014-12-11
Important pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum, the causative agents of tuberculosis and malaria, respectively, and plants, utilize the 2C-methyl-D-erythritol 4-phosphate (MEP, 5) pathway for the biosynthesis of isopentenyl diphosphate (1) and dimethylallyl diphosphate (2), the universal precursors of isoprenoids, while humans exclusively utilize the alternative mevalonate pathway for the synthesis of 1 and 2. This distinct distribution, together with the fact that the MEP pathway is essential in numerous organisms, makes the enzymes of the MEP pathway attractive drug targets for the development of anti-infective agents and herbicides. Herein, we review the inhibitors reported over the past 2 years, in the context of the most important older developments and with a particular focus on the results obtained against enzymes of pathogenic organisms. We will also discuss new discoveries in terms of structural and mechanistic features, which can help to guide a rational development of inhibitors.
López-Alonso, Virginia; Cheeran, Binith; Fernández-del-Olmo, Miguel
2015-01-01
Cortical plasticity plays a key role in motor learning (ML). Non-invasive brain stimulation (NIBS) paradigms have been used to modulate plasticity in the human motor cortex in order to facilitate ML. However, little is known about the relationship between NIBS-induced plasticity over M1 and ML capacity. NIBS-induced MEP changes are related to ML capacity. 56 subjects participated in three NIBS (paired associative stimulation, anodal transcranial direct current stimulation and intermittent theta-burst stimulation), and in three lab-based ML task (serial reaction time, visuomotor adaptation and sequential visual isometric pinch task) sessions. After clustering the patterns of response to the different NIBS protocols, we compared the ML variables between the different patterns found. We used regression analysis to explore further the relationship between ML capacity and summary measures of the MEPs change. We ran correlations with the "responders" group only. We found no differences in ML variables between clusters. Greater response to NIBS protocols may be predictive of poor performance within certain blocks of the VAT. "Responders" to AtDCS and to iTBS showed significantly faster reaction times than "non-responders." However, the physiological significance of these results is uncertain. MEP changes induced in M1 by PAS, AtDCS and iTBS appear to have little, if any, association with the ML capacity tested with the SRTT, the VAT and the SVIPT. However, cortical excitability changes induced in M1 by AtDCS and iTBS may be related to reaction time and retention of newly acquired skills in certain motor learning tasks. Copyright © 2015 Elsevier Inc. All rights reserved.
Scaling of motor cortical excitability during unimanual force generation.
Perez, Monica A; Cohen, Leonardo G
2009-10-01
During performance of a unimanual force generation task primary motor cortices (M1s) experience clear functional changes. Here, we evaluated the way in which M1s interact during parametric increases in right wrist flexion force in healthy volunteers. We measured the amplitude and the slope of motor evoked potentials (MEP) recruitment curves to transcranial magnetic stimulation (TMS) in the left and right flexor carpi radialis (FCR) muscles at rest and during 10%, 30% and 70% of maximal wrist flexion force. At rest, no differences were observed in the amplitude and slope of MEP recruitment curves in the left and right FCR muscles. With increasing right wrist flexion force, MEP amplitudes increased in both FCR muscles, with larger amplitudes in the right FCR. We found a significant correlation between the left and right MEP amplitudes across conditions. The slope of right and left FCR MEP recruitment curve was significantly steeper at 70% of force compared to rest and 10% of force. A significant correlation between the slope of left and right FCR MEP amplitudes was found at 70% of force only. Our results indicate a differential scaling of excitability in the corticospinal system controlling right and left FCR muscles at increasing levels of unimanual force generation. Specifically, these data highlights that at strong levels of unimanual force the increases in motor cortical excitability with increasing TMS stimulus intensities follow a similar pattern in both M1s, while at low levels of force they do not.
Voitenkov, Voitenkov Vladislav; Andrey, Klimkin; Natalia, Skripchenko; Anastasia, Aksenova
2017-01-01
The diagnosis of polyneuropathy may be challenging at the early stages of the disease. Despite electromyography (EMG) efficacy in the establishment of polyneuropathy diagnosis, in some cases, results are dubious and neurophysiologists may implement additional techniques to ensure that conduction is affected. The aim of the study was to evaluate motor-evoked potential (MEP) characteristics in children with acute inflammatory demyelinating polyneuropathy (AIDP). The study was conducted at a pediatric research and clinical center for infectious diseases. Twenty healthy children (7-14 years old) without signs of neurological disorders were enrolled as controls. Thirty-seven patients (8-13 years old) with AIDP were enrolled as the main group. EMG and transcranial magnetic stimulation (TMS) were performed on the 3 rd -7 th days from the onset of the first symptoms. Descriptive statistics and Student's t -test were used. Bonferroni method was applied to implement appropriate corrections for multiple comparisons. Significant differences between children with AIDP and controls on latencies of both cortical and lumbar MEPs were registered. Cortical MEP shapes were disperse in 100% of the cases and lumbar MEPs were disperse in 57% of the cases. Diagnostic TMS on the early stage of the AIDP in children may be implemented as the additional tool. The main finding in this population is lengthening of the latency of cortical and lumbar MEPs. Disperse shape of the lumbar MEPs may be used as the early sign of the acute demyelization.
Abboud, Tammam; Schaper, Miriam; Dührsen, Lasse; Schwarz, Cindy; Schmidt, Nils Ole; Westphal, Manfred; Martens, Tobias
2016-10-01
OBJECTIVE Warning criteria for monitoring of motor evoked potentials (MEP) after direct cortical stimulation during surgery for supratentorial tumors have been well described. However, little is known about the value of MEP after transcranial electrical stimulation (TES) in predicting postoperative motor deficit when monitoring threshold level. The authors aimed to evaluate the feasibility and value of this method in glioma surgery by using a new approach for interpreting changes in threshold level involving contra- and ipsilateral MEP. METHODS Between November 2013 and December 2014, 93 patients underwent TES-MEP monitoring during resection of gliomas located close to central motor pathways but not involving the primary motor cortex. The MEP were elicited by transcranial repetitive anodal train stimulation. Bilateral MEP were continuously evaluated to assess percentage increase of threshold level (minimum voltage needed to evoke a stable motor response from each of the muscles being monitored) from the baseline set before dural opening. An increase in threshold level on the contralateral side (facial, arm, or leg muscles contralateral to the affected hemisphere) of more than 20% beyond the percentage increase on the ipsilateral side (facial, arm, or leg muscles ipsilateral to the affected hemisphere) was considered a significant alteration. Recorded alterations were subsequently correlated with postoperative neurological deterioration and MRI findings. RESULTS TES-MEP could be elicited in all patients, including those with recurrent glioma (31 patients) and preoperative paresis (20 patients). Five of 73 patients without preoperative paresis showed a significant increase in threshold level, and all of them developed new paresis postoperatively (transient in 4 patients and permanent in 1 patient). Eight of 20 patients with preoperative paresis showed a significant increase in threshold level, and all of them developed postoperative neurological deterioration (transient in 4 patients and permanent in 4 patients). In 80 patients no significant change in threshold level was detected, and none of them showed postoperative neurological deterioration. The specificity and sensitivity in this series were estimated at 100%. Postoperative MRI revealed gross-total tumor resection in 56 of 82 patients (68%) in whom complete tumor resection was attainable; territorial ischemia was detected in 4 patients. CONCLUSIONS The novel threshold criterion has made TES-MEP a useful method for predicting postoperative motor deficit in patients who undergo glioma surgery, and has been feasible in patients with preoperative paresis as well as in patients with recurrent glioma. Including contra- and ipsilateral changes in threshold level has led to a high sensitivity and specificity.
Maruyama, Masashi; Shibuya, Keisuke
2017-08-22
Thermo-responsive adsorbents for immunoglobulin G (IgG) employing ε-polylysine (EPL) as a polymer backbone were developed. The introduction of mercaptoethylpyridine (MEP) as an IgG-binding ligand and hydrophobization of side chains afforded thermo-responsive IgG adsorbents, whose thermo-responsive IgG desorption ratio was up to 88% (EPL/MEP derivative 3m). The changes in surface densities of active MEP groups, which are caused by thermal conformational changes of the adsorbents, play key roles for IgG desorption. Although a trade-off of IgG adsorption capacity and IgG desorption ratio was observed, the present study offers a novel molecular design for thermo-responsive adsorbents with high synthetic accessibility and potentially low toxicity.
Pisoni, Alberto; Lo Gerfo, Emanuele; Ottone, Stefania; Ponzano, Ferruccio; Zarri, Luca; Vergallito, Alessandra; Romero Lauro, Leonor Josefina
2014-11-01
Transcranial magnetic stimulation (TMS) studies show that watching others' movements enhances motor evoked potential (MEPs) amplitude of the muscles involved in the observed action (motor facilitation, MF). MF has been attributed to a mirror neuron system mediated mechanism, causing an excitability increment of primary motor cortex. It is still unclear whether the meaning an action assumes when performed in an interpersonal exchange context could affect MF. This study aims at exploring this issue by measuring MF induced by the observation of the same action coupled with opposite reward values (gain vs loss) in an economic game. Moreover, the interaction frame was manipulated by showing the same actions within different economic games, the Dictator Game (DG) and the Theft Game (TG). Both games involved two players: a Dictator/Thief and a receiver. Experimental participants played the game always as receivers whereas the Dictator/Thief roles were played by our confederates. In each game Dictator/Thief's choices were expressed by showing a grasping action of one of two cylinders, previously associated with fair/unfair choices. In the DG the dictator decides whether to share (gain condition) or not (no-gain condition) a sum of money with the receiver, while in TGs the thief decides whether to steal (loss condition) or not to steal (no-loss condition) it from the participants. While the experimental subjects watched the videos showing these movements, a single TMS pulse was delivered to their motor hand area and a MEP was recorded from the right FDI muscle. Results show that, in the DG, MF was enhanced by the status quo modification, i.e. MEP amplitude increased when the dictator decided to change the receivers' status quo and share his/her money, and this was true when the status quo was more salient. The same was true for the TG, where the reverse happened: MF was higher for trials in which the thief decided to steal the participants' money, thus changing the status quo, in the block in which the status quo maintenance occurred more often. Data support the hypothesis that the economic meaning of the observed actions differently modulates MEP amplitude, pointing at an influence on MF exerted by a peculiar interaction between economic outcomes and variation of the subjects' initial status quo. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of neck flexion on somatosensory and motor evoked potentials in Hirayama disease.
Abraham, A; Gotkine, M; Drory, V E; Blumen, S C
2013-11-15
Hirayama disease (HD) is a rare motor disorder mainly affecting young men, characterized by atrophy and weakness of forearm and hand muscles corresponding to a C7-T1 myotome distribution. The weakness is usually unilateral or asymmetric and progression usually stops within several years. The etiology of HD is not well understood. One hypothesis, mainly based on MRI findings, is that the weakness is a consequence of cervical flexion myelopathy. The aim of this study was to explore the function of corticospinal and ascending somatosensory pathways during neck flexion using evoked responses. 15 men with HD and 7 age-matched control male subjects underwent somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) studies with the neck in neutral position and fully flexed. SSEP studies included electrical stimulation of median and ulnar nerves at the wrist, and tibial nerve at the ankle with recording over the ipsilateral Erb's point, cervical spine, and contralateral sensory cortex. MEP recordings were obtained by magnetic stimulation of the motor cortex and the cervical lower spinal roots; the evoked responses were recorded from the contralateral thenar and abductor hallucis muscles. MEP recordings demonstrated significant lower amplitudes, and slightly prolonged latencies in HD patients on cervical stimulation, compared to control subjects. During neck flexion, MEP studies also demonstrated a statistically significant drop in mean upper limb amplitude on cervical stimulation in HD patients, as well as in control subjects, although to a lesser degree. In contrast, no significant differences were found in SSEP studies in HD patients compared to control subjects, or between neutral and flexed position in these groups. The study shows a negative effect of cervical flexion on MEP amplitudes in HD patients as well as in control subjects, requiring more studies to investigate its significance. Neck flexion did not have an influence on any SSEP parameters in patients or controls. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liwo, Adam; Tempczyk, Anna; Grzonka, Zbigniew
1989-09-01
Continuing our theoretical studies of the oxytocin and vasopressin analogues, we have analysed the molecular electrostatic potential (MEP) and the norm of the molecular electrostatic field (MEF) of [1- β-mercaptopropionic acid]-arginine-vasopressin ([Mpa1]-AVP), [1-( β-mercapto- β,β-cyclopentamethylene)propionic acid]-arginine-vasopressin ([Cpp']-AVP), and [1-thiosalicylic acid]-arginine-vasopressin ([Ths']-AVP) whose low-energy conformations were calculated in our previous work. These compounds are known from experiment to exhibit different biological activity. The scalar fields mentioned determine the energy of interaction with either charged (MEP) or polar (MEF) species, the energy being in the second case either optimal or Boltzmann-averaged over all the possible orientations of the dipole moment versus the electrostatic field. The electrostatic interactions slowly vanish with distance and can therefore be considered to be the factor determining the molecular shape at greater distances, which can help in both predicting the interactions with the receptor at the stage of remote recognition and in finding the preferred directions of solvation by a polar solvent. In the analysis of the fields three techniques have been used: (i) the construction of maps in certain planes; (ii) the construction of maps on spheres centered in the charge center of the molecule under study and of poles chosen according to the main axes of the quadrupole moment; and (iii) the construction of surfaces corresponding to a given value of potential. The results obtained show that the shapes of both MEP and MEF are similar in the case of [Mpa1]-AVP and [Cpp1-AVP (biologically active), while some differences emerge when comparing these compounds with [Ths1]-AVP (inactive). It has also been found that both MEP and MEF depend even more strongly on conformation.
Horvath, Jared Cooney; Vogrin, Simon J; Carter, Olivia; Cook, Mark J; Forte, Jason D
2016-09-01
Transcranial direct current stimulation (tDCS) uses a weak electric current to modulate neuronal activity. A neurophysiologic outcome measure to demonstrate reliable tDCS modulation at the group level is transcranial magnetic stimulation engendered motor evoked potentials (MEPs). Here, we conduct a study testing the reliability of individual MEP response patterns following a common tDCS protocol. Fourteen participants (7m/7f) each underwent nine randomized sessions of 1 mA, 10 min tDCS (3 anode; 3 cathode; 3 sham) delivered using an M1/orbito-frontal electrode montage (sessions separated by an average of ~5.5 days). Fifteen MEPs were obtained prior to, immediately following and in 5 min intervals for 30 min following tDCS. TMS was delivered at 130 % resting motor threshold using neuronavigation to ensure consistent coil localization. A number of non-experimental variables were collected during each session. At the individual level, considerable variability was seen among different testing sessions. No participant demonstrated an excitatory response ≥20 % to all three anodal sessions, and no participant demonstrated an inhibitory response ≥20 % to all three cathodal sessions. Intra-class correlation revealed poor anodal and cathodal test-retest reliability [anode: ICC(2,1) = 0.062; cathode: ICC(2,1) = 0.055] and moderate sham test-retest reliability [ICC(2,1) = 0.433]. Results also revealed no significant effect of tDCS at the group level. Using this common protocol, we found the effects of tDCS on MEP amplitudes to be highly variable at the individual level. In addition, no significant effects of tDCS on MEP amplitude were found at the group level. Future studies should consider utilizing a more strict experimental protocol to potentially account for intra-individual response variations.
Different corticospinal control between discrete and rhythmic movement of the ankle.
Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi
2014-01-01
We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement.
Different corticospinal control between discrete and rhythmic movement of the ankle
Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi
2014-01-01
We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement. PMID:25126066
Mouthon, A; Ruffieux, J; Wälchli, M; Keller, M; Taube, W
2015-09-10
Non-physical balance training has demonstrated to be efficient to improve postural control in young people. However, little is known about the potential to increase corticospinal excitability by mental simulation in lower leg muscles. Mental simulation of isolated, voluntary contractions of limb muscles increase corticospinal excitability but more automated tasks like walking seem to have no or only minor effects on motor-evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS). This may be related to the way of performing the mental simulation or the task itself. Therefore, the present study aimed to clarify how corticospinal excitability is modulated during AO+MI, MI and action observation (AO) of balance tasks. For this purpose, MEPs and H-reflexes were elicited during three different mental simulations (a) AO+MI, (b) MI and (c) passive AO. For each condition, two balance tasks were evaluated: (1) quiet upright stance (static) and (2) compensating a medio-lateral perturbation while standing on a free-swinging platform (dynamic). AO+MI resulted in the largest facilitation of MEPs followed by MI and passive AO. MEP facilitation was significantly larger in the dynamic perturbation than in the static standing task. Interestingly, passive observation resulted in hardly any facilitation independent of the task. H-reflex amplitudes were not modulated. The current results demonstrate that corticospinal excitability during mental simulation of balance tasks is influenced by both the type of mental simulation and the task difficulty. As H-reflexes and background EMG were not modulated, it may be argued that changes in excitability of the primary motor cortex were responsible for the MEP modulation. From a functional point of view, our findings suggest best training/rehabilitation effects when combining MI with AO during challenging postural tasks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Duque, Julie; Labruna, Ludovica; Cazares, Christian; Ivry, Richard B.
2014-01-01
Motor behavior requires selecting between potential actions. The role of inhibition in response selection has frequently been examined in tasks in which participants are engaged in some advance preparation prior to the presentation of an imperative signal. Under such conditions, inhibition could be related to processes associated with response selection, or to more general inhibitory processes that are engaged in high states of anticipation. In Experiment 1, we manipulated the degree of anticipatory preparation. Participants performed a choice reaction time task that required choosing between a movement of the left or right index finger, and used transcranial magnetic stimulation (TMS) to elicit motor evoked potentials (MEPs) in the left hand agonist. In high anticipation blocks, a non-informative cue (e.g., fixation marker) preceded the imperative; in low anticipation blocks, there was no cue and participants were required to divide their attention between two tasks to further reduce anticipation. MEPs were substantially reduced before the imperative signal in high anticipation blocks. In contrast, in low anticipation blocks, MEPs remained unchanged before the imperative signal but showed a marked suppression right after the onset of the imperative. This effect occurred regardless of whether the imperative had signaled a left or right hand response. After this initial inhibition, left MEPs increased when the left hand was selected and remained suppressed when the right hand was selected. We obtained similar results in Experiment 2 except that the persistent left MEP suppression when the left hand was not selected was attenuated when the alternative response involved a non-homologous effector (right foot). These results indicate that, even in the absence of an anticipatory period, inhibitory mechanisms are engaged during response selection, possibly to prevent the occurrence of premature and inappropriate responses during a competitive selection process. PMID:25128431
Master, Sabah; Tremblay, François
2012-03-14
Haptic sensing with the fingers represents a unique class of manipulative actions, engaging motor, somatosensory and associative areas of the cortex while requiring only minimal forces and relatively simple movement patterns. Using transcranial magnetic stimulation (TMS), we investigated task-related changes in motor evoked potential (MEP) amplitude associated with unimanual haptic sensing in two related experiments. In Experiment I, we contrasted changes in the excitability of the hemisphere controlling the task hand in young and old adults under two trial conditions, i.e. when participants either touched a fine grating (smooth trials) or touched a coarse grating to detect its groove orientation (grating trials). In Experiment II, the same contrast between tasks was performed but with TMS applied over the hemisphere controlling the resting hand, while also addressing hemispheric (right vs. left) and age differences. In Experiment I, a main effect of trial type on MEP amplitude was detected (p = 0.001), MEPs in the task hand being ~50% larger during grating than smooth trials. No interaction with age was detected. Similar results were found for Experiment II, trial type having a large effect on MEP amplitude in the resting hand (p < 0.001) owing to selective increase in MEP size (~2.6 times greater) for grating trials. No interactions with age or side (right vs. left) were detected. Collectively, these results indicate that adding a haptic component to a simple unilateral finger action can elicit robust corticomotor facilitation not only in the working hemisphere but also in the opposite hemisphere. The fact that this facilitation seems well preserved with age, when task difficulty is adjusted, has some potential clinical implications.
Kodama, Kunihiko; Javadi, Mani; Seifert, Volker; Szelényi, Andrea
2014-12-01
During the surgical removal of infratentorial lesions, intraoperative neuromonitoring is mostly focused on cranial nerve assessment and brainstem auditory potentials. Despite the known risk of perforating vessel injury during microdissection within the vicinity of the brainstem, there are few reports about intraoperative neuromonitoring with somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) assessing the medial lemniscus and corticospinal tract. This study analyses the occurrence of intraoperative changes in MEPs and SEPs with regard to lesion location and postoperative neurological outcome. The authors analyzed 210 cases in which patients (mean age 49 ± 13 years, 109 female) underwent surgeries involving the skull base (n = 104), cerebellum (n = 63), fourth ventricle (n = 28), brainstem (n = 12), and foramen magnum (n = 3). Of 210 surgeries, 171 (81.4%) were uneventful with respect to long-tract monitoring. Nine (23%) of the 39 SEP and/or MEP alterations were transient and were only followed by a slight permanent deficit in 1 case. Permanent deterioration only was seen in 19 (49%) of 39 cases; the deterioration was related to tumor dissection in 4 of these cases, and permanent deficit (moderate-severe) was seen in only 1 of these 4 cases. Eleven patients (28%) had losses of at least 1 modality, and in 9 of these 11 cases, the loss was related to surgical microdissection within the vicinity of the brainstem. Four of these 9 patients suffered a moderate-to-severe long-term deficit. For permanent changes, the positive predictive value for neuromonitoring of the long tracts was 0.467, the negative predictive value was 0.989, the sensitivity was 0.875, and the specificity 0.918. Twenty-eight (72%) of 39 SEP and MEP alterations occurred in 66 cases involving intrinsic brainstem tumors or tumors adjacent to the brainstem. Lesion location and alterations in intraoperative neuromonitoring significantly correlated with patients' outcome (p < 0.001, chi-square test). In summary, long-tract monitoring with SEPs and MEPs in infratentorial surgeries has a high sensitivity and negative predictive value with respect to postoperative neurological status. It is recommended especially in those surgeries in which microdissection within and in the vicinity of the brainstem might lead to injury of the brainstem parenchyma or perforating vessels and a subsequent perfusion deficit within the brainstem.
Smith, Ashleigh E; Goldsworthy, Mitchell R; Wood, Fiona M; Olds, Timothy S; Garside, Tessa; Ridding, Michael C
2018-03-01
Acute exercise studies using transcranial magnetic stimulation (TMS) can provide important insights into the mechanisms underpinning the positive relationship between regular engagement in physical activity and cortical neuroplasticity. Emerging evidence indicates that a single session of aerobic exercise can promote the response to an experimentally induced suppressive neuroplasticity paradigm; however, little is known about the neuroplasticity response to facilitatory paradigms, including intermittent theta burst stimulation (iTBS). To more fully characterize the effects of exercise on brain plasticity we investigated if a single 30 min bout of high-intensity cycling (80% predicted heart rate reserve) modulated the response to an iTBS paradigm compared to rest. In 18 participants (9 females; 25.5 ± 5.0 years, range: 18-35 years) iTBS was applied using standard repetitive transcranial magnetic stimulation techniques immediately following exercise or 30 min of rest. Motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous muscle at baseline, after the exercise/rest period but before iTBS, and at 5 time points following iTBS (0, 5, 10, 20 and 30 min). Contrary to our hypothesis, MEPs were suppressed following iTBS after a single 30 min bout of lower limb aerobic exercise compared to rest. These results indicate that acute aerobic exercise may not always enhance the response to an experimentally induced neuroplasticity paradigm. Further investigation of the factors that influence the relationship between exercise and neuroplasticity is warranted. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Iacovelli, Elisa; Gilio, Francesca; Mascia, Maria Lucia; Scillitani, Alfredo; Romagnoli, Elisabetta; Pichiorri, Floriana; Fucile, Sergio; Minisola, Salvatore; Inghilleri, Maurizio
2011-04-01
We designed the present study to disclose changes in cortical excitability in humans with hypercalcaemia, by delivering repetitive transcranial magnetic stimulation (rTMS) over the primary motor area (M1). In 22 patients with chronic hypercalcaemia related to primary hyperparathyroidism and 22 age-matched healthy subjects 5 Hz-rTMS was delivered at rest and during a sustained voluntary contraction of the target muscle. Changes in the resting motor threshold (RMT), motor evoked potential (MEP) amplitudes and cortical silent period (CSP) duration were measured and compared in patients and healthy controls. Two of the 22 patients were re-tested after parathyroidectomy when serum calcium had normalized. In a subgroup of healthy subjects, changes in the rTMS parameters were tested before and after acute hypercalcaemia. No significant difference between healthy normocalcaemic subjects and chronic hypercalcaemic patients was found in the RMT values and MEP amplitude and CSP duration evoked by the first stimulus of the trains. During the course of 5 Hz-rTMS trains, MEP size increased significantly less in patients with chronic hypercalcaemia than in healthy subjects, whereas the CSP duration lengthened to a similar extent in both groups. In the two patients studied after parathyroidectomy, rTMS elicited a normal MEP amplitude facilitation. Our findings indicate that acute hypercalcaemia significantly decreased the MEP amplitude facilitation. Given that 5 Hz-rTMS modulates cortical excitability through mechanisms resembling short-term synaptic enhancement, the reduction of MEP amplitude facilitation by hypercalcaemia may be related to Ca2+-dependent changes in synaptic plasticity.
Iacovelli, Elisa; Gilio, Francesca; Mascia, Maria Lucia; Scillitani, Alfredo; Romagnoli, Elisabetta; Pichiorri, Floriana; Fucile, Sergio; Minisola, Salvatore; Inghilleri, Maurizio
2011-01-01
Abstract We designed the present study to disclose changes in cortical excitability in humans with hypercalcaemia, by delivering repetitive transcranial magnetic stimulation (rTMS) over the primary motor area (M1). In 22 patients with chronic hypercalcaemia related to primary hyperparathyroidism and 22 age-matched healthy subjects 5 Hz-rTMS was delivered at rest and during a sustained voluntary contraction of the target muscle. Changes in the resting motor threshold (RMT), motor evoked potential (MEP) amplitudes and cortical silent period (CSP) duration were measured and compared in patients and healthy controls. Two of the 22 patients were re-tested after parathyroidectomy when serum calcium had normalized. In a subgroup of healthy subjects, changes in the rTMS parameters were tested before and after acute hypercalcaemia. No significant difference between healthy normocalcaemic subjects and chronic hypercalcaemic patients was found in the RMT values and MEP amplitude and CSP duration evoked by the first stimulus of the trains. During the course of 5 Hz-rTMS trains, MEP size increased significantly less in patients with chronic hypercalcaemia than in healthy subjects, whereas the CSP duration lengthened to a similar extent in both groups. In the two patients studied after parathyroidectomy, rTMS elicited a normal MEP amplitude facilitation. Our findings indicate that acute hypercalcaemia significantly decreased the MEP amplitude facilitation. Given that 5 Hz-rTMS modulates cortical excitability through mechanisms resembling short-term synaptic enhancement, the reduction of MEP amplitude facilitation by hypercalcaemia may be related to Ca2+-dependent changes in synaptic plasticity. PMID:21300754
Voitenkov, Voitenkov Vladislav; Andrey, Klimkin; Natalia, Skripchenko; Anastasia, Aksenova
2017-01-01
Context: The diagnosis of polyneuropathy may be challenging at the early stages of the disease. Despite electromyography (EMG) efficacy in the establishment of polyneuropathy diagnosis, in some cases, results are dubious and neurophysiologists may implement additional techniques to ensure that conduction is affected. Aims: The aim of the study was to evaluate motor-evoked potential (MEP) characteristics in children with acute inflammatory demyelinating polyneuropathy (AIDP). Settings and Design: The study was conducted at a pediatric research and clinical center for infectious diseases. Subjects and Methods: Twenty healthy children (7–14 years old) without signs of neurological disorders were enrolled as controls. Thirty-seven patients (8–13 years old) with AIDP were enrolled as the main group. EMG and transcranial magnetic stimulation (TMS) were performed on the 3rd–7th days from the onset of the first symptoms. Statistical Analysis Used: Descriptive statistics and Student's t-test were used. Bonferroni method was applied to implement appropriate corrections for multiple comparisons. Results: Significant differences between children with AIDP and controls on latencies of both cortical and lumbar MEPs were registered. Cortical MEP shapes were disperse in 100% of the cases and lumbar MEPs were disperse in 57% of the cases. Conclusions: Diagnostic TMS on the early stage of the AIDP in children may be implemented as the additional tool. The main finding in this population is lengthening of the latency of cortical and lumbar MEPs. Disperse shape of the lumbar MEPs may be used as the early sign of the acute demyelization. PMID:28904571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie E.; de la Rue du Can, Stephane; McNeil, Michael A.
This paper analyses several potential savings scenarios for minimum energy performance standard (MEPS) and comparable programs for governments participating i n the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative, of the Clean Energy Ministerial, which represent over 60% of primary energy consumption in the world. We compare projected energy savings from the main end uses in the residential sector using three energy efficiency scenarios: (1) recent achievements, (2) cost-effective saving potential, and (3) energy efficiency technical potential. The recent achievement scenario (1) evaluates the future impact of MEPS enacted or under development between 2010 and 2012. The cost-effective potential scenariomore » (2) identifies the maximum potential for energy efficiency that results in net benefits to the consumer. The best available technology scenario (3) re presents the full potential of energy efficiency considering best available technologies as candidates for MEPS and incentive programs. We use the Bottom Up Energy Analysis System (BUENAS), developed by Lawrence Berkeley National Laboratory in collaboration with the Collaborative Labelling and Appliances Standards Program (CLASP), to provide a consistent methodology to com pare the different scenarios. This paper focuses on the main end uses in the residential sector. The comparison of the three scenarios for each economy provides possible opportunities for scaling up current policies or implementing additional policies. This comparison across economies reveals country best practices as well as end uses that present the greatest additional potential savings. The paper describes areas where methodologies and additional policy instruments can increase penetration of energy efficient technologies. First , we summarize the barriers and provide remedial policy tools/best practices, such as techno-economic analysis, in response to each barriers that prevent economies from capturing the full cost-effective potentials of MEPS (Scenario 1 to 2). Then, we consider the possible complementary policy options, such as incentive pro grams, to reach the full technical potential of energy efficiency in the residential sector (Scenario 2 to 3).« less
Maximum entropy production in environmental and ecological systems.
Kleidon, Axel; Malhi, Yadvinder; Cox, Peter M
2010-05-12
The coupled biosphere-atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere-atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle.
Reduced surround inhibition in musicians.
Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H
2012-06-01
To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.
McKenney, Elizabeth S.; Sargent, Michelle; Khan, Hameed; Uh, Eugene; Jackson, Emily R.; Jose, Géraldine San; Couch, Robin D.; Dowd, Cynthia S.; van Hoek, Monique L.
2012-01-01
Bacteria, plants, and algae produce isoprenoids through the methylerythritol phosphate (MEP) pathway, an attractive pathway for antimicrobial drug development as it is present in prokaryotes and some lower eukaryotes but absent from human cells. The first committed step of the MEP pathway is catalyzed by 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR/MEP synthase). MEP pathway genes have been identified in many biothreat agents, including Francisella, Brucella, Bacillus, Burkholderia, and Yersinia. The importance of the MEP pathway to Francisella is demonstrated by the fact that MEP pathway mutations are lethal. We have previously established that fosmidomycin inhibits purified MEP synthase (DXR) from F. tularensis LVS. FR900098, the acetyl derivative of fosmidomycin, was found to inhibit the activity of purified DXR from F. tularensis LVS (IC50 = 230 nM). Fosmidomycin and FR900098 are effective against purified DXR from Mycobacterium tuberculosis as well, but have no effect on whole cells because the compounds are too polar to penetrate the thick cell wall. Fosmidomycin requires the GlpT transporter to enter cells, and this is absent in some pathogens, including M. tuberculosis. In this study, we have identified the GlpT homologs in F. novicida and tested transposon insertion mutants of glpT. We showed that FR900098 also requires GlpT for full activity against F. novicida. Thus, we synthesized several FR900098 prodrugs that have lipophilic groups to facilitate their passage through the bacterial cell wall and bypass the requirement for the GlpT transporter. One compound, that we termed “compound 1,” was found to have GlpT-independent antimicrobial activity. We tested the ability of this best performing prodrug to inhibit F. novicida intracellular infection of eukaryotic cell lines and the caterpillar Galleria mellonella as an in vivo infection model. As a lipophilic GlpT-independent DXR inhibitor, compound 1 has the potential to be a broad-spectrum antibiotic, and should be effective against most MEP-dependent organisms. PMID:23077474
Changes in Cortical Plasticity in Relation to a History of Concussion during Adolescence
Meehan, Sean K.; Mirdamadi, Jasmine L.; Martini, Douglas N.; Broglio, Steven P.
2017-01-01
Adolescence and early adulthood is a critical period for neurophysiological development potentially characterized by an increased susceptibility to the long-term effects of traumatic brain injury. The current study investigated differences in motor cortical physiology and neuroplastic potential across a cohort of young adults with adolescent concussion history and those without. Transcranial magnetic stimulation (TMS) was used to assess motor evoked potential (MEP) amplitude, short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) before and after intermittent theta burst stimulation (iTBS). Pre-iTBS, MEP amplitude, but not SICI or ICF, was greater in the concussion history group. Post-iTBS, the expected increase in MEP amplitude and ICF was tempered in the concussion history group. Change in SICI was variable within the concussion history group. Post hoc assessment revealed that SICI was significantly lower in individuals whose concussion was not diagnosed at the time of injury compared to both those without a concussion history or whose concussion was medically diagnosed. Concussive impacts during adolescence appear to result in a persistent reduction of the ability to modulate facilitatory motor networks. Failure to report/identify concussive impacts close to injury during adolescence also appears to produce persistent change in inhibitory networks. These findings highlight the potential long-term impact of adolescent concussion upon motor cortical physiology. PMID:28144218
Application of the string method to the study of critical nuclei in capillary condensation.
Qiu, Chunyin; Qian, Tiezheng; Ren, Weiqing
2008-10-21
We adopt a continuum description for liquid-vapor phase transition in the framework of mean-field theory and use the string method to numerically investigate the critical nuclei for capillary condensation in a slit pore. This numerical approach allows us to determine the critical nuclei corresponding to saddle points of the grand potential function in which the chemical potential is given in the beginning. The string method locates the minimal energy path (MEP), which is the most probable transition pathway connecting two metastable/stable states in configuration space. From the MEP, the saddle point is determined and the corresponding energy barrier also obtained (for grand potential). Moreover, the MEP shows how the new phase (liquid) grows out of the old phase (vapor) along the most probable transition pathway, from the birth of a critical nucleus to its consequent expansion. Our calculations run from partial wetting to complete wetting with a variable strength of attractive wall potential. In the latter case, the string method presents a unified way for computing the critical nuclei, from film formation at solid surface to bulk condensation via liquid bridge. The present application of the string method to the numerical study of capillary condensation shows the great power of this method in evaluating the critical nuclei in various liquid-vapor phase transitions.
Rogić Vidaković, Maja; Jerković, Ana; Jurić, Tomislav; Vujović, Igor; Šoda, Joško; Erceg, Nikola; Bubić, Andreja; Zmajević Schönwald, Marina; Lioumis, Pantelis; Gabelica, Dragan; Đogaš, Zoran
2016-11-01
Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 ± 2.07 ms and CoMEP amplitude was 294.47 ± 208.87 µV, and in stuttering subjects CoMEP latency was 12.13 ± 0.75 ms and 504.64 ± 487.93 µV CoMEP amplitude. The latency of LLR in control subjects was 52.8 ± 8.6 ms and 54.95 ± 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.
Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task
Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie
2016-01-01
Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided “in the air” (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no means to control for premature responses, probably increasing the relative amount of facilitatory influences at the time motor inhibition is probed. PMID:27579905
Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task.
Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie
2016-01-01
Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided "in the air" (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no means to control for premature responses, probably increasing the relative amount of facilitatory influences at the time motor inhibition is probed.
Pitkänen, Minna; Kallioniemi, Elisa; Julkunen, Petro
2017-01-01
Repetition suppression (RS) is evident as a weakened response to repeated stimuli after the initial response. RS has been demonstrated in motor-evoked potentials (MEPs) induced with transcranial magnetic stimulation (TMS). Here, we investigated the effect of inter-train interval (ITI) on the induction of RS of MEPs with the attempt to optimize the investigative protocols. Trains of TMS pulses, targeted to the primary motor cortex by neuronavigation, were applied at a stimulation intensity of 120% of the resting motor threshold. The stimulus trains included either four or twenty pulses with an inter-stimulus interval (ISI) of 1 s. The ITI was here defined as the interval between the last pulse in a train and the first pulse in the next train; the ITIs used here were 1, 3, 4, 6, 7, 12, and 17 s. RS was observed with all ITIs except with the ITI of 1 s, in which the ITI was equal to ISI. RS was more pronounced with longer ITIs. Shorter ITIs may not allow sufficient time for a return to baseline. RS may reflect a startle-like response to the first pulse of a train followed by habituation. Longer ITIs may allow more recovery time and in turn demonstrate greater RS. Our results indicate that RS can be studied with confidence at relatively short ITIs of 6 s and above.
Influence of mirror therapy on human motor cortex.
Fukumura, Kenji; Sugawara, Kenichi; Tanabe, Shigeo; Ushiba, Junichi; Tomita, Yutaka
2007-07-01
This article investigates whether or not mirror therapy alters the neural mechanisms in human motor cortex. Six healthy volunteers participated. The study investigated the effects of three main factors of mirror therapy (observation of hand movements in a mirror, motor imagery of an assumed affected hand, and assistance in exercising the assumed affected hand) on excitability changes in the human motor cortex to clarify the contribution of each factor. The increase in motor-evoked potential (MEP) amplitudes during motor imagery tended to be larger with a mirror than without one. Moreover, MEP amplitudes increased greatly when movements were assisted. Watching the movement of one hand in a mirror makes it easier to move the other hand in the same way. Moreover, the increase in MEP amplitudes is related to the synergic effects of afferent information and motor imagery.
Wallace, Carol A; Giannini, Edward H; Spalding, Steven J; Hashkes, Philip J; O'Neil, Kathleen M; Zeft, Andrew S; Szer, Ilona S; Ringold, Sarah; Brunner, Hermine I; Schanberg, Laura E; Sundel, Robert P; Milojevic, Diana S; Punaro, Marilynn G; Chira, Peter; Gottlieb, Beth S; Higgins, Gloria C; Ilowite, Norman T; Kimura, Yukiko; Johnson, Anne; Huang, Bin; Lovell, Daniel J
2014-06-01
To determine the elapsed time while receiving aggressive therapy to the first observation of clinically inactive disease (CID), total duration of CID and potential predictors of this response in a cohort of children with recent onset of polyarticular juvenile idiopathic arthritis (poly-JIA). Eighty-five children were randomized blindly to methotrexate (MTX), etanercept, and rapidly tapered prednisolone (MEP) or MTX monotherapy and assessed for CID over 1 year of treatment. Patients who failed to achieve intermediary endpoints were switched to open-label MEP treatment. Fifty-eight (68.2%) of the 85 patients achieved CID at 1 or more visits including 18 who received blinded MEP, 11 while receiving MTX monotherapy, and 29 while receiving open-label MEP. Patients starting on MEP achieved CID earlier and had more study days in CID compared to those starting MTX, but the differences were not significantly different. Patients given MEP (more aggressive therapy) earlier in the disease course were statistically more likely to have a higher proportion of followup visits in CID than those with longer disease course at baseline. Those who achieved American College of Rheumatology Pediatric 70 response at 4 months had a significantly greater proportion of followup visits in CID, compared to those who failed to achieve this improvement (p < 0.0001). Of the 32 patients who met criteria for CID and then lost CID status, only 3 fulfilled the definition of disease flare. Shorter disease duration prior to treatment, a robust response at 4 months, and more aggressive therapy result in a higher likelihood and longer duration of CID in patients with poly-JIA. The original trial from which data for this analysis were obtained is registered on www.clinicaltrials.gov NCT 00443430.
Fried, Peter J.; Jannati, Ali; Davila-Pérez, Paula; Pascual-Leone, Alvaro
2017-01-01
Background: Transcranial magnetic stimulation (TMS) can be used to assess neurophysiology and the mechanisms of cortical brain plasticity in humans in vivo. As the use of these measures in specific populations (e.g., Alzheimer’s disease; AD) increases, it is critical to understand their reproducibility (i.e., test–retest reliability) in the populations of interest. Objective: Reproducibility of TMS measures was evaluated in older adults, including healthy, AD, and Type-2 diabetes mellitus (T2DM) groups. Methods: Participants received two identical neurophysiological assessments within a year including motor thresholds, baseline motor evoked potentials (MEPs), short- and long-interval intracortical inhibition (SICI, LICI) and intracortical facilitation (ICF), and MEP changes following intermittent theta-burst stimulation (iTBS). Cronbach’s α coefficients were calculated to assess reproducibility. Multiple linear regression analyses were used to investigate factors related to intraindividual variability. Results: Reproducibility was highest for motor thresholds, followed by baseline MEPs, SICI and LICI, and was lowest for ICF and iTBS aftereffects. The AD group tended to show higher reproducibility than T2DM or controls. Intraindividual variability of baseline MEPs was related to age and variability of RMT, while the intraindividual variability in post-iTBS measures was related to baseline MEP variability, intervisit duration, and Brain-derived neurotrophic factor (BDNF) polymorphism. Conclusion: Increased reproducibility in AD may reflect pathophysiological declines in the efficacy of neuroplastic mechanisms. Reproducibility of iTBS aftereffects can be improved by keeping baseline MEPs consistent, controlling for BDNF genotype, and waiting at least a week between visits. Significance: These findings provide the first direct assessment of reproducibility of TMS measures in older clinical populations. Reproducibility coefficients may be used to adjust effect- and sample size calculations for future studies. PMID:28871222
NASA Astrophysics Data System (ADS)
Rokicki, Ryszard; Haider, Waseem; Maffi, Shivani Kaushal
2015-01-01
Research was undertaken to determine the influence of the increased content of chromium in the outermost passive layer of magneto-electrochemically refined Co-Cr alloy L-605 surface on its hemocompatibility. The chemistry, roughness, surface energy, and wettability of conventionally electropolished (EP) and magnetoelectropolished (MEP) samples were studied with x-ray photoelectron spectroscopy (XPS), open circuit potential, atomic force microscopy, and contact angle meter. In vitro hemocompatibility of tested material surfaces was assessed using two important indicators of vascular responses to biomaterial, namely endothelialization and platelets adhesion. The endothelialization was assessed by seeding and incubating samples with human umbilical vein endothelial cells (HUVEC) for 3 days before counting and observing them under a fluorescent microscope. The platelet (rich plasma blood) adhesion and activation test on EP and MEP L-605 alloy surfaces was assessed using a laser scanning confocal microscope. The XPS analysis of MEP samples showed significant enrichment of the passive layer with Cr and O when compared with the EP one. The amount of other elements in the passive layer did not show a significant difference between EP and MEP treatments. The adhesion of HUVEC cells shows remarkable affinity to surfaces enriched in Cr (MEP) with almost 100% confluency. In addition, the number of platelets that adhered to standard EP surfaces was higher compared to the MEP surface. The present study shows that the chromium-enriched surface of cobalt-chromium alloy L-605 by the magnetoelectropolishing process tremendously improves surface hemocompatibility with regard to stent functionality by enhanced endothelialization and lower platelet adhesion and should be taken under consideration as an alternative surface of biodegradable polymer drug-eluting stents, polymer-free drug-eluting stents as well as bare-metal stents.
Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.
Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A
2015-08-01
In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Lorenz, M C; Heitman, J
1998-01-01
Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth. PMID:9832522
Mongiardi, Maria Patrizia; Savino, Mauro; Bartoli, Laura; Beji, Sara; Nanni, Simona; Scagnoli, Fiorella; Falchetti, Maria Laura; Favia, Annarita; Farsetti, Antonella; Levi, Andrea; Nasi, Sergio; Illi, Barbara
2015-01-01
The c-Myc protein is dysregulated in many human cancers and its function has not been fully elucitated yet. The c-Myc inhibitor Omomyc displays potent anticancer properties in animal models. It perturbs the c-Myc protein network, impairs c-Myc binding to the E-boxes, retaining transrepressive properties and inducing histone deacetylation. Here we have employed Omomyc to further analyse c-Myc activity at the epigenetic level. We show that both Myc and Omomyc stimulate histone H4 symmetric dimethylation of arginine (R) 3 (H4R3me2s), in human glioblastoma and HEK293T cells. Consistently, both associated with protein Arginine Methyltransferase 5 (PRMT5)—the catalyst of the reaction—and its co-factor Methylosome Protein 50 (MEP50). Confocal experiments showed that Omomyc co-localized with c-Myc, PRMT5 and H4R3me2s-enriched chromatin domains. Finally, interfering with PRMT5 activity impaired target gene activation by Myc whereas it restrained Omomyc-dependent repression. The identification of a histone-modifying complex associated with Omomyc represents the first demonstration of an active role of this miniprotein in modifying chromatin structure and adds new information regarding its action on c-Myc targets. More importantly, the observation that c-Myc may recruit PRMT5-MEP50, inducing H4R3 symmetric di-methylation, suggests previously unpredictable roles for c-Myc in gene expression regulation and new potential targets for therapy. PMID:26563484
Hasegawa, Keita; Kasuga, Shoko; Takasaki, Kenichi; Mizuno, Katsuhiro; Liu, Meigen; Ushiba, Junichi
2017-08-25
Motor planning, imagery or execution is associated with event-related desynchronization (ERD) of mu rhythm oscillations (8-13 Hz) recordable over sensorimotor areas using electroencephalography (EEG). It was shown that motor imagery involving distal muscles, e.g. finger movements, results in contralateral ERD correlating with increased excitability of the contralateral corticospinal tract (c-CST). Following the rationale that purposefully increasing c-CST excitability might facilitate motor recovery after stroke, ERD recently became an attractive target for brain-computer interface (BCI)-based neurorehabilitation training. It was unclear, however, whether ERD would also reflect excitability of the ipsilateral corticospinal tract (i-CST) that mainly innervates proximal muscles involved in e.g. shoulder movements. Such knowledge would be important to optimize and extend ERD-based BCI neurorehabilitation protocols, e.g. to restore shoulder movements after stroke. Here we used single-pulse transcranial magnetic stimulation (TMS) targeting the ipsilateral primary motor cortex to elicit motor evoked potentials (MEPs) of the trapezius muscle. To assess whether ERD reflects excitability of the i-CST, a correlation analysis between between MEP amplitudes and ipsilateral ERD was performed. Experiment 1 consisted of a motor execution task during which 10 healthy volunteers performed elevations of the shoulder girdle or finger pinching while a 128-channel EEG was recorded. Experiment 2 consisted of a motor imagery task during which 16 healthy volunteers imagined shoulder girdle elevations or finger pinching while an EEG was recorded; the participants simultaneously received randomly timed, single-pulse TMS to the ipsilateral primary motor cortex. The spatial pattern and amplitude of ERD and the amplitude of the agonist muscle's TMS-induced MEPs were analyzed. ERDs occurred bilaterally during both execution and imagery of shoulder girdle elevations, but were lateralized to the contralateral hemisphere during finger pinching. We found that trapezius MEPs increased during motor imagery of shoulder elevations and correlated with ipsilateral ERD amplitudes. Ipsilateral ERD during execution and imagery of shoulder girdle elevations appears to reflect the excitability of uncrossed pathways projecting to the shoulder muscles. As such, ipsilateral ERD could be used for neurofeedback training of shoulder movement, aiming at reanimation of the i-CST.
Fu, Jianming; Zeng, Ming; Shen, Fang; Cui, Yao; Zhu, Meihong; Gu, Xudong; Sun, Ya
2017-10-01
The aim of this study was to explore the effects of action observation therapy on motor function of upper extremity, activities of daily living, and motion evoked potential in cerebral infarction patients. Cerebral infarction survivors were randomly assigned to an experimental group (28 patients) or a control group (25 patients). The conventional rehabilitation treatments were applied in both groups, but the experimental group received an additional action observation therapy for 8 weeks (6 times per week, 20 minutes per time). Fugl-Meyer assessment (FMA), Wolf Motor Function Test (WMFT), Modified Barthel Index (MBI), and motor evoked potential (MEP) were used to evaluate the upper limb movement function and daily life activity. There were no significant differences between experiment and control group in the indexes, including FMA, WMFT, and MBI scores, before the intervention. However, after 8 weeks treatments, these indexes were improved significantly. MEP latency and center-motion conduction time (CMCT) decreased from 23.82 ± 2.16 and 11.15 ± 1.68 to 22.69 ± 2.11 and 10.12 ± 1.46 ms. MEP amplitude increased from 0.61 ± 0.22 to 1.25 ± 0.38 mV. A remarkable relationship between the evaluations indexes of MEP and FMA was found. Combination of motion observation and traditional upper limb rehabilitation treatment technology can significantly elevate the movement function of cerebral infarction patients in subacute seizure phase with upper limb dysfunction, which expanded the application range of motion observation therapy and provided an effective therapy strategy for upper extremities hemiplegia in stroke patients.
A comparative study of the electrostatic potential of fullerene-like structures of Au 32 and Au 42
NASA Astrophysics Data System (ADS)
Wang, Dong-Lai; Sun, Xiao-Ping; Shen, Hong-Tao; Hou, Dong-Yan; Zhai, Yu-Chun
2008-05-01
By using density functional theory calculations, it is found that the most negative MEP inside the gold cage occurs at the center of the sphere. The largest regions with the most negative MEP outside the sphere are localized in the neighborhood of the bridge sites and the vertex regions of the five-coordinated are more positive. The absolute values of the most negative potentials in both the inner and outer cages as well as the vertex regions of the five-coordinated of Au 32 structure are much larger than those of Au 42, which means Au 32 is preferable for electrophilic attack or nucleophilic processes.
Petrosyan, Hayk A; Alessi, Valentina; Sisto, Sue A; Kaufman, Mark; Arvanian, Victor L
2017-03-06
Electromagnetic stimulation applied at the cranial level, i.e. transcranial magnetic stimulation (TMS), is a technique for stimulation and neuromodulation used for diagnostic and therapeutic applications in clinical and research settings. Although recordings of TMS elicited motor-evoked potentials (MEP) are an essential diagnostic tool for spinal cord injured (SCI) patients, they are reliably recorded from arm, and not leg muscles. Mid-thoracic contusion is a common SCI that results in locomotor impairments predominantly in legs. In this study, we used a chronic T10 contusion SCI rat model and examined whether (i) TMS-responses in hindlimb muscles can be used for evaluation of conduction deficits in cortico-spinal circuitry and (ii) if plastic changes at spinal levels will affect these responses. In this study, plastic changes of transmission in damaged spinal cord were achieved by repetitive electro-magnetic stimulation applied over the spinal level (rSEMS). Spinal electro-magnetic stimulation was previously shown to activate spinal nerves and is gaining large acceptance as a non-invasive alternative to direct current and/or epidural electric stimulation. Results demonstrate that TMS fails to induce measurable MEPs in hindlimbs of chronically SCI animals. After facilitation of synaptic transmission in damaged spinal cord was achieved with rSEMS, however, MEPs were recorded from hindlimb muscles in response to single pulse TMS stimulation. These results provide additional evidence demonstrating beneficial effects of TMS as a diagnostic technique for descending motor pathways in uninjured CNS and after SCI. This study confirms the ability of TMS to assess plastic changes of transmission occurring at the spinal level. Published by Elsevier B.V.
Mild cognitive impairment: loss of linguistic task-induced changes in motor cortex excitability.
Bracco, L; Giovannelli, F; Bessi, V; Borgheresi, A; Di Tullio, A; Sorbi, S; Zaccara, G; Cincotta, M
2009-03-10
In amnestic mild cognitive impairment (aMCI), functional neuronal connectivity may be altered, as suggested by quantitative EEG and neuroimaging data. In young healthy humans, the execution of linguistic tasks modifies the excitability of the hand area of the dominant primary motor cortex (M1(hand)), as tested by transcranial magnetic stimulation (TMS). We used TMS to investigate functional connectivity between language-related cortical areas and M1(hand) in aMCI. Ten elderly women with aMCI and 10 age-matched women were recruited. All participants were right handed and underwent a neuropsychological evaluation. In the first TMS experiment, participants performed three different tasks: reading aloud, viewing of non-letter strings (baseline), and nonverbal oral movements. The second experiment included the baseline condition and three visual searching/matching tasks using letters, geometric shapes, or digits as target stimuli. In controls, motor evoked potentials (MEP) elicited by suprathreshold TMS of the left M1(hand) were significantly larger during reading aloud (170% baseline) than during nonverbal oral movements, whereas no difference was seen for right M1(hand) stimulation. Similarly, MEP elicited by left M1(hand) stimulation during letter and shape searching/matching tasks were significantly larger compared to digit task. In contrast, linguistic task performance did not produce any significant MEP modulation in patients with aMCI, although neuropsychological evaluation showed normal language abilities. Findings suggest that functional connectivity between the language-related brain regions and the dominant M1(hand) may be altered in amnestic mild cognitive impairment. Follow-up studies will reveal whether transcranial magnetic stimulation application during linguistic tasks may contribute to characterize the risk of conversion to Alzheimer disease.
Mishra, Asht M.; Pal, Ajay; Gupta, Disha
2017-01-01
Key points Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord.The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone.Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal.Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Abstract Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. PMID:28752624
Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B
2017-11-15
Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Sommer, Martin; Norden, Christoph; Schmack, Lars; Rothkegel, Holger; Lang, Nicolas; Paulus, Walter
2013-05-01
Directional sensitivity is relevant for the excitability threshold of the human primary motor cortex, but its importance for externally induced plasticity is unknown. To study the influence of current direction on two paradigms inducing neuroplasticity by repetitive transcranial magnetic stimulation (rTMS). We studied short-lasting after-effects induced in the human primary motor cortex of 8 healthy subjects, using 5 Hz rTMS applied in six blocks of 200 pulses each, at 90% active motor threshold. We controlled for intensity, frequency, waveform and spinal effects. Only biphasic pulses with the effective component delivered in an anterioposterior direction (henceforth posteriorly directed) in the brain yielded an increase of motor-evoked potential (MEP) amplitudes outlasting rTMS. MEP latencies and F-wave amplitudes remained unchanged. Biphasic pulses directed posteroanterior (i.e. anteriorly) were ineffective, as were monophasic pulses from either direction. A 1 Hz study in a group of 12 healthy subjects confirmed facilitation after posteriorly directed biphasic pulses only. The anisotropy of the human primary motor cortex is relevant for induction of plasticity by subtreshold rTMS, with a current flow opposite to that providing lowest excitability thresholds. This is consistent with the idea of TMS primarily targeting cortical columns of the phylogenetically new M1 in the anterior bank of the central sulcus. For these, anteriorly directed currents are soma-depolarizing, therefore optimal for low thresholds, whereas posteriorly directed currents are soma-hyperpolarizing, likely dendrite-depolarizing and bested suited for induction of plasticity. Our findings should help focus and enhance rTMS effects in experimental and clinical settings. Copyright © 2013 Elsevier Inc. All rights reserved.
[Motor evoked potentials in thoracoabdominal aortic surgery].
Magro, Cátia; Nora, David; Marques, Miguel; Alves, Angela Garcia
2012-01-01
Thoracoabdominal aortic disease (aneurysm or dissection) has increased in recent decades. Surgery is the curative treatment but is associated to high perioperative morbidity and mortality risks. Paraplegia is one of the most severe complications, whose incidence has decreased significantly with the implementation of spinal cord protection strategies. No single method or combination of methods has proven to be fully effective in preventing paraplegia. This review is intended to analyse the scientific evidence available on the role of intraoperative monitoring with motor evoked potentials in the neurological outcome of patients undergoing thoracoabdominal aortic surgery. An online search (PubMed) was conducted. Relevant references were selected and reviewed. Intraoperative monitoring with motor evoked potentials (MEP) allows early detection of ischemic events and a targeted intervention to prevent the development of spinal cord injury, significantly reducing the incidence of postoperative paraplegia. MEP monitoring may undergo several intraoperative interferences which may compromise their interpretation. Neuromuscular blockade is the main limiting factor of anesthetic origin. It is essential to strike a balance between monitoring conditions and surgical and anesthetic needs as well as to evaluate the risks and benefits of the technique for each patient. MEP monitoring improves neurological outcome when integrated in a multidisciplinary strategy which must include multiple protective mechanisms that should be tailored to each hospital reality.
Duque, Julie; Labruna, Ludovica; Cazares, Christian; Ivry, Richard B
2014-12-01
Motor behavior requires selecting between potential actions. The role of inhibition in response selection has frequently been examined in tasks in which participants are engaged in some advance preparation prior to the presentation of an imperative signal. Under such conditions, inhibition could be related to processes associated with response selection, or to more general inhibitory processes that are engaged in high states of anticipation. In Experiment 1, we manipulated the degree of anticipatory preparation. Participants performed a choice reaction time task that required choosing between a movement of the left or right index finger, and used transcranial magnetic stimulation (TMS) to elicit motor evoked potentials (MEPs) in the left hand agonist. In high anticipation blocks, a non-informative cue (e.g., fixation marker) preceded the imperative; in low anticipation blocks, there was no cue and participants were required to divide their attention between two tasks to further reduce anticipation. MEPs were substantially reduced before the imperative signal in high anticipation blocks. In contrast, in low anticipation blocks, MEPs remained unchanged before the imperative signal but showed a marked suppression right after the onset of the imperative. This effect occurred regardless of whether the imperative had signalled a left or right hand response. After this initial inhibition, left MEPs increased when the left hand was selected and remained suppressed when the right hand was selected. We obtained similar results in Experiment 2 except that the persistent left MEP suppression when the left hand was not selected was attenuated when the alternative response involved a non-homologous effector (right foot). These results indicate that, even in the absence of an anticipatory period, inhibitory mechanisms are engaged during response selection, possibly to prevent the occurrence of premature and inappropriate responses during a competitive selection process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ito, Eiji; Ichikawa, Masahiro; Itakura, Takeshi; Ando, Hitoshi; Matsumoto, Yuka; Oda, Keiko; Sato, Taku; Watanabe, Tadashi; Sakuma, Jun; Saito, Kiyoshi
2013-01-01
Dysphasia is one of the most serious complications of skull base surgeries and results from damage to the brainstem and/or cranial nerves involved in swallowing. Here, the authors propose a method to monitor the function of the vagus nerve using endotracheal tube surface electrodes and transcranial electrical stimulation during skull base surgeries. Fifteen patients with skull base or brainstem tumors were enrolled. The authors used surface electrodes of an endotracheal tube to record compound electromyographic responses from the vocalis muscle. Motor neurons were stimulated using corkscrew electrodes placed subdermally on the scalp at C3 and C4. During surgery, the operator received a warning when the amplitude of the vagal motor evoked potential (MEP) decreased to less than 50% of the control level. After surgery, swallowing function was assessed clinically using grading criteria. In 5 patients, vagal MEP amplitude permanently deteriorated to less than 50% of the control level on the right side when meningiomas were dissected from the pons or basilar artery, or when a schwannoma was dissected from the vagal rootlets. These 5 patients had postoperative dysphagia. At 4 weeks after surgery, 2 patients still had dysphagia. In 2 patients, vagal MEPs of one side transiently disappeared when the tumors were dissected from the brainstem or the vagal rootlets. After surgery, both patients had dysphagia, which recovered in 4 weeks. In 7 patients, MEP amplitude was consistent, maintaining more than 50% of the control level throughout the operative procedures. After surgery all 7 patients were neurologically intact with normal swallowing function. Vagal MEP monitoring with transcranial electrical stimulation and endotracheal tube electrode recording was a safe and effective method to provide continuous real-time information on the integrity of both the supranuclear and infranuclear vagal pathway. This method is useful to prevent intraoperative injury of the brainstem corticobulbar tract or the vagal rootlets and to avoid the postoperative dysphagia that is often associated with brainstem or skull base surgeries.
Fisher, Beth E; Piraino, Andrew; Lee, Ya-Yun; Smith, Jo Armour; Johnson, Sean; Davenport, Todd E; Kulig, Kornelia
2016-07-01
Study Design Controlled laboratory study. Background Joint mobilization and manipulation decrease pain and improve patient function. Yet, the processes underlying these changes are not well understood. Measures of corticospinal excitability provide insight into potential mechanisms mediated by the central nervous system. Objectives To investigate the differential effects of joint mobilization and manipulation at the talocrural joint on corticospinal excitability in individuals with resolved symptoms following ankle sprain. Methods Twenty-seven participants with a history of ankle sprain were randomly assigned to the control, joint mobilization, or thrust manipulation group. The motor-evoked potential (MEP) and cortical silent period (CSP) of the tibialis anterior and gastrocnemius were obtained with transcranial magnetic stimulation at rest and during active contraction of the tibialis anterior. The slopes of MEP/CSP input/output curves and the maximal MEP/CSP values were calculated to indicate corticospinal excitability. Behavioral measures, including ankle dorsiflexion and dynamic balance, were evaluated. Results A repeated-measures analysis of variance of the MEP slope showed a significant group-by-time interaction for the tibialis anterior at rest (P = .002) and during active contraction (P = .042). After intervention, the thrust manipulation group had an increase in corticospinal excitability, while the corticospinal excitability decreased in the mobilization group. The thrust manipulation group, but not other groups, also demonstrated a significant increase in the maximal MEP amplitude of the tibialis anterior after intervention. Conclusion The findings suggest that joint manipulation and mobilization have different effects on corticospinal excitability. The increased corticospinal excitability following thrust manipulation may provide a window for physical therapists to optimize muscle recruitment and subsequently movement. The trial was registered at ClinicalTrials.gov (NCT00847769). J Orthop Sports Phys Ther 2016;46(7):562-570. Epub 6 Jun 2016. doi:10.2519/jospt.2016.6602.
Terpenoids and Their Biosynthesis in Cyanobacteria
Pattanaik, Bagmi; Lindberg, Pia
2015-01-01
Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610
Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J
2011-04-01
Selecting the adequate alternative in choice situations may involve an inhibition process. Here we assessed response implementation during the reaction time of a between-hand choice task with single- or paired-pulse (3 or 15 ms interstimulus intervals [ISIs]) transcranial magnetic stimulation of the motor cortex. The amplitude of the single-pulse motor evoked potential (MEP) initially increased for both hands. At around 130 ms, the single-pulse MEP kept increasing for the responding hand and decreased for the nonresponding hand. The paired-pulse MEP revealed a similar pattern for both ISIs with no effect on short intracortical inhibition and intracortical facilitation measures. The results suggest that the incorrect response implementation was selectively suppressed before execution of the correct response, preventing errors in choice context. The results favor models assuming that decision making involves an inhibition process. Copyright © 2010 Society for Psychophysiological Research.
Effect of transcranial magnetic stimulation on force of finger pinch
NASA Astrophysics Data System (ADS)
Odagaki, Masato; Fukuda, Hiroshi; Hiwaki, Osamu
2009-04-01
Transcranial magnetic stimulation (TMS) is used to explore many aspects of brain function, and to treat neurological disorders. Cortical motor neuronal activation by TMS over the primary motor cortex (M1) produces efferent signals that pass through the corticospinal tracts. Motor-evoked potentials (MEPs) are observed in muscles innervated by the stimulated motor cortex. TMS can cause a silent period (SP) following MEP in voluntary electromyography (EMG). The present study examined the effects of TMS eliciting MEP and SP on the force of pinching using two fingers. Subjects pinched a wooden block with the thumb and index finger. TMS was applied to M1 during the pinch task. EMG of first dorsal interosseous muscles and pinch forces were measured. Force output increased after the TMS, and then oscillated. The results indicated that the motor control system to keep isotonic forces of the muscles participated in the finger pinch was disrupted by the TMS.
Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D
2017-09-15
Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.
Lee, Soo Rin; Lee, Ji-Hyun; Kim, Ah Ran; Kim, Sanghee; Park, Hyun; Baek, Hea Ja; Kim, Hyun-Woo
2016-02-01
Three full-length cDNAs encoding lipoprotein homologs were identified in Tigriopus kingsejongensis, a newly identified copepod from Antarctica. Structural and transcriptional analyses revealed homology with two vitellogenin-like proteins, Tik-Vg1 and Tik-Vg2, which were 1855 and 1795 amino acids in length, respectively, along with a third protein, Tik-MEP, which produced a 1517-residue protein with similarity to a melanin engaging protein (MEP) in insects Phylogenetic analysis showed that Vgs in Maxillopods including two Tik-Vgs belong to the arthropod vitellogenin-like clade, which includes clottable proteins (CPs) in decapod crustaceans and vitellogenins in insects. Tik-MEP clustered together with insect MEPs, which appear to have evolved before the apoB-like and arthropod Vg-like clades. Interestingly, no genes orthologous to those found in the apoB clade were identified in Maxillopoda, suggesting that functions of large lipid transfer proteins (LLTPs) in reproduction and lipid metabolism may be different from those in insect and decapod crustaceans. As suggested by phylogenetic analyses, the two Tik-Vgs belonging to the arthropod Vg-like clade appear to play major roles in oocyte maturation, while Vgs belonging to the apoB clade function primarily in the reproduction of decapod crustaceans. Transcriptional analysis of Tik-Vg expression revealed a 24-fold increase in mature and ovigerous females compared with immature female, whereas expression of Tik-MEP remained low through all reproductive stages. Acute temperature changes did not affect the transcription of Tik-Vg genes, whereas Tik-MEP appeared to be affected by temperature change. Among the three hormones thought to be involved in molting and reproduction in arthropods, only farnesoic acid (FA) induced transcription of the two Tik-Vg genes. Regardless of developmental stage and hormone treatment, Tik-Vg1 and Tik-Vg2 exhibited a strong positive correlation in expression, suggesting that expression of these genes may be regulated by the same transcriptional machinery. Copyright © 2015 Elsevier Inc. All rights reserved.
Jahangiri, Faisal R; Al Eissa, Sami; Sayegh, Samir; Al Helal, Fahad; Al-Sharif, Shomoukh A; Annaim, Monerah M; Muhammad, Sheryar; Aziz, Tanweer
2016-08-31
A 16-year-old male patient with Ehler-Danlos syndrome (EDS) and a back deformity since birth presented with severe kyphoscoliosis. The patient was neurologically intact but had respiratory and cardiac insufficiencies. A two-stage vertebral column resection (VCR) at T9-T10 with multiple level fusion with multimodality intraoperative neurophysiological monitoring (IONM) was planned. During the first stage, pedicle screws were placed at multiple spinal levels above and below the VCR level. Upper and lower somatosensory evoked potentials (SSEP), transcranial electrical motor evoked potentials (TCeMEP), and electromyography were monitored continuously and showed no significant changes. The second stage was performed one week later. Baseline SSEP and TCeMEP responses were present in all extremities. The surgeon was informed of a sudden 70% amplitude drop in TCeMEP in the lower limbs with stable SSEP after ligating one of the left nerves/vessels fully stretching the spinal cord. The surgeon removed the ligation, and an improvement in motor responses followed. Surgery proceeded with the highest levels of caution. Later, there was a sudden loss of TCeMEP and SSEP in the lower limbs bilaterally. The correction was released, mean arterial pressure was increased, and intravenous dexamethasone was administered. The surgical correction was aborted, and the decision was made to close the site. Lower SSEP and TCeMEP responses remained absent until closing, while upper SSEP and TCeMEP responses remained stable. A wake-up test was done after closing. The patient moved his upper limbs but was unable to move his lower limbs bilaterally. The patient was sent for a magnetic resonance imaging scan while intubated and then sent to the intensive care unit. At 24 hours and 36 hours post-operation, the patient had no sensory and motor function below the T8 level. Forty-eight hours post-operation, the patient started to feel sensory stimuli at the T10 level. At one week post-operation, the patient regained sphincter functions, and at four weeks postoperatively, the patient's hip flexors started to recover. VCR in patients with EDS has a very high risk of damaging the spinal cord due to the fragile vasculature of the spinal cord. Real-time IONM is useful in the early identification of spinal cord injury in cases of this nature.
Al Eissa, Sami; Sayegh, Samir; Al Helal, Fahad; Al-Sharif, Shomoukh A; Annaim, Monerah M; Muhammad, Sheryar; Aziz, Tanweer
2016-01-01
A 16-year-old male patient with Ehler-Danlos syndrome (EDS) and a back deformity since birth presented with severe kyphoscoliosis. The patient was neurologically intact but had respiratory and cardiac insufficiencies. A two-stage vertebral column resection (VCR) at T9-T10 with multiple level fusion with multimodality intraoperative neurophysiological monitoring (IONM) was planned. During the first stage, pedicle screws were placed at multiple spinal levels above and below the VCR level. Upper and lower somatosensory evoked potentials (SSEP), transcranial electrical motor evoked potentials (TCeMEP), and electromyography were monitored continuously and showed no significant changes. The second stage was performed one week later. Baseline SSEP and TCeMEP responses were present in all extremities. The surgeon was informed of a sudden 70% amplitude drop in TCeMEP in the lower limbs with stable SSEP after ligating one of the left nerves/vessels fully stretching the spinal cord. The surgeon removed the ligation, and an improvement in motor responses followed. Surgery proceeded with the highest levels of caution. Later, there was a sudden loss of TCeMEP and SSEP in the lower limbs bilaterally. The correction was released, mean arterial pressure was increased, and intravenous dexamethasone was administered. The surgical correction was aborted, and the decision was made to close the site. Lower SSEP and TCeMEP responses remained absent until closing, while upper SSEP and TCeMEP responses remained stable. A wake-up test was done after closing. The patient moved his upper limbs but was unable to move his lower limbs bilaterally. The patient was sent for a magnetic resonance imaging scan while intubated and then sent to the intensive care unit. At 24 hours and 36 hours post-operation, the patient had no sensory and motor function below the T8 level. Forty-eight hours post-operation, the patient started to feel sensory stimuli at the T10 level. At one week post-operation, the patient regained sphincter functions, and at four weeks postoperatively, the patient’s hip flexors started to recover. VCR in patients with EDS has a very high risk of damaging the spinal cord due to the fragile vasculature of the spinal cord. Real-time IONM is useful in the early identification of spinal cord injury in cases of this nature. PMID:27766191
Psychometric properties of the Mayo Elbow Performance Score.
Celik, Derya
2015-06-01
To translate and culturally adapt the Mayo Elbow Performance Score (MEPS), a widely used instrument for evaluating disability associated with elbow injuries, into Turkish (MEPS-T) and to determine psychometric properties of the translated version. The MEPS was translated into Turkish using published methodological guidelines. The measurement properties of the MEPS-T (construct validity and floor and ceiling effects) were tested in 91 patients with elbow pathology. The reproducibility of the MEPS-T was tested in 59 patients over 7-14 days. The responsiveness of the MEPS-T was tested in a subgroup of 46 patients diagnosed with lateral epicondylitis and who received conservative treatment for 6 weeks. The interclass correlation coefficient (ICC) was used to estimate the test-retest reliability. The construct validity was analyzed with the disabilities of the arm, shoulder and hand (DASH), Visual Analog Scale (VAS) and the Short Form 36 (SF-36). Effect size (ES) was used to assess the responsiveness. The distribution of floor and ceiling effects was determined. The MEPS-T showed very good test-retest reliability (ICC 0.89). The correlation coefficients between the MEPS-T and DASH and VAS were -0.61 and -0.53, respectively (p < 0.001). The highest correlations were between the MEPS-T and the mental component summary (r = 0.47, p = 0.001) and role emotional (r = 0.45, p = 0.001). The MEPS-T ES, 0.50, was moderate (95% CI 0.33-0.62). We observed no ceiling or floor effects. The MEPS-T represents a valid, reliable and moderately responsive instrument for evaluating patients with elbow disease.
Induction of motor associative plasticity in the posterior parietal cortex-primary motor network.
Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer; Carolina de Campos, Ana; Kukke, Sahana N; Wu, Tianxia; Wang, Han; Hallett, Mark
2015-02-01
There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right-handed subjects to test if this procedure could modulate M1 excitability and PPC-M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input-output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms. This interaction significantly attenuated at 60 min after left parietal ccPAS. Additional experiments showed that parietal ccPAS induced plasticity was timing-dependent, was absent if ISI was 100 ms, and could also be seen in the right hemisphere. Our results suggest that parietal ccPAS can modulate M1 excitability and PPC-M1 connectivity and is a new approach to modify motor excitability and sensorimotor interaction. Published by Oxford University Press 2013. This work is written by (a) US Government employee(s) and is in the public domain in the US.
The role of vitamin C in pushing back the boundaries of skin aging: an ultrasonographic approach.
Crisan, Diana; Roman, Iulia; Crisan, Maria; Scharffetter-Kochanek, Karin; Badea, Radu
2015-01-01
Imagistic methods stand as modern, non-invasive, and objective means of assessing the impact of topical cutaneous therapies. This study focuses on the evaluation, by high-frequency ultrasound, of the cutaneous changes induced by topical use of a vitamin C complex at facial level. A vitamin C-based solution/Placebo moisturizer cream was applied at facial level of 60 healthy female subjects according to a predetermined protocol. Ultrasonographic images (Dermascan C, 20 MHz) were taken from zygomatic level initially, at 40 and 60 days after therapy. The following parameters were assessed for every subject: thickness of the epidermis and dermis (mm), the number of low (LEP), medium (MEP), high echogenic pixels (HEP), and the number of LEP in the upper dermis/lower dermis (LEPs/LEPi). LEP decreased significantly in all age categories during and after therapy, but especially in the first 2 age intervals, up to the age of 50 (P=0.0001). MEP and HEP, pixel categories that quantify protein synthesis also had an age-dependent evolution in the study, increasing significantly in all age categories but most of all in the first age interval (P=0.002). Our ultrasonographic data suggest that collagen synthesis increased significantly after topical vitamin C therapy, and is responsible for the increase in MEP and HEP and consequent decrease of the LEP. Our study shows that topically applied vitamin C is highly efficient as a rejuvenation therapy, inducing significant collagen synthesis in all age groups with minimal side effects.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... authority of the governing or managing organization to conduct the proposed activities; qualifications of... integration and how the approach can expand service capability and capacity of the MEP system. The five MEP... MEP will hold an information session for organizations considering applying to this opportunity. The...
A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites
Edwards, Rachel L.; Kelly, Megan L.; Hodge, Dana M.; Tolia, Niraj H.; Odom, Audrey R.
2014-01-01
Isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway generates commercially important products and is a target for antimicrobial drug development. MEP pathway regulation is poorly understood in microorganisms. We employ a forward genetics approach to understand MEP pathway regulation in the malaria parasite, Plasmodium falciparum. The antimalarial fosmidomycin inhibits the MEP pathway enzyme deoxyxylulose 5-phosphate reductoisomerase (DXR). Fosmidomycin-resistant P. falciparum are enriched for changes in the PF3D7_1033400 locus (hereafter referred to as PfHAD1), encoding a homologue of haloacid dehalogenase (HAD)-like sugar phosphatases. We describe the structural basis for loss-of-function PfHAD1 alleles and find that PfHAD1 dephosphorylates a variety of sugar phosphates, including glycolytic intermediates. Loss of PfHAD1 is required for fosmidomycin resistance. Parasites lacking PfHAD1 have increased MEP pathway metabolites, particularly the DXR substrate, deoxyxylulose 5-phosphate. PfHAD1 therefore controls substrate availability to the MEP pathway. Because PfHAD1 has homologs in plants and bacteria, other HAD proteins may be MEP pathway regulators. PMID:25058848
NASA Astrophysics Data System (ADS)
Fatihah Salleh, Siti; Eqwan Roslan, Mohd; Isa, Aishah Mohd; Faizal Basri Nair, Mohd; Syafiqah Salleh, Siti
2018-03-01
One of Malaysia’s key strategies to promote efficient energy use in the country is to implement the minimum energy performance standards (MEPS) through the Electricity Regulations (Amendment) 2013. Five selected electrical appliances (refrigerator, air conditioner, television, domestic fans and lamp fittings) must comply with MEPS requirement in order to be sold in Malaysian market. Manufacturers, importers or distributors are issued Certificate of Approval (COA) if products are MEPS-compliant. In 2015, 1,215 COAs were issued but the number of MEPS products in the market is unknown. This work collects sales data from major manufacturers to estimate the annual sales of MEPS appliances and the cumulative electricity consumption and electricity saving. It was found that most products sold have 3-star rating and above. By year 2015, total cumulative electricity savings gained from MEPS implementation is 3,645 GWh, with air conditioner being the highest contributor (30%). In the future, it is recommended that more MEPS products and related incentives be introduced to further improve efficiency of energy use in Malaysia.
Haymond, Amanda; Johny, Chinchu; Dowdy, Tyrone; Schweibenz, Brandon; Villarroel, Karen; Young, Richard; Mantooth, Clark J.; Patel, Trishal; Bases, Jessica; Jose, Geraldine San; Jackson, Emily R.; Dowd, Cynthia S.; Couch, Robin D.
2014-01-01
The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KM DXP = 252 µM and KM NADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development. PMID:25171339
Wojtysiak, Magdalena; Huber, Juliusz; Wiertel-Krawczuk, Agnieszka; Szymankiewicz-Szukała, Agnieszka; Moskal, Jakub; Janicki, Jacek
2014-10-01
The application of complex neurophysiological examination including motor evoked potentials (MEP) for pre- and postoperative evaluation of patients experiencing acute sciatica. The assessment of sensitivity and specificity of needle electromyography, MEP, and H-reflex examinations. The comparative analysis of preoperative and postoperative neurophysiological examination. In spite of the fact that complex neurophysiological diagnostic tools seem to be important for interpretation of incompatible results of neuroimaging and clinical examination, especially in the patients qualified for surgical treatment, their application has never been completely analyzed and documented. Pre- and postoperative electromyography, electroneurography, F-waves, H-reflex, and MEP examination were performed in 23 patients with confirmed disc-root conflict at lumbosacral spine. Clinical evaluation included examination of sensory perception for L5-S1 dermatomes, muscles strength with Lovett's scale, deep tendon reflexes, pain intensity with visual analogue scale, and straight leg raising test. Sensitivity of electromyography at rest and MEP examination for evaluation of L5-S1 roots injury was 22% to 63% and 31% to 56% whereas specificity was 71% to 83% and 57% to 86%, respectively. H-reflex sensitivity and specificity for evaluation of S1 root injury were 56% and 67%, respectively. A significant improvement of root latency parameter in postoperative MEP studies as compared with preoperative was recorded for L5 (P = 0.039) and S1 root's levels (P = 0.05). The analysis of the results from neurophysiological tests together with neuroimaging and clinical examination allow for a precise preoperative indication of the lumbosacral roots injury and accurate postoperative evaluation of patients experiencing sciatica. 3.
Age-related differences in short- and long-interval intracortical inhibition in a human hand muscle.
Opie, George M; Semmler, John G
2014-01-01
Effects of age on the assessment of intracortical inhibition with paired-pulse transcranial magnetic stimulation (TMS) have been variable, which may be due to between-study differences in test TMS intensity and test motor evoked potential (MEP) amplitude. To investigate age-related differences in short- (SICI) and long-interval intracortical inhibition (LICI) across a range of test TMS intensities and test MEP amplitudes. In 22 young and 18 older subjects, SICI and LICI were recorded at a range of test TMS intensities (110%-150% of motor threshold) while the first dorsal interosseous (FDI) muscle was at rest, or producing a precision grip of the index finger and thumb. Data were subsequently compared according to the amplitude of the MEP produced by the test alone TMS. When pooled across all test TMS intensities, SICI in resting muscle and LICI in active muscle were similar in young and older adults, whereas SICI in active muscle and LICI in resting muscle were reduced in older adults. Regrouping data based on test MEP amplitude demonstrated similar effects of age for SICI and LICI in resting muscle, whereas more subtle differences between age groups were revealed for SICI and LICI in active muscle. Advancing age influences GABA-mediated intracortical inhibition, but the outcome is dependent on the experimental conditions. Age-related differences in SICI and LICI were influenced by test TMS intensity and test MEP amplitude, suggesting that these are important considerations when assessing intracortical inhibition in older adults, particularly in an active muscle. Copyright © 2014 Elsevier Inc. All rights reserved.
Kang, Youn Joo; Park, Hae Kyung; Kim, Hyun Jung; Lim, Taeo; Ku, Jeonghun; Cho, Sangwoo; Kim, Sun I; Park, Eun Sook
2012-10-04
Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients.
Subcortical Control of Precision Grip after Human Spinal Cord Injury
Bunday, Karen L.; Tazoe, Toshiki; Rothwell, John C.
2014-01-01
The motor cortex and the corticospinal system contribute to the control of a precision grip between the thumb and index finger. The involvement of subcortical pathways during human precision grip remains unclear. Using noninvasive cortical and cervicomedullary stimulation, we examined motor evoked potentials (MEPs) and the activity in intracortical and subcortical pathways targeting an intrinsic hand muscle when grasping a small (6 mm) cylinder between the thumb and index finger and during index finger abduction in uninjured humans and in patients with subcortical damage due to incomplete cervical spinal cord injury (SCI). We demonstrate that cortical and cervicomedullary MEP size was reduced during precision grip compared with index finger abduction in uninjured humans, but was unchanged in SCI patients. Regardless of whether cortical and cervicomedullary stimulation was used, suppression of the MEP was only evident 1–3 ms after its onset. Long-term (∼5 years) use of the GABAb receptor agonist baclofen by SCI patients reduced MEP size during precision grip to similar levels as uninjured humans. Index finger sensory function correlated with MEP size during precision grip in SCI patients. Intracortical inhibition decreased during precision grip and spinal motoneuron excitability remained unchanged in all groups. Our results demonstrate that the control of precision grip in humans involves premotoneuronal subcortical mechanisms, likely disynaptic or polysynaptic spinal pathways that are lacking after SCI and restored by long-term use of baclofen. We propose that spinal GABAb-ergic interneuronal circuits, which are sensitive to baclofen, are part of the subcortical premotoneuronal network shaping corticospinal output during human precision grip. PMID:24849366
2012-01-01
Background Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. Objectives We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. Methods A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. Results The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Conclusion Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients. PMID:23035951
Strutton, Paul H; Beith, Iain D; Theodorou, Sophie; Catley, Maria; McGregor, Alison H; Davey, Nick J
2004-10-01
Trunk muscles receive corticospinal innervation ipsilaterally and contralaterally and here we investigate the degree of ipsilateral innervation and any cortical asymmetry in pairs of trunk muscles and proximal and distal limb muscles. Transcranial magnetic stimulation (TMS) was applied to left and right motor cortices in turn and bilateral electromyographic (EMG) recordings were made from internal oblique (IO; lower abdominal), deltoid (D; shoulder) and first dorsal interosseus (1DI; hand) muscles during voluntary contraction in ten healthy subjects. We used a 7-cm figure-of-eight stimulating coil located 2 cm lateral and 2 cm anterior to the vertex over either cortex. Incidence of ipsilateral motor evoked potentials (MEPs) was 85% in IO, 40% in D and 35% in 1DI. Mean (+/- S.E.M.) ipsilateral MEP latencies were longer ( P<0.05; paired t-test) than contralateral MEP latencies (contralateral vs. ipsilateral; IO: 16.1+/-0.4 ms vs. 19.0+/-0.5 ms; D: 9.7+/-0.3 ms vs. 15.1+/-1.9 ms; 1DI: 18.3+/-0.6 ms vs. 23.3+/-1.4 ms), suggesting that ipsilateral MEPs were not a result of interhemispheric current spread. Where data were available, we calculated a ratio (ipsilateral MEP areas/contralateral MEP areas) for a given muscle (IO: n=16; D: n=8; 1DI: n=7 ratios). Mean values for these ratios were 0.70+/-0.20 (IO), 0.14+/-0.05 (D) and 0.08+/-0.02 (1DI), revealing stronger ipsilateral drive to IO. Comparisons of the sizes of these ratios revealed a bias towards one cortex or the other (four subjects right; three subjects left). The predominant cortex showed a mean ratio of 1.21+/-0.38 compared with 0.26+/-0.06 in the other cortex ( P<0.05). It appears that the corticospinal control of IO has a strong ipsilateral component relative to the limb muscles and also shows hemispheric asymmetry.
Mogk, Jeremy P M; Rogers, Lynn M; Murray, Wendy M; Perreault, Eric J; Stinear, James W
2014-10-01
We investigated how multi-joint changes in static upper limb posture impact the corticomotor excitability of the posterior deltoid (PD) and biceps brachii (BIC), and evaluated whether postural variations in excitability related directly to changes in target muscle length. The amplitude of individual motor evoked potentials (MEPs) was evaluated in each of thirteen different static postures. Four functional postures were investigated that varied in shoulder and elbow angle, while the forearm was positioned in each of three orientations. Posture-related changes in muscle lengths were assessed using a biomechanical arm model. Additionally, M-waves were evoked in the BIC in each of three forearm orientations to assess the impact of posture on recorded signal characteristics. BIC-MEP amplitudes were altered by shoulder and elbow posture, and demonstrated robust changes according to forearm orientation. Observed changes in BIC-MEP amplitudes exceeded those of the M-waves. PD-MEP amplitudes changed predominantly with shoulder posture, but were not completely independent of influence from forearm orientation. Results provide evidence that overall corticomotor excitability can be modulated according to multi-joint upper limb posture. The ability to alter motor pathway excitability using static limb posture suggests the importance of posture selection during rehabilitation aimed at retraining individual muscle recruitment and/or overall coordination patterns. Published by Elsevier Ireland Ltd.
Trophic Magnification of Parabens and Their Metabolites in a Subtropical Marine Food Web.
Xue, Xiaohong; Xue, Jingchuan; Liu, Wenbin; Adams, Douglas H; Kannan, Kurunthachalam
2017-01-17
Despite the widespread use of parabens in a range of consumer products, little is known about bioaccumulation of these chemicals in aquatic environments. In this study, six parabens and four of their common metabolites were measured in abiotic (water, sediment) and biotic (fish including sharks, invertebrates, plants) samples collected from a subtropical marine food web in coastal Florida. Methyl paraben (MeP) was found in all abiotic (100%) and a majority of biotic (87%) samples. 4-Hydroxy benzoic acid (4-HB) was the most abundant metabolite, found in 97% of biotic and all abiotic samples analyzed. The food chain accumulation of MeP and 4-HB was investigated for this food web. The trophic magnification factor (TMF) of MeP was estimated to be 1.83, which suggests considerable bioaccumulation and biomagnification of this compound in the marine food web. In contrast, a low TMF value was found for 4-HB (0.30), indicating that this compound is metabolized and excreted along the food web. This is the first study to document the widespread occurrence of parabens and their metabolites in fish, invertebrates, seagrasses, marine macroalgae, mangroves, seawater, and ocean sediments and to elucidate biomagnification potential of MeP in a marine food web.
Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation
Onishi, Hideaki; Miyaguchi, Shota; Kotan, Shinichi; Nakagawa, Masaki; Kirimoto, Hikari
2018-01-01
We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5–20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder. PMID:29849557
Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation.
Kojima, Sho; Onishi, Hideaki; Miyaguchi, Shota; Kotan, Shinichi; Sasaki, Ryoki; Nakagawa, Masaki; Kirimoto, Hikari; Tamaki, Hiroyuki
2018-01-01
We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5-20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder.
Mirror and (absence of) counter-mirror responses to action sounds measured with TMS.
Ticini, Luca F; Schütz-Bosbach, Simone; Waszak, Florian
2017-11-01
To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed 'mirror' and 'counter-mirror' trainings (a 'mirror' training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition. © The Author (2017). Published by Oxford University Press.
Mirror and (absence of) counter-mirror responses to action sounds measured with TMS
Schütz-Bosbach, Simone; Waszak, Florian
2017-01-01
Abstract To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed ‘mirror’ and ‘counter-mirror’ trainings (a ‘mirror’ training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition. PMID:29036454
Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki
2016-10-01
The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.
Li, Yan; Meng, Lingzhong; Peng, Yuming; Qiao, Hui; Guo, Lanjun; Han, Ruquan; Gelb, Adrian W
2016-08-02
We hypothesized that the addition of dexmedetomidine in a clinically relevant dose to propofol-remifentanil anesthesia regimen does not exert an adverse effect on motor-evoked potentials (MEP) and somatosensory-evoked potentials (SSEP) in adult patients undergoing thoracic spinal cord tumor resection. Seventy-one adult patients were randomized into three groups. Propofol group (n = 25): propofol-remifentanil regimenand the dosage was adjusted to maintain the bispectral index (BIS) between 40 and 50. DP adjusted group (n = 23): Dexmedetomidine (0.5 μg/kg loading dose infused over 10 min followed by a constant infusion of 0.5 μg/kg/h) was added to the propofol-remifentanil regimen and propofol was adjusted to maintain BIS between 40 and 50. DP unadjusted group (n = 23): Dexmedetomidine (administer as DP adjusted group) was added to the propofol-remifentanil regimen and propofol was not adjusted. All patients received MEP, SSEP and BIS monitoring. There were no significant changes in the amplitude and latency of MEP and SSEP among different groups (P > 0.05). The estimated propofol plasma concentration in DP adjusted group (2.7 ± 0.3 μg/ml) was significantly lower than in propofol group (3.1 ± 0.2 μg/ml) and DP unadjusted group (3.1 ± 0.2 μg/ml) (P = 0.000). BIS in DP unadjusted group (35 ± 5) was significantly lower than in propofol group (44 ± 3) (P = 0.000). The addition of dexmedetomidine to propofol-remifentanil regimen does not exert an adverse effect on MEP and SSEP monitoring in adult patients undergoing thoracic spinal cord tumor resection. The study was registered with the Chinese Clinical Trial Registry on January 31st, 2014. The reference number was ChiCTR-TRC-14004229.
Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES).
Bortoletto, M; Rodella, C; Salvador, R; Miranda, P C; Miniussi, C
2016-01-01
We propose the use of a new montage for transcranial direct current stimulation (tDCS), called concentric electrodes tDCS (CE-tDCS), involving two concentric round electrodes that may improve stimulation focality. To test efficacy and focality of CE-tDCS, we modelled the current distribution and tested physiological effects on cortical excitability. Motor evoked potentials (MEPs) from first dorsal interosseous (FDI) and abductor digiti minimi (ADM) were recorded before and after the delivery of anodal, cathodal and sham stimulation on the FDI hotspot for 10 minutes. MEP amplitude of FDI increased after anodal-tDCS and decreased after cathodal-tDCS, supporting the efficacy of CE-tDCS in modulating cortical excitability. Moreover, modelled current distribution and no significant effects of stimulation on MEP amplitude of ADM suggest high focality of CE-tDCS. CE-tDCS may allow a better control of current distribution and may represent a novel tool for applying tDCS and other transcranial current stimulation approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
Forman, Davis A.; Richards, Mark; Forman, Garrick N.; Holmes, Michael W. R.; Power, Kevin E.
2016-01-01
The purpose of this study was to examine the influence of neutral and pronated handgrip positions on corticospinal excitability to the biceps brachii during arm cycling. Corticospinal and spinal excitability were assessed using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) and cervicomedullary-evoked potentials (CMEPs) elicited via transmastoid electrical stimulation (TMES), respectively. Participants were seated upright in front on arm cycle ergometer. Responses were recorded from the biceps brachii at two different crank positions (6 and 12 o’clock positions relative to a clock face) while arm cycling with neutral and pronated handgrip positions. Responses were also elicited during tonic elbow flexion to compare/contrast the results to a non-rhythmic motor output. MEP and CMEP amplitudes were significantly larger at the 6 o’clock position while arm cycling with a neutral handgrip position compared to pronated (45.6 and 29.9%, respectively). There were no differences in MEP and CMEP amplitudes at the 12 o’clock position for either handgrip position. For the tonic contractions, MEPs were significantly larger with a neutral vs. pronated handgrip position (32.6% greater) while there were no difference in CMEPs. Corticospinal excitability was higher with a neutral handgrip position for both arm cycling and tonic elbow flexion. While spinal excitability was also higher with a neutral handgrip position during arm cycling, no difference was observed during tonic elbow flexion. These findings suggest that not only is corticospinal excitability to the biceps brachii modulated at both the supraspinal and spinal level, but that it is influenced differently between rhythmic arm cycling and tonic elbow flexion. PMID:27826236
Ushio, Shuta; Kawabata, Shigenori; Sumiya, Satoshi; Kato, Tsuyoshi; Yoshii, Toshitaka; Yamada, Tsuyoshi; Enomoto, Mitsuhiro; Okawa, Atsushi
2018-06-01
This study sought to evaluate the facilitation effect of repetitive multi-train transcranial electrical stimulation (mt-TES) at 2 repetition rates on transcranial electrical motor evoked potential (Tc-MEP) monitoring during spinal surgery, and to assess the induction rate in patients with impaired motor function from a compromised spinal cord or spinal nerve. We studied 32 consecutive patients with impaired motor function undergoing cervical or thoracic spinal surgery (470 muscles). A series of 10 TESs with 5 pulse trains were preoperatively delivered at 2 repetition rates (1 and 5 Hz). All peak-topeak amplitudes of the MEPs of the upper and lower extremity muscles elicited by the 10 TESs were measured. The induction rates of the lower extremity muscles were also assessed with muscle and preoperative lower extremity motor function scores. In each of the muscles, MEP amplitudes were augmented by about 2-3 times at 1 Hz and 5-6 times at 5 Hz. Under the 5-Hz condition, all limb muscles showed significant amplification. Also, in all preoperative motor function score groups, the amplitudes and induction rates of the lower extremity muscles were significantly increased. Moreover, the facilitation effects tended to peak in the last half of the series of 10 TESs. In all score groups of patients with preoperative neurological deficits, repetitive mt-TES delivered at a frequency of 5 Hz markedly facilitated the MEPs of all limb muscles and increased the induction rate. We recommend this method to improve the reliability of intraoperative monitoring during spinal surgery.
Effect of slip-area scaling on the earthquake frequency-magnitude relationship
NASA Astrophysics Data System (ADS)
Senatorski, Piotr
2017-06-01
The earthquake frequency-magnitude relationship is considered in the maximum entropy principle (MEP) perspective. The MEP suggests sampling with constraints as a simple stochastic model of seismicity. The model is based on the von Neumann's acceptance-rejection method, with b-value as the parameter that breaks symmetry between small and large earthquakes. The Gutenberg-Richter law's b-value forms a link between earthquake statistics and physics. Dependence between b-value and the rupture area vs. slip scaling exponent is derived. The relationship enables us to explain observed ranges of b-values for different types of earthquakes. Specifically, different b-value ranges for tectonic and induced, hydraulic fracturing seismicity is explained in terms of their different triggering mechanisms: by the applied stress increase and fault strength reduction, respectively.
Periodic changes in effluent chemistry at cold-water geyser: Crystal geyser in Utah
NASA Astrophysics Data System (ADS)
Han, Weon Shik; Watson, Z. T.; Kampman, Niko; Grundl, Tim; Graham, Jack P.; Keating, Elizabeth H.
2017-07-01
Crystal geyser is a CO2-driven cold-water geyser which was originally drilled in the late 1930's in Green River, Utah. Utilizing a suite of temporal groundwater sample datasets, in situ monitoring of temperature, pressure, pH and electrical conductivity from multiple field trips to Crystal geyser from 2007 to 2014, periodic trends in groundwater chemistry from the geyser effluent were identified. Based on chemical characteristics, the primary sourcing aquifers are characterized to be both the Entrada and Navajo Sandstones with a minor contribution from Paradox Formation brine. The single eruption cycle at Crystal geyser lasted over four days and was composed of four parts: Minor Eruption (mEP), Major Eruption (MEP), Aftershock Eruption (Ae) and Recharge (R). During the single eruption cycle, dissolved ionic species vary 0-44% even though the degree of changes for individual ions are different. Generally, Na+, K+, Cl- and SO42- regularly decrease at the onset and throughout the MEP. These species then increase in concentration during the mEP. Conversely, Ca2+, Mg2+, Fe2+ and Sr2+ increase and decrease in concentration during the MEP and mEP, respectively. The geochemical inverse modeling with PHREEQC was conducted to characterize the contribution from three end-members (Entrada Sandstone, Navajo Sandstone and Paradox Formation brine) to the resulting Crystal geyser effluent. Results of the inverse modeling showed that, during the mEP, the Navajo, Entrada and brine supplied 62-65%, 36-33% and 1-2%, respectively. During the MEP, the contribution shifted to 53-56%, 45-42% and 1-2% for the Navajo, Entrada and Paradox Formation brine, respectively. The changes in effluent characteristics further support the hypothesis by Watson et al. (2014) that the mEP and MEP are driven by different sources and mechanisms.
Aboud, Anas; Mederos-Dahms, Hendrikje; Liebing, Kai; Zittermann, Armin; Schubert, Harald; Murray, Edward; Renner, Andre; Gummert, Jan; Börgermann, Jochen
2015-05-29
Because of its low rate of clinical complications, miniaturized extracorporeal perfusion systems (MEPS) are frequently used in heart centers worldwide. However, many recent studies refer to the higher probability of gaseous microemboli formation by MEPS, caused by subzero pressure values. This is the main reason why various de-airing devices were developed for today's perfusion systems. In the present study, we investigated the potential benefits of a simple one-way-valve connected to a volume replacement reservoir (OVR) for volume and pressure compensation. In an experimental study on 26 pigs, we compared MEPS (n = 13) with MEPS plus OVR (n = 13). Except OVR, perfusion equipment was identical in both groups. Primary endpoints were pressure values in the venous line and the right atrium as well as the number and volume of air bubbles. Secondary endpoints were biochemical parameters of systemic inflammatory response, ischemia, hemodilution and hemolysis. One animal was lost in the MEPS + OVR group. In the MEPS + OVR group no pressure values below -150 mmHg in the venous line and no values under -100 mmHg in right atrium were noticed. On the contrary, nearly 20% of venous pressure values in the MEPS group were below -150 and approximately 10% of right atrial pressure values were below -100 mmHg. Compared with the MEPS group, the bubble counter device showed lower numbers of arterial air bubbles in the MEPS + OVR group (mean ± SD: 13444 ± 5709 vs. 1 ± 2, respectively; p < 0.001). In addition, bubble volume was significantly lower in the MEPS + OVR group than in the MEPS group (mean ± SD: 1522 ± 654 μl vs. 4 ± 6 μl, respectively; p < 0.001). The proinflammatory cytokine interleukin-6 and biochemical indices of cardiac ischemia (creatine kinase, and troponin I) were comparable between both groups. The use of a miniaturized perfusion system with a volume replacement reservoir is able to counteract excessive negative venous line pressures and to reduce the number and volume of arterial air bubbles. This approach may lead to a lower rate of neurological complications.
Klein, Pierre-Alexandre; Duque, Julie; Labruna, Ludovica; Ivry, Richard B.
2015-01-01
Neuroimaging and neuropsychological studies suggest that in right-handed individuals, the left hemisphere plays a dominant role in praxis, relative to the right hemisphere. However hemispheric asymmetries assessed with transcranial magnetic stimulation (TMS) has not shown consistent differences in corticospinal (CS) excitability of the two hemispheres during movements. In the current study, we systematically explored hemispheric asymmetries in inhibitory processes that are manifest during movement preparation and initiation. Single-pulse TMS was applied over the left or right primary motor cortex (M1LEFT and M1RIGHT, respectively) to elicit motor-evoked potentials (MEPs) in the contralateral hand while participants performed a two-choice reaction time task requiring a cued movement of the left or right index finger. In Experiments 1 and 2, TMS probes were obtained during a delay period following the presentation of the preparatory cue that provided partial or full information about the required response. MEPs were suppressed relative to baseline regardless of whether they were elicited in a cued or uncued hand. Importantly, the magnitude of these inhibitory changes in CS excitability was similar when TMS was applied over M1LEFT or M1RIGHT, irrespective of the amount of information carried by the preparatory cue. In Experiment 3, there was no preparatory cue and TMS was applied at various time points after the imperative signal. When CS excitability was probed in the cued effector, MEPs were initially inhibited and then rose across the reaction time interval. This function was similar for M1LEFT and M1RIGHT TMS. When CS excitability was probed in the uncued effector, MEPs remained inhibited throughout the RT interval. However, MEPs in right FDI became more inhibited during selection and initiation of a left hand movement, whereas MEPs in left FDI remained relatively invariant across RT interval for the right hand. In addition to these task-specific effects, there was a global difference in CS excitability across experiments between the two hemispheres. When the intensity of stimulation was set to 115% of the resting threshold, MEPs were larger when the TMS probe was applied over the M1LEFT than over M1RIGHT. In summary, while the latter result suggests that M1LEFT is more excitable than M1RIGHT, the recruitment of preparatory inhibitory mechanisms is similar within the two cerebral hemispheres. PMID:26458519
Hirano, Atsushi; Maruyama, Takuya; Shiraki, Kentaro; Arakawa, Tsutomu; Kameda, Tomoshi
2017-01-01
Hydrophobic charge-induction chromatography (HCIC) using 4-mercaptoethylpyridine (4-MEP) as the ligand is used to purify antibodies. The 4-MEP resin ligand has high affinity for antibodies, which makes it difficult to optimize the elution conditions. Recent studies showed that arginine is effective at eluting and purifying antibodies using the HCIC with 4-MEP. In the present study, we investigated the mechanism of the action of arginine on the interaction between butyl gallate (BG) and the 4-MEP resin as a model system for protein-4-MEP interactions. Equilibrium adsorption experiments showed that arginine has a significant effect on the desorption of BG from the 4-MEP resin and, in fact, is found to exhibit a greater effectiveness than guanidine and urea, which are known denaturants. The calculated binding free energy between a BG molecule and a 4-MEP resin ligand molecule using molecular dynamics simulations was qualitatively consistent with the experimental results. A principal component analysis of the simulations showed that arginine molecules intervene in the interaction between the BG and 4-MEP molecules at a distance of 8.5 Å by entering the space between the phenol and pyridine planes. The present results suggest that arginine has a unique mechanism of interaction with the phenol-pyridine system, which should be associated with the effects of arginine on the protein-4-MEP systems. Copyright © 2016 Elsevier Inc. All rights reserved.
Cortical involvement in anticipatory postural reactions in man.
Petersen, Tue Hvass; Rosenberg, Kasper; Petersen, Nicolas Caesar; Nielsen, Jens Bo
2009-02-01
All movements are accompanied by postural reactions which ensure that the balance of the body is maintained. It has not been resolved that to what extent the primary motor cortex and corticospinal tract are involved in the control of these reactions. Here, we investigated the contribution of the corticospinal tract to the activation of the soleus (SOL) muscle in standing human subjects (n=10) in relation to voluntary heel raise, anticipatory postural activation of the soleus muscle when the subject pulled a handle and to reflex activation of the soleus muscle when the subject was suddenly pulled forward by an external perturbation. SOL motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) increased significantly in relation to rest -75 ms prior to the onset of EMG in the heel-raise and handle-pull tasks. The short-latency facilitation of the soleus H-reflex evoked by TMS increased similarly, suggesting that the increased MEP size prior to movement was caused at least partly by increased excitability of corticospinal tract cells with monosynaptic projections to SOL motoneurones. Changes in spinal motoneuronal excitability could be ruled out since there was no significant increase of the SOL H-reflex until immediately prior to EMG onset for any of the tasks. Tibialis anterior MEPs were unaltered prior to the onset of SOL EMG activity in the handle-pull task, suggesting that the MEP facilitation was specific for the SOL muscle. No significant increase of the MEPs was observed prior to EMG onset for the external perturbation. These data suggest that the primary motor cortex is involved in activating the SOL muscle as part of an anticipatory postural reaction.
Conte, A; Lenzi, D; Frasca, V; Gilio, F; Giacomelli, E; Gabriele, M; Bettolo, C Marini; Iacovelli, E; Pantano, P; Pozzilli, C; Inghilleri, M
2009-06-01
We designed this study to investigate possible correlations between variables measuring primary motor cortex excitability detected by single and paired-pulse transcranial magnetic stimulation (TMS) and the severity of clinical manifestations in patients with multiple sclerosis (MS). Thirty patients with MS in remission, 16 with relapsing-remitting (RR), 14 with secondary progressive disease (SP) and 17 healthy subjects participated in the study. In each subject, the central motor conduction time (CMCT) was calculated, and single-pulse and paired-pulse TMS at 3 and 10 ms interstimulus intervals was delivered over the primary motor cortex of the dominant hemisphere to measure the amplitude of motor-evoked potentials (MEPs), motor threshold (MTh), intracortical inhibition (ICI) and facilitation (ICF). Correlations were determined between the patients' TMS findings and magnetic resonance imaging (MRI) (lesion load) and clinical features (expanded disability status scale, EDSS score). EDSS scores were significantly higher in SPMS than in RRMS patients. The MTh was significantly higher, and the MEP was significantly smaller in SPMS patients than in RRMS patients and control subjects. All patients had longer CMCTs than healthy subjects. In all patients, paired-pulse TMS elicited an inhibited test MEP at the 3-ms ISI and a facilitated test MEP at the 10 ms ISI. Post hoc analysis showed that ICI was significantly lower in SPMS patients than in those with RRMS and healthy subjects. EDSS scores correlated significantly with TMS measures (MEP, ICI, CMCT and MTh), but not with MRI lesion load. It was found that intracortical excitability as measured with TMS differs according to the clinical course of MS; it remains normal in patients with low EDSS scores and is altered in patients with high EDSS scores.
Fassett, Hunter J.; Turco, Claudia V.; El-Sayes, Jenin; Lulic, Tea; Baker, Steve; Richardson, Brian; Nelson, Aimee J.
2017-01-01
Intermittent theta burst stimulation (iTBS) is intended primarily to alter corticospinal excitability, creating an attractive opportunity to alter neural output following incomplete spinal cord injury (SCI). This study is the first to assess the effects of iTBS in SCI. Eight individuals with chronic incomplete SCI were studied. Sham or real iTBS was delivered (to each participant) over primary motor and somatosensory cortices in separate sessions. Motor-evoked potential (MEP) recruitment curves were obtained from the flexor carpi radialis muscle before and after iTBS. Results indicate similar responses for iTBS to both motor and somatosensory cortex and reduced MEPs in 56.25% and increased MEPs in 25% of instances. Sham stimulation exceeded real iTBS effects in the remaining 18.25%. It is our opinion that observing short-term neuroplasticity in corticospinal output in chronic SCI is an important advance and should be tested in future studies as an opportunity to improve function in this population. We emphasize the need to re-consider the importance of the direction of MEP change following a single session of iTBS since the relationship between MEP direction and motor function is unknown and multiple sessions of iTBS may yield very different directional results. Furthermore, we highlight the importance of including sham control in the experimental design. The fundamental point from this pilot research is that a single session of iTBS is often capable of creating short-term change in SCI. Future sham-controlled randomized trials may consider repeat iTBS sessions to promote long-term changes in corticospinal excitability. PMID:28824536
Fassett, Hunter J; Turco, Claudia V; El-Sayes, Jenin; Lulic, Tea; Baker, Steve; Richardson, Brian; Nelson, Aimee J
2017-01-01
Intermittent theta burst stimulation (iTBS) is intended primarily to alter corticospinal excitability, creating an attractive opportunity to alter neural output following incomplete spinal cord injury (SCI). This study is the first to assess the effects of iTBS in SCI. Eight individuals with chronic incomplete SCI were studied. Sham or real iTBS was delivered (to each participant) over primary motor and somatosensory cortices in separate sessions. Motor-evoked potential (MEP) recruitment curves were obtained from the flexor carpi radialis muscle before and after iTBS. Results indicate similar responses for iTBS to both motor and somatosensory cortex and reduced MEPs in 56.25% and increased MEPs in 25% of instances. Sham stimulation exceeded real iTBS effects in the remaining 18.25%. It is our opinion that observing short-term neuroplasticity in corticospinal output in chronic SCI is an important advance and should be tested in future studies as an opportunity to improve function in this population. We emphasize the need to re-consider the importance of the direction of MEP change following a single session of iTBS since the relationship between MEP direction and motor function is unknown and multiple sessions of iTBS may yield very different directional results. Furthermore, we highlight the importance of including sham control in the experimental design. The fundamental point from this pilot research is that a single session of iTBS is often capable of creating short-term change in SCI. Future sham-controlled randomized trials may consider repeat iTBS sessions to promote long-term changes in corticospinal excitability.
[Electrophysiological testing in spinal cord tumors].
André-Obadia, N; Mauguière, F
2017-11-01
Evoked potentials (EPs) are useful to evaluate the functional impairment of motor and somatosensory pathways in spinal cord tumors. Conduction through pyramidal tracts is evaluated by motor EPs (MEPs) elicited by transcranial stimulation, magnetic for awake patients or electric in the operating room. Somatosensory EPs (SEPs) and laser EPs (LEPs) are complementary procedures to explore conduction in dorsal columns and spinothalamic tracts, respectively. MEPs as well as SEPs show conduction abnormalities in about 60% of cases with a sensitivity that increases up to 70% when both procedures are carried out. Abnormalities are observed in the absence of any clinical sign in respectively 7% and 15% of cases for MEPs and SEPs. Multilevel stimulations for SEPs recordings permit to detect segmental dysfunction in 70% in case of cervical TIM, even in the absence of clinical signs. LEPs are useful in specific clinical situations: they allow a dermatomal stimulation and are correlated to segmental thermoalgic anaesthesia. Electrophysiological testing plays an important role in the diagnostic and therapeutic strategy: before surgery, MEPs and SEPs objectively evaluate the functional impairment directly related to the lesion. They also help by permitting a follow-up, either before surgery when the surgical decision is delayed because of a good clinical tolerance of the lesion, or after operation to evaluate the functional evolution. Intraoperative monitoring of MEPs and SEPs allows informing the surgeon about the impact on each surgical manipulation. No prospective randomized study has been performed to date to compare clinical evolution after surgery with or without monitoring. Nevertheless, a wide consensus became established in favor of monitoring to limit the risk of postoperative definite deficit and to permit an optimal surgical resection without risk when responses are preserved. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Tremblay, Sara; Larochelle-Brunet, Félix; Lafleur, Louis-Philippe; El Mouderrib, Sofia; Lepage, Jean-François; Théoret, Hugo
2016-09-01
Since the initial demonstration of linear effects of stimulation duration and intensity on the strength of after-effects associated with transcranial direct current stimulation (tDCS), few studies have systematically assessed how varying these parameters modulates corticospinal excitability. Therefore, the objective of this study was to systematically evaluate the effects of anodal tDCS on corticospinal excitability at two stimulation intensities (1 mA, 2 mA) and durations (10 min, 20 min), and determine the value of several variables in predicting response. Two groups of 20 individuals received, in two separate sessions, 1 and 2 mA anodal tDCS (left primary motor cortex (M1)-right supra-orbital montage) for either 10- or 20-min. Transcranial magnetic stimulation was delivered over left M1 and motor evoked potentials (MEPs) of the contralateral hand were recorded prior to tDCS and every 5 min for 20-min post-tDCS. The following predictive variables were evaluated: I-wave recruitment, stimulation intensity, baseline M1 excitability and inter-trial MEP variability. Results show that anodal tDCS failed to significantly modulate corticospinal excitability in all conditions. Furthermore, low response rates were identified across all parameter combinations. No baseline measure was significantly correlated with increases in MEP amplitude. However, a decrease in inter-trial MEP variability was linked to response to anodal tDCS. In conclusion, the present findings are consistent with recent reports showing high levels of inter-subject variability in the neurophysiological response to tDCS, which may partly explain inconsistent group results. Furthermore, the level of variability in the neurophysiological outcome measure, i.e. MEPs, appears to be related to response. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Kang, Youn Joo; Ku, Jeonghun; Kim, Hyun Jung; Park, Hae Kyung
2011-12-01
To delineate the changes in corticospinal excitability when individuals are asked to exercise their hand using observation, motor imagery, voluntary exercise, and exercise with a mirror. The participants consisted of 30 healthy subjects and 30 stroke patients. In healthy subjects, the amplitudes and latencies of motor evoked potential (MEP) were obtained using seven conditions: (A) rest; (B) imagery; (C) observation and imagery of the hand activity of other individuals; (D) observation and imagery of own ipsilateral hand activity; (E) observation and imagery of the hand activity of another individual with a mirror; (F) observation and imagery of own symmetric ipsilateral hand activity (thumb abduction) with a mirror; and (G) observation and imagery of own asymmetric ipsilateral hand activity (little finger abduction) with a mirror. In stroke patients, MEPs were obtained in the A, C, D, E, F conditions. In both groups, increment of the percentage MEP amplitude (at rest) and latency decrement of MEPs were significantly higher during the observation of the activity of the hand of another individual with a mirror and during symmetric ipsilateral hand activity on their own hand with a mirror than they were without a mirror. In healthy subjects, the increment of percentage MEP amplitude and latency decrement were significantly higher during the observation of the symmetric ipsilateral hand activity with a mirror compared to the observation of the activity of the asymmetric ipsilateral hand with a mirror of their own hand. In both groups, corticospinal excitability was facilitated by viewing the mirror image of the activity of the ipsilateral hand. These findings provide neurophysiological evidence supporting the application of various mirror imagery programs during stroke rehabilitation.
MIRDAMADI, J. L.; SUZUKI, L. Y.; MEEHAN, S. K.
2018-01-01
Knowledge of the properties that govern the effectiveness of transcranial magnetic stimulation (TMS) interventions is critical to clinical application. Extrapolation to clinical populations has been limited by high inter-subject variability and a focus on intrinsic muscles of the hand in healthy populations. Therefore, the current study assessed variability of continuous theta burst stimulation (cTBS), a patterned TMS protocol, across an agonist–antagonist pair of extrinsic muscles of the hand. Secondarily, we assessed whether concurrent agonist contraction could enhance the efficacy of cTBS. Motor evoked potentials (MEP) were simultaneously recorded from the agonist flexor (FCR) and antagonist extensor (ECR) carpi radialis before and after cTBS over the FCR hotspot. cTBS was delivered with the FCR relaxed (cTBS-Relax) or during isometric wrist flexion (cTBS-Contract). cTBS-Relax suppressed FCR MEPs evoked from the FCR hotspot. However, the extent of FCR MEP suppression was strongly correlated with the relative difference between FCR and ECR resting motor thresholds. cTBS-Contract decreased FCR suppression but increased suppression of ECR MEPs elicited from the FCR hotspot. The magnitude of ECR MEP suppression following cTBS-Contract was independent of the threshold-amplitude relationships observed with cTBS-Relax. Contraction alone had no effect confirming the effect of cTBS-Contract was driven by the interaction between neuromuscular activity and cTBS. Interactions across muscle representations should be taken into account when predicting cTBS outcomes in healthy and clinical populations. Contraction during cTBS may be a useful means of focusing aftereffects when differences in baseline excitability across overlapping agonist–antagonist cortical representations may mitigate the inhibitory effect of cTBS. PMID:27425211
Kang, Youn Joo; Ku, Jeonghun; Kim, Hyun Jung
2011-01-01
Objective To delineate the changes in corticospinal excitability when individuals are asked to exercise their hand using observation, motor imagery, voluntary exercise, and exercise with a mirror. Method The participants consisted of 30 healthy subjects and 30 stroke patients. In healthy subjects, the amplitudes and latencies of motor evoked potential (MEP) were obtained using seven conditions: (A) rest; (B) imagery; (C) observation and imagery of the hand activity of other individuals; (D) observation and imagery of own ipsilateral hand activity; (E) observation and imagery of the hand activity of another individual with a mirror; (F) observation and imagery of own symmetric ipsilateral hand activity (thumb abduction) with a mirror; and (G) observation and imagery of own asymmetric ipsilateral hand activity (little finger abduction) with a mirror. In stroke patients, MEPs were obtained in the A, C, D, E, F conditions. Results In both groups, increment of the percentage MEP amplitude (at rest) and latency decrement of MEPs were significantly higher during the observation of the activity of the hand of another individual with a mirror and during symmetric ipsilateral hand activity on their own hand with a mirror than they were without a mirror. In healthy subjects, the increment of percentage MEP amplitude and latency decrement were significantly higher during the observation of the symmetric ipsilateral hand activity with a mirror compared to the observation of the activity of the asymmetric ipsilateral hand with a mirror of their own hand. Conclusion In both groups, corticospinal excitability was facilitated by viewing the mirror image of the activity of the ipsilateral hand. These findings provide neurophysiological evidence supporting the application of various mirror imagery programs during stroke rehabilitation. PMID:22506202
Making a Difference in Migrant Summer School: Testing a Healthy Weight Intervention
Kilanowski, Jill F.; Gordon, Nahida H.
2014-01-01
Objective Evaluate the effectiveness of a healthy weight intervention designed for children of migrant farmworkers embedded in a 7-week summer Midwest Migrant Education Program (MEP) for changes in: weight, Body Mass Index (BMI); BMI percentiles (BMI-p); muscle strength and muscle flexibility; nutrition knowledge; attitudes and behaviors. Design This is a two-group pre-post quasi-experimental study. Sample Latino children of migrant farmworkers attending summer MEP in grades 1 through 8 were enrolled (n=171: comparison n=33, intervention n=138). Measurements Weight, BMI, BMI-p, muscle strength and flexibility, knowledge and healthy behaviors. Intervention Classroom content included: food variety; increasing fruits and vegetables; healthy breakfasts; more family meals; increasing family time; decreasing TV and electronic game time; increasing physical activity; limiting sugar-sweetened drinks; portion sizes; and food labels. Results Statistically significant were: increase in comparison group mean weight, decrease in intervention group BMI-p, and improvements in muscle flexibility and healthy behavior attitudes. The intervention students showed trends towards healthy BMI. The number of MEP days attended was significantly correlated in four outcomes. Conclusion Study findings have the potential to decrease incidence of unhealthy weight in Latino migrant children, reduce rates of premature adult diseases in these children, and a potential to decrease future health care costs. PMID:25611178
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2014-05-01
discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of the MEP pathway enzymes MEP synthase and...recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes • A manuscript detailing the characterization of the Y. pestis MEP...characterization and phosphoregulation. PLoS ONE 6: e20884. doi:10.1371/journal.pone.0020884. 3. Zhang, Chung, Oldenburg (1999) A Simple Statistical
Dickins, Daina S. E.; Sale, Martin V.
2015-01-01
Numerous studies have reported that plasticity induced in the motor cortex by transcranial magnetic stimulation (TMS) is attenuated in older adults. Those investigations, however, have focused solely on the stimulated hemisphere. Compared to young adults, older adults exhibit more widespread activity across bilateral motor cortices during the performance of unilateral motor tasks, suggesting that the manifestation of plasticity might also be altered. To address this question, twenty young (<35 years old) and older adults (>65 years) underwent intermittent theta burst stimulation (iTBS) whilst attending to the hand targeted by the plasticity-inducing procedure. The amplitude of motor evoked potentials (MEPs) elicited by single pulse TMS was used to quantify cortical excitability before and after iTBS. Individual responses to iTBS were highly variable, with half the participants showing an unexpected decrease in cortical excitability. Contrary to predictions, however, there were no age-related differences in the magnitude or manifestation of plasticity across bilateral motor cortices. The findings suggest that advancing age does not influence the capacity for, or manifestation of, plasticity induced by iTBS. PMID:26064691
The role of vitamin C in pushing back the boundaries of skin aging: an ultrasonographic approach
Crisan, Diana; Roman, Iulia; Crisan, Maria; Scharffetter-Kochanek, Karin; Badea, Radu
2015-01-01
Background Imagistic methods stand as modern, non-invasive, and objective means of assessing the impact of topical cutaneous therapies. Objective This study focuses on the evaluation, by high-frequency ultrasound, of the cutaneous changes induced by topical use of a vitamin C complex at facial level. Methods A vitamin C-based solution/Placebo moisturizer cream was applied at facial level of 60 healthy female subjects according to a predetermined protocol. Ultrasonographic images (Dermascan C, 20 MHz) were taken from zygomatic level initially, at 40 and 60 days after therapy. The following parameters were assessed for every subject: thickness of the epidermis and dermis (mm), the number of low (LEP), medium (MEP), high echogenic pixels (HEP), and the number of LEP in the upper dermis/lower dermis (LEPs/LEPi). Results LEP decreased significantly in all age categories during and after therapy, but especially in the first 2 age intervals, up to the age of 50 (P=0.0001). MEP and HEP, pixel categories that quantify protein synthesis also had an age-dependent evolution in the study, increasing significantly in all age categories but most of all in the first age interval (P=0.002). Our ultrasonographic data suggest that collagen synthesis increased significantly after topical vitamin C therapy, and is responsible for the increase in MEP and HEP and consequent decrease of the LEP. Conclusion Our study shows that topically applied vitamin C is highly efficient as a rejuvenation therapy, inducing significant collagen synthesis in all age groups with minimal side effects. PMID:26366101
Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed
2014-06-01
Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.
The electrostatic interaction is a critical component of intermolecular interactions in biological processes. Rapid methods for the computation and characterization of the molecular electrostatic potential (MEP) that segment the molecular charge distribution and replace this cont...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Wei; NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032; Li, Juan
The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3more » μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.« less
Corticospinal excitability is associated with hypocapnia but not changes in cerebral blood flow
Hartley, Geoffrey L.; Watson, Cody L.; Ainslie, Philip N.; Tokuno, Craig D.; Greenway, Matthew J.; Gabriel, David A.; O'Leary, Deborah D.
2016-01-01
Key points Reductions in cerebral blood flow (CBF) may be implicated in the development of neuromuscular fatigue; however, the contribution from hypocapnic‐induced reductions (i.e. P ETC O2) in CBF versus reductions in CBF per se has yet to be isolated.We assessed neuromuscular function while using indomethacin to selectively reduce CBF without changes in P ETC O2 and controlled hyperventilation‐induced hypocapnia to reduce both CBF and P ETC O2.Increased corticospinal excitability appears to be exclusive to reductions in P ETC O2 but not reductions in CBF, whereas sub‐optimal voluntary output from the motor cortex is moderately associated with decreased CBF independent of changes in P ETC O2.These findings suggest that changes in CBF and P ETC O2 have distinct roles in modulating neuromuscular function. Abstract Although reductions in cerebral blood flow (CBF) may be involved in central fatigue, the contribution from hypocapnia‐induced reductions in CBF versus reductions in CBF per se has not been isolated. This study examined whether reduced arterial PCO2 (P aC O2), independent of concomitant reductions in CBF, impairs neuromuscular function. Neuromuscular function, as indicated by motor‐evoked potentials (MEPs), maximal M‐wave (M max) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in ten males (29 ± 10 years) during three separate conditions: (1) cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg kg−1) to selectively reduce CBF by 28.8 ± 10.3% (estimated using transcranial Doppler ultrasound) without changes in end‐tidal PCO2 (P ETC O2); (2) controlled iso‐oxic hyperventilation‐induced reductions in P aC O2 (Hypocapnia), P ETC O2 = 30.1 ± 4.5 mmHg with related reductions in CBF (21.7 ± 6.3%); and (3) isocapnic hyperventilation (Isocapnia) to examine the potential direct influence of hyperventilation‐mediated activation of respiratory control centres on CBF and changes in neuromuscular function. Change in MEP amplitude (%M max) from baseline was greater in Hypocapnia tha in Isocapnia (11.7 ± 9.8%, 95% confidence interval (CI) [2.6, 20.7], P = 0.01) and Indomethacin (13.3 ± 11.3%, 95% CI [2.8, 23.7], P = 0.01) with a large Cohen's effect size (d ≥ 1.17). Although not statistically significant, cVA was reduced with a moderate effect size in Indomethacin (d = 0.7) and Hypocapnia (d = 0.9) compared to Isocapnia. In summary, increased corticospinal excitability – as reflected by larger MEP amplitude – appears to be exclusive to reduced P aC O2, but not reductions in CBF per se. Sub‐optimal voluntary output from the motor cortex is moderately associated with decreased CBF, independent of reduced P aC O2. PMID:26836470
78 FR 67449 - Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... recommendations are published on-line at http://www.fmcsa.dot.gov/rules-regulations/topics/mep/mep-reports.htm... complications from brain surgery with significant brain hemorrhage; brain tumor; or stroke. The MEP report...
78 FR 77774 - Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
... recommendations are published on-line at http://www.fmcsa.dot.gov/rules-regulations/topics/mep/mep-reports.htm... complications from brain surgery with significant brain hemorrhage; brain tumor; or stroke. The MEP report...
Panicker, C Yohannan; Varghese, Hema Tresa; Nayak, Prakash S; Narayana, B; Sarojini, B K; Fun, H K; War, Javeed Ahamad; Srivastava, S K; Van Alsenoy, C
2015-09-05
FT-IR spectrum of (2E)-3-(3-nitrophenyl)-1-[4-piperidin-1-yl]prop-2-en-1-one was recorded and analyzed. The vibrational wavenumbers were computed using HF and DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign IR bands. Potential energy distribution was done using GAR2PED software. The geometrical parameters of the title compound are in agreement with the XRD results. NBO analysis, HOMO-LUMO, first and second hyperpolarizability and molecular electrostatic potential results are also reported. The possible electrophile attacking sites of the title molecule is identified using MEP surface plot study. Molecular docking results predicted the anti-leishmanic activity for the compound. Copyright © 2015. Published by Elsevier B.V.
Pastorelli, F; Di Silvestre, M; Vommaro, F; Maredi, E; Morigi, A; Bacchin, M R; Bonarelli, S; Plasmati, R; Michelucci, R; Greggi, T
2015-11-01
Combined intraoperative monitoring (IOM) of transcranial electric motor-evoked potentials (tce-MEPs) and somatosensory-evoked potentials (SSEPs) is safe and effective for spinal cord monitoring during scoliosis surgery. However, the literature data regarding the reliability of spinal cord monitoring in patients with neuromuscular scoliosis are conflicting and need to be confirmed. We reviewed IOM records of 40 consecutive patients with neuromuscular scoliosis related to central nervous system (CNS) (29 pts) or peripheral nervous system (PNS) (11 patients) diseases, who underwent posterior fusion with instrumentation surgery for spinal deformity. Multimodalitary IOM with SSEPs and tce-MEPs was performed. Spinal cord monitoring using at least one modality was attempted in 38/40 (95 %) patients. No false-negative results were present in either group, but a relatively high incidence of false-positive cases (4/29, 13.8 %) was noted in the CNS group. Two patients in the CNS group and one patient in the PNS group presented transient postoperative motor deficits (true positive), related to surgical manoeuvres in two cases and to malposition in the other one. Multimodalitary IOM is safe and effective to detect impending spinal cord and peripheral nerves dysfunction in neuromuscular scoliosis surgery. However, the interpretation of neurophysiological data may be challenging in such patients, and the rate of false-positive results is high when pre-operatory motor deficits are severe.
Yunoki, Takahiro; Matsuura, Ryouta; Yamanaka, Ryo; Afroundeh, Roghayyeh; Lian, Chang-Shun; Shirakawa, Kazuki; Ohtsuka, Yoshinori; Yano, Tokuo
2016-06-01
Effort sense has been suggested to be involved in the hyperventilatory response during intense exercise (IE). However, the mechanism by which effort sense induces an increase in ventilation during IE has not been fully elucidated. The aim of this study was to determine the relationship between effort-mediated ventilatory response and corticospinal excitability of lower limb muscle during IE. Eight subjects performed 3 min of cycling exercise at 75-85 % of maximum workload twice (IE1st and IE2nd). IE2nd was performed after 60 min of resting recovery following 45 min of submaximal cycling exercise at the workload corresponding to ventilatory threshold. Vastus lateralis muscle response to transcranial magnetic stimulation of the motor cortex (motor evoked potentials, MEPs), effort sense of legs (ESL, Borg 0-10 scale), and ventilatory response were measured during the two IEs. The slope of ventilation (l/min) against CO2 output (l/min) during IE2nd (28.0 ± 5.6) was significantly greater than that (25.1 ± 5.5) during IE1st. Mean ESL during IE was significantly higher in IE2nd (5.25 ± 0.89) than in IE1st (4.67 ± 0.62). Mean MEP (normalized to maximal M-wave) during IE was significantly lower in IE2nd (66 ± 22 %) than in IE1st (77 ± 24 %). The difference in mean ESL between the two IEs was significantly (p < 0.05, r = -0.82) correlated with the difference in mean MEP between the two IEs. The findings suggest that effort-mediated hyperventilatory response to IE may be associated with a decrease in corticospinal excitability of exercising muscle.
Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos; Monte-Silva, Katia
2018-01-01
Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP's amplitude and NFR's area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR's area. High-frequency rTMS increased MEP's amplitude and NFR's area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes.
Wang, Liang-Jen; Lu, Shing-Fang; Chong, Mian-Yoon; Chou, Wen-Jiun; Hsieh, Yu-Lian; Tsai, Tung-ning; Chen, Ching; Lee, Yi-Hsuan
2016-01-01
Objective The abuse of illegal substances by youths in Taiwan has become a major public health issue. This study explores the outcomes (relapse rate and academic or social status) of a family-oriented therapy program conducted for substance-using youths who were referred by a judge to participate in it. Methods The present study includes 121 participants categorized into three groups: 36 youths underwent a weekly ten-session outpatient motivational enhancement psychotherapy (MEP) group program; 41 youths participated in a program that combined the aforementioned MEP program with an additional weekly ten-session parenting skill training (PST) program for their guardians (MEP + PST group); and 44 adolescents who received standard supervision by the court served as the control group. All participants were followed-up for a maximum of 2 years. Results Of the 121 participants (mean age: 16.1±1.1 years), 33.1% relapsed into substance use during the follow-up period. The probability of relapse did not differ significantly between the MEP group (36.1%) and the control group (40.9%), but the youths in the MEP + PST group (22.0%) were at a lower risk of relapse than the control group participants (adjusted hazard ratio =0.48, 95% confidence interval [CI] =0.21–1.09). By the end of the study follow-up period, participants in both the MEP group and the MEP + PST group were more likely to be attending school (MEP group: adjusted odds ratio [aOR] =6.61, 95% CI =1.60–27.35; MEP + PST group: aOR =8.57, 95% CI =1.94–37.82) or employed (MEP group: aOR =7.75, 95% CI =1.95–30.75; MEP + PST group: aOR =7.27, 95% CI =1.76–29.97), when compared to the control group. Conclusion This study revealed that a family-oriented treatment approach may be a more effective option for preventing youths’ relapsing into substance abuse. In comparison to individuals who received standard supervision by the court, those who received MEP experienced a better school attendance or social outcome over the follow-up period. PMID:27099500
Helfrich, Christian; Pierau, Simone S.; Freitag, Christine M.; Roeper, Jochen; Ziemann, Ulf; Bender, Stephan
2012-01-01
Background Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children. Objective TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available. Methods In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition. Results TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation. Conclusion The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude reduction after 1 Hz-rTMS could either reflect a globally decreased cortical response to the TMS pulse or a specific decrease in inhibition. PMID:23185537
Feurra, Matteo; Pasqualetti, Patrizio; Bianco, Giovanni; Santarnecchi, Emiliano; Rossi, Alessandro; Rossi, Simone
2013-10-30
Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.
Evolution of Effluent Chemistry at Crystal Geyser, Green River, Utah
NASA Astrophysics Data System (ADS)
Han, W. S.; Park, E.; Choung, S.; Kim, C. Y.; Piao, J.; Han, G.
2016-12-01
Several cold-water geysers and springs are located adjacent to the Green River in Utah where two major east-west faults, the Little Grand Wash and the Salt Wash Graben faults, trend roughly parallel to each other. Among these springs and geysers is Crystal Geyser, located immediately north of the Little Grand Wash fault and approximately 6 km south of the town of Green River. In this study, the fluid mechanics of the regularly erupting Crystal Geyser was investigated by instrumenting its conduit with pressure, temperature, pH, EC, and dissolved oxygen sensors, measuring every 1 minute during and between eruptions. The single eruption cycle at Crystal geyser lasted over four days and was composed of four parts: Minor Eruption (mEP), Major Eruption (MEP), Aftershock Eruption (Ae) and Recharge (R). Current eruption patterns exhibit a bimodal distribution although previous measurements and anecdotal evidence suggests that this pattern was different prior to recent seismic activity. Based on chemical characteristics, the primary sourcing aquifers characterized to be both Entrada and Navajo Sandstones with minor contribution from Paradox Formation brine. Contemporaneously, dissolved ionic species vary 0-44% while transition from mEP, MEP and R even if the degree of changes was different from individual ion. Generally, Na+, K+, Cl- and SO42- regularly decrease at the onset and throughout the MEP. These species then increase in concentration during the mEP. Conversely, Ca2+, Mg2+, Fe2+ and Sr2+ decrease and increase in concentration during the MEP and mEP, respectively. Inverse geochemical modeling was conducted to characterize the contribution of Crystal geyser effluents from endmembers of Entrada Sandstone, Navajo Sandstone and Paradox Formations. Results of inverse modeling show that, during the mEP, the Navajo, Entrada and brine supply 62-65%, 33-36% and 1%, respectively. During the MEP, the contribution shifts to 53-56%, 42-45% and 1% for the Navajo, Entrada and Brine, respectively.
Periodic changes in effluent chemistry at cold-water geyser: Crystal geyser in Utah
Han, Weon Shik; Watson, Z. T.; Kampman, Niko; ...
2017-04-20
Crystal geyser is a CO 2-driven cold-water geyser which was originally drilled in the late 1930’s in Green River, Utah. By utilizing a suite of temporal groundwater sample datasets, in situ monitoring of temperature, pressure, pH and electrical conductivity from multiple field trips to Crystal geyser from 2007 to 2014, periodic trends in groundwater chemistry from the geyser effluent were identified. Based on chemical characteristics, the primary sourcing aquifers are characterized to be both the Entrada and Navajo Sandstones with a minor contribution from Paradox Formation brine. The single eruption cycle at Crystal geyser lasted over four days and wasmore » composed of four parts: Minor Eruption (mEP), Major Eruption (MEP), Aftershock Eruption (Ae) and Recharge (R). During the single eruption cycle, dissolved ionic species vary 0–44% even though the degree of changes for individual ions are different. Generally, Na +, K +, Cl -and SO 4 2- regularly decrease at the onset and throughout the MEP. These species then increase in concentration during the mEP. In contrast, Ca 2+, Mg 2+, Fe 2+ and Sr 2+ increase and decrease in concentration during the MEP and mEP, respectively. The geochemical inverse modeling with PHREEQC was conducted to characterize the contribution from three end-members (Entrada Sandstone, Navajo Sandstone and Paradox Formation brine) to the resulting Crystal geyser effluent. Results of the inverse modeling showed that, during the mEP, the Navajo, Entrada and brine supplied 62–65%, 36–33% and 1–2%, respectively. During the MEP, the contribution shifted to 53–56%, 45–42% and 1–2% for the Navajo, Entrada and Paradox Formation brine, respectively. Finally, these changes in effluent characteristics further support the hypothesis by Watson et al. (2014) that the mEP and MEP are driven by different sources and mechanisms.« less
Periodic changes in effluent chemistry at cold-water geyser: Crystal geyser in Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Weon Shik; Watson, Z. T.; Kampman, Niko
Crystal geyser is a CO 2-driven cold-water geyser which was originally drilled in the late 1930’s in Green River, Utah. By utilizing a suite of temporal groundwater sample datasets, in situ monitoring of temperature, pressure, pH and electrical conductivity from multiple field trips to Crystal geyser from 2007 to 2014, periodic trends in groundwater chemistry from the geyser effluent were identified. Based on chemical characteristics, the primary sourcing aquifers are characterized to be both the Entrada and Navajo Sandstones with a minor contribution from Paradox Formation brine. The single eruption cycle at Crystal geyser lasted over four days and wasmore » composed of four parts: Minor Eruption (mEP), Major Eruption (MEP), Aftershock Eruption (Ae) and Recharge (R). During the single eruption cycle, dissolved ionic species vary 0–44% even though the degree of changes for individual ions are different. Generally, Na +, K +, Cl -and SO 4 2- regularly decrease at the onset and throughout the MEP. These species then increase in concentration during the mEP. In contrast, Ca 2+, Mg 2+, Fe 2+ and Sr 2+ increase and decrease in concentration during the MEP and mEP, respectively. The geochemical inverse modeling with PHREEQC was conducted to characterize the contribution from three end-members (Entrada Sandstone, Navajo Sandstone and Paradox Formation brine) to the resulting Crystal geyser effluent. Results of the inverse modeling showed that, during the mEP, the Navajo, Entrada and brine supplied 62–65%, 36–33% and 1–2%, respectively. During the MEP, the contribution shifted to 53–56%, 45–42% and 1–2% for the Navajo, Entrada and Paradox Formation brine, respectively. Finally, these changes in effluent characteristics further support the hypothesis by Watson et al. (2014) that the mEP and MEP are driven by different sources and mechanisms.« less
Hindcasting the Madden‐Julian Oscillation With a New Parameterization of Surface Heat Fluxes
Wang, Jingfeng; Lin, Wenshi
2017-01-01
Abstract The recently developed maximum entropy production (MEP) model, an alternative parameterization of surface heat fluxes, is incorporated into the Weather Research and Forecasting (WRF) model. A pair of WRF cloud‐resolving experiments (5 km grids) using the bulk transfer model (WRF default) and the MEP model of surface heat fluxes are performed to hindcast the October Madden‐Julian oscillation (MJO) event observed during the 2011 Dynamics of the MJO (DYNAMO) field campaign. The simulated surface latent and sensible heat fluxes in the MEP and bulk transfer model runs are in general consistent with in situ observations from two research vessels. Compared to the bulk transfer model, the convection envelope is strengthened in the MEP run and shows a more coherent propagation over the Maritime Continent. The simulated precipitable water in the MEP run is in closer agreement with the observations. Precipitation in the MEP run is enhanced during the active phase of the MJO with significantly reduced regional dry and wet biases. Large‐scale ocean evaporation is stronger in the MEP run leading to stronger boundary layer moistening to the east of the convection center, which facilitates the eastward propagation of the MJO. PMID:29399269
Effect of laryngoscopy on middle ear pressure during anaesthesia induction.
Degerli, Semih; Acar, Baran; Sahap, Mehmet; Horasanlı, Eyup
2013-01-01
The procedure of laryngoscopic orotracheal intubation (LOTI) has many impacts on several parts of the body. But its effect on middle ear pressure (MEP) is not known well. The purpose of this study is to evaluate the MEP changes subsequent to insertion of endotracheal tube with laryngoscope. 44 patients were included in this study with a normal physical examination of ear, nose and throat. A standard general anaesthesia induction without any inhaler agent was performed to the all patients. The MEP measurements for both ears were applied under 1 minute; before induction (BI) and after intubation (AI) with a middle ear analyzer. Also hemodynamic parameters were recorded before induction and after intubation. Of the 44 patients were 25 women and 19 men with a 43.5±15.1 mean age. A statistically significant rise in MEP was seen in all patients subsequent to insertion of endotracheal tube (P<0.05). Mean right MEPs were BI: -9.5 and AI: 18.5 daPa. Also mean left MEPs were BI: -21.7 and AI: 29.1 daPa. The amount of increases in left and right MEPs were 50 daPa and 27 daPa, respectively. 20% increase in systolic blood pressure and 19% increase in diastolic blood pressure were determined after intubation. The mean heart rate was 76/min before intubation, whereas it was 102/min after intubation with a 34% increase. In this study bilateral significant increases in MEP were determined subsequent to LOTI. Possible factors affecting MEP may be auditory tube, size and type of the blades, drugs and face masking time. But on the other hand in our opinion cardiovascular and haemodynamic response to LOTI has the most impact over the middle ear mucosa with mucosal venous congestion.
Bach, Thomas J
2013-01-01
We have established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL. PMID:24555083
Transcranial Magnetic Stimulation: Decomposing the Processes Underlying Action Preparation.
Bestmann, Sven; Duque, Julie
2016-08-01
Preparing actions requires the operation of several cognitive control processes that influence the state of the motor system to ensure that the appropriate behavior is ultimately selected and executed. For example, some form of competition resolution ensures that the right action is chosen among alternatives, often in the presence of conflict; at the same time, impulse control ought to be deployed to prevent premature responses. Here we review how state-changes in the human motor system during action preparation can be studied through motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the contralateral primary motor cortex (M1). We discuss how the physiological fingerprints afforded by MEPs have helped to decompose some of the dynamic and effector-specific influences on the motor system during action preparation. We focus on competition resolution, conflict and impulse control, as well as on the influence of higher cognitive decision-related variables. The selected examples demonstrate the usefulness of MEPs as physiological readouts for decomposing the influence of distinct, but often overlapping, control processes on the human motor system during action preparation. © The Author(s) 2015.
Sebastian, Sr S H Roseline; Al-Tamimi, Abdul-Malek S; El-Brollosy, Nasser R; El-Emam, Ali A; Yohannan Panicker, C; Van Alsenoy, Christian
2015-01-05
6-Methyl-1-({[(2E)-2-methyl-3-phenyl-prop-2-en-1-yl]oxy}methyl)-1,2,3,4-tetra-hydro quinazoline-2,4-dione was prepared via treatment of silylated 6-methylquinazoline-2,4-dione with bis-[(E)-2-methyl-3-phenylallyloxy]methane. FT-IR and FT-Raman spectra were recorded and analyzed. The vibrational wavenumbers were computed using DFT methods and are assigned with the help of potential energy distribution method. The first hyperpolarizability, infrared intensities and Raman activities also reported. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated (B3LYP) values. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. MEP was performed by the B3LYP method and from the MEP it is evident that the negative charge covers the CO group and the positive region is over the phenyl ring and NH group. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vallino, J. J.; Algar, C. K.; Huber, J. A.; Fernandez-Gonzalez, N.
2014-12-01
The maximum entropy production (MEP) principle holds that non equilibrium systems with sufficient degrees of freedom will likely be found in a state that maximizes entropy production or, analogously, maximizes potential energy destruction rate. The theory does not distinguish between abiotic or biotic systems; however, we will show that systems that can coordinate function over time and/or space can potentially dissipate more free energy than purely Markovian processes (such as fire or a rock rolling down a hill) that only maximize instantaneous entropy production. Biological systems have the ability to store useful information acquired via evolution and curated by natural selection in genomic sequences that allow them to execute temporal strategies and coordinate function over space. For example, circadian rhythms allow phototrophs to "predict" that sun light will return and can orchestrate metabolic machinery appropriately before sunrise, which not only gives them a competitive advantage, but also increases the total entropy production rate compared to systems that lack such anticipatory control. Similarly, coordination over space, such a quorum sensing in microbial biofilms, can increase acquisition of spatially distributed resources and free energy and thereby enhance entropy production. In this talk we will develop a modeling framework to describe microbial biogeochemistry based on the MEP conjecture constrained by information and resource availability. Results from model simulations will be compared to laboratory experiments to demonstrate the usefulness of the MEP approach.
Martinez Piñeiro, Alicia; Cubells, Carles; Garcia, Pablo; Castaño, Carlos; Dávalos, Antonio; Coll-Canti, Jaume
2015-03-01
Intraoperative monitoring (IOM) has been used in different surgical disciplines since the 1980s. Nonetheless, regular routine use of IOM in interventional neuroradiology units has only been reported in a few centers. The aim of this study is to report our experience, 1 year after deciding to implement standardized IOM during endovascular treatment of vascular abnormalities of the central nervous system. Basic recordings included somatosensory-evoked potentials (SEPs) and motor-evoked potentials (MEPs). Corticobulbar motor-evoked potentials and flash-visual-evoked potentials were also recorded depending on the topography of the lesion. Intra-arterial provocative tests (PTs) with amobarbital and lidocaine were also performed. All patients except 1 were under total intravenous anesthesia. Clinical outcome was assessed prospectively and correlated with IOM events. Twelve patients and 15 procedures were monitored during the inclusion period. Significant IOM events were detected during 3 of the 15 procedures (20%). We observed temporary MEP changes in 2 cases which resolved after interruption of the embolization or application of corrective measures, leaving no postoperative neurological deficits. In 1 case, persistent SEP and MEP deterioration was detected secondary to a frontal hematoma, resulting in mild sensory-motor deficit in the right upper extremity after the procedure. Overall, 12 PTs (4 spinal cord and 8 brain abnormalities) were performed using lidocaine and sodium amytal injections. One positive result occurred after the injection of lidocaine. No false negatives were detected. IOM may provide continuous real-time data about the functional status of eloquent areas and pathways of the central nervous system in patients under general anesthesia. It therefore allows us to detect early neurological damage in time to perform specific actions that may prevent irreversible neurological deficits.
Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar
2018-02-01
Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.
Functional Assessment of Corticospinal System Excitability in Karate Athletes.
Moscatelli, Fiorenzo; Messina, Giovanni; Valenzano, Anna; Monda, Vincenzo; Viggiano, Andrea; Messina, Antonietta; Petito, Annamaria; Triggiani, Antonio Ivano; Ciliberti, Michela Anna Pia; Monda, Marcellino; Capranica, Laura; Cibelli, Giuseppe
2016-01-01
To investigate the involvement of the primary motor cortex (M1) in the coordination performance of karate athletes through transcranial magnetic stimulation (TMS). Thirteen right-handed male karate athletes (25.0±5.0 years) and 13 matched non-athlete controls (26.7±6.2 years) were enrolled. A single-pulse TMS was applied using a figure-eight coil stimulator. Resting motor threshold (rMT) was determined. Surface electromyography was recorded from the first dorsal interosseous muscle. Motor evoked potential (MEP) latencies and amplitudes at rMT, 110%, and 120% of rMT were considered. Functional assessment of the coordination performance was assessed by in-phase (IP) and anti-phase (AP) homolateral hand and foot coordination tasks performed at 80, 120, and 180 bpm. Compared to controls, athletes showed lower rMT (p<0.01), shorter MEP latency (p<0.01) and higher MEP amplitude (p<0.01), with a significant correlation (r = 0.50, p<0.01) between rMT and MEP latency. Coordination decreased with increasing velocity, and better IP performances emerged compared to AP ones (p<0.001). In general, a high correlation between rMT and coordination tasks was found for both IP and AP conditions. With respect to controls, karate athletes present a higher corticospinal excitability indicating the presence of an activity-dependent alteration in the balance and interactions between inhibitory and facilitatory circuits determining the final output from the M1. Furthermore, the high correlation between corticospinal excitability and coordination performance could support sport-specific neurophysiological arrangements.
Interaction of paired cortical and peripheral nerve stimulation on human motor neurons.
Poon, David E; Roy, Francois D; Gorassini, Monica A; Stein, Richard B
2008-06-01
This paper contrasts responses in the soleus muscle of normal human subjects to two major inputs: the tibial nerve (TN) and the corticospinal tract. Paired transcranial magnetic stimulation (TMS) of the motor cortex at intervals of 10-25 ms strongly facilitated the motor evoked potential (MEP) produced by the second stimulus. In contrast, paired TN stimulation produced a depression of the reflex response to the second stimulus. Direct activation of the pyramidal tract did not facilitate a second response, suggesting that the MEP facilitation observed using paired TMS occurred in the cortex. A TN stimulus also depressed a subsequent MEP. Since the TN stimulus depressed both inputs, the mechanism is probably post-synaptic, such as afterhyperpolarization of motor neurons. Presynaptic mechanisms, such as homosynaptic depression, would only affect the pathway used as a conditioning stimulus. When TN and TMS pulses were paired, the largest facilitation occurred when TMS preceded TN by about 5 ms, which is optimal for summation of the two pathways at the level of the spinal motor neurons. A later, smaller facilitation occurred when a single TN stimulus preceded TMS by 50-60 ms, an interval that allows enough time for the sensory afferent input to reach the sensory cortex and be relayed to the motor cortex. Other work indicates that repetitively pairing nerve stimuli and TMS at these intervals, known as paired associative stimulation, produces long-term increases in the MEP and may be useful in strengthening residual pathways after damage to the central nervous system.
MESA/MEP at American River College: Year One Evaluation Report.
ERIC Educational Resources Information Center
Lee, Beth S.; And Others
In 1989, the Mathematics, Engineering, and Science Achievement (MESA)/Minority Engineering Program (MEP) was initiated at American River College. The MESA/MEP program recruits Black, Hispanic, and Native American students and provides assistance, encouragement, and enrichment programs to help them succeed in the fields of mathematics, engineering,…
State Title I Migrant Participation Information, 1998-99.
ERIC Educational Resources Information Center
Henderson, Allison; Daft, Julie
States use federal Migrant Education Program (MEP) funds to provide migrant children with services that address the special needs related to continual educational disruption. MEP services can be instructional or supporting. This report summarizes MEP participation information provided by state education agencies for the 1998-99 school year. The…
Yoom, Hoonsik; Shin, Jaedon; Ra, Jiwoon; Son, Heejong; Ryu, Dongchoon; Kim, Changwon; Lee, Yunho
2018-09-01
The reaction kinetics, products, and pathways of methylparaben (MeP) during water chlorination with and without bromide (Br - ) were investigated to better understand the fate of parabens in chlorinated waters. During the chlorination of MeP-spiked waters without Br - , MeP was transformed into mono-Cl-MeP and di-Cl-MeP with apparent second-order rate constants (k app ) of 64M -1 s -1 and 243M -1 s -1 at pH7, respectively, while further chlorination of di-Cl-MeP was relatively slower (k app =1.3M -1 s -1 at pH7). With increasing Br - concentration, brominated MePs, such as mono-Br-MeP, Br-Cl-MeP, and di-Br-MeP, became major transformation products. The di-halogenated MePs (di-Cl-MeP, Br,Cl-MeP, and di-Br-MeP) showed relatively low reactivity to chlorine at pH7 (k app =1.3-4.6M -1 s -1 ) and bromine (k app =32-71M -1 s -1 ), which explains the observed high stability of di-halogenated MePs in chlorinated waters. With increasing pH from 7 to 8.5, the transformation of di-halogenated MePs was further slowed due to the decreasing reactivity of di-MePs to chlorine. The formation of the di-halogenated MePs and their further transformation become considerably faster at Br - concentrations higher than 0.5μM (40μg/L). Nonetheless, the accelerating effect of Br - diminishes in the presence of dissolved organic matter (DOM) extract (Suwannee River humic acid (SRHA)) due to a more rapid consumption of bromine by DOM than chlorine. The effect of Br - on the fate of MeP was less in the tested real water matrices, possibly due to a more rapid bromine consumption by the real water DOM compared to SRHA. A kinetic model was developed based on the determined species-specific second-order rate constants for chlorination/bromination of MeP and its chlorinated and brominated MePs and the transformation pathway information, which could reasonably simulate the transformation of MePs during the chlorination of water in the presence of Br - and selected DOM. Copyright © 2017 Elsevier B.V. All rights reserved.
Cortical and reticular contributions to human precision and power grip.
Tazoe, Toshiki; Perez, Monica A
2017-04-15
The corticospinal tract contributes to the control of finger muscles during precision and power grip. We explored the neural mechanisms contributing to changes in corticospinal excitability during these gripping configurations. Motor evoked potentials (MEPs) elicited by cortical, but not by subcortical, stimulation were more suppressed during power grip compared with precision grip and index finger abduction. Intracortical inhibition was more reduced during power grip compared with the other tasks. An acoustic startle cue, a stimulus that engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks at a cortical level and this positively correlated with changes in intracortical inhibition. Our findings suggest that changes in corticospinal excitability during gross more than fine finger manipulations are largely cortical in origin and that the reticular system contributed, at least in part, to these effects. It is well accepted that the corticospinal tract contributes to the control of finger muscles during precision and power grip in humans but the neural mechanisms involved remain poorly understood. Here, we examined motor evoked potentials elicited by cortical and subcortical stimulation of corticospinal axons (MEPs and CMEPs, respectively) and the activity in intracortical circuits (suppression of voluntary electromyography) and spinal motoneurons (F-waves) in an intrinsic hand muscle during index finger abduction, precision grip and power grip. We found that the size of MEPs, but not CMEPs, was more suppressed during power grip compared with precision grip and index finger abduction, suggesting a cortical origin for these effects. Notably, intracortical inhibition was more reduced during power grip compared with the other tasks. To further examine the origin of changes in intracortical inhibition we assessed the contribution of the reticular system, which projects to cortical neurons, and projects to spinal motoneurons controlling hand muscles. An acoustic startle cue, which engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks and this positively correlated with changes in intracortical inhibition. A startle cue decreased intracortical inhibition, but not CMEPs, during power grip. F-waves remained unchanged across conditions. Our novel findings show that changes in corticospinal excitability present during power grip compared with fine finger manipulations are largely cortical in origin and suggest that the reticular system contributed, at least in part, to these effects. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Efficacy of Intraoperative Neurophysiologic Monitoring for Pediatric Cervical Spine Surgery.
Tobert, Daniel G; Glotzbecker, Michael P; Hresko, Michael Timothy; Karlin, Lawrence I; Proctor, Mark R; Emans, John B; Miller, Patricia E; Hedequist, Daniel J
2017-07-01
Clinical case series. To investigate the efficacy of intraoperative neuromonitoring in pediatric cervical spine surgery. Intraoperative neuromonitoring (IONM) consisting of somatosensory-evoked potentials (SSEP) and transcranial motor-evoked potentials (tcMEP) has been shown to effectively prevent permaneny neurologic injury in deformity surgery. The role of IONM during pediatric cervical spine surgery is not well documented. Advances in cervical spine instrumentation have expanded the surgical options in pediatric populations. The goal of this study is to report the ability of IONM to detect neurologic injury during pediatric cervical spine instrumentation. A single institution database was queried for pediatric-aged patients who underwent cervical spine instrumentation and fusion between 2011 and 2014. Age, diagnosis, surgical indication, number of instrumented levels, and a complete IONM were extracted. Sensitivity and specificity for the detection of neurologic deficits were calculated with exact 95% confidence intervals. Positive and negative predictive values were calculated with estimated 95% confidence intervals. Sixty-seven patients who underwent cervical spine instrumentation were identified with a mean age of 11.6 years (range 1-18). Diagnoses included instability (27), congenital (11), kyphosis (8), fracture (7), tumor (7), arthritis (4), and basilar invagination (3). Mean number of vertebral levels fused was 4 (range 2-7). All patients underwent cervical instrumentation with SSEP and tcMEP monitoring. A significant change in tcMEP monitoring was observed in 7 subjects (10%). There were no corresponding SSEP changes in these patients. The sensitivity of combined IONM was 75% [95% CI = 24.9, 98.7] and the specificity was 98.5% [92.7, 99.9]. tcMEP is a more sensitive indicator to spinal cord injury than SSEP, which is consistent with previous studies. IONM changes in 10% of a patient population are significant enough to warrant intraoperative determination if true SCI has occurred or is underway and intervene accordingly. 4.
Mo, Andrew Z; Asemota, Anthony O; Venkatesan, Arun; Ritzl, Eva K; Njoku, Dolores B; Sponseller, Paul D
2017-12-01
Intraoperative neuromonitoring (IONM) is widely used to reduce postoperative neurological complications during scoliosis correction. IONM allows intraoperative detection of neurological insults to the spinal cord and enables surgeons to react in real time. IONM failure rates can reach 61% in patients with cerebral palsy (CP). Factors decreasing the quality of IONM signals or making IONM impossible in CP patients undergoing scoliosis correction have not been well described. We categorized IONM data from 206 children with CP who underwent surgical scoliosis correction at a single institution from 2002 through 2013 into 3 groups: (1) "no signals," if neither somatosensory-evoked potentials (SSEP) nor transcranial motor-evoked potentials (TcMEP) could be obtained; (2) "no sensory," if no interpretable SSEP were obtained regardless of interpretable TcMEP; and (3) "no motor," if no interpretable TcMEP were obtained regardless of interpretable SSEP. We analyzed preexisting neuroimaging, available for 93 patients, and neurological status of the full cohort against these categories. Statistical analysis of univariate and multivariate associations was performed using logistic regression. Odds ratios (ORs) were calculated with significance set at P<0.05. Multivariate analysis showed significant associations of periventricular leukomalacia (PVL), hydrocephalus, and encephalomalacia with lack of meaningful and interpretable signals. Focal PVL (Fig. 1) was associated with no motor (OR=39.95; P=0.04). Moderate hydrocephalus was associated with no signals (OR=32.35; P<0.01), no motor (OR=10.14; P=0.04), and no sensory (OR=8.44; P=0.03). Marked hydrocephalus (Fig. 2) was associated with no motor (OR=20.46; P<0.01) and no signals (OR=8.83; P=0.01). Finally, encephalomalacia (Fig. 3) was associated with no motor (OR=6.99; P=0.01) and no signals (OR=4.26; P=0.03). Neuroanatomic findings of PVL, hydrocephalus, and encephalomalacia are significant predictors of limited IONM signals, especially TcMEP. Level IV.
Structural basis for Mep2 ammonium transceptor activation by phosphorylation
van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C.
2016-01-01
Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation. PMID:27088325
Lee, Do-Hun; Lee, Ji Yeoun; Oh, Byung-Mo; Phi, Ji Hoon; Kim, Seung-Ki; Bang, Moon Suk; Kim, Seung U; Wang, Kyu-Chang
2013-03-01
Experimental studies and clinical trials designed to help patients recover from various brain injuries, such as stroke or trauma, have been attempted. Rehabilitation has shown reliable, positive clinical outcome in patients with various brain injuries. Transplantation of exogenous neural stem cells (NSCs) to repair the injured brain is a potential tool to help patient recovery. This study aimed to evaluate the therapeutic efficacy of a combination therapy consisting of rehabilitation and NSC transplantation compared to using only one modality. A model of motor cortex resection in rats was used to create brain injury in order to obtain consistent and prolonged functional deficits. The therapeutic results were evaluated using three methods during an 8-week period with a behavioral test, motor-evoked potential (MEP) measurement, and measurement of the degree of endogenous NSC production. All three treatment groups showed the effects of treatment in the behavioral test, although the NSC transplantation alone group (CN) exhibited slightly worse results than the rehabilitation alone group (CR) or the combination therapy group (CNR). The latency on MEP was shortened to a similar extent in all three groups compared to the untreated group (CO). However, the enhancement of endogenous NSC proliferation was dramatically reduced in the CN group compared not only to the CR and CNR groups but also to the CO group. The CR and CNR groups seemed to prolong the duration of endogenous NSC proliferation compared to the untreated group. A combination of rehabilitation and NSC transplantation appears to induce treatment outcomes that are similar to rehabilitation alone. Further studies are needed to evaluate the electrophysiological outcome of recovery and the possible effect of prolonging endogenous NSC proliferation in response to NSC transplantation and rehabilitation.
Partial weight support of the arm affects corticomotor selectivity of biceps brachii.
Runnalls, Keith D; Anson, Greg; Byblow, Winston D
2015-10-26
Weight support of the arm (WS) can be used in stroke rehabilitation to facilitate upper limb therapy, but the neurophysiological effects of this technique are not well understood. While an overall reduction in muscle activity is expected, the mechanism by which WS may alter the expression of muscle synergies has not been examined until now. We explored the neurophysiological effect of WS on the selectivity of biceps brachii (BB) activation in healthy adults. Thirteen participants completed counterbalanced movement tasks in a repeated measures design. Three levels of WS (0, 45, and 90 % of full support) were provided to the arm using a commercial device (Saebo Mobile Arm Support). At each level of WS, participants maintained a flexed shoulder posture while performing rhythmic isometric elbow flexion (BB agonist) or forearm pronation (BB antagonist). Single-pulse transcranial magnetic stimulation of primary motor cortex was used to elicit motor-evoked potentials (MEPs) in BB 100-300 ms before muscle contraction. Baseline muscle activity and MEP amplitude were the primary dependent measures. Effects of movement TASK and SUPPORT LEVEL were statistically analyzed using linear mixed effects models. As expected, with increased support tonic activity was reduced across all muscles. This effect was greatest in the anti-gravity muscle anterior deltoid, and evident in biceps brachii and pronator teres as well. For BB MEP amplitude, TASK and SUPPORT LEVEL, interacted such that for elbow flexion, MEP amplitudes were smaller with incrementally greater WS whereas, for forearm pronation MEP amplitudes were smaller only at high WS. Weight support of the arm influences corticomotor selectivity of biceps brachii. WS may impact coordination independently of a global reduction in muscle activity. The amount of supportive force applied to the arm influences the neuromechanical control profile for the limb. These findings may inform the application of WS in upper limb stroke rehabilitation.
Hutcheson, Katherine A; Barrow, Martha P; Plowman, Emily K; Lai, Stephen Y; Fuller, Clifton David; Barringer, Denise A; Eapen, George; Wang, Yiqun; Hubbard, Rachel; Jimenez, Sarah K; Little, Leila G; Lewin, Jan S
2018-05-01
Expiratory muscle strength training (EMST) is a simple, inexpensive, device-driven exercise therapy. Therapeutic potential of EMST was examined among head and neck cancer survivors with chronic radiation-associated aspiration. Retrospective case series. Maximum expiratory pressures (MEPs) were examined among n = 64 radiation-associated aspirators (per penetration-aspiration scale score ≥ 6 on modified barium swallow). Pre-post EMST outcomes were examined in a nested subgroup of patients (n = 26) who enrolled in 8 weeks of EMST (25 repetitions, 5 days/week, 75% load). Nonparametric analyses examined effects of EMST on the primary endpoint MEPs. Secondary measures included swallowing safety (Dynamic Imaging Grade of Swallowing Toxicity [DIGEST]), perceived dysphagia (M.D. Anderson Dysphagia Inventory [MDADI]), and diet (performance status scale for head and neck cancer patients [PSSHN]). Compared to sex-matched published normative data, MEPs were reduced in 91% (58 of 64) of aspirators (mean ± standard deviation: 89 ± 37). Twenty-six patients enrolled in EMST and three patients withdrew. MEPs improved on average 57% (87 ± 29 to 137 ± 44 cm H 2 O, P < 0.001) among 23 who completed EMST. Swallowing safety (per DIGEST) improved significantly (P = 0.03). Composite MDADI scores improved post-EMST (pre-EMST: 59.9 ± 17.1, post-EMST: 62.7 ± 13.9, P = 0.13). PSSHN diet scores did not significantly change. MEPs were reduced in chronic radiation-associated aspirators relative to normative data, suggesting that expiratory strengthening could be a novel therapeutic target to improve airway protection in this population. Similar to findings in neurogenic populations, these data also suggest improved expiratory pressure-generating capabilities after EMST and translation to functional improvements in swallowing safety in chronic radiation-associated aspirators. 4. Laryngoscope, 128:1044-1051, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.
Talis, V L; Kazennikov, O V; Castellote, J M; Grishin, A A; Ioffe, M E
2014-03-01
Motor evoked potentials (MEPs) in the right first dorsal interosseous (FDI) muscle elicited by transcranial magnetic stimulation of left motor cortex were assessed in ten healthy subjects during maintenance of a fixed FDI contraction level. Subjects maintained an integrated EMG (IEMG) level with visual feedback and reproduced this level by memory afterwards in the following tasks: stationary FDI muscle contraction at the level of 40 ± 5 % of its maximum voluntary contraction (MVC; 40 % task), at the level of 20 ± 5 % MVC (20 % task), and also when 20 % MVC was preceded by either no contraction (0-20 task), by stronger muscle contraction (40-20 task) or by no contraction with a previous strong contraction (40-0-20 task). The results show that the IEMG level was within the prescribed limits when 20 and 40 % stationary tasks were executed with and without visual feedback. In 0-20, 40-20, and 40-0-20 tasks, 20 % IEMG level was precisely controlled in the presence of visual feedback, but without visual feedback the IEMG and force during 20 % IEMG maintenance were significantly higher in the 40-0-20 task than those in 0-20 and 40-20 tasks. That is, without visual feedback, there were significant variations in muscle activity due to different prehistory of contraction. In stationary tasks, MEP amplitudes in 40 % task were higher than in 20 % task. MEPs did not differ significantly during maintenance of the 20 % level in tasks with different prehistory of muscle contraction with and without visual feedback. Thus, in spite of variations in muscle background activity due to different prehistory of contraction MEPs did not vary significantly. This dissociation suggests that the voluntary maintenance of IEMG level is determined not only by cortical mechanisms, as reflected by corticospinal excitability, but also by lower levels of CNS, where afferent signals and influences from other brain structures and spinal cord are convergent.
Differential effect of muscle vibration on intracortical inhibitory circuits in humans
Rosenkranz, Karin; Rothwell, John C
2003-01-01
Low amplitude muscle vibration (0.5 ms; 80 Hz; duration 1.5 s) was applied in turn to each of three different intrinsic hand muscles (first dorsal interosseus, FDI; abductor pollicis brevis, APB; and abductor digiti minimi, ADM) in order to test its effect on the EMG responses evoked by transcranial magnetic stimulation (TMS). Recordings were also taken from flexor and extensor carpi radialis (FCR and ECR, respectively). We evaluated the amplitude of motor evoked potentials (MEPs) produced by a single TMS pulse, short interval intracortical inhibition and facilitation (SICI and ICF) and long interval intracortical inhibition (LICI). TMS pulses were applied 1 s after the start of vibration with subjects relaxed throughout. Vibration increased the amplitude of MEPs evoked in the vibrated muscle (162 ± 6 % of MEP with no vibration; mean ± s.e.m.), but suppressed MEPs in the two non-vibrated hand muscles (72 ± 9 %). Compared with no vibration (test response reduced to 51 ± 5 % of control), there was less SICI in the vibrated muscle (test response reduced to 92 ± 28 % of control) and more in the non-vibrated hand muscles (test response reduced to 27 ± 5 % of control). The opposite occurred for LICI: compared with the no vibration condition (test response reduced to 33 ± 6 % control), there was more LICI in the vibrated muscle (test response reduced to 17 ± 3 % control) than in the non-vibrated hand muscles (test response reduced to 80 ± 11 % control) even when the intensity of the test stimulus was adjusted to compensate for the changes in baseline MEP. There was no effect on ICF. Cutaneous stimulation of the index finger (80 Hz, 1.5 s duration, twice sensory threshold) had no consistent differential effect on any of the parameters. We conclude that vibratory input from muscle can differentially modulate excitability in motor cortical circuits. PMID:12821723
Kleidon, Axel
2009-06-01
The Earth system is maintained in a unique state far from thermodynamic equilibrium, as, for instance, reflected in the high concentration of reactive oxygen in the atmosphere. The myriad of processes that transform energy, that result in the motion of mass in the atmosphere, in oceans, and on land, processes that drive the global water, carbon, and other biogeochemical cycles, all have in common that they are irreversible in their nature. Entropy production is a general consequence of these processes and measures their degree of irreversibility. The proposed principle of maximum entropy production (MEP) states that systems are driven to steady states in which they produce entropy at the maximum possible rate given the prevailing constraints. In this review, the basics of nonequilibrium thermodynamics are described, as well as how these apply to Earth system processes. Applications of the MEP principle are discussed, ranging from the strength of the atmospheric circulation, the hydrological cycle, and biogeochemical cycles to the role that life plays in these processes. Nonequilibrium thermodynamics and the MEP principle have potentially wide-ranging implications for our understanding of Earth system functioning, how it has evolved in the past, and why it is habitable. Entropy production allows us to quantify an objective direction of Earth system change (closer to vs further away from thermodynamic equilibrium, or, equivalently, towards a state of MEP). When a maximum in entropy production is reached, MEP implies that the Earth system reacts to perturbations primarily with negative feedbacks. In conclusion, this nonequilibrium thermodynamic view of the Earth system shows great promise to establish a holistic description of the Earth as one system. This perspective is likely to allow us to better understand and predict its function as one entity, how it has evolved in the past, and how it is modified by human activities in the future.
Metabolic plasticity for isoprenoid biosynthesis in bacteria.
Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel
2013-05-15
Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.
Branch, Francesca; Woodruff, Tracey J; Mitro, Susanna D; Zota, Ami R
2015-07-15
Diethyl phthalate (DEP) and di-n-butyl phthalate (DnBP) are industrial chemicals found in consumer products that may increase risk of adverse health effects. Although use of personal care/beauty products is known to contribute to phthalate exposure, no prior study has examined feminine hygiene products as a potential phthalate source. In this study, we evaluate whether vaginal douching and other feminine hygiene products increase exposure to phthalates among US reproductive-aged women. We conducted a cross-sectional study on 739 women (aged 20-49) from the National Health and Nutrition Examination Survey 2001-2004 to examine the association between self-reported use of feminine hygiene products (tampons, sanitary napkins, vaginal douches, feminine spray, feminine powder, and feminine wipes/towelettes) with urinary concentrations of monoethyl phthalate (MEP) and mono-n-butyl phthalate (MnBP), metabolites of DEP and DnBP, respectively. A greater proportion of black women than white and Mexican American women reported use of vaginal douches, feminine spray, feminine powder, and wipes/towelettes in the past month whereas white women were more likely than other racial/ethnic groups to report use of tampons (p < 0.05). Douching in the past month was associated with higher concentrations of MEP but not MnBP. No other feminine hygiene product was significantly associated with either MEP or MnBP. We observed a dose-response relationship between douching frequency and MEP concentrations (p(trend) < 0.0001); frequent users (≥2 times/month) had 152.2% (95% confidence intervals (CI): (68.2%, 278.3%)) higher MEP concentrations than non-users. We also examined whether vaginal douching mediates the relationship between race/ethnicity and phthalates exposures. Black women had 48.4% (95% CI: 16.8%, 88.6%; p = 0.0002) higher MEP levels than white women. Adjustment for douching attenuated this difference to 26.4% (95% CI:-0.9%, 61.2%; p = 0.06). Mediation effects of douching were statistically significant for black-white differences (z = 3.71, p < 0.001) but not for differences between Mexican Americans and whites (z = 1.80, p = 0.07). Vaginal douching may increase exposure to DEP and contribute to racial/ethnic disparities in DEP exposure. The presence of environmental chemicals in vaginal douches warrants further examination.
Kang, Hui-Seung; Kyung, Min-Sik; Ko, Ahra; Park, Jae-Hong; Hwang, Myung-Sil; Kwon, Ji-Eun; Suh, Jin-Hyang; Lee, Hee-Seok; Moon, Gui Im; Hong, Jin-Hwan; Hwang, In Gyun
2016-04-01
Parabens are broad-spectrum antimicrobial agents used in a range of consumer products, including personal care products, cosmetics, and food. Recently, the widespread use of parabens has raised concerns about the potential health risks associated with their endocrine-disrupting effect. In the present study, 2541 urine samples were collected and analyzed by liquid chromatography-mass spectrometry for the determination of the concentrations of methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP) and butyl paraben (BuP). The detection rate and geometric mean concentrations of parabens in the general population followed the order MeP (97.7%; 116ng/mL)>EtP (97.2%; 24.7ng/mL)>PrP (96.7%; 11.0ng/mL)>BuP (83.5%; 1.13ng/mL). The composition profiles showed that MeP and EtP accounted for >90% of the urinary paraben concentration. We performed statistical analysis in order to evaluate differences between demographic variables and urinary concentrations. Our results showed that adjusted proportional change of MeP, PrP, and BuP in adults were 2.67-6.13 times higher in females than in males. The urinary concentrations of PrP in adults increased significantly with age. The adjusted proportional changes of MeP and PrP in adults were associated with increased body mass index (BMI). The adjusted proportional changes of BuP and PrP in children and adolescents were 1.44 and 1.69 times higher in females than in males. However, there was no clear association between paraben concentrations and demographic variables in the children and adolescents groups. The estimated daily intake (EDIurine) of MeP and EtP in adults were 301μg/kg bw/day, which is lower than the acceptable daily intake (ADI; 10mg/kg bw/day). In summary, our results revealed that the general population in Korea was exposed to parabens during 2009-2010, and most Koreans are exposed to parabens. The urinary levels of parabens varied by age group with demographic factors in the Korean population. The results of study may be used to establish a nationally representative baseline of exposure to parabens in risk assessment. Copyright © 2016. Published by Elsevier Inc.
Magureanu, M; Dobrin, D; Bradu, C; Gherendi, F; Mandache, N B; Parvulescu, V I
2016-12-01
The objective of these investigations is to understand in more detail how organic compounds in water are degraded during plasma treatment. The formation of oxidizing species (ozone (O 3 ), hydrogen peroxide (H 2 O 2 ) and hydroxyl radicals (OH)) in a pulsed corona discharge in contact with liquid is investigated. The degradation of a target organic compound (methylparaben) in aqueous solution was increased when combining plasma treatment with ozonation, using the O 3 generated in the discharge. Enhanced mass transfer of O 3 obtained in this plasma+O 3 configuration leads to a six fold increase of MeP oxidation rate. The evolution of oxidants concentration during treatment of MeP solutions provides information on their consumption in reactions with MeP and its oxidation products. The correlation of MeP degradation results (MeP removal and mineralization) with O 3 consumption and the identified reaction products confirms that although O 3 plays an important role in the degradation, for the mineralization OH radicals have an essential contribution. The concentration of OH radicals is diminished in the solutions containing MeP as compared to plasma-treated water, indicating OH consumption in reactions with the target compound and its degradation products. The concentration of H 2 O 2 in the liquid can be either increased or reduced in the presence of MeP, depending on its initial concentration. On the one hand, decomposition of H 2 O 2 by OH or O 3 is suppressed in the presence of MeP, but on the other hand less OH radicals are available for its formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Jia; Yang, Liyang; Wang, Chonglong; Choi, Eui-Sung; Kim, Seon-Won
2017-04-20
The 2C-methyl-D-erythritol 4-phosphate (MEP) pathway is a carbon-efficient route for synthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the building blocks of isoprenoids. However, practical application of a native or recombinant MEP pathway for the mass production of isoprenoids in Escherichia coli has been unsatisfactory. In this study, the entire recombinant MEP pathway was established with plasmids and used for the production of an isoprenoid, protoilludene. E. coli harboring the recombinant MEP pathway plasmid (ME) and a protoilludene synthesis pathway plasmid (AO) produced 10.4mg/L of protoilludene after 48h of culture. To determine the rate-limiting gene on plasmid ME, each constituent gene of the MEP pathway was additionally overexpressed on the plasmid AO. The additional overexpression of IPP isomerase (IDI) enhanced protoilludene production to 67.4mg/L. Overexpression of the Fpr and FldA protein complex, which could mediate electron transfer from NADPH to Fe-S cluster proteins such as IspG and IspH of the MEP pathway, increased protoilludene production to 318.8mg/L. Given that it is required for IspC as well as IspG/H, the MEP pathway has high demand for NADPH. To increase the supply of NADPH, a NADH kinase from Saccharomyces cerevisiae (tPos5p) that converts NADH to NADPH was introduced along with the deletion of a promiscuous NADPH-dependent aldehyde reductase (YjgB) that consumes NADPH. This resulted in a protoilludene production of 512.7mg/L. The results indicate that IDI, Fpr-FldA redox proteins, and NADPH regenerators are key engineering points for boosting the metabolic flux toward a recombinant MEP pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Marino, Giovanni; Brunetti, Cecilia; Tattini, Massimiliano; Romano, Andrea; Biasioli, Franco; Tognetti, Roberto; Loreto, Francesco; Ferrini, Francesco; Centritto, Mauro
2017-12-01
Isoprene is synthesized through the 2-C-methylerythritol-5-phosphate (MEP) pathway that also produces abscisic acid (ABA). Increases in foliar free ABA concentration during drought induce stomatal closure and may also alter ethylene biosynthesis. We hypothesized a role of isoprene biosynthesis in protecting plants challenged by increasing water deficit, by influencing ABA production and ethylene evolution. We performed a split-root experiment on Populus nigra L. subjected to three water treatments: well-watered (WW) plants with both root sectors kept at pot capacity, plants with both root compartments allowed to dry for 5 days (DD) and plants with one-half of the roots irrigated to pot capacity, while the other half did not receive water (WD). WD and WW plants were similar in photosynthesis, water relations, foliar ABA concentration and isoprene emission, whereas these parameters were significantly affected in DD plants: leaf isoprene emission increased despite the fact that photosynthesis declined by 85% and the ABA-glucoside/free ABA ratio decreased significantly. Enhanced isoprene biosynthesis in water-stressed poplars may have contributed to sustaining leaf ABA biosynthesis by keeping the MEP pathway active. However, this enhancement in ABA was accompanied by no change in ethylene biosynthesis, likely confirming the antagonistic role between ABA and ethylene. These results may indicate a potential cross-talk among isoprene, ABA and ethylene under drought. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Interhemispheric Inhibition Measurement Reliability in Stroke: A Pilot Study
Cassidy, Jessica M.; Chu, Haitao; Chen, Mo; Kimberley, Teresa J.; Carey, James R.
2016-01-01
Objective Reliable transcranial magnetic stimulation (TMS) measures for probing corticomotor excitability are important when assessing the physiological effects of non-invasive brain stimulation. The primary objective of this study was to examine test-retest reliability of an interhemispheric inhibition (IHI) index measurement in stroke. Materials and Methods Ten subjects with chronic stroke (≥ 6 months) completed two IHI testing sessions per week for three weeks (six testing sessions total). A single investigator measured IHI in the contra- to-ipsilesional primary motor cortex direction and in the opposite direction using bilateral paired-pulse TMS. Weekly sessions were separated by 24 hours with a 1-week washout period separating testing weeks. To determine if motor-evoked potential (MEP) quantification method affected measurement reliability, IHI indices computed from both MEP amplitude and area responses were found. Reliability was assessed with two-way, mixed intraclass correlation coefficients (ICC(3,k)). Standard error of measurement and minimal detectable difference statistics were also determined. Results With the exception of the initial testing week, IHI indices measured in the contra-to-ipsilesional hemisphere direction demonstrated moderate to excellent reliability (ICC = 0.725 – 0.913). Ipsi-to-contralesional IHI indices depicted poor or invalid reliability estimates throughout the three-week testing duration (ICC= −1.153 – 0.105). The overlap of ICC 95% confidence intervals suggested that IHI indices using MEP amplitude vs. area measures did not differ with respect to reliability. Conclusions IHI indices demonstrated varying magnitudes of reliability irrespective of MEP quantification method. Several strategies for improving IHI index measurement reliability are discussed. PMID:27333364
Vicario, Carmelo M.; Komeilipoor, Naeem; Cesari, Paola; Rafal, Robert D.; Nitsche, Michael A.
2014-01-01
Background Neuroimaging studies of chronic smokers report altered activity of several neural regions involved in the processing of rewarding outcomes. Neuroanatomical evidence suggests that these regions are directly connected to the tongue muscle through the corticobulbar pathways. Accordingly, we examined whether corticobulbar excitability might be considered a somatic marker for nicotine craving. Methods We compared motor-evoked potential (MEP) amplitudes recorded from the tongue and the extensor carpi radialis (control muscle) of chronic smokers under drug withdrawal and intake conditions as well as a nonsmoker group. All participants were tested during passive exposure to pictures showing a smoking cue or a meaningless stimulus. In the intake condition, chronic smokers were asked to smoke a real cigarette (CSn: group 1) or a placebo (CSp: group 2). Results Results show that MEP amplitudes recorded from the tongues of participants in the CSn and CSp groups under the withdrawal condition were selectively enhanced during exposure to a smoking cue. However, this effect on tongue MEP amplitudes disappeared in the intake condition for both the CSn and CSp groups. Limitations Limitations include the fact that the study was conducted in 2 different laboratories, the small sample size, the absence of data on chronic smoker craving strength and the different tastes of the real and placebo cigarettes. Conclusion These results suggest that, in chronic smokers, tongue muscle MEP amplitudes are sensitive to neural processes active under the physiological status of nicotine craving. This finding implicates a possible functional link between neural excitability of the corticobulbar pathway and the reward system in chronic smokers. PMID:24485386
Duclay, Julien; Pasquet, Benjamin; Martin, Alain; Duchateau, Jacques
2011-01-01
Abstract This study was designed to investigate the cortical and spinal mechanisms involved in the modulations of neural activation during lengthening compared with isometric and shortening maximal voluntary contractions (MVCs). Two muscles susceptible to different neural adjustments at the spinal level, the soleus (SOL) and medial gastrocnemius (MG), were compared. Twelve healthy males participated in at least two experimental sessions designed to assess corticospinal and spinal excitabilities. We compared the modulation of motor evoked potentials (MEPs) in response to transcranial magnetic stimulation and Hoffmann reflexes (H-reflexes) during isometric and anisometric MVCs. The H-reflex and MEP responses, recorded during lengthening and shortening MVCs, were compared with those obtained during isometric MVCs. The results indicate that the maximal amplitude of both MEP and H-reflex in the SOL were smaller (P < 0.01) during lengthening MVCs compared with isometric and shortening MVCs but similar (P > 0.05) in MG for all three muscle contraction types. The silent period that follows maximal MEPs was reduced (P < 0.01) during lengthening MVCs in the SOL but not the MG. Similar observations were obtained regardless of the initial length of the MG muscle. Collectively, the current results indicate that the relative contribution of both cortical and spinal mechanisms to the modulation of neural activation differs during lengthening MVCs and between two synergist muscles. The comparison of SOL and MG responses further suggests that the specific modulation of the corticospinal excitability during lengthening MVCs depends mainly on pre- and postsynaptic inhibitory mechanisms acting at the spinal level. PMID:21502288
Functional Assessment of Corticospinal System Excitability in Karate Athletes
Moscatelli, Fiorenzo; Messina, Giovanni; Valenzano, Anna; Monda, Vincenzo; Viggiano, Andrea; Messina, Antonietta; Petito, Annamaria; Triggiani, Antonio Ivano; Ciliberti, Michela Anna Pia; Monda, Marcellino; Capranica, Laura; Cibelli, Giuseppe
2016-01-01
Objectives To investigate the involvement of the primary motor cortex (M1) in the coordination performance of karate athletes through transcranial magnetic stimulation (TMS). Methods Thirteen right-handed male karate athletes (25.0±5.0 years) and 13 matched non-athlete controls (26.7±6.2 years) were enrolled. A single-pulse TMS was applied using a figure-eight coil stimulator. Resting motor threshold (rMT) was determined. Surface electromyography was recorded from the first dorsal interosseous muscle. Motor evoked potential (MEP) latencies and amplitudes at rMT, 110%, and 120% of rMT were considered. Functional assessment of the coordination performance was assessed by in-phase (IP) and anti-phase (AP) homolateral hand and foot coordination tasks performed at 80, 120, and 180 bpm. Results Compared to controls, athletes showed lower rMT (p<0.01), shorter MEP latency (p<0.01) and higher MEP amplitude (p<0.01), with a significant correlation (r = 0.50, p<0.01) between rMT and MEP latency. Coordination decreased with increasing velocity, and better IP performances emerged compared to AP ones (p<0.001). In general, a high correlation between rMT and coordination tasks was found for both IP and AP conditions. Conclusion With respect to controls, karate athletes present a higher corticospinal excitability indicating the presence of an activity-dependent alteration in the balance and interactions between inhibitory and facilitatory circuits determining the final output from the M1. Furthermore, the high correlation between corticospinal excitability and coordination performance could support sport-specific neurophysiological arrangements. PMID:27218465
Hsu, Ya-Fang; Liao, Kwong-Kum; Lee, Po-Lei; Tsai, Yun-An; Yeh, Chia-Lung; Lai, Kuan-Lin; Huang, Ying-Zu; Lin, Yung-Yang; Lee, I-Hui
2011-11-01
The objective of this study is to investigate how transcranial magnetic intermittent theta burst stimulation (iTBS) with a prolonged protocol affects human cortical excitability and movement-related oscillations. Using motor-evoked potentials (MEPs) and movement-related magnetoencephalography (MEG), we assessed the changes of corticospinal excitability and cortical oscillations after iTBS with double the conventional stimulation time (1200 pulses, iTBS1200) over the primary motor cortex (M1) in 10 healthy subjects. Continuous TBS (cTBS1200) and sham stimulation served as controls. iTBS1200 facilitated MEPs evoked from the conditioned M1, while inhibiting MEPs from the contralateral M1 for 30 min. By contrast, cTBS1200 inhibited MEPs from the conditioned M1. Importantly, empirical mode decomposition-based MEG analysis showed that the amplitude of post-movement beta synchronisation (16-26 Hz) was significantly increased by iTBS1200 at the conditioned M1, but was suppressed at the nonconditioned M1. Alpha (8-13 Hz) and low gamma-ranged (35-45 Hz) rhythms were not notably affected. Movement kinetics remained consistent throughout. TBS1200 modulated corticospinal excitability in parallel with the direction of conventional paradigms with modestly prolonged efficacy. Moreover, iTBS1200 increased post-movement beta synchronisation of the stimulated M1, and decreased that of the contralateral M1, probably through interhemispheric interaction. Our results provide insight into the underlying mechanism of TBS and reinforce the connection between movement-related beta synchronisation and corticospinal output. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
[Electrical stimulation of the facial nerve with a prognostic function in parotid surgery].
García-Losarcos, N; González-Hidalgo, M; Franco-Carcedo, C; Poch-Broto, J
Continuous electromyography during parotidectomies and direct stimulation of the facial nerve as an intraoperative identification technique significantly lower the rate of post-operative morbidity. To determine the usefulness of intra-operative neurophysiological parameters registered by means of electrical stimulation of the facial nerve as values capable of predicting the type of lesion and the functional prognosis. Our sample consisted of a correlative series of 20 cases of monitored parotidectomies. Post-operative facial functioning, type of lesion and its prognosis were compared with the variations in latency/amplitude of the muscle response between two stimulations of the facial nerve before and after resection, as well as in the absence or presence of muscle response to stimulation after resection. All the patients except one presented motor evoked potentials (MEP) to stimulation after resection. There was no facial damage following the operation in 55% of patients and 45% presented some kind of paresis. The 21% drop in the amplitude of the intra-operative MEP and the mean increase in latency of 13.5% correspond to axonal and demyelinating insult, respectively, with a mean recovery time of three and six months. The only case of absence of response to the post-resection stimulation presented permanent paresis. The presence of MEP following resection does not ensure that functioning of the nerve remains undamaged. Nevertheless, it can be considered a piece of data that suggests a lower degree of compromise, if it is present, and a better prognosis. The variations in latency and amplitude of the MEP tend to be intra-operative parameters that indicate the degree of compromise and functional prognosis.
Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki
2017-01-01
Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 ( n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 ( n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability.
Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki
2017-01-01
Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 (n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 (n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability. PMID:28392766
Whole body heat stress increases motor cortical excitability and skill acquisition in humans
Littmann, Andrew E.; Shields, Richard K.
2015-01-01
Objective Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress 1) facilitated motor cortex excitability and 2) improved motor task acquisition compared to no heat stress. Methods Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 minutes of heat stress at 73° C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Results Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (P < 0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p < 0.05) during a novel movement task using the FDI. Conclusions Passive environmental heat stress 1) increases motor cortical excitability, and 2) enhances performance in a motor skill acquisition task. Significance Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. PMID:26616546
Selective modulation of intracortical inhibition by low-intensity Theta Burst Stimulation.
McAllister, S M; Rothwell, J C; Ridding, M C
2009-04-01
Theta Burst Stimulation (TBS) is a repetitive transcranial magnetic stimulation paradigm which has effects on both excitatory and inhibitory intracortical pathways when applied at an intensity of 80% of active motor threshold. As intracortical inhibitory pathways have a lower threshold for activation than excitatory pathways, we sought to determine whether it was possible to selectively target cortical inhibitory circuitry by reducing the intensity of TBS to 70% of active motor threshold. Motor evoked potentials (MEPs), short latency intracortical facilitation (SICF), intracortical facilitation (ICF) and short interval intracortical inhibition (SICI) were measured at baseline, 5-20 and 20-35 min following continuous (cTBS) and intermittent (iTBS) low-intensity TBS in nine healthy subjects. Low-intensity cTBS significantly reduced SICI 5-20 min following stimulation, whilst having no effect on MEPs, SICF or ICF. Low-intensity iTBS had no effect on SICI, MEPs, SICF or ICF. It is possible to selectively target intracortical inhibitory networks for modulation by low-intensity TBS, however, responses may critically depend upon the particular paradigm chosen. These findings have important implications for the treatment of neurological disorders where abnormal levels of intracortical inhibition are present, such as Parkinson's disease and focal hand dystonia and requires further investigation.
Cengiz, Bülent; Vurallı, Doğa; Zinnuroğlu, Murat; Bayer, Gözde; Golmohammadzadeh, Hassan; Günendi, Zafer; Turgut, Ali Emre; İrfanoğlu, Bülent; Arıkan, Kutluk Bilge
2018-02-01
This study aimed to explore the relationship between action observation (AO)-related corticomotor excitability changes and phases of observed action and to explore the effects of pure AO and concurrent AO and motor imagery (MI) state on corticomotor excitability using TMS. It was also investigated whether the mirror neuron system activity is muscle-specific. Fourteen healthy volunteers were enrolled in the study. EMG recordings were taken from the right first dorsal interosseous and the abductor digiti minimi muscles. There was a significant main effect of TMS timing (after the beginning of the movement, at the beginning of motor output state, and during black screen) on the mean motor evoked potential (MEP) amplitude. Mean MEP amplitudes for AO combined with MI were significantly higher than pure AO session. There was a significant interaction between session and TMS timing. There was no significant main effect of muscle on MEP amplitude. The results indicate that corticomotor excitability is modulated by different phases of the observed motor movement and this modulation is not muscle-specific. Simultaneous MI and AO enhance corticomotor excitability significantly compared to pure AO.
Cordella, Roberto; Acerbi, Francesco; Broggi, Morgan; Vailati, Davide; Nazzi, Vittoria; Schiariti, Marco; Tringali, Giovanni; Ferroli, Paolo; Franzini, Angelo; Broggi, Giovanni
2013-06-01
To evaluate the role of intraoperative neurophysiological monitoring in image-guided mini-invasive neurosurgery. Twenty-one patients were operated under general anaesthesia with the aid of multimodal intraoperative neurophysiological monitoring to remove supratentorials tumors closely related to the cortico-spinal tract. Pre-operative assessment included fMRI scans and tractography that were uploaded into the intraoperative neuro-navigation system. Monitoring consisted in simultaneously recording EEG, electrocorticography, transcranial and direct motor evoked potentials (tMEP and dMEP), somatosensory evoked potentials and subcortical stimulation during the whole procedures. The recording of all the electrophysiological signals was possible in all procedures. SSEP guided the positioning of the strip electrode over the motor cortex (N20 phase inversion) that was used to evoke dMEP and monitor the lower limb motor responses; subcortical stimulation to unveil the spatial relationship between the tumors and motor fibers. Four patients had transient worsening of the symptoms, but only two had a long-term worsening, although not severe, of the pre-op clinical status. Intraoperative neurophysiology has a great value in mini-invasive neurosurgery, especially because the motor cortex is not exposed, consequently it cannot be directly mapped. This report describes a valuable scheme making use of as many electrophysiological signals as possible to constantly monitor the motor functions. A useful method to monitor motor functions in mini-invasive neurosurgery was described. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Landriel, Federico; Baccanelli, Matteo; Hem, Santiago; Vecchi, Eduardo; Bendersky, Mariana; Yampolsky, Claudio
2017-01-01
Spinal radiculomedullary artery aneurysms are extremely rare. Treatment should be tailored to clinical presentation, distal aneurysm flow, and lesion anatomical features. When a surgical occlusion is planned, it is necessary to evaluate whether intraoperative monitoring (IOM) should be considered as an indispensable tool to prevent potential spinal cord ischemia. We present a patient with symptoms and signs of spinal subarachnoid hemorrhage resulting from the rupture of a T4 anterior radiculomedullary aneurysm who underwent open surgical treatment under motor evoked potential (MEP) monitoring. Due to the aneurysmal fusiform shape and preserved distal flow, the afferent left anterior radiculomedullary artery was temporarily clipped; 2 minutes after the clamping, the threshold stimulation level rose higher than 100 V, and at minute 3, MEPs amplitude became attenuated over 50%. This was considered as a warning criteria to leave the vessel occlusion. The radiculomedullary aneurysm walls were reinforced and wrapped with muscle and fibrin glue to prevent re-bleeding. The patient awoke from general anesthesia without focal neurologic deficit and made an uneventful recovery with complete resolution of her symptoms and signs. This paper attempts to build awareness of the possibility to cause or worsen a neurological deficit if a radiculomedullary aneurysm with preserved distal flow is clipped or embolized without an optimal IOM control. We report in detail MEP monitoring during the occlusion of a unilateral T4 segmental artery that supplies an anterior radiculomedullary artery aneurysm.
Changes in tibialis anterior corticospinal properties after acute prolonged muscle vibration.
Farabet, Adrien; Souron, Robin; Millet, Guillaume Y; Lapole, Thomas
2016-06-01
Prolonged local vibration is known to impair muscle performance. While involved mechanisms were previously evidenced at the spinal level, changes at the cortical level were also hypothesized. The aims of the present study were to investigate the effects of 30 min of 100-Hz tibialis anterior muscle vibration on force production capacities and to further identify the respective changes in spinal loop properties, descending voluntary drive and corticospinal properties. Thirteen subjects were tested before and after a vibration condition, and before and after a resting control condition. Maximal voluntary contraction (MVC) in dorsiflexion was measured. Transcranial magnetic stimulation was superimposed during MVCs to assess cortical voluntary activation (VATMS), motor-evoked potential amplitude (MEP) and cortical silent period length (CSP). MEP and CSP were also measured during 50 and 75 % MVC contractions. Spinal excitability was investigated by mean of H-reflex. There were no vibration effects on MVC (p = 0.805), maximal EMG activity (p = 0.653), VATMS (p = 1), and CSP (p = 0.877). Vibration tended to decrease MEP amplitude (p = 0.117). H-reflex amplitude was depressed following vibration (p = 0.008). Dorsiflexion maximal force production capacities were unaffected by 30 min of tibialis anterior muscle vibration, despite spinal loop and corticospinal excitabilities being reduced. These findings suggest that acute prolonged vibration has the potential to modulate corticospinal excitability of lower limb muscles without a concomitant functional consequence.
Degradation of methylparaben in water by corona plasma coupled with ozonation.
Dobrin, D; Magureanu, M; Bradu, C; Mandache, N B; Ionita, P; Parvulescu, V I
2014-11-01
The degradation of methylparaben (MeP) in water was investigated using a pulsed corona discharge generated in oxygen, above the liquid. A comparison was made between results obtained in semi-batch corona (SBC) configuration (stationary solution, continuous gas flow) and results obtained in a semi-batch corona with recirculation combined with ozonation (SBCR + O3), where the liquid is continuously circulated between a solution reservoir and the plasma reactor and the effluent gas containing ozone is bubbled through the solution in the reservoir. It was found that MeP was completely degraded after 10-15 min of treatment in both configurations. Oxidation by ozone alone, in the absence of plasma, was a slower process. The energy efficiency for MeP removal (Y MeP) and for mineralization (Y TOC) was significantly higher in the SBCR + O3 configuration (Y MeP = 7.1 g/kWh at 90 % MeP removal and Y TOC = 0.41 g/kWh at 50 % total organic carbon (TOC) removal) than in the SBC configuration (Y MeP = 0.6 g/kWh at 90 % MeP removal and Y TOC = 0.11 g/kWh at 50 % TOC removal).
Zhang, Dong; Chen, Meizhu; Liu, Quantao; Wan, Jiuming; Hu, Jinxuan
2018-05-16
Using phase change materials (PCMs) in building envelopes became a reliable method to improve indoor comfort and reduce buildings' energy consumption. This research developed molecular-bridged expanded graphite (EG)/polyethylene glycol (PEG) composite PCMs (m-EPs) to conserve energy in buildings. The m-EPs were prepared through a vacuum absorption technique, and a titanate coupling agent was used to build a molecular bridge between EG and PEG. SEM, mercury intrusion porosimetry (MIP), the leakage test, microcalorimetry, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) were conducted to characterize the morphology, pore structure, absorbability, and modifying effects of the m-EPs. The phase change temperature, latent heat, thermal stability, and thermal conductivity of the m-EPs were determined by a differential scanning calorimeter (DSC), TGA, and a thermal constants analyzer. Results showed that the maximum mass ratio of PEG to EG without leakage was 1:7, and a stable connection was established in the m-EPs after modification. Compared with the unmodified EPs, the supercooling degree of the m-EPs reduced by about 3 °C, but the latent heats and initial decomposition temperatures increased by approximately 10% and 20 °C, respectively, which indicated an improvement in the thermal energy storage efficiency. The thermal conductivities of the m-EPs were 10 times higher than those of the pristine PEGs, which ensured a rapid responding to building temperature fluctuations.
Zhang, Dong; Chen, Meizhu; Liu, Quantao; Hu, Jinxuan
2018-01-01
Using phase change materials (PCMs) in building envelopes became a reliable method to improve indoor comfort and reduce buildings’ energy consumption. This research developed molecular-bridged expanded graphite (EG)/polyethylene glycol (PEG) composite PCMs (m-EPs) to conserve energy in buildings. The m-EPs were prepared through a vacuum absorption technique, and a titanate coupling agent was used to build a molecular bridge between EG and PEG. SEM, mercury intrusion porosimetry (MIP), the leakage test, microcalorimetry, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) were conducted to characterize the morphology, pore structure, absorbability, and modifying effects of the m-EPs. The phase change temperature, latent heat, thermal stability, and thermal conductivity of the m-EPs were determined by a differential scanning calorimeter (DSC), TGA, and a thermal constants analyzer. Results showed that the maximum mass ratio of PEG to EG without leakage was 1:7, and a stable connection was established in the m-EPs after modification. Compared with the unmodified EPs, the supercooling degree of the m-EPs reduced by about 3 °C, but the latent heats and initial decomposition temperatures increased by approximately 10% and 20 °C, respectively, which indicated an improvement in the thermal energy storage efficiency. The thermal conductivities of the m-EPs were 10 times higher than those of the pristine PEGs, which ensured a rapid responding to building temperature fluctuations. PMID:29772728
Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state
Niven, Robert K.
2010-01-01
This study examines a new formulation of non-equilibrium thermodynamics, which gives a conditional derivation of the ‘maximum entropy production’ (MEP) principle for flow and/or chemical reaction systems at steady state. The analysis uses a dimensionless potential function ϕst for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics. Spontaneous reductions in ϕst arise from increases in the ‘flux entropy’ of the system—a measure of the variability of the fluxes—or in the local entropy production; conditionally, depending on the behaviour of the flux entropy, the formulation reduces to the MEP principle. The inferred steady state is also shown to exhibit high variability in its instantaneous fluxes and rates, consistent with the observed behaviour of turbulent fluid flow, heat convection and biological systems; one consequence is the coexistence of energy producers and consumers in ecological systems. The different paths for attaining steady state are also classified. PMID:20368250
Abboud, Tammam; Huckhagel, Torge; Stork, Jan-Henrich; Hamel, Wolfgang; Schwarz, Cindy; Vettorazzi, Eik; Westphal, Manfred; Martens, Tobias
2017-10-01
Rising threshold level during monitoring of motor-evoked potentials (MEP) using transcranial electrical stimulation (TES) has been described without damage to the motor pathway in the cranial surgery, suggesting the need for monitoring of affected and unaffected hemisphere. We aimed to determine the factors that lead to a change in threshold level and to establish reliable criteria for adjusting stimulation intensity during surgery for supratentorial lesions. Between October 2014 and October 2015, TES-MEP were performed in 143 patients during surgery for unilateral supratentorial lesions in motor-eloquent brain areas. All procedures were performed under general anesthesia using a strict protocol to maintain stable blood pressure. MEP were evaluated bilaterally to assess the percentage increase in threshold level, which was considered significant if it exceeded 20% on the contralateral side beyond the percentage increase on the ipsilateral side. Patients who developed a postoperative motor deficit were excluded. Volume of subdural air was measured on postoperative magnetic resonance imaging. Logistic regression was performed to identify factors associated with the intraoperative recorded changes in threshold level. A total of 123 patients were included in the study. On the affected side, 82 patients (66.7%) showed an increase in threshold level, which ranged from 2% to 48% and 41 patients (33.3%) did not show any change. The difference to the unaffected side was under 20% in all patients. The recorded range of changes in the systolic and mean pressure did not exceed 20 mm Hg in any of the patients. Pneumocephalus was detected on postoperative magnetic resonance imaging scans in 87 patients (70.7%) and 81 of them (93.1%) had an intraoperative increase in threshold level on either sides. Pneumocephalus was the only factor associated with an increase in threshold level on the affected side (P<0.001), while each of pneumocephalus and length of the procedure correlated with a change in threshold level on the unaffected side (P<0.001 and 0.032, respectively). Pneumocephalus was the only factor associated with increase in threshold level during MEP monitoring without damaging motor pathway. Threshold level on the affected side can rise up to 48% without being predictive of postoperative paresis, as long as the difference between the increased threshold of the affected and unaffected side is within 20%. Changes in systolic or mean blood pressure within a range of 20 mm Hg do not seem to influence intraoperative MEP.
Prolonged central motor conduction time of lower limb muscle in spinocerebellar ataxia 6.
Chen, Jen-Tse; Lin, Yung-Yang; Lee, Yi-Chung; Soong, Bing-Wen; Wu, Zin-An; Liao, Kwong-Kum
2004-05-01
We investigated the function of corticospinal tract in spinocerebellar ataxia 6 (SCA6) by measuring the central motor conduction time (CMCT). Motor evoked potentials (MEP) of tibialis anterior (TA) muscle were elicited by magnetic stimulation to motor cortex and spinal cord in 9 SCA6 patients and 10 normal height- and age-matched subjects. CMCT in lower limb of SCA6 patients (18.1+/-1.9 ms) was significantly prolonged than that of the normal subjects (15.0+/-1.0 ms) ((p < 0.001). The prolonged CMCT was well correlated with the duration of disease (p = 0.005), but MEP amplitudes and stimulation intensities were not significantly different. These results indicate that the corticospinal tract function is also impaired and correlate with the disease duration in SCA6.
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2015-03-01
inhibitor discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of the MEP pathway enzymes MEP...recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes Haymond A, Johny C, Dowdy T, Schweibenz B, Villarroel K, Young R, Mantooth...journal.pone.0020884. 9 3. Zhang, Chung, Oldenburg (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening
Jones, Harrison N; Crisp, Kelly D; Moss, Tronda; Strollo, Katherine; Robey, Randy; Sank, Jeffrey; Canfield, Michelle; Case, Laura E; Mahler, Leslie; Kravitz, Richard M; Kishnani, Priya S
2014-01-01
Respiratory muscle weakness is a primary therapeutic challenge for patients with infantile Pompe disease. We previously described the clinical implementation of a respiratory muscle training (RMT) regimen in two adults with late-onset Pompe disease; both demonstrated marked increases in inspiratory and expiratory muscle strength in response to RMT. However, the use of RMT in pediatric survivors of infantile Pompe disease has not been previously reported. We report the effects of an intensive RMT program on maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP) using A-B-A (baseline-treatment-posttest) single subject experimental design in two pediatric survivors of infantile Pompe disease. Both subjects had persistent respiratory muscle weakness despite long-term treatment with alglucosidase alfa. Subject 1 demonstrated negligible to modest increases in MIP/MEP (6% increase in MIP, d=0.25; 19% increase in MEP, d=0.87), while Subject 2 demonstrated very large increases in MIP/MEP (45% increase in MIP, d=2.38; 81% increase in MEP, d=4.31). Following three-month RMT withdrawal, both subjects maintained these strength increases and demonstrated maximal MIP and MEP values at follow-up. Intensive RMT may be a beneficial treatment for respiratory muscle weakness in pediatric survivors of infantile Pompe disease.
Factors Affecting Loss of Tympanic Membrane Mobility in Acute Otitis Media Model of Chinchilla
Guan, Xiying; Chen, Yongzheng; Gan, Rong Z.
2014-01-01
Recently we reported that middle ear pressure (MEP), middle ear effusion (MEE), and ossicular changes each contribute to the loss of tympanic membrane (TM) mobility in a guinea pig model of acute otitis media (AOM) induced by S. pneumoniae (Guan and Gan, 2013). However, it is not clear how those factors vary along the course of the disease and whether those effects are reproducible in different species. In this study, a chinchilla AOM model was produced by transbullar injection of Haemophilus influenzae. Mobility of the TM at the umbo was measured by laser vibrometry in two treatment groups: 4 days (4D) and 8 days (8D) post inoculation. These time points represent relatively early and later phases of AOM. In each group, the vibration of the umbo was measured at three experimental stages: unopened, pressure-released, and effusion-removed ears. The effects of MEP and MEE and middle ear structural changes were quantified in each group by comparing the TM mobility at one stage with that of the previous stage. Our findings show that the factors affecting TM mobility do change with the disease time course. The MEP was the dominant contributor to reduction of TM mobility in 4D AOM ears, but showed little effect in 8D ears when MEE filled the tympanic cavity. MEE was the primary factor affecting TM mobility loss in 8D ears, but affected the 4D ears only at high frequencies. After the release of MEP and removal of MEE, residual loss of TM mobility was seen mainly at low frequencies in both 4D and 8D ears, and was associated with middle ear structural changes. Our findings establish that the factors contributing to TM mobility loss in the chinchilla ear were similar to those we reported previously for the guinea pig ears with AOM. Outcomes did not appear to differ between the two major bacterial species causing AOM in these animal models. PMID:24406734
Dunn, Barbara; Paulish, Terry; Stanbery, Alison; Piotrowski, Jeff; Koniges, Gregory; Kroll, Evgueny; Louis, Edward J.; Liti, Gianni; Sherlock, Gavin; Rosenzweig, Frank
2013-01-01
Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species, S. cerevisiae and S. uvarum, then experimentally evolved them under continuous ammonium limitation. We discovered that a characteristic interspecific genome rearrangement arose multiple times in independently evolved populations. We uncovered nine different breakpoints, all occurring in a narrow ∼1-kb region of chromosome 14, and all producing an “interspecific fusion junction” within the MEP2 gene coding sequence, such that the 5′ portion derives from S. cerevisiae and the 3′ portion derives from S. uvarum. In most cases the rearrangements altered both chromosomes, resulting in what can be considered to be an introgression of a several-kb region of S. uvarum into an otherwise intact S. cerevisiae chromosome 14, while the homeologous S. uvarum chromosome 14 experienced an interspecific reciprocal translocation at the same breakpoint within MEP2, yielding a chimaeric chromosome; these events result in the presence in the cell of two MEP2 fusion genes having identical breakpoints. Given that MEP2 encodes for a high-affinity ammonium permease, that MEP2 fusion genes arise repeatedly under ammonium-limitation, and that three independent evolved isolates carrying MEP2 fusion genes are each more fit than their common ancestor, the novel MEP2 fusion genes are very likely adaptive under ammonium limitation. Our results suggest that, when homoploid hybrids form, the admixture of two genomes enables swift and otherwise unavailable evolutionary innovations. Furthermore, the architecture of the MEP2 rearrangement suggests a model for rapid introgression, a phenomenon seen in numerous eukaryotic phyla, that does not require repeated backcrossing to one of the parental species. PMID:23555283
Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.
Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora
2018-03-01
Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Tang, Yinghong; Zheng, Mengkai; Chen, Yu-Lin; Chen, Jianzhen; He, Yu
2017-06-01
Ephedra alkaloids, including ephedrine (EP), pseudoephedrine (PEP) and methylephedrine (MEP), are sympathomimetic compounds with known toxicities but many Ephedra (Ephedrae herba) preparations, such as Ephedra decoction, have been clinically applied for centuries. In order to explore the possible detoxification mechanism of Ephedra alkaloids, four representative compounds in Ephedra decoction (cinnamic acid, amygdalin, glycyrrhizic acid and liquiritin) were studied for their pharmacokinetic effects on Ephedra alkaloids in Sprague-Dawley rats. Animals were randomly divided into six groups, with six rats in each. Rats were treated orally with EP-PEP-MEP (20 mg/kg EP + 20 mg/kg PEP + 20 mg/kg MEP) and different combinations of cinnamic acid (3.03 mg/kg), amygdalin (56.97 mg/kg), glycyrrhizic acid (12.42 mg/kg), liquiritin (3.79 mg/kg) with EP-PEP-MEP, and 20 mg/kg EP + 20 mg/kg PEP + 20 mg/kg MEP + 3.03 mg/kg cinnamic acid + 56.97 mg/kg amygdalin + 12.42 mg/kg glycyrrhizic acid + 3.79 mg/kg liquiritin. Blood samples (0.5 mL) were taken from the orbital sinus venous plexus into heparinized tubes at 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300 and 360 min (6 rats per time point in each group) following single administration. The concentrations of Ephedra alkaloids in rat plasma were determined using a validated high performance liquid chromatography method. Area under the concentration-time curve from 0 to 360 min (AUC 0-t ) of EP, PEP and MEP were 666.99, 650.76 and 632.37 µg·min/mL, respectively. Maximum plasma concentration (C max ) of EP, PEP and MEP were 4.15, 4.08 and 3.59 μg/mL, respectively. Mean residence time (MRT) of EP, PEP and MEP were 197.00, 173.97 and 183.87 min, respectively, when the rats were treated with EP-PEP-MEP. Cinnamic acid increased the AUC 0-t of EP while decreased C max of EP, amygdalin and glycyrrhizic acid increased C max and AUC 0-t of EP and PEP, while liquiritin decreased AUC 0-t of EP and PEP. The four representative compounds reduced MRT of EP, PEP and MEP, four compounds decreased AUC 0-t of MEP. The EP-PEP-MEP + cinnamic acid + amygdalin + glycyrrhizic acid + liquiritin group increased AUC 0-t of EP while decreased MRT of EP, increased MRT of PEP while decreased AUC 0-t of PEP. The EP-PEP-MEP + cinnamic acid + amygdalin + glycyrrhizic acid + liquiritin group decreased MRT, AUC 0-t and C max of MEP. Significant changes in pharmacokinetic parameters of EP, PEP and MEP were observed after oral administration with different combinations. The pharmacokinetic results reported here might provide reference for clinical usage of Ephedra alkaloids.
NASA Astrophysics Data System (ADS)
Lauvergnat, David; Nauts, André; Justum, Yves; Chapuisat, Xavier
2001-04-01
The harmonic adiabatic approximation (HADA), an efficient and accurate quantum method to calculate highly excited vibrational levels of molecular systems, is presented. It is well-suited to applications to "floppy molecules" with a rather large number of atoms (N>3). A clever choice of internal coordinates naturally suggests their separation into active, slow, or large amplitude coordinates q', and inactive, fast, or small amplitude coordinates q″, which leads to an adiabatic (or Born-Oppenheimer-type) approximation (ADA), i.e., the total wave function is expressed as a product of active and inactive total wave functions. However, within the framework of the ADA, potential energy data concerning the inactive coordinates q″ are required. To reduce this need, a minimum energy domain (MED) is defined by minimizing the potential energy surface (PES) for each value of the active variables q', and a quadratic or harmonic expansion of the PES, based on the MED, is used (MED harmonic potential). In other words, the overall picture is that of a harmonic valley about the MED. In the case of only one active variable, we have a minimum energy path (MEP) and a MEP harmonic potential. The combination of the MED harmonic potential and the adiabatic approximation (harmonic adiabatic approximation: HADA) greatly reduces the size of the numerical computations, so that rather large molecules can be studied. In the present article however, the HADA is applied to our benchmark molecule HCN/CNH, to test the validity of the method. Thus, the HADA vibrational energy levels are compared and are in excellent agreement with the ADA calculations (adiabatic approximation with the full PES) of Light and Bačić [J. Chem. Phys. 87, 4008 (1987)]. Furthermore, the exact harmonic results (exact calculations without the adiabatic approximation but with the MEP harmonic potential) are compared to the exact calculations (without any sort of approximation). In addition, we compare the densities of the bending motion during the HCN/CNH isomerization, computed with the HADA and the exact wave function.
Elevated phthalates' exposure in children with constitutional delay of growth and puberty.
Xie, Changming; Zhao, Yan; Gao, Lianlian; Chen, Jiao; Cai, Depei; Zhang, Yunhui
2015-05-15
Phthalates have been proven to be antiandrogenic, which may interfere with the timing of puberty. Children with Constitutional Delay of Growth and Puberty (CDGP) typically display short stature and pubertal delay. This study investigated whether phthalate's exposure was associated with CDGP, and evaluated the potential mediator role of testosterone. In this case-control study, a total of 167 boys, including 57 boys with CDGP (cases) and 110 controls were enrolled. We measured six major phthalate metabolites in urine samples using high-performance liquid chromatography and tandem mass spectrometry (LC-MS/MS). The serum testosterone level was determined by radioimmunoassay. Children in the CDGP group were determined to have significantly elevated urinary phthalates concentration compared with control subjects (total phthalates median: case, 107.00 ng/ml; control, 62.22 ng/ml, p = 0.001). After adjustment for BMI and other confounding factors: mono-n-butyl phthalate (MBP), monoethyl phthalate (MEP) and total phthalate concentrations were significantly negatively associated with serum testosterone level (MBP: β = -45.7, p = 0.017; MEP: β = -31.6, p = 0.022; total phthalates: β = -24.6, p = 0.011); MBP, MEP, mono (2-ethylhexyl) phthalate (MEHP) and total phthalates were significantly associated with CDGP (odds ratio: MBP: 8.30, p = 0.002; MEP: 5.43, p = 0.002; MEHP: 3.83, p = 0.017; total phthalates: 9.09, p = 0.001). Serum testosterone level acted as a mediator of the association between phthalates' exposure and CDGP (p = 0.002) (proportion mediated: 34.4%). In this case-control study, elevated phthalates' level was detected in children with CDGP in Shanghai, China and phthalate level was associated with CDGP, which appeared to be mediated by circulating testosterone level. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Malhotra, Nikhil; Kumar, Varun; Sood, Hemant; Singh, Tiratha Raj; Chauhan, Rajinder Singh
2014-12-01
Aconitum heterophyllum Wall, popularly known as Atis or Patis, is an important medicinal herb of North-Western and Eastern Himalayas. No information exists on molecular aspects of aconites biosynthesis, including atisine- the major chemical constituent of A. heterophyllum. Atisine content ranged from 0.14% to 0.37% and total alkaloids (aconites) from 0.20% to 2.49% among 14 accessions of A. heterophyllum. Two accessions contained the highest atisine content with 0.30% and 0.37% as well as the highest alkaloids content with 2.22% and 2.49%, respectively. No atisine was detected in leaves and shoots of A. heterophyllum, thereby, suggesting that the biosynthesis and accumulation of aconite alkaloids occur mainly in roots. Quantitative expression analysis of 15 genes of MVA/MEP pathways in roots versus shoots, differing for atisine content (0-2.2 folds) showed 11-100 folds increase in transcript amounts of 4 genes of MVA pathway; HMGS, HMGR, PMK, IPPI, and 4 genes of MEP pathway; DXPS, ISPD, HDS, GDPS, respectively. The overall expression of 8 genes decreased to 5-12 folds after comparative expression analysis between roots of high (0.37%) versus low (0.14%) atisine content accessions, but their relative transcript amounts remained higher in high content accessions, thereby implying their role in atisine biosynthesis and accumulation. PCA analysis revealed a positive correlation between MVA/MEP pathways genes and alkaloids content. The current study provides first report wherein partial sequences of 15 genes of MVA/MEP pathways have been cloned and studied for their possible role in aconites biosynthesis. The outcome of study has potential applications in the genetic improvement of A. heterophyllum. Copyright © 2014 Elsevier Ltd. All rights reserved.
Personal care product use and urinary levels of phthalate metabolites in Mexican women.
Romero-Franco, Michelle; Hernández-Ramírez, Raúl U; Calafat, Antonia M; Cebrián, Mariano E; Needham, Larry L; Teitelbaum, Susan; Wolff, Mary S; López-Carrillo, Lizbeth
2011-07-01
Sources of phthalates other than Polyvinyl chloride (PVC) related products are scarcely documented in Mexico. The objective of our study was to explore the association between urinary levels of nine phthalate metabolites and the use of personal care products. Subjects included 108 women who participated as controls in an ongoing population-based case-control study of environmental factors and genetic susceptibility to breast cancer in northern Mexico. Direct interviews were performed to inquire about sociodemographic characteristics, reproductive history, use of personal care products, and diet. Phthalate metabolites measured in urine by high performance liquid chromatography-isotope dilution tandem mass spectrometry were monoethyl phthalate (MEP), monobenzyl phthalate (MBzP), mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MiBP), mono-3-carboxypropyl phthalate (MCPP) as well as mono-2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP) that are metabolites of di-ethylhexyl phthalate (DEHP). Detectable urinary concentrations of phthalate metabolites varied from 75% (MEHP) to 100% (MEP, MBP, MEOHP, MEHHP and MECPP). Medians of urinary concentrations of some phthalate metabolites were significantly higher among users of the following personal care products compared to nonusers: body lotion (MEHHP, MECPP and sum of DEHP metabolites (ΣDEHP)), deodorant (MEHP and ΣDEHP), perfume (MiBP), anti-aging facial cream (MEP, MBP and MCPP) and bottled water (MCPP, MEHHP and MEOHP). Urinary concentrations of MEP showed a positive relationship with the number of personal care products used. Our results suggest that the use of some personal care products contributes to phthalate body burden that deserves attention due to its potential health impact. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhou, R; Alvarado, L; Kim, S; Chong, S L; Mushahwar, V K
2017-10-01
The spinal cervico-lumbar interaction during rhythmic movements in humans has recently been studied; however, the role of arm movements in modulating the corticospinal drive to the legs is not well understood. The goals of this study were to investigate the effect of active rhythmic arm movements on the corticospinal drive to the legs ( study 1 ) and assess the effect of simultaneous arm and leg training on the corticospinal pathway after incomplete spinal cord injury (iSCI) ( study 2). In study 1 , neurologically intact (NI) participants or participants with iSCI performed combinations of stationary and rhythmic cycling of the arms and legs while motor evoked potentials (MEPs) were recorded from the vastus lateralis (VL) muscle. In the NI group, arm cycling alone could facilitate the VL MEP amplitude, suggesting that dynamic arm movements strongly modulate the corticospinal pathway to the legs. No significant difference in VL MEP between conditions was found in participants with iSCI. In study 2 , participants with iSCI underwent 12 wk of electrical stimulation-assisted cycling training: one group performed simultaneous arm and leg (A&L) cycling and the other legs-only cycling. MEPs in the tibialis anterior (TA) muscle were compared before and after training. After training, only the A&L group had a significantly larger TA MEP, suggesting increased excitability in the corticospinal pathway. The findings demonstrate the importance of arm movements in modulating the corticospinal drive to the legs and suggest that active engagement of the arms in lower limb rehabilitation may produce better neural regulation and restoration of function. NEW & NOTEWORTHY This study aimed to demonstrate the importance of arm movements in modulating the corticospinal drive to the legs. It provides direct evidence in humans that active movement of the arms could facilitate corticospinal transmission to the legs and, for the first time, shows that facilitation is absent after spinal cord injury. Active engagement of the arms in lower limb rehabilitation increased the excitability of the corticospinal pathway and may produce more effective improvement in leg function. Copyright © 2017 the American Physiological Society.
Hartmann, Michael; Gas-Pascual, Elisabet; Hemmerlin, Andrea; Rohmer, Michel; Bach, Thomas J.
2015-01-01
In a preceding study we have recently established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, which involves expressing a dexamethasone-inducible GFP fused to the prenylable, carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was there demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with oxoclomazone and fosmidomycin, as well as inhibition of protein geranylgeranyl transferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect this localization. Furthermore, in this initial study complementation assays with pathway-specific intermediates confirmed that the precursors for the cytosolic isoprenylation of this fusion protein are predominantly provided by the MEP pathway. In order to optimize this visualization system from a more qualitative assay to a statistically trustable medium or a high-throughput screening system, we established now new conditions that permit culture and analysis in 96-well microtiter plates, followed by fluorescence microscopy. For further refinement, the existing GFP-BD-CVIL cell line was transformed with an estradiol-inducible vector driving the expression of a RFP protein, C-terminally fused to a nuclear localization signal (NLS-RFP). We are thus able to quantify the total number of viable cells versus the number of inhibited cells after various treatments. This approach also includes a semi-automatic counting system, based on the freely available image processing software. As a result, the time of image analysis as well as the risk of user-generated bias is reduced to a minimum. Moreover, there is no cross-induction of gene expression by dexamethasone and estradiol, which is an important prerequisite for this test system. PMID:26309725
Motor Cortex-Evoked Activity in Reciprocal Muscles Is Modulated by Reward Probability
Suzuki, Makoto; Kirimoto, Hikari; Sugawara, Kazuhiro; Oyama, Mineo; Yamada, Sumio; Yamamoto, Jun-ichi; Matsunaga, Atsuhiko; Fukuda, Michinari; Onishi, Hideaki
2014-01-01
Horizontal intracortical projections for agonist and antagonist muscles exist in the primary motor cortex (M1), and reward may induce a reinforcement of transmission efficiency of intracortical circuits. We investigated reward-induced change in M1 excitability for agonist and antagonist muscles. Participants were 8 healthy volunteers. Probabilistic reward tasks comprised 3 conditions of 30 trials each: 30 trials contained 10% reward, 30 trials contained 50% reward, and 30 trials contained 90% reward. Each trial began with a cue (red fixation cross), followed by blue circle for 1 s. The subjects were instructed to perform wrist flexion and press a button with the dorsal aspect of middle finger phalanx as quickly as possible in response to disappearance of the blue circle without looking at their hand or the button. Two seconds after the button press, reward/non-reward stimulus was randomly presented for 2-s duration. The reward stimulus was a picture of Japanese 10-yen coin, and each subject received monetary reward at the end of experiment. Subjects were not informed of the reward probabilities. We delivered transcranial magnetic stimulation of the left M1 at the midpoint between center of gravities of agonist flexor carpi radialis (FCR) and antagonist extensor carpi radialis (ECR) muscles at 2 s after the red fixation cross and 1 s after the reward/non-reward stimuli. Relative motor evoked potential (MEP) amplitudes at 2 s after the red fixation cross were significantly higher for 10% reward probability than for 90% reward probability, whereas relative MEP amplitudes at 1 s after reward/non-reward stimuli were significantly higher for 90% reward probability than for 10% and 50% reward probabilities. These results implied that reward could affect the horizontal intracortical projections in M1 for agonist and antagonist muscles, and M1 excitability including the reward-related circuit before and after reward stimulus could be differently altered by reward probability. PMID:24603644
Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy
Rangel, Maria Luíza Sales; Sanchez, Tiago Arruda; Moreira, Filipe Azaline; Hoefle, Sebastian; Souto, Inaiacy Bittencourt; da Cunha, Antônio José Ledo Alves
2015-01-01
Background Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). Methods In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05. Findings Dynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. Conclusion Decreased sensory-motor function induced by leprosy affects handgrip muscle representation in M1. PMID:26203653
Cantonwine, David E; Cordero, José F; Rivera-González, Luis O; Anzalota Del Toro, Liza V; Ferguson, Kelly K; Mukherjee, Bhramar; Calafat, Antonia M; Crespo, Noe; Jiménez-Vélez, Braulio; Padilla, Ingrid Y; Alshawabkeh, Akram N; Meeker, John D
2014-01-01
Phthalate contamination exists in the North Coast karst aquifer system in Puerto Rico. In light of potential health impacts associated with phthalate exposure, targeted action for elimination of exposure sources may be warranted, especially for sensitive populations such as pregnant women. However, information on exposure to phthalates from a variety of sources in Puerto Rico is lacking. The objective of this study was to determine concentrations and predictors of urinary phthalate biomarkers measured at multiple times during pregnancy among women living in the Northern karst area of Puerto Rico. We recruited 139 pregnant women in Northern Puerto Rico and collected urine samples and questionnaire data at three separate visits (18 ± 2 weeks, 22 ± 2 weeks, and 26 ± 2 weeks of gestation). Urine samples were analyzed for eleven phthalate metabolites: mono-2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-hydroxyhexyl phthalate, mono-2-ethyl-5-oxohexyl phthalate, mono-2-ethyl-5-carboxypentyl phthalate, mono-ethyl phthalate (MEP), mono-n-butyl phthalate, mono-benzyl phthalate, mono-isobutyl phthalate, mono-3-carboxypropyl phthalate (MCPP), mono carboxyisononyl phthalate (MCNP), and mono carboxyisooctyl phthalate (MCOP). Detectable concentrations of phthalate metabolites among pregnant women living in Puerto Rico was prevalent, and metabolite concentrations tended to be higher than or similar to those measured in women of reproductive age from the general US population. Intraclass correlation coefficients ranged from very weak (MCNP; 0.05) to moderate (MEP; 0.44) reproducibility among all phthalate metabolites. We observed significant or suggestive positive associations between urinary phthalate metabolite concentrations and water usage/storage habits (MEP, MCNP, MCOP), use of personal care products (MEP), and consumption of certain food items (MCPP, MCNP, and MCOP). To our knowledge this is the first study to report concentrations, temporal variability, and predictors of phthalate biomarkers among pregnant women in Puerto Rico. Preliminary results suggest several potentially important exposure sources to phthalates in this population and future analysis from this ongoing prospective cohort will help to inform targeted approaches to reduce exposure. © 2013.
Yang, Jae Hyuk; Suh, Seung Woo; Modi, Hitesh N; Ramani, Easwar T; Hong, Jae Young; Hwang, Jin Ho; Jung, Woon Yong
2013-05-01
Spinal cord injury can occur following surgical procedures for correction of scoliosis and kyphosis, as these procedures produce lengthening of the vertebral column. The objective of this study was to cause spinal cord injury by vertebral column distraction and evaluate the histological changes in the spinal cord in relationship to the pattern of recovery from the spinal cord injury. Global osteotomy of all three spinal columns was performed on the ninth thoracic vertebra of sixteen pigs. The osteotomized vertebra was distracted until transcranial electrical stimulation-motor evoked potential (TES-MEP) signals disappeared or decreased by >80% compared with the baseline amplitude; this was defined as spinal cord injury. The distraction distance at which spinal cord injury occurred was measured, the distraction was released, and the TES-MEP recovery pattern was observed. A wake-up test was performed, two days of observations were made, and histological changes were evaluated in relationship to the recovery pattern. Spinal cord injury developed at a distraction distance of 20.2 ± 4.7 mm, equivalent to 3.6% of the thoracolumbar spinal length, and the distraction distance was correlated with the thoracolumbar spinal length (r = 0.632, p = 0.009). No animals exhibited complete recovery according to TES-MEP testing, eleven exhibited incomplete recovery, and five exhibited no recovery. During the two days of observation, all eleven animals with incomplete recovery showed positive responses to sensory and motor tests, whereas none of the five animals with no recovery had positive responses. On histological evaluation, three animals that exhibited no recovery all showed complete severance of nerve fibers (axotomy), whereas six animals that exhibited incomplete recovery all showed partial white-matter injury. Parallel distraction of approximately 3.6% of the thoracolumbar length after global osteotomy resulted in spinal cord injury and histological evidence of spinal cord damage. The pattern of recovery from the spinal cord injury after release of the distraction was consistent with the degree of axonal damage. Axotomy was observed in animals that exhibited no recovery on TES-MEP, and only hemorrhagic changes in the white matter were observed in animals that exhibited incomplete recovery.
Wilhelm, Emmanuelle; Quoilin, Caroline; Petitjean, Charlotte; Duque, Julie
2016-01-01
Background: Many previous transcranial magnetic stimulation (TMS) studies have investigated corticospinal excitability changes occurring when choosing which hand to use for an action, one of the most frequent decision people make in daily life. So far, these studies have applied single-pulse TMS eliciting motor-evoked potential (MEP) in one hand when this hand is either selected or non-selected. Using such method, hand choices were shown to entail the operation of two inhibitory mechanisms, suppressing MEPs in the targeted hand either when it is non-selected (competition resolution, CR) or selected (impulse control, IC). However, an important limitation of this “Single-Coil” method is that MEPs are elicited in selected and non-selected conditions during separate trials and thus those two settings may not be completely comparable. Moreover, a more important problem is that MEPs are computed in relation to the movement of different hands. The goal of the present study was to test a “Double-Coil” method to evaluate IC and CR preceding the same hand responses by applying Double-Coil TMS over the two primary motor cortices (M1) at a near-simultaneous time (1 ms inter-pulse interval). Methods: MEPs were obtained in the left (MEPLEFT) and right (MEPRIGHT) hands while subjects chose between left and right hand key-presses in blocks using a Single-Coil or a Double-Coil method; in the latter blocks, TMS was either applied over left M1 first (TMSLRM1 group, n = 12) or right M1 first (TMSRLM1 group, n = 12). Results: MEPLEFT were suppressed preceding both left (IC) and right (CR) hand responses whereas MEPRIGHT were only suppressed preceding left (CR) but not right (IC) hand responses. This result was observed regardless of whether Single-Coil or Double-Coil TMS was applied in the two subject groups. However, in the TMSLRM1 group, the MEP suppression was attenuated in Double-Coil compared to Single-Coil blocks for both IC and CR, when probed with MEPLEFT (elicited by the second pulse). Conclusions: Although Double-Coil TMS may be a reliable method to assess bilateral motor excitability provided that a RM1-LM1 pulse order is used, further experiments are required to understand the reduced MEPLEFT changes in Double-Coil blocks when the LM1-RM1 pulse order was used. PMID:27014020
Hortobágyi, Tibor; Mieras, Adinda; Rothwell, John; Del Olmo, Miguel Fernandez
2017-01-01
Aging is associated with slow reactive movement generation and poor termination. We examined the hypothesis that the build-up of excitability in the primary motor cortex in the agonist muscle to generate ballistic wrist flexion and extension and in the antagonist to stop the movement, is lower and slower in old compared with young adults. We measured the size of the motor potentials evoked (MEP) produced by transcranial magnetic stimulation (TMS), background integrated EMG (iEMG), and the MEP:iEMG ratio in healthy young (23 y, n = 14) and old adults' (73 y, n = 14) wrist flexors and extensors as they rapidly flexed or extended the wrist in response to an auditory cue. TMS was delivered at 80% of resting motor threshold randomly in 20 ms increments between 130 and 430 ms after the tone. Even though old compared to young adults executed the two wrist movements with ~23% longer movement duration and ~15% longer reaction time (both p < 0.05), the rise in MEP:iEMG ratio before the main similar in the two age groups. These data suggest that an adjustment of current models might be needed to better understand how and if age affects the build-up excitability accompanying movement generation and termination.
Whole body heat stress increases motor cortical excitability and skill acquisition in humans.
Littmann, Andrew E; Shields, Richard K
2016-02-01
Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress (1) facilitated motor cortex excitability and (2) improved motor task acquisition compared to no heat stress. Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 min of heat stress at 73 °C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (p<0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p<0.05) during a novel movement task using the FDI. Passive environmental heat stress (1) increases motor cortical excitability, and (2) enhances performance in a motor skill acquisition task. Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Cortical correlates of neuromotor development in healthy children.
Garvey, M A; Ziemann, U; Bartko, J J; Denckla, M B; Barker, C A; Wassermann, E M
2003-09-01
To examine the relationship between acquisition of fine motor skills in childhood and development of the motor cortex. We measured finger tapping speed and mirror movements in 43 healthy right-handed subjects (6-26 years of age). While recording surface electromyographic activity from right and left first dorsal interosseus, we delivered focal transcranial magnetic stimulation (TMS) over the hand areas of each motor cortex. We measured motor evoked potential (MEP) threshold, and ipsilateral (iSP) and contralateral (CSP) silent periods. As children got older, finger speeds got faster, MEP threshold decreased, iSP duration increased and latency decreased. Finger tapping speed got faster as motor thresholds and iSP latency decreased, but was unrelated to CSP duration. In all subjects right hemisphere MEP thresholds were higher than those on the left and duration of right hemisphere CSP was longer than that on the left. Children under 10 years of age had higher left hand mirror movement scores, and fewer left hemisphere iSPs which were of longer duration. Maturation of finger tapping skills is closely related to developmental changes in the motor threshold and iSP latency. Studies are warranted to explore the relationship between these measures and other neuromotor skills in children with motor disorders. TMS can provide important insights into certain functional aspects of neurodevelopment in children.
Individual differences in schizophrenia
Lu, Wenlian; Wan, Lin; Yan, Hao; Wang, Chuanyue; Yang, Fude; Tan, Yunlong; Li, Lingjiang; Yu, Hao; Liddle, Peter F.; Palaniyappan, Lena; Zhang, Dai
2017-01-01
Background Whether there are distinct subtypes of schizophrenia is an important issue to advance understanding and treatment of schizophrenia. Aims To understand and treat individuals with schizophrenia, the aim was to advance understanding of differences between individuals, whether there are discrete subtypes, and how first-episode patients (FEP) may differ from multiple episode patients (MEP). Method These issues were analysed in 687 FEP and 1880 MEP with schizophrenia using the Positive and Negative Syndrome Scale for (PANSS) schizophrenia before and after antipsychotic medication for 6 weeks. Results The seven Negative Symptoms were correlated with each other and with P2 (conceptual disorganisation), G13 (disturbance of volition), and G7 (motor retardation). The main difference between individuals was in the cluster of seven negative symptoms, which had a continuous unimodal distribution. Medication decreased the PANSS scores for all the symptoms, which were similar in the FEP and MEP groups. Conclusions The negative symptoms are a major source of individual differences, and there are potential implications for treatment. Declaration of interests L.P. received speaker fees from Otsuka Canada and educational grant from Janssen Canada in 2017. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:29163982
Hasegawa, Akira; Nishimura, Haruki; Mastuda, Yuko; Kunisato, Yoshihiko; Morimoto, Hiroshi; Adachi, Masaki
This study examined the relationship between trait rumination and the effectiveness of problem solving strategies as assessed by the Means-Ends Problem-Solving Test (MEPS) in a nonclinical population. The present study extended previous studies in terms of using two instructions in the MEPS: the second-person, actual strategy instructions, which has been utilized in previous studies on rumination, and the third-person, ideal-strategy instructions, which is considered more suitable for assessing the effectiveness of problem solving strategies. We also replicated the association between rumination and each dimension of the Social Problem-Solving Inventory-Revised Short Version (SPSI-R:S). Japanese undergraduate students ( N = 223) completed the Beck Depression Inventory-Second Edition, Ruminative Responses Scale (RRS), MEPS, and SPSI-R:S. One half of the sample completed the MEPS with the second-person, actual strategy instructions. The other participants completed the MEPS with the third-person, ideal-strategy instructions. The results showed that neither total RRS score, nor its subscale scores were significantly correlated with MEPS scores under either of the two instructions. These findings taken together with previous findings indicate that in nonclinical populations, trait rumination is not related to the effectiveness of problem solving strategies, but that state rumination while responding to the MEPS deteriorates the quality of strategies. The correlations between RRS and SPSI-R:S scores indicated that trait rumination in general, and its brooding subcomponent in particular are parts of cognitive and behavioral responses that attempt to avoid negative environmental and negative private events. Results also showed that reflection is a part of active problem solving.
Lin, Mei; Li, Chien-Hsun; Wei, Liang; Naavaal, Shillpa; Kolavic Gray, Shellie; Manz, Michael C; Barker, Laurie
2017-03-01
To compare estimated prevalence of past-year dental visit (PPYDV) among US adults aged ≥18 years from the Behavioral Risk Factor Surveillance System (BRFSS) to estimates from the Medical Expenditure Panel Survey (MEPS), National Health Interview Survey (NHIS), and National Health and Nutrition Examination Survey (NHANES). We estimated PPYDV adjusted for covariates (age, race/ethnicity, education level, poverty status, edentulism) using BRFSS, MEPS, and NHIS 1999-2010, and NHANES 1999-2004. We tested trend in overall PPYDV for BRFSS, MEPS, and NHIS from 1999-2010. For 2002 and 2010, we calculated absolute differences (AD) and 95% confidence intervals (CI) in PPYDV between BRFSS and each of the other surveys overall and among subpopulations defined by covariates. We pooled NHANES 1999-2004 data for comparison with BRFSS 2002. From 1999 to 2010, BRFSS (68.5% vs. 67.5%), MEPS (43.5% vs. 39.7%), and NHIS (63.3% vs. 59.7%) showed small but significant decreases in overall PPYDV. In 2002, estimates for overall PPYDV were highest for BRFSS (70.0%) and lowest for MEPS (43.9%) with estimates for NHIS (61.5%) and NHANES (1999-2004: 58.1%) in between; the largest AD (26.2%, 95% CI: 25.0%-27.3%) was between BRFSS and MEPS. ADs were consistent in 2002 and 2010, overall and by covariates, except among edentate persons, where PPYDV estimates from BRFSS and NHIS were similar. Estimates of PPYDV from BRFSS were notably higher than estimates from MEPS, NHIS, or NHANES except among the edentate. Trends in PPYDV over time, however, were consistent across all surveys. © 2016 American Association of Public Health Dentistry.
Pessoa, Isabela M B S; Houri Neto, Miguel; Montemezzo, Dayane; Silva, Luisa A M; Andrade, Armèle Dornelas De; Parreira, Verônica F
2014-01-01
The maximum static respiratory pressures, namely the maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP), reflect the strength of the respiratory muscles. These measures are simple, non-invasive, and have established diagnostic and prognostic value. This study is the first to examine the maximum respiratory pressures within the Brazilian population according to the recommendations proposed by the American Thoracic Society and European Respiratory Society (ATS/ERS) and the Brazilian Thoracic Association (SBPT). To establish reference equations, mean values, and lower limits of normality for MIP and MEP for each age group and sex, as recommended by the ATS/ERS and SBPT. We recruited 134 Brazilians living in Belo Horizonte, MG, Brazil, aged 20-89 years, with a normal pulmonary function test and a body mass index within the normal range. We used a digital manometer that operationalized the variable maximum average pressure (MIP/MEP). At least five tests were performed for both MIP and MEP to take into account a possible learning effect. We evaluated 74 women and 60 men. The equations were as follows: MIP=63.27-0.55 (age)+17.96 (gender)+0.58 (weight), r(2) of 34% and MEP= - 61.41+2.29 (age) - 0.03(age(2))+33.72 (gender)+1.40 (waist), r(2) of 49%. In clinical practice, these equations could be used to calculate the predicted values of MIP and MEP for the Brazilian population.
Doná, Giovanna; Dagostin, João Luiz Andreoti; Takashina, Thiago Atsushi; de Castilhos, Fernanda; Igarashi-Mafra, Luciana
2018-05-01
Due to the widespread use of methylparaben (MEP) and its high chemical stability, it can be found in wastewater treatment plants and can act as an endocrine disrupting compound. In this study, the photocatalytic degradation and mineralization of MEP solutions were evaluated under UV-A, UV-C and Vis radiations in the presence of the photocatalyst TiO 2 . In this sense, the effects of the catalyst load, pH and MEP initial concentration were studied. Remarkably higher reaction rates and total photodegradation were achieved in systems assisted by UV-C radiation. The complete degradation was achieved after 60 min of reaction using the MEP concentration of 30 mg L -1 at pH 9 and 500 mg L -1 TiO 2 . The experimental data apparently followed a Langmuir-Hinshelwood kinetic model, which could predict 88-98% of the reaction behavior. For the best photodegradation condition, the model predicted an apparent reaction rate constant (k app ) equal to 0.0505 min -1 and an initial reaction rate of 1.5641 mg (L min) -1 . Mineralization analyses showed high removal for MEP and derived compounds from the initial solution when using UV-C after 90 min of reaction. The lower toxicity was also confirmed by in vivo tests using MEP solutions previously treated by photocatalysis.
Liu, Huaiwei; Sun, Yuanzhang; Ramos, Kristine Rose M.; Nisola, Grace M.; Valdehuesa, Kris Niño G.; Lee, Won–Keun; Park, Si Jae; Chung, Wook-Jin
2013-01-01
Embden-Meyerhof pathway (EMP) in tandem with 2-C-methyl-D-erythritol 4-phosphate pathway (MEP) is commonly used for isoprenoid biosynthesis in E. coli. However, this combination has limitations as EMP generates an imbalanced distribution of pyruvate and glyceraldehyde-3-phosphate (G3P). Herein, four glycolytic pathways—EMP, Entner-Doudoroff Pathway (EDP), Pentose Phosphate Pathway (PPP) and Dahms pathway were tested as MEP feeding modules for isoprene production. Results revealed the highest isoprene production from EDP containing modules, wherein pyruvate and G3P were generated simultaneously; isoprene titer and yield were more than three and six times higher than those of the EMP module, respectively. Additionally, the PPP module that generates G3P prior to pyruvate was significantly more effective than the Dahms pathway, in which pyruvate production precedes G3P. In terms of precursor generation and energy/reducing-equivalent supply, EDP+PPP was found to be the ideal feeding module for MEP. These findings may launch a new direction for the optimization of MEP-dependent isoprenoid biosynthesis pathways. PMID:24376679
Ashmore, Alexander M; Gozzard, Charles; Blewitt, Neil
2007-01-01
The Liverpool Elbow Score (LES) is a newly developed, validated elbow-specific score. It consists of a patient-answered questionnaire (PAQ) and a clinical assessment. The purpose of this study was to determine whether the PAQ portion of the LES could be used independently as a postal questionnaire for the assessment of outcome after total elbow arthroplasty and to correlate the LES and the Mayo Elbow Performance Score (MEPS). A series of 51 total elbow replacements were reviewed by postal questionnaire. Patients then attended the clinic for assessment by use of both the LES and the MEPS. There was an excellent response rate to the postal questionnaire (98%), and 44 elbows were available for clinical review. Good correlation was shown between the LES and the MEPS (Spearman correlation coefficient, 0.84; P < .001) and between the PAQ portion of the LES and the MEPS (Spearman correlation coefficient, 0.76; P < .001). We conclude that there is good correlation between the LES PAQ component and the MEPS, suggesting that outcome assessment is possible by postal questionnaire.
Adetoro, O O
1988-06-01
Multiple exposure photography (MEP), an objective technique, was used in determining the percentage of motile sperms in the semen samples from 41 males being investigated for infertility. This technique was compared with the conventional subjective ordinary microscopy method of spermatozoal motility assessment. A satisfactory correlation was observed in percentage sperm motility assessment using the two methods but the MEP estimation was more consistent and reliable. The value of this technique of sperm motility study in the developing world is discussed.
Martínez-Cifuentes, Maximiliano; Clavijo-Allancan, Graciela; Zuñiga-Hormazabal, Pamela; Aranda, Braulio; Barriga, Andrés; Weiss-López, Boris; Araya-Maturana, Ramiro
2016-07-05
A series of a new type of tetracyclic carbazolequinones incorporating a carbonyl group at the ortho position relative to the quinone moiety was synthesized and analyzed by tandem electrospray ionization mass spectrometry (ESI/MS-MS), using Collision-Induced Dissociation (CID) to dissociate the protonated species. Theoretical parameters such as molecular electrostatic potential (MEP), local Fukui functions and local Parr function for electrophilic attack as well as proton affinity (PA) and gas phase basicity (GB), were used to explain the preferred protonation sites. Transition states of some main fragmentation routes were obtained and the energies calculated at density functional theory (DFT) B3LYP level were compared with the obtained by ab initio quadratic configuration interaction with single and double excitation (QCISD). The results are in accordance with the observed distribution of ions. The nature of the substituents in the aromatic ring has a notable impact on the fragmentation routes of the molecules.
Martínez-Cifuentes, Maximiliano; Clavijo-Allancan, Graciela; Zuñiga-Hormazabal, Pamela; Aranda, Braulio; Barriga, Andrés; Weiss-López, Boris; Araya-Maturana, Ramiro
2016-01-01
A series of a new type of tetracyclic carbazolequinones incorporating a carbonyl group at the ortho position relative to the quinone moiety was synthesized and analyzed by tandem electrospray ionization mass spectrometry (ESI/MS-MS), using Collision-Induced Dissociation (CID) to dissociate the protonated species. Theoretical parameters such as molecular electrostatic potential (MEP), local Fukui functions and local Parr function for electrophilic attack as well as proton affinity (PA) and gas phase basicity (GB), were used to explain the preferred protonation sites. Transition states of some main fragmentation routes were obtained and the energies calculated at density functional theory (DFT) B3LYP level were compared with the obtained by ab initio quadratic configuration interaction with single and double excitation (QCISD). The results are in accordance with the observed distribution of ions. The nature of the substituents in the aromatic ring has a notable impact on the fragmentation routes of the molecules. PMID:27399676
Pulmonary function and dysfunction in multiple sclerosis.
Smeltzer, S C; Utell, M J; Rudick, R A; Herndon, R M
1988-11-01
Pulmonary function was studied in 25 patients with clinically definite multiple sclerosis with a range of motor impairment. Forced vital capacity (FVC), maximal voluntary ventilation (MVV), and maximal expiratory pressure (MEP) were normal in the ambulatory patients (mean greater than or equal to 80% predicted) but reduced in bedridden patients (mean, 38.5%, 31.6%, and 36.3% predicted; FCV, MVV, and MEP, respectively) and wheelchair-bound patients with upper extremity involvement (mean, 69.4%, 50.4%, and 62.6% predicted; FVC, MVV, and MEP, respectively). Forced vital capacity, MVV, and MEP correlated with Kurtzke Expanded Disability Status scores (tau = -0.72, -0.70, and -0.65) and expiratory muscle weakness occurred most frequently. These findings demonstrate that marked expiratory weakness develops in severely paraparetic patients with multiple sclerosis and the weakness increases as the upper extremities become increasingly involved.
Updated U.S. population standard for the Veterans RAND 12-item Health Survey (VR-12).
Selim, Alfredo J; Rogers, William; Fleishman, John A; Qian, Shirley X; Fincke, Benjamin G; Rothendler, James A; Kazis, Lewis E
2009-02-01
The purpose of this project was to develop an updated U.S. population standard for the Veterans RAND 12-item Health Survey (VR-12). We used a well-defined and nationally representative sample of the U.S. population from 52,425 responses to the Medical Expenditure Panel Survey (MEPS) collected between 2000 and 2002. We applied modified regression estimates to update the non-proprietary 1990 scoring algorithms. We applied the updated standard to the Medicare Health Outcomes Survey (HOS) to compute the VR-12 physical (PCS((MEPS standard))) and mental (MCS((MEPS standard))) component summaries based on the MEPS. We compared these scores to PCS and MCS based on the 1990 U.S. population standard. Using the updated U.S. population standard, the average VR-12 PCS((MEPS standard)) and MCS((MEPS standard)) scores in the Medicare HOS were 39.82 (standard deviation [SD] = 12.2) and 50.08 (SD = 11.4), respectively. For the same Medicare HOS, the average PCS and MCS scores based on the 1990 standard were 1.40 points higher and 0.99 points lower in comparison to VR-12 PCS and MCS, respectively. Changes in the U.S. population between 1990 and today make the old standard obsolete for the VR-12, so the updated standard developed here is widely available to serve as such a contemporary standard for future applications for health-related quality of life (HRQoL) assessments.
High-volume resistance training session acutely diminishes respiratory muscle strength.
Hackett, Daniel A; Johnson, Nathan A; Chow, Chin-Moi
2012-01-01
This study investigated the effect of a high-volume compared to a low-volume resistance training session on maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). Twenty male subjects with resistance training experience (6.2 ± 3.2 y), in a crossover trial, completed two resistance training protocols (high-volume: 5 sets per exercise; low-volume: 2 sets per exercise) and a control session (no exercise) on 3 separate occasions. MIP and MEP decreased by 13.6% (p < 0.01) and 14.7% (p < 0.01) respectively from pre-session MIP and MEP, following the high-volume session. MIP and MEP were unaffected following the low-volume or the control sessions. MIP returned to pre-session values after 40 minutes, whereas MEP remained significantly reduced after 60 minutes post-session by 9.2% compared to pre-session (p < 0.01). The findings suggest that the high-volume session significantly decreased MIP and MEP post-session, implicating a substantially increased demand on the respiratory muscles and that adequate recovery is mandatory following this mode of training. Key pointsRespiratory muscular strength performance is acutely diminished following a high-volume whole-body resistance training session.Greater ventilatory requirements and generation of IAP during the high-volume resistance training session may have contributed to the increased demand placed on the respiratory muscles.Protracted return of respiratory muscular strength performance to baseline levels may have implications for individuals prior to engaging in subsequent exercise bouts.
Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations.
Cvitaš, Marko T
2018-03-13
The ring-polymer instanton (RPI) method is an efficient technique for calculating approximate tunneling splittings in high-dimensional molecular systems. In the RPI method, tunneling splitting is evaluated from the properties of the minimum action path (MAP) connecting the symmetric wells, whereby the extensive sampling of the full potential energy surface of the exact quantum-dynamics methods is avoided. Nevertheless, the search for the MAP is usually the most time-consuming step in the standard numerical procedures. Recently, nudged elastic band (NEB) and string methods, originaly developed for locating minimum energy paths (MEPs), were adapted for the purpose of MAP finding with great efficiency gains [ J. Chem. Theory Comput. 2016 , 12 , 787 ]. In this work, we develop a new quadratic string method for locating instantons. The Euclidean action is minimized by propagating the initial guess (a path connecting two wells) over the quadratic potential energy surface approximated by means of updated Hessians. This allows the algorithm to take many minimization steps between the potential/gradient calls with further reductions in the computational effort, exploiting the smoothness of potential energy surface. The approach is general, as it uses Cartesian coordinates, and widely applicable, with computational effort of finding the instanton usually lower than that of determining the MEP. It can be combined with expensive potential energy surfaces or on-the-fly electronic-structure methods to explore a wide variety of molecular systems.
Do ventilated packs reduce post-operative eustachian tube dysfunction?
Morgan, N J; Soo, G; Frain, I; Nunez, D A
1995-10-01
Nasal packing is associated with post-operative Eustachian tube dysfunction in patients undergoing nasal surgical procedures. The effect of cannulated nasal packs which may improve nasopharyngeal ventilation was investigated in a prospective randomized controlled trial. Adult elective patients without tympanometric evidence of pre-operative Eustachian tube dysfunction were recruited. All subjects underwent single or combined intranasal surgical procedures and were randomized to receive either bilateral cannulated or non-cannulated Merocel nasal packs. Middle ear pressures (MEP) were recorded pre-operatively and post-operatively before nasal pack removal. Left and right ear results were amalgamated for analysis and 40 adults, 20 in each group were analysed. There was no difference in pre-operative MEP, -15 dPa (median value) in both groups. Post-operatively the MEP changed in both groups P < 0.0001. There was no significant inter group difference in the post-operative median MEP, -85 dPa in the cannulated and -70 dPa in the control groups, (95% c.i. for the difference in the medians -25-55 dPa). Nasal surgery with post-operative packing leads to an objective reduction in MEP which is not altered by venting the packs.
Drosophila transcription factor Tramtrack69 binds MEP1 to recruit the chromatin remodeler NuRD.
Reddy, B Ashok; Bajpe, Prashanth Kumar; Bassett, Andrew; Moshkin, Yuri M; Kozhevnikova, Elena; Bezstarosti, Karel; Demmers, Jeroen A A; Travers, Andrew A; Verrijzer, C Peter
2010-11-01
ATP-dependent chromatin-remodeling complexes (remodelers) are essential regulators of chromatin structure and gene transcription. How remodelers can act in a gene-selective manner has remained enigmatic. A yeast two-hybrid screen for proteins binding the Drosophila transcription factor Tramtrack69 (TTK69) identified MEP1. Proteomic characterization revealed that MEP1 is a tightly associated subunit of the NuRD remodeler, harboring the Mi2 enzymatic core ATPase. In addition, we identified the fly homolog of human Deleted in oral cancer 1 (DOC1), also known as CDK2-associated protein 1 (CDK2AP1), as a bona fide NuRD subunit. Biochemical and genetic assays supported the functional association between MEP1, Mi2, and TTK69. Genomewide expression analysis established that TTK69, MEP1, and Mi2 cooperate closely to control transcription. The TTK69 transcriptome profile correlates poorly with remodelers other than NuRD, emphasizing the selectivity of remodeler action. On the genes examined, TTK69 is able to bind chromatin in the absence of NuRD, but targeting of NuRD is dependent on TTK69. Thus, there appears to be a hierarchical relationship in which transcription factor binding precedes remodeler recruitment.
78 FR 78821 - Manufacturing Extension Partnership Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... focus on (1) MEP administrative updates, and (2) Board input into the NIST MEP strategic planning process. The agenda may change to accommodate other Board business. The final agenda will be posted on the...
Members of the European Parliament (MEP) Heart Group.
Tofield, Andros
2013-06-01
The MEP Heart Group is a discussion forum aimed at promoting measures to reduce the burden of cardiovascular disease in the European Union and raise cardiovascular disease as a priority on the EU political agenda.
The ion-acoustic soliton: A gas-dynamic viewpoint
NASA Astrophysics Data System (ADS)
McKenzie, J. F.
2002-03-01
The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus—the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, Mc, above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, Mep, in which solitons exist, is extended beyond the classical range 1
Pilurzi, G; Hasan, A; Saifee, T A; Tolu, E; Rothwell, J C; Deriu, F
2013-01-01
Previous studies of the cortical control of human facial muscles documented the distribution of corticobulbar projections and the presence of intracortical inhibitory and facilitatory mechanisms. Yet surprisingly, given the importance and precision in control of facial expression, there have been no studies of the afferent modulation of corticobulbar excitability or of the plasticity of synaptic connections in the facial primary motor cortex (face M1). In 25 healthy volunteers, we used standard single- and paired-pulse transcranial magnetic stimulation (TMS) methods to probe motor-evoked potentials (MEPs), short-intracortical inhibition, intracortical facilitation, short-afferent and long-afferent inhibition and paired associative stimulation in relaxed and active depressor anguli oris muscles. Single-pulse TMS evoked bilateral MEPs at rest and during activity that were larger in contralateral muscles, confirming that corticobulbar projection to lower facial muscles is bilateral and asymmetric, with contralateral predominance. Both short-intracortical inhibition and intracortical facilitation were present bilaterally in resting and active conditions. Electrical stimulation of the facial nerve paired with a TMS pulse 5–200 ms later showed no short-afferent inhibition, but long-afferent inhibition was present. Paired associative stimulation tested with an electrical stimulation–TMS interval of 20 ms significantly facilitated MEPs for up to 30 min. The long-term potentiation, evoked for the first time in face M1, demonstrates that excitability of the facial motor cortex is prone to plastic changes after paired associative stimulation. Evaluation of intracortical circuits in both relaxed and active lower facial muscles as well as of plasticity in the facial motor cortex may provide further physiological insight into pathologies affecting the facial motor system. PMID:23297305
Lam, Uyen D P; Lerchbaum, Elisabeth; Schweighofer, Natascha; Trummer, Olivia; Eberhard, Katharina; Genser, Bernd; Pieber, Thomas R; Obermayer-Pietsch, Barbara
2014-03-10
Polycystic ovary syndrome (PCOS) shows not only hyperandrogenemia, hirsutism and fertility problems, but also metabolic disturbances including obesity, cardiovascular events and type-2 diabetes. Accumulating evidence suggests some degree of inflammation associated with prominent aspects of PCOS. We aimed to investigate the association of genetic variants 3'UTR rs17468190 (G/T) of the inflammation-associated gene MEP1A (GenBank ID: NM_005588.2) with metabolic disturbances in PCOS and healthy control women. Genetic variants rs17468190 (G/T) of MEP1A gene were analyzed in 576 PCOS women and 206 controls by using the Taqman fluorogenic 5'-exonuclease assay. This polymorphism was tested for association with anthropometric, metabolic, hormonal, and functional parameters of PCOS. There was a borderline significant difference in genotype distribution between PCOS and control women (p=0.046). In overweight/obese PCOS patients, the variants rs17468190 (G/T) in the MEP1A gene are associated with glucose and insulin metabolism. In a dominant model, the GG genotype of the MEP1A gene was more strongly associated with insulin metabolism in overweight/obese PCOS women (body mass index, BMI>25 kg/m(2)), than in GT+TT genotypes. The MEP1A GG-carriers showed a significantly increased homeostatic model assessment - insulin resistance (HOMA-IR) (p=0.003), elevation of fasting insulin (p=0.004) and stimulated insulin (30 min, p<0.001; 60 min, p=0.009; 120 min, p=0.009) as well as triglyceride (p=0.032) levels. MEP1A is a possible target gene for disease modification in PCOS. It might contribute to the abnormalities of glucose metabolism and insulin sensitivity and serve as a diagnostic or therapeutic target gene for PCOS. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparing potential copper chelation mechanisms in Parkinson's disease protein
NASA Astrophysics Data System (ADS)
Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry
2011-03-01
We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.
Is cognitive control automatic? New insights from transcranial magnetic stimulation.
Cona, G; Treccani, B; Umiltà, C A
2016-10-01
Cognitive control has been classically considered as a flexible process engaged to pursue intentional behaviors, as distinct from automatic processes, which are unintentional, inflexible, and triggered by unconscious mechanisms. Our study challenged this view, showing that such a distinction may not be so clear-cut. We analyzed motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation to investigate the neurocognitive mechanisms occurring in a conflict task during trials that either required or did not require a response. We observed a Simon effect on MEPs and sequential modulations of such effects on both kinds of trials. Sequential modulations are usually explained as resulting from the engagement of intentional control mechanisms. Our findings rule against this idea, suggesting that these effects are the result of a mechanism that detects and resolves conflict even when there is no intention to select any response. Accordingly, cognitive control also seems to operate without intention, acting in an automatic fashion.
Wightman, Francesca; Delves, Suzanne; Alexander, Caroline M; Strutton, Paul H
2011-07-01
Descending bilateral control of external oblique (EO) and latissimus dorsi (LD) was investigated using transcranial magnetic stimulation. Contralateral (CL) motor evoked potential (MEP) thresholds were lower and latencies were shorter than for ipsilateral (IL) MEPs. Hotspots for EO were symmetrical; this was not the case for LD. The volumes of drive to the left and right muscles were not different. The laterality index was not different between the left and right muscles. The average index for the EO muscles was closer to zero than that for LD, suggesting a stronger IL drive to EO. The symmetry of drive to each muscle did not differ; however, the symmetry of drive varies within a subject for different muscles and between subjects for the same muscle. The findings may be useful in understanding a number of clinical conditions relating to the trunk and also for predicting the outcome of rehabilitative strategies.
NASA Astrophysics Data System (ADS)
Ahmed, Muhammad Naeem; Sadiq, Beenish; Al-Masoudi, Najim A.; Yasin, Khawaja Ansar; Hameed, Shahid; Mahmood, Tariq; Ayub, Khurshid; Tahir, Muhammad Nawaz
2018-03-01
A new series of bis((5-aryl-1,3,4-oxadiazol-2-yl)thio)alkanes 4-14 have been synthesized via nucleophilic substitution reaction of dihaloalkanes with respective 1,3,4-oxadiazole-2-thiols 3a-f, and characterized by spectroscopic techniques. The structures of 4 and 12 were unambiguously confirmed by single-crystal X-ray diffraction analysis. Density functional theory calculations at B3LYP/6-31 + G(d) level of theory were performed for comparison of X-ray geometric parameters, molecular electrostatic potential (MEP) and frontier molecular orbital analyses of synthesized compounds. MEP analysis revealed that these compounds are nucleophilic in nature. Frontier molecular orbitals (FMOs) analysis of 4-14 was performed for evaluation of kinetic stability. All synthesized compounds were screened in vitro for antimicrobial activity against three bacterial and three fungal strains and showed promising results.
Physiology of the motor cortex in polio survivors.
Lupu, Vitalie D; Danielian, Laura; Johnsen, Jacqueline A; Vasconcelos, Olavo M; Prokhorenko, Olga A; Jabbari, Bahman; Campbell, William W; Floeter, Mary Kay
2008-02-01
We hypothesized that the corticospinal system undergoes functional changes in long-term polio survivors. Central motor conduction times (CMCTs) to the four limbs were measured in 24 polio survivors using transcranial magnetic stimulation (TMS). Resting motor thresholds and CMCTs were normal. In 17 subjects whose legs were affected by polio and 13 healthy controls, single- and paired-pulse TMS was used to assess motor cortex excitability while recording from tibialis anterior (TA) muscles at rest and following maximal contraction until fatigue. In polio survivors the slope of the recruitment curve was normal, but maximal motor evoked potentials (MEPs) were larger than in controls. MEPs were depressed after fatiguing exercise. Three patients with central fatigue by twitch interpolation had a trend toward slower recovery. There was no association with symptoms of post-polio syndrome. These changes occurring after polio may allow the motor cortex to activate a greater proportion of the motor neurons innervating affected muscles.
NASA Technical Reports Server (NTRS)
Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.
1988-01-01
This volume of the final report on the unmanned Multiple Exploratory Probe System (MEPS) details all calculations, derivations, and computer programs that support the information presented in the first volume.
Dynamics of Monoterpene Formation in Spike Lavender Plants.
Mendoza-Poudereux, Isabel; Kutzner, Erika; Huber, Claudia; Segura, Juan; Arrillaga, Isabel; Eisenreich, Wolfgang
2017-12-19
The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways was analyzed in spike lavender ( Lavandula latifolia Med) on the basis of 13 CO₂-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13 CO₂ in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes are predominantly biosynthesized via the MEP pathway. Surprisingly, overexpression of HMGR did not have significant impact upon the crosstalk between the MVA and MEP pathways indicating that the MEP route is the preferred pathway for the synthesis of C5 monoterpene precursors in spike lavender.
Intraoperative Hypoglossal Nerve Mapping During Carotid Endarterectomy: Technical Note.
Kojima, Atsuhiro; Saga, Isako; Ishikawa, Mami
2018-05-01
Hypoglossal nerve deficit is a possible complication caused by carotid endarterectomy (CEA). The accidental injury of the hypoglossal nerve during surgery is one of the major reasons for permanent hypoglossal nerve palsy. In this study, we investigated the usefulness of intraoperative mapping of the hypoglossal nerve to identify this nerve during CEA. Five consecutive patients who underwent CEA for the treatment of symptomatic or asymptomatic carotid artery stenosis were studied. A hand-held probe was used to detect the hypoglossal nerve in the operative field, and the tongue motor evoked potentials (MEPs) were recorded. The tongue MEPs were obtained in all the patients. The invisible hypoglossal nerve was successfully identified without any difficulty when the internal carotid artery was exposed. Intraoperative mapping was particularly useful for identifying the hypoglossal nerve when the hypoglossal nerve passed beneath the posterior belly of the digastric muscle. In 1 of 2 cases, MEP was also elicited when the ansa cervicalis was stimulated, although the resulting amplitude was much smaller than that obtained by direct stimulation of the hypoglossal nerve. Postoperatively, none of the patients presented with hypoglossal nerve palsy. Intraoperative hypoglossal nerve mapping enabled us to locate the invisible hypoglossal nerve during the exposure of the internal carotid artery accurately without retracting the posterior belly of the digastric muscle and other tissues in the vicinity of the internal carotid artery. Copyright © 2018 Elsevier Inc. All rights reserved.
Evidence for two concurrent inhibitory mechanisms during response preparation
Duque, Julie; Lew, David; Mazzocchio, Riccardo; Olivier, Etienne; Ivry, Richard B.
2010-01-01
Inhibitory mechanisms are critically involved in goal-directed behaviors. To gain further insight into how such mechanisms shape motor representations during response preparation, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and H-reflexes were recorded from left hand muscles during choice reaction time tasks. The imperative signal, which indicated the required response, was always preceded by a preparatory cue. During the post-cue delay period, left MEPs were suppressed when the left hand had been cued for the forthcoming response, suggestive of a form of inhibition specifically directed at selected response representations. H-reflexes were also suppressed on these trials, indicating that the effects of this inhibition extend to spinal circuits. In addition, left MEPs were suppressed when the right hand was cued, but only when left hand movements were a possible response option before the onset of the cue. Notably, left hand H-reflexes were not modulated on these trials, consistent with a cortical locus of inhibition that lowers the activation of task-relevant, but non-selected responses. These results suggest the concurrent operation of two inhibitory mechanisms during response preparation: one decreases the activation of selected responses at the spinal level, helping to control when selected movements should be initiated by preventing their premature release; a second, upstream mechanism helps to determine what response to make during a competitive selection process. PMID:20220014
Altered cortical excitability in anorexia nervosa.
Khedr, E M; El Fetoh, N A; El Bieh, E; Ali, A M; Karim, A A
2014-09-01
Recent EEG and positron emission tomography (PET) studies have reported hyperactivation of the right hemisphere in anorexia nervosa (AN). The aim of the present study was to test this notion by examining cortical excitability in subjects with AN using transcranial magnetic stimulation (TMS). We investigated thirteen patients meeting the DSM IV diagnostic criteria for AN and 14 controls age and sex matched. Each subject was assessed clinically using the Eating Disorder Inventory (EDI), the Eating Attitude Test (EAT) and Beck's Depression Inventory (BDI-II). TMS measures involved resting and active motor thresholds (RMT, AMT) as well as motor evoked potentials (MEP), cortical silent period duration (CSP), transcallosal inhibition (TCI), and short latency intracortical inhibition (SICI) of the first dorsal interosseous muscle (FDI) were assessed. Cortical esophageal MEP latencies (CL) were also recorded. The RMT and MEP onset latency of the FDI and the esophagus as well as duration of the TCI were significantly reduced in anorexic patients compared to the control group. There were no significant differences neither in AMT nor CSP between patients and controls. Moreover, we found significant negative correlations between the EAT scores and RMT, and TCI duration. Although anorexic patients had significantly higher BDI score, there was no correlation between it and cortical excitability. Anorexic individuals are characterized by pathologically increased motor and esophageal cortical excitability that significantly correlates with clinical symptoms of anorexia nervosa. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Physical activity modulates corticospinal excitability of the lower limb in young and old adults.
Hassanlouei, Hamidollah; Sundberg, Christopher W; Smith, Ashleigh E; Kuplic, Andrew; Hunter, Sandra K
2017-08-01
Aging is associated with reduced neuromuscular function, which may be due in part to altered corticospinal excitability. Regular physical activity (PA) may ameliorate these age-related declines, but the influence of PA on corticospinal excitability is unknown. The purpose of this study was to determine the influence of age, sex, and PA on corticospinal excitability by comparing the stimulus-response curves of motor evoked potentials (MEP) in 28 young (22.4 ± 2.2 yr; 14 women and 14 men) and 50 old adults (70.2 ± 6.1 yr; 22 women and 28 men) who varied in activity levels. Transcranial magnetic stimulation was used to elicit MEPs in the active vastus lateralis muscle (10% maximal voluntary contraction) with 5% increments in stimulator intensity until the maximum MEP amplitude. Stimulus-response curves of MEP amplitudes were fit with a four-parameter sigmoidal curve and the maximal slope calculated (slope max ). Habitual PA was assessed with tri-axial accelerometry and participants categorized into either those meeting the recommended PA guidelines for optimal health benefits (>10,000 steps/day, high-PA; n = 21) or those not meeting the guidelines (<10,000 steps/day, low-PA; n = 41). The MEP amplitudes and slope max were greater in the low-PA compared with the high-PA group ( P < 0.05). Neither age nor sex influenced the stimulus-response curve parameters ( P > 0.05), suggesting that habitual PA influenced the excitability of the corticospinal tract projecting to the lower limb similarly in both young and old adults. These findings provide evidence that achieving the recommended PA guidelines for optimal health may mediate its effects on the nervous system by decreasing corticospinal excitability. NEW & NOTEWORTHY Transcranial magnetic stimulation was used to determine whether achieving the recommended 10,000 steps/day for optimal health influenced the excitability of the corticospinal tract projecting to the knee extensor muscles. Irrespective of age and sex, individuals who achieved >10,000 steps/day had lower corticospinal excitability than those who performed <10,000 steps/day, possibly representing greater control of inhibitory and excitatory networks. Physical activity involving >10,000 steps/day may mediate its effects on the nervous system by decreasing corticospinal excitability. Copyright © 2017 the American Physiological Society.
Theory of using magnetic deflections to combine charged particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steckbeck, Mackenzie K.; Doyle, Barney Lee
2014-09-01
Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these twomore » magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: B s= 1/2(r c/r s) B c, where B s and B c are the magnetic fields in the steering and bending magnet and r c/r s is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heider, Sabine A. E.; Wolf, Natalie; Hofemeier, Arne
The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encodingmore » the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Proposed Information Collection; Comment Request; Manufacturing Extension Partnership (MEP) Management Information Reporting... record. Dated: April 16, 2012. Gwellnar Banks, Management Analyst, Office of the Chief Information...
Fine Tuned Modulation of the Motor System by Adjectives Expressing Positive and Negative Properties
ERIC Educational Resources Information Center
Gough, P. M.; Campione, G. C.; Buccino, G.
2013-01-01
Using transcranial magnetic stimulation (TMS), motor evoked potentials (MEPs) were recorded from two antagonistic muscles, the first dorsal interosseus (FDI) of the hand and the extensor communis digitorum (EC) of the forearm. FDI is involved in grasping actions and EC in releasing. TMS pulses were delivered while participants were reading…
DOT National Transportation Integrated Search
2016-10-01
The Georgia Department of Transportation (GDOT) has initiated a Georgia Long-Term Pavement Performance (GALTPP) monitoring program 1) to provide data for calibrating the prediction models in the AASHTO Mechanistic-Empirical Pavement Design Guide (MEP...
NASA Astrophysics Data System (ADS)
Costa, Renyer A.; Pitt, Priscilla Olliveira; Pinheiro, Maria Lucia B.; Oliveira, Kelson M. T.; Salomé, Kahlil Schwanka; Barison, Andersson; Costa, Emmanoel Vilaça
2017-03-01
A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of liriodenine is presented using B3LYP function with 6-311G (2d, p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing similar values. In addition, natural bond orbitals (NBOs), HOMO-LUMO energy gap, mapped molecular Electrostatic Potential (MEP) surface calculation, first and second order hyperpolarizabilities were also performed with the same calculation level. Theoretical UV spectrum agreed well with the measured experimental data, with transitions assigned. The molecular electrostatic potential map shows opposite potentials regions that forms hydrogen bonds that stabilize the dimeric form, which were confirmed by the close values related to the C dbnd O bond stretching between the dimeric form and the experimental IR spectra (1654 cm- 1 for the experimental, 1700 cm- 1 for the dimer form). Calculated HOMO/LUMO gaps shows the excitation energy for Liriodenine, justifying its stability and kinetics reaction. Molecular docking studies with Candida albicans dihydrofolate reductase (DHFR) and Candida albicans secreted aspartic protease (SAP) showed binding free energies values of - 8.5 and - 8.3 kcal/mol, suggesting good affinity between the liriodenine and the target macromolecules.
Cabibel, Vincent; Muthalib, Makii; Teo, Wei-Peng; Perrey, Stephane
2018-04-01
The crossed-facilitation (CF) effect refers to when motor-evoked potentials (MEPs) evoked in the relaxed muscles of one arm are facilitated by contraction of the opposite arm. The aim of this study was to determine whether high-definition transcranial direct-current stimulation (HD-tDCS) applied to the right primary motor cortex (M1) controlling the left contracting arm [50% maximum voluntary isometric contraction (MVIC)] would further facilitate CF toward the relaxed right arm. Seventeen healthy right-handed subjects participated in an anodal and cathodal or sham HD-tDCS session of the right M1 (2 mA for 20 min) separated by at least 48 h. Single-pulse transcranial magnetic stimulation (TMS) was used to elicit MEPs and cortical silent periods (CSPs) from the left M1 at baseline and 10 min into and after right M1 HD-tDCS. At baseline, compared with resting, CF (i.e., right arm resting, left arm 50% MVIC) increased left M1 MEP amplitudes (+97%) and decreased CSPs (-11%). The main novel finding was that right M1 HD-tDCS further increased left M1 excitability (+28.3%) and inhibition (+21%) from baseline levels during CF of the left M1, with no difference between anodal and cathodal HD-tDCS sessions. No modulation of CSP or MEP was observed during sham HD-tDCS sessions. Our findings suggest that CF of the left M1 combined with right M1 anodal or cathodal HD-tDCS further facilitated interhemispheric interactions during CF from the right M1 (contracting left arm) toward the left M1 (relaxed right arm), with effects on both excitatory and inhibitory processing. NEW & NOTEWORTHY This study shows modulation of the nonstimulated left M1 by right M1 HD-tDCS combined with crossed facilitation, which was probably achieved through modulation of interhemispheric interactions.
Intracortical inhibition in the human trigeminal motor system.
Jaberzadeh, Shapour; Pearce, Sophie L; Miles, Timothy S; Türker, Kemal S; Nordstrom, Michael A
2007-08-01
To investigate the presence and features of short-interval intracortical inhibition (SICI) in the human trigeminal motor system. Surface electromyogram (EMG) was recorded from left and right digastric muscles in 7 subjects, along with additional experiments with intramuscular EMG in 2 subjects. Focal transcranial magnetic stimulation (TMS) was used to activate the motor cortex of one hemisphere and elicit motor evoked potentials (MEPs) in digastric muscles on each side, at rest and while subjects activated the muscles at 10% maximal EMG. Paired or single TMS pulses were delivered in blocks of trials, while conditioning TMS intensity and interstimulus interval (ISI) were varied. At rest, paired TMS (3-ms ISI) with conditioning intensities 0.8-0.9x active motor threshold (TA) reduced the digastric MEP amplitude to a similar extent bilaterally. Conditioning at 0.5-0.7TA did not significantly reduce the MEP. MEP amplitude was reduced to a similar extent in both digastric muscles by ISIs between 1 and 4 ms (0.8TA). Voluntary bilateral activation of digastric muscles reduced the effectiveness of conditioning TMS compared to the resting state, with no differences between sides. The similarity of the responses in both digastric muscles was not due to EMG cross-talk (estimated to be approximately 10% in surface records and approximately 2% in intramuscular records), as the intramuscular records showed the same pattern as the surface records. The effects of paired-pulse TMS on digastric are similar to those reported for contralateral hand muscles, and are consistent with activation of SICI circuits in M1 by conditioning TMS. Our evidence further suggests that the corticomotor representations of left and right digastric muscles in M1 of a single hemisphere receive analogous inhibitory modulation from SICI circuits. SICI has been demonstrated in the face area of motor cortex controlling the trigeminal motor system in normal subjects. This method can be used to investigate abnormalities of SICI in movement disorders affecting the masticatory muscles in humans.
Walker, L; Gruman, C; Robison, J
1998-08-01
This study examined Medicaid estate planning (MEP) through the experiences and perceptions of three groups in Connecticut: Medicaid eligibility workers (n = 128), elder law attorneys (n = 41), and certified financial planners (n = 29). Respondent groups varied significantly with regard to their perceptions of prevalence and magnitude of MEP, the nature of transferred assets, mechanisms for transfers, and characteristics of the "typical" client participating in asset divestiture for the purpose of qualifying for Medicaid. This substantial lack of concordance among those professionals most closely involved with MEP poses challenges for policy and research in this area.
Twenty-five years of maximum-entropy principle
NASA Astrophysics Data System (ADS)
Kapur, J. N.
1983-04-01
The strengths and weaknesses of the maximum entropy principle (MEP) are examined and some challenging problems that remain outstanding at the end of the first quarter century of the principle are discussed. The original formalism of the MEP is presented and its relationship to statistical mechanics is set forth. The use of MEP for characterizing statistical distributions, in statistical inference, nonlinear spectral analysis, transportation models, population density models, models for brand-switching in marketing and vote-switching in elections is discussed. Its application to finance, insurance, image reconstruction, pattern recognition, operations research and engineering, biology and medicine, and nonparametric density estimation is considered.
NASA Astrophysics Data System (ADS)
Kunii, Masaru; Saito, Kazuo; Seko, Hiromu; Hara, Masahiro; Hara, Tabito; Yamaguchi, Munehiko; Gong, Jiandong; Charron, Martin; Du, Jun; Wang, Yong; Chen, Dehui
2011-05-01
During the period around the Beijing 2008 Olympic Games, the Beijing 2008 Olympics Research and Development Project (B08RDP) was conducted as part of the World Weather Research Program short-range weather forecasting research project. Mesoscale ensemble prediction (MEP) experiments were carried out by six organizations in near-real time, in order to share their experiences in the development of MEP systems. The purpose of this study is to objectively verify these experiments and to clarify the problems associated with the current MEP systems through the same experiences. Verification was performed using the MEP outputs interpolated into a common verification domain with a horizontal resolution of 15 km. For all systems, the ensemble spreads grew as the forecast time increased, and the ensemble mean improved the forecast errors compared with individual control forecasts in the verification against the analysis fields. However, each system exhibited individual characteristics according to the MEP method. Some participants used physical perturbation methods. The significance of these methods was confirmed by the verification. However, the mean error (ME) of the ensemble forecast in some systems was worse than that of the individual control forecast. This result suggests that it is necessary to pay careful attention to physical perturbations.
Drosophila Transcription Factor Tramtrack69 Binds MEP1 To Recruit the Chromatin Remodeler NuRD ▿ †
Reddy, B. Ashok; Bajpe, Prashanth Kumar; Bassett, Andrew; Moshkin, Yuri M.; Kozhevnikova, Elena; Bezstarosti, Karel; Demmers, Jeroen A. A.; Travers, Andrew A.; Verrijzer, C. Peter
2010-01-01
ATP-dependent chromatin-remodeling complexes (remodelers) are essential regulators of chromatin structure and gene transcription. How remodelers can act in a gene-selective manner has remained enigmatic. A yeast two-hybrid screen for proteins binding the Drosophila transcription factor Tramtrack69 (TTK69) identified MEP1. Proteomic characterization revealed that MEP1 is a tightly associated subunit of the NuRD remodeler, harboring the Mi2 enzymatic core ATPase. In addition, we identified the fly homolog of human Deleted in oral cancer 1 (DOC1), also known as CDK2-associated protein 1 (CDK2AP1), as a bona fide NuRD subunit. Biochemical and genetic assays supported the functional association between MEP1, Mi2, and TTK69. Genomewide expression analysis established that TTK69, MEP1, and Mi2 cooperate closely to control transcription. The TTK69 transcriptome profile correlates poorly with remodelers other than NuRD, emphasizing the selectivity of remodeler action. On the genes examined, TTK69 is able to bind chromatin in the absence of NuRD, but targeting of NuRD is dependent on TTK69. Thus, there appears to be a hierarchical relationship in which transcription factor binding precedes remodeler recruitment. PMID:20733004
Manzanilla-Pech, C I V; De Haas, Y; Hayes, B J; Veerkamp, R F; Khansefid, M; Donoghue, K A; Arthur, P F; Pryce, J E
2016-10-01
Methane (CH) is a product of enteric fermentation in ruminants, and it represents around 17% of global CH emissions. There has been substantial effort from the livestock scientific community toward tools that can help reduce this percentage. One approach is to select for lower emitting animals. To achieve this, accurate genetic parameters and identification of the genomic basis of CH traits are required. Therefore, the objectives of this study were 1) to perform a genomewide association study to identify SNP associated with several CH traits in Angus beef cattle (1,020 animals) and validate them in a lactating Holstein population (population 1 [POP1]; 205 animals); 2) to validate significant SNP for DMI and weight at test (WT) from a second Holstein population, from a previous study (population 2 [POP2]; 903 animals), in an Angus population; and 3) to evaluate 2 different residual CH traits and determine if the genes associated with CH also control residual CH traits. Phenotypes calculated for the genotyped Angus population included CH production (MeP), CH yield (MeY), CH intensity (MI), DMI, and WT. The Holstein population (POP1) was multiparous, with phenotypes on CH traits (MeP, MeY, and MI) plus genotypes. Additionally, 2 CH traits, residual genetic CH (RGM) and residual phenotypic CH (RPM), were calculated by adjusting MeP for DMI and WT. Estimated heritabilities in the Angus population were 0.30, 0.19, and 0.15 for MeP, RGM, and RPM, respectively, and genetic correlations of MeP with DMI and WT were 0.83 and 0.80, respectively. Estimated heritabilities in Holstein POP1 were 0.23, 0.30, and 0.42 for MeP, MeY, and MI, respectively. Strong associations with MeP were found on chromosomes 4, 12, 14, 20, and 30 at < 0.001, and those chromosomes also had significant SNP for DMI in Holstein POP1. In the Angus population, the number of significant SNP for MeP at < 0.005 was 3,304, and approximately 630 of those SNP also were important for DMI and WT. When a set (approximately 3,300) of significant SNP for DMI and WT in the Angus population was used to estimate genetic parameters for MeP and MeY in Holstein POP1, the genetic variance and, consequently, the heritability slightly increased, meaning that most of the genetic variation is largely captured by these SNP. Residual traits could be a good option to include in the breeding goal, as this would facilitate selection for lower emitting animals without compromising DMI and WT.
Sheena Mary, Y; Yohannan Panicker, C; Sapnakumari, M; Narayana, B; Sarojini, B K; Al-Saadi, Abdulaziz A; Van Alsenoy, Christian; War, Javeed Ahmad
2015-03-05
The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of ethyl-6-(4-chlorophenyl)-4-(4-fluoro-phenyl)-2-oxocyclohex-3-ene-1-carboxylate have been investigated experimentally and theoretically using Gaussian09 software. The title compound was optimized using the HF and DFT levels of theory. The geometrical parameters are in agreement with the XRD data. The stability of the molecule has been analyzed by NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. As can be seen from the MEP map of the title compound, regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl rings and the remaining species are surrounded by zero potential. First hyperpolarizability is calculated in order to find its role in non linear optics. The title compound binds at the active sites of both CypD and β-secretase and the molecular docking results draw the conclusion that the compound might exhibit β-secretase inhibitory activity which could be utilized for development of new anti-alzheimeric drugs with mild CypD inhibitory activity. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, D.; Agee, E.; Wang, J.; Ivanov, V. Y.
2017-12-01
The increased frequency and severity of droughts in the Amazon region have emphasized the potential vulnerability of the rainforests to heat and drought-induced stresses, highlighting the need to reduce the uncertainty in estimates of regional evapotranspiration (ET) and quantify resilience of the forest. Ground-based observations for estimating ET are resource intensive, making methods based on remotely sensed observations an attractive alternative. Several methodologies have been developed to estimate ET from satellite data, but challenges remained in model parameterization and satellite limited coverage reducing their utility for monitoring biodiverse regions. In this work, we apply a novel surface energy partition method (Maximum Entropy Production; MEP) based on Bayesian probability theory and nonequilibrium thermodynamics to derive ET time series using satellite data for Amazon basin. For a large, sparsely monitored region such as the Amazon, this approach has the advantage methods of only using single level measurements of net radiation, temperature, and specific humidity data. Furthermore, it is not sensitive to the uncertainty of the input data and model parameters. In this first application of MEP theory for a tropical forest biome, we assess its performance at various spatiotemporal scales against a diverse field data sets. Specifically, the objective of this work is to test this method using eddy flux data for several locations across the Amazonia at sub-daily, monthly, and annual scales and compare the new estimates with those using traditional methods. Analyses of the derived ET time series will contribute to reducing the current knowledge gap surrounding the much debated response of the Amazon Basin region to droughts and offer a template for monitoring the long-term changes in global hydrologic cycle due to anthropogenic and natural causes.
Grasp-specific motor resonance is influenced by the visibility of the observed actor.
Bunday, Karen L; Lemon, Roger N; Kilner, James M; Davare, Marco; Orban, Guy A
2016-11-01
Motor resonance is the modulation of M1 corticospinal excitability induced by observation of others' actions. Recent brain imaging studies have revealed that viewing videos of grasping actions led to a differential activation of the ventral premotor cortex depending on whether the entire person is viewed versus only their disembodied hand. Here we used transcranial magnetic stimulation (TMS) to examine motor evoked potentials (MEPs) in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) during observation of videos or static images in which a whole person or merely the hand was seen reaching and grasping a peanut (precision grip) or an apple (whole hand grasp). Participants were presented with six visual conditions in which visual stimuli (video vs static image), view (whole person vs hand) and grasp (precision grip vs whole hand grasp) were varied in a 2 × 2 × 2 factorial design. Observing videos, but not static images, of a hand grasping different objects resulted in a grasp-specific interaction, such that FDI and ADM MEPs were differentially modulated depending on the type of grasp being observed (precision grip vs whole hand grasp). This interaction was present when observing the hand acting, but not when observing the whole person acting. Additional experiments revealed that these results were unlikely to be due to the relative size of the hand being observed. Our results suggest that observation of videos rather than static images is critical for motor resonance. Importantly, observing the whole person performing the action abolished the grasp-specific effect, which could be due to a variety of PMv inputs converging on M1. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Higashi, Toshio
The aim of the present study was to investigate the neurophysiological triggers underlying muscle relaxation from the contracted state, and to examine the mechanisms involved in this process and their subsequent modification by neuromuscular electrical stimulation (NMES). Single-pulse transcranial magnetic stimulation (TMS) was used to produce motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) in 23 healthy participants, wherein motor cortex excitability was examined at the onset of voluntary muscle relaxation following a period of voluntary tonic muscle contraction. In addition, the effects of afferent input on motor cortex excitability, as produced by NMES during muscle contraction, were examined. In particular, two NMES intensities were used for analysis: 1.2 times the sensory threshold and 1.2 times the motor threshold (MT). Participants were directed to execute constant wrist extensions and to release muscle contraction in response to an auditory "GO" signal. MEPs were recorded from the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles, and TMS was applied at three different time intervals (30, 60, and 90 ms) after the "GO" signal. Motor cortex excitability was greater during voluntary ECR and FCR relaxation using high-intensity NMES, and relaxation time was decreased. Each parameter differed significantly between 30 and 60 ms. Moreover, in both muscles, SICI was larger in the presence than in the absence of NMES. Therefore, the present findings suggest that terminating a muscle contraction triggers transient neurophysiological mechanisms that facilitate the NMES-induced modulation of cortical motor excitability in the period prior to muscle relaxation. High-intensity NMES might facilitate motor cortical excitability as a function of increased inhibitory intracortical activity, and therefore serve as a transient trigger for the relaxation of prime mover muscles in a therapeutic context.
Hirakawa, Kazutaka; Ouyang, Dongyan; Ibuki, Yuko; Hirohara, Shiho; Okazaki, Shigetoshi; Kono, Eiji; Kanayama, Naohiro; Nakazaki, Jotaro; Segawa, Hiroshi
2018-05-21
Photodynamic therapy (PDT) is a less-invasive treatment for cancer through the administration of less-toxic porphyrins and visible-light irradiation. Photosensitized damage of biomacromolecules through singlet oxygen ( 1 O 2 ) generation induces cancer cell death. However, a large quantity of porphyrin photosensitizer is required, and the treatment effect is restricted under a hypoxic cellular condition. Here we report the phototoxic activity of P(V)porphyrins: dichloroP(V)tetrakis(4-methoxyphenyl)porphyrin (CLP(V)TMPP), dimethoxyP(V)tetrakis(4-methoxyphenyl)porphyrin (MEP(V)TMPP), and diethyleneglycoxyP(V)tetrakis(4-methoxyphenyl)porphyrin (EGP(V)TMPP). These P(V)porphyrins damaged the tryptophan residue of human serum albumin (HSA) under the irradiation of long-wavelength visible light (>630 nm). This protein photodamage was barely inhibited by sodium azide, a quencher of 1 O 2 . Fluorescence lifetimes of P(V)porphyrins with or without HSA and their redox potentials supported the electron-transfer-mediated oxidation of protein. The photocytotoxicity of these P(V)porphyrins to HeLa cells was also demonstrated. CLP(V)TMPP did not exhibit photocytotoxicity to HaCaT, a cultured human skin cell, and MEP(V)TMPP and EGP(V)TMPP did; however, cellular DNA damage was barely observed. In addition, a significant PDT effect of these P(V) porphyrins on a mouse tumor model comparable with the traditional photosensitizer was also demonstrated. These findings suggest the cancer selectivity of these P(V)porphyrins and lower carcinogenic risk to normal cells. Electron-transfer-mediated oxidation of biomacromolecules by P(V)porphyrins using long-wavelength visible light should be advantageous for PDT of hypoxic tumor.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... to the long-term economic stability of the region. Please see the NIST MEP Web site, http://www.nist... region, and contribute to the long-term economic stability of the region. Competitive projects will use...
75 FR 72787 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
... extension Competitive Award Recipients working with small manufacturers to assist in improving their... information regarding MEP Competitive Award Recipient performance of the delivery of technology and business... the MEP Competitive Award Recipients at both local and national levels, will provide information...
NASA Astrophysics Data System (ADS)
Gutierrez-Jurado, H. A.; Guan, H.; Wang, J.; Wang, H.; Bras, R. L.; Simmons, C. T.
2015-12-01
Quantification of evapotranspiration (ET) and its partition over regions of heterogeneous topography and canopy poses a challenge using traditional approaches. In this study, we report the results of a novel field experiment design guided by the Maximum Entropy Production model of ET (MEP-ET), formulated for estimating evaporation and transpiration from homogeneous soil and canopy. A catchment with complex terrain and patchy vegetation in South Australia was instrumented to measure temperature, humidity and net radiation at soil and canopy surfaces. Performance of the MEP-ET model to quantify transpiration and soil evaporation was evaluated during wet and dry conditions with independently and directly measured transpiration from sapflow and soil evaporation using the Bowen Ratio Energy Balance (BREB). MEP-ET transpiration shows remarkable agreement with that obtained through sapflow measurements during wet conditions, but consistently overestimates the flux during dry periods. However, an additional term introduced to the original MEP-ET model accounting for higher stomatal regulation during dry spells, based on differences between leaf and air vapor pressure deficits and temperatures, significantly improves the model performance. On the other hand, MEP-ET soil evaporation is in good agreement with that from BREB regardless of moisture conditions. The experimental design allows a plot and tree scale quantification of evaporation and transpiration respectively. This study confirms for the first time that the MEP-ET originally developed for homogeneous open bare soil and closed canopy can be used for modeling ET over heterogeneous land surfaces. Furthermore, we show that with the addition of an empirical function simulating the plants ability to regulate transpiration, and based on the same measurements of temperature and humidity, the method can produce reliable estimates of ET during both wet and dry conditions without compromising its parsimony.
It is not the entropy you produce, rather, how you produce it
Volk, Tyler; Pauluis, Olivier
2010-01-01
The principle of maximum entropy production (MEP) seeks to better understand a large variety of the Earth's environmental and ecological systems by postulating that processes far from thermodynamic equilibrium will ‘adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate’. Our aim in this ‘outside view’, invited by Axel Kleidon, is to focus on what we think is an outstanding challenge for MEP and for irreversible thermodynamics in general: making specific predictions about the relative contribution of individual processes to entropy production. Using studies that compared entropy production in the atmosphere of a dry versus humid Earth, we show that two systems might have the same entropy production rate but very different internal dynamics of dissipation. Using the results of several of the papers in this special issue and a thought experiment, we show that components of life-containing systems can evolve to either lower or raise the entropy production rate. Our analysis makes explicit fundamental questions for MEP that should be brought into focus: can MEP predict not just the overall state of entropy production of a system but also the details of the sub-systems of dissipaters within the system? Which fluxes of the system are those that are most likely to be maximized? How it is possible for MEP theory to be so domain-neutral that it can claim to apply equally to both purely physical–chemical systems and also systems governed by the ‘laws’ of biological evolution? We conclude that the principle of MEP needs to take on the issue of exactly how entropy is produced. PMID:20368249
NASA Astrophysics Data System (ADS)
Buehlmeier, Judith; Mulder, Edwin; Noppe, Alexandra; Frings-Meuthen, Petra; Angerer, Oliver; Rudwill, Floriane; Biolo, Gianni; Smith, Scott M.; Blanc, Stéphane; Heer, Martina
2014-02-01
Inactivity, as it appears during space flight and in bed rest, induces reduction of lean body and bone mass, glucose intolerance, and weakening of the cardiovascular system. Increased protein intake, whey protein in particular, has been proposed to counteract some of these effects, but has also been associated with negative effects on bone, likely caused by a correspondingly high ratio of acid to alkali precursors in the diet.
Use and validity of principles of extremum of entropy production in the study of complex systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heitor Reis, A., E-mail: ahr@uevora.pt
2014-07-15
It is shown how both the principles of extremum of entropy production, which are often used in the study of complex systems, follow from the maximization of overall system conductivities, under appropriate constraints. In this way, the maximum rate of entropy production (MEP) occurs when all the forces in the system are kept constant. On the other hand, the minimum rate of entropy production (mEP) occurs when all the currents that cross the system are kept constant. A brief discussion on the validity of the application of the mEP and MEP principles in several cases, and in particular to themore » Earth’s climate is also presented. -- Highlights: •The principles of extremum of entropy production are not first principles. •They result from the maximization of conductivities under appropriate constraints. •The conditions of their validity are set explicitly. •Some long-standing controversies are discussed and clarified.« less
Strain-dependent activation energy of shear transformation in metallic glasses
NASA Astrophysics Data System (ADS)
Xu, Bin; Falk, Michael; Li, Jinfu; Kong, Lingti
2017-04-01
Shear transformation (ST) plays a decisive role in determining the mechanical behavior of metallic glasses, which is believed to be a stress-assisted thermally activated process. Understanding the dependence in its activation energy on the stress imposed on the material is of central importance to model the deformation process of metallic glasses and other amorphous solids. Here a theoretical model is proposed to predict the variation of the minimum energy path (MEP) associated with a particular ST event upon further deformation. Verification based on atomistic simulations and calculations are also conducted. The proposed model reproduces the MEP and activation energy of an ST event under different imposed macroscopic strains based on a known MEP at a reference strain. Moreover, an analytical approach is proposed based on the atomistic calculations, which works well when the stress varies linearity along the MEP. These findings provide necessary background for understanding the activation processes and, in turn, the mechanical behavior of metallic glasses.
Liu, Chao; Sun, Yonghai; Mao, Qian; Guo, Xiaolei; Li, Peng; Liu, Yang; Xu, Na
2016-01-01
Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP) extracted by pulsed electric field (PEF) in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and 1H and 13C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta. PMID:27338370
Dynamics of Monoterpene Formation in Spike Lavender Plants
Kutzner, Erika; Huber, Claudia; Segura, Juan; Arrillaga, Isabel
2017-01-01
The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways was analyzed in spike lavender (Lavandula latifolia Med) on the basis of 13CO2-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13CO2 in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes are predominantly biosynthesized via the MEP pathway. Surprisingly, overexpression of HMGR did not have significant impact upon the crosstalk between the MVA and MEP pathways indicating that the MEP route is the preferred pathway for the synthesis of C5 monoterpene precursors in spike lavender. PMID:29257083
NASA Astrophysics Data System (ADS)
Senthil kumar, J.; Jeyavijayan, S.; Arivazhagan, M.
2015-02-01
The vibrational spectral analysis is carried out using FT-Raman and FT-IR spectroscopy in the range 3500-50 cm-1 and 4000-400 cm-1, respectively, for 6-nitrochromone (6NC). The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization and normal coordinates force field calculation based on ab initio HF and DFT gradient calculations employing the HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) basis set. Stability of the molecule has been analyzed using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Thermodynamic properties like entropy, heat capacity, zero-point energy and Mulliken's charge analysis have been calculated for the 6NC. The complete assignments were performed on the basis of total energy distribution (TED) of the vibrational modes with scaled quantum mechanical (SQM) method. The MEP map shows the negative potential sites are on oxygen atoms as well as the positive potential sites are around the hydrogen atoms.
Di Lazzaro, V; Pilato, F; Dileone, M; Profice, P; Oliviero, A; Mazzone, P; Insola, A; Ranieri, F; Meglio, M; Tonali, P A; Rothwell, J C
2008-08-15
Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (TMS). When applied to motor cortex it leads to after-effects on corticospinal and corticocortical excitability that may reflect LTP/LTD-like synaptic effects. An inhibitory form of TBS (continuous, cTBS) suppresses MEPs, and spinal epidural recordings show this is due to suppression of the I1 volley evoked by TMS. Here we investigate whether the excitatory form of TBS (intermittent, iTBS) affects the same I-wave circuitry. We recorded corticospinal volleys evoked by single pulse TMS of the motor cortex before and after iTBS in three conscious patients who had an electrode implanted in the cervical epidural space for the control of pain. As in healthy subjects, iTBS increased MEPs, and this was accompanied by a significant increase in the amplitude of later I-waves, but not the I1 wave. In two of the patients we tested the excitability of the contralateral cortex and found a significant suppression of the late I-waves. The extent of the changes varied between the three patients, as did their age. To investigate whether age might be a significant contributor to the variability we examined the effect of iTBS on MEPs in 18 healthy subjects. iTBS facilitated MEPs evoked by TMS of the conditioned hemisphere and suppressed MEPs evoked by stimulation of the contralateral hemisphere. There was a slight but non-significant decline in MEP facilitation with age, suggesting that interindividual variability was more important than age in explaining our data. In a subgroup of 10 subjects we found that iTBS had no effect on the duration of the ipsilateral silent period suggesting that the reduction in contralateral MEPs was not due to an increase in ongoing transcallosal inhibition. In conclusion, iTBS affects the excitability of excitatory synaptic inputs to pyramidal tract neurones that are recruited by a TMS pulse, both in the stimulated hemisphere and in the contralateral hemisphere. However the circuits affected differ from those influenced by the inhibitory, cTBS, protocol. The implication is that cTBS and iTBS may have different therapeutic targets.
Huchelmann, Alexandre; Gastaldo, Clément; Veinante, Mickaël; Zeng, Ying; Heintz, Dimitri; Tritsch, Denis; Schaller, Hubert; Rohmer, Michel; Bach, Thomas J.; Hemmerlin, Andréa
2014-01-01
S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway–dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism. PMID:24367019
The multi-epitope polypeptide approach in HIV-1 vaccine development.
Cano, C A
1999-11-01
The application of a preventive HIV vaccine is the only hope for most developing countries to halt the AIDS pandemic. A project aimed to develop a preventive AIDS vaccine is being carried out since 1992 by three Cuban research institutions: Centro de Ingeniería Genética y Biotecnologia de La Habana, Instituto de Medicina Tropical 'Pedro Kouri' and Laboratorio de Investigaciones de SIDA de La Habana. The project includes two main strategies: (a) generation of recombinant multi-epitope polypeptides (MEPs) bearing several copies of the V3 loop from different HIV-1 isolates; and (b) development of immunogens capable of inducing a cytotoxic T cell response (CTL) specific for human immunodeficiency virus type 1 (HIV-1) antigens. This article summarizes the work in the first of these strategies. Based on the sequence of the V3 loop of HIV-1 we constructed a series of MEPs and evaluated their immunogenicity in mice, rabbits and macaques. The MEP TAB9, containing six V3 epitopes from isolates LR10, JY1, RF, MN, BRVA and IIIB, was selected together with the oil adjuvant Montanide ISA720 (SEPPIC, France) to perform a Phase I clinical trial in HIV seronegative Cuban volunteers. The trial was double blinded, randomized, and fulfilled all ethical and regulatory requirements. All TAB9 vaccinated volunteers developed a strong immune response and neutralizing antibodies were observed in the 50% of the subjects. However the second and third inoculations of the vaccine were not well tolerated because transient severe local reactions appeared in some individuals. A new formulation of TAB9 is currently in pre-clinical studies and is expected to enter clinical trials in 1999.
76 FR 81944 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... comprehensive data on health care and health care expenditures from all payors (including private payors... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Agency... MEPS Cancer SAQ The Medical Expenditure Panel Survey (MEPS) is a nationally representative survey of...
78 FR 21109 - Manufacturing Extension Partnership (MEP) Center for Nebraska; Availability of Funds
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... regionally-based MEP center and local technology resources. The management and operational structure of an... organizational or operational structure that, in whole or in part, delegates or transfers to another person... objectives? (1) Organizational Structure. Completeness and appropriateness of the organizational structure...
76 FR 53666 - Manufacturing Extension Partnership Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... open meeting. SUMMARY: The National Institute of Standards and Technology (NIST) announces that the Manufacturing Extension Partnership (MEP) Advisory Board, NIST will hold an open meeting on Wednesday, September..., appointed by the Director of NIST. MEP is a unique program consisting of centers across the United States...
77 FR 20790 - Manufacturing Extension Partnership Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... Open Meeting. SUMMARY: NIST announces that the Manufacturing Extension Partnership (MEP) Advisory Board, National Institute of Standards and Technology (NIST) will hold an open meeting on Sunday, May 6, 2012... NIST. MEP is a unique program consisting of centers across the United States and Puerto Rico with...
Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni
2015-01-01
Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343
Li, Miao; Wang, Sicen; He, Langchong
2015-01-01
Natural products (NPs) are important sources of lead compounds in modern drug discovery. To facilitate the screening of volatile active compounds in NPs, we have developed a new biochromatography method that uses rat vascular smooth muscle cells (VSMC), which are rich in L-type calcium channels (LCC), to prepare the stationary phase. This integrated method, which couples cell membrane chromatography (CMC) with gas chromatography-mass spectrometry (GC-MS) via microextraction by packed sorbent (MEPS) technology, has been termed VSMC/CMC-MEPS-GC-MS. Methodological validation confirmed its specificity, reliability and convenience. Screening results for Radix Angelicae Dahuricae and Fructus Cnidii obtained using VSMC/CMC-MEPS-GC-MS were consistent with those obtained using VSMC/CMC-offline-GC-MS. MEPS connection plays as simplified solid-phase extraction and replaces the uncontrollable evaporation operation in reported offline connections, so our new method is supposed to be more efficient and reliable than the offline ones, especially for compounds that are volatile, thermally unstable or difficult to purify. In application, senkyunolide A and ligustilide were preliminary identified as the volatile active components in Rhizoma Chuanxiong. We have thus confirmed the suitability of VSMC/CMC-MEPS-GC-MS for volatile active compounds screening in NP. Copyright © 2014 Elsevier B.V. All rights reserved.
Reconciling medical expenditure estimates from the MEPS and NHEA, 2007.
Bernard, Didem; Cowan, Cathy; Selden, Thomas; Cai, Liming; Catlin, Aaron; Heffler, Stephen
2012-01-01
Provide a comparison of health care expenditure estimates for 2007 from the Medical Expenditure Panel Survey (MEPS) and the National Health Expenditure Accounts (NHEA). Reconciling these estimates serves two important purposes. First, it is an important quality assurance exercise for improving and ensuring the integrity of each source's estimates. Second, the reconciliation provides a consistent baseline of health expenditure data for policy simulations. Our results assist researchers to adjust MEPS to be consistent with the NHEA so that the projected costs as well as budgetary and tax implications of any policy change are consistent with national health spending estimates. The Medical Expenditure Panel Survey produced by the Agency for Healthcare Research and Quality, and the National Health Center for Health Statistics and the National Health Expenditures produced by the Centers for Medicare & Medicaid Service's Office of the Actuary. In this study, we focus on the personal health care (PHC) sector, which includes the goods and services rendered to treat or prevent a specific disease or condition in an individual. The official 2007 NHEA estimate for PHC spending is $1,915 billion and the MEPS estimate is $1,126 billion. Adjusting the NHEA estimates for differences in underlying populations, covered services, and other measurement concepts reduces the NHEA estimate for 2007 to $1,366 billion. As a result, MEPS is $240 billion, or 17.6 percent, less than the adjusted NHEA total.
Sheena Mary, Y; Yohannan Panicker, C; Anto, P L; Sapnakumari, M; Narayana, B; Sarojini, B K
2015-01-25
(2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one is synthesized by using 2,4-dichloroacetophenone and 3,4,5-trimethoxybenzaldehyde in ethanol. The structure of the compound was confirmed by IR and single crystal X-ray diffraction studies. FT-IR spectrum of (2E)-1-(2,4-dichloro-phenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one was recorded and analyzed. The crystal structure is also described. The vibrational wavenumbers were computed using HF and DFT methods and are assigned with the help of potential energy distribution method. The first hyperpolarizability and infrared intensities are also reported. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated (DFT) values. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. MEP was performed by the DFT method. From the MEP map of the title molecule, negative region is mainly localized over the electronegative oxygen atoms, in the carbonyl group and the oxygen atom O4 of the methoxy group and the maximum positive region is localized on the phenyl rings. Copyright © 2014 Elsevier B.V. All rights reserved.
Niyazov, D M; Butler, A J; Kadah, Y M; Epstein, C M; Hu, X P
2005-07-01
To compare fMRI activations during movement and motor imagery to corresponding motor evoked potential (MEP) maps obtained with the TMS coil in three different orientations. fMRI activations during executed (EM) and imagined (IM) movements of the index finger were compared to MEP maps of the first dorsal interosseus (FDI) muscle obtained with the TMS coil in anterior, posterior and lateral handle positions. To ensure spatial registration of fMRI and MEP maps, a special grid was used in both experiments. No statistically significant difference was found between the TMS centers of gravity (TMS CoG) obtained with the three coil orientations. There was a significant difference between fMRI centers of gravity during IMs (IM CoG) and EMs (EM CoG), with IM CoGs localized on average 10.3mm anterior to those of EMs in the precentral gyrus. Most importantly, the IM CoGs closely matched cortical projections of the TMS CoGs while the EM CoGs were on average 9.5mm posterior to the projected TMS CoGs. TMS motor maps are more congruent with fMRI activations during motor imagery than those during EMs. These findings are not significantly affected by changing orientation of the TMS coil. Our results suggest that the discrepancy between fMRI and TMS motor maps may be largely due to involvement of the somatosensory component in the EM task.
Runnalls, Keith D.; Anson, Greg; Wolf, Steven L.; Byblow, Winston D.
2014-01-01
Abstract Partial weight support may hold promise as a therapeutic adjuvant during rehabilitation after stroke by providing a permissive environment for reducing the expression of abnormal muscle synergies that cause upper limb impairment. We explored the neurophysiological effects of upper limb weight support in 13 healthy young adults by measuring motor‐evoked potentials (MEPs) from transcranial magnetic stimulation (TMS) of primary motor cortex and electromyography from anterior deltoid (AD), biceps brachii (BB), extensor carpi radialis (ECR), and first dorsal interosseous (FDI). Five levels of weight support, varying from none to full, were provided to the arm using a commercial device (Saebo Mobile Arm Support). For each level of support, stimulus–response (SR) curves were derived from MEPs across a range of TMS intensities. Weight support affected background EMG activity in each of the four muscles examined (P <0.0001 for each muscle). Tonic background activity was primarily reduced in the AD. Weight support had a differential effect on the size of MEPs across muscles. After curve fitting, the SR plateau for ECR increased at the lowest support level (P =0.004). For FDI, the SR plateau increased at the highest support level (P =0.0003). These results indicate that weight support of the proximal upper limb modulates corticomotor excitability across the forearm and hand. The findings support a model of integrated control of the upper limb and may inform the use of weight support in clinical settings. PMID:25501435
Nouns referring to tools and natural objects differentially modulate the motor system.
Gough, Patricia M; Riggio, Lucia; Chersi, Fabian; Sato, Marc; Fogassi, Leonardo; Buccino, Giovanni
2012-01-01
While increasing evidence points to a critical role for the motor system in language processing, the focus of previous work has been on the linguistic category of verbs. Here we tested whether nouns are effective in modulating the motor system and further whether different kinds of nouns - those referring to artifacts or natural items, and items that are graspable or ungraspable - would differentially modulate the system. A Transcranial Magnetic Stimulation (TMS) study was carried out to compare modulation of the motor system when subjects read nouns referring to objects which are Artificial or Natural and which are Graspable or Ungraspable. TMS was applied to the primary motor cortex representation of the first dorsal interosseous (FDI) muscle of the right hand at 150 ms after noun presentation. Analyses of Motor Evoked Potentials (MEPs) revealed that across the duration of the task, nouns referring to graspable artifacts (tools) were associated with significantly greater MEP areas. Analyses of the initial presentation of items revealed a main effect of graspability. The findings are in line with an embodied view of nouns, with MEP measures modulated according to whether nouns referred to natural objects or artifacts (tools), confirming tools as a special class of items in motor terms. Additionally our data support a difference for graspable versus non graspable objects, an effect which for natural objects is restricted to initial presentation of items. Copyright © 2011 Elsevier Ltd. All rights reserved.
Proba-V Mission Exploitation Platform
NASA Astrophysics Data System (ADS)
Goor, Erwin; Dries, Jeroen
2017-04-01
VITO and partners developed the Proba-V Mission Exploitation Platform (MEP) as an end-to-end solution to drastically improve the exploitation of the Proba-V (a Copernicus contributing mission) EO-data archive (http://proba-v.vgt.vito.be/), the past mission SPOT-VEGETATION and derived vegetation parameters by researchers, service providers and end-users. The analysis of time series of data (+1PB) is addressed, as well as the large scale on-demand processing of near real-time data on a powerful and scalable processing environment. Furthermore data from the Copernicus Global Land Service is in scope of the platform. From November 2015 an operational Proba-V MEP environment, as an ESA operation service, is gradually deployed at the VITO data center with direct access to the complete data archive. Since autumn 2016 the platform is operational and yet several applications are released to the users, e.g. - A time series viewer, showing the evolution of Proba-V bands and derived vegetation parameters from the Copernicus Global Land Service for any area of interest. - Full-resolution viewing services for the complete data archive. - On-demand processing chains on a powerfull Hadoop/Spark backend e.g. for the calculation of N-daily composites. - Virtual Machines can be provided with access to the data archive and tools to work with this data, e.g. various toolboxes (GDAL, QGIS, GrassGIS, SNAP toolbox, …) and support for R and Python. This allows users to immediately work with the data without having to install tools or download data, but as well to design, debug and test applications on the platform. - A prototype of jupyter Notebooks is available with some examples worked out to show the potential of the data. Today the platform is used by several third party projects to perform R&D activities on the data, and to develop/host data analysis toolboxes. In parallel the platform is further improved and extended. From the MEP PROBA-V, access to Sentinel-2 and landsat data will be available as well soon. Users can make use of powerful Web based tools and can self-manage virtual machines to perform their work on the infrastructure at VITO with access to the complete data archive. To realise this, private cloud technology (openStack) is used and a distributed processing environment is built based on Hadoop. The Hadoop ecosystem offers a lot of technologies (Spark, Yarn, Accumulo, etc.) which we integrate with several open-source components (e.g. Geotrellis). The impact of this MEP on the user community will be high and will completely change the way of working with the data and hence open the large time series to a larger community of users. The presentation will address these benefits for the users and discuss on the technical challenges in implementing this MEP. Furthermore demonstrations will be done. Platform URL: https://proba-v-mep.esa.int/
Prevalence and Costs of Five Chronic Conditions in Children
ERIC Educational Resources Information Center
Miller, Gabrielle F.; Coffield, Edward; Leroy, Zanie; Wallin, Robin
2016-01-01
The objective is to examine the prevalence and health-care costs associated with asthma, epilepsy, hypertension, food allergies, and diabetes in children aged 0-18 years. Prevalence was calculated using 2005-2012 Medical Expenditure Panel Survey (MEPS) data, a population-based, nationally representative sample. Using MEPS, two-part models…
State Title I Migrant Participation Information 1996-97.
ERIC Educational Resources Information Center
Henderson, Allison; Daft, Julie; Fong, Pauline
The Migrant Education Program (MEP) is a federal formula grant to states to provide migratory children aged 3-21 with services that address special needs resulting from continual educational disruption. Services can be instructional or supporting, such as social work and health. This report summarizes MEP participation information provided by…
NASA Technical Reports Server (NTRS)
Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.
1988-01-01
This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined.
Migrant Education Program. Comprehensive Needs Assessment
ERIC Educational Resources Information Center
Minnesota Department of Education, 2013
2013-01-01
The primary purpose of the Minnesota Migrant Education Program (MEP) is to help migrant children and youth overcome challenges of mobility, frequent absences, late enrollment into school, social isolation, and other difficulties associated with a migratory life, in order that they might succeed in school. Furthermore, the Minnesota MEP must give…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... regionally-based MEP center and local technology resources. The management and operational structure of an... Center? a. Organizational Structure. Completeness and appropriateness of the organizational structure... performance, and strengthen the global competitiveness of primarily small- and medium-sized U.S.-based...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
.... The management and operational structure of an MEP center is not prescribed, but should be based upon... Center? (1) Organizational Structure. Completeness and appropriateness of the organizational structure... primarily small- and medium-sized U.S. based manufacturing firms in its service region. Manufacturing...
76 FR 43264 - Proposed Information Collection; Comment Request; NIST MEP Client Impact Survey
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
... Collection; Comment Request; NIST MEP Client Impact Survey AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice. SUMMARY: The Department of Commerce, as part of its continuing... Christopher Carbone, (301) 975-2952, [email protected]nist.gov . SUPPLEMENTARY INFORMATION: I. Abstract Sponsored by...
78 FR 41985 - Qualification of Drivers; Exemption Applications; Epilepsy and Seizure Disorders
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-12
....dot.gov/rules-regulations/topics/mep/mep-reports.htm , under Seizure Disorders, and are in the docket... trauma; infections; intracranial hemorrhage; post-operative complications from brain surgery with... while on a new medication following back surgery. He has remained seizure free since that time. He takes...
What Makes the Muscle Twitch: Motor System Connectivity and TMS-Induced Activity.
Volz, Lukas J; Hamada, Masashi; Rothwell, John C; Grefkes, Christian
2015-09-01
Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) evokes several volleys of corticospinal activity. While the earliest wave (D-wave) originates from axonal activation of cortico-spinal neurons (CSN), later waves (I-waves) result from activation of mono- and polysynaptic inputs to CSNs. Different coil orientations preferentially stimulate cortical elements evoking different outputs: latero-medial-induced current (LM) elicits D-waves and short-latency electromyographic responses (MEPs); posterior-anterior current (PA) evokes early I-waves. Anterior-posterior current (AP) is more variable and tends to recruit later I-waves, featuring longer onset latencies compared with PA-TMS. We tested whether the variability in response to AP-TMS was related to functional connectivity of the stimulated M1 in 20 right-handed healthy subjects who underwent functional magnetic resonance imaging while performing an isometric contraction task. The MEP-latency after AP-TMS (relative to LM-TMS) was strongly correlated with functional connectivity between the stimulated M1 and a network involving cortical premotor areas. This indicates that stronger premotor-M1 connectivity increases the probability that AP-TMS recruits shorter latency input to CSNs. In conclusion, our data strongly support the hypothesis that TMS of M1 activates distinct neuronal pathways depending on the orientation of the stimulation coil. Particularly, AP currents seem to recruit short latency cortico-cortical projections from premotor areas. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sayin, Koray; Karakaş, Duran
2015-06-01
Quantum chemical calculations are performed on [MgO2Ti2(OPri)6] and [MgO2Ti2(OPri)2(L)4] complexes. L is acetylacetonate (acac) and benzoylacetonate (bzac) anion. The crystal structures of these complexes have not been obtained as experimentally but optimized structures of these complexes are obtained as theoretically in this study. Universal force field (UFF) and DFT/B3LYP method are used to obtain optimized structures. Theoretical spectral analysis (IR, 1H and 13C NMR) is compared with their experimental values. A good agreement is found between experimental and theoretical spectral analysis. These results mean that the optimized structures of mentioned complexes are appropriate. Additionally, the active sites of mentioned complexes are determined by molecular electrostatic potential (MEP) diagrams and non-linear optical (NLO) properties are investigated.
Post-exercise cortical depression following repetitive passive finger movement.
Otsuka, Ryohei; Sasaki, Ryoki; Tsuiki, Shota; Kojima, Sho; Onishi, Hideaki
2017-08-24
This study aimed to clarify the influence of range of repetitive passive finger movement on corticospinal excitability. Thirteen healthy subjects participated in this study. Passive index finger adduction-abduction movements were performed from 15° abduction to 15° adduction, 15° abduction to 0°, 0° to 15° adduction, and 15° adduction to 30° adduction, each at 15°/s for 10min on separate days. Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and M- and F-waves were measured before and after each repetitive passive index finger movement protocol to evaluate changes in corticospinal excitability. MEP amplitude significantly decreased after all passive movements, while F-wave amplitude, F-wave persistence, and M-wave amplitude remained stable. These results suggest that cortical excitability decreases after repetitive passive movement. However, the range of repetitive passive movement does not markedly influence the magnitude of cortical depression. Copyright © 2017 Elsevier B.V. All rights reserved.
Corticospinal Excitability in Children with Congenital Hemiparesis
Chen, Chao-Ying; Rich, Tonya L.; Cassidy, Jessica M.; Gillick, Bernadette T.
2016-01-01
Transcranial magnetic stimulation (TMS) can be used as an assessment or intervention to evaluate or influence brain activity in children with hemiparetic cerebral palsy (CP) commonly caused by perinatal stroke. This communication report analyzed data from two clinical trials using TMS to assess corticospinal excitability in children and young adults with hemiparetic CP. The results of this communication revealed a higher probability of finding a motor evoked potential (MEP) on the non-lesioned hemisphere compared to the lesioned hemisphere (p = 0.005). The resting motor threshold (RMT) was lower on the non-lesioned hemisphere than the lesioned hemisphere (p = 0.013). There was a significantly negative correlation between age and RMT (rs = −0.65, p = 0.003). This communication provides information regarding MEP responses, motor thresholds (MTs) and the association with age during TMS assessment in children with hemiparetic CP. Such findings contribute to the development of future pediatric studies in neuroplasticity and neuromodulation to influence motor function and recovery after perinatal stroke. PMID:27775599
Investigation of anticancer properties of caffeinated complexes via computational chemistry methods
NASA Astrophysics Data System (ADS)
Sayin, Koray; Üngördü, Ayhan
2018-03-01
Computational investigations were performed for 1,3,7-trimethylpurine-2,6-dione, 3,7-dimethylpurine-2,6-dione, their Ru(II) and Os(III) complexes. B3LYP/6-311 ++G(d,p)(LANL2DZ) level was used in numerical calculations. Geometric parameters, IR spectrum, 1H-, 13C and 15N NMR spectrum were examined in detail. Additionally, contour diagram of frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) maps, MEP contour and some quantum chemical descriptors were used in the determination of reactivity rankings and active sites. The electron density on the surface was similar to each other in studied complexes. Quantum chemical descriptors were investigated and the anticancer activity of complexes were more than cisplatin and their ligands. Additionally, molecular docking calculations were performed in water between related complexes and a protein (ID: 3WZE). The most interact complex was found as Os complex. The interaction energy was calculated as 342.9 kJ/mol.
NASA Astrophysics Data System (ADS)
Obuchi, Tomoyuki; Monasson, Rémi
2015-09-01
The maximum entropy principle (MEP) is a very useful working hypothesis in a wide variety of inference problems, ranging from biological to engineering tasks. To better understand the reasons of the success of MEP, we propose a statistical-mechanical formulation to treat the space of probability distributions constrained by the measures of (experimental) observables. In this paper we first review the results of a detailed analysis of the simplest case of randomly chosen observables. In addition, we investigate by numerical and analytical means the case of smooth observables, which is of practical relevance. Our preliminary results are presented and discussed with respect to the efficiency of the MEP.
Casula, Elias P; Tarantino, Vincenza; Basso, Demis; Arcara, Giorgio; Marino, Giuliana; Toffolo, Gianna Maria; Rothwell, John C; Bisiacchi, Patrizia S
2014-09-01
The neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) have been mostly investigated by peripheral motor-evoked potentials (MEPs). New TMS-compatible EEG systems allow a direct investigation of the stimulation effects through the analysis of TMS-evoked potentials (TEPs). We investigated the effects of 1-Hz rTMS over the primary motor cortex (M1) of 15 healthy volunteers on TEP evoked by single pulse TMS over the same area. A second experiment in which rTMS was delivered over the primary visual cortex (V1) of 15 healthy volunteers was conducted to examine the spatial specificity of the effects. Single-pulse TMS evoked four main components: P30, N45, P60 and N100. M1-rTMS resulted in a significant decrease of MEP amplitude and in a significant increase of P60 and N100 amplitude. There was no effect after V1-rTMS. 1-Hz rTMS appears to increase the amount of inhibition following a TMS pulse, as demonstrated by the higher N100 and P60, which are thought to originate from GABAb-mediated inhibitory post-synaptic potentials. Our results confirm the reliability of the TMS-evoked N100 as a marker of cortical inhibition and provide insight into the neuromodulatory effects of 1-Hz rTMS. The present finding could be of relevance for therapeutic and diagnostic purposes. Copyright © 2014 Elsevier Inc. All rights reserved.
Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H
2016-03-01
An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor recovery and substantial CST outgrowth with only 27 min of daily stimulation compared with 6h, as in our prior study, making it a potential therapy for humans with spinal cord injury. Copyright © 2015 Elsevier Inc. All rights reserved.
Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H.
2016-01-01
An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 minutes after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 minutes. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS + c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 minutes/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor recovery and substantial CST outgrowth with only 27 minutes of daily stimulation compared with 6 hours, as in our prior study, making it a potential therapy for humans with spinal cord injury. PMID:26708732
Series expansion of the modified Einstein Procedure
Seema Chandrakant Shah-Fairbank
2009-01-01
This study examines calculating total sediment discharge based on the Modified Einstein Procedure (MEP). A new procedure based on the Series Expansion of the Modified Einstein Procedure (SEMEP) has been developed. This procedure contains four main modifications to MEP. First, SEMEP solves the Einstein integrals quickly and accurately based on a series expansion. Next,...
ERIC Educational Resources Information Center
Gilbert, Leslie
Designed to disseminate information to the post-school sector of United Kingdom education, this directory provides information on 50 microcomputer software packages developed by the Microelectronics Education Program (MEP) and available through educational publishers. Subject areas represented include accountancy, biology, business education,…
34 CFR 200.84 - Responsibilities of SEAs for evaluating the effectiveness of the MEP.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Responsibilities of SEAs for evaluating the... ACADEMIC ACHIEVEMENT OF THE DISADVANTAGED Migrant Education Program § 200.84 Responsibilities of SEAs for evaluating the effectiveness of the MEP. Each SEA must determine the effectiveness of its program through a...
State Title I Migrant Participation Information, 1999-2000. Doc # 2003-9
ERIC Educational Resources Information Center
Daft, Julie
2004-01-01
States use Migrant Education Program (MEP) funds to ensure that migrant children are provided with appropriate services that address the special needs caused by the effects of continual educational disruption. MEP services are usually delivered by schools, districts and/or other public or private organizations and can be instructional (reading,…
State Title I Migrant Participation Information, 1997-98.
ERIC Educational Resources Information Center
Henderson, Allison; Daft, Julie; Fong, Pauline
The Migrant Education Program (MEP) is a federal formula grant to states for educational services to migrant children, ages 3-21, who made an eligible move in the past 3 years. States use MEP funds to address effects of continual educational disruption by providing instructional or supporting services. This report summarizes participation…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... factors as the approved models, are validated by experimental test data, and receive the Administrator's... stage of the MEP involves applying the model against a database of experimental test cases including..., particularly the requirement for validation by experimental test data. That guidance is based on the MEP's...
ERIC Educational Resources Information Center
Hill, Laura E.; Hayes, Joseph M.
2007-01-01
This report examines a little noticed group of Californians: young immigrants not in school and who receive few if any educational services. The authors also observe the federal Migrant Education Program (MEP), charged with helping this group. Using MEP and census data, the authors find that many out-of-school youth work, left school while quite…
77 FR 55811 - Manufacturing Extension Partnership Advisory Board On-line Open Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... Partnership Advisory Board On-line Open Meeting AGENCY: National Institute of Standards and Technology (NIST), Commerce ACTION: Notice of open meeting. SUMMARY: The National Institute of Standards and Technology (NIST... August 29, 2012, 2) an update on the NIST MEP FY 2013 budget, and 3) updates on changes to NIST MEP's...
34 CFR 200.86 - Use of MEP funds in schoolwide projects.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 1 2012-07-01 2012-07-01 false Use of MEP funds in schoolwide projects. 200.86 Section 200.86 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE DISADVANTAGED...
NASA Astrophysics Data System (ADS)
Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.
2015-10-01
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.
NASA Astrophysics Data System (ADS)
Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng
2017-09-01
The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.
Modeling of Dolichol Mass Spectra Isotopic Envelopes as a Tool to Monitor Isoprenoid Biosynthesis.
Jozwiak, Adam; Lipko, Agata; Kania, Magdalena; Danikiewicz, Witold; Surmacz, Liliana; Witek, Agnieszka; Wojcik, Jacek; Zdanowski, Konrad; Pączkowski, Cezary; Chojnacki, Tadeusz; Poznanski, Jaroslaw; Swiezewska, Ewa
2017-06-01
The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis ( Arabidopsis thaliana ). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes. © 2017 American Society of Plant Biologists. All Rights Reserved.
Kania, Magdalena; Witek, Agnieszka; Wojcik, Jacek; Zdanowski, Konrad; Pączkowski, Cezary; Chojnacki, Tadeusz; Poznanski, Jaroslaw
2017-01-01
The cooperation of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways, operating in parallel in plants to generate isoprenoid precursors, has been studied extensively. Elucidation of the isoprenoid metabolic pathways is indispensable for the rational design of plant and microbial systems for the production of industrially valuable terpenoids. Here, we describe a new method, based on numerical modeling of mass spectra of metabolically labeled dolichols (Dols), designed to quantitatively follow the cooperation of MVA and MEP reprogrammed upon osmotic stress (sorbitol treatment) in Arabidopsis (Arabidopsis thaliana). The contribution of the MEP pathway increased significantly (reaching 100%) exclusively for the dominating Dols, while for long-chain Dols, the relative input of the MEP and MVA pathways remained unchanged, suggesting divergent sites of synthesis for dominating and long-chain Dols. The analysis of numerically modeled Dol mass spectra is a novel method to follow modulation of the concomitant activity of isoprenoid-generating pathways in plant cells; additionally, it suggests an exchange of isoprenoid intermediates between plastids and peroxisomes. PMID:28385729
Joksimovic, Boban; Szelenyi, Andrea; Seifert, Volker; Damjanovic, Aleksandar; Damjanovic, Aleksandra; Rasulic, Lukas
2015-05-01
To evaluate the relationship between stimulus intensity by constant current transcranial electric stimulation and interstimulus interval (ISI) for eliciting muscle motor evoked potentials (MEPs) in three different hand muscles and the tibialis anterior muscles. We tested intraoperatively different monophasic constant current pulses and ISIs in 22 patients with clinically normal motor function. Motor thresholds of contralateral muscle MEPs were determined at 0.5 milliseconds (ms) pulse duration and ISIs of 1, 2, 3, 4, 5, and 10 ms using a train of 2, 3, and 5 monophasic constant current pulses of 62 to 104 mA before craniotomy and after closure of the dura mater. The lowest stimulation threshold to elicit MEPs in the examined muscles was achieved with a train of 5 pulses (ISI: 3 ms) before craniotomy, which was statistically significant compared with 2 pulses (ISI: 3 ms) as well as 3 pulses (ISIs: 3 and 10 ms). An ISI of 3 ms gave the lowest motor thresholds with statistical significance compared with the ISIs of 4 ms (2 pulses) and of 1 ms (3 pulses). All current intensity (mA) and ISI (ms) relationship graphs had a trend of the exponential function as y = a + bx + c ρ (x), where y is intensity (mA) and x is ISI (ms). The minimum of the function was determined for each patient and each muscle. The difference was statistically significant between 3 and 5 pulses before craniotomy and between 3 and 5 pulses and 2 and 5 pulses after closure of the dura mater. In adult neurosurgical patients with a normal motor status, a train of 5 pulses and an ISI of 3 ms provide the lowest motor thresholds. We provided evidence of the dependence of required stimulation current on ISI. Georg Thieme Verlag KG Stuttgart · New York.
Maximum ecological potential of tropical reservoirs and benthic invertebrate communities.
Molozzi, Joseline; Feio, Maria João; Salas, Fuensanta; Marques, João Carlos; Callisto, Marcos
2013-08-01
The Reference Condition Approach (RCA) is now widely adopted as a basis for the evaluation of the ecological quality of water bodies. In accordance with the RCA, the integrity of communities found in a given location should be analyzed according to their deviation from the communities that would be expected in the absence of anthropogenic disturbances. The RCA was used here with the aim of defining the Maximum Ecological Potential (MEP) of tropical reservoirs located in the hydrographical basin of the Paraopeba River in the state of Minas Gerais, Brazil. Among the reservoirs, Serra Azul is used as a water supply and is located in a core area of environmental protection where tourism is not allowed and the native vegetation is conserved. The benthic macroinvertebrate communities at 90 sites located in three reservoirs were analyzed and sampled every 3 months over 2 years. The temporal patterns of the communities in the three reservoirs were analyzed (2nd-STAGE MDS and ANOSIM) and were not significantly related to seasonal fluctuations in temperature and precipitation. Twenty-eight sites belonging to the Serra Azul reservoir were selected to define the MEP of these reservoirs because these sites had the lowest human disturbance levels. The macroinvertebrate taxa present in the selected MEP sites are similar to those of natural lakes and different from the communities of disturbed sites. The biological classification of these sites revealed two groups with distinct macroinvertebrate communities. This distinction was related to climatic variables, bottom substrate type, the presence of gravel/boulders, coarse sand, silt, clay or muck, depth, and the shoreline substrate zone. These two subsets of biological communities and respective environmental conditions can serve as a basis for the future implementation of ecological quality monitoring programs for tropical reservoirs in the study area. This approach can also, however, be implemented in other geographic areas with artificial or heavily modified water bodies.
Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults.
Opie, George M; Vosnakis, Eleni; Ridding, Michael C; Ziemann, Ulf; Semmler, John G
Primary motor cortex neuroplasticity is reduced in old adults, which may contribute to the motor deficits commonly observed in the elderly. Previous research in young subjects suggests that the neuroplastic response can be enhanced using non-invasive brain stimulation (NIBS), with a larger plastic response observed following priming with both long-term potentiation (LTP) and depression (LTD)-like protocols. However, it is not known if priming stimulation can also modulate plasticity in older adults. To investigate if priming NIBS can be used to modulate motor cortical plasticity in old subjects. In 16 young (22.3 ± 1.0 years) and 16 old (70.2 ± 1.7 years) subjects, we investigated the response to intermittent theta burst stimulation (iTBS; LTP-like) when applied 10 min after sham stimulation, continuous TBS (cTBS; LTD-like) or an identical block of iTBS. Corticospinal plasticity was assessed by recording changes in motor evoked potential (MEP) amplitude. In young subjects, priming with cTBS (cTBS + iTBS) resulted in larger MEPs than priming with either iTBS (iTBS + iTBS; P = 0.001) or sham (sham + iTBS; P < 0.0001), while larger MEPs were seen following iTBS + iTBS than sham + iTBS (P < 0.0001). In old subjects, the response to iTBS + iTBS was not different to sham + iTBS (P > 0.9), whereas the response to cTBS + iTBS was reduced relative to iTBS + iTBS (P = 0.02) and sham + iTBS (P = 0.04). Priming TBS is ineffective for modifying M1 plasticity in older adults, which may limit the therapeutic use of priming stimulation in neurological conditions common in the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.
Microencapsulation and Electrostatic Processing Device
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)
2001-01-01
A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.
Ghirardo, Andrea; Wright, Louwrance Peter; Bi, Zhen; Rosenkranz, Maaria; Pulido, Pablo; Rodríguez-Concepción, Manuel; Niinemets, Ülo; Brüggemann, Nicolas; Gershenzon, Jonathan; Schnitzler, Jörg-Peter
2014-01-01
The plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-d-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties. PMID:24590857
Ghirardo, Andrea; Wright, Louwrance Peter; Bi, Zhen; Rosenkranz, Maaria; Pulido, Pablo; Rodríguez-Concepción, Manuel; Niinemets, Ülo; Brüggemann, Nicolas; Gershenzon, Jonathan; Schnitzler, Jörg-Peter
2014-05-01
The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
Magneto-electronic phase separation in doped cobaltites
NASA Astrophysics Data System (ADS)
He, Chunyong
This thesis work mainly focuses on magneto-electronic phase separation (MEPS), an effect where chemically homogeneous materials display inhomogeneous magnetic and electronic properties. A model system La1-xSrxCoO3 (LSCO) is chosen for the study of MEPS. The doping evolution of MEPS in LSCO single crystals is extensively studied through complementary experimental techniques including heat capacity, small angle neutron scattering, magnetometry, and transport. It is found that there exists a finite doping range over which MEPS occurs. The doping range determined from different experimental techniques is found to be in good agreement. Also, this same doping range is reproduced by statistical simulations incorporating local compositional fluctuations. The excellent agreement between experimental data and statistical simulations leads to the conclusion that the MEPS in LSCO is driven solely by inevitable local compositional fluctuations at nanoscopic length scales. Such a conclusion indicates that nanoscopic MEPS is doping fluctuation-driven rather than electronically-driven in LSCO. The effect of microscopic magneto-electronic phase separation on electrical transport in LSCO is also examined. It is demonstrated (i) that the T = 0 metal-insulator transition can be understood within double exchange-modified percolation framework, and, (ii) that the onset of a phase-pure low T ferromagnetic state at high x has a profound effect on the high T transport. In addition, a new origin for finite spin Co ions in LaCoO3 is revealed via a Schottky Anomaly in the heat capacity, which was not previously known. Such a discovery casts a new understanding of the spin state at low temperature. Via small-angle neutron scattering and d.c. susceptibility, it is revealed that short-range ordered FM clusters exist below a well-defined temperature (T*) in highly doped LSCO. It is demonstrated that the characteristics of this clustered state appear quite unlike those of a Griffiths phase. Finally, through magenetometry and SANS, the magneto-crystalline anisotropy of highly doped LSCO is studied and the easy and hard magnetization axes are determined.
Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.
Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe
2018-04-19
To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.
Casas Ferreira, Ana María; Moreno Cordero, Bernardo; Pérez Pavón, José Luis
2017-02-01
Sometimes it is not necessary to separate the individual compounds of a sample to resolve an analytical problem, it is enough to obtain a signal profile of the sample formed by all the components integrating it. Within this strategy, electronic noses based on the direct coupling of a headspace sampler with a mass spectrometer (HS-MS) have been proposed. Nevertheless, this coupling is not suitable for the analysis of non-volatile compounds. In order to propose an alternative to HS-MS determinations for non-volatile compounds, here we present the first 'proof of concept' use of the direct coupling of microextraction by packed sorbents (MEPS) to a mass spectrometer device using an electron ionization (EI) and a single quadrupole as ionization source and analyzer, respectively. As target compounds, a set of analytes with different physic-chemical properties were evaluated (2-ethyl-1-hexanol, styrene, 2-heptanone, among others). The use of MEPS extraction present many advantages, such as it is fast, simple, easy to automate and requires small volumes of sample and organic solvents. Moreover, MEPS cartridges are re-usable as samples can be extracted more than 100 times using the same syringe. In order to introduce into the system all the elution volume from the MEPS extraction, a programmable temperature vaporizer (PTV) is proposed as the injector device. Results obtained with the proposed methodology (MEPS-PTV/MS) were compared with the ones obtained based on the separative scheme, i.e. using gas chromatography separation (MEPS-PTV-GC/MS), and both methods provided similar results. Limits of detection were found to be between 3.26 and 146.6μgL -1 in the non-separative scheme and between 0.02 and 1.72μgL -1 when the separative methodology was used. Repeatability and reproducibility were evaluated with values below 17% in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.
Donovan, Edward R; Keeney, Brooke K; Kung, Eric; Makan, Sirish; Wild, J Martin; Altshuler, Douglas L
2013-01-01
Flying animals exhibit profound transformations in anatomy, physiology, and neural architecture. Although much is known about adaptations in the avian skeleton and musculature, less is known about neuroanatomy and motor unit integration for bird flight. Hummingbirds are among the most maneuverable and specialized of vertebrate fliers, and two unusual neuromuscular features have been previously reported: (1) the pectoralis major has a unique distribution pattern of motor end plates (MEPs) compared with all other birds and (2) electromyograms (EMGs) from the hummingbird's pectoral muscles, the pectoralis major and the supracoracoideus, show activation bursts composed of one or a few spikes that appear to have a very consistent pattern. Here, we place these findings in a broader context by comparing the MEPs, EMGs, and organization of the spinal motor neuron pools of flight muscles of Anna's hummingbird Calypte anna, zebra finches Taeniopygia guttata, and, for MEPs, several other species. The previously shown MEP pattern of the hummingbird pectoralis major is not shared with its closest taxonomic relative, the swift, and appears to be unique to hummingbirds. MEP arrangements in previously undocumented wing muscles show patterns that differ somewhat from other avian muscles. In the parallel-fibered strap muscles of the shoulder, MEP patterns appear to relate to muscle length, with the smallest muscles having fibers that span the entire muscle. MEP patterns in pennate distal wing muscles were the same regardless of size, with tightly clustered bands in the middle portion of the muscle, not evenly distributed bands over the muscle's entire length. Muscle activations were examined during slow forward flight in both species, during hovering in hummingbirds, and during slow ascents in zebra finches. The EMG bursts of a wing muscle, the pronator superficialis, were highly variable in peak number, size, and distribution across wingbeats for both species. In the pectoralis major, although the individual EMG bursts were much shorter in duration in hummingbirds relative to zebra finches, the variables describing the normalized amplitude and area of the activation bursts were otherwise indistinguishable between taxa during these flight modes. However, the degree of variation in the time intervals between EMG peaks was much lower in hummingbirds, which is a plausible explanation for the "patterned" EMG signals reported previously.
Predictors of Urinary Bisphenol A and Phthalate Metabolite Concentrations in Mexican Children
Lewis, Ryan C.; Meeker, John D.; Peterson, Karen E.; Lee, Joyce M.; Pace, Gerry G.; Cantoral, Alejandra; Téllez-Rojo, Martha Maria
2013-01-01
Exposure to endocrine disrupting chemicals such as bisphenol A (BPA) and phthalates is prevalent among children and adolescents, but little is known regarding important sources of exposure at these sensitive life stages. In this study, we measured urinary concentrations of BPA and nine phthalate metabolites in 108 Mexican children aged 8–13 years. Associations of age, time of day, and questionnaire items on external environment, water use, and food container use with specific gravity-corrected urinary concentrations were assessed, as were questionnaire items concerning the use of 17 personal care products in the past 48-hr. As a secondary aim, third trimester urinary concentrations were measured in 99 mothers of these children, and the relationship between specific gravity-corrected urinary concentrations at these two time points was explored. After adjusting for potential confounding by other personal care product use in the past 48-hr, there were statistically significant (p <0.05) positive associations in boys for cologne/perfume use and monoethyl phthalate (MEP), mono(3-carboxypropyl) phthalate (MCPP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and in girls for colored cosmetics use and mono-n-butyl phthalate (MBP), mono(2-ethylhexyl) phthalate (MEHP), MEHHP, MEOHP, and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), conditioner use and MEP, deodorant use and MEP, and other hair products use and MBP. There was a statistically significant positive trend for the number of personal care products used in the past 48-hr and log-MEP in girls. However, there were no statistically significant associations between the analytes and the other questionnaire items and there were no strong correlations between the analytes measured during the third trimester and at 8–13 years of age. We demonstrated that personal care product use is associated with exposure to multiple phthalates in children. Due to rapid development, children may be susceptible to impacts from exposure to endocrine disrupting chemicals; thus, reduced or delayed use of certain personal care products among children may be warranted. PMID:24041567
A global framework to model spatial ecosystems exposure to home and personal care chemicals in Asia.
Wannaz, Cedric; Franco, Antonio; Kilgallon, John; Hodges, Juliet; Jolliet, Olivier
2018-05-01
This paper analyzes spatially ecosystem exposure to home and personal care (HPC) chemicals, accounting for market data and environmental processes in hydrological water networks, including multi-media fate and transport. We present a global modeling framework built on ScenAT (spatial scenarios of emission), SimpleTreat (sludge treatment plants), and Pangea (spatial multi-scale multimedia fate and transport of chemicals), that we apply across Asia to four chemicals selected to cover a variety of applications, volumes of production and emission, and physico-chemical and environmental fate properties: the anionic surfactant linear alkylbenzene sulphonate (LAS), the antimicrobial triclosan (TCS), the personal care preservative methyl paraben (MeP), and the emollient decamethylcyclopentasiloxane (D5). We present maps of predicted environmental concentrations (PECs) and compare them with monitored values. LAS emission levels and PECs are two to three orders of magnitude greater than for other substances, yet the literature about monitored levels of LAS in Asia is very limited. We observe a good agreement for TCS in freshwater (Pearson r=0.82, for 253 monitored values covering 12 streams), a moderate agreement in general, and a significant model underestimation for MeP in sediments. While most differences could be explained by uncertainty in both chemical/hydrological parameters (DT50 water , DT50 sediments , K oc , f oc , TSS) and monitoring sites (e.g. spatial/temporal design), the underestimation of MeP concentrations in sediments may involve potential natural sources. We illustrate the relevance of local evaluations for short-lived substances in fresh water (LAS, MeP), and their inadequacy for substances with longer half-lives (TCS, D5). This framework constitutes a milestone towards higher tier exposure modeling approaches for identifying areas of higher chemical concentration, and linking large-scale fate modeling with (sub) catchment-scale ecological scenarios; a major limitation in model accuracy comes from the discrepancy between streams routed on a gridded, 0.5°×0.5° global hydrological network and actual locations of streams and monitoring sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of Training Frequency on Maximum Expiratory Pressure
ERIC Educational Resources Information Center
Anand, Supraja; El-Bashiti, Nour; Sapienza, Christine
2012-01-01
Purpose: To determine the effects of expiratory muscle strength training (EMST) frequency on maximum expiratory pressure (MEP). Method: We assigned 12 healthy participants to 2 groups of training frequency (3 days per week and 5 days per week). They completed a 4-week training program on an EMST trainer (Aspire Products, LLC). MEP was the primary…
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC. Div. of National Security and International Affairs.
A study examined the Military Education Program (MEP) for Army National Guard technicians. The MEP is an active Army program providing leadership and advanced military occupational specialty technical training. The primary objectives of the study were to determine whether the revised Reserve Component Noncommissioned Officer Education Program is a…
Low-dose mitomycin C, etoposide, and cisplatin for invasive vulvar Paget's disease.
Watanabe, Yoh; Hoshiai, H; Ueda, H; Nakai, H; Obata, K; Noda, K
2002-01-01
We report the effect of low-dose mitomycin C, etoposide, and cisplatin (low-dose MEP) therapy for three patients with invasive vulvar Paget's disease (invasive VPD) who declined radical vulvectomy and skin grafting. One patient achieved a complete response, while the other two showed partial responses (PR) without grade 3 or 4 adverse effects. The two patients with PR were undergone partial vulvectomy and inguinal lymph node dissection. All patients have no sign of recurrence for 10 months after chemotherapy. Our present results suggest that low-dose MEP is an effective and safe chemotherapy for invasive VPD and low-dose MEP may significantly improve postoperative quality of life in patients with invasive VPD by avoiding extensive vulvar resection and skin grafting.
Wang, Xiaoxue; Wu, Ningfeng; Guo, Jun; Chu, Xiaoyu; Tian, Jian; Yao, Bin; Fan, Yunliu
2008-01-18
Organophosphorus (OP) compounds are widely used as pesticides in agriculture but cause broad-area environmental pollution. In this work, we have expressed a bacterial organophosphorus hydrolase (OPH) gene in tobacco plants. An assay of enzyme activity showed that transgenic plants could secrete OPH into the growth medium. The transgenic plants were resistant to methyl parathion (Mep), an OP pesticide, as evidenced by a toxicity test showing that the transgenic plants produced greater shoot and root biomass than did the wild-type plants. Furthermore, at 0.02% (v/v) Mep, the transgenic plants degraded more than 99% of Mep after 14 days of growth. Our work indicates that transgenic plants expressing an OPH gene may provide a new strategy for decontaminating OP pollutants.
The effect of motor imagery with specific implement in expert badminton player.
Wang, Z; Wang, S; Shi, F-Y; Guan, Y; Wu, Y; Zhang, L-L; Shen, C; Zeng, Y-W; Wang, D-H; Zhang, J
2014-09-05
Motor skill can be improved with mental simulation. Implements are widely used in daily life and in various sports. However, it is unclear whether the utilization of implements enhances the effect of mental simulation. The present study was designed to investigate the different effects of motor imagery in athletes and novices when they handled a specific implement. We hypothesize that athletes have better motor imagery ability than novices when they hold a specific implement for the sport. This is manifested as higher motor cortical excitability in athletes than novices during motor imagery with the specific implement. Sixteen expert badminton players and 16 novices were compared when they held a specific implement such as a badminton racket and a non-specific implement such as a a plastic bar. Motor imagery ability was measured with a self-evaluation questionnaire. Transcranial magnetic stimulation was used to test the motor cortical excitability during motor imagery. Motor-evoked potentials (MEPs) in the first dorsal interosseous (FDI) and extensor carpi radialis muscles were recorded. Athletes reported better motor imagery than novices when they held a specific implement. Athletes exhibited more MEP facilitation than novices in the FDI muscle with the specific implement applied during motor imagery. The MEP facilitation is correlated with motor imagery ability in athletes. We conclude that the effects of motor imagery with a specific implement are enhanced in athletes compared to novices and the difference between two groups is caused by long-term physical training of athletes with the specific implement. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Directing visual attention during action observation modulates corticospinal excitability
Wood, Greg; Franklin, Zoe C.; Marshall, Ben; Riach, Martin; Holmes, Paul S.
2018-01-01
Transcranial magnetic stimulation (TMS) research has shown that corticospinal excitability is facilitated during the observation of human movement. However, the relationship between corticospinal excitability and participants’ visual attention during action observation is rarely considered. Nineteen participants took part in four conditions: (i) a static hand condition, involving observation of a right hand holding a ball between the thumb and index finger; (ii) a free observation condition, involving observation of the ball being pinched between thumb and index finger; and (iii and iv) finger-focused and ball-focused conditions, involving observation of the same ball pinch action with instructions to focus visual attention on either the index finger or the ball. Single-pulse TMS was delivered to the left motor cortex and motor evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi muscles of the right hand. Eye movements were recorded simultaneously throughout each condition. The ball-focused condition produced MEPs of significantly larger amplitude in the FDI muscle, compared to the free observation or static hand conditions. Furthermore, regression analysis indicated that the number of fixations on the ball was a significant predictor of MEP amplitude in the ball-focused condition. These results have important implications for the design and delivery of action observation interventions in motor (re)learning settings. Specifically, providing viewing instructions that direct participants to focus visual attention on task-relevant objects affected by the observed movement promotes activity in the motor system in a more optimal manner than free observation or no instructions. PMID:29304044
Pairing Voluntary Movement and Muscle-Located Electrical Stimulation Increases Cortical Excitability
Jochumsen, Mads; Niazi, Imran K.; Signal, Nada; Nedergaard, Rasmus W.; Holt, Kelly; Haavik, Heidi; Taylor, Denise
2016-01-01
Learning new motor skills has been correlated with increased cortical excitability. In this study, different location of electrical stimulation (ES), nerve, or muscle, was paired with voluntary movement to investigate if ES paired with voluntary movement (a) would increase the excitability of cortical projections to tibialis anterior and (b) if stimulation location mattered. Cortical excitability changes were quantified using motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) at varying intensities during four conditions. Twelve healthy subjects performed 50 dorsiflexions at the ankle during nerve or muscle ES at motor threshold (MTh). ES alone was delivered 50 times and the movement was performed 50 times. A significant increase in the excitability from pre- to post-intervention (P = 0.0061) and pre- to 30 min post-intervention (P = 0.017) measurements was observed when voluntary movement was paired with muscle ES located at tibialis anterior. An increase of 50 ± 57 and 28 ± 54% in the maximum MEPs was obtained for voluntary movement paired with muscle-located and nerve-located ES, respectively. The maximum MEPs for voluntary movement alone and muscle-located ES alone were −5 ± 28 and 2 ± 42%, respectively. Pairing voluntary movement with muscle-located ES increases excitability of corticospinal projections of tibialis anterior in healthy participants. This finding suggests that active participation during muscle-located ES protocols increases cortical excitability to a greater extent than stimulation alone. The next stage of this research is to investigate the effect in people with stroke. The results may have implications for motor recovery in patients with motor impairments following neurological injury. PMID:27733823
Interhemispheric modulation of dual-mode, noninvasive brain stimulation on motor function.
Park, Eunhee; Kim, Yun-Hee; Chang, Won Hyuk; Kwon, Tae Gun; Shin, Yong-Il
2014-06-01
To investigate the effects of simultaneous, bihemispheric, dual-mode stimulation using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) on motor functions and cortical excitability in healthy individuals. Twenty-five healthy, right-handed volunteers (10 men, 15 women; mean age, 25.5 years) were enrolled. All participants received four randomly arranged, dual-mode, simultaneous stimulations under the following conditions: condition 1, high-frequency rTMS over the right primary motor cortex (M1) and sham tDCS over the left M1; condition 2, high-frequency rTMS over the right M1 and anodal tDCS over the left M1; condition 3, high-frequency rTMS over the right M1 and cathodal tDCS over the left M1; and condition 4, sham rTMS and sham tDCS. The cortical excitability of the right M1 and motor functions of the left hand were assessed before and after each simulation. Motor evoked potential (MEP) amplitudes after stimulation were significantly higher than before stimulation, under the conditions 1 and 2. The MEP amplitude in condition 2 was higher than both conditions 3 and 4, while the MEP amplitude in condition 1 was higher than condition 4. The results of the Purdue Pegboard test and the box and block test showed significant improvement in conditions 1 and 2 after stimulation. Simultaneous stimulation by anodal tDCS over the left M1 with high-frequency rTMS over the right M1 could produce interhemispheric modulation and homeostatic plasticity, which resulted in modulation of cortical excitability and motor functions.
Gentilucci, Maurizio; Campione, Giovanna Cristina; Dalla Volta, Riccardo; Bernardis, Paolo
2009-12-01
Does the mirror system affect the control of speech? This issue was addressed in behavioral and Transcranial Magnetic Stimulation (TMS) experiments. In behavioral experiment 1, participants pronounced the syllable /da/ while observing (1) a hand grasping large and small objects with power and precision grasps, respectively, (2) a foot interacting with large and small objects and (3) differently sized objects presented alone. Voice formant 1 was higher when observing power as compared to precision grasp, whereas it remained unaffected by observation of the different types of foot interaction and objects alone. In TMS experiment 2, we stimulated hand motor cortex, while participants observed the two types of grasp. Motor Evoked Potentials (MEPs) of hand muscles active during the two types of grasp were greater when observing power than precision grasp. In experiments 3-5, TMS was applied to tongue motor cortex of participants silently pronouncing the syllable /da/ and simultaneously observing power and precision grasps, pantomimes of the two types of grasps, and differently sized objects presented alone. Tongue MEPs were greater when observing power than precision grasp either executed or pantomimed. Finally, in TMS experiment 6, the observation of foot interaction with large and small objects did not modulate tongue MEPs. We hypothesized that grasp observation activated motor commands to the mouth as well as to the hand that were congruent with the hand kinematics implemented in the observed type of grasp. The commands to the mouth selectively affected postures of phonation organs and consequently basic features of phonological units.
Hallett, M; Cohen, L G; Bierner, S M
1991-01-01
Magnetic stimulation of the brain can be used to investigate sensory and motor physiology and pathophysiology in intact humans. Although uncommon, it is possible for magnetic stimulation over sensorimotor cortex to produce paresthesis. With magnetic stimulation, it is also possible to block the conscious sensation of an electrical shock delivered to the index finger. The magnetic stimulus must be delivered in the interval from 300 msec before to 200 msec after the cutaneous shock and must be delivered over the contralateral hand region of the sensorimotor cortex. In a reaction time situation, the expected voluntary response may be delayed by a magnetic stimulus delivered over the sensorimotor cortex just before the movement. With the use of a relatively weak magnetic stimulus that does not produce a motor evoked potential (MEP) when the body part is at rest, but that will produce a response when the body part is activated, the reaction time can be divided into two periods. In the first period, there is no MEP and the motor cortex remains 'inexcitable'. In the second period, there is a gradual increase in MEP amplitude even though the voluntary electromyographic activity has not yet appeared. This 'excitable' period indicates the activation of motor cortex before the motor command is delivered. Application of this technique to the analysis of prolonged reaction time (akinesia) in patients with Parkinson's disease shows that the excitable period is prolonged. This describes the mechanism underlying the difficulty in the generation of a motor command in these patients.
Milot, Marie-Hélène; Spencer, Steven J.; Chan, Vicky; Allington, James P.; Klein, Julius; Chou, Cathy; Pearson-Fuhrhop, Kristin; Bobrow, James E.; Reinkensmeyer, David J.; Cramer, Steven C.
2014-01-01
Background Robotic training can help improve function of a paretic limb following a stroke, but individuals respond differently to the training. A predictor of functional gains might improve the ability to select those individuals more likely to benefit from robot based therapy. Studies evaluating predictors of functional improvement after a robotic training are scarce. One study has found that white matter tract integrity predicts functional gains following a robotic training of the hand and wrist. Objective Determine the predictive ability of behavioral and brain measures to improve selection of individuals for robotic training. Methods Twenty subjects with chronic stroke participated in an 8-week course of robotic exoskeletal training for the arm. Before training, a clinical evaluation, fMRI, diffusion tensor imaging, and transcranial magnetic stimulation (TMS) were each measured as predictors. Final functional gain was defined as change in the Box and Block Test (BBT). Measures significant in bivariate analysis were fed into a multivariate linear regression model. Results Training was associated with an average gain of 6±5 blocks on the BBT (p<0.0001). Bivariate analysis revealed that lower baseline motor evoked potential (MEP) amplitude on TMS, and lower laterality M1 index on fMRI each significantly correlated with greater BBT change. In the multivariate linear regression analysis, baseline MEP magnitude was the only measure that remained significant. Conclusion Subjects with lower baseline MEP magnitude benefited the most from robotic training of the affected arm. These subjects might have reserve remaining for the training to boost corticospinal excitability, translating into functional gains. PMID:24642382
Scibilia, Antonino; Raffa, Giovanni; Rizzo, Vincenzo; Quartarone, Angelo; Visocchi, Massimiliano; Germanò, Antonino; Tomasello, Francesco
2017-01-01
Although there is recent evidence for the role of intraoperative neurophysiological monitoring (IONM) in spine surgery, there are no uniform opinions on the optimal combination of the different tools. At our institution, multimodal IONM (mIONM) approach in spine surgery involves the evaluation of somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) with electrical transcranial stimulation, including the use of a multipulse technique with multiple myomeric registration of responses from limbs, and a single-pulse technique with D-wave registration through epi- and intradural recording, and free running and evoked electromyography (frEMG and eEMG) with bilateral recording from segmental target muscles. We analyzed the impact of the mIONM on the preservation of neuronal structures and on functional restoration in a prospective series of patients who underwent spine surgery. We observed an improvement of neurological status in 50 % of the patients. The D-wave registration was the most useful intraoperative tool, especially when MEP and SEP responses were absent or poorly recordable. Our preliminary data confirm that mIONM plays a fundamental role in the identification and functional preservation of the spinal cord and nerve roots. It is highly sensitive and specific for detecting and avoiding neurological injury during spine surgery and represents a helpful tool for achieving optimal postoperative functional outcome.
Messina, Irene; Cattaneo, Luigi; Venuti, Paola; de Pisapia, Nicola; Serra, Mauro; Esposito, Gianluca; Rigo, Paola; Farneti, Alessandra; Bornstein, Marc H.
2016-01-01
Neuroimaging reveals that infant cries activate parts of the premotor cortical system. To validate this effect in a more direct way, we used event-related transcranial magnetic stimulation (TMS). Here, we investigated the presence and the time course of modulation of motor cortex excitability in young adults who listened to infant cries. Specifically, we recorded motor evoked potentials (MEPs) from the biceps brachii (BB) and interosseus dorsalis primus (ID1) muscles as produced by TMS delivered from 0 to 250 ms after sound onset in six steps of 50 ms in 10 females and 10 males. We observed an excitatory modulation of MEPs at 100 ms from the onset of infant cry specific to females and to the ID1 muscle. We regard this modulation as a response to natural cry sounds because it was attenuated to stimuli increasingly different from natural cry and absent in a separate group of females who listened to non-cry stimuli physically matched to natural infant cries. Furthermore, the 100-ms latency of this response is not compatible with a voluntary reaction to the stimulus but suggests an automatic, bottom-up audiomotor association. The brains of adult females appear to be tuned to respond to infant cries with automatic motor excitation. PMID:26779061
USDA-ARS?s Scientific Manuscript database
The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl-phosphate (IPP) in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisi...
Closely related dermatophyte species produce different patterns of secreted proteins.
Giddey, Karin; Favre, Bertrand; Quadroni, Manfredo; Monod, Michel
2007-02-01
Dermatophytes are the most common infectious agents responsible for superficial mycosis in humans and animals. Various species in this group of fungi show overlapping characteristics. We investigated the possibility that closely related dermatophyte species with different behaviours secrete distinct proteins when grown in the same culture medium. Protein patterns from culture filtrates of several strains of the same species were very similar. In contrast, secreted protein profiles from various species were different, and so a specific signature could be associated with each of the six analysed species. In particular, protein patterns were useful to distinguish Trichophyton tonsurans from Trichophyton equinum, which cannot be differentiated by ribosomal DNA sequencing. The secreted proteases Sub2, Sub6 and Sub7 of the subtilisin family, as well as Mep3 and Mep4 of the fungalisin family were identified. SUB6, SUB7, MEP3 and MEP4 genes were cloned and sequenced. Although the protein sequence of each protease was highly conserved across species, their level of secretion by the various species was not equivalent. These results suggest that a switch of habitat could be related to a differential expression of genes encoding homologous secreted proteins.
Outcomes of a Suicide Prevention Gatekeeper Training Program Among School Personnel.
Lamis, Dorian A; Underwood, Maureen; D'Amore, Nicole
2017-03-01
Gatekeeper suicide prevention programs train staff to increase the identification and referral of suicidal individuals to the appropriate resources. We evaluated Act on FACTS: Making Educators Partners in Youth Suicide Prevention (MEP), which is an online training program designed to enhance the knowledge of suicide risk factors and warning signs as well as improve participants' attitudes and self-efficacy/confidence. School personnel (N = 700) completed a survey administered before and immediately after the training to assess gains in training outcomes and to evaluate participants' satisfaction with the training. Results indicated that MEP participants demonstrated significant increases in suicide knowledge, attitudes, and self-efficacy. Moreover, exploratory analyses revealed moderating effects of professional role on pre-/posttest changes in self-efficacy, but not suicide knowledge or attitudes. Specifically, guidance counselors demonstrated significantly smaller increases in self-efficacy/confidence compared with teachers and classroom aids, whereas teachers demonstrated significantly larger increases in self-efficacy/confidence compared with administrators. The majority of school personnel who completed the MEP program were satisfied with the training content and experience. Although the current findings are promising, more rigorous evaluations employing randomized controlled research designs are warranted to adequately determine the effectiveness of the MEP program.
Evolution of Electrogenic Ammonium Transporters (AMTs)
McDonald, Tami R.; Ward, John M.
2016-03-31
The ammonium transporter gene family consists of three main clades, AMT, MEP, and Rh. The evolutionary history of the AMT/MEP/Rh gene family is characterized by multiple horizontal gene transfer events, gene family expansion and contraction, and gene loss; thus the gene tree for this family of transporters is unlike the organismal tree. The genomes of angiosperms contain genes for both electrogenic and electroneutral ammonium transporters, but it is not clear how far back in the land plant lineage electrogenic ammonium transporters occur. Here, we place Marchantia polymorpha ammonium transporters in the AMT/MEP/Rh phylogeny and we show that AMTs from themore » liverwort M. polymorpha are electrogenic. This information suggests that electrogenic ammonium transport evolved at least as early as the divergence of bryophytes in the land plant lineage.« less
Evolution of Electrogenic Ammonium Transporters (AMTs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Tami R.; Ward, John M.
The ammonium transporter gene family consists of three main clades, AMT, MEP, and Rh. The evolutionary history of the AMT/MEP/Rh gene family is characterized by multiple horizontal gene transfer events, gene family expansion and contraction, and gene loss; thus the gene tree for this family of transporters is unlike the organismal tree. The genomes of angiosperms contain genes for both electrogenic and electroneutral ammonium transporters, but it is not clear how far back in the land plant lineage electrogenic ammonium transporters occur. Here, we place Marchantia polymorpha ammonium transporters in the AMT/MEP/Rh phylogeny and we show that AMTs from themore » liverwort M. polymorpha are electrogenic. This information suggests that electrogenic ammonium transport evolved at least as early as the divergence of bryophytes in the land plant lineage.« less
Apan, A; Muluk, N Bayar; Güler, S; Budak, B
2013-01-01
The aim of this study was to investigate the effects of N2O-O2 mixture (Inspired O2 30%) on middle ear pressure (MEP) in children compared with the effects of an air-oxygen mixture (Inspired O2 50%). The study included thirty child patients who underwent general anaesthesia for different reasons, with the exception of ENT problems and ear interventions. They were randomly divided into two groups. Group 1 (15 children: 10 male and 5 female) received a N2O-O2 mixture (Inspired O2 30%); and group 2 (15 children: 10 male and 5 female) were given an air-oxygen mixture (Inspired O2 50%). MEP was measured using a portable impedance analyser before the operation (PreO),10 minutes after intubation (10AEn), 30 minutes after intubation (30AEn), 10 minutes before extubation (10BEx), 15 minutes after the operation (PO15), 30 minutes after the operation (PO30), 1 hour after the operation (PO1h) and 6 hours after the operation (PO6h). The pressure and compliance values were the same in groups 1 and 2. The pressure-time graphs for the two groups were different: in Group 2, MEP rose quickly at 10AEn and positive pressure values were seen in the middle ear. MEP then fell rapidly until the end of the surgery and lower and negative pressures (Mean -50 daPa) were observed at PO6h. In Group 1, MEP was elevated at 10AEn and positive pressure was found (but not as high as in Group 2). MEP then fell more slowly. In other words, positive pressure in the middle ear persisted longer and the middle ear was subjected to positive pressure and nitrogen over a longer period. Separate analyses were made in Groups 1 and 2 of pressure differences and of compliance values at eight measurement points using the Friedman test. Differences in pressure values were found to be statistically significant in both Group 1 (p = 0.000) and Group 2 (p = 0.000). In Group 1, all the 10AEn and 30AEn values were significantly higher than the PreO, PO30, PO1h and PO6h values. The 10BEx value was significantly higher than the PreO and PO1h values. The PO15 value was significantly higher than the PreO value. In Group 2, the PO6h value was significantly lower than the 10BEx, 10AEn and 30AEn values. The PO1h value was significantly lower than the 30AEn values. The MEP values increased in Group 1 in younger and taller children and in children receiving anaesthesia for shorter periods. MEP values increased in Group 2 in younger and taller children, and in heavier children. MEP values fell with the length of anaesthesia. In brief anaesthesia, nitrogen was not removed from the middle ear quickly in Group 1: middle ear pressure values were higher. The nitrous oxide remained in the middle ear longer and so the possibility of ear toxicity may increase. In Group 2, 50% O2 was rapidly absorbed and removed from the middle ear and so middle ear pressure was not as high. It may be concluded that air-oxygen mixture (Inspired O2 50%) anaesthesia should be recommended as being more reliable in tympanoplasties and other middle ear interventions than a N2O-O2 mixture (Inspired O2 30%).
Disability Evaluation Systems Analysis and Research Annual Report 2015
2016-03-21
standards (i.e. overweight or obesity ) was the most common condition listed in MEPS examination records in both the disability evaluated population...The most common conditions noted at the MEPS, were: overweight, obesity , and other hyperalimentation, for all services except the Air Force...Code n % of Cond 1 % of App 2 Overweight, obesity and other hyperalimentation 3,085 33.0 5.7 Overweight, obesity and other
Development of Antibacterials Targeting the MEP Pathway of Select Agents
2013-02-01
based assays for lead inhibitor discovery, evaluation of lead inhibitors in microbial growth assays, determining X- ray crystal structures of MEP pathway...inhibitors. • On-demand production and delivery of recombinant proteins to WRAIR for X- ray crystallography. Reportable Outcomes...characterization and phosphoregulation. PLoS ONE 6: e20884. doi:10.1371/journal.pone.0020884. 3. Zhang JH, Chung TD, Oldenburg KR (1999) A Simple
ERIC Educational Resources Information Center
Van Campenhout, Anja; Verhaegen, Ann; Pans, Steven; Molenaers, Guy
2013-01-01
MEP targeting during BoNT-A injections has been demonstrated to improve outcome. Two injection techniques of the psoas muscle--proximal MEP targeting versus a widely used more distal injection technique--are compared using muscle volume assessment by digital MRI segmentation as outcome measure. Method: 7 spastic diplegic children received…
Comparative structural and vibrational study of the four lowest energy conformers of serotonin
NASA Astrophysics Data System (ADS)
Jha, Omkant; Yadav, T. K.; Yadav, R. A.
2017-02-01
A computational investigation of all possible lowest energy conformers of serotonin was carried out at the B3LYP/6-311 ++G** level. Out of the 14 possible lowest energy conformers, the first 4 conformers were investigated thoroughly for the optimized geometries, fundamental frequencies, the potential energy distributions, APT and natural charges, natural bond orbital (NBO) analysis, MEP, Contour map, total density array, HOMO, LUMO energies. The second third and fourth conformers are energetically at higher temperatures of 78, 94 and 312 K respectively with respect to the first one. Bond angles and bond lengths do not show significant variations while the dihedral angles vary significantly in going from one conformer to the other. Some of the vibrational modes of the indole moiety are conformation dependent to some extent whereas most of the normal modes of vibration of amino-ethyl side chain vary significantly in going from one conformer to conformer. The MEP for the four conformers suggested that the sites of the maximum positive and negative ESP change on changing the conformation. The charges at some atomic sites also change significantly from conformer to conformer.
NASA Astrophysics Data System (ADS)
Pashos, G.; Kokkoris, G.; Papathanasiou, A. G.; Boudouvis, A. G.
2016-01-01
The Minimum Energy Paths (MEPs) of wetting transitions on pillared surfaces are computed with the Young-Laplace equation, augmented with a pressure term that accounts for liquid-solid interactions. The interactions are smoothed over a short range from the solid phase, therefore facilitating the numerical solution of problems concerning wetting on complex surface patterns. The patterns may include abrupt geometric features, e.g., arrays of rectangular pillars, where the application of the unmodified Young-Laplace is not practical. The MEPs are obtained by coupling the augmented Young-Laplace with the modified string method from which the energy barriers of wetting transitions are eventually extracted. We demonstrate the method on a wetting transition that is associated with the breakdown of superhydrophobic behavior, i.e., the transition from the Cassie-Baxter state to the Wenzel state, taking place on a superhydrophobic pillared surface. The computed energy barriers quantify the resistance of the system to these transitions and therefore, they can be used to evaluate superhydrophobic performance or provide guidelines for optimal pattern design.
Cantone, Mariagiovanna; Aricò, Debora; Lanuzza, Bartolo; Cosentino, Filomena Irene Ilaria; Paci, Domenico; Papotto, Maurizio; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Paulus, Walter; Ferri, Raffaele
2018-01-01
Background: Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. Methods: A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Results: Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. Conclusions: rTMS on S1-M1 connectivity alleviated the sensory–motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome. PMID:29511386
Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K
2015-01-01
Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Stickford, Abigail S L; Stickford, Jonathon L; Tanner, David A; Stager, Joel M; Chapman, Robert F
2015-11-01
Evidence has long suggested that mammalian ventilatory and locomotor rhythms are linked, yet determinants and implications of locomotor-respiratory coupling (LRC) continue to be investigated. Anecdotally, respiratory muscle fatigue seen at the end of heavy exercise may result in an uncoupling of movement-ventilation rhythms; however, there is no scientific evidence to substantiate this claim. We sought to determine whether or not fatigue of the respiratory muscles alters locomotor-respiratory coupling patterns typically observed in highly trained individuals while running. A related query was to examine the relationship between the potential changes in LRC and measures of running economy. Twelve male distance runners ran at four submaximal workloads (68-89 % VO2peak) on two separate days while LRC was quantified. One LRC trial served as a control (CON), while the other was performed following an isocapnic voluntary hyperpnea to task failure to induce respiratory muscle fatigue (FT+). LRC was assessed as stride-to-breathing frequency ratios (SF/fB) and degree of LRC (percentage of breaths occurring during the same decile of the step cycle). Hyperpnea resulted in significant declines in maximal voluntary inspiratory (MIP) and expiratory (MEP) mouth pressures (ΔMIP = -10 ± 12 cm H2O; ΔMEP = -6 ± 9 cm H2O). There were no differences in minute ventilation between CON and FT+ (CON, all speeds pooled = 104 ± 25 L min(-1); FT+ pooled = 106 ± 23 L min(-1)). Stride frequency was not different between trials; however, breathing frequency was significantly greater during FT+ compared to CON at all speeds (CON pooled = 47 ± 10 br min(-1); FT+ pooled = 52 ± 9 br min(-1)), resulting in smaller corresponding SF/fB. Yet, the degree of LRC was the same during CON and FT+ (CON pooled = 63 ± 15 %; FT+ pooled = 64 ± 18 %). The results indicate that trained runners are able to continue entraining breath and step cycles, despite marked changes in exercise breathing frequency, after a fatiguing hyperpnea challenge.
Won, Jungeun; Monroy, Guillermo L; Huang, Pin-Chieh; Dsouza, Roshan; Hill, Malcolm C; Novak, Michael A; Porter, Ryan G; Chaney, Eric; Barkalifa, Ronit; Boppart, Stephen A
2018-02-01
Pneumatic otoscopy to assess the mobility of the tympanic membrane (TM) is a highly recommended diagnostic method of otitis media (OM), a widespread middle ear infection characterized by the fluid accumulation in the middle ear. Nonetheless, limited depth perception and subjective interpretation of small TM displacements have challenged the appropriate and efficient examination of TM dynamics experienced during OM. In this paper, a pneumatic otoscope integrated with low coherence interferometry (LCI) was adapted with a controlled pressure-generating system to record the pneumatic response of the TM and to estimate middle ear pressure (MEP). Forty-two ears diagnosed as normal (n = 25), with OM (n = 10), or associated with an upper respiratory infection (URI) (n = 7) were imaged with a pneumatic LCI otoscope with an axial, transverse, and temporal resolution of 6 µm, 20 µm, and 1 msec, respectively. The TM displacement under pneumatic pressure transients (a duration of 0.5 sec with an intensity of ± 150 daPa) was measured to compute two metrics (compliance and amplitude ratio). These metrics were correlated with peak acoustic admittance and MEP from tympanometry and statistically compared via Welch's t- test. As a result, the compliance represents pneumatic TM mobility, and the amplitude ratio estimates MEP. The presence of a middle ear effusion (MEE) significantly decreased compliance (p<0.001). The amplitude ratio of the OM group was statistically less than that of the normal group (p<0.01), indicating positive MEP. Unlike tympanometry, pneumatic LCI otoscopy quantifies TM mobility as well as MEP regardless of MEE presence. With combined benefits of pneumatic otoscopy and tympanometry, pneumatic LCI otoscopy may provide new quantitative metrics for understanding TM dynamics and diagnosing OM.
Won, Jungeun; Monroy, Guillermo L.; Huang, Pin-Chieh; Dsouza, Roshan; Hill, Malcolm C.; Novak, Michael A.; Porter, Ryan G.; Chaney, Eric; Barkalifa, Ronit; Boppart, Stephen A.
2018-01-01
Pneumatic otoscopy to assess the mobility of the tympanic membrane (TM) is a highly recommended diagnostic method of otitis media (OM), a widespread middle ear infection characterized by the fluid accumulation in the middle ear. Nonetheless, limited depth perception and subjective interpretation of small TM displacements have challenged the appropriate and efficient examination of TM dynamics experienced during OM. In this paper, a pneumatic otoscope integrated with low coherence interferometry (LCI) was adapted with a controlled pressure-generating system to record the pneumatic response of the TM and to estimate middle ear pressure (MEP). Forty-two ears diagnosed as normal (n = 25), with OM (n = 10), or associated with an upper respiratory infection (URI) (n = 7) were imaged with a pneumatic LCI otoscope with an axial, transverse, and temporal resolution of 6 µm, 20 µm, and 1 msec, respectively. The TM displacement under pneumatic pressure transients (a duration of 0.5 sec with an intensity of ± 150 daPa) was measured to compute two metrics (compliance and amplitude ratio). These metrics were correlated with peak acoustic admittance and MEP from tympanometry and statistically compared via Welch’s t-test. As a result, the compliance represents pneumatic TM mobility, and the amplitude ratio estimates MEP. The presence of a middle ear effusion (MEE) significantly decreased compliance (p<0.001). The amplitude ratio of the OM group was statistically less than that of the normal group (p<0.01), indicating positive MEP. Unlike tympanometry, pneumatic LCI otoscopy quantifies TM mobility as well as MEP regardless of MEE presence. With combined benefits of pneumatic otoscopy and tympanometry, pneumatic LCI otoscopy may provide new quantitative metrics for understanding TM dynamics and diagnosing OM. PMID:29552381
da Rosa, George Jung; Schivinski, Camila Isabel S.
2014-01-01
OBJECTIVE: To assess and compare the respiratory muscle strength among eutrophic, overweight and obese school children, as well as to identify anthropometric and respiratory variables related to the results. METHODS: Cross-sectional survey with healthy schoolchildren aged 7-9 years old, divided into three groups: Normal weight, Overweight and Obese. The International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire was applied. The body mass index (BMI) was evaluated, as well as the forced expiratory volume in one second (FEV1) with a portable digital device. The maximal inspiratory and expiratory pressures (MIP and MEP) were measured by a digital manometer. Comparisons between the groups were made by Kruskal-Wallis test. Spearman's correlation coefficient was used to analyze the correlations among the variables. RESULTS: MIP of eutrophic school children was higher than MIP found in overweight (p=0.043) and obese (p=0.013) children. MIP was correlated with BMI percentile and weight classification (r=-0.214 and r=-0.256) and MEP was correlated with height (r=0.328). Both pressures showed strong correlation with each other in all analyses (r≥0.773), and less correlation with FEV1 (MIP - r=0.362 and MEP - r=0.494). FEV1 correlated with MEP in all groups (r: 0.429 - 0.569) and with MIP in Obese Group (r=0.565). Age was correlated with FEV1 (r=0.578), MIP (r=0.281) and MEP (r=0.328). CONCLUSIONS: Overweight and obese children showed lower MIP values, compared to eutrophic ones. The findings point to the influence of anthropometric variables on respiratory muscle strength in children. PMID:25119758
Evans, Jonathan P; Smith, Chris D; Fine, Nicola F; Porter, Ian; Gangannagaripalli, Jaheeda; Goodwin, Victoria A; Valderas, Jose M
2018-04-01
Clinical rating systems are used as outcome measures in clinical trials and attempt to gauge the patient's view of his or her own health. The choice of clinical rating system should be supported by its performance against established quality standards. A search strategy was developed to identify all studies that reported the use of clinical rating systems in the elbow literature. The strategy was run from inception in Medline Embase and CINHAL. Data extraction identified the date of publication, country of data collection, pathology assessed, and the outcome measure used. We identified 980 studies that reported clinical rating system use. Seventy-two separate rating systems were identified. Forty-one percent of studies used ≥2 separate measures. Overall, 54% of studies used the Mayo Elbow Performance Score (MEPS). For arthroplasty, 82% used MEPS, 17% used Disabilities of Arm, Shoulder and Hand (DASH), and 7% used QuickDASH. For trauma, 66.7% used MEPS, 32% used DASH, and 23% used the Morrey Score. For tendinopathy, 31% used DASH, 23% used Patient-Rated Tennis Elbow Evaluation (PRTEE), and 13% used MEPS. Over time, there was an increased proportional use of the MEPS, DASH, QuickDASH, PRTEE, and the Oxford Elbow Score. This study identified a wide choice and usage of clinical rating systems in the elbow literature. Numerous studies reported measures without a history of either a specific pathology or cross-cultural validation. Interpretability and comparison of outcomes is dependent on the unification of outcome measure choice. This was not demonstrated currently. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Luvizutto, Gustavo José; Dos Santos, Maria Regina Lopes; Sartor, Lorena Cristina Alvarez; da Silva Rodrigues, Josiela Cristina; da Costa, Rafael Dalle Molle; Braga, Gabriel Pereira; de Oliveira Antunes, Letícia Cláudia; Souza, Juli Thomaz; de Carvalho Nunes, Hélio Rubens; Bazan, Silméia Garcia Zanati; Bazan, Rodrigo
2017-10-01
During hospitalization, stroke patients are bedridden due to neurologic impairment, leading to loss of muscle mass, weakness, and functional limitation. There have been few studies examining respiratory muscle strength (RMS) in the acute phase of stroke. This study aimed to evaluate the RMS of patients with acute stroke compared with predicted values and to relate this to anthropometric variables, risk factors, and neurologic severity. This is a cross-sectional study in the acute phase of stroke. After admission, RMS was evaluated by maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP); anthropometric data were collected; and neurologic severity was evaluated by the National Institutes of Health Stroke Scale. The analysis of MIP and MEP with predicted values was performed by chi-square test, and the relationship between anthropometric variables, risk factors, and neurologic severity was determined through multiple linear regression followed by residue analysis by the Shapiro-Wilk test; P < .05 was considered statistically significant. In the 32 patients studied, MIP and MEP were reduced when compared with the predicted values. MIP declined significantly by 4.39 points for each 1 kg/m 2 increase in body mass index (BMI), and MEP declined significantly by an average of 3.89 points for each 1 kg/m 2 increase in BMI. There was no statistically significant relationship between MIP or MEP and risk factors, and between MIP or MIP and neurologic severity in acute phase of stroke. There is a reduction of RMS in the acute phase of stroke, and RMS was lower in individuals with increased age and BMI. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
El-Damanhoury, Hatem M; Gaintantzopoulou, Maria D
2018-01-01
This study assessed the effect of pretreatment of hybrid and glass ceramics using a self-etching primer on the shear bond strength (SBS) and surface topography, in comparison to pretreatment with hydrofluoric acid and silane. 40 rectangular discs from each ceramic material (IPS e.max CAD;EM, Vita Mark II;VM, Vita Enamic;VE), were equally divided (n=10) and assigned to one of four surface pretreatment methods; etching with 4.8% hydrofluoric acid followed by Monobond plus (HFMP), Monobond etch & prime (Ivoclar Vivadent) (MEP), No treatment (NT) as negative control and Monobond plus (Ivoclar Vivadent) with no etching (MP) as positive control. SBS of resin cement (Multilink-N, Ivoclar Vivadent) to ceramic surfaces was tested following a standard protocol. Surface roughness was evaluated using an Atomic force microscope (AFM). Surface topography and elemental analysis were analyzed using SEM/EDX. Data were analyzed with two-way analysis of variance (ANOVA) and post-hoc Bonferroni test at a significance level of α=0.05. Pretreatment with HFMP resulted in higher SBS and increased surface roughness in comparison to MEP and MP. Regardless the method of surface pretreatment, the mean SBS values of EM ceramic was significantly higher (p<0.05) than those recorded for VM and VE, except when VE was treated with MEP, where the difference was statistically insignificant. Traces of fluoride ion were detected when MEP was used with VE and VM. Under limited conditions, using MEP resulted in comparable SBS results to HFMP; meanwhile HFMP remains the gold standard for pretreatment of glass ceramics for resin-luting cementation. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing
Hryniewicz, Tadeusz; Rokosz, Krzysztof; Filippi, Massimiliano
2009-01-01
The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing), in comparison with those obtained under standard/conventional process (EP) conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material − medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size), EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP) process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.
An improved reaction path optimization method using a chain of conformations
NASA Astrophysics Data System (ADS)
Asada, Toshio; Sawada, Nozomi; Nishikawa, Takuya; Koseki, Shiro
2018-05-01
The efficient fast path optimization (FPO) method is proposed to optimize the reaction paths on energy surfaces by using chains of conformations. No artificial spring force is used in the FPO method to ensure the equal spacing of adjacent conformations. The FPO method is applied to optimize the reaction path on two model potential surfaces. The use of this method enabled the optimization of the reaction paths with a drastically reduced number of optimization cycles for both potentials. It was also successfully utilized to define the MEP of the isomerization of the glycine molecule in water by FPO method.
Myelo-erythroid commitment after burn injury is under β-adrenergic control via MafB regulation.
Hasan, Shirin; Johnson, Nicholas B; Mosier, Michael J; Shankar, Ravi; Conrad, Peggie; Szilagyi, Andrea; Gamelli, Richard L; Muthumalaiappan, Kuzhali
2017-03-01
Severely injured burn patients receive multiple blood transfusions for anemia of critical illness despite the adverse consequences. One limiting factor to consider alternate treatment strategies is the lack of a reliable test platform to study molecular mechanisms of impaired erythropoiesis. This study illustrates how conditions resulting in a high catecholamine microenvironment such as burns can instigate myelo-erythroid reprioritization influenced by β-adrenergic stimulation leading to anemia. In a mouse model of scald burn injury, we observed, along with a threefold increase in bone marrow LSK cells (lin neg Sca1 + cKit + ), that the myeloid shift is accompanied with a significant reduction in megakaryocyte erythrocyte progenitors (MEPs). β-Blocker administration (propranolol) for 6 days after burn, not only reduced the number of LSKs and MafB + cells in multipotent progenitors, but also influenced myelo-erythroid bifurcation by increasing the MEPs and reducing the granulocyte monocyte progenitors in the bone marrow of burn mice. Furthermore, similar results were observed in burn patients' peripheral blood mononuclear cell-derived ex vivo culture system, demonstrating that commitment stage of erythropoiesis is impaired in burn patients and intervention with propranolol (nonselective β1,2-adrenergic blocker) increases MEPs. Also, MafB + cells that were significantly increased following standard burn care could be mitigated when propranolol was administered to burn patients, establishing the mechanistic regulation of erythroid commitment by myeloid regulatory transcription factor MafB. Overall, results demonstrate that β-adrenergic blockers following burn injury can redirect the hematopoietic commitment toward erythroid lineage by lowering MafB expression in multipotent progenitors and be of potential therapeutic value to increase erythropoietin responsiveness in burn patients. Copyright © 2017 the American Physiological Society.
Cervical osteotomy in ankylosing spondylitis: evaluation of new developments.
Langeloo, Danielle D; Journee, Henricus L; Pavlov, Paul W; de Kleuver, Marinus
2006-04-01
Cervical osteotomy can be performed on patients with cervical kyphosis due to ankylosing spondylitis. This study reviews the role of two new developments in cervical osteotomy surgery: internal fixation and transcranial electrical stimulated motor evoked potential monitoring (TES-MEP). From 1999 to 2004, 16 patients underwent a C7-osteotomy with internal fixation. In 11 patients, cervical osteotomy was performed in a sitting position with halo-cast immobilization (group S), five patients underwent surgery in prone position with Mayfield clamp fixation (group P). In group P, longer fusion towards T4-T6 could be obtained that created a more stable fixation. Therefore, post-operative immobilization protocol of group P was simplified from halo-cast to cervical orthosis. Consolidation was obtained in all patients without loss of correction. Post-operative chin-brow to vertical angle measured 5 degrees (range 0-15). TES-MEP was successfully performed during all surgical procedures. In total, nine neurological events were registered. Additional surgical intervention resulted in recovery of amplitudes in six of nine events. In two patients spontaneous recovery took place. One patient showed no recovery of amplitudes despite surgical intervention and a partial C6 spinal cord lesion occurred. We conclude that C7 osteotomy with internal fixation has been shown to be a reliable and stable technique. When surgery is performed the in prone position, distal fixation can be optimally obtained allowing post-operative treatment by cervical orthosis instead of a halo-cast. TES-MEP monitoring has been shown to be a reliable neuromonitoring technique with high clinical relevancy during cervical osteotomy because it allows timely intervention before occurrence of permanent cord damage in a large proportion of the patients.
Ito, Zenya; Matsuyama, Yukihiro; Ando, Muneharu; Kawabata, Shigenori; Kanchiku, Tsukasa; Kida, Kazunobu; Fujiwara, Yasushi; Yamada, Kei; Yamamoto, Naoya; Kobayashi, Sho; Saito, Takanori; Wada, Kanichiro; Tadokoro, Nobuaki; Takahashi, Masato; Satomi, Kazuhiko; Shinomiya, Kenichi; Tani, Toshikazu
2016-10-01
Retrospective case-control study. The purpose of this study was to examine the factors of postoperative paralysis in patients who have undergone thoracic ossification of posterior longitudinal ligament (OPLL) surgery. A higher percentage of thoracic OPLL patients experience postoperative aggravation of paralysis than cervical OPLL patients, including patients that presented great difficulties in treatment. However, there were a few reports to prevent paralysis thoracic OPLL. The 156 patients who had received thoracic OPLL surgery were selected as the subjects of this study. The items for review were the duration of disease; the preoperative muscle strength (Muscle Manual Testing); OPLL levels (T1/2-4/5: high, T5/6-8/9: middle, and T9/10-11/12: low); the spinal canal occupancy ratio; the ratio of yellow ligament ossification as a complication; the ratio of transcranial-motor evoked potential (Tc-MEP) derivation; the preoperative/postoperative kyphotic angles in the thoracic vertebrae; the correction angle of kyphosis; the duration of surgery; and the amount of bleeding. The subjects were divided into two groups based on the absence or presence of postoperative paralysis to determine the factors of postoperative paralysis. Twenty-three patients (14.7%) exhibited postoperative paralysis. Multivariate analysis identified factors associated with postoperative paralysis: the duration of disease (odds ratio, OR = 3.3); the correction angle of kyphosis (OR = 2.4); and the ratio of Tc-MEP derivation (OR = 2.2). The risk factors of postoperative paralysis are a short duration of disease and a small correction angle of kyphosis. In addition, ratios of Tc-MEP derivation below 50% may anticipate paralysis. 4.
Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.
Kleidon, Axel
2010-01-13
The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society
(Lack of) Corticospinal facilitation in association with hand laterality judgments.
Ferron, Lucas; Tremblay, François
2017-07-01
In recent years, mental practice strategies have drawn much interest in the field of rehabilitation. One form of mental practice particularly advocated involves judging the laterality of images depicting body parts. Such laterality judgments are thought to rely on implicit motor imagery via mental rotation of one own's limb. In this study, we sought to further characterize the involvement of the primary motor cortex (M1) in hand laterality judgments (HLJ) as performed in the context of an application designed for rehabilitation. To this end, we measured variations in corticospinal excitability in both hemispheres with motor evoked potentials (MEPs) while participants (n = 18, young adults) performed either HLJ or a mental counting task. A third condition (foot observation) provided additional control. We hypothesized that HLJ would lead to a selective MEP facilitation when compared to the other tasks and that this facilitation would be greater on the right than the left hemisphere. Contrary to our predictions, we found no evidence of task effects and hemispheric effects for the HLJ task. Significant task-related MEP facilitation was detected only for the mental counting task. A secondary experiment performed in a subset of participants (n = 6) to further test modulation during HLJ yielded the same results. We interpret the lack of facilitation with HLJ in the light of evidence that participants may rely on alternative strategies when asked to judge laterality when viewing depictions of body parts. The use of visual strategies notably would reduce the need to engage in mental rotation, thus reducing M1 involvement. These results have implications for applications of laterality tasks in the context of the rehabilitation program.
Baba, Satoshi; Oshima, Yasushi; Iwahori, Tomoyuki; Takano, Yuichi; Inanami, Hirohiko; Koga, Hisashi
2016-06-01
Ossification of the ligamentum flavum (OLF) is a common cause of progressive thoracic myelopathy in East Asia. Good surgical results are expected for patients who already show myelopathy. Surgical decompression using a posterior approach is commonly used to treat OLF. This study investigated the use of microendoscopic posterior decompression for the treatment of thoracic OLF. Microendoscopic posterior decompression was performed on 9 patients with myelopathy. Patients had a mean age of 59.8 years and single-level involvement, mostly at the T10-11 and T11-12 vertebrae. Computed tomography and magnetic resonance imaging were used to classify the OLF. A tubular retractor and endoscopic system were used for microendoscopic posterior decompression. Midline and unilateral paramedian approaches were performed in 2 and 7 patients, respectively. Intraoperative motor evoked potentials (MEPs) of 7 patients were monitored. Pre- and postoperative neurological status was evaluated using the modified Japanese Orthopaedic Association (mJOA) score. Thoracic OLF for all patients were classed as bilateral type with a round morphology. Improvement of MEPs at least one muscle area was recorded in all patients following posterior decompression. A dural tear in one patient was the only observed complication. The mean recovery rate was 44.9 %, as calculated from mJOA scores at a mean follow-up period of 20 months. Microendoscopic posterior decompression combined with MEP monitoring can be used to treat patients with thoracic OLF. The optimal surgical indication is OLF at a single vertebral level and of a unilateral or bilateral nature, without comma and tram track signs, and a round morphology.
Lateralization in motor facilitation during action observation: a TMS study.
Aziz-Zadeh, Lisa; Maeda, Fumiko; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco
2002-05-01
Action observation facilitates corticospinal excitability. This is presumably due to a premotor neural system that is active when we perform actions and when we observe actions performed by others. It has been speculated that this neural system is a precursor of neural systems subserving language. If this theory is true, we may expect hemispheric differences in the motor facilitation produced by action observation, with the language-dominant left hemisphere showing stronger facilitation than the right hemisphere. Furthermore, it has been suggested that body parts are recognized via cortical regions controlling sensory and motor processing associated with that body part. If this is true, then corticospinal facilitation during action observation should be modulated by the laterality of the observed body part. The present study addressed these two issues using TMS for each motor cortex separately as participants observed actions being performed by a left hand, a right hand, or a control stimulus on the computer screen. We found no overall difference between the right and left hemisphere for motor-evoked potential (MEP) size during action observation. However, when TMS was applied to the left motor cortex, MEPs were larger while observing right hand actions. Likewise, when TMS was applied to the right motor cortex, MEPs were larger while observing left hand actions. Our data do not suggest left hemisphere superiority in the facilitating effects of action observation on the motor system. However, they do support the notion of a sensory-motor loop according to which sensory stimulus properties (for example, the image of a left hand or a right hand) directly affect motor cortex activity, even when no motor output is required. The pattern of this effect is congruent with the pattern of motor representation in each hemisphere.