Negishi, Michiro; Abildgaard, Mark; Laufer, Ilan; Nixon, Terry; Constable, Robert Todd
2008-01-01
Simultaneous EEG-fMRI (Electroencephalography-functional Magnetic Resonance Imaging) recording provides a means for acquiring high temporal resolution electrophysiological data and high spatial resolution metabolic data of the brain in the same experimental runs. Carbon wire electrodes (not metallic EEG electrodes with carbon wire leads) are suitable for simultaneous EEG-fMRI recording, because they cause less RF (radio-frequency) heating and susceptibility artifacts than metallic electrodes. These characteristics are especially desirable for recording the EEG in high field MRI scanners. Carbon wire electrodes are also comfortable to wear during long recording sessions. However, carbon electrodes have high electrode-electrolyte potentials compared to widely used Ag/AgCl (silver/silver-chloride) electrodes, which may cause slow voltage drifts. This paper introduces a prototype EEG recording system with carbon wire electrodes and a circuit that suppresses the slow voltage drift. The system was tested for the voltage drift, RF heating, susceptibility artifact, and impedance, and was also evaluated in a simultaneous ERP (event-related potential)-fMRI experiment. PMID:18588913
Wagenaar, Daniel A
2017-01-01
Studies of neuronal network emergence during sensory processing and motor control are greatly facilitated by technologies that allow us to simultaneously record the membrane potential dynamics of a large population of neurons in single cell resolution. To achieve whole-brain recording with the ability to detect both small synaptic potentials and action potentials, we developed a voltage-sensitive dye (VSD) imaging technique based on a double-sided microscope that can image two sides of a nervous system simultaneously. We applied this system to the segmental ganglia of the medicinal leech. Double-sided VSD imaging enabled simultaneous recording of membrane potential events from almost all of the identifiable neurons. Using data obtained from double-sided VSD imaging, we analyzed neuronal dynamics in both sensory processing and generation of behavior and constructed functional maps for identification of neurons contributing to these processes. PMID:28944754
[Functional organization and structure of the serotonergic neuronal network of terrestrial snail].
Nikitin, E S; Balaban, P M
2011-01-01
The extension of knowledge how the brain works requires permanent improvement of methods of recording of neuronal activity and increase in the number of neurons recorded simultaneously to better understand the collective work of neuronal networks and assemblies. Conventional methods allow simultaneous intracellular recording up to 2-5 neurons and their membrane potentials, currents or monosynaptic connections or observation of spiking of neuronal groups with subsequent discrimination of individual spikes with loss of details of the dynamics of membrane potential. We recorded activity of a compact group of serotonergic neurons (up to 56 simultaneously) in the ganglion of a terrestrial mollusk using the method of optical recording of membrane potential that allowed to record individual action potentials in details with action potential parameters and to reveal morphology of the neurons rcorded. We demonstrated clear clustering in the group in relation with the dynamics of action potentials and phasic or tonic components in the neuronal responses to external electrophysiological and tactile stimuli. Also, we showed that identified neuron Pd2 could induce activation of a significant number of neurons in the group whereas neuron Pd4 did not induce any activation. However, its activation is delayed with regard to activation of the reacting group of neurons. Our data strongly support the concept of possible delegation of the integrative function by the network to a single neuron.
Murik, S E; Shapkin, A G
2004-08-01
It has been proposed to assess functional and metabolic state of the brain nervous tissue in terms of bioelectrical parameters. Simultaneous recording of the DC potential level and total slow electrical activity of the nervous tissue was performed in the object of study by nonpolarizable Ag/AgCl electrodes with a DC amplifier. The functional and metabolic state of the brain was determined in terms of enhancement or reduction in the total slow electrical activity and positive or negative shifts in the DC potential level.
Techniques for extracting single-trial activity patterns from large-scale neural recordings
Churchland, Mark M; Yu, Byron M; Sahani, Maneesh; Shenoy, Krishna V
2008-01-01
Summary Large, chronically-implanted arrays of microelectrodes are an increasingly common tool for recording from primate cortex, and can provide extracellular recordings from many (order of 100) neurons. While the desire for cortically-based motor prostheses has helped drive their development, such arrays also offer great potential to advance basic neuroscience research. Here we discuss the utility of array recording for the study of neural dynamics. Neural activity often has dynamics beyond that driven directly by the stimulus. While governed by those dynamics, neural responses may nevertheless unfold differently for nominally identical trials, rendering many traditional analysis methods ineffective. We review recent studies – some employing simultaneous recording, some not – indicating that such variability is indeed present both during movement generation, and during the preceding premotor computations. In such cases, large-scale simultaneous recordings have the potential to provide an unprecedented view of neural dynamics at the level of single trials. However, this enterprise will depend not only on techniques for simultaneous recording, but also on the use and further development of analysis techniques that can appropriately reduce the dimensionality of the data, and allow visualization of single-trial neural behavior. PMID:18093826
Sahakian, A V; Peterson, M S; Shkurovich, S; Hamer, M; Votapka, T; Ji, T; Swiryn, S
2001-03-01
While the recording of extracellular monophasic action potentials (MAPs) from single epicardial or endocardial sites has been performed for over a century, we are unaware of any previous successful attempt to record MAPs simultaneously from a large number of sites in vivo. We report here the design and validation of an array of MAP electrodes which records both depolarization and repolarization simultaneously at up to 16 epicardial sites in a square array on the heart in vivo. The array consists of 16 sintered Ag-AgCl electrodes mounted in a common housing with individual suspensions allowing each electrode to exert a controlled pressure on the epicardial surface. The electrodes are arranged in a square array, with each quadrant of four having an additional recessed sintered Ag-AgCl reference electrode at its center. A saline-soaked sponge establishes ionic contact between the reference electrodes and the tissue. The array was tested on six anesthetized open-chested pigs. Simultaneous diagnostic-quality MAP recordings were obtained from up to 13 out of 16 ventricular sites. Ventricular MAPs had amplitudes of 10-40 mV with uniform morphologies and stable baselines for up to 30 min. MAP duration at 90% repolarization was measured and shown to vary as expected with cycle length during sustained pacing. The relationship between MAP duration and effective refractory period was also confirmed. The ability of the array to detect local differences in repolarization was tested in two ways. Placement of the array straddling the atrioventricular (AV) junction yielded simultaneous atrial or ventricular recordings at corresponding sites during 1:1 and 2:1 AV conduction. Localized ischemia via constriction of a coronary artery branch resulted in shortening of the repolarization phase at the ischemic, but not the nonischemic, sites. In conclusion, these results indicate that the simultaneous multichannel MAP electrode array is a viable method for in vivo epicardial repolarization mapping. The array has the potential to be expanded to increase the number of sites and spatial resolution.
A novel fiber-free technique for brain activity imaging in multiple freely behaving mice
NASA Astrophysics Data System (ADS)
Inagaki, Shigenori; Agetsuma, Masakazu; Nagai, Takeharu
2018-02-01
Brain functions and related psychiatric disorders have been investigated by recording electrophysiological field potential. When recording it, a conventional method requires fiber-based apparatus connected to the brain, which however hampers the simultaneous measurement in multiple animals (e.g. by a tangle of fibers). Here, we propose a fiber-free recording technique in conjunction with a ratiometric bioluminescent voltage indicator. Our method allows investigation of electrophysiological filed potential dynamics in multiple freely behaving animals simultaneously over a long time period. Therefore, this fiber-free technique opens up the way to investigate a new mechanism of brain function that governs social behaviors and animal-to-animal interaction.
Wilson, A; Fram, D; Sistar, J
1981-06-01
An Imsai 8080 microcomputer is being used to simultaneously generate a color graphics stimulus display and to record visual-evoked cortical potentials. A brief description of the hardware and software developed for this system is presented. Data storage and analysis techniques are also discussed.
VEMP recording by binaural simultaneous stimulation in subjects with vestibulo-cochlear disorders.
Murofushi, Toshihisa; Takai, Yoshinari; Iwasaki, Shinichi; Matsuzaki, Masaki
2005-10-01
To reduce the testing time of vestibular evoked myogenic potentials (VEMP) and the physical efforts of subjects, we studied if VEMP recording by binaural simultaneous stimulation in patients with vestibulo-cochlear disorders can be applicable as a screening test. Twenty-eight patients with vestibulo-cochlear disorders (12 men and 16 women, 22 to 77 years of age) were enrolled in this study. Patients were presented with binaural or monaural click (95 dBnHL) stimulation to record VEMPs. Their VEMP responses to binaural simultaneous stimulation were compared with those of monaural individual stimulation. Twenty-six of the 28 patients (93%) showed the same results in binaural simultaneous stimulation as in monaural individual stimulation. Amplitudes of p13-n23 to binaural simultaneous stimulation showed significant correlation to those of monaural individual stimulation ( r =0.774, P <0.0001 t -test). Peak latencies of p13 and n23 of binaural simultaneous stimulation also showed significant correlation to those of monaural individual stimulation (p13: r =0.684, P <0.0001 t -test, n23: r =0.657, P <0.0001 t -test). The binaural simultaneous stimulation method for VEMP recording is applicable for patients with vestibulo-cochlear disorders as a screening test in the clinic.
Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R
2018-02-01
This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.
Chen, Chang Hao; McCullagh, Elizabeth A; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C
2017-03-01
The ability to record and to control action potential firing in neuronal circuits is critical to understand how the brain functions. The objective of this study is to develop a monolithic integrated circuit (IC) to record action potentials and simultaneously control action potential firing using optogenetics. A low-noise and high input impedance (or low input capacitance) neural recording amplifier is combined with a high current laser/light-emitting diode (LED) driver in a single IC. The low input capacitance of the amplifier (9.7 pF) was achieved by adding a dedicated unity gain stage optimized for high impedance metal electrodes. The input referred noise of the amplifier is [Formula: see text], which is lower than the estimated thermal noise of the metal electrode. Thus, the action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of at least 6.6. The LED/laser current driver delivers a maximum current of 330 mA, which is adequate for optogenetic control. The functionality of the IC was tested with an anesthetized Mongolian gerbil and auditory stimulated action potentials were recorded from the inferior colliculus. Spontaneous firings of fifth (trigeminal) nerve fibers were also inhibited using the optogenetic protein Halorhodopsin. Moreover, a noise model of the system was derived to guide the design. A single IC to measure and control action potentials using optogenetic proteins is realized so that more complicated behavioral neuroscience research and the translational neural disorder treatments become possible in the future.
Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model
NASA Astrophysics Data System (ADS)
Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.
2009-08-01
Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.
Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model
Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.
2009-01-01
Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730
Marzullo, T C; Dudley, J R; Miller, C R; Trejo, L; Kipke, D R
2005-01-01
Brain machine interface development typically falls into two arenas, invasive extracellular recording and non-invasive electroencephalogram recording methods. The relationship between action potentials and field potentials is not well understood, and investigation of interrelationships may improve design of neuroprosthetic control systems. Rats were trained on a motor learning task whereby they had to insert their noses into an aperture while simultaneously pressing down on levers with their forepaws; spikes, local field potentials (LFPs), and electrocorticograms (ECoGs) over the motor cortex were recorded and characterized. Preliminary results suggest that the LFP activity in lower cortical layers oscillates with the ECoG.
The potential of multi-port optical memories in digital computing
NASA Technical Reports Server (NTRS)
Alford, C. O.; Gaylord, T. K.
1975-01-01
A high-capacity memory with a relatively high data transfer rate and multi-port simultaneous access capability may serve as the basis for new computer architectures. The implementation of a multi-port optical memory is discussed. Several computer structures are presented that might profitably use such a memory. These structures include (1) a simultaneous record access system, (2) a simultaneously shared memory computer system, and (3) a parallel digital processing structure.
NASA Astrophysics Data System (ADS)
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-11-01
The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-11-08
The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-01-01
The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity. PMID:27824075
Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate
Dotson, Nicholas M.; Goodell, Baldwin; Salazar, Rodrigo F.; Hoffman, Steven J.; Gray, Charles M.
2015-01-01
Cognitive processes play out on massive brain-wide networks, which produce widely distributed patterns of activity. Capturing these activity patterns requires tools that are able to simultaneously measure activity from many distributed sites with high spatiotemporal resolution. Unfortunately, current techniques with adequate coverage do not provide the requisite spatiotemporal resolution. Large-scale microelectrode recording devices, with dozens to hundreds of microelectrodes capable of simultaneously recording from nearly as many cortical and subcortical areas, provide a potential way to minimize these tradeoffs. However, placing hundreds of microelectrodes into a behaving animal is a highly risky and technically challenging endeavor that has only been pursued by a few groups. Recording activity from multiple electrodes simultaneously also introduces several statistical and conceptual dilemmas, such as the multiple comparisons problem and the uncontrolled stimulus response problem. In this perspective article, we discuss some of the techniques that we, and others, have developed for collecting and analyzing large-scale data sets, and address the future of this emerging field. PMID:26578906
Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field
Hahn, David; Boers, Frank; Shah, N. Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538
Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.
Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.
Rast, Georg; Weber, Jürgen; Disch, Christoph; Schuck, Elmar; Ittrich, Carina; Guth, Brian D
2015-01-01
Human induced pluripotent stem cell-derived cardiomyocytes are available from various sources and they are being evaluated for safety testing. Several platforms are available offering different assay principles and read-out parameters: patch-clamp and field potential recording, imaging or photometry, impedance measurement, and recording of contractile force. Routine use will establish which assay principle and which parameters best serve the intended purpose. We introduce a combination of field potential recording and calcium ratiometry from spontaneously beating cardiomyocytes as a novel assay providing a complementary read-out parameter set. Field potential recording is performed using a commercial multi-well multi-electrode array platform. Calcium ratiometry is performed using a fiber optic illumination and silicon avalanche photodetectors. Data condensation and statistical analysis are designed to enable statistical inference of differences and equivalence with regard to a solvent control. Simultaneous recording of field potentials and calcium transients from spontaneously beating monolayers was done in a nine-well format. Calcium channel blockers (e.g. nifedipine) and a blocker of calcium store release (ryanodine) can be recognized and discriminated based on the calcium transient signal. An agonist of L-type calcium channels, FPL 64176, increased and prolonged the calcium transient, whereas BAY K 8644, another L-type calcium channel agonist, had no effect. Both FPL 64176 and various calcium channel antagonists have chronotropic effects, which can be discriminated from typical "chronotropic" compounds, like (±)isoprenaline (positive) and arecaidine propargyl ester (negative), based on their effects on the calcium transient. Despite technical limitations in temporal resolution and exact matching of composite calcium transient with the field potential of a subset of cells, the combined recording platform enables a refined interpretation of the field potential recording and a more reliable identification of drug effects on calcium handling. Copyright © 2015 Elsevier Inc. All rights reserved.
Chen, Chang Hao; McCullagh, Elizabeth A.; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C.
2017-01-01
The ability to record and to control action potential firing in neuronal circuits of the brain is critical to understand how the brain functions on the cellular and network levels. Recent development of optogenetic proteins allows direct stimulation or inhibition of action potential firing of neurons upon optical illumination. In this paper, we combined a low-noise and high input impedance (or low input capacitance) neural recording amplifier, and a high current laser/LED driver in a monolithic integrated circuit (IC) for simultaneous neural recording and optogenetic neural control. The low input capacitance of the amplifier (9.7 pF) was achieved through adding a dedicated unity gain input stage optimized for high impedance metal electrodes. The input referred noise of the amplifier was measured to be 4.57 µVrms, which is lower than the estimated thermal noise of the metal electrode. Thus, action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of ~6.6. The LED/laser current driver delivers a maximum current of 330 mA to generate adequate light for optogenetic control. We experimentally tested the functionality of the IC with an anesthetized Mongolian gerbil and recorded auditory stimulated action potentials from the inferior colliculus. Furthermore, we showed that spontaneous firing of 5th (trigeminal) nerve fibers was inhibited using the optogenetic protein Halorhodopsin. A noise model was also derived including the equivalent electronic components of the metal electrode and the high current driver to guide the design. PMID:28221990
Fendyur, Anna; Spira, Micha E.
2012-01-01
Cardiological research greatly rely on the use of cultured primary cardiomyocytes (CMs). The prime methodology to assess CM network electrophysiology is based on the use of extracellular recordings by substrate-integrated planar Micro-Electrode Arrays (MEAs). Whereas this methodology permits simultaneous, long-term monitoring of the CM electrical activity, it limits the information to extracellular field potentials (FPs). The alternative method of intracellular action potentials (APs) recordings by sharp- or patch-microelectrodes is limited to a single cell at a time. Here, we began to merge the advantages of planar MEA and intracellular microelectrodes. To that end we cultured rat CM on micrometer size protruding gold mushroom-shaped microelectrode (gMμEs) arrays. Cultured CMs engulf the gMμE permitting FPs recordings from individual cells. Local electroporation of a CM converts the extracellular recording configuration to attenuated intracellular APs with shape and duration similar to those recorded intracellularly. The procedure enables to simultaneously record APs from an unlimited number of CMs. The electroporated membrane spontaneously recovers. This allows for repeated recordings from the same CM a number of times (>8) for over 10 days. The further development of CM-gMμE configuration opens up new venues for basic and applied biomedical research. PMID:22936913
Double peak sensory nerve action potentials to single stimuli in nerve conduction studies.
Leote, Joao; Pereira, Pedro; Valls-Sole, Josep
2017-05-01
In humans, sensory nerve action potentials (SNAPs) can show 2 separate deflections, i.e., double peak potentials (DPp), which necessarily means that 1 peak is delayed with respect to the other. DPps may have various origins and be due to either physical or physiological properties. We review the nature of commonly encountered DPps in clinical practice, provide the most likely interpretations for their physiological origin, and assess their reproducibility and clinical utility. We classified the DPps into 3 categories: (1) simultaneous anodal and cathodal stimulation. (2) simultaneous recording from 2 different nerves at the same site, and (3) SNAP desynchronization. Although the recording of DPps is not a standardized neurophysiological method, their study brings interesting cues about the physiology of nerve stimulation and paves the way for clinical application of such an observation. Muscle Nerve 55: 619-625, 2017. © 2016 Wiley Periodicals, Inc.
NeuroGrid: recording action potentials from the surface of the brain.
Khodagholy, Dion; Gelinas, Jennifer N; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G; Buzsáki, György
2015-02-01
Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders.
Hardy, M E L; Lawrence, C L; Standen, N B; Rodrigo, G C
2006-01-01
Potential-sensitive dyes have primarily been used to optically record action potentials (APs) in whole heart tissue. Using these dyes to record drug-induced changes in AP morphology of isolated cardiac myocytes could provide an opportunity to develop medium throughout assays for the pharmaceutical industry. Ideally, this requires that the dye has a consistent and rapid response to membrane potential, is insensitive to movement, and does not itself affect AP morphology. We recorded the AP from isolated adult guinea-pig ventricular myocytes optically using di-8-ANEPPS in a single-excitation dual-emission ratiometric system, either separately in electrically field stimulated myocytes, or simultaneously with an electrical AP recorded with a patch electrode in the whole-cell bridge mode. The ratio of di-8-ANEPPS fluorescence signal was calibrated against membrane potential using a switch-clamp to voltage clamp the myocyte. Our data show that the ratio of the optical signals emitted at 560/620 nm is linearly related to voltage over the voltage range of an AP, producing a change in ratio of 7.5% per 100 mV, is unaffected by cell movement and is identical to the AP recorded simultaneously with a patch electrode. However, the APD90 recorded optically in myocytes loaded with di-8-ANEPPS was significantly longer than in unloaded myocytes recorded with a patch electrode (355.6+/-13.5 vs. 296.2+/-16.2 ms; p<0.01). Despite this effect, the apparent IC50 for cisapride, which prolongs the AP by blocking IKr, was not significantly different whether determined optically or with a patch electrode (91+/-46 vs. 81+/-20 nM). These data show that the optical AP recorded ratiometrically using di-8-ANEPPS from a single ventricular myocyte accurately follows the action potential morphology. This technique can be used to estimate the AP prolonging effects of a compound, although di-8-ANEPPS itself prolongs APD90. Optical dyes require less technical skills and are less invasive than conventional electrophysiological techniques and, when coupled to ventricular myocytes, decreases animal usage and facilitates higher throughput assays.
Diagnostic Role of ECG Recording Simultaneously With EEG Testing.
Kendirli, Mustafa Tansel; Aparci, Mustafa; Kendirli, Nurten; Tekeli, Hakan; Karaoglan, Mustafa; Senol, Mehmet Guney; Togrol, Erdem
2015-07-01
Arrhythmia is not uncommon in the etiology of syncope which mimics epilepsy. Data about the epilepsy induced vagal tonus abnormalities have being increasingly reported. So we aimed to evaluate what a neurologist may gain by a simultaneous electrocardiogram (ECG) and electroencephalogram (EEG) recording in the patients who underwent EEG testing due to prediagnosis of epilepsy. We retrospectively evaluated and detected ECG abnormalities in 68 (18%) of 376 patients who underwent EEG testing. A minimum of 20 of minutes artifact-free recording were required for each patient. Standard 1-channel ECG was simultaneously recorded in conjunction with the EEG. In all, 28% of females and 14% of males had ECG abnormalities. Females (mean age 49 years, range 18-88 years) were older compared with the male group (mean age 28 years, range 16-83 years). Atrial fibrillation was more frequent in female group whereas bradycardia and respiratory sinus arrhythmia was higher in male group. One case had been detected a critical asystole indicating sick sinus syndrome in the female group and treated with a pacemaker implantation in the following period. Simultaneous ECG recording in conjunction with EEG testing is a clinical prerequisite to detect and to clarify the coexisting ECG and EEG abnormalities and their clinical relevance. Potentially rare lethal causes of syncope that mimic seizure or those that could cause resistance to antiepileptic therapy could effectively be distinguished by detecting ECG abnormalities coinciding with the signs and abnormalities during EEG recording. © EEG and Clinical Neuroscience Society (ECNS) 2014.
Event-related potentials and secondary task performance during simulated driving.
Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L
2008-01-01
Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.
Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat.
Schjetnan, Andrea Gomez Palacio; Luczak, Artur
2011-10-19
Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays. Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its 'electrical distance'. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2).
Recording Large-scale Neuronal Ensembles with Silicon Probes in the Anesthetized Rat
Schjetnan, Andrea Gomez Palacio; Luczak, Artur
2011-01-01
Large scale electrophysiological recordings from neuronal ensembles offer the opportunity to investigate how the brain orchestrates the wide variety of behaviors from the spiking activity of its neurons. One of the most effective methods to monitor spiking activity from a large number of neurons in multiple local neuronal circuits simultaneously is by using silicon electrode arrays1-3. Action potentials produce large transmembrane voltage changes in the vicinity of cell somata. These output signals can be measured by placing a conductor in close proximity of a neuron. If there are many active (spiking) neurons in the vicinity of the tip, the electrode records combined signal from all of them, where contribution of a single neuron is weighted by its 'electrical distance'. Silicon probes are ideal recording electrodes to monitor multiple neurons because of a large number of recording sites (+64) and a small volume. Furthermore, multiple sites can be arranged over a distance of millimeters, thus allowing for the simultaneous recordings of neuronal activity in the various cortical layers or in multiple cortical columns (Fig. 1). Importantly, the geometrically precise distribution of the recording sites also allows for the determination of the spatial relationship of the isolated single neurons4. Here, we describe an acute, large-scale neuronal recording from the left and right forelimb somatosensory cortex simultaneously in an anesthetized rat with silicon probes (Fig. 2). PMID:22042361
Parthasarathy, Aravindakshan; Bartlett, Edward
2012-07-01
Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Oswal, Ashwini; Jha, Ashwani; Neal, Spencer; Reid, Alphonso; Bradbury, David; Aston, Peter; Limousin, Patricia; Foltynie, Tom; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir
2016-01-01
Background Deep Brain Stimulation (DBS) is an effective treatment for several neurological and psychiatric disorders. In order to gain insights into the therapeutic mechanisms of DBS and to advance future therapies a better understanding of the effects of DBS on large-scale brain networks is required. New method In this paper, we describe an experimental protocol and analysis pipeline for simultaneously performing DBS and intracranial local field potential (LFP) recordings at a target brain region during concurrent magnetoencephalography (MEG) measurement. Firstly we describe a phantom setup that allowed us to precisely characterise the MEG artefacts that occurred during DBS at clinical settings. Results Using the phantom recordings we demonstrate that with MEG beamforming it is possible to recover oscillatory activity synchronised to a reference channel, despite the presence of high amplitude artefacts evoked by DBS. Finally, we highlight the applicability of these methods by illustrating in a single patient with Parkinson's disease (PD), that changes in cortical-subthalamic nucleus coupling can be induced by DBS. Comparison with existing approaches To our knowledge this paper provides the first technical description of a recording and analysis pipeline for combining simultaneous cortical recordings using MEG, with intracranial LFP recordings of a target brain nucleus during DBS. PMID:26698227
Zhao, Dong-Jie; Chen, Yang; Wang, Zi-Yang; Xue, Lin; Mao, Tong-Lin; Liu, Yi-Min; Wang, Zhong-Yi; Huang, Lan
2015-01-01
The limitations of conventional extracellular recording and intracellular recording make high-resolution multisite recording of plant bioelectrical activity in situ challenging. By combining a cooled charge-coupled device camera with a voltage-sensitive dye, we recorded the action potentials in the stem of Helianthus annuus and variation potentials at multiple sites simultaneously with high spatial resolution. The method of signal processing using coherence analysis was used to determine the synchronization of the selected signals. Our results provide direct visualization of the phloem, which is the distribution region of the electrical activities in the stem and leaf of H. annuus, and verify that the phloem is the main action potential transmission route in the stems of higher plants. Finally, the method of optical recording offers a unique opportunity to map the dynamic bioelectrical activity and provides an insight into the mechanisms of long-distance electrical signal transmission in higher plants. PMID:26333536
Kuzum, Duygu; Takano, Hajime; Shim, Euijae; Reed, Jason C; Juul, Halvor; Richardson, Andrew G.; de Vries, Julius; Bink, Hank; Dichter, Marc A.; Lucas, Timothy H.; Coulter, Douglas A.; Cubukcu, Ertugrul; Litt, Brian
2014-01-01
Calcium imaging is a versatile experimental approach capable of resolving single neurons with single-cell spatial resolution in the brain. Electrophysiological recordings provide high temporal, but limited spatial resolution, due to the geometrical inaccessibility of the brain. An approach that integrates the advantages of both techniques could provide new insights into functions of neural circuits. Here, we report a transparent, flexible neural electrode technology based on graphene, which enables simultaneous optical imaging and electrophysiological recording. We demonstrate that hippocampal slices can be imaged through transparent graphene electrodes by both confocal and two-photon microscopy without causing any light-induced artifacts in the electrical recordings. Graphene electrodes record high frequency bursting activity and slow synaptic potentials that are hard to resolve by multi-cellular calcium imaging. This transparent electrode technology may pave the way for high spatio-temporal resolution electrooptic mapping of the dynamic neuronal activity. PMID:25327632
Simultaneous GCaMP6-based fiber photometry and fMRI in rats.
Liang, Zhifeng; Ma, Yuncong; Watson, Glenn D R; Zhang, Nanyin
2017-09-01
Understanding the relationship between neural and vascular signals is essential for interpretation of functional MRI (fMRI) results with respect to underlying neuronal activity. Simultaneously measuring neural activity using electrophysiology with fMRI has been highly valuable in elucidating the neural basis of the blood oxygenation-level dependent (BOLD) signal. However, this approach is also technically challenging due to the electromagnetic interference that is observed in electrophysiological recordings during MRI scanning. Recording optical correlates of neural activity, such as calcium signals, avoids this issue, and has opened a new avenue to simultaneously acquire neural and BOLD signals. The present study is the first to demonstrate the feasibility of simultaneously and repeatedly acquiring calcium and BOLD signals in animals using a genetically encoded calcium indicator, GCaMP6. This approach was validated with a visual stimulation experiment, during which robust increases of both calcium and BOLD signals in the superior colliculus were observed. In addition, repeated measurement in the same animal demonstrated reproducible calcium and BOLD responses to the same stimuli. Taken together, simultaneous GCaMP6-based fiber photometry and fMRI recording presents a novel, artifact-free approach to simultaneously measuring neural and fMRI signals. Furthermore, given the cell-type specificity of GCaMP6, this approach has the potential to mechanistically dissect the contributions of individual neuron populations to BOLD signal, and ultimately reveal its underlying neural mechanisms. The current study established the method for simultaneous GCaMP6-based fiber photometry and fMRI in rats. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Michon, Frédéric; Aarts, Arno; Holzhammer, Tobias; Ruther, Patrick; Borghs, Gustaaf; McNaughton, Bruce; Kloosterman, Fabian
2016-08-01
Objective. Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. Approach. The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i.e. the flexibility and modularity of micro-drive arrays and the high sampling ability of electrode-dense silicon probes. Main results. Newly engineered long bendable silicon probes were integrated into a micro-drive array. The resulting device can carry up to 16 independently movable silicon probes, each carrying 16 recording sites. Populations of neurons were recorded simultaneously in multiple cortical and/or hippocampal sites in two freely behaving implanted rats. Significance. Current approaches to monitor neuronal activity either allow to flexibly record from multiple widely separated brain regions (micro-drive arrays) but with a limited sampling density or to provide denser sampling at the expense of a flexible placement in multiple brain regions (neural probes). By combining these two approaches and their benefits, we present an alternative solution for flexible and simultaneous recordings from widely distributed populations of neurons in freely behaving rats.
Brain plasticity and functionality explored by nonlinear optical microscopy
NASA Astrophysics Data System (ADS)
Sacconi, L.; Allegra, L.; Buffelli, M.; Cesare, P.; D'Angelo, E.; Gandolfi, D.; Grasselli, G.; Lotti, J.; Mapelli, J.; Strata, P.; Pavone, F. S.
2010-02-01
In combination with fluorescent protein (XFP) expression techniques, two-photon microscopy has become an indispensable tool to image cortical plasticity in living mice. In parallel to its application in imaging, multi-photon absorption has also been used as a tool for the dissection of single neurites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. In this work, multi-photon nanosurgery is applied to dissect single climbing fibers expressing GFP in the cerebellar cortex. The morphological consequences are then characterized with time lapse 3-dimensional two-photon imaging over a period of minutes to days after the procedure. Preliminary investigations show that the laser induced fiber dissection recalls a regenerative process in the fiber itself over a period of days. These results show the possibility of this innovative technique to investigate regenerative processes in adult brain. In parallel with imaging and manipulation technique, non-linear microscopy offers the opportunity to optically record electrical activity in intact neuronal networks. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising perspectives in understanding the computations of neuronal networks.
NASA Astrophysics Data System (ADS)
Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia
2016-03-01
Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.
Fukushima, Makoto; Saunders, Richard C; Mullarkey, Matthew; Doyle, Alexandra M; Mishkin, Mortimer; Fujii, Naotaka
2014-08-15
Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.
2016-08-01
It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.
Left ventricular approach for recording His bundle potential in man.
Lee, Y S; Lien, W P
1975-06-01
The electrical potentials of the His bundle (HB) were recorded from the left ventricular endocardial surface in 28 patients ranging from 16 to 63 years of age. In 14 of the patients the left bundle branch (LB) potentials were also obtained. Placement of a bipolar electrode catheter tip toward the interventricular septum, right at and also 1 to 2 cm below the aortic valve, resulted in stable recordings of both potentials in successive cardiac cycles even at performing atrial or HB pacing from the right heart. The following intervals were measured in milliseconds (msec): P-A, A-H, H, H-V, LB, and LB-V. The average values in 12 patients (average age 26 plus or minus 7 years and average heart rate 90 plus or minus 16 beats per minute) with normal A-V conduction were as follows: P-A 28 plus or minus 7, A-H 76 plus or minus 16, H 19 plus or minus 3 and H-V 45 plus or minus 6 msec. The average values for LB and LB-V in 10 of these 12 patients were 15 plus or minus 3 and 25 plus or minus 3 msec respectively. Validation of the His bundle electrogram (HBE) from the left ventricular endocardial surface was based on simultaneous recordings of the intracardiac electrograms from both left and right sides of the heart in 18 patients. The individual average values for the intervals obtained from both sides of the heart in these patients were statistically not different, except that the H potential was slightly longer in duration fr m the left heart (P equals 0.05). Among these, 16 showed simultaneous onset of the H potentials, and the LB-V and RB-V conduction times from comparable points were almost the same. Indications for the left sided electro-physiologic studies include the following situations: (a) inability to record H from the right of the heart; (b) giant right atrium; and (c) possibly during atrial fibrillation.
Intracellular recording of action potentials by nanopillar electroporation.
Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao
2012-02-12
Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels.
Intracellular recording of action potentials by nanopillar electroporation
NASA Astrophysics Data System (ADS)
Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao
2012-03-01
Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels.
Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia.
Nevalainen, Päivi; Marchi, Viviana; Metsäranta, Marjo; Lönnqvist, Tuula; Toiviainen-Salo, Sanna; Vanhatalo, Sampsa; Lauronen, Leena
2017-07-01
To evaluate the added value of somatosensory (SEPs) and visual evoked potentials (VEPs) recorded simultaneously with routine EEG in early outcome prediction of newborns with hypoxic-ischemic encephalopathy under modern intensive care. We simultaneously recorded multichannel EEG, median nerve SEPs, and flash VEPs during the first few postnatal days in 50 term newborns with hypoxic-ischemic encephalopathy. EEG background was scored into five grades and the worst two grades were considered to indicate poor cerebral recovery. Evoked potentials were classified as absent or present. Clinical outcome was determined from the medical records at a median age of 21months. Unfavorable outcome included cerebral palsy, severe mental retardation, severe epilepsy, or death. The accuracy of outcome prediction was 98% with SEPs compared to 90% with EEG. EEG alone always predicted unfavorable outcome when it was inactive (n=9), and favorable outcome when it was normal or only mildly abnormal (n=17). However, newborns with moderate or severe EEG background abnormality could have either favorable or unfavorable outcome, which was correctly predicted by SEP in all but one newborn (accuracy in this subgroup 96%). Absent VEPs were always associated with an inactive EEG, and an unfavorable outcome. However, presence of VEPs did not guarantee a favorable outcome. SEPs accurately predict clinical outcomes in newborns with hypoxic-ischemic encephalopathy and improve the EEG-based prediction particularly in those newborns with severely or moderately abnormal EEG findings. SEPs should be added to routine EEG recordings for early bedside assessment of newborns with hypoxic-ischemic encephalopathy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth R; Penny, William D; Zrinzo, Ludvic; Hariz, Marwan I; Limousin, Patricia; Friston, Karl J; Brown, Peter
2010-05-01
Insight into how brain structures interact is critical for understanding the principles of functional brain architectures and may lead to better diagnosis and therapy for neuropsychiatric disorders. We recorded, simultaneously, magnetoencephalographic (MEG) signals and subcortical local field potentials (LFP) in a Parkinson's disease (PD) patient with bilateral deep brain stimulation (DBS) electrodes in the subthalamic nucleus (STN). These recordings offer a unique opportunity to characterize interactions between the subcortical structures and the neocortex. However, high-amplitude artefacts appeared in the MEG. These artefacts originated from the percutaneous extension wire, rather than from the actual DBS electrode and were locked to the heart beat. In this work, we show that MEG beamforming is capable of suppressing these artefacts and quantify the optimal regularization required. We demonstrate how beamforming makes it possible to localize cortical regions whose activity is coherent with the STN-LFP, extract artefact-free virtual electrode time-series from regions of interest and localize cortical areas exhibiting specific task-related power changes. This furnishes results that are consistent with previously reported results using artefact-free MEG data. Our findings demonstrate that physiologically meaningful information can be extracted from heavily contaminated MEG signals and pave the way for further analysis of combined MEG-LFP recordings in DBS patients. 2009 Elsevier Inc. All rights reserved.
Fukushima, Makoto; Saunders, Richard C.; Mullarkey, Matthew; Doyle, Alexandra M.; Mishkin, Mortimer; Fujii, Naotaka
2014-01-01
Background Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. New Method Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. Results We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Comparison with Existing Methods Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. Conclusions This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. PMID:24972186
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.; Shah, Ankoor S.; Truccolo, Wilson; Ding, Ming-Zhou; Bressler, Steven L.; Schroeder, Charles E.
2003-01-01
Electric potentials and magnetic fields generated by ensembles of synchronously active neurons in response to external stimuli provide information essential to understanding the processes underlying cognitive and sensorimotor activity. Interpreting recordings of these potentials and fields is difficult as each detector records signals simultaneously generated by various regions throughout the brain. We introduce the differentially Variable Component Analysis (dVCA) algorithm, which relies on trial-to-trial variability in response amplitude and latency to identify multiple components. Using simulations we evaluate the importance of response variability to component identification, the robustness of dVCA to noise, and its ability to characterize single-trial data. Finally, we evaluate the technique using visually evoked field potentials recorded at incremental depths across the layers of cortical area VI, in an awake, behaving macaque monkey.
High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels†
Müller, Jan; Ballini, Marco; Livi, Paolo; Chen, Yihui; Radivojevic, Milos; Shadmani, Amir; Viswam, Vijay; Jones, Ian L.; Fiscella, Michele; Diggelmann, Roland; Stettler, Alexander; Frey, Urs; Bakkum, Douglas J.; Hierlemann, Andreas
2017-01-01
Studies on information processing and learning properties of neuronal networks would benefit from simultaneous and parallel access to the activity of a large fraction of all neurons in such networks. Here, we present a CMOS-based device, capable of simultaneously recording the electrical activity of over a thousand cells in in vitro neuronal networks. The device provides sufficiently high spatiotemporal resolution to enable, at the same time, access to neuronal preparations on subcellular, cellular, and network level. The key feature is a rapidly reconfigurable array of 26 400 microelectrodes arranged at low pitch (17.5 μm) within a large overall sensing area (3.85 × 2.10 mm2). An arbitrary subset of the electrodes can be simultaneously connected to 1024 low-noise readout channels as well as 32 stimulation units. Each electrode or electrode subset can be used to electrically stimulate or record the signals of virtually any neuron on the array. We demonstrate the applicability and potential of this device for various different experimental paradigms: large-scale recordings from whole networks of neurons as well as investigations of axonal properties of individual neurons. PMID:25973786
Tan, Johnson C H; Meadows, Howard; Gupta, Aanchal; Yeung, Sonia N; Moloney, Gregory
2014-03-01
The aim of this study was to describe a modification of the Miyake-Apple posterior video analysis for the simultaneous visualization of the anterior and posterior corneal surfaces during wet laboratory-based deep anterior lamellar keratoplasty (DALK). A human donor corneoscleral button was affixed to a microscope slide and placed onto a custom-made mounting box. A big bubble DALK was performed on the cornea in the wet laboratory. An 11-diopter intraocular lens was positioned over the aperture of the back camera of an iPhone. This served to video record the posterior view of the corneoscleral button during the big bubble formation. An overhead operating microscope with an attached video camcorder recorded the anterior view during the surgery. The anterior and posterior views of the wet laboratory-based DALK surgery were simultaneously captured and edited using video editing software. The formation of the big bubble can be studied. This video recording camera system has the potential to act as a valuable research and teaching tool in corneal lamellar surgery, especially in the behavior of the big bubble formation in DALK.
High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels.
Müller, Jan; Ballini, Marco; Livi, Paolo; Chen, Yihui; Radivojevic, Milos; Shadmani, Amir; Viswam, Vijay; Jones, Ian L; Fiscella, Michele; Diggelmann, Roland; Stettler, Alexander; Frey, Urs; Bakkum, Douglas J; Hierlemann, Andreas
2015-07-07
Studies on information processing and learning properties of neuronal networks would benefit from simultaneous and parallel access to the activity of a large fraction of all neurons in such networks. Here, we present a CMOS-based device, capable of simultaneously recording the electrical activity of over a thousand cells in in vitro neuronal networks. The device provides sufficiently high spatiotemporal resolution to enable, at the same time, access to neuronal preparations on subcellular, cellular, and network level. The key feature is a rapidly reconfigurable array of 26 400 microelectrodes arranged at low pitch (17.5 μm) within a large overall sensing area (3.85 × 2.10 mm(2)). An arbitrary subset of the electrodes can be simultaneously connected to 1024 low-noise readout channels as well as 32 stimulation units. Each electrode or electrode subset can be used to electrically stimulate or record the signals of virtually any neuron on the array. We demonstrate the applicability and potential of this device for various different experimental paradigms: large-scale recordings from whole networks of neurons as well as investigations of axonal properties of individual neurons.
Organic electronics for high-resolution electrocorticography of the human brain.
Khodagholy, Dion; Gelinas, Jennifer N; Zhao, Zifang; Yeh, Malcolm; Long, Michael; Greenlee, Jeremy D; Doyle, Werner; Devinsky, Orrin; Buzsáki, György
2016-11-01
Localizing neuronal patterns that generate pathological brain signals may assist with tissue resection and intervention strategies in patients with neurological diseases. Precise localization requires high spatiotemporal recording from populations of neurons while minimizing invasiveness and adverse events. We describe a large-scale, high-density, organic material-based, conformable neural interface device ("NeuroGrid") capable of simultaneously recording local field potentials (LFPs) and action potentials from the cortical surface. We demonstrate the feasibility and safety of intraoperative recording with NeuroGrids in anesthetized and awake subjects. Highly localized and propagating physiological and pathological LFP patterns were recorded, and correlated neural firing provided evidence about their local generation. Application of NeuroGrids to brain disorders, such as epilepsy, may improve diagnostic precision and therapeutic outcomes while reducing complications associated with invasive electrodes conventionally used to acquire high-resolution and spiking data.
NASA Astrophysics Data System (ADS)
Jayant, Krishna; Hirtz, Jan J.; Plante, Ilan Jen-La; Tsai, David M.; de Boer, Wieteke D. A. M.; Semonche, Alexa; Peterka, Darcy S.; Owen, Jonathan S.; Sahin, Ozgur; Shepard, Kenneth L.; Yuste, Rafael
2017-05-01
Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.
Jayant, Krishna; Hirtz, Jan J.; Plante, Ilan Jen-La; Tsai, David M.; De Boer, Wieteke D. A. M.; Semonche, Alexa; Peterka, Darcy S.; Owen, Jonathan S.; Sahin, Ozgur; Shepard, Kenneth L.; Yuste, Rafael
2017-01-01
Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ~15–30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5–1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures. PMID:27941898
Jayant, Krishna; Hirtz, Jan J; Plante, Ilan Jen-La; Tsai, David M; De Boer, Wieteke D A M; Semonche, Alexa; Peterka, Darcy S; Owen, Jonathan S; Sahin, Ozgur; Shepard, Kenneth L; Yuste, Rafael
2017-05-01
Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.
Xu, Jia-Min; Wang, Ce-Qun; Lin, Long-Nian
2014-06-25
Multi-channel in vivo recording techniques are used to record ensemble neuronal activity and local field potentials (LFP) simultaneously. One of the key points for the technique is how to process these two sets of recorded neural signals properly so that data accuracy can be assured. We intend to introduce data processing approaches for action potentials and LFP based on the original data collected through multi-channel recording system. Action potential signals are high-frequency signals, hence high sampling rate of 40 kHz is normally chosen for recording. Based on waveforms of extracellularly recorded action potentials, tetrode technology combining principal component analysis can be used to discriminate neuronal spiking signals from differently spatially distributed neurons, in order to obtain accurate single neuron spiking activity. LFPs are low-frequency signals (lower than 300 Hz), hence the sampling rate of 1 kHz is used for LFPs. Digital filtering is required for LFP analysis to isolate different frequency oscillations including theta oscillation (4-12 Hz), which is dominant in active exploration and rapid-eye-movement (REM) sleep, gamma oscillation (30-80 Hz), which is accompanied by theta oscillation during cognitive processing, and high frequency ripple oscillation (100-250 Hz) in awake immobility and slow wave sleep (SWS) state in rodent hippocampus. For the obtained signals, common data post-processing methods include inter-spike interval analysis, spike auto-correlation analysis, spike cross-correlation analysis, power spectral density analysis, and spectrogram analysis.
Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity
Richner, Thomas J.; Thongpang, Sanitta; Brodnick, Sarah K.; Schendel, Amelia A.; Falk, Ryan W.; Krugner-Higby, Lisa A.; Pashaie, Ramin; Williams, Justin C.
2014-01-01
Objective Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography (EEG) remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complimentary methods to simultaneously modulate cortical activity while recording are needed. Approach We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2 (ChR2). We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. Main Results Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. Significance Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses. PMID:24445482
Kirkpatrick, D C; McKinney, C J; Manis, P B; Wightman, R M
2016-08-02
Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations.
Na+ current in presynaptic terminals of the crayfish opener cannot initiate action potentials.
Lin, Jen-Wei
2016-01-01
Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings did detect Na(+) current (INa) in most terminals. The INa exhibited a high threshold and fast activation rate. Local perfusion of Na(+)-free saline showed that terminal INa contributed to AP waveform by slightly accelerating the rising phase and increasing the peak amplitude. These findings suggest that terminal INa functions to "touch up" but not to generate APs. Copyright © 2016 the American Physiological Society.
A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology
Márton, Gergely; Orbán, Gábor; Kiss, Marcell; Fiáth, Richárd; Pongrácz, Anita; Ulbert, István
2015-01-01
Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks. PMID:26683306
Analysis of dynamic brain oscillations: methodological advances.
Le Van Quyen, Michel; Bragin, Anatol
2007-07-01
In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, oscillations of neuronal networks can be identified from simultaneous, multisite recordings. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings also depends on the development of new mathematical methods that can extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of network oscillations and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals and potentially productive future directions. This review is part of the INMED and TINS special issue, Physiogenic and pathogenic oscillations: the beauty and the beast, derived from presentations at the annual INMED and TINS symposium (http://inmednet.com).
A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.
Márton, Gergely; Orbán, Gábor; Kiss, Marcell; Fiáth, Richárd; Pongrácz, Anita; Ulbert, István
2015-01-01
Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks.
Rivet, M; Cognard, C; Raymond, G
1989-01-01
The slow inward calcium current and the contractile response were simultaneously recorded in voltage clamped (whole cell patch clamp recording) rat myoballs in primary culture. The shape of the contraction(T)/potential(V) relationship and the application of the inorganic calcium channel blocker cadmium (1.5 mM), which suppresses a part of the contractile activity, demonstrate the existence of two components of contraction. One of them is related to the slow calcium current.
Multiscale decoding for reliable brain-machine interface performance over time.
Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M
2017-07-01
Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.
Serra, Jordi; Bostock, Hugh; Navarro, Xavier
2010-02-19
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.
Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q.
2014-01-01
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress. PMID:24961469
Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q
2014-06-25
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress.
Old/New Effect of Digital Memory Retrieval in Chinese Dyscalculia: Evidence from ERP
ERIC Educational Resources Information Center
Wang, Enguo; Du, Chenguang; Ma, Yujun
2017-01-01
This study reports the neurophysiological and behavioral correlates of digital memory retrieval features in Chinese individuals with and without dyscalculia. A total of 18 children with dyscalculia (ages 11.5-13.5) and 18 controls were tested, and their event-related potentials were digitally recorded simultaneously with behavior measurement.…
Multi-electrode array technologies for neuroscience and cardiology
NASA Astrophysics Data System (ADS)
Spira, Micha E.; Hai, Aviad
2013-02-01
At present, the prime methodology for studying neuronal circuit-connectivity, physiology and pathology under in vitro or in vivo conditions is by using substrate-integrated microelectrode arrays. Although this methodology permits simultaneous, cell-non-invasive, long-term recordings of extracellular field potentials generated by action potentials, it is 'blind' to subthreshold synaptic potentials generated by single cells. On the other hand, intracellular recordings of the full electrophysiological repertoire (subthreshold synaptic potentials, membrane oscillations and action potentials) are, at present, obtained only by sharp or patch microelectrodes. These, however, are limited to single cells at a time and for short durations. Recently a number of laboratories began to merge the advantages of extracellular microelectrode arrays and intracellular microelectrodes. This Review describes the novel approaches, identifying their strengths and limitations from the point of view of the end users -- with the intention to help steer the bioengineering efforts towards the needs of brain-circuit research.
Multi-electrode array technologies for neuroscience and cardiology.
Spira, Micha E; Hai, Aviad
2013-02-01
At present, the prime methodology for studying neuronal circuit-connectivity, physiology and pathology under in vitro or in vivo conditions is by using substrate-integrated microelectrode arrays. Although this methodology permits simultaneous, cell-non-invasive, long-term recordings of extracellular field potentials generated by action potentials, it is 'blind' to subthreshold synaptic potentials generated by single cells. On the other hand, intracellular recordings of the full electrophysiological repertoire (subthreshold synaptic potentials, membrane oscillations and action potentials) are, at present, obtained only by sharp or patch microelectrodes. These, however, are limited to single cells at a time and for short durations. Recently a number of laboratories began to merge the advantages of extracellular microelectrode arrays and intracellular microelectrodes. This Review describes the novel approaches, identifying their strengths and limitations from the point of view of the end users--with the intention to help steer the bioengineering efforts towards the needs of brain-circuit research.
NASA Astrophysics Data System (ADS)
Ison, Mark; Artemiadis, Panagiotis
2014-10-01
Myoelectric control is filled with potential to significantly change human-robot interaction due to the ability to non-invasively measure human motion intent. However, current control schemes have struggled to achieve the robust performance that is necessary for use in commercial applications. As demands in myoelectric control trend toward simultaneous multifunctional control, multi-muscle coordinations, or synergies, play larger roles in the success of the control scheme. Detecting and refining patterns in muscle activations robust to the high variance and transient changes associated with surface electromyography is essential for efficient, user-friendly control. This article reviews the role of muscle synergies in myoelectric control schemes by dissecting each component of the scheme with respect to associated challenges for achieving robust simultaneous control of myoelectric interfaces. Electromyography recording details, signal feature extraction, pattern recognition and motor learning based control schemes are considered, and future directions are proposed as steps toward fulfilling the potential of myoelectric control in clinically and commercially viable applications.
Clarke, Stephen G.; Scarnati, Matthew S.
2016-01-01
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. PMID:27911759
Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G
2016-11-09
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. Copyright © 2016 the authors 0270-6474/16/3611559-14$15.00/0.
Vandenplas, Jérémie; Colinet, Frederic G; Gengler, Nicolas
2014-09-30
A condition to predict unbiased estimated breeding values by best linear unbiased prediction is to use simultaneously all available data. However, this condition is not often fully met. For example, in dairy cattle, internal (i.e. local) populations lead to evaluations based only on internal records while widely used foreign sires have been selected using internally unavailable external records. In such cases, internal genetic evaluations may be less accurate and biased. Because external records are unavailable, methods were developed to combine external information that summarizes these records, i.e. external estimated breeding values and associated reliabilities, with internal records to improve accuracy of internal genetic evaluations. Two issues of these methods concern double-counting of contributions due to relationships and due to records. These issues could be worse if external information came from several evaluations, at least partially based on the same records, and combined into a single internal evaluation. Based on a Bayesian approach, the aim of this research was to develop a unified method to integrate and blend simultaneously several sources of information into an internal genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. This research resulted in equations that integrate and blend simultaneously several sources of information and avoid double-counting of contributions due to relationships and due to records. The performance of the developed equations was evaluated using simulated and real datasets. The results showed that the developed equations integrated and blended several sources of information well into a genetic evaluation. The developed equations also avoided double-counting of contributions due to relationships and due to records. Furthermore, because all available external sources of information were correctly propagated, relatives of external animals benefited from the integrated information and, therefore, more reliable estimated breeding values were obtained. The proposed unified method integrated and blended several sources of information well into a genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. The unified method can also be extended to other types of situations such as single-step genomic or multi-trait evaluations, combining information across different traits.
Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie
2018-05-09
Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
Qian, Fang; Huang, Chao; Lin, Yi-Dong; ...
2017-04-18
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Huang, Chao; Lin, Yi-Dong
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
Information processing capacity in psychopathy: Effects of anomalous attention.
Hamilton, Rachel K B; Newman, Joseph P
2018-03-01
Hamilton and colleagues (2015) recently proposed that an integrative deficit in psychopathy restricts simultaneous processing, thereby leaving fewer resources available for information encoding, narrowing the scope of attention, and undermining associative processing. The current study evaluated this parallel processing deficit proposal using the Simultaneous-Sequential paradigm. This investigation marks the first a priori test of the Hamilton et al.'s theoretical framework. We predicted that psychopathy would be associated with inferior performance (as indexed by lower accuracy and longer response time) on trials requiring simultaneous processing of visual information relative to trials necessitating sequential processing. Results were consistent with these predictions, supporting the proposal that psychopathy is characterized by a reduced capacity to process multicomponent perceptual information concurrently. We discuss the potential implications of impaired simultaneous processing for the conceptualization of the psychopathic deficit. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A. A.; Ruther, Patrick; Neves, Hercules P.; Bokor, Hajnalka; Acsády, László
2016-01-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. PMID:27535370
NASA Astrophysics Data System (ADS)
Fishkova, T. Ya.
2018-01-01
An optimal set of geometric and electrical parameters of a high-aperture electrostatic charged-particle spectrograph with a range of simultaneously recorded energies of E/ E min = 1-50 has been found by computer simulation, which is especially important for the energy analysis of charged particles during fast processes in various materials. The spectrograph consists of two coaxial electrodes with end faces closed by flat electrodes. The external electrode with a conical-cylindrical form is cut into parts with potentials that increase linearly, except for the last cylindrical part, which is electrically connected to the rear end electrode. The internal cylindrical electrode and the front end electrode are grounded. In the entire energy range, the system is sharply focused on the internal cylindrical electrode, which provides an energy resolution of no worse than 3 × 10-3.
Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart.
Cluitmans, Matthijs; Karel, Joël; Bonizzi, Pietro; Volders, Paul; Westra, Ronald; Peeters, Ralf
2018-05-12
We investigated a novel sparsity-based regularization method in the wavelet domain of the inverse problem of electrocardiography that aims at preserving the spatiotemporal characteristics of heart-surface potentials. In three normal, anesthetized dogs, electrodes were implanted around the epicardium and body-surface electrodes were attached to the torso. Potential recordings were obtained simultaneously on the body surface and on the epicardium. A CT scan was used to digitize a homogeneous geometry which consisted of the body-surface electrodes and the epicardial surface. A novel multitask elastic-net-based method was introduced to regularize the ill-posed inverse problem. The method simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Performance was assessed in terms of quality of reconstructed epicardial potentials, estimated activation and recovery time, and estimated locations of pacing, and compared with performance of Tikhonov zeroth-order regularization. Results in the wavelet domain obtained higher sparsity than those in the time domain. Epicardial potentials were non-invasively reconstructed with higher accuracy than with Tikhonov zeroth-order regularization (p < 0.05), and recovery times were improved (p < 0.05). No significant improvement was found in terms of activation times and localization of origin of pacing. Next to improved estimation of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias, this novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions. Graphical Abstract The inverse problem of electrocardiography is to reconstruct heart-surface potentials from recorded bodysurface electrocardiograms (ECGs) and a torso-heart geometry. However, it is ill-posed and solving it requires additional constraints for regularization. We introduce a regularization method that simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Our approach reconstructs epicardial (heart-surface) potentials with higher accuracy than common methods. It also improves the reconstruction of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias. This novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions.
Simultaneous recording of multifocal VEP responses to short-wavelength and achromatic stimuli
Wang, Min; Hood, Donald C.
2010-01-01
A paradigm is introduced that allows for simultaneous recording of the pattern-onset multifocal visual evoked potentials (mfVEP) to both short-wavelength (SW) and achromatic (A) stimuli. There were 5 sets of stimulus conditions, each of which is defined by two semi-concurrently presented stimuli, A64/SW (a 64% contrast achromatic stimulus and a short-wavelength stimulus), A64/A8 (64% achromatic/8% achromatic), A0/A8 (0% (gray) achromatic/8% achromatic), A64/A0 and A0/SW. When paired with A64 as part of A64/SW, the SW stimulus yielded mfVEP responses (SWmfVEP) with diminished amplitude in the fovea, consistent with the known sensitivity of the S-cone system. In addition, when A8, which is approximately equal to the L and M cone contribution of the SW stimulus, was recorded alone, the response to A8 was small, but significantly larger than noise. However, when A8 was paired with A64, the response to A8 was reduced to close to noise level, suggesting that the LM cone contribution of the SWmfVEP can be suppressed by A64. When A64 was recorded alone, the response to A64 was about 32% larger than the mfVEP for A64 when paired with the SW. Likewise, the presence of A64 stimulus also reduces the response of SWmfVEP by 35%. Finally, an intense narrow-band yellow background prolonged the latency of SW response for the A0/SW stimulus but not the latency of SW response for the A64/SW stimulus. These results indicate that it is possible to simultaneously record an SWmfVEP with little LM cone contribution along with an achromatic mfVEP. PMID:20499134
Wang, Guangfu; Wyskiel, Daniel R; Yang, Weiguo; Wang, Yiqing; Milbern, Lana C; Lalanne, Txomin; Jiang, Xiaolong; Shen, Ying; Sun, Qian-Quan; Zhu, J Julius
2015-01-01
Deciphering neuronal circuitry is central to understanding brain function and dysfunction, yet it remains a daunting task. To facilitate the dissection of neuronal circuits, a process requiring functional analysis of synaptic connections and morphological identification of interconnected neurons, we present here a method for stable simultaneous octuple patch-clamp recordings. This method allows physiological analysis of synaptic interconnections among 4–8 simultaneously recorded neurons and/or 10–30 sequentially recorded neurons, and it allows anatomical identification of >85% of recorded interneurons and >99% of recorded principal neurons. We describe how to apply the method to rodent tissue slices; however, it can be used on other model organisms. We also describe the latest refinements and optimizations of mechanics, electronics, optics and software programs that are central to the realization of a combined single- and two-photon microscopy–based, optogenetics- and imaging-assisted, stable, simultaneous quadruple–viguple patch-clamp recording system. Setting up the system, from the beginning of instrument assembly and software installation to full operation, can be completed in 3–4 d. PMID:25654757
RANDOM PULSE GENERATOR PRODUCING FIDUCIAL MARKS
Nielsen, W.F.
1960-02-01
The apparatus for automatically applying a fiducial marking, having a nonrepetitive pattern, to a plurality of simultaneously made records comprises, in series, a bypass filter, a trigger circuit, and a pulse generator, with printing means connected to and controlled by the pulse generator for simultaneously making the visible fiducial marks on a plurality of simultaneously produced records.
Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain
Kim, Christina K; Yang, Samuel J; Pichamoorthy, Nandini; Young, Noah P; Kauvar, Isaac; Jennings, Joshua H; Lerner, Talia N; Berndt, Andre; Lee, Soo Yeun; Ramakrishnan, Charu; Davidson, Thomas J; Inoue, Masatoshi; Bito, Haruhiko; Deisseroth, Karl
2017-01-01
Real-time activity measurements from multiple specific cell populations and projections are likely to be important for understanding the brain as a dynamical system. Here we developed frame-projected independent-fiber photometry (FIP), which we used to record fluorescence activity signals from many brain regions simultaneously in freely behaving mice. We explored the versatility of the FIP microscope by quantifying real-time activity relationships among many brain regions during social behavior, simultaneously recording activity along multiple axonal pathways during sensory experience, performing simultaneous two-color activity recording, and applying optical perturbation tuned to elicit dynamics that match naturally occurring patterns observed during behavior. PMID:26878381
Peripheral nerve recruitment curve using near-infrared stimulation
NASA Astrophysics Data System (ADS)
Dautrebande, Marie; Doguet, Pascal; Gorza, Simon-Pierre; Delbeke, Jean; Nonclercq, Antoine
2018-02-01
In the context of near-infrared neurostimulation, we report on an experimental hybrid electrode allowing for simultaneous photonic or electrical neurostimulation and for electrical recording of evoked action potentials. The electrode includes three contacts and one optrode. The optrode is an opening in the cuff through which the tip of an optical fibre is held close to the epineurium. Two contacts provide action potential recording. The remaining contact, together with a remote subcutaneous electrode, is used for electric stimulation which allows periodical assessment of the viability of the nerve during the experiment. A 1470 nm light source was used to stimulate a mouse sciatic nerve. Neural action potentials were not successfully recorded because of the electrical noise so muscular activity was used to reflect the motor fibres stimulation. A recruitment curve was obtained by stimulating with photonic pulses of same power and increasing duration and recording the evoked muscular action potentials. Motor fibres can be recruited with radiant exposures between 0.05 and 0.23 J/cm2 for pulses in the 100 to 500 μs range. Successful stimulation at short duration and at a commercial wavelength is encouraging in the prospect of miniaturisation and practical applications. Motor fibres recruitment curve is a first step in an ongoing research work. Neural action potential acquisition will be improved, with aim to shed light on the mechanism of action potential initiation under photonic stimulation.
Visual evoked potentials in the horse.
Ström, L; Ekesten, B
2016-06-21
Electrical potentials generated in the central nervous system in response to brief visual stimuli, flash visual evoked potentials (FVEPs), can be recorded non-invasively over the occipital cortex. FVEPs are used clinically in human medicine and also experimentally in a number of animal species, but the method has not yet been evaluated in the horse. The method would potentially allow the ophthalmologist and equine clinician to evaluate visual impairment caused by disorders affecting post-retinal visual pathways. The aim was to establish a method for recording of FVEPs in horses in a clinical setting and to evaluate the waveform morphology in the normal horse. Ten horses were sedated with a continuous detomidine infusion. Responses were recorded from electrodes placed on the scalp. Several positions were evaluated to determine suitable electrode placement. Flash electroretinograms (FERGs) were recorded simultaneously. To evaluate potential contamination of the FVEP from retinal potentials, a retrobulbar nerve block was performed in two horses and transection of the optic nerve was performed in one horse as a terminal procedure. A series of positive (P) and negative (N) peaks in response to light stimuli was recorded in all horses. Reproducible wavelets with mean times-to-peaks of 26 (N1), 55 (P2), 141 (N2) and 216 ms (P4) were seen in all horses in all recordings. Reproducible results were obtained when the active electrode was placed in the midline rostral to the nuchal crest. Recording at lateral positions gave more variable results, possibly due to ear muscle artifacts. Averaging ≥100 responses reduced the impact of noise and artifacts. FVEPs were reproducible in the same horse during the same recording session and between sessions, but were more variable between horses. Retrobulbar nerve block caused a transient loss of the VEP whereas transection of the optic nerve caused an irreversible loss. We describe the waveform of the equine FVEP and our results show that it is possible to record FVEPs in sedated horses in a clinical setting. The potentials recorded were shown to be of post-retinal origin. Further studies are needed to provide normative data and assess potential clinical use.
Membrane Potentials of the Lobster Giant Axon Obtained by Use of the Sucrose-Gap Technique
Julian, Fred J.; Moore, John W.; Goldman, David E.
1962-01-01
A method similar to the sucrose-gap technique introduced be Stäpfli is described for measuring membrane potential and current in singly lobster giant axons (diameter about 100 micra). The isotonic sucrose solution used to perfuse the gaps raises the external leakage resistance so that the recorded potential is only about 5 per cent less than the actual membrane potential. However, the resting potential of an axon in the sucrose-gap arrangement is increased 20 to 60 mv over that recorded by a conventional micropipette electrode when the entire axon is bathed in sea water. A complete explanation for this effect has not been discovered. The relation between resting potential and external potassium and sodium ion concentrations shows that potassium carries most of the current in a depolarized axon in the sucrose-gap arrangement, but that near the resting potential other ions make significant contributions. Lowering the external chloride concentration decreases the resting potential. Varying the concentration of the sucrose solution has little effect. A study of the impedance changes associated with the action potential shows that the membrane resistance decreases to a minimum at the peak of the spike and returns to near its initial value before repolarization is complete (a normal lobster giant axon action potential does not have an undershoot). Action potentials recorded simultaneously by the sucrose-gap technique and by micropipette electrodes are practically superposable. PMID:14452759
CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging
NASA Astrophysics Data System (ADS)
Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun
2017-05-01
Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.
Mishra, Vikas; Gautier, Nicole M; Glasscock, Edward
2018-01-29
In epilepsy, seizures can evoke cardiac rhythm disturbances such as heart rate changes, conduction blocks, asystoles, and arrhythmias, which can potentially increase risk of sudden unexpected death in epilepsy (SUDEP). Electroencephalography (EEG) and electrocardiography (ECG) are widely used clinical diagnostic tools to monitor for abnormal brain and cardiac rhythms in patients. Here, a technique to simultaneously record video, EEG, and ECG in mice to measure behavior, brain, and cardiac activities, respectively, is described. The technique described herein utilizes a tethered (i.e., wired) recording configuration in which the implanted electrode on the head of the mouse is hard-wired to the recording equipment. Compared to wireless telemetry recording systems, the tethered arrangement possesses several technical advantages such as a greater possible number of channels for recording EEG or other biopotentials; lower electrode costs; and greater frequency bandwidth (i.e., sampling rate) of recordings. The basics of this technique can also be easily modified to accommodate recording other biosignals, such as electromyography (EMG) or plethysmography for assessment of muscle and respiratory activity, respectively. In addition to describing how to perform the EEG-ECG recordings, we also detail methods to quantify the resulting data for seizures, EEG spectral power, cardiac function, and heart rate variability, which we demonstrate in an example experiment using a mouse with epilepsy due to Kcna1 gene deletion. Video-EEG-ECG monitoring in mouse models of epilepsy or other neurological disease provides a powerful tool to identify dysfunction at the level of the brain, heart, or brain-heart interactions.
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A A; Ruther, Patrick; Neves, Hercules P; Bokor, Hajnalka; Acsády, László; Ulbert, István
2016-11-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. Copyright © 2016 the American Physiological Society.
A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording.
Gagnon-Turcotte, Gabriel; LeChasseur, Yoan; Bories, Cyril; Messaddeq, Younes; De Koninck, Yves; Gosselin, Benoit
2017-02-01
This paper presents a wireless headstage with real-time spike detection and data compression for combined optogenetics and multichannel electrophysiological recording. The proposed headstage, which is intended to perform both optical stimulation and electrophysiological recordings simultaneously in freely moving transgenic rodents, is entirely built with commercial off-the-shelf components, and includes 32 recording channels and 32 optical stimulation channels. It can detect, compress and transmit full action potential waveforms over 32 channels in parallel and in real time using an embedded digital signal processor based on a low-power field programmable gate array and a Microblaze microprocessor softcore. Such a processor implements a complete digital spike detector featuring a novel adaptive threshold based on a Sigma-delta control loop, and a wavelet data compression module using a new dynamic coefficient re-quantization technique achieving large compression ratios with higher signal quality. Simultaneous optical stimulation and recording have been performed in-vivo using an optrode featuring 8 microelectrodes and 1 implantable fiber coupled to a 465-nm LED, in the somatosensory cortex and the Hippocampus of a transgenic mouse expressing ChannelRhodospin (Thy1::ChR2-YFP line 4) under anesthetized conditions. Experimental results show that the proposed headstage can trigger neuron activity while collecting, detecting and compressing single cell microvolt amplitude activity from multiple channels in parallel while achieving overall compression ratios above 500. This is the first reported high-channel count wireless optogenetic device providing simultaneous optical stimulation and recording. Measured characteristics show that the proposed headstage can achieve up to 100% of true positive detection rate for signal-to-noise ratio (SNR) down to 15 dB, while achieving up to 97.28% at SNR as low as 5 dB. The implemented prototype features a lifespan of up to 105 minutes, and uses a lightweight (2.8 g) and compact [Formula: see text] rigid-flex printed circuit board.
Geoelectric potential changes: Possible precursors to earthquakes in Japan
Uyeda, S.; Nagao, T.; Orihara, Y.; Yamaguchi, T.; Takahashi, I.
2000-01-01
Whether electromagnetic precursors to earthquakes (EQs) exist is an important question not only for EQ prediction but also for understanding the physical processes of EQ generation. Slow transient geoelectric potential changes have been observed before several recent EQs in Japan. In most cases, they appeared 1–19 days before the EQs, and their duration and intensity were several minutes to 1 h and 1–2 mV/100 m. The changes appeared before five of all six EQs with magnitude ≥ 5 that occurred within 20 km of our stations during the observation period. Changes were also detected at greater epicentral distances (up to 75 km) before two other EQs, including one EQ of magnitude 4.7, which was preceded by a signal simultaneously recorded at three widely separated stations. These geoelectric potential changes have been distinguished through the following criteria from a multitude of other changes, which were noise of various origins. (i) The selected changes were proportional in amplitude to the length of the recording station's short (≈100 m) dipoles and were simultaneously detected also on long (1–10 km) dipoles when the latter were in operation. (ii) No such changes occurred during the observation period that were not followed by EQs. Although the EQ precursory nature of these geoelectric potential changes is admittedly unproven, it seems that the present results warrant continued serious research into the occurrence, generation, and transmission of these signals and their possible causal relationship to EQs. PMID:10781060
Geoelectric potential changes: possible precursors to earthquakes in Japan.
Uyeda, S; Nagao, T; Orihara, Y; Yamaguchi, T; Takahashi, I
2000-04-25
Whether electromagnetic precursors to earthquakes (EQs) exist is an important question not only for EQ prediction but also for understanding the physical processes of EQ generation. Slow transient geoelectric potential changes have been observed before several recent EQs in Japan. In most cases, they appeared 1-19 days before the EQs, and their duration and intensity were several minutes to 1 h and 1-2 mV/100 m. The changes appeared before five of all six EQs with magnitude >/= 5 that occurred within 20 km of our stations during the observation period. Changes were also detected at greater epicentral distances (up to 75 km) before two other EQs, including one EQ of magnitude 4.7, which was preceded by a signal simultaneously recorded at three widely separated stations. These geoelectric potential changes have been distinguished through the following criteria from a multitude of other changes, which were noise of various origins. (i) The selected changes were proportional in amplitude to the length of the recording station's short ( approximately 100 m) dipoles and were simultaneously detected also on long (1-10 km) dipoles when the latter were in operation. (ii) No such changes occurred during the observation period that were not followed by EQs. Although the EQ precursory nature of these geoelectric potential changes is admittedly unproven, it seems that the present results warrant continued serious research into the occurrence, generation, and transmission of these signals and their possible causal relationship to EQs.
Vargas-Irwin, Carlos E.; Truccolo, Wilson; Donoghue, John P.
2011-01-01
A prominent feature of motor cortex field potentials during movement is a distinctive low-frequency local field potential (lf-LFP) (<4 Hz), referred to as the movement event-related potential (mEP). The lf-LFP appears to be a global signal related to regional synaptic input, but its relationship to nearby output signaled by single unit spiking activity (SUA) or to movement remains to be established. Previous studies comparing information in primary motor cortex (MI) lf-LFPs and SUA in the context of planar reaching tasks concluded that lf-LFPs have more information than spikes about movement. However, the relative performance of these signals was based on a small number of simultaneously recorded channels and units, or for data averaged across sessions, which could miss information of larger-scale spiking populations. Here, we simultaneously recorded LFPs and SUA from two 96-microelectrode arrays implanted in two major motor cortical areas, MI and ventral premotor (PMv), while monkeys freely reached for and grasped objects swinging in front of them. We compared arm end point and grip aperture kinematics′ decoding accuracy for lf-LFP and SUA ensembles. The results show that lf-LFPs provide enough information to reconstruct kinematics in both areas with little difference in decoding performance between MI and PMv. Individual lf-LFP channels often provided more accurate decoding of single kinematic variables than any one single unit. However, the decoding performance of the best single unit among the large population usually exceeded that of the best single lf-LFP channel. Furthermore, ensembles of SUA outperformed the pool of lf-LFP channels, in disagreement with the previously reported superiority of lf-LFP decoding. Decoding results suggest that information in lf-LFPs recorded from intracortical arrays may allow the reconstruction of reach and grasp for real-time neuroprosthetic applications, thus potentially supplementing the ability to decode these same features from spiking populations. PMID:21273313
Holographic disk with high data transfer rate: its application to an audio response memory.
Kubota, K; Ono, Y; Kondo, M; Sugama, S; Nishida, N; Sakaguchi, M
1980-03-15
This paper describes a memory realized with a high data transfer rate using the holographic parallel-processing function and its application to an audio response system that supplies many audio messages to many terminals simultaneously. Digitalized audio messages are recorded as tiny 1-D Fourier transform holograms on a holographic disk. A hologram recorder and a hologram reader were constructed to test and demonstrate the holographic audio response memory feasibility. Experimental results indicate the potentiality of an audio response system with a 2000-word vocabulary and 250-Mbit/sec bit transfer rate.
Generalization of the Lyot filter and its application to snapshot spectral imaging.
Gorman, Alistair; Fletcher-Holmes, David William; Harvey, Andrew Robert
2010-03-15
A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.
Sensing textile seam-line for wearable multimodal physiological monitoring.
McKnight, M; Agcayazi, T; Kausche, H; Ghosh, T; Bozkurt, A
2016-08-01
This paper investigates a novel multimodal sensing method by forming seam-lines of conductive textile fibers into commercially available fabrics. The proposed ultra-low cost micro-electro-mechanical sensor would provide, wearable, flexible, textile based biopotential signal recording, wetness detection and tactile sensing simultaneously. Three types of fibers are evaluated for their array-based sensing capability, including a 3D printed conductive fiber, a multiwall carbon nanotube based fiber, and a commercially available stainless steel conductive thread. The sensors were shown to have a correlation between capacitance and pressure; impedance and wetness; and recorded potential and ECG waveforms.
López-Peréz, P J; Dampuré, J; Hernández-Cabrera, J A; Barber, H A
2016-11-01
During reading parafoveal information can affect the processing of the word currently fixated (parafovea-on-fovea effect) and words perceived parafoveally can facilitate their subsequent processing when they are fixated on (preview effect). We investigated parafoveal processing by simultaneously recording eye movements and EEG measures. Participants read word pairs that could be semantically associated or not. Additionally, the boundary paradigm allowed us to carry out the same manipulation on parafoveal previews that were displayed until reader's gaze moved to the target words. Event Related Potentials time-locked to the prime-preview presentation showed a parafoveal-on-foveal N400 effect. Fixation Related Potentials time locked to the saccade offset showed an N400 effect related to the prime-target relationship. Furthermore, this later effect interacted with the semantic manipulation of the previews, supporting a semantic preview benefit. These results demonstrate that at least under optimal conditions foveal and parafoveal information can be simultaneously processed and integrated. Copyright © 2016 Elsevier Inc. All rights reserved.
Non-invasive monitoring of spreading depression.
Bastany, Zoya J R; Askari, Shahbaz; Dumont, Guy A; Speckmann, Erwin-Josef; Gorji, Ali
2016-10-01
Spreading depression (SD), a slow propagating depolarization wave, plays an important role in pathophysiology of different neurological disorders. Yet, research into SD-related disorders has been hampered by the lack of non-invasive recording techniques of SD. Here we compared the manifestations of SD in continuous non-invasive electroencephalogram (EEG) recordings to invasive electrocorticographic (ECoG) recordings in order to obtain further insights into generator structures and electrogenic mechanisms of surface recording of SD. SD was induced by KCl application and simultaneous SD recordings were performed by scalp EEG as well as ECoG electrodes of somatosensory neocortex of rats using a novel homemade EEG amplifier, AgCl recording electrodes, and high chloride conductive gel. Different methods were used to analyze the data; including the spectrogram, bi-spectrogram, pattern distribution, relative spectrum power, and multivariable Gaussian fit analysis. The negative direct current (DC) shifts recorded by scalp electrodes exhibited a high homogeneity to those recorded by ECoG electrodes. Furthermore, this novel method of recording and analysis was able to separate SD recorded by scalp electrodes from non-neuronal DC shifts induced by other potential generators, such as the skin, muscles, arteries, dura, etc. These data suggest a novel application for continuous non-invasive monitoring of DC potential changes, such as SD. Non-invasive monitoring of SD would allow early intervention and improve outcome in SD-related neurological disorders. Copyright © 2016 IBRO. All rights reserved.
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M
2016-09-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.
2016-01-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multi-site stimulation and mapping to manipulate actively the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics. PMID:27347837
Tianxiao Jiang; Siddiqui, Hasan; Ray, Shruti; Asman, Priscella; Ozturk, Musa; Ince, Nuri F
2017-07-01
This paper presents a portable platform to collect and review behavioral data simultaneously with neurophysiological signals. The whole system is comprised of four parts: a sensor data acquisition interface, a socket server for real-time data streaming, a Simulink system for real-time processing and an offline data review and analysis toolbox. A low-cost microcontroller is used to acquire data from external sensors such as accelerometer and hand dynamometer. The micro-controller transfers the data either directly through USB or wirelessly through a bluetooth module to a data server written in C++ for MS Windows OS. The data server also interfaces with the digital glove and captures HD video from webcam. The acquired sensor data are streamed under User Datagram Protocol (UDP) to other applications such as Simulink/Matlab for real-time analysis and recording. Neurophysiological signals such as electroencephalography (EEG), electrocorticography (ECoG) and local field potential (LFP) recordings can be collected simultaneously in Simulink and fused with behavioral data. In addition, we developed a customized Matlab Graphical User Interface (GUI) software to review, annotate and analyze the data offline. The software provides a fast, user-friendly data visualization environment with synchronized video playback feature. The software is also capable of reviewing long-term neural recordings. Other featured functions such as fast preprocessing with multithreaded filters, annotation, montage selection, power-spectral density (PSD) estimate, time-frequency map and spatial spectral map are also implemented.
Silva, Tatiana Rocha; de Resende, Luciana Macedo; Santos, Marco Aurélio Rocha
The vestibular evoked myogenic potential is a potential of mean latency that measures the muscle response to auditory stimulation. This potential can be generated from the contraction of the sternocleidomastoid muscle and also from the contraction of extraocular muscles in response to high-intensity sounds. This study presents a combined or simultaneous technique of cervical and ocular vestibular evoked myogenic potential in individuals with changes in the vestibular system, for use in otoneurologic diagnosis. To characterize the records and analyze the results of combined cervical and ocular VEMP in individuals with vestibular hyporeflexia and in those with Ménière's disease. The study included 120 subjects: 30 subjects with vestibular hyporeflexia, 30 with Ménière's disease, and 60 individuals with normal hearing. Data collection was performed by simultaneously recording the cervical and ocular vestibular evoked myogenic potential. There were differences between the study groups (individuals with vestibular hyporeflexia and individuals with Ménière's disease) and the control group for most of wave parameters in combined cervical and ocular vestibular evoked myogenic potential. For cervical vestibular evoked myogenic potential, it was observed that the prolongation of latency of the P13 and N23 waves was the most frequent finding in the group with vestibular hyporeflexia and in the group with Ménière's disease. For ocular vestibular evoked myogenic potential, prolonged latency of N10 and P15 waves was the most frequent finding in the study groups. Combined cervical and ocular vestibular evoked myogenic potential presented relevant results for individuals with vestibular hyporeflexia and for those with Ménière's disease. There were differences between the study groups and the control group for most of the wave parameters in combined cervical and ocular vestibular evoked myogenic potential. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Dichoptic stimulation improves detection of glaucoma with multifocal visual evoked potentials.
Arvind, Hemamalini; Klistorner, Alexander; Graham, Stuart; Grigg, John; Goldberg, Ivan; Klistorner, Asya; Billson, Frank A
2007-10-01
To determine whether simultaneous binocular (dichoptic) stimulation for multifocal visual evoked potentials (mfVEP) detects glaucomatous defects and decreases intereye variability. Twenty-eight patients with glaucoma and 30 healthy subjects underwent mfVEP on monocular and dichoptic stimulation. Dichoptic stimulation was presented with the use of virtual reality goggles (recording time, 7 minutes). Monocular mfVEPs were recorded sequentially for each eye (recording time, 10 minutes). Comparison of mean relative asymmetry coefficient (RAC; calculated as difference in amplitudes between eyes/sum of amplitudes of both eyes at each segment) on monocular and dichoptic mfVEP revealed significantly lower RAC on dichoptic (0.003 +/- 0.03) compared with monocular testing (-0.02 +/- 0.04; P = 0.002). In all 28 patients, dichoptic mfVEP identified defects with excellent topographic correspondence. Of 56 hemifields (28 eyes), 33 had Humphrey visual field (HFA) scotomas, all of which were detected by dichoptic mfVEP. Among 23 hemifields with normal HFA, two were abnormal on monocular and dichoptic mfVEP. Five hemifields (five patients) normal on HFA and monocular mfVEP were abnormal on dichoptic mfVEP. In all five patients, corresponding rim changes were observed on disc photographs. Mean RAC of glaucomatous eyes was significantly higher on dichoptic (0.283 +/- 0.18) compared with monocular (0.199 +/- 0.12) tests (P = 0.0006). Dichoptic mfVEP not only detects HFA losses, it may identify early defects in areas unaffected on HFA and monocular mfVEP while reducing testing time by 30%. Asymmetry was tighter among healthy subjects but wider in patients with glaucoma on simultaneous binocular stimulation, which is potentially a new tool in the early detection of glaucoma.
Kothari, Ruchi; Bokariya, Pradeep; Singh, Ramji; Singh, Smita; Narang, Purvasha
2014-01-01
To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD) of Humphrey visual field could be associated with visual evoked potential (VEP) parameters of patients having primary open angle glaucoma (POAG). Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP) were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field) and displayed on VEP monitor (colour 14″) by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II). The results of our study indicate that there is a highly significant (P<0.001) negative correlation of P100 amplitude and a statistically significant (P<0.05) positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student's t-test. Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.
Tonomura, W; Moriguchi, H; Jimbo, Y; Konishi, S
2008-01-01
This paper describes an advanced Micro Channel Array (MCA) so as to record neuronal network at multiple points simultaneously. Developed MCA is designed for neuronal network analysis which has been studied by co-authors using MEA (Micro Electrode Arrays) system. The MCA employs the principle of the extracellular recording. Presented MCA has the following advantages. First of all, the electrodes integrated around individual micro channels are electrically isolated for parallel multipoint recording. Sucking and clamping of cells through micro channels is expected to improve the cellular selectivity and S/N ratio. In this study, hippocampal neurons were cultured on the developed MCA. As a result, the spontaneous and evoked spike potential could be recorded by sucking and clamping the cells at multiple points. Herein, we describe the successful experimental results together with the design and fabrication of the advanced MCA toward on-chip analysis of neuronal network.
Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals
Berényi, Antal; Somogyvári, Zoltán; Nagy, Anett J.; Roux, Lisa; Long, John D.; Fujisawa, Shigeyoshi; Stark, Eran; Leonardo, Anthony; Harris, Timothy D.
2013-01-01
Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function. PMID:24353300
Fiberless multicolor neural optoelectrode for in vivo circuit analysis.
Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G; Buzsáki, György; Wise, Kensall D; Yoon, Euisik
2016-08-03
Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.
Cortical membrane potential signature of optimal states for sensory signal detection
McGinley, Matthew J.; David, Stephen V.; McCormick, David A.
2015-01-01
The neural correlates of optimal states for signal detection task performance are largely unknown. One hypothesis holds that optimal states exhibit tonically depolarized cortical neurons with enhanced spiking activity, such as occur during movement. We recorded membrane potentials of auditory cortical neurons in mice trained on a challenging tone-in-noise detection task while assessing arousal with simultaneous pupillometry and hippocampal recordings. Arousal measures accurately predicted multiple modes of membrane potential activity, including: rhythmic slow oscillations at low arousal, stable hyperpolarization at intermediate arousal, and depolarization during phasic or tonic periods of hyper-arousal. Walking always occurred during hyper-arousal. Optimal signal detection behavior and sound-evoked responses, at both sub-threshold and spiking levels, occurred at intermediate arousal when pre-decision membrane potentials were stably hyperpolarized. These results reveal a cortical physiological signature of the classically-observed inverted-U relationship between task performance and arousal, and that optimal detection exhibits enhanced sensory-evoked responses and reduced background synaptic activity. PMID:26074005
ERIC Educational Resources Information Center
Nakajima, Taira
2012-01-01
The author demonstrates a new system useful for reflective learning. Our new system offers an environment that one can use handwriting tablet devices to bookmark symbolic and descriptive feedbacks into simultaneously recorded videos in the environment. If one uses video recording and feedback check sheets in reflective learning sessions, one can…
Technical solutions for simultaneous MEG and SEEG recordings: towards routine clinical use.
Badier, J M; Dubarry, A S; Gavaret, M; Chen, S; Trébuchon, A S; Marquis, P; Régis, J; Bartolomei, F; Bénar, C G; Carron, R
2017-09-21
The simultaneous recording of intracerebral EEG (stereotaxic EEG, SEEG) and magnetoencephalography (MEG) is a promising strategy that provides both local and global views on brain pathological activity. Yet, acquiring simultaneous signals poses difficult technical issues that hamper their use in clinical routine. Our objective was thus to develop a set of solutions for recording a high number of SEEG channels while preserving signal quality. We recorded data in a patient with drug resistant epilepsy during presurgical evaluation. We used dedicated insertion screws and optically insulated amplifiers. We recorded 137 SEEG contacts on 10 depth electrodes (5-15 contacts each) and 248 MEG channels (magnetometers). Signal quality was assessed by comparing the distribution of RMS values in different frequency bands to a reference set of MEG acquisitions. The quality of signals was excellent for both MEG and SEEG; for MEG, it was comparable to that of MEG signals without concurrent SEEG. Discharges involving several structures on SEEG were visible on MEG, whereas discharges limited in space were not seen at the surface. SEEG can now be recorded simultaneously with whole-head MEG in routine. This opens new avenues, both methodologically for understanding signals and improving signal processing methods, and clinically for future combined analyses.
Microfluidic array platform for simultaneous lipid bilayer membrane formation.
Zagnoni, M; Sandison, M E; Morgan, H
2009-01-01
In recent years, protein array technologies have found widespread applications in proteomics. However, new methods for high-throughput analysis of protein-protein and protein-compound interactions are still required. In this paper, an array of lipid bilayer membranes formed within a microfluidic system with integrated electrodes is presented. The system is comprised of three layers that are clamped together, thus rendering the device cleanable and reusable. The device microfluidics enable the simultaneous formation of an array of lipid bilayers using a previously developed air-exposure technique, thereby avoiding the need to manually form individual bilayers. The Ag/AgCl electrodes allow for ion channel measurements, each of the sites being independently addressable. Typically, a 50% yield in simultaneous lipid bilayer formation over 12 sites was obtained and ion channel recordings have been acquired over multiple sites. This system has great potential for the development of an automatable platform of suspended lipid bilayer arrays.
A wireless multi-channel recording system for freely behaving mice and rats.
Fan, David; Rich, Dylan; Holtzman, Tahl; Ruther, Patrick; Dalley, Jeffrey W; Lopez, Alberto; Rossi, Mark A; Barter, Joseph W; Salas-Meza, Daniel; Herwik, Stanislav; Holzhammer, Tobias; Morizio, James; Yin, Henry H
2011-01-01
To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems.
A Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats
Holtzman, Tahl; Ruther, Patrick; Dalley, Jeffrey W.; Lopez, Alberto; Rossi, Mark A.; Barter, Joseph W.; Salas-Meza, Daniel; Herwik, Stanislav; Holzhammer, Tobias; Morizio, James; Yin, Henry H.
2011-01-01
To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems. PMID:21765934
NASA Astrophysics Data System (ADS)
Turola, Massimo; Meah, Chris J.; Marshall, Richard J.; Styles, Iain B.; Gruppetta, Stephen
2015-06-01
A plenoptic imaging system records simultaneously the intensity and the direction of the rays of light. This additional information allows many post processing features such as 3D imaging, synthetic refocusing and potentially evaluation of wavefront aberrations. In this paper the effects of low order aberrations on a simple plenoptic imaging system have been investigated using a wave optics simulations approach.
ERIC Educational Resources Information Center
Pourtois, Gilles; Vocat, Roland; N'Diaye, Karim; Spinelli, Laurent; Seeck, Margitta; Vuilleumier, Patrik
2010-01-01
We studied error monitoring in a human patient with unique implantation of depth electrodes in both the left dorsal cingulate gyrus and medial temporal lobe prior to surgery. The patient performed a speeded go/nogo task and made a substantial number of commission errors (false alarms). As predicted, intracranial Local Field Potentials (iLFPs) in…
Equalization filters for multiple-channel electromyogram arrays
Clancy, Edward A.; Xia, Hongfang; Christie, Anita; Kamen, Gary
2007-01-01
Multiple channels of electromyogram activity are frequently transduced via electrodes, then combined electronically to form one electrophysiologic recording, e.g. bipolar, linear double difference and Laplacian montages. For high quality recordings, precise gain and frequency response matching of the individual electrode potentials is achieved in hardware (e.g., an instrumentation amplifier for bipolar recordings). This technique works well when the number of derived signals is small and the montages are pre-determined. However, for array electrodes employing a variety of montages, hardware channel matching can be expensive and tedious, and limits the number of derived signals monitored. This report describes a method for channel matching based on the concept of equalization filters. Monopolar potentials are recorded from each site without precise hardware matching. During a calibration phase, a time-varying linear chirp voltage is applied simultaneously to each site and recorded. Based on the calibration recording, each monopolar channel is digitally filtered to “correct” for (equalize) differences in the individual channels, and then any derived montages subsequently created. In a hardware demonstration system, the common mode rejection ratio (at 60 Hz) of bipolar montages improved from 35.2 ± 5.0 dB (prior to channel equalization) to 69.0 ± 5.0 dB (after equalization). PMID:17614134
Combining EEG, MIDI, and motion capture techniques for investigating musical performance.
Maidhof, Clemens; Kästner, Torsten; Makkonen, Tommi
2014-03-01
This article describes a setup for the simultaneous recording of electrophysiological data (EEG), musical data (MIDI), and three-dimensional movement data. Previously, each of these three different kinds of measurements, conducted sequentially, has been proven to provide important information about different aspects of music performance as an example of a demanding multisensory motor skill. With the method described here, it is possible to record brain-related activity and movement data simultaneously, with accurate timing resolution and at relatively low costs. EEG and MIDI data were synchronized with a modified version of the FTAP software, sending synchronization signals to the EEG recording device simultaneously with keypress events. Similarly, a motion capture system sent synchronization signals simultaneously with each recorded frame. The setup can be used for studies investigating cognitive and motor processes during music performance and music-like tasks--for example, in the domains of motor control, learning, music therapy, or musical emotions. Thus, this setup offers a promising possibility of a more behaviorally driven analysis of brain activity.
Pressure-Water Content Relations for a Sandy, Granitic Soil Under Field and Laboratory Conditions
NASA Astrophysics Data System (ADS)
Chandler, D. G.; McNamara, J. M.; Gribb, M. M.
2001-12-01
A new sensor was developed to measure soil water potential in order to determine the predominant mechanisms of snowmelt delivery to streamflow. The sensors were calibrated for +50 to -300 cm for application on steep granitic slopes and deployed at three depths and 2 locations on a slope in a headwater catchment of the Idaho Batholith throughout the 2001 snowmelt season. Soil moisture was measured simultaneously with Water Content Reflectometers (Cambell Scientific, Logan, UT), that were calibrated in situ with Time Domain Reflectometry measurements. Sensor performance was evaluated in a laboratory soil column via side-by-side monitoring during injection of water with a cone permeameter. Soil characteristic curves were also determined for the field site by multi-step outflow tests. Comparison of the results from the field study to those from the laboratory experiment and to the characteristic curves demonstrate the utility of the new sensor for recording dynamic changes in soil water status. During snowmelt, the sensor responded to both matric potential and bypass-flow pore potential. Large shifts in the pressure record that correspond to changes in the infiltration flux indicate initiation and cessation of macropore flow. The pore pressure records may be used to document the frequency, timing and duration of bypass flow that are not apparent from the soil moisture records.
Optimisation of a Generic Ionic Model of Cardiac Myocyte Electrical Activity
Guo, Tianruo; Al Abed, Amr; Lovell, Nigel H.; Dokos, Socrates
2013-01-01
A generic cardiomyocyte ionic model, whose complexity lies between a simple phenomenological formulation and a biophysically detailed ionic membrane current description, is presented. The model provides a user-defined number of ionic currents, employing two-gate Hodgkin-Huxley type kinetics. Its generic nature allows accurate reconstruction of action potential waveforms recorded experimentally from a range of cardiac myocytes. Using a multiobjective optimisation approach, the generic ionic model was optimised to accurately reproduce multiple action potential waveforms recorded from central and peripheral sinoatrial nodes and right atrial and left atrial myocytes from rabbit cardiac tissue preparations, under different electrical stimulus protocols and pharmacological conditions. When fitted simultaneously to multiple datasets, the time course of several physiologically realistic ionic currents could be reconstructed. Model behaviours tend to be well identified when extra experimental information is incorporated into the optimisation. PMID:23710254
Tonomura, Wataru; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi
2010-08-01
This paper describes an advanced Micro Channel Array (MCA) for recording electrophysiological signals of neuronal networks at multiple points simultaneously. The developed MCA is designed for neuronal network analysis which has been studied by the co-authors using the Micro Electrode Arrays (MEA) system, and employs the principles of extracellular recordings. A prerequisite for extracellular recordings with good signal-to-noise ratio is a tight contact between cells and electrodes. The MCA described herein has the following advantages. The electrodes integrated around individual micro channels are electrically isolated to enable parallel multipoint recording. Reliable clamping of a targeted cell through micro channels is expected to improve the cellular selectivity and the attachment between the cell and the electrode toward steady electrophysiological recordings. We cultured hippocampal neurons on the developed MCA. As a result, the spontaneous and evoked spike potentials could be recorded by sucking and clamping the cells at multiple points. In this paper, we describe the design and fabrication of the MCA and the successful electrophysiological recordings leading to the development of an effective cellular network analysis device.
All optical experimental design for neuron excitation, inhibition, and action potential detection
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Tolstykh, Gleb; Martens, Stacey; Sedelnikova, Anna; Ibey, Bennett L.; Beier, Hope T.
2016-03-01
Recently, infrared light has been shown to both stimulate and inhibit excitatory cells. However, studies of infrared light for excitatory cell inhibition have been constrained by the use of invasive and cumbersome electrodes for cell excitation and action potential recording. Here, we present an all optical experimental design for neuronal excitation, inhibition, and action potential detection. Primary rat neurons were transfected with plasmids containing the light sensitive ion channel CheRiff. CheRiff has a peak excitation around 450 nm, allowing excitation of transfected neurons with pulsed blue light. Additionally, primary neurons were transfected with QuasAr2, a fast and sensitive fluorescent voltage indicator. QuasAr2 is excited with yellow or red light and therefore does not spectrally overlap CheRiff, enabling imaging and action potential activation, simultaneously. Using an optic fiber, neurons were exposed to blue light sequentially to generate controlled action potentials. A second optic fiber delivered a single pulse of 1869nm light to the neuron causing inhibition of the evoked action potentials (by the blue light). When used in concert, these optical techniques enable electrode free neuron excitation, inhibition, and action potential recording, allowing research into neuronal behaviors with high spatial fidelity.
Calcium Signaling in Intact Dorsal Root Ganglia
Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.
2013-01-01
Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180
Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.
2014-01-01
Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in intact, awake monkeys (Macaca mulatta). We recorded action potentials within ~1 ms after 0.4 ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared to sham stimulation. The methodology is compatible with standard equipment in primate laboratories, allowing for easy implementation. Application of these new tools will facilitate the refinement of next generation TMS devices, experiments, and treatment protocols. PMID:24974797
Goltz, Dominique; Gundlach, Christopher; Nierhaus, Till; Villringer, Arno; Müller, Matthias; Pleger, Burkhard
2015-05-20
Previous studies on sustained tactile attention draw conclusions about underlying cortical networks by averaging over experimental conditions without considering attentional variance in single trials. This may have formed an imprecise picture of brain processes underpinning sustained tactile attention. In the present study, we simultaneously recorded EEG-fMRI and used modulations of steady-state somatosensory evoked potentials (SSSEPs) as a measure of attentional trial-by-trial variability. Therefore, frequency-tagged streams of vibrotactile stimulations were simultaneously presented to both index fingers. Human participants were cued to sustain attention to either the left or right finger stimulation and to press a button whenever they perceived a target pulse embedded in the to-be-attended stream. In-line with previous studies, a classical general linear model (GLM) analysis based on cued attention conditions revealed increased activity mainly in somatosensory and cerebellar regions. Yet, parametric modeling of the BOLD response using simultaneously recorded SSSEPs as a marker of attentional trial-by-trial variability quarried the intraparietal sulcus (IPS). The IPS in turn showed enhanced functional connectivity to a modality-unspecific attention network. However, this was only revealed on the basis of cued attention conditions in the classical GLM. By considering attentional variability as captured by SSSEPs, the IPS showed increased connectivity to a sensorimotor network, underpinning attentional selection processes between competing tactile stimuli and action choices (press a button or not). Thus, the current findings highlight the potential value by considering attentional variations in single trials and extend previous knowledge on the role of the IPS in tactile attention. Copyright © 2015 the authors 0270-6474/15/357938-12$15.00/0.
Fiberless multicolor neural optoelectrode for in vivo circuit analysis
Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G.; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik
2016-01-01
Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets. PMID:27485264
Two-way communication with neural networks in vivo using focused light
Wilson, Nathan R.; Schummers, James; Runyan, Caroline A.; Yan, Sherry; Chen, Robert F.; Deng, Yuting; Sur, Mriganka
2014-01-01
Neuronal networks process information in a distributed, spatially heterogeneous fashion that transcends the layout of electrodes. In contrast, directed and steerable light offers the potential to engage specific cells on demand. We present a unified framework for adapting microscopes to use light for simultaneous in vivo stimulation and recording of cells at fine spatiotemporal resolutions. We utilize straightforward optics to lock onto networks in vivo, steer light to activate circuit elements, and simultaneously record from other cells. We then actualize this “free” augmentation on both an “open” two-photon microscope, and a leading commercial one. Following this protocol, setup of the system takes a few days and the result is a non-invasive interface to brain dynamics based on directed light, at a network resolution that was not previously possible and which will further improve with the rapid advance in development of optical reporters and effectors. This protocol is for physiologists who are competent with computers and wish to extend hardware and software to interface more fluidly with neuronal networks. PMID:23702834
NASA Astrophysics Data System (ADS)
Ryapolova-Webb, Elena; Afshar, Pedram; Stanslaski, Scott; Denison, Tim; de Hemptinne, Coralie; Bankiewicz, Krystof; Starr, Philip A.
2014-02-01
Objective. Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic stimulation in these disorders, long-term recording from a fully implantable data collection system is needed. Approach. A fully implantable investigational data collection system, the Activa® PC + S neurostimulator (Medtronic, Inc., Minneapolis, MN), has been developed for human use. Here, we tested its utility for extended intracranial recording in the motor system of a nonhuman primate. The system was attached to two quadripolar paddle arrays: one covering sensorimotor cortex, and one covering a proximal forelimb muscle, to study simultaneous cortical field potentials and electromyography during spontaneous transitions from rest to movement. Main results. Over 24 months of recording, movement-related changes in physiologically relevant frequency bands were readily detected, including beta and gamma signals at approximately 2.5 μV/\\sqrtHz and 0.7 μV/\\sqrt{Hz}, respectively. The system architecture allowed for flexible recording configurations and algorithm triggered data recording. In the course of physiological analyses, sensing artifacts were observed (˜1 μVrms stationary tones at fixed frequency), which were mitigated either with post-processing or algorithm design and did not impact the scientific conclusions. Histological examination revealed no underlying tissue damage; however, a fibrous capsule had developed around the paddles, demonstrating a potential mechanism for the observed signal amplitude reduction. Significance. This study establishes the usefulness of this system in measuring chronic brain and muscle signals. Use of this system may potentially be valuable in human trials of chronic brain recording in movement disorders, a next step in the design of closed-loop neurostimulation paradigms.
Effects on motor unit potentiation and ground reaction force from treadmill exercise
NASA Technical Reports Server (NTRS)
Elam, Reid P.
1989-01-01
This study was conducted to analyze the characteristics of motor unit potentiation (MUP) and ground reaction force (GRF) in treadmill exercise at the inclines of 0, 5.5 and 11 percent with conjuctive speeds of 7.5, 6, and 5 mph respectively. These speeds and corresponding inclines were set to provide equivalent physiological workloads at 12.5 METS. EMG recordings were taken from the rectus femoris and gastrocnemius of the right leg from 5 subjects. Simultaneous GRF recordings were obtained from a Delmar Avionic treadmill rigged with load cells. Measures for MUP and GRF were taken over a period containing 10 strides at steady pace. It was concluded that the gastrocnemius was more evident in EMG activity in all speed/incline settings over the rectus femoris, and that inclines from 5.5 to 11 percent produced greater GRF's over 0 percent. Recommendations for future studies was made.
Martín-Loeches, M; Hinojosa, J A; Rubia, F J
1999-11-01
The temporal and hierarchical relationships between the dorsal and the ventral streams in selective attention are known only in relation to the use of spatial location as the attentional cue mediated by the dorsal stream. To improve this state of affairs, event-related brain potentials were recorded while subjects attended simultaneously to motion direction (mediated by the dorsal stream) and to a property mediated by the ventral stream (color or shape). At about the same time, a selection positivity (SP) started for attention mediated by both streams. However, the SP for color and shape peaked about 60 ms later than motion SP. Subsequently, a selection negativity (SN) followed by a late positive component (LPC) were found simultaneously for attention mediated by both streams. A hierarchical relationship between the two streams was not observed, but neither SN nor LPC for one property was completely insensitive to the values of the other property.
Mazinani, Babac A E; Waberski, Till D; van Ooyen, Andre; Walter, Peter
2008-05-01
Purpose of this study was to introduce a mathematical model which allows the calculation of a source dipole as the origin of the evoked activity based on the data of three simultaneously recorded VEPs from different locations at the scalp surface to predict field potentials at any neighboring location and to validate this model by comparison with actual recordings. In 10 healthy subjects (25-38, mean 29 years) continuous VEPs were recorded via 96 channels. On the base of the recordings at the positions POz', O1' and O2', a source dipole vector was calculated for each time point of the recordings and VEP responses were back projected for any of the 96 electrode positions. Differences between the calculated and the actually recorded responses were quantified by coefficients of variation (CV). The prediction precision and response size depended on the distance between the electrode of the predicted response and the recording electrodes. After compensating this relationship using a polynomial function, the CV of the mean difference between calculated and recorded responses of the 10 subjects was 2.8 +/- 1.2%. In conclusion, the "Mini-Brainmapping" model can provide precise topographical information with minimal additional recording efforts with good reliability. The implementation of this method in a routine diagnostic setting as an "easy-to-do" procedure would allow to examine a large number of patients and normal subjects in a short time, and thus, a solid data base could be created to correlate well defined pathologies with topographical VEP changes.
Xie, Kun; Fox, Grace E.; Liu, Jun; Tsien, Joe Z.
2016-01-01
The development of technologies capable of recording both single-unit activity and local field potentials (LFPs) over a wide range of brain circuits in freely behaving animals is the key to constructing brain activity maps. Although mice are the most popular mammalian genetic model, in vivo neural recording has been traditionally limited to smaller channel count and fewer brain structures because of the mouse’s small size and thin skull. Here, we describe a 512-channel tetrode system that allows us to record simultaneously over a dozen cortical and subcortical structures in behaving mice. This new technique offers two major advantages – namely, the ultra-low cost and the do-it-yourself flexibility for targeting any combination of many brain areas. We show the successful recordings of both single units and LFPs from 13 distinct neural circuits of the mouse brain, including subregions of the anterior cingulate cortices, retrosplenial cortices, somatosensory cortices, secondary auditory cortex, hippocampal CA1, dentate gyrus, subiculum, lateral entorhinal cortex, perirhinal cortex, and prelimbic cortex. This 512-channel system can also be combined with Cre-lox neurogenetics and optogenetics to further examine interactions between genes, cell types, and circuit dynamics across a wide range of brain structures. Finally, we demonstrate that complex stimuli – such as an earthquake and fear-inducing foot-shock – trigger firing changes in all of the 13 brain regions recorded, supporting the notion that neural code is highly distributed. In addition, we show that localized optogenetic manipulation in any given brain region could disrupt network oscillations and caused changes in single-unit firing patterns in a brain-wide manner, thereby raising the cautionary note of the interpretation of optogenetically manipulated behaviors. PMID:27378865
Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex.
Ibayashi, Kenji; Kunii, Naoto; Matsuo, Takeshi; Ishishita, Yohei; Shimada, Seijiro; Kawai, Kensuke; Saito, Nobuhito
2018-01-01
Restoration of speech communication for locked-in patients by means of brain computer interfaces (BCIs) is currently an important area of active research. Among the neural signals obtained from intracranial recordings, single/multi-unit activity (SUA/MUA), local field potential (LFP), and electrocorticography (ECoG) are good candidates for an input signal for BCIs. However, the question of which signal or which combination of the three signal modalities is best suited for decoding speech production remains unverified. In order to record SUA, LFP, and ECoG simultaneously from a highly localized area of human ventral sensorimotor cortex (vSMC), we fabricated an electrode the size of which was 7 by 13 mm containing sparsely arranged microneedle and conventional macro contacts. We determined which signal modality is the most capable of decoding speech production, and tested if the combination of these signals could improve the decoding accuracy of spoken phonemes. Feature vectors were constructed from spike frequency obtained from SUAs and event-related spectral perturbation derived from ECoG and LFP signals, then input to the decoder. The results showed that the decoding accuracy for five spoken vowels was highest when features from multiple signals were combined and optimized for each subject, and reached 59% when averaged across all six subjects. This result suggests that multi-scale signals convey complementary information for speech articulation. The current study demonstrated that simultaneous recording of multi-scale neuronal activities could raise decoding accuracy even though the recording area is limited to a small portion of cortex, which is advantageous for future implementation of speech-assisting BCIs.
Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex
Ibayashi, Kenji; Kunii, Naoto; Matsuo, Takeshi; Ishishita, Yohei; Shimada, Seijiro; Kawai, Kensuke; Saito, Nobuhito
2018-01-01
Restoration of speech communication for locked-in patients by means of brain computer interfaces (BCIs) is currently an important area of active research. Among the neural signals obtained from intracranial recordings, single/multi-unit activity (SUA/MUA), local field potential (LFP), and electrocorticography (ECoG) are good candidates for an input signal for BCIs. However, the question of which signal or which combination of the three signal modalities is best suited for decoding speech production remains unverified. In order to record SUA, LFP, and ECoG simultaneously from a highly localized area of human ventral sensorimotor cortex (vSMC), we fabricated an electrode the size of which was 7 by 13 mm containing sparsely arranged microneedle and conventional macro contacts. We determined which signal modality is the most capable of decoding speech production, and tested if the combination of these signals could improve the decoding accuracy of spoken phonemes. Feature vectors were constructed from spike frequency obtained from SUAs and event-related spectral perturbation derived from ECoG and LFP signals, then input to the decoder. The results showed that the decoding accuracy for five spoken vowels was highest when features from multiple signals were combined and optimized for each subject, and reached 59% when averaged across all six subjects. This result suggests that multi-scale signals convey complementary information for speech articulation. The current study demonstrated that simultaneous recording of multi-scale neuronal activities could raise decoding accuracy even though the recording area is limited to a small portion of cortex, which is advantageous for future implementation of speech-assisting BCIs. PMID:29674950
A simple integrated system for electrophysiologic recordings in animals
Slater, Bernard J.; Miller, Neil R.; Bernstein, Steven L.; Flower, Robert W.
2009-01-01
This technical note describes a modification to a fundus camera that permits simultaneous recording of pattern electroretinograms (pERGs) and pattern visual evoked potentials (pVEPs). The modification consists of placing an organic light-emitting diode (OLED) in the split-viewer pathway of a fundus camera, in a plane conjugate to the subject’s pupil. In this way, a focused image of the OLED can be delivered to a precisely known location on the retina. The advantage of using an OLED is that it can achieve high luminance while maintaining high contrast, and with minimal degradation over time. This system is particularly useful for animal studies, especially when precise retinal positioning is required. PMID:19137347
Statistical technique for analysing functional connectivity of multiple spike trains.
Masud, Mohammad Shahed; Borisyuk, Roman
2011-03-15
A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains. Copyright © 2011 Elsevier B.V. All rights reserved.
Santos, Lucas; Opris, Ioan; Fuqua, Joshua; Hampson, Robert E; Deadwyler, Sam A
2012-04-15
A unique custom-made tetrode microdrive for recording from large numbers of neurons in several areas of primate brain is described as a means for assessing simultaneous neural activity in cortical and subcortical structures in nonhuman primates (NHPs) performing behavioral tasks. The microdrive device utilizes tetrode technology with up to six ultra-thin microprobe guide tubes (0.1mm) that can be independently positioned, each containing reduced diameter tetrode and/or hexatrode microwires (0.02 mm) for recording and isolating single neuron activity. The microdrive device is mounted within the standard NHP cranial well and allows traversal of brain depths up to 40.0 mm. The advantages of this technology are demonstrated via simultaneously recorded large populations of neurons with tetrode type probes during task performance from a) primary motor cortex and deep brain structures (caudate-putamen and hippocampus) and b) multiple layers within the prefrontal cortex. The means to characterize interactions of well-isolated ensembles of neurons recorded simultaneously from different regions, as shown with this device, has not been previously available for application in primate brain. The device has extensive application to primate models for the detection and study of inoperative or maladaptive neural circuits related to human neurological disorders. Published by Elsevier B.V.
Construction of Microdrive Arrays for Chronic Neural Recordings in Awake Behaving Mice
Chang, Eric H.; Frattini, Stephen A.; Robbiati, Sergio; Huerta, Patricio T.
2013-01-01
State-of-the-art electrophysiological recordings from the brains of freely behaving animals allow researchers to simultaneously examine local field potentials (LFPs) from populations of neurons and action potentials from individual cells, as the animal engages in experimentally relevant tasks. Chronically implanted microdrives allow for brain recordings to last over periods of several weeks. Miniaturized drives and lightweight components allow for these long-term recordings to occur in small mammals, such as mice. By using tetrodes, which consist of tightly braided bundles of four electrodes in which each wire has a diameter of 12.5 μm, it is possible to isolate physiologically active neurons in superficial brain regions such as the cerebral cortex, dorsal hippocampus, and subiculum, as well as deeper regions such as the striatum and the amygdala. Moreover, this technique insures stable, high-fidelity neural recordings as the animal is challenged with a variety of behavioral tasks. This manuscript describes several techniques that have been optimized to record from the mouse brain. First, we show how to fabricate tetrodes, load them into driveable tubes, and gold-plate their tips in order to reduce their impedance from MΩ to KΩ range. Second, we show how to construct a custom microdrive assembly for carrying and moving the tetrodes vertically, with the use of inexpensive materials. Third, we show the steps for assembling a commercially available microdrive (Neuralynx VersaDrive) that is designed to carry independently movable tetrodes. Finally, we present representative results of local field potentials and single-unit signals obtained in the dorsal subiculum of mice. These techniques can be easily modified to accommodate different types of electrode arrays and recording schemes in the mouse brain. PMID:23851569
Cook, Stephanie; Kokmotou, Katerina; Soto, Vicente; Wright, Hazel; Fallon, Nicholas; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej
2018-04-13
Odours alter evaluations of concurrently presented visual stimuli, such as faces. Stimulus onset asynchrony (SOA) is known to affect evaluative priming in various sensory modalities. However, effects of SOA on odour priming of visual stimuli are not known. The present study aimed to analyse whether subjective and cortical activation changes during odour priming would vary as a function of SOA between odours and faces. Twenty-eight participants rated faces under pleasant, unpleasant, and no-odour conditions using visual analogue scales. In half of trials, faces appeared one-second after odour offset (SOA 1). In the other half of trials, faces appeared during the odour pulse (SOA 2). EEG was recorded continuously using a 128-channel system, and event-related potentials (ERPs) to face stimuli were evaluated using statistical parametric mapping (SPM). Faces presented during unpleasant-odour stimulation were rated significantly less pleasant than the same faces presented one-second after offset of the unpleasant odour. Scalp-time clusters in the late-positive-potential (LPP) time-range showed an interaction between odour and SOA effects, whereby activation was stronger for faces presented simultaneously with the unpleasant odour, compared to the same faces presented after odour offset. Our results highlight stronger unpleasant odour priming with simultaneous, compared to delayed, odour-face presentation. Such effects were represented in both behavioural and neural data. A greater cortical and subjective response during simultaneous presentation of faces and unpleasant odour may have an adaptive role, allowing for a prompt and focused behavioural reaction to a concurrent stimulus if an aversive odour would signal danger, or unwanted social interaction. Copyright © 2018 Elsevier B.V. All rights reserved.
Neuronix enables continuous, simultaneous neural recording and electrical microstimulation.
Zhi Yang; Jian Xu; Anh Tuan Nguyen; Tong Wu; Wenfeng Zhao; Wing-Kin Tam
2016-08-01
This paper reports a novel neurotechnology (Neuronix) and its validation through experiments. It is a miniature system-on-chip (SoC) that allows recording with simultaneous electrical microstimulation. This function has not been demonstrated before and enables precise, closed-loop neuromodulation. Neuronix represents recent advancement in brain technology and applies to both animal research and clinical applications.
Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach
F. Briggs; B. Lakshminarayanan; L. Neal; X.Z. Fern; R. Raich; S.F. Hadley; A.S. Hadley; M.G. Betts
2012-01-01
Although field-collected recordings typically contain multiple simultaneously vocalizing birds of different species, acoustic species classification in this setting has received little study so far. This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning...
recorded simultaneously by auscultation of the brachial artery; and (2) to study the pattern of pressure and flow dynamics during bicycle work at moderate...strenuous and maximal intensities. In most instances systolic pressures measured by auscultation were in close agreement with the directly recorded
Esophageal contractions in type 3 achalasia esophagus: simultaneous or peristaltic?
Kim, Tae Ho; Patel, Nirali; Ledgerwood-Lee, Melissa
2016-01-01
Absence of peristalsis and impaired relaxation of lower esophageal sphincter are the hallmarks of achalasia esophagus. Based on the pressurization patterns, achalasia has been subdivided into three subtypes. The goal of our study was to evaluate the esophageal contraction pattern and bolus clearance in type 3 achalasia esophagus. High-resolution manometry (HRM) recordings of all patients diagnosed with achalasia esophagus in our center between the years 2011 and 2013 were reviewed. Recordings of 36 patients with type 3 achalasia were analyzed for the characteristics of swallow-induced “simultaneous esophageal contraction.” The HRM impedance recordings of 14 additional patients with type 3 achalasia were analyzed for bolus clearance from the impedance recording. Finally, the HRM impedance along with intraluminal ultrasound imaging was conducted in six patients to further characterize the simultaneous esophageal contractions. Among 187 achalasia patients, 30 were type 1, 121 type 2, and 36 type 3. A total of 434 swallows evaluated in type 3 achalasia patients revealed that 95% of the swallow-induced contractions met criteria for simultaneous esophageal contraction, based on the onset of contraction. Interestingly, the peak and termination of the majority of simultaneous esophageal contractions were sequential. The HRM impedance revealed that 94% of the “simultaneous contractions” were associated with complete bolus clearance. Ultrasound image analysis revealed that baseline muscle thickness of patients in type 3 achalasia is larger than normal but the pattern of axial shortening is similar to that in normal subjects. The majority of esophageal contractions in type 3 achalasia are not true simultaneous contractions because the peak and termination of contraction are sequential and they are associated with complete bolus clearance. PMID:26950858
Esophageal contractions in type 3 achalasia esophagus: simultaneous or peristaltic?
Kim, Tae Ho; Patel, Nirali; Ledgerwood-Lee, Melissa; Mittal, Ravinder K
2016-05-01
Absence of peristalsis and impaired relaxation of lower esophageal sphincter are the hallmarks of achalasia esophagus. Based on the pressurization patterns, achalasia has been subdivided into three subtypes. The goal of our study was to evaluate the esophageal contraction pattern and bolus clearance in type 3 achalasia esophagus. High-resolution manometry (HRM) recordings of all patients diagnosed with achalasia esophagus in our center between the years 2011 and 2013 were reviewed. Recordings of 36 patients with type 3 achalasia were analyzed for the characteristics of swallow-induced "simultaneous esophageal contraction." The HRM impedance recordings of 14 additional patients with type 3 achalasia were analyzed for bolus clearance from the impedance recording. Finally, the HRM impedance along with intraluminal ultrasound imaging was conducted in six patients to further characterize the simultaneous esophageal contractions. Among 187 achalasia patients, 30 were type 1, 121 type 2, and 36 type 3. A total of 434 swallows evaluated in type 3 achalasia patients revealed that 95% of the swallow-induced contractions met criteria for simultaneous esophageal contraction, based on the onset of contraction. Interestingly, the peak and termination of the majority of simultaneous esophageal contractions were sequential. The HRM impedance revealed that 94% of the "simultaneous contractions" were associated with complete bolus clearance. Ultrasound image analysis revealed that baseline muscle thickness of patients in type 3 achalasia is larger than normal but the pattern of axial shortening is similar to that in normal subjects. The majority of esophageal contractions in type 3 achalasia are not true simultaneous contractions because the peak and termination of contraction are sequential and they are associated with complete bolus clearance.
El Maghraby, Gamal M; Arafa, Mona F; Osman, Mohamed A
2014-12-01
This study investigated simultaneous transdermal delivery of indomethacin and benzocaine from microemulsion. Eucalyptus oil based microemulsion was used with Tween 80 and ethanol being employed as surfactant and cosurfactant, respectively. A microemulsion formulation comprising eucalyptus oil, polyoxyethylene sorbitan momooleate (Tween 80), ethanol and water (20:30:30:20) was selected. Indomethacin (1% w/w) and benzocaine (20% w/w) were incorporated separately or combined into this formulation before in vitro and in vivo evaluation. Application of indomethacin microemulsion enhanced the transdermal flux and reduced the lag time compared to saturated aqueous control. The same trend was evident for benzocaine microemulsion. Simultaneous application of the two drugs in microemulsion provided similar enhancement pattern. The in vivo evaluation employed the pinprick method and revealed rapid anesthesia after application of benzocaine microemulsion with the onset being 10 min and the action lasting for 50 min. For indomethacin microemulsion, the analgesic effect was recorded after 34.5 min and lasted for 70.5 min. Simultaneous application of benzocaine and indomethacin provided synergistic effect. The onset of action was achieved after 10 min and lasted for 95 min. The study highlighted the potential of microemulsion formulation in simultaneous transdermal delivery of two drugs.
Simultaneous recording of t-tubular electrical activity and Ca2+-release in heart failure
NASA Astrophysics Data System (ADS)
Crocini, C.; Coppini, R.; Ferrantini, C.; Yan, P.; Loew, L.; Tesi, C.; Poggesi, C.; Cerbai, E.; Pavone, F. S.; Sacconi, L.
2014-05-01
T-tubules (TT) are invaginations of the surface sarcolemma (SS) that mediate the rapid propagation of the action potential (AP) to the cardiomyocyte core. We employed the advantages of an ultrafast random access multi-photon (RAMP) microscope (Sacconi et al., PNAS 2012) with a double staining approach to optically record t-tubular AP and, simultaneously, the corresponding local Ca2+-release in different positions across the cardiomyocytes. Despite a uniform AP between SS and TT at steady-state stimulation, in control cardiomyocytes we observed a non-negligible be variability of local Ca2+-transient amplitude and kinetics. This variability was significantly reduced by applying 0.1μM Isoproterenol, which increases the opening probability of Ca2+-release units. In the rat heart failure model (HF), we previously demonstrated that some tubular elements fail to propagate AP. We found that the tubules unable to propagate AP, displayed a reduced correspondent Ca2+-transient amplitude as well as a slower Ca2+ rise compared to electrically coupled tubules. Moreover variability of Ca2+-transient kinetics were increased in HF. Finally, TT that did not show AP, occasionally exhibited spontaneous depolarizations that were never accompanied by local Ca2+-release in the absence of any pro-arrhythmogenic stimulation. Simultaneous recording of AP and Ca2+-transient allows us to probe the spatio-temporal variability of Ca2+-release, whereas the investigation of Ca2+-transient in HF discloses an unexpected uncoupling between t-tubular depolarization and Ca2+-release in remodeled tubules. This work was funded by the European Union 7th Framework Program (FP7/2007- 2013) under grant agreement n° 284464, 241526, by the Italian Ministry of University and Research (NANOMAX), and by Telethon-Italy (GGP13162).
Immediate erosive potential of cola drinks and orange juices.
Jensdottir, T; Holbrook, P; Nauntofte, B; Buchwald, C; Bardow, A
2006-03-01
Little is known about the erosive potential of soft drinks within the first minutes of exposure to teeth, and about the potentially protective role of salivary proteins. We hypothesized that the erosive potential is determined primarily by pH and decreases in the presence of salivary proteins. To investigate this, we first added uncoated hydroxyapatite crystals and, second, salivary-protein-coated hydroxyapatite crystals to 20 commercially available cola drinks and orange juices simultaneously, with pH recordings every 15 sec for 3 min. The amount of apatite lost per liter of soft drink per sec was calculated from titratable acidity values to each pH obtained by crystal addition. The erosive potential within the first minutes of exposure was determined solely by the pH of the drink, and the erosive potential was ten-fold higher in cola drinks compared with juices. However, salivary proteins reduced the erosive potential of cola drinks by up to 50%.
Explicit-Duration Hidden Markov Model Inference of UP-DOWN States from Continuous Signals
McFarland, James M.; Hahn, Thomas T. G.; Mehta, Mayank R.
2011-01-01
Neocortical neurons show UP-DOWN state (UDS) oscillations under a variety of conditions. These UDS have been extensively studied because of the insight they can yield into the functioning of cortical networks, and their proposed role in putative memory formation. A key element in these studies is determining the precise duration and timing of the UDS. These states are typically determined from the membrane potential of one or a small number of cells, which is often not sufficient to reliably estimate the state of an ensemble of neocortical neurons. The local field potential (LFP) provides an attractive method for determining the state of a patch of cortex with high spatio-temporal resolution; however current methods for inferring UDS from LFP signals lack the robustness and flexibility to be applicable when UDS properties may vary substantially within and across experiments. Here we present an explicit-duration hidden Markov model (EDHMM) framework that is sufficiently general to allow statistically principled inference of UDS from different types of signals (membrane potential, LFP, EEG), combinations of signals (e.g., multichannel LFP recordings) and signal features over long recordings where substantial non-stationarities are present. Using cortical LFPs recorded from urethane-anesthetized mice, we demonstrate that the proposed method allows robust inference of UDS. To illustrate the flexibility of the algorithm we show that it performs well on EEG recordings as well. We then validate these results using simultaneous recordings of the LFP and membrane potential (MP) of nearby cortical neurons, showing that our method offers significant improvements over standard methods. These results could be useful for determining functional connectivity of different brain regions, as well as understanding network dynamics. PMID:21738730
Eickenscheidt, Max; Zeck, Günther
2014-06-01
The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.
A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes.
Blake, Alexander J; Rodgers, Frank C; Bassuener, Anna; Hippensteel, Joseph A; Pearce, Thomas M; Pearce, Timothy R; Zarnowska, Ewa D; Pearce, Robert A; Williams, Justin C
2010-05-30
To analyze the spatiotemporal dynamics of network activity in a brain tissue slice, it is useful to record simultaneously from multiple locations. When obtained from laminar structures such as the hippocampus or neocortex, multisite recordings also yield information about subcellular current distributions via current source density analysis. Multisite probes developed for in vivo recordings could serve these purposes in vitro, allowing recordings to be obtained from brain slices at sites deeper within the tissue than currently available surface recording methods permit. However, existing recording chambers do not allow for the insertion of lamina-spanning probes that enter through the edges of brain slices. Here, we present a novel brain slice recording chamber design that accomplishes this goal. The device provides a stable microfluidic perfusion environment in which tissue health is optimized by superfusing both surfaces of the slice. Multichannel electrodes can be inserted parallel to the surface of the slice, at any depth relative to the surface. Access is also provided from above for the insertion of additional recording or stimulating electrodes. We illustrate the utility of this recording configuration by measuring current sources and sinks during theta burst stimuli that lead to the induction of long-term potentiation in hippocampal slices. (c) 2010 Elsevier B.V. All rights reserved.
Alberola-Rubio, J; Prats-Boluda, G; Ye-Lin, Y; Valero, J; Perales, A; Garcia-Casado, J
2013-12-01
Non-invasive recording of uterine myoelectric activity (electrohysterogram, EHG) could provide an alternative to monitoring uterine dynamics by systems based on tocodynamometers (TOCO). Laplacian recording of bioelectric signals has been shown to give better spatial resolution and less interference than mono- and bipolar surface recordings. The aim of this work was to study the signal quality obtained from monopolar, bipolar and Laplacian techniques in EHG recordings, as well as to assess their ability to detect uterine contractions. Twenty-two recording sessions were carried out on singleton pregnant women during the active phase of labour. In each session the following simultaneous recordings were obtained: internal uterine pressure (IUP), external tension of abdominal wall (TOCO) and EHG signals (5 monopolar and 4 bipolar recordings, 1 discrete approximation to the Laplacian of the potential and 2 estimates of the Laplacian from two active annular electrodes). The results obtained show that EHG is able to detect a higher number of uterine contractions than TOCO. Laplacian recordings give improved signal quality over monopolar and bipolar techniques, reduce maternal cardiac interference and improve the signal-to-noise ratio. The optimal position for recording EHG was found to be the uterine median axis and the lower centre-right umbilical zone. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Molecular interfaces for plasmonic hot electron photovoltaics
NASA Astrophysics Data System (ADS)
Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos
2015-01-01
The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b
Li, Bingcan; Mao, Xinrui; Wang, Yujuan; Guo, Chunyan
2017-01-01
It is generally accepted that associative recognition memory is supported by recollection. In addition, recent research indicates that familiarity can support associative memory, especially when two items are unitized into a single item. Both perceptual and conceptual manipulations can be used to unitize items, but few studies have compared these two methods of unitization directly. In the present study, we investigated the effects of familiarity and recollection on successful retrieval of items that were unitized perceptually or conceptually. Participants were instructed to remember either a Chinese two-character compound or unrelated word-pairs, which were presented simultaneously or sequentially. Participants were then asked to recognize whether word-pairs were intact or rearranged. Event-related potential (ERP) recordings were performed during the recognition phase of the study. Two-character compounds were better discriminated than unrelated word-pairs and simultaneous presentation was found to elicit better discrimination than sequential presentation for unrelated word-pairs only. ERP recordings indicated that the early intact/rearranged effects (FN400), typically associated with familiarity, were elicited in compound word-pairs with both simultaneous and sequential presentation, and in simultaneously presented unrelated word-pairs, but not in sequentially presented unrelated word-pairs. In contrast, the late positive complex (LPC) effects associated with recollection were elicited in all four conditions. Together, these results indicate that while the engagement of familiarity in associative recognition is affected by both perceptual and conceptual unitization, conceptual unitization promotes a higher level of unitization (LOU). In addition, the engagement of recollection was not affected by unitized manipulations. It should be noted, however, that due to experimental design, the effects presented here may be due to semantic rather than episodic memory and future studies should take this into consideration when manipulating rearranged pairs. PMID:28400723
Simultaneous measurement of translation and tilt using digital speckle photography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaduri, Basanta; Quan, Chenggen; Tay, Cho Jui
2010-06-20
A Michelson-type digital speckle photographic system has been proposed in which one light beam produces a Fourier transform and another beam produces an image at a recording plane, without interfering between themselves. Because the optical Fourier transform is insensitive to translation and the imaging technique is insensitive to tilt, the proposed system is able to simultaneously and independently determine both surface tilt and translation by two separate recordings, one before and another after the surface motion, without the need to obtain solutions for simultaneous equations. Experimental results are presented to verify the theoretical analysis.
Crossed motor innervation of the base of human tongue
Jordan, Amy S.; Nicholas, Christian L.; Cori, Jennifer M.; Semmler, John G.; Trinder, John
2015-01-01
Muscle fibers of the genioglossus (GG) form the bulk of the muscle mass at the base of the tongue. The motor control of the tongue is critical for vocalization, feeding, and breathing. Our goal was to assess the patterns of motor innervation of GG single motor units (SMUs) in humans. Simultaneous monopolar recordings were obtained from four sites in the base of the tongue bilaterally at two antero-posterior levels from 16 resting, awake, healthy adult males, who wore a face mask with airway pressure and airflow sensors. We analyzed 69 data segments in which at least one lead contained large action potentials generated by an SMU. Such potentials served as triggers for spike-triggered averaging (STA) of signals recorded from the other three sites. Spontaneous activity of the SMUs was classified as inspiratory modulated, expiratory modulated, or tonic. Consistent with the antero-posterior orientation of GG fibers, 44 STAs (77%) recorded ipsilateral to the trigger yielded sharp action potentials with a median amplitude of 52 μV [interquartile range (IQR): 25–190] that were time shifted relative to the trigger by about 1 ms. Notably, 48% of recordings on the side opposite to the trigger also yielded sharp action potentials. Of those, 17 (29%) had a median amplitude of 63 μV (IQR: 39–96), and most were generated by tonic SMUs. Thus a considerable proportion of GG muscle fibers receive a crossed motor innervation. Crossed innervation may help ensure symmetry and stability of tongue position and movements under normal conditions and following injury or degenerative changes affecting the tongue. PMID:25855691
Nonlinear computations shaping temporal processing of precortical vision.
Butts, Daniel A; Cui, Yuwei; Casti, Alexander R R
2016-09-01
Computations performed by the visual pathway are constructed by neural circuits distributed over multiple stages of processing, and thus it is challenging to determine how different stages contribute on the basis of recordings from single areas. In the current article, we address this problem in the lateral geniculate nucleus (LGN), using experiments combined with nonlinear modeling capable of isolating various circuit contributions. We recorded cat LGN neurons presented with temporally modulated spots of various sizes, which drove temporally precise LGN responses. We utilized simultaneously recorded S-potentials, corresponding to the primary retinal ganglion cell (RGC) input to each LGN cell, to distinguish the computations underlying temporal precision in the retina from those in the LGN. Nonlinear models with excitatory and delayed suppressive terms were sufficient to explain temporal precision in the LGN, and we found that models of the S-potentials were nearly identical, although with a lower threshold. To determine whether additional influences shaped the response at the level of the LGN, we extended this model to use the S-potential input in combination with stimulus-driven terms to predict the LGN response. We found that the S-potential input "explained away" the major excitatory and delayed suppressive terms responsible for temporal patterning of LGN spike trains but revealed additional contributions, largely PULL suppression, to the LGN response. Using this novel combination of recordings and modeling, we were thus able to dissect multiple circuit contributions to LGN temporal responses across retina and LGN, and set the foundation for targeted study of each stage. Copyright © 2016 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Osterstrom, Gordon E
1948-01-01
Simultaneous direct and Schlieren photographs at 40,000 frames per second and correlated pressure records were taken of knocking combustion in a special spark-ignition engine to ascertain the intensity of certain end-zone reactions previously noted from Schlieren photography alone. A violent propagated homogeneous autoignition, or a similar phenomenon, previously observed, was again observed. The pressure records show autoignition of varying violence before the passage of a probable detonation wave. Extensive autoignition without occurrence of gas vibrations was seen in one explosion.
Determining Individual Particle Magnetizations in Assemblages of Micrograins
NASA Astrophysics Data System (ADS)
de Groot, Lennart V.; Fabian, Karl; Béguin, Annemarieke; Reith, Pim; Barnhoorn, Auke; Hilgenkamp, Hans
2018-04-01
Obtaining reliable information from even the most challenging paleomagnetic recorders, such as the oldest igneous rocks and meteorites, is paramount to open new windows into Earth's history. Currently, such information is acquired by simultaneously sensing millions of particles in small samples or single crystals using superconducting quantum interference device magnetometers. The obtained rock-magnetic signal is a statistical ensemble of grains potentially differing in reliability as paleomagnetic recorder due to variations in physical dimensions, chemistry, and magnetic behavior. Here we go beyond bulk magnetic measurements and combine computed tomography and scanning magnetometry to uniquely invert for the magnetic moments of individual grains. This enables us to select and consider contributions of subsets of grains as a function of particle-specific selection criteria and avoid contributions that arise from particles that are altered or contain unreliable magnetic carriers. This new, nondestructive, method unlocks information from complex paleomagnetic recorders that until now goes obscured.
NASA Astrophysics Data System (ADS)
Messano, Luciana V. R. de; Ignacio, Barbara L.; Neves, Maria H. C. B.; Coutinho, Ricardo
2014-09-01
In the presence of biofilms, stainless steels (SS) exhibits an increase in corrosion potential, called ennoblement. In the present study, the corrosion potential ( E corr) behavior of the duplex SS UNS S32760 was recorded simultaneously with the in situ marine biofilm formation in two areas at Arraial do Cabo, Southeastern Brazil. The biofilm at Forno Harbor (an anthropogenically disturbed area) was characterized by higher relative abundances of Bacteria at day 2, followed by diatoms (especially Navicula sp.) on day 10 and dinoflagellates on day 18, whereas no clear trend was recorded at Cabo Frio Island (an undisturbed area). The ennoblement of E corr values was site-dependent. In a complementary laboratory assay, biofilms were removed and the E corr values registered in sterile conditions for the subsequent 10 days and corroborated in situ results. Understanding biofilms and SS interactions has important implications for materials science and engineering decisions as well as helping to fill in important gaps in this knowledge.
Cong, Fengyu; Leppänen, Paavo H T; Astikainen, Piia; Hämäläinen, Jarmo; Hietanen, Jari K; Ristaniemi, Tapani
2011-09-30
The present study addresses benefits of a linear optimal filter (OF) for independent component analysis (ICA) in extracting brain event-related potentials (ERPs). A filter such as the digital filter is usually considered as a denoising tool. Actually, in filtering ERP recordings by an OF, the ERP' topography should not be changed by the filter, and the output should also be able to be modeled by the linear transformation. Moreover, an OF designed for a specific ERP source or component may remove noise, as well as reduce the overlap of sources and even reject some non-targeted sources in the ERP recordings. The OF can thus accomplish both the denoising and dimension reduction (reducing the number of sources) simultaneously. We demonstrated these effects using two datasets, one containing visual and the other auditory ERPs. The results showed that the method including OF and ICA extracted much more reliable components than the sole ICA without OF did, and that OF removed some non-targeted sources and made the underdetermined model of EEG recordings approach to the determined one. Thus, we suggest designing an OF based on the properties of an ERP to filter recordings before using ICA decomposition to extract the targeted ERP component. Copyright © 2011 Elsevier B.V. All rights reserved.
Optical memories in digital computing
NASA Technical Reports Server (NTRS)
Alford, C. O.; Gaylord, T. K.
1979-01-01
High capacity optical memories with relatively-high data-transfer rate and multiport simultaneous access capability may serve as basis for new computer architectures. Several computer structures that might profitably use memories are: a) simultaneous record-access system, b) simultaneously-shared memory computer system, and c) parallel digital processing structure.
Recording of electrohysterogram laplacian potential.
Alberola-Rubio, J; Garcia-Casado, J; Ye-Lin, Y; Prats-Boluda, G; Perales, A
2011-01-01
Preterm birth is the main cause of the neonatal morbidity. Noninvasive recording of uterine myoelectrical activity (electrohysterogram, EHG) could be an alternative to the monitoring of uterine dynamics which are currently based on tocodynamometers (TOCO). The analysis of uterine electromyogram characteristics could help the early diagnosis of preterm birth. Laplacian recordings of other bioelectrical signals have proved to enhance spatial selectivity and to reduce interferences in comparison to monopolar and bipolar surface recordings. The main objective of this paper is to check the feasibility of the noninvasive recording of uterine myoelectrical activity by means of laplacian techniques. Four bipolar EHG signals, discrete laplacian obtained from five monopolar electrodes and the signals picked up by two active concentric-ringed-electrodes were recorded on 5 women with spontaneous or induced labor. Intrauterine pressure (IUP) and TOCO were also simultaneously recorded. To evaluate the uterine contraction detectability of the different noninvasive methods in comparison to IUP the contractions consistency index (CCI) was calculated. Results show that TOCO is less consistent (83%) than most EHG bipolar recording channels (91%, 83%, 87%, and 76%) to detect the uterine contractions identified in IUP. Moreover laplacian EHG signals picked up by ringed-electrodes proved to be as consistent (91%) as the best bipolar recordings in addition to significantly reduce ECG interference.
Epileptogenic developmental venous anomaly: insights from simultaneous EEG/fMRI.
Scheidegger, Olivier; Wiest, Roland; Jann, Kay; König, Thomas; Meyer, Klaus; Hauf, Martinus
2013-04-01
Developmental venous anomalies (DVAs) are associated with epileptic seizures; however, the role of DVA in the epileptogenesis is still not established. Simultaneous interictal electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) recordings provide supplementary information to electroclinical data about the epileptic generators, and thus aid in the differentiation of clinically equivocal epilepsy syndromes. The main objective of our study was to characterize the epileptic network in a patient with DVA and epilepsy by simultaneous EEG/fMRI recordings. A 17-year-old woman with recently emerging generalized tonic-clonic seizures, and atypical generalized discharges, was investigated using simultaneous EEG/fMRI at the university hospital. Previous high-resolution MRI showed no structural abnormalities, except a DVA in the right frontal operculum. Interictal EEG recordings showed atypical generalized discharges, corresponding to positive focal blood oxygen level dependent (BOLD) correlates in the right frontal operculum, a region drained by the DVA. Additionally, widespread cortical bilateral negative BOLD correlates in the frontal and parietal lobes were delineated, resembling a generalized epileptic network. The EEG/fMRI recordings support a right frontal lobe epilepsy, originating in the vicinity of the DVA, propagating rapidly to both frontal and parietal lobes, as expressed on the scalp EEG by secondary bilateral synchrony. The DVA may be causative of focal epilepsies in cases where no concomitant epileptogenic lesions can be detected. Advanced imaging techniques, such as simultaneous EEG/fMRI, may thus aid in the differentiation of clinically equivocal epilepsy syndromes.
Rangel-Barajas, Claudia; Estrada-Sánchez, Ana María; Barton, Scott J; Luedtke, Robert R; Rebec, George V
2017-02-01
The substituted amphetamine, 2,5-dimethoxy-4-iodoamphetamine (DOI), is a hallucinogen that has been used to model a variety of psychiatric conditions. Here, we studied the effect of DOI on neural activity recorded simultaneously in the primary motor cortex (M1) and dorsal striatum of freely behaving FvB/N mice. DOI significantly decreased the firing rate of individually isolated neurons in M1 and dorsal striatum relative to pre-drug baseline. It also induced a bursting pattern of activity by increasing both the number of spikes within a burst and burst duration. In addition, DOI increased coincident firing between simultaneously recorded neuron pairs within the striatum and between M1 and dorsal striatum. Local field potential (LFP) activity also increased in coherence between M1 and dorsal striatum after DOI in the low frequency gamma band (30-50 Hz), while corticostriatal coherence in delta, theta, alpha, and beta activity decreased. We also assessed corticostriatal LFP activity in relation to the DOI-induced head-twitch response (HTR), a readily identifiable behavior used to assess potential treatments for the conditions it models. The HTR was associated with increased delta and decreased theta power in both M1 and dorsal striatum. Together, our results suggest that DOI dysregulates corticostriatal communication and that the HTR is associated with this dysregulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
O'Leary, John G; Hatsopoulos, Nicholas G
2006-09-01
Local field potentials (LFPs) recorded from primary motor cortex (MI) have been shown to be tuned to the direction of visually guided reaching movements, but MI LFPs have not been shown to be tuned to the direction of an upcoming movement during the delay period that precedes movement in an instructed-delay reaching task. Also, LFPs in dorsal premotor cortex (PMd) have not been investigated in this context. We therefore recorded LFPs from MI and PMd of monkeys (Macaca mulatta) and investigated whether these LFPs were tuned to the direction of the upcoming movement during the delay period. In three frequency bands we identified LFP activity that was phase-locked to the onset of the instruction stimulus that specified the direction of the upcoming reach. The amplitude of this activity was often tuned to target direction with tuning widths that varied across different electrodes and frequency bands. Single-trial decoding of LFPs demonstrated that prediction of target direction from this activity was possible well before the actual movement is initiated. Decoding performance was significantly better in the slowest-frequency band compared with that in the other two higher-frequency bands. Although these results demonstrate that task-related information is available in the local field potentials, correlations among these signals recorded from a densely packed array of electrodes suggests that adequate decoding performance for neural prosthesis applications may be limited as the number of simultaneous electrode recordings is increased.
MacIntosh, Bradley J.; Baker, S. Nicole; Mraz, Richard; Ives, John R.; Martel, Anne L.; McIlroy, William E.; Graham, Simon J.
2016-01-01
Specially designed optoelectronic and data postprocessing methods are described that permit electromyography (EMG) of muscle activity simultaneous with functional MRI (fMRI). Hardware characterization and validation included simultaneous EMG and event-related fMRI in 17 healthy participants during either ankle (n = 12), index finger (n = 3), or wrist (n = 2) contractions cued by visual stimuli. Principal component analysis (PCA) and independent component analysis (ICA) were evaluated for their ability to remove residual fMRI gradient-induced signal contamination in EMG data. Contractions of ankle tibialis anterior and index finger abductor were clearly distinguishable, although observing contractions from the wrist flexors proved more challenging. To demonstrate the potential utility of simultaneous EMG and fMRI, data from the ankle experiments were analyzed using two approaches: 1) assuming contractions coincided precisely with visual cues, and 2) using EMG to time the onset and offset of muscle contraction precisely for each participant. Both methods produced complementary activation maps, although the EMG-guided approach recovered more active brain voxels and revealed activity better in the basal ganglia and cerebellum. Furthermore, numerical simulations confirmed that precise knowledge of behavioral responses, such as those provided by EMG, are much more important for event-related experimental designs compared to block designs. This simultaneous EMG and fMRI methodology has important applications where the amplitude or timing of motor output is impaired, such as after stroke. PMID:17133382
MacIntosh, Bradley J; Baker, S Nicole; Mraz, Richard; Ives, John R; Martel, Anne L; McIlroy, William E; Graham, Simon J
2007-09-01
Specially designed optoelectronic and data postprocessing methods are described that permit electromyography (EMG) of muscle activity simultaneous with functional MRI (fMRI). Hardware characterization and validation included simultaneous EMG and event-related fMRI in 17 healthy participants during either ankle (n = 12), index finger (n = 3), or wrist (n = 2) contractions cued by visual stimuli. Principal component analysis (PCA) and independent component analysis (ICA) were evaluated for their ability to remove residual fMRI gradient-induced signal contamination in EMG data. Contractions of ankle tibialis anterior and index finger abductor were clearly distinguishable, although observing contractions from the wrist flexors proved more challenging. To demonstrate the potential utility of simultaneous EMG and fMRI, data from the ankle experiments were analyzed using two approaches: 1) assuming contractions coincided precisely with visual cues, and 2) using EMG to time the onset and offset of muscle contraction precisely for each participant. Both methods produced complementary activation maps, although the EMG-guided approach recovered more active brain voxels and revealed activity better in the basal ganglia and cerebellum. Furthermore, numerical simulations confirmed that precise knowledge of behavioral responses, such as those provided by EMG, are much more important for event-related experimental designs compared to block designs. This simultaneous EMG and fMRI methodology has important applications where the amplitude or timing of motor output is impaired, such as after stroke. (c) 2006 Wiley-Liss, Inc.
Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset.
Shin, Jaeyoung; von Lühmann, Alexander; Kim, Do-Won; Mehnert, Jan; Hwang, Han-Jeong; Müller, Klaus-Robert
2018-02-13
We provide an open access multimodal brain-imaging dataset of simultaneous electroencephalography (EEG) and near-infrared spectroscopy (NIRS) recordings. Twenty-six healthy participants performed three cognitive tasks: 1) n-back (0-, 2- and 3-back), 2) discrimination/selection response task (DSR) and 3) word generation (WG) tasks. The data provided includes: 1) measured data, 2) demographic data, and 3) basic analysis results. For n-back (dataset A) and DSR tasks (dataset B), event-related potential (ERP) analysis was performed, and spatiotemporal characteristics and classification results for 'target' versus 'non-target' (dataset A) and symbol 'O' versus symbol 'X' (dataset B) are provided. Time-frequency analysis was performed to show the EEG spectral power to differentiate the task-relevant activations. Spatiotemporal characteristics of hemodynamic responses are also shown. For the WG task (dataset C), the EEG spectral power and spatiotemporal characteristics of hemodynamic responses are analyzed, and the potential merit of hybrid EEG-NIRS BCIs was validated with respect to classification accuracy. We expect that the dataset provided will facilitate performance evaluation and comparison of many neuroimaging analysis techniques.
Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset
Shin, Jaeyoung; von Lühmann, Alexander; Kim, Do-Won; Mehnert, Jan; Hwang, Han-Jeong; Müller, Klaus-Robert
2018-01-01
We provide an open access multimodal brain-imaging dataset of simultaneous electroencephalography (EEG) and near-infrared spectroscopy (NIRS) recordings. Twenty-six healthy participants performed three cognitive tasks: 1) n-back (0-, 2- and 3-back), 2) discrimination/selection response task (DSR) and 3) word generation (WG) tasks. The data provided includes: 1) measured data, 2) demographic data, and 3) basic analysis results. For n-back (dataset A) and DSR tasks (dataset B), event-related potential (ERP) analysis was performed, and spatiotemporal characteristics and classification results for ‘target’ versus ‘non-target’ (dataset A) and symbol ‘O’ versus symbol ‘X’ (dataset B) are provided. Time-frequency analysis was performed to show the EEG spectral power to differentiate the task-relevant activations. Spatiotemporal characteristics of hemodynamic responses are also shown. For the WG task (dataset C), the EEG spectral power and spatiotemporal characteristics of hemodynamic responses are analyzed, and the potential merit of hybrid EEG-NIRS BCIs was validated with respect to classification accuracy. We expect that the dataset provided will facilitate performance evaluation and comparison of many neuroimaging analysis techniques. PMID:29437166
Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells
NASA Astrophysics Data System (ADS)
Jahn, Karolina; Buschmann, Volker; Hille, Carsten
2015-09-01
In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.
Vibration-Induced Kinesthetic Illusions and Corticospinal Excitability Changes.
Mancheva, Kapka; Rollnik, Jens D; Wolf, Werner; Dengler, Reinhard; Kossev, Andon
2017-01-01
The authors' aim was to investigate the changes of corticospinal excitability during kinesthetic illusions induced by tendon vibration. Motor-evoked potentials in response to transcranial magnetic stimulation were recorded from the vibrated flexor carpi radialis and its antagonist, extensor carpi radialis. The illusions were evoked under vision conditions without feedback for the position of the wrist (open or closed eyes). In these two conditions motor-evoked potential changes during vibration in the antagonist were not identical. This discrepancy may be a result of 2 simultaneously acting, different and opposite influences and the balance between them depends on visual conditions. Thus, the illusion was accompanied by the facilitation of corticospinal excitability in both vibrated muscle and its antagonist.
Non ictal onset zone: A window to ictal dynamics.
Afra, Pegah; Hanrahan, Sara J; Kellis, Spencer Sterling; House, Paul
2017-01-01
The focal and network concepts of epilepsy present different aspects of electroclinical phenomenon of seizures. Here, we present a 23-year-old man undergoing surgical evaluation with left fronto-temporal electrocorticography (ECoG) and microelectrode-array (MEA) in the middle temporal gyrus (MTG). We compare action-potential (AP) and local field potentials (LFP) recorded from MEA with ECoG. Seizure onset in the mesial-temporal lobe was characterized by changes in the pattern of AP-firing without clear changes in LFP or ECoG in MTG. This suggests simultaneous analysis of neuronal activity in differing spatial scales and frequency ranges provide complementary insights into how focal and network neurophysiological activity contribute to ictal activity.
Monitoring of the tidal dynamics of the Dutch Waddensea by SIR-B
NASA Technical Reports Server (NTRS)
Koopmans, B. N.; Vanderzee, D.; Verstappen, A. T.; Woldai, T.; Hoschititzky, H.
1984-01-01
The potential of LANDSAT data, covering the entire tidal flats at a certain, known, tidal situation, was assessed. It was discovered that the data cannot be used for systematic survey because of the long interval between subsequent passes, weather conditions often interfere with recording, and of the lack of correlation between passes and the tidal situation. The objective is to overcome the problems by using: (1) the synoptic view obtained by SIR-B, which has the potential of surveying large areas of the flats simultaneously; (2) the all-weather capability of the microwave system; (3) the recording during consecutive days, which results in a straightforeward correlation with the tidal cycle and the picturing of different tidal stages; and (4) the multiangle incidence of SIR-B to analyze the bottom configuration of submerged parts of the flats. The use of a weather independent monitoring device, such as radar, an improvement in the monitoring technique of tidal coastal areas.
Simultaneous deblending and interpolation using structure-oriented filters
NASA Astrophysics Data System (ADS)
Zhou, Yatong; Li, Song
2018-03-01
Simultaneous source shooting is a modern marine acquisition technology that accelerates field acquisition tremendously. However, we need to carefully remove the spike-like noise in the recorded seismic data, the process of which is called deblending. Considering the field obstacles, the recorded data may also contain missing traces. In this paper, we propose a very efficient way to simultaneously remove the spike-like noise to separate simultaneous sources and fill the data gaps in the recorded data. We propose to apply structure-oriented median and mean filters to reject the spike-like noise and restore the missing data. The commonly used median and mean filters guarantee the efficiency and convenience of the proposed algorithm framework. We use a robust slope estimation method to calculate the local slope of the structure patterns in the seismic data. Both synthetic and field data examples demonstrate the successful performance of the proposed algorithm. When compared with the state-of-the-art FK transform based projection onto convex sets (POCS) method, the presented method can obtain better performance with much less computational cost.
Smart Helmet: Wearable Multichannel ECG and EEG
Chanwimalueang, Theerasak; Goverdovsky, Valentin; Looney, David; Sharp, David; Mandic, Danilo P.
2016-01-01
Modern wearable technologies have enabled continuous recording of vital signs, however, for activities such as cycling, motor-racing, or military engagement, a helmet with embedded sensors would provide maximum convenience and the opportunity to monitor simultaneously both the vital signs and the electroencephalogram (EEG). To this end, we investigate the feasibility of recording the electrocardiogram (ECG), respiration, and EEG from face-lead locations, by embedding multiple electrodes within a standard helmet. The electrode positions are at the lower jaw, mastoids, and forehead, while for validation purposes a respiration belt around the thorax and a reference ECG from the chest serve as ground truth to assess the performance. The within-helmet EEG is verified by exposing the subjects to periodic visual and auditory stimuli and screening the recordings for the steady-state evoked potentials in response to these stimuli. Cycling and walking are chosen as real-world activities to illustrate how to deal with the so-induced irregular motion artifacts, which contaminate the recordings. We also propose a multivariate R-peak detection algorithm suitable for such noisy environments. Recordings in real-world scenarios support a proof of concept of the feasibility of recording vital signs and EEG from the proposed smart helmet. PMID:27957405
Graupner, Michael; Reyes, Alex D
2013-09-18
Correlations in the spiking activity of neurons have been found in many regions of the cortex under multiple experimental conditions and are postulated to have important consequences for neural population coding. While there is a large body of extracellular data reporting correlations of various strengths, the subthreshold events underlying the origin and magnitude of signal-independent correlations (called noise or spike count correlations) are unknown. Here we investigate, using intracellular recordings, how synaptic input correlations from shared presynaptic neurons translate into membrane potential and spike-output correlations. Using a pharmacologically activated thalamocortical slice preparation, we perform simultaneous recordings from pairs of layer IV neurons in the auditory cortex of mice and measure synaptic potentials/currents, membrane potentials, and spiking outputs. We calculate cross-correlations between excitatory and inhibitory inputs to investigate correlations emerging from the network. We furthermore evaluate membrane potential correlations near resting potential to study how excitation and inhibition combine and affect spike-output correlations. We demonstrate directly that excitation is correlated with inhibition thereby partially canceling each other and resulting in weak membrane potential and spiking correlations between neurons. Our data suggest that cortical networks are set up to partially cancel correlations emerging from the connections between neurons. This active decorrelation is achieved because excitation and inhibition closely track each other. Our results suggest that the numerous shared presynaptic inputs do not automatically lead to increased spiking correlations.
Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan
2017-12-21
Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.
Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Youn, Inchan
2017-01-01
Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time. PMID:29267230
Chronic, Wireless Recordings of Large Scale Brain Activity in Freely Moving Rhesus Monkeys
Schwarz, David A.; Lebedev, Mikhail A.; Hanson, Timothy L.; Dimitrov, Dragan F.; Lehew, Gary; Meloy, Jim; Rajangam, Sankaranarayani; Subramanian, Vivek; Ifft, Peter J.; Li, Zheng; Ramakrishnan, Arjun; Tate, Andrew; Zhuang, Katie; Nicolelis, Miguel A.L.
2014-01-01
Advances in techniques for recording large-scale brain activity contribute to both the elucidation of neurophysiological principles and the development of brain-machine interfaces (BMIs). Here we describe a neurophysiological paradigm for performing tethered and wireless large-scale recordings based on movable volumetric three-dimensional (3D) multielectrode implants. This approach allowed us to isolate up to 1,800 units per animal and simultaneously record the extracellular activity of close to 500 cortical neurons, distributed across multiple cortical areas, in freely behaving rhesus monkeys. The method is expandable, in principle, to thousands of simultaneously recorded channels. It also allows increased recording longevity (5 consecutive years), and recording of a broad range of behaviors, e.g. social interactions, and BMI paradigms in freely moving primates. We propose that wireless large-scale recordings could have a profound impact on basic primate neurophysiology research, while providing a framework for the development and testing of clinically relevant neuroprostheses. PMID:24776634
Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying
2018-05-15
Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.
Dale, Nicholas; Pearson, Tim; Frenguelli, Bruno G
2000-01-01
We have used an enzyme-based, twin-barrelled sensor to measure adenosine release during hypoxia in the CA1 region of rat hippocampal slices in conjunction with simultaneous extracellular field recordings of excitatory synaptic transmission. When loaded with a combination of adenosine deaminase, nucleoside phosphorylase and xanthine oxidase, the sensor responded linearly to exogenous adenosine over the concentration range 10 nM to 20 μM. Without enzymes, the sensor when placed on the surface of hippocampal slices recorded a very small net signal during hypoxia of 40 ± 43 pA (mean ±s.e.m.; n = 7). Only when one barrel was loaded with the complete sequence of enzymes and the other with the last two in the cascade did the sensor record a large net difference signal during hypoxia (1226 ± 423 pA; n = 7). This signal increased progressively during the hypoxic episode, scaled with the hypoxic depression of the simultaneously recorded field excitatory postsynaptic potential and was greatly reduced (67 ± 6.5 %; n = 9) by coformycin (0.5-2 μM), a selective inhibitor of adenosine deaminase, the first enzyme in the enzymic cascade within the sensor. For 5 min hypoxic episodes, the sensor recorded a peak concentration of adenosine of 5.6 ± 1.2 μM (n = 16) with an IC50 for the depression of transmission of approximately 3 μM. In slices pre-incubated for 3-6 h in nominally Ca2+-free artificial cerebrospinal fluid, 5 min of hypoxia resulted in an approximately 9-fold greater release of adenosine (48.9 ± 17.7 μM; n = 6). High extracellular Ca2+ (4 mM) both reduced the adenosine signal recorded by the sensor during hypoxia (3.5 ± 0.6 μM; n = 4) and delayed the hypoxic depression of excitatory synaptic transmission. PMID:10878107
Radiotelemetry recording of electroencephalogram in piglets during rest.
Saito, Toshiyuki; Watanabe, Yasuko; Nemoto, Tetsu; Kasuya, Etsuko; Sakumoto, Ryosuke
2005-04-13
A wireless recording system was developed to study the electroencephalogram (EEG) in unrestrained, male Landrace piglets. Under general anesthesia, ball-tipped silver/silver chloride electrodes for EEG recording were implanted onto the dura matter of the parietal and frontal cortex of the piglets. A pair of miniature preamplifiers and transmitters was then mounted on the surface of the skull. To examine whether other bioelectrical activities interfere with the EEG measurements, an electrocardiogram (ECG) or electromyogram (EMG) of the neck was simultaneously recorded with the EEG. Next, wire electrodes for recording movement of the eyelid were implanted with EEG electrodes, and EEG and eyelid movements were simultaneously measured. Power spectral analysis using a Fast Fourier Transformation (FFT) algorithm indicates that EEG was successfully recorded in unrestrained piglets, at rest, during the daytime in the absence of interference from ECG, EMG or eyelid movements. These data indicate the feasibility of using our radiotelemetry system for measurement of EEG under these conditions.
Arinaga, K; Rant, U; Tornow, M; Fujita, S; Abstreiter, G; Yokoyama, N
2006-06-20
We study the coadsorption of mercaptohexanol onto preimmobilized oligonucleotide layers on gold. Monitoring the position of the DNA relative to the surface by optical means directly shows the mercaptohexanol-induced desorption of DNA and the reorientation of surface-tethered strands in situ and in real time. By simultaneously recording the electrochemical electrode potential, we are able to demonstrate that changes in the layer conformation are predominantly of electrostatic origin and can be reversed by applying external bias to the substrate.
Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K
2010-12-01
Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.
A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon.
Spencer, Nick J; Hennig, Grant W; Smith, Terence K
2002-12-01
Simultaneous intracellular recordings were made from pairs of circular muscle (CM) cells, at the oral and anal ends of a segment of guinea-pig distal colon, to investigate the neuronal mechanisms underlying faecal pellet propulsion. When a minimum degree of circumferential stretch was applied to sheet preparations of colon, recordings from CM cells revealed either no ongoing junction potentials, or alternatively, small potentials usually < 5 mV in amplitude. Maintained circumferential stretch applied to these preparations evoked an ongoing discharge of excitatory junction potentials (EJPs) at the oral recording site (range: 1-25 mV), which lasted for up to 6 h. The onset of each large oral EJP was time-locked with the onset of an inhibitory junction potential (IJP) at an anal recording electrode, located 2 cm from the oral recording. Similar results were obtained in isolated intact tube preparations of colon, when recordings were made immediately oral and anal of an artificial faecal pellet. The amplitudes of many large (> 5 mV) oral EJPs were linearly related to the amplitudes of anal IJPs occurring 20 mm apart. In the absence of an L-type Ca(2+) channel blocker, action potentials occurred on each large oral EJP. Synchronized discharges of stretch-activated EJPs and IJPs were preserved following pretreatment with capsaicin (10 microM), were unaffected by nifedipine (1 microM) and did not require the mucosa or submucous plexus. EJPs and IJPs were abolished by hexamethonium (300 microM) or tetrodotoxin (1 microM), but persisted in the presence of pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 10 microM) or an NK(3) tachykinin receptor antagonist (Neurokinin A 4-10; 100 nM to 5 microM). In summary, maintained circumferential stretch of the distal colon activates a population of intrinsic mechanosensory neurons that generate repetitive firing of ascending excitatory and descending inhibitory pathways to CM. These mechanosensory neurons, which may be interneurons, are stretch sensitive, rather than muscle tension sensitive, since they are resistant to muscular paralysis. We suggest the synchrony in onset of oral EJPs and anal IJPs over large regions of colon is due to synchronous synaptic activation of ascending and descending interneurons.
NASA Astrophysics Data System (ADS)
Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G. A.; Paul, O.; Ruther, P.
2016-08-01
Objective. Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Approach. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Main results. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. Significance. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.
Pothof, F; Bonini, L; Lanzilotto, M; Livi, A; Fogassi, L; Orban, G A; Paul, O; Ruther, P
2016-08-01
Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.
Action potential propagation recorded from single axonal arbors using multi-electrode arrays.
Tovar, Kenneth R; Bridges, Daniel C; Wu, Bian; Randall, Connor; Audouard, Morgane; Jang, Jiwon; Hansma, Paul K; Kosik, Kenneth S
2018-04-11
We report the presence of co-occurring extracellular action potentials (eAPs) from cultured mouse hippocampal neurons among groups of planar electrodes on multi-electrode arrays (MEAs). The invariant sequences of eAPs among co-active electrode groups, repeated co-occurrences and short inter-electrode latencies are consistent with action potential propagation in unmyelinated axons. Repeated eAP co-detection by multiple electrodes was widespread in all our data records. Co-detection of eAPs confirms they result from the same neuron and allows these eAPs to be isolated from all other spikes independently of spike sorting algorithms. We averaged co-occurring events and revealed additional electrodes with eAPs that would otherwise be below detection threshold. We used these eAP cohorts to explore the temperature sensitivity of action potential propagation and the relationship between voltage-gated sodium channel density and propagation velocity. The sequence of eAPs among co-active electrodes 'fingerprints' neurons giving rise to these events and identifies them within neuronal ensembles. We used this property and the non-invasive nature of extracellular recording to monitor changes in excitability at multiple points in single axonal arbors simultaneously over several hours, demonstrating independence of axonal segments. Over several weeks, we recorded changes in inter-electrode propagation latencies and ongoing changes in excitability in different regions of single axonal arbors. Our work illustrates how repeated eAP co-occurrences can be used to extract physiological data from single axons with low electrode density MEAs. However, repeated eAP co-occurrences leads to over-sampling spikes from single neurons and thus can confound traditional spike-train analysis.
Rolston, John D.; Gross, Robert E.; Potter, Steve M.
2009-01-01
Commercially available data acquisition systems for multielectrode recording from freely moving animals are expensive, often rely on proprietary software, and do not provide detailed, modifiable circuit schematics. When used in conjunction with electrical stimulation, they are prone to prolonged, saturating stimulation artifacts that prevent the recording of short-latency evoked responses. Yet electrical stimulation is integral to many experimental designs, and critical for emerging brain-computer interfacing and neuroprosthetic applications. To address these issues, we developed an easy-to-use, modifiable, and inexpensive system for multielectrode neural recording and stimulation. Setup costs are less than US$10,000 for 64 channels, an order of magnitude lower than comparable commercial systems. Unlike commercial equipment, the system recovers rapidly from stimulation and allows short-latency action potentials (<1 ms post-stimulus) to be detected, facilitating closed-loop applications and exposing neural activity that would otherwise remain hidden. To illustrate this capability, evoked activity from microstimulation of the rodent hippocampus is presented. System noise levels are similar to existing platforms, and extracellular action potentials and local field potentials can be recorded simultaneously. The system is modular, in banks of 16 channels, and flexible in usage: while primarily designed for in vivo use, it can be combined with commercial preamplifiers to record from in vitro multielectrode arrays. The system's open-source control software, NeuroRighter, is implemented in C#, with an easy-to-use graphical interface. As C# functions in a managed code environment, which may impact performance, analysis was conducted to ensure comparable speed to C++ for this application. Hardware schematics, layout files, and software are freely available. Since maintaining wired headstage connections with freely moving animals is difficult, we describe a new method of electrode-headstage coupling using neodymium magnets. PMID:19668698
[Video recording system of endoscopic procedures for digital forensics].
Endo, Chiaki; Sakurada, A; Kondo, T
2009-07-01
Recently, endoscopic procedures including surgery, intervention, and examination have been widely performed. Medical practitioners are required to record the procedures precisely in order to check the procedures retrospectively and to get the legally reliable record. Medical Forensic System made by KS Olympus Japan offers 2 kinds of movie and patient's data, such as heart rate, blood pressure, and Spo, which are simultaneously recorded. We installed this system into the bronchoscopy room and have experienced its benefit. Under this system, we can get bronchoscopic image, bronchoscopy room view, and patient's data simultaneously. We can check the quality of the bronchoscopic procedures retrospectively, which is useful for bronchoscopy staff training. Medical Forensic System should be installed in any kind of endoscopic procedures.
Scholkmann, Felix; Holper, Lisa; Wolf, Ursula; Wolf, Martin
2013-11-27
Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI) on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: measuring brain activity from two or more people simultaneously, termed "hyperscanning". The hyperscanning approach has the potential to reveal inter-personal brain mechanisms underlying interaction-mediated brain-to-brain coupling. These mechanisms are engaged during real social interactions, and cannot be captured using single-subject recordings. In particular, functional near-infrared imaging (fNIRI) hyperscanning is a promising new method, offering a cost-effective, easy to apply and reliable technology to measure inter-personal interactions in a natural context. In this short review we report on fNIRI hyperscanning studies published so far and summarize opportunities and challenges for future studies.
Social status determines how we monitor and evaluate our performance
Kostermans, Evelien; Milivojevic, Branka; De Cremer, David
2012-01-01
Since people with low status are more likely to experience social evaluative threat and are therefore more inclined to monitor for these threats and inhibit approach behaviour, we expected that low-status subjects would be more engaged in evaluating their own performance, compared with high-status subjects. We created a highly salient social hierarchy based on the performance of a simple time estimation task. Subjects could achieve high, middle or low status while performing this task simultaneously with other two players who were either higher or lower in status. Subjects received feedback on their own performance, as well as on the performance of the other two players simultaneously. Electroencephalography (EEG) was recorded from all three participants. The results showed that medial frontal negativity (an event-related potential reflecting performance evaluation) was significantly enhanced for low-status subjects. Implications for status-related differences in goal-directed behaviour are discussed. PMID:21421733
Biochemical basis of improvement of defense in tomato plant against Fusarium wilt by CaCl2.
Chakraborty, Nilanjan; Chandra, Swarnendu; Acharya, Krishnendu
2017-07-01
The objective of this study was to investigate the effectiveness of calcium chloride (CaCl 2 ), as potential elicitor, on tomato plants against Fusarium oxysporum f. sp. lycopersici . Foliar application of CaCl 2 showed significant reduction of wilt incidence after challenge inoculation. Increased production of defense and antioxidant enzymes was observed in elicitor treated sets over control. Simultaneously, altered amount of phenolic acids were analyzed spectrophotometrically and by using high performance liquid chromatography. Significant induction of defense-related genes expressions was measured by semi-quantitative RT-PCR. Greater lignifications by microscopic analysis were also recorded in elicitor treated plants. Simultaneously, generation of nitric oxide (NO) in elicitor treated plants was confirmed by spectrophotometrically and microscopically by using membrane permeable fluorescent dye. Furthermore, plants treated with potential NO donor and NO modulators showed significant alteration of all those aforesaid defense molecules. Transcript analysis of nitrate reductase and calmodulin gene showed positive correlation with elicitor treatment. Furthermore, CaCl 2 treatment showed greater seedling vigor index, mean trichome density etc. The result suggests that CaCl 2 have tremendous potential to elicit defense responses as well as plant growth in co-relation with NO, which ultimately leads to resistance against the wilt pathogen.
NASA Astrophysics Data System (ADS)
Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui
2009-02-01
Functional near-infrared brain imaging (fNIRI) and event-related potential (ERP) were used simultaneous to detect the prefrontal cortex (PFC) which is considered to execute cognitive control of the subjects while performing the Chinese characters color-word matching Stroop task with event-related design. The fNIRI instrument is a portable system operating at three wavelengths (735nm & 805nm &850nm) with continuous-wave. The event-related potentials were acquired by Neuroscan system. The locations of optodes corresponding to the electrodes were defined four areas symmetrically. In nine native Chinese-speaking fit volunteers, fNIRI measured the hemodynamic parameters (involving oxy-/deoxy- hemoglobin) changes when the characteristic waveforms (N500/P600) were recorded by ERP. The interference effect was obvious as a longer reaction time for incongruent than congruent and neutral stimulus. The responses of hemodynamic and electrophysiology were also stronger during incongruent compared to congruent and neutral trials, and these results are similar to those obtained with fNIRI or ERP separately. There are high correlations, even linear relationship, in the two kinds of signals. In conclusion, the multi-modality approach combining of fNIRI and ERP is feasible and could obtain more cognitive function information with hemodynamic and electrophysiology signals. It also provides a perspective to prove the neurovascular coupling mechanism.
Neonatal Auditory Brainstem Responses Recorded from Four Electrode Montages.
ERIC Educational Resources Information Center
Stuart, Andrew; And Others
1996-01-01
Simultaneous auditory brainstem responses (ABRs) to click stimuli at 30 and 60 decibels were recorded from 16 full-term neonates with 4 different electrode arrays. Results indicated that ABR waveforms were morphologically similar to those recorded in adults. Waveform expression was variable with different electrode recording montages. (Author/DB)
Fire suppression effectiveness for simultaneous fires: an examination of fire histories
Larry F. Bednar; Romain Mees; David Strauss
1990-01-01
We examined fire and weather records for areas of the western United States for the period 1970-1984 to determine the effects of simultaneous wildfire occurrence on fire suppression efforts. Burning conditions were accounted for by use of short strings of fires which involved simultaneous suppression efforts. These strings were matched with closely preceding isolated...
Evaluation of Dry Sensors for Neonatal EEG Recordings.
Fridman, Igor; Cordeiro, Malaika; Rais-Bahrami, Khodayar; McDonald, Neil J; Reese, James J; Massaro, An N; Conry, Joan A; Chang, Taeun; Soussou, Walid; Tsuchida, Tammy N
2016-04-01
Neonatal seizures are a common neurologic diagnosis in neonatal intensive care units, occurring in approximately 14,000 newborns annually in the United States. Although the only reliable means of detecting and treating neonatal seizures is with an electroencephalography (EEG) recording, many neonates do not receive an EEG or experience delays in getting them. Barriers to obtaining neonatal EEGs include (1) lack of skilled EEG technologists to apply conventional wet electrodes to delicate neonatal skin, (2) poor signal quality because of improper skin preparation and artifact, and (3) extensive time needed to apply electrodes. Dry sensors have the potential to overcome these obstacles but have not previously been evaluated on neonates. Sequential and simultaneous recordings with wet and dry sensors were performed for 1 hour on 27 neonates from 35 to 42.5 weeks postmenstrual age. Recordings were analyzed for correlation and amplitude and were reviewed by neurophysiologists. Performance of dry sensors on simulated vernix was examined. Analysis of dry and wet signals showed good time-domain correlation (reaching >0.8), given the nonsuperimposed sensor positions and similar power spectral density curves. Neurophysiologist reviews showed no statistically significant difference between dry and wet data on most clinically relevant EEG background and seizure patterns. There was no skin injury after 1 hour of dry sensor recordings. In contrast to wet electrodes, impedance and electrical artifact of dry sensors were largely unaffected by simulated vernix. Dry sensors evaluated in this study have the potential to provide high-quality, timely EEG recordings on neonates with less risk of skin injury.
Evaluation of Dry Sensors for Neonatal EEG recordings
Fridman, Igor; Cordeiro, Malaika; Rais-Bahrami, Khodayar; McDonald, Neil J.; Reese, James J.; Massaro, An N.; Conry, Joan A.; Chang, Taeun; Soussou, Walid; Tsuchida, Tammy N.
2015-01-01
Introduction Neonatal seizures are a common neurologic diagnosis in Neonatal Intensive Care Units (NICUs), occurring in approximately 14,000 newborns annually in the US. While the only reliable means of detecting and treating neonatal seizures is with an EEG recording, many neonates do not get an EEG or experience delays in getting them. Barriers to obtaining neonatal EEGs include: 1) lack of skilled EEG technologists to apply conventional wet electrodes to delicate neonatal skin, 2) poor signal quality due to improper skin preparation and artifact, 3) extensive time needed to apply electrodes. Dry sensors have the potential to overcome these obstacles but have not been previously evaluated on neonates. Methods Sequential and simultaneous recordings with wet and dry sensors were performed for one hour on 27 neonates from 35-42.5 weeks postmenstrual age. Recordings were analyzed for correlation and amplitude, and were reviewed by neurophysiologists. Performance of dry sensors on simulated vernix was examined. Results Analysis of dry and wet signals showed good time-domain correlation (reaching >0.8) given the non-superimposed sensor positions, and similar power spectral density curves. Neurophysiologist reviews showed no statistically significant difference between dry and wet data on most clinically-relevant EEG background and seizure patterns. There was no skin injury after 1 hr of dry sensor recordings. In contrast to wet electrodes, impedance and electrical artifact of dry sensors were largely unaffected by simulated vernix. Conclusions Dry sensors evaluated in this study have the potential to provide high-quality, timely EEG recordings on neonates with less risk of skin injury. PMID:26562208
Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Franke, R.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Góra, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, .; VERITAS Collaboration; Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Buchovecky, M.; Bugaev, V.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Dumm, J.; Eisch, J. D.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Hütten, J. Grube M.; Håkansson, N.; Hervet, O.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.
2016-11-01
We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e.g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
Palette of fluorinated voltage-sensitive hemicyanine dyes
Yan, Ping; Acker, Corey D.; Zhou, Wen-Liang; Lee, Peter; Bollensdorff, Christian; Negrean, Adrian; Lotti, Jacopo; Sacconi, Leonardo; Antic, Srdjan D.; Kohl, Peter; Mansvelder, Huibert D.; Pavone, Francesco S.; Loew, Leslie M.
2012-01-01
Optical recording of membrane potential permits spatially resolved measurement of electrical activity in subcellular regions of single cells, which would be inaccessible to electrodes, and imaging of spatiotemporal patterns of action potential propagation in excitable tissues, such as the brain or heart. However, the available voltage-sensitive dyes (VSDs) are not always spectrally compatible with newly available optical technologies for sensing or manipulating the physiological state of a system. Here, we describe a series of 19 fluorinated VSDs based on the hemicyanine class of chromophores. Strategic placement of the fluorine atoms on the chromophores can result in either blue or red shifts in the absorbance and emission spectra. The range of one-photon excitation wavelengths afforded by these new VSDs spans 440–670 nm; the two-photon excitation range is 900–1,340 nm. The emission of each VSD is shifted by at least 100 nm to the red of its one-photon excitation spectrum. The set of VSDs, thus, affords an extended toolkit for optical recording to match a broad range of experimental requirements. We show the sensitivity to voltage and the photostability of the new VSDs in a series of experimental preparations ranging in scale from single dendritic spines to whole heart. Among the advances shown in these applications are simultaneous recording of voltage and calcium in single dendritic spines and optical electrophysiology recordings using two-photon excitation above 1,100 nm. PMID:23169660
Patel, Chirag R.; Zhang, Huiming
2014-01-01
Sodium salicylate (SS) is a widely used medication with side effects on hearing. In order to understand these side effects, we recorded sound-driven local-field potentials in a neural structure, the dorsal cortex of the inferior colliculus (ICd). Using a microiontophoretic technique, we applied SS at sites of recording and studied how auditory responses were affected by the drug. Furthermore, we studied how the responses were affected by combined local application of SS and an agonists/antagonist of the type-A or type-B γ-aminobutyric acid receptor (GABAA or GABAB receptor). Results revealed that SS applied alone enhanced auditory responses in the ICd, indicating that the drug had local targets in the structure. Simultaneous application of the drug and a GABAergic receptor antagonist synergistically enhanced amplitudes of responses. The synergistic interaction between SS and a GABAA receptor antagonist had a relatively early start in reference to the onset of acoustic stimulation and the duration of this interaction was independent of sound intensity. The interaction between SS and a GABAB receptor antagonist had a relatively late start, and the duration of this interaction was dependent on sound intensity. Simultaneous application of the drug and a GABAergic receptor agonist produced an effect different from the sum of effects produced by the two drugs released individually. These differences between simultaneous and individual drug applications suggest that SS modified GABAergic inhibition in the ICd. Our results indicate that SS can affect sound-driven activity in the ICd by modulating local GABAergic inhibition. PMID:25452744
Lin, Tiger W.; Das, Anup; Krishnan, Giri P.; Bazhenov, Maxim; Sejnowski, Terrence J.
2017-01-01
With our ability to record more neurons simultaneously, making sense of these data is a challenge. Functional connectivity is one popular way to study the relationship of multiple neural signals. Correlation-based methods are a set of currently well-used techniques for functional connectivity estimation. However, due to explaining away and unobserved common inputs (Stevenson, Rebesco, Miller, & Körding, 2008), they produce spurious connections. The general linear model (GLM), which models spike trains as Poisson processes (Okatan, Wilson, & Brown, 2005; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005; Pillow et al., 2008), avoids these confounds. We develop here a new class of methods by using differential signals based on simulated intracellular voltage recordings. It is equivalent to a regularized AR(2) model. We also expand the method to simulated local field potential recordings and calcium imaging. In all of our simulated data, the differential covariance-based methods achieved performance better than or similar to the GLM method and required fewer data samples. This new class of methods provides alternative ways to analyze neural signals. PMID:28777719
Lin, Tiger W; Das, Anup; Krishnan, Giri P; Bazhenov, Maxim; Sejnowski, Terrence J
2017-10-01
With our ability to record more neurons simultaneously, making sense of these data is a challenge. Functional connectivity is one popular way to study the relationship of multiple neural signals. Correlation-based methods are a set of currently well-used techniques for functional connectivity estimation. However, due to explaining away and unobserved common inputs (Stevenson, Rebesco, Miller, & Körding, 2008 ), they produce spurious connections. The general linear model (GLM), which models spike trains as Poisson processes (Okatan, Wilson, & Brown, 2005 ; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005 ; Pillow et al., 2008 ), avoids these confounds. We develop here a new class of methods by using differential signals based on simulated intracellular voltage recordings. It is equivalent to a regularized AR(2) model. We also expand the method to simulated local field potential recordings and calcium imaging. In all of our simulated data, the differential covariance-based methods achieved performance better than or similar to the GLM method and required fewer data samples. This new class of methods provides alternative ways to analyze neural signals.
A novel automated rat catalepsy bar test system based on a RISC microcontroller.
Alvarez-Cervera, Fernando J; Villanueva-Toledo, Jairo; Moo-Puc, Rosa E; Heredia-López, Francisco J; Alvarez-Cervera, Margarita; Pineda, Juan C; Góngora-Alfaro, José L
2005-07-15
Catalepsy tests performed in rodents treated with drugs that interfere with dopaminergic transmission have been widely used for the screening of drugs with therapeutic potential in the treatment of Parkinson's disease. The basic method for measuring catalepsy intensity is the "standard" bar test. We present here an easy to use microcontroller-based automatic system for recording bar test experiments. The design is simple, compact, and has a low cost. Recording intervals and total experimental time can be programmed within a wide range of values. The resulting catalepsy times are stored, and up to five simultaneous experiments can be recorded. A standard personal computer interface is included. The automated system also permits the elimination of human error associated with factors such as fatigue, distraction, and data transcription, occurring during manual recording. Furthermore, a uniform criterion for timing the cataleptic condition can be achieved. Correlation values between the results obtained with the automated system and those reported by two independent observers ranged between 0.88 and 0.99 (P<0.0001; three treatments, nine animals, 144 catalepsy time measurements).
Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites
Raducanu, Bogdan C.; Yazicioglu, Refet F.; Lopez, Carolina M.; Putzeys, Jan; Andrei, Alexandru; Rochus, Veronique; Welkenhuysen, Marleen; van Helleputte, Nick; Musa, Silke; Puers, Robert; Kloosterman, Fabian; Van Hoof, Chris; Mitra, Srinjoy
2017-01-01
We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor) active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm) and 12 reference pixels (20 µm × 80 µm), densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678). Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission). PMID:29048396
Kammermeier, Stefan; Pittard, Damien; Hamada, Ikuma
2016-01-01
Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs. PMID:27683881
Smith, Warren M; Riddell, Fiona; Madon, Morag; Gleva, Marye J
2017-03-01
To compare simultaneous recordings from an external patch system specifically designed to ensure better P-wave recordings and standard Holter monitor to determine diagnostic efficacy. Holter monitors are a mainstay of clinical practice, but are cumbersome to access and wear and P-wave signal quality is frequently inadequate. This study compared the diagnostic efficacy of the P-wave centric electrocardiogram (ECG) patch (Carnation Ambulatory Monitor) to standard 3-channel (leads V1, II, and V5) Holter monitor (Northeast Monitoring, Maynard, MA). Patients were referred to a hospital Holter clinic for standard clinical indications. Each patient wore both devices simultaneously and served as their own control. Holter and Patch reports were read in a blinded fashion by experienced electrophysiologists unaware of the findings in the other corresponding ECG recording. All patients, technicians, and physicians completed a questionnaire on comfort and ease of use, and potential complications. In all 50 patients, the P-wave centric patch recording system identified rhythms in 23 patients (46%) that altered management, compared to 6 Holter patients (12%), P<.001. The patch ECG intervals PR, QRS and QT correlated well with the Holter ECG intervals having correlation coefficients of 0.93, 0.86, and 0.94, respectively. Finally, 48 patients (96%) preferred wearing the patch monitor. A single-channel ambulatory patch ECG monitor, designed specifically to ensure that the P-wave component of the ECG be visible, resulted in a significantly improved rhythm diagnosis and avoided inaccurate diagnoses made by the standard 3-channel Holter monitor. Copyright © 2016 Elsevier Inc. All rights reserved.
Dodani, Sunjay S; Lu, Charles W; Aldridge, J Wayne; Chou, Kelvin L; Patil, Parag G
2018-06-01
Accurate electrode placement is critical to the success of deep brain stimulation (DBS) surgery. Suboptimal targeting may arise from poor initial target localization, frame-based targeting error, or intraoperative brain shift. These uncertainties can make DBS surgery challenging. To develop a computerized system to guide subthalamic nucleus (STN) DBS electrode localization and to estimate the trajectory of intraoperative microelectrode recording (MER) on magnetic resonance (MR) images algorithmically during DBS surgery. Our method is based upon the relationship between the high-frequency band (HFB; 500-2000 Hz) signal from MER and voxel intensity on MR images. The HFB profile along an MER trajectory recorded during surgery is compared to voxel intensity profiles along many potential trajectories in the region of the surgically planned trajectory. From these comparisons of HFB recordings and potential trajectories, an estimate of the MER trajectory is calculated. This calculated trajectory is then compared to actual trajectory, as estimated by postoperative high-resolution computed tomography. We compared 20 planned, calculated, and actual trajectories in 13 patients who underwent STN DBS surgery. Targeting errors for our calculated trajectories (2.33 mm ± 0.2 mm) were significantly less than errors for surgically planned trajectories (2.83 mm ± 0.2 mm; P = .01), improving targeting prediction in 70% of individual cases (14/20). Moreover, in 4 of 4 initial MER trajectories that missed the STN, our method correctly indicated the required direction of targeting adjustment for the DBS lead to intersect the STN. A computer-based algorithm simultaneously utilizing MER and MR information potentially eases electrode localization during STN DBS surgery.
Irimia, Andrei; Richards, William O; Bradshaw, L Alan
2009-11-01
In this study, we perform a comparative study of independent component analysis (ICA) and conventional filtering (CF) for the purpose of artifact reduction from simultaneous gastric EMG and magnetogastrography (MGG). EMG/MGG data were acquired from ten anesthetized pigs by obtaining simultaneous recordings using serosal electrodes (EMG) as well as with a superconducting quantum interference device biomagnetometer (MGG). The analysis of MGG waveforms using ICA and CF indicates that ICA is superior to the CF method in its ability to extract respiration and cardiac artifacts from MGG recordings. A signal frequency analysis of ICA- and CF-processed data was also undertaken using waterfall plots, and it was determined that the two methods produce qualitatively comparable results. Through the use of simultaneous EMG/MGG, we were able to demonstrate the accuracy and trustworthiness of our results by comparison and cross-validation within the framework of a porcine model.
Starosta, Sarah; Stüttgen, Maik C; Güntürkün, Onur
2014-06-02
While the subject of learning has attracted immense interest from both behavioral and neural scientists, only relatively few investigators have observed single-neuron activity while animals are acquiring an operantly conditioned response, or when that response is extinguished. But even in these cases, observation periods usually encompass only a single stage of learning, i.e. acquisition or extinction, but not both (exceptions include protocols employing reversal learning; see Bingman et al.(1) for an example). However, acquisition and extinction entail different learning mechanisms and are therefore expected to be accompanied by different types and/or loci of neural plasticity. Accordingly, we developed a behavioral paradigm which institutes three stages of learning in a single behavioral session and which is well suited for the simultaneous recording of single neurons' action potentials. Animals are trained on a single-interval forced choice task which requires mapping each of two possible choice responses to the presentation of different novel visual stimuli (acquisition). After having reached a predefined performance criterion, one of the two choice responses is no longer reinforced (extinction). Following a certain decrement in performance level, correct responses are reinforced again (reacquisition). By using a new set of stimuli in every session, animals can undergo the acquisition-extinction-reacquisition process repeatedly. Because all three stages of learning occur in a single behavioral session, the paradigm is ideal for the simultaneous observation of the spiking output of multiple single neurons. We use pigeons as model systems, but the task can easily be adapted to any other species capable of conditioned discrimination learning.
Nieto-Diego, Javier; Malmierca, Manuel S.
2016-01-01
Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. PMID:26950883
Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea.
He, David Z Z; Jia, Shuping; Dallos, Peter
2004-06-17
Sensory receptor cells of the mammalian cochlea are morphologically and functionally dichotomized. Inner hair cells transmit auditory information to the brain, whereas outer hair cells (OHC) amplify the mechanical signal, which is then transduced by inner hair cells. Amplification by OHCs is probably mediated by their somatic motility in a mechanical feedback process. OHC motility in vivo is thought to be driven by the cell's receptor potential. The first steps towards the generation of the receptor potential are the deflection of the stereociliary bundle, and the subsequent flow of transducer current through the mechanosensitive transducer channels located at their tips. Quantitative relations between transducer currents and basilar membrane displacements are lacking, as well as their variation along the cochlear length. To address this, we simultaneously recorded OHC transducer currents (or receptor potentials) and basilar membrane motion in an excised and bisected cochlea, the hemicochlea. This preparation permits recordings from adult OHCs at various cochlear locations while the basilar membrane is mechanically stimulated. Furthermore, the stereocilia are deflected by the same means of stimulation as in vivo. Here we show that asymmetrical transducer currents and receptor potentials are significantly larger than previously thought, they possess a highly restricted dynamic range and strongly depend on cochlear location.
ELECTRIC IMPEDANCE OF NITELLA DURING ACTIVITY
Cole, Kenneth S.; Curtis, Howard J.
1938-01-01
The changes in the alternating current impedance which occur during activity of cells of the fresh water plant Nitella have been measured with the current flow normal to the cell axis, at eight frequencies from 0.05 to 20 kilocycles per second, and with simultaneous records of the action potential under the impedance electrodes. At each frequency the resting cell was balanced in a Wheatstone bridge with a cathode ray oscillograph, and after electrical stimulation at one end of the cell, the changes in the complex impedance were determined from the bridge unbalance recorded by motion pictures of the oscillograph figure. An extension of the previous technique of interpretation of the transverse impedance shows that the normal membrane capacity of 0.9 µf./cm.2 decreases about 15 per cent without change of phase angle, while the membrane resistance decreases from 105 ohm cm.2 to about 500 ohm cm.2 during the passage of the excitation wave. This membrane change occurs during the latter part of the rising phase of the action potential, and it is shown that the membrane electromotive force remains unchanged until nearly the same time. The part of the action potential preceding these membrane changes is probably a passive fall of potential ahead of a partial short circuit. PMID:19873091
NASA Astrophysics Data System (ADS)
Yuzhakov, AD; Nosarev, AV; Aleinik, AN
2017-11-01
This article describes the development of the experimental setup for measuring the cell membrane electrical potential by Double -Sucrose-Gap Technique. The double-gap isolation method allows the simultaneous measurement of electrical activity and tension output from contracting segments of muscle fibers. This technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations. This device can be an effective way to provide undergraduate biomedical engineering students with invaluable experiences in neurophysiology. The installation design and its main characteristics are described. The advantages of the described device are the simplicity of the experiment, relatively low cost, the possibility of long-term experiment.
Gooi, Patrick; Ahmed, Yusuf; Ahmed, Iqbal Ike K
2014-07-01
We describe the use of a microscope-mounted wide-angle point-of-view camera to record optimal hand positions in ocular surgery. The camera is mounted close to the objective lens beneath the surgeon's oculars and faces the same direction as the surgeon, providing a surgeon's view. A wide-angle lens enables viewing of both hands simultaneously and does not require repositioning the camera during the case. Proper hand positioning and instrument placement through microincisions are critical for effective and atraumatic handling of tissue within the eye. Our technique has potential in the assessment and training of optimal hand position for surgeons performing intraocular surgery. It is an innovative way to routinely record instrument and operating hand positions in ophthalmic surgery and has minimal requirements in terms of cost, personnel, and operating-room space. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Dual patch voltage clamp study of low membrane resistance astrocytes in situ.
Ma, Baofeng; Xu, Guangjin; Wang, Wei; Enyeart, John J; Zhou, Min
2014-03-17
Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.
NASA Astrophysics Data System (ADS)
Hayden, Jakob; Hugger, Stefan; Fuchs, Frank; Lendl, Bernhard
2018-02-01
We employ a novel spectroscopic setup based on an external cavity quantum cascade laser and a Mach-Zehnder interferometer to simultaneously record spectra of absorption and dispersion of liquid samples in the mid-infrared. We describe the theory underlying the interferometric measurement and discuss its implications for the experiment. The capability of simultaneously recording a refractive index and absorption spectrum is demonstrated for a sample of acetone in cyclohexane. The recording of absorption spectra is experimentally investigated in more detail to illustrate the method's capabilities as compared to direct absorption spectroscopy. We find that absorption signals are recorded with strongly suppressed background, but with smaller absolute sensitivity. A possibility of optimizing the setup's performance by unbalancing the interferometer is presented.
Multi-neuron intracellular recording in vivo via interacting autopatching robots
Holst, Gregory L; Singer, Annabelle C; Han, Xue; Brown, Emery N
2018-01-01
The activities of groups of neurons in a circuit or brain region are important for neuronal computations that contribute to behaviors and disease states. Traditional extracellular recordings have been powerful and scalable, but much less is known about the intracellular processes that lead to spiking activity. We present a robotic system, the multipatcher, capable of automatically obtaining blind whole-cell patch clamp recordings from multiple neurons simultaneously. The multipatcher significantly extends automated patch clamping, or 'autopatching’, to guide four interacting electrodes in a coordinated fashion, avoiding mechanical coupling in the brain. We demonstrate its performance in the cortex of anesthetized and awake mice. A multipatcher with four electrodes took an average of 10 min to obtain dual or triple recordings in 29% of trials in anesthetized mice, and in 18% of the trials in awake mice, thus illustrating practical yield and throughput to obtain multiple, simultaneous whole-cell recordings in vivo. PMID:29297466
Design study for multi-channel tape recorder system, volume 2
NASA Technical Reports Server (NTRS)
1972-01-01
Skew test data are presented on a tape recorder transport with a double capstan drive for a 100 KHz tone recorded on five tracks simultaneously. Phase detectors were used to measure the skew when the center channel was the 100 KHz reference.
Bali, Zsolt K.; Nagy, Lili V.; Hernádi, István
2017-01-01
The aim of the present study was to identify in vivo electrophysiological correlates of the interaction between cholinergic and glutamatergic neurotransmission underlying memory. Extracellular spike recordings were performed in the hippocampal CA1 region of anesthetized rats in combination with local microiontophoretic administration of N-methyl-D-aspartate (NMDA) and acetylcholine (ACh). Both NMDA and ACh increased the firing rate of the neurons. Furthermore, the simultaneous delivery of NMDA and ACh resulted in a more pronounced excitatory effect that was superadditive over the sum of the two mono-treatment effects and that was explained by cholinergic potentiation of glutamatergic neurotransmission. Next, animals were systemically treated with scopolamine or methyllycaconitine (MLA) to assess the contribution of muscarinic ACh receptor (mAChR) or α7 nicotinic ACh receptor (nAChR) receptor-mediated mechanisms to the observed effects. Scopolamine totally inhibited ACh-evoked firing, and attenuated the firing rate increase evoked by simultaneous application of NMDA and ACh. However, the superadditive nature of the combined effect was preserved. The α7 nAChR antagonist MLA robustly decreased the firing response to simultaneous application of NMDA and ACh, suspending their superadditive effect, without modifying the tonic firing rate increasing effect of ACh. These results provide the first in vivo electrophysiological evidence that, in the hippocampal CA1 region, α7 nAChRs contribute to pyramidal cell activity mainly through potentiation of glutamatergic signaling, while the direct cholinergic modulation of tonic firing is notably mediated by mAChRs. Furthermore, the present findings also reveal cellular physiological correlates of the interplay between cholinergic and glutamatergic agents in behavioral pharmacological models of cognitive decline. PMID:28928637
Ramshur, John T; de Jongh Curry, Amy L; Waters, Robert S
2014-01-01
We describe for the first time the design, implementation, and testing of a telemetry controlled simultaneous stimulation and recording device (SRD) to deliver chronic intercortical microstimulation (ICMS) to physiologically identified sites in rat somatosensory cortex (SI) and test hypotheses that chronic ICMS strengthens interhemispheric pathways and leads to functional reorganization in the enhanced cortex. The SRD is a custom embedded device that uses the Cypress Semiconductor's programmable system on a chip (PSoC) that is remotely controlled via Bluetooth. The SRC can record single or multiunit responses from any two of 12 available inputs at 1-15 ksps per channel and simultaneously deliver stimulus pulses (0-255 μA; 10 V compliance) to two user selectable electrodes using monophasic, biphasic, or pseudophasic stimulation waveforms (duration: 0-5 ms, inter-phase interval: 0-5 ms, frequency: 0.1-5 s, delay: 0-10 ms). The SRD was bench tested and validated in vivo in a rat animal model.
Papadelis, Christos; Tamilia, Eleonora; Stufflebeam, Steven; Grant, Patricia E.; Madsen, Joseph R.; Pearl, Phillip L.; Tanaka, Naoaki
2016-01-01
Crucial to the success of epilepsy surgery is the availability of a robust biomarker that identifies the Epileptogenic Zone (EZ). High Frequency Oscillations (HFOs) have emerged as potential presurgical biomarkers for the identification of the EZ in addition to Interictal Epileptiform Discharges (IEDs) and ictal activity. Although they are promising to localize the EZ, they are not yet suited for the diagnosis or monitoring of epilepsy in clinical practice. Primary barriers remain: the lack of a formal and global definition for HFOs; the consequent heterogeneity of methodological approaches used for their study; and the practical difficulties to detect and localize them noninvasively from scalp recordings. Here, we present a methodology for the recording, detection, and localization of interictal HFOs from pediatric patients with refractory epilepsy. We report representative data of HFOs detected noninvasively from interictal scalp EEG and MEG from two children undergoing surgery. The underlying generators of HFOs were localized by solving the inverse problem and their localization was compared to the Seizure Onset Zone (SOZ) as this was defined by the epileptologists. For both patients, Interictal Epileptogenic Discharges (IEDs) and HFOs were localized with source imaging at concordant locations. For one patient, intracranial EEG (iEEG) data were also available. For this patient, we found that the HFOs localization was concordant between noninvasive and invasive methods. The comparison of iEEG with the results from scalp recordings served to validate these findings. To our best knowledge, this is the first study that presents the source localization of scalp HFOs from simultaneous EEG and MEG recordings comparing the results with invasive recordings. These findings suggest that HFOs can be reliably detected and localized noninvasively with scalp EEG and MEG. We conclude that the noninvasive localization of interictal HFOs could significantly improve the presurgical evaluation for pediatric patients with epilepsy. PMID:28060325
Social Neuroscience and Hyperscanning Techniques: Past, Present and Future
Babiloni, Fabio; Astolfi, Laura
2012-01-01
This paper reviews the published literature on the hyperscanning methodologies using hemodynamic or neuro-electric modalities. In particular, we describe how different brain recording devices have been employed in different experimental paradigms to gain information about the subtle nature of human interactions. This review also included papers based on single-subject recordings in which a correlation was found between the activities of different (non-simultaneously recorded) participants in the experiment. The descriptions begin with the methodological issues related to the simultaneous measurements and the descriptions of the results generated by such approaches will follow. Finally, a discussion of the possible future uses of such new approaches to explore human social interactions will be presented. PMID:22917915
Comparison of tone burst versus logon stimulation for vestibular evoked myogenic potentials.
Ozdek, Ali; Bayır, Omer; Tatar, Emel Cadallı; Korkmaz, Mehmet Hakan
2012-05-01
The following study has been carried out to compare the effectiveness of logon and tone burst acoustic stimulation to elicit vestibular evoked myogenic potential (VEMP) responses. The methods and the subjects include 31 healthy adult volunteers (62 ears) who were enrolled in this study. Two different acoustic stimuli, logon (L-VEMP) and tone burst (T-VEMP), were used to elicit VEMP responses in each subject. Bilateral recordings with simultaneous binaural acoustic stimulations were used during VEMP recordings. During the recording period, the subjects were in supine position with their head elevated. The results observed were that the response rate of p1n1 wave was 91.9% for L-VEMP and 88.7% for T-VEMP. The response rate of n2p2 wave was 80.6% for L-VEMP, and 75.8% for T-VEMP. There were no significant differences between the two groups with respect to the latencies of p1, n1, n2 and p2, p1n1 and n2p2 interval, and p1n1 and n2p2 amplitude. The conclusion was that there was no difference between logon and tone burst stimulation with respect to VEMP response rates and VEMP parameters. Therefore, they are not superior to each other.
NASA Astrophysics Data System (ADS)
Li, Baoxin; Wang, Dongmei; Lv, Jiagen; Zhang, Zhujun
2006-09-01
In this paper, a flow-injection chemiluminescence (CL) system is proposed for simultaneous determination of Co(II) and Cr(III) with partial least squares calibration. This method is based on the fact that both Co(II) and Cr(III) catalyze the luminol-H 2O 2 CL reaction, and that their catalytic activities are significantly different on the same reaction condition. The CL intensity of Co(II) and Cr(III) was measured and recorded at different pH of reaction medium, and the obtained data were processed by the chemometric approach of partial least squares. The experimental calibration set was composed with nine sample solutions using orthogonal calibration design for two component mixtures. The calibration curve was linear over the concentration range of 2 × 10 -7 to 8 × 10 -10 and 2 × 10 -6 to 4 × 10 -9 g/ml for Co(II) and Cr(III), respectively. The proposed method offers the potential advantages of high sensitivity, simplicity and rapidity for Co(II) and Cr(III) determination, and was successfully applied to the simultaneous determination of both analytes in real water sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.
2015-02-15
A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, andmore » we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.« less
Simultaneous PET-MRI in Oncology: A Solution Looking for a Problem?
Yankeelov, Thomas E.; Peterson, Todd E.; Abramson, Richard G.; Garcia-Izquierdo, David; Arlinghaus, Lori R.; Li, Xia; Atuegwu, Nkiruka C.; Catana, Ciprian; Manning, H. Charles; Fayad, Zahi A.; Gore, John C.
2012-01-01
With the recent development of integrated positron emission tomography-magnetic resonance imaging (PET-MRI) scanners, new possibilities for quantitative molecular imaging of cancer are realized. However, the practical advantages and potential clinical benefits of the ability to record PET and MRI data simultaneously must be balanced against the substantial costs and other requirements of such devices. In this review we highlight several of the key areas where integrated PET-MRI measurements, obtained simultaneously, are anticipated to have a significant impact on clinical and/or research studies. These areas include the use of MR-based motion corrections and/or a priori anatomical information for improved reconstruction of PET data; improved arterial input function characterization for PET kinetic modeling; the use of dual-modality contrast agents; and patient comfort and practical convenience. For widespread acceptance, a compelling case could be made if the combination of quantitative MRI and specific PET biomarkers significantly improves our ability to assess tumor status and response to therapy, and some likely candidates are now emerging. We consider the relative advantages and disadvantages afforded by PET-MRI and summarize current opinions and evidence as to the likely value of PET-MRI in the management of cancer. PMID:22795930
The double-anchoring theory of lightness perception: a comment on Bressan (2006).
Howe, Piers D L; Sagreiya, Hersh; Curtis, Dwight L; Zheng, Chengjie; Livingstone, Margaret S
2007-10-01
Recently, a double-anchoring theory (DAT) of lightness perception was proposed (P. Bressan, 2006), which offers explanations for all the data explained by the original anchoring theory (A. Gilchrist et al., 1999), as well as a number of additional lightness phenomena. Consequently, DAT can account for an unprecedented range of empirical results, potentially explaining everything from the basic simultaneous contrast display to subtle variations of the Gelb effect. In this comment, the authors raised 4 concerns that demonstrate serious theoretical and empirical difficulties for DAT. PsycINFO Database Record (c) 2007 APA, all rights reserved.
Algorithm for the classification of multi-modulating signals on the electrocardiogram.
Mita, Mitsuo
2007-03-01
This article discusses the algorithm to measure electrocardiogram (ECG) and respiration simultaneously and to have the diagnostic potentiality for sleep apnoea from ECG recordings. The algorithm is composed by the combination with the three particular scale transform of a(j)(t), u(j)(t), o(j)(a(j)) and the statistical Fourier transform (SFT). Time and magnitude scale transforms of a(j)(t), u(j)(t) change the source into the periodic signal and tau(j) = o(j)(a(j)) confines its harmonics into a few instantaneous components at tau(j) being a common instant on two scales between t and tau(j). As a result, the multi-modulating source is decomposed by the SFT and is reconstructed into ECG, respiration and the other signals by inverse transform. The algorithm is expected to get the partial ventilation and the heart rate variability from scale transforms among a(j)(t), a(j+1)(t) and u(j+1)(t) joining with each modulation. The algorithm has a high potentiality of the clinical checkup for the diagnosis of sleep apnoea from ECG recordings.
Measuring frequency of spontaneous swallowing.
Afkari, Sohail
2007-12-01
A new multi-sensory non-invasive portable system capable of detecting spontaneous swallowing in a patient population has been developed. Swallowing signals are recorded via Electromyogram (voltage potentials generated by throat muscles), an accelerometer (laryngeal elevations) and a microphone (cervical auscultation) affixed to the neck at the coniotomy region. Simultaneous signal comparison of all three modalities provides a vastly more reliable measure of swallowing frequency by rejecting artefacts associated with speech, body movement, coughing and background intereferences. The operational accuracy of the system was validated by a hand-held manual counter on a healthy subject undertaking everyday activities. Preliminary results showed a recorded mean spontaneous swallowing frequency of 1.32 swallows/minute and a slighly higher mean voluntary swallowing frequency of 1.52 swallows/minute with the intake of 100 ml of water. The device was able to detect 94.3% of dry swallows correctly, with each sensor responding differently to various noise interferences. The proposed system has potential to provide additional diagnostic information in clinical research of possible physiological problems associated with an abnormal swallowing frequency across a range of medical fields.
Simultaneous face and voice processing in schizophrenia.
Liu, Taosheng; Pinheiro, Ana P; Zhao, Zhongxin; Nestor, Paul G; McCarley, Robert W; Niznikiewicz, Margaret
2016-05-15
While several studies have consistently demonstrated abnormalities in the unisensory processing of face and voice in schizophrenia (SZ), the extent of abnormalities in the simultaneous processing of both types of information remains unclear. To address this issue, we used event-related potentials (ERP) methodology to probe the multisensory integration of face and non-semantic sounds in schizophrenia. EEG was recorded from 18 schizophrenia patients and 19 healthy control (HC) subjects in three conditions: neutral faces (visual condition-VIS); neutral non-semantic sounds (auditory condition-AUD); neutral faces presented simultaneously with neutral non-semantic sounds (audiovisual condition-AUDVIS). When compared with HC, the schizophrenia group showed less negative N170 to both face and face-voice stimuli; later P270 peak latency in the multimodal condition of face-voice relative to unimodal condition of face (the reverse was true in HC); reduced P400 amplitude and earlier P400 peak latency in the face but not in the voice-face condition. Thus, the analysis of ERP components suggests that deficits in the encoding of facial information extend to multimodal face-voice stimuli and that delays exist in feature extraction from multimodal face-voice stimuli in schizophrenia. In contrast, categorization processes seem to benefit from the presentation of simultaneous face-voice information. Timepoint by timepoint tests of multimodal integration did not suggest impairment in the initial stages of processing in schizophrenia. Published by Elsevier B.V.
Grouiller, Frédéric; Thornton, Rachel C.; Groening, Kristina; Spinelli, Laurent; Duncan, John S.; Schaller, Karl; Siniatchkin, Michael; Lemieux, Louis; Seeck, Margitta; Michel, Christoph M.
2011-01-01
In patients with medically refractory focal epilepsy who are candidates for epilepsy surgery, concordant non-invasive neuroimaging data are useful to guide invasive electroencephalographic recordings or surgical resection. Simultaneous electroencephalography and functional magnetic resonance imaging recordings can reveal regions of haemodynamic fluctuations related to epileptic activity and help localize its generators. However, many of these studies (40–70%) remain inconclusive, principally due to the absence of interictal epileptiform discharges during simultaneous recordings, or lack of haemodynamic changes correlated to interictal epileptiform discharges. We investigated whether the presence of epilepsy-specific voltage maps on scalp electroencephalography correlated with haemodynamic changes and could help localize the epileptic focus. In 23 patients with focal epilepsy, we built epilepsy-specific electroencephalographic voltage maps using averaged interictal epileptiform discharges recorded during long-term clinical monitoring outside the scanner and computed the correlation of this map with the electroencephalographic recordings in the scanner for each time frame. The time course of this correlation coefficient was used as a regressor for functional magnetic resonance imaging analysis to map haemodynamic changes related to these epilepsy-specific maps (topography-related haemodynamic changes). The method was first validated in five patients with significant haemodynamic changes correlated to interictal epileptiform discharges on conventional analysis. We then applied the method to 18 patients who had inconclusive simultaneous electroencephalography and functional magnetic resonance imaging studies due to the absence of interictal epileptiform discharges or absence of significant correlated haemodynamic changes. The concordance of the results with subsequent intracranial electroencephalography and/or resection area in patients who were seizure free after surgery was assessed. In the validation group, haemodynamic changes correlated to voltage maps were similar to those obtained with conventional analysis in 5/5 patients. In 14/18 patients (78%) with previously inconclusive studies, scalp maps related to epileptic activity had haemodynamic correlates even when no interictal epileptiform discharges were detected during simultaneous recordings. Haemodynamic changes correlated to voltage maps were spatially concordant with intracranial electroencephalography or with the resection area. We found better concordance in patients with lateral temporal and extratemporal neocortical epilepsy compared to medial/polar temporal lobe epilepsy, probably due to the fact that electroencephalographic voltage maps specific to lateral temporal and extratemporal epileptic activity are more dissimilar to maps of physiological activity. Our approach significantly increases the yield of simultaneous electroencephalography and functional magnetic resonance imaging to localize the epileptic focus non-invasively, allowing better targeting for surgical resection or implantation of intracranial electrode arrays. PMID:21752790
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.
2014-04-01
Objective. The aim of this study is to assess the accuracy of a surface electromyogram (sEMG) motor unit (MU) decomposition algorithm during low levels of muscle contraction. Approach. A two-source method was used to verify the accuracy of the sEMG decomposition system, by utilizing simultaneous intramuscular and surface EMG recordings from the human first dorsal interosseous muscle recorded during isometric trapezoidal force contractions. Spike trains from each recording type were decomposed independently utilizing two different algorithms, EMGlab and dEMG decomposition algorithms. The degree of agreement of the decomposed spike timings was assessed for three different segments of the EMG signals, corresponding to specified regions in the force task. A regression analysis was performed to examine whether certain properties of the sEMG and force signal can predict the decomposition accuracy. Main results. The average accuracy of successful decomposition among the 119 MUs that were common to both intramuscular and surface records was approximately 95%, and the accuracy was comparable between the different segments of the sEMG signals (i.e., force ramp-up versus steady state force versus combined). The regression function between the accuracy and properties of sEMG and force signals revealed that the signal-to-noise ratio of the action potential and stability in the action potential records were significant predictors of the surface decomposition accuracy. Significance. The outcomes of our study confirm the accuracy of the sEMG decomposition algorithm during low muscle contraction levels and provide confidence in the overall validity of the surface dEMG decomposition algorithm.
Open source tools for the information theoretic analysis of neural data.
Ince, Robin A A; Mazzoni, Alberto; Petersen, Rasmus S; Panzeri, Stefano
2010-01-01
The recent and rapid development of open source software tools for the analysis of neurophysiological datasets consisting of simultaneous multiple recordings of spikes, field potentials and other neural signals holds the promise for a significant advance in the standardization, transparency, quality, reproducibility and variety of techniques used to analyze neurophysiological data and for the integration of information obtained at different spatial and temporal scales. In this review we focus on recent advances in open source toolboxes for the information theoretic analysis of neural responses. We also present examples of their use to investigate the role of spike timing precision, correlations across neurons, and field potential fluctuations in the encoding of sensory information. These information toolboxes, available both in MATLAB and Python programming environments, hold the potential to enlarge the domain of application of information theory to neuroscience and to lead to new discoveries about how neurons encode and transmit information.
NASA Astrophysics Data System (ADS)
Fekete, Z.; Csernai, M.; Kocsis, K.; Horváth, Á. C.; Pongrácz, A.; Barthó, P.
2017-06-01
Objective. Temperature is an important factor for neural function both in normal and pathological states, nevertheless, simultaneous monitoring of local brain temperature and neuronal activity has not yet been undertaken. Approach. In our work, we propose an implantable, calibrated multimodal biosensor that facilitates the complex investigation of thermal changes in both cortical and deep brain regions, which records multiunit activity of neuronal populations in mice. The fabricated neural probe contains four electrical recording sites and a platinum temperature sensor filament integrated on the same probe shaft within a distance of 30 µm from the closest recording site. The feasibility of the simultaneous functionality is presented in in vivo studies. The probe was tested in the thalamus of anesthetized mice while manipulating the core temperature of the animals. Main results. We obtained multiunit and local field recordings along with measurement of local brain temperature with accuracy of 0.14 °C. Brain temperature generally followed core body temperature, but also showed superimposed fluctuations corresponding to epochs of increased local neural activity. With the application of higher currents, we increased the local temperature by several degrees without observable tissue damage between 34-39 °C. Significance. The proposed multifunctional tool is envisioned to broaden our knowledge on the role of the thermal modulation of neuronal activity in both cortical and deeper brain regions.
[Functional recordings of human nasal inferior turbinates -- the device design].
Mikulewicz, W; Galasiński, J
1993-01-01
There is prototype of device presented. It is used in order to record a simultaneous capacitance and resistance vessels functions, of human inferior turbinate. Present results indicate usefulness of device in clinical trials.
A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon
Spencer, Nick J; Hennig, Grant W; Smith, Terence K
2002-01-01
Simultaneous intracellular recordings were made from pairs of circular muscle (CM) cells, at the oral and anal ends of a segment of guinea-pig distal colon, to investigate the neuronal mechanisms underlying faecal pellet propulsion. When a minimum degree of circumferential stretch was applied to sheet preparations of colon, recordings from CM cells revealed either no ongoing junction potentials, or alternatively, small potentials usually < 5 mV in amplitude. Maintained circumferential stretch applied to these preparations evoked an ongoing discharge of excitatory junction potentials (EJPs) at the oral recording site (range: 1-25 mV), which lasted for up to 6 h. The onset of each large oral EJP was time-locked with the onset of an inhibitory junction potential (IJP) at an anal recording electrode, located 2 cm from the oral recording. Similar results were obtained in isolated intact tube preparations of colon, when recordings were made immediately oral and anal of an artificial faecal pellet. The amplitudes of many large (> 5 mV) oral EJPs were linearly related to the amplitudes of anal IJPs occurring 20 mm apart. In the absence of an L-type Ca2+ channel blocker, action potentials occurred on each large oral EJP. Synchronized discharges of stretch-activated EJPs and IJPs were preserved following pretreatment with capsaicin (10 μm), were unaffected by nifedipine (1 μm) and did not require the mucosa or submucous plexus. EJPs and IJPs were abolished by hexamethonium (300 μm) or tetrodotoxin (1 μm), but persisted in the presence of pyridoxal phosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS; 10 μm) or an NK3 tachykinin receptor antagonist (Neurokinin A 4-10; 100 nm to 5 μm). In summary, maintained circumferential stretch of the distal colon activates a population of intrinsic mechanosensory neurons that generate repetitive firing of ascending excitatory and descending inhibitory pathways to CM. These mechanosensory neurons, which may be interneurons, are stretch sensitive, rather than muscle tension sensitive, since they are resistant to muscular paralysis. We suggest the synchrony in onset of oral EJPs and anal IJPs over large regions of colon is due to synchronous synaptic activation of ascending and descending interneurons. PMID:12456839
3D plasmonic nanoantennas integrated with MEA biosensors
NASA Astrophysics Data System (ADS)
Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; de Angelis, Francesco
2015-02-01
Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05578k
Experimental observation of phase-flip transitions in the brain
NASA Astrophysics Data System (ADS)
Dotson, Nicholas M.; Gray, Charles M.
2016-10-01
The phase-flip transition has been demonstrated in a host of coupled nonlinear oscillator models, many pertaining directly to understanding neural dynamics. However, there is little evidence that this phenomenon occurs in the brain. Using simultaneous microelectrode recordings in the nonhuman primate cerebral cortex, we demonstrate the presence of phase-flip transitions between oscillatory narrow-band local field potential signals separated by several centimeters. Specifically, we show that sharp transitions between in-phase and antiphase synchronization are accompanied by a jump in synchronization frequency. These findings are significant for two reasons. First, they validate predictions made by model systems. Second, they have potentially far reaching implications for our understanding of the mechanisms underlying corticocortical communication, which are thought to rely on narrow-band oscillatory synchronization with specific relative phase relationships.
Ballini, Marco; Müller, Jan; Livi, Paolo; Chen, Yihui; Frey, Urs; Stettler, Alexander; Shadmani, Amir; Viswam, Vijay; Jones, Ian Lloyd; Jäckel, David; Radivojevic, Milos; Lewandowska, Marta K.; Gong, Wei; Fiscella, Michele; Bakkum, Douglas J.; Heer, Flavio; Hierlemann, Andreas
2017-01-01
To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for in vitro recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 × 2.10 mm2) with sub-cellular spatial resolution (pitch of 17.5 μm). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 μVrms in the action-potential band (300 Hz–10 kHz) and 5.4 μVrms in the local-field-potential band (1 Hz–300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures. PMID:28502989
Heers, Marcel; Hirschmann, Jan; Jacobs, Julia; Dümpelmann, Matthias; Butz, Markus; von Lehe, Marec; Elger, Christian E; Schnitzler, Alfons; Wellmer, Jörg
2014-09-01
Spike-based magnetoencephalography (MEG) source localization is an established method in the presurgical evaluation of epilepsy patients. Focal cortical dysplasias (FCDs) are associated with focal epileptic discharges of variable morphologies in the beta frequency band in addition to single epileptic spikes. Therefore, we investigated the potential diagnostic value of MEG-based localization of spike-independent beta band (12-30Hz) activity generated by epileptogenic lesions. Five patients with FCD IIB underwent MEG. In one patient, invasive EEG (iEEG) was recorded simultaneously with MEG. In two patients, iEEG succeeded MEG, and two patients had MEG only. MEG and iEEG were evaluated for epileptic spikes. Two minutes of iEEG data and MEG epochs with no spikes as well as MEG epochs with epileptic spikes were analyzed in the frequency domain. MEG oscillatory beta band activity was localized using Dynamic Imaging of Coherent Sources. Intralesional beta band activity was coherent between simultaneous MEG and iEEG recordings. Continuous 14Hz beta band power correlated with the rate of interictal epileptic discharges detected in iEEG. In cases where visual MEG evaluation revealed epileptic spikes, the sources of beta band activity localized within <2cm of the epileptogenic lesion as shown on magnetic resonance imaging. This result held even when visually marked epileptic spikes were deselected. When epileptic spikes were detectable in iEEG but not MEG, MEG beta band activity source localization failed. Source localization of beta band activity has the potential to contribute to the identification of epileptic foci in addition to source localization of visually marked epileptic spikes. Thus, this technique may assist in the localization of epileptic foci in patients with suspected FCD. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Levine, D. M.
1978-01-01
Radiation from lightning in the RF band from 3-300 MHz were monitored. Radiation in this frequency range is of interest as a potential vehicle for monitoring severe storms and for studying the lightning itself. Simultaneous measurements were made of RF radiation and fast and slow field changes. Continuous analogue recordings with a system having 300 kHz of bandwidth were made together with digital records of selected events (principally return strokes) at greater temporal resolution. The data reveal patterns in the RF radiation for the entire flash which are characteristic of flash type and independent of the frequency of observation. Individual events within the flash also have characteristic RF patterns. Strong radiation occurs during the first return strokes, but delayed about 20 micron sec with respect to the begining of the return stroke; whereas, RF radiation from subsequent return strokes tends to be associated with cloud processes preceding the flash with comparatively little radiation occurring during the return stroke itself.
Automated navigation of a glass micropipette on a high-density microelectrode array.
Jing Lin; Obien, Marie Engelene J; Hierlemann, Andreas; Frey, Urs
2015-08-01
High-density microelectrode arrays (HDMEAs) provide the capability to monitor the extracellular electric potential of multiple neurons at subcellular resolution over extended periods of time. In contrast, patch clamp allows for intracellular, sub-threshold recordings from a single patched neuron for very limited time on the order of an hour. Therefore, it will be beneficial to combine HDMEA and patch clamp for simultaneous intra- and extracellular recording of neuronal activity. Previously, it has been shown that the HDMEA can be used to localize and steer a glass micropipette towards a target location without using an optical microscope [1]. Here, we present an automated system, implemented in LabVIEW, which automatically locates and moves the glass micropipette towards a user-defined target. The presented system constitutes a first step towards developing an automated system to navigate a pipette to patch a neuron in vitro.
Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation
Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.
2009-01-01
The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355
A Magnetic Field Response Recorder: A New Tool for Measurement Acquisition
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.
2006-01-01
A magnetic field response recorder was developed to facilitate a measurement acquisition method that uses magnetic fields to power and to interrogate all sensors. Sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic field responses when electrically activated by oscillating magnetic fields. When electrically activated, the sensor's magnetic field response attributes (frequency, amplitude and bandwidth) correspond to the one or more physical states that each sensor measures. The response recorder makes it possible to simultaneously measure two unrelated physical properties using this class of sensors. The recorder is programmable allowing it to analyze one or more response attributes simultaneously. A single sensor design will be used to demonstrate that the acquisition method and the sensor example can be used to for all phases of a component's life from manufacturing to damage that can destroy it.
Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter
Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN
2012-01-01
We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732
Merrill, L.C.
1958-06-17
An electromagetic recording head is described for simultaneous recording of a plurality of signals within a small space on a magnetically semsitized medium. Basically the head structure comprises a non-magnetic centerpiece provided with only first and second groups of spaced cut-out slots respectively on opposite sides of the centerpiece. The two groups of slots are in parallel alignment and the slots of one group are staggered with respect to the slots of the other group so that one slot is not directly opposite another slot. Each slot has a magnet pole piece disposed therein and cooperating with a second pole and coil to provide a magnetic flux gap at the upper end of the slot. As a tape is drawn over the upper end of the centerpiece the individual magnetic circuits are disposed along its width to provide means for simultaneously recording information on separate portions, tracks. of the tape.
NASA Astrophysics Data System (ADS)
Nguyen, T. K. T.; Navratilova, Z.; Cabral, H.; Wang, L.; Gielen, G.; Battaglia, F. P.; Bartic, C.
2014-08-01
Objective. Closed-loop operation of neuro-electronic systems is desirable for both scientific and clinical (neuroprosthesis) applications. Integrating optical stimulation with recording capability further enhances the selectivity of neural stimulation. We have developed a system enabling the local delivery of optical stimuli and the simultaneous electrical measuring of the neural activities in a closed-loop approach. Approach. The signal analysis is performed online through the implementation of a template matching algorithm. The system performance is demonstrated with the recorded data and in awake rats. Main results. Specifically, the neural activities are simultaneously recorded, detected, classified online (through spike sorting) from 32 channels, and used to trigger a light emitting diode light source using generated TTL signals. Significance. A total processing time of 8 ms is achieved, suitable for optogenetic studies of brain mechanisms online.
Xia, Hongjing; Ruan, Dan; Cohen, Mark S.
2014-01-01
Ballistocardiogram (BCG) artifact remains a major challenge that renders electroencephalographic (EEG) signals hard to interpret in simultaneous EEG and functional MRI (fMRI) data acquisition. Here, we propose an integrated learning and inference approach that takes advantage of a commercial high-density EEG cap, to estimate the BCG contribution in noisy EEG recordings from inside the MR scanner. To estimate reliably the full-scalp BCG artifacts, a near-optimal subset (20 out of 256) of channels first was identified using a modified recording setup. In subsequent recordings inside the MR scanner, BCG-only signal from this subset of channels was used to generate continuous estimates of the full-scalp BCG artifacts via inference, from which the intended EEG signal was recovered. The reconstruction of the EEG was performed with both a direct subtraction and an optimization scheme. We evaluated the performance on both synthetic and real contaminated recordings, and compared it to the benchmark Optimal Basis Set (OBS) method. In the challenging non-event-related-potential (non-ERP) EEG studies, our reconstruction can yield more than fourteen-fold improvement in reducing the normalized RMS error of EEG signals, compared to OBS. PMID:25120421
The magnetic field of gastrointestinal smooth muscle activity
NASA Astrophysics Data System (ADS)
Bradshaw, Alan; Ladipo, Jk; Richards, William; Wikswo, John
1997-11-01
The gastrointestinal (GI) tract controls the absorption and transport of ingested materials. Its function is determined largely by the electrical activity of the smooth muscle that lines the GI tract. GI electrical activity consists of an omnipresent slowly oscillating wave known as the basic electrical rhythm (BER) that modulates a higher-frequency spiking activity associated with muscle contraction. The BER has been shown to be a reliable indicator of intestinal viability, and thus, recording of smooth muscle activity may have clinical value. The BER is difficult to measure with cutaneous electrodes because layers of low-conductivity fat between the GI tract and the abdominal surface attenuate the potential. On the other hand, the magnetic field associated with GI electrical activity is mostly unaffected by intervening fat layers. We recorded the magnetic fields from GI activity in 12 volunteers using a multichannel Superconducting QUantum Interference Device (SQUID) magnetometer. Characteristics typical of gastric and intestinal BER were apparent in the data. Channels near the epigastrium recorded gastric BER, and channels in intestinal areas recorded small bowel BER. These results suggest that a single multichannel SQUID magnetometer is able to measure gastrointestinal electrical activity from multiple locations around the abdomen simultaneously.
Camacho, M; Robertson, M; Abdullatif, J; Certal, V; Kram, Y A; Ruoff, C M; Brietzke, S E; Capasso, R
2015-10-01
To identify and systematically evaluate user-friendly smartphone snoring apps. The Apple iTunes app store was searched for snoring apps that allow recording and playback. Snoring apps were downloaded, evaluated and rated independently by four authors. Two patients underwent polysomnography, and the data were compared with simultaneous snoring app recordings, and one patient used the snoring app at home. Of 126 snoring apps, 13 met the inclusion and exclusion criteria. The most critical app feature was the ability to graphically display the snoring events. The Quit Snoring app received the highest overall rating. When this app's recordings were compared with in-laboratory polysomnography data, app snoring sensitivities ranged from 64 to 96 per cent, and snoring positive predictive values ranged from 93 to 96 per cent. A chronic snorer used the app nightly for one month and tracked medical interventions. Snoring decreased from 200 to 10 snores per hour, and bed partner snoring complaint scores decreased from 9 to 2 (on a 0-10 scale). Select smartphone apps are user-friendly for recording and playing back snoring sounds. Preliminary comparison of more than 1500 individual snores demonstrates the potential clinical utility of such apps; however, further validation testing is recommended.
Motor unit size estimation: confrontation of surface EMG with macro EMG.
Roeleveld, K; Stegeman, D F; Falck, B; Stålberg, E V
1997-06-01
Surface EMG (SEMG) is little used for diagnostic purposes in clinical neurophysiology, mainly because it provides little direct information on individual motor units (MUs). One of the techniques to estimate the MU size is intra-muscular Macro EMG. The present study compares SEMG with Macro EMG. Fifty-eight channel SEMG was recorded simultaneously with Macro EMG. Individual MUPs were obtained by single fiber triggered averaging. All recordings were made from the biceps brachii of healthy subjects during voluntary contraction at low force. High positive correlations were found between all Macro and Surface motor unit potential (MUP) parameters: area, peak-to-peak amplitude, negative peak amplitude and positive peak amplitude. The MUPs recorded with SEMG were dependent on the distance between the MU and the skin surface. Normalizing the SEMG parameters for MU location did not improve the correlation coefficient between the parameters of both techniques. The two measurement techniques had almost the same relative range in MUP parameters in any individual subject compared to the others, especially after normalizing the surface MUP parameters for MU location. MUPs recorded with this type of SEMG provide useful information about the MU size.
Toward FRP-Based Brain-Machine Interfaces—Single-Trial Classification of Fixation-Related Potentials
Finke, Andrea; Essig, Kai; Marchioro, Giuseppe; Ritter, Helge
2016-01-01
The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant’s body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction. PMID:26812487
Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D
2011-01-01
Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948
Lexical Selection Differences between Monolingual and Bilingual Listeners
Friesen, Deanna C.; Chung-Fat-Yim, Ashley; Bialystok, Ellen
2015-01-01
Three studies are reported investigating how monolinguals and bilinguals resolve within-language competition when listening to isolated words. Participants saw two pictures that were semantically-related, phonologically-related, or unrelated and heard a word naming one of them while event-related potentials were recorded. In Studies 1 and 2, the pictures and auditory cue were presented simultaneously and the related conditions produced interference for both groups. Monolinguals showed reduced N400s to the semantically-related pairs but there was no modulation in this component by bilinguals. Study 3 inserted an interval between picture and word onset. For picture onset, both groups exhibited reduced N400s to semantically-related pictures; for word onset, both groups showed larger N400s to phonologically-related pictures. Overall, bilinguals showed less integration of related items in simultaneous (but not sequential) presentation, presumably because of interference from the activated non-English language. Thus, simple lexical selection for bilinguals includes more conflict than it does for monolinguals. PMID:26684415
[Neurophysiological correlates of learning disabilities in Japan].
Miyao, M
1999-05-01
In the present study, we developed a new event-related potentials (ERPs) stimulator system applicable to simultaneous audio visual stimuli, and tested it clinically on healthy adults and patients with learning disabilities (LD), using Japanese language task stimuli: hiragana letters, kanji letters, and kanji letters with spoken words. (1) The origins of the P300 component were identified in these tasks. The sources in the former two tasks were located in different areas. In the simultaneous task stimuli, a combination of the two P300 sources was observed with dominance in the left posterior inferior temporal area. (2) In patients with learning disabilities, those with reading and writing disability showed low amplitudes in the left hemisphere in response to visual language task stimuli with kanji and hiragana letters, in contrast to healthy children and LD patients with arithmetic disability. (3) To evaluate the effect of methylphenidate (10 mg) on ADD, paired-associate ERPs were recorded. Methylphenidate increased the amplitude of P300.
An improved magnetic tape recorder
NASA Technical Reports Server (NTRS)
Uber, P. W.
1968-01-01
Magnetic tape recorder employs a single capstan for simultaneously driving the supply and take-up reels in such a manner that the tape passing between the reels is kept under a predetermined constant tension. This recorder operates with little power and is sufficiently rugged to withstand the severe stresses encountered in high-altitude balloon flight tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND... fees for eligible digital transmissions of sound recordings made pursuant to 17 U.S.C. 114, and the...: For all digital audio transmissions, including simultaneous digital audio retransmissions of over-the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND... fees for eligible digital transmissions of sound recordings made pursuant to 17 U.S.C. 114, and the...: For all digital audio transmissions, including simultaneous digital audio retransmissions of over-the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND... fees for eligible digital transmissions of sound recordings made pursuant to 17 U.S.C. 114, and the.... For all digital audio transmissions, including simultaneous digital audio retransmissions of over-the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Copyrights COPYRIGHT ROYALTY BOARD, LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND... fees for eligible digital transmissions of sound recordings made pursuant to 17 U.S.C. 114, and the...: For all digital audio transmissions, including simultaneous digital audio retransmissions of over-the...
[Evaluation of an automated pH-monitor and its logic of calculation].
Ducrotté, P; Hubin, M; Xin, H; Roussignol, C; Denis, P
1990-01-01
The aim of this study was to compare the results of 3-hour postprandial esophageal pH recordings obtained simultaneously from a standard Beckmann pH recorder and a commercially available fully automated pH recording device, "pH 60" in 30 subjects. Both apparatuses were connected to the same pH probe and to a unique chart recorder to obtain simultaneous pH graphic tracings. The percentage of time between each pH level below pH 5, the percentage of time with pH less than 4 and Kaye's score were determined hourly and for the overall recording time. The pH graphic traces in both apparatuses were strictly identical demonstrating the accuracy of the analog-to-digital converter and the memory module to record pH changes. Moreover, we found a significant correlation (p less than 0.01) and a good overall agreement for all compared parameters between manual and computerized analysis. This study documents that the commercially available ambulatory esophageal pH instrument studied produces accurate data for the diagnosis of gastroesophageal reflux.
A biophysical signature of network affiliation and sensory processing in mitral cells
Angelo, Kamilla; Rancz, Ede A.; Pimentel, Diogo; Hundahl, Christian; Hannibal, Jens; Fleischmann, Alexander; Pichler, Bruno; Margrie, Troy W.
2012-01-01
One defining characteristic of the mammalian brain is its neuronal diversity1. For a given region, substructure or layer and even cell type2, variability in neuronal morphology and connectivity2-5 persists. While it is well established that such cellular properties vary considerably according to neuronal type, the significant biophysical diversity of neurons of the same morphological class is typically averaged out and ignored. Here we show that the amplitude of hyperpolarization-evoked membrane potential sag recorded in olfactory bulb mitral cells is an emergent, homotypic property of local networks and sensory information processing. Simultaneous whole-cell recordings from pairs of cells reveal that the amount of hyperpolarization-evoked sag potential and current6 is stereotypic for mitral cells belonging to the same glomerular circuit. This is corroborated by a mosaic, glomerulus-based pattern of expression of the HCN2 subunit of the hyperpolarization-activated current (Ih) channel. Furthermore, inter-glomerular differences in both membrane potential sag and HCN2 protein are diminished when sensory input to glomeruli is genetically and globally altered so only one type of odorant receptor is universally expressed7. We therefore suggest that population diversity in the intrinsic profile of mitral cells reflect functional adaptations of distinct local circuits dedicated to processing subtly different odor-related information. PMID:22820253
Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.
Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels
2011-09-01
Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.
Decoding intravesical pressure from local field potentials in rat lumbosacral spinal cord
NASA Astrophysics Data System (ADS)
Im, Changkyun; Park, Hae Yong; Koh, Chin Su; Ryu, Sang Baek; Seo, In Seok; Kim, Yong Jung; Kim, Kyung Hwan; Shin, Hyung-Cheul
2016-10-01
Chronic monitoring of intravesical pressure is required to detect the onset of intravesical hypertension and the progression of a more severe condition. Recent reports demonstrate the bladder state can be monitored from the spiking activity of the dorsal root ganglia or lumbosacral spinal cord. However, one of the most serious challenges for these methods is the difficulty of sustained spike signal acquisition due to the high-electrode-location-sensitivity of spikes or neuro-degeneration. Alternatively, it has been demonstrated that local field potential recordings are less affected by encapsulation reactions or electrode location changes. Here, we hypothesized that local field potential (LFP) from the lumbosacral dorsal horn may provide information concerning the intravesical pressure. LFP and spike activities were simultaneously recorded from the lumbosacral spinal cord of anesthetized rats during bladder filling. The results show that the LFP activities carry significant information about intravesical pressure along with spiking activities. Importantly, the intravesical pressure is decoded from the power in high-frequency bands (83.9-256 Hz) with a substantial performance similar to that of the spike train decoding. These findings demonstrate that high-frequency LFP activity can be an alternative intravesical pressure monitoring signal, which could lead to a proper closed loop system for urinary control.
RECORDING DEVICE FOR 128 CHANNEL IONIZATION CHAMBERS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryunov, N.N.
1959-05-01
Descriptions are given of a 128-channel amplitude recording device desiged for operation with ionization chambers. Each channl has a large puse recording dynamic amplitude range (amplitudes can vary from each other up to 8000 fold). The recording of amplitudes is accomplished by photographing pulses on a cathode ray tube. With the aid of a commutation device it is possible to record 64 pulses simultaneously on one tube screen. (tr-auth)
Simultaneous real-time monitoring of multiple cortical systems.
Gupta, Disha; Jeremy Hill, N; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L; Schalk, Gerwin
2014-10-01
Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main Results: Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic.
Simultaneous Real-Time Monitoring of Multiple Cortical Systems
Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin
2014-01-01
Objective Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor, or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach We study these questions using electrocorticographic (ECoG) signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (6 for offline parameter optimization, 6 for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelope. These decoders were trained separately and executed simultaneously in real time. Significance This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic. PMID:25080161
Examination of a demyelinated fiber by action-potential-encoded second harmonic generation
NASA Astrophysics Data System (ADS)
Chen, Xin-guang; Luo, Zhi-hui; Yang, Hong-qin; Huang, Yi-mei; Xie, Shu-sen
2012-03-01
Axonal demyelination is a common phenomenon in the nervous system in human. Conventional measured approaches such as surface recording electrode and diffusion tensor imaging, are hard to fast and accurately determine the demyelinated status of a fiber. In this study, we first presented a mathematical model of nerve fiber demyelination, and it was combined with second harmonic generation(SHG) technique to study the characteristics of action-potential-encoded SHG and analyze the sensitivity of SHG signals responded to membrane potential. And then, we used this approach to fast examine the injured myelin sheaths resulted from demyelination. Each myelin sheath of a fiber was examined simultaneously by this approach. The results showed that fiber demyelination led to observable attenuation of action potential amplitude. The delay of action potential conduction would be markedly observed when the fiber demyelination was more than 80%. Furthermore, the normal and injured myelin sheaths of a myelinated fiber could be distinguished via the changes of SHG signals, which revealed the possibility of SHG technique in the examination of a demyelinated fiber. Our study shows that this approach may have potential application values in clinic.
Flexible microelectrode array for interfacing with the surface of neural ganglia
NASA Astrophysics Data System (ADS)
Sperry, Zachariah J.; Na, Kyounghwan; Parizi, Saman S.; Chiel, Hillel J.; Seymour, John; Yoon, Euisik; Bruns, Tim M.
2018-06-01
Objective. The dorsal root ganglia (DRG) are promising nerve structures for sensory neural interfaces because they provide centralized access to primary afferent cell bodies and spinal reflex circuitry. In order to harness this potential, new electrode technologies are needed which take advantage of the unique properties of DRG, specifically the high density of neural cell bodies at the dorsal surface. Here we report initial in vivo results from the development of a flexible non-penetrating polyimide electrode array interfacing with the surface of ganglia. Approach. Multiple layouts of a 64-channel iridium electrode (420 µm2) array were tested, with pitch as small as 25 µm. The buccal ganglia of invertebrate sea slug Aplysia californica were used to develop handling and recording techniques with ganglionic surface electrode arrays (GSEAs). We also demonstrated the GSEA’s capability to record single- and multi-unit activity from feline lumbosacral DRG related to a variety of sensory inputs, including cutaneous brushing, joint flexion, and bladder pressure. Main results. We recorded action potentials from a variety of Aplysia neurons activated by nerve stimulation, and units were observed firing simultaneously on closely spaced electrode sites. We also recorded single- and multi-unit activity associated with sensory inputs from feline DRG. We utilized spatial oversampling of action potentials on closely-spaced electrode sites to estimate the location of neural sources at between 25 µm and 107 µm below the DRG surface. We also used the high spatial sampling to demonstrate a possible spatial sensory map of one feline’s DRG. We obtained activation of sensory fibers with low-amplitude stimulation through individual or groups of GSEA electrode sites. Significance. Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.
Hirai, Yasuharu; Nishino, Eri
2015-01-01
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950
Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori
2015-06-01
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. Copyright © 2015 the American Physiological Society.
A Look at Simultaneous Interpretation. Working Papers on Bilingualism, No. 4.
ERIC Educational Resources Information Center
Barik, Henri C.
This paper summarizes the findings of an exploratory study concerned with certain temporal and qualitative aspects of simultaneous interpretation. Six French-English interpreters (2 professionals, 2 students and 2 amateurs) translated tape-recorded passages representing different types of materials from their weaker into their dominant language or…
Perception of the Voicing Distinction in Speech Produced during Simultaneous Communication
ERIC Educational Resources Information Center
MacKenzie, Douglas J.; Schiavetti, Nicholas; Whitehead, Robert L.; Metz, Dale Evan
2006-01-01
This study investigated the perception of voice onset time (VOT) in speech produced during simultaneous communication (SC). Four normally hearing, experienced sign language users were recorded under SC and speech alone (SA) conditions speaking stimulus words with voiced and voiceless initial consonants embedded in a sentence. Twelve…
Cerebellar Purkinje Cells Generate Highly Correlated Spontaneous Slow-Rate Fluctuations.
Cao, Ying; Liu, Yu; Jaeger, Dieter; Heck, Detlef H
2017-01-01
Cerebellar Purkinje cells (PC) fire action potentials at high, sustained rates. Changes in spike rate that last a few tens of milliseconds encode sensory and behavioral events. Here we investigated spontaneous fluctuations of PC simple spike rate at a slow time scale of the order of 1 s. Simultaneous recordings from pairs of PCs that were aligned either along the sagittal or transversal axis of the cerebellar cortex revealed that simple spike rate fluctuations at the 1 s time scale were highly correlated. Each pair of PCs had either a predominantly positive or negative slow-rate correlation, with negative correlations observed only in PC pairs aligned along the transversal axis. Slow-rate correlations were independent of faster rate changes that were correlated with fluid licking behavior. Simultaneous recordings from PCs and cerebellar nuclear (CN) neurons showed that slow-rate fluctuations in PC and CN activity were also highly correlated, but their correlations continually alternated between periods of positive and negative correlation. The functional significance of this new aspect of cerebellar spike activity remains to be determined. Correlated slow-rate fluctuations seem too slow to be involved in the real-time control of ongoing behavior. However, slow-rate fluctuations of PCs converging on the same CN neuron are likely to modulate the excitability of the CN neuron, thus introduce a possible slow modulation of cerebellar output activity.
Simultaneous optical and electrical recording of a single ion-channel.
Ide, Toru; Takeuchi, Yuko; Aoki, Takaaki; Yanagida, Toshio
2002-10-01
In recent years, the single-molecule imaging technique has proven to be a valuable tool in solving many basic problems in biophysics. The technique used to measure single-molecule functions was initially developed to study electrophysiological properties of channel proteins. However, the technology to visualize single channels at work has not received as much attention. In this study, we have for the first time, simultaneously measured the optical and electrical properties of single-channel proteins. The large conductance calcium-activated potassium channel (BK-channel) labeled with fluorescent dye molecules was incorporated into a planar bilayer membrane and the fluorescent image captured with a total internal reflection fluorescence microscope simultaneously with single-channel current recording. This innovative technology will greatly advance the study of channel proteins as well as signal transduction processes that involve ion permeation processes.
Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings.
Liu, Yang; Ning, Yong; Li, Sheng; Zhou, Ping; Rymer, William Z; Zhang, Yingchun
2015-09-01
There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3D IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their MU action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings.
THREE-DIMENSIONAL INNERVATION ZONE IMAGING FROM MULTI-CHANNEL SURFACE EMG RECORDINGS
LIU, YANG; NING, YONG; LI, SHENG; ZHOU, PING; RYMER, WILLIAM Z.; ZHANG, YINGCHUN
2017-01-01
There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3-dimensional IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their motor unit action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings. PMID:26160432
Cortico-muscular coherence on artifact corrected EEG-EMG data recorded with a MRI scanner.
Muthuraman, M; Galka, A; Hong, V N; Heute, U; Deuschl, G; Raethjen, J
2013-01-01
Simultaneous recording of electroencephalogram (EEG) and electromyogram (EMG) with magnetic resonance imaging (MRI) provides great potential for studying human brain activity with high temporal and spatial resolution. But, due to the MRI, the recorded signals are contaminated with artifacts. The correction of these artifacts is important to use these signals for further spectral analysis. The coherence can reveal the cortical representation of peripheral muscle signal in particular motor tasks, e.g. finger movements. The artifact correction of these signals was done by two different algorithms the Brain vision analyzer (BVA) and the Matlab FMRIB plug-in for EEGLAB. The Welch periodogram method was used for estimating the cortico-muscular coherence. Our analysis revealed coherence with a frequency of 5Hz in the contralateral side of the brain. The entropy is estimated for the calculated coherence to get the distribution of coherence in the scalp. The significance of the paper is to identify the optimal algorithm to rectify the MR artifacts and as a first step to use both these signals EEG and EMG in conjunction with MRI for further studies.
Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach.
Bitziou, Eleni; O'Hare, Danny; Patel, Bhavik Anil
2008-11-15
Real-time simultaneous detection of changes in pH and levels of histamine over the oxyntic glands of guinea pig stomach have been investigated. An iridium oxide pH microelectrode was used in a potentiometric mode to record the pH decrease associated with acid secretion when the sensor approached the isolated tissue. A boron-doped diamond (BDD) microelectrode was used in an amperometric mode to detect histamine when the electrode was placed over the tissue. Both sensors provided stable and reproducible responses that were qualitatively consistent with the signaling mechanism for acid secretion at the stomach. Simultaneous measurements in the presence of pharmacological treatments produced significant variations in the signals obtained by both sensors. As the H2 receptor antagonist cimetidine was perfused to the tissue, histamine levels increased that produced an increase in the signal of the BDD electrode whereas the pH sensor recorded a decrease in acid secretion as expected. Addition of acetylcholine (ACh) stimulated additional acid secretion detected with the pH microelectrode whereas the BDD sensor recorded the histamine levels decreasing significantly. This result shows that the primary influence of ACh is directly on the parietal cell receptors rather then the ECL cell receptors of the oxyntic glands. These results highlight the power of this simultaneous detection technique in the monitoring and diagnosis of physiological significant signaling mechanisms and pathways.
Hypothesis on how to measure electromagnetic hypersensitivity.
Tuengler, Andreas; von Klitzing, Lebrecht
2013-09-01
Electromagnetic hypersensitivity (EHS) is an ill-defined term to describe the fact that people who experience health symptoms in the vicinity of electromagnetic fields (EMFs) regard them as causal for their complaints. Up to now most scientists assume a psychological cause for the suffering of electromagnetic hypersensitive individuals. This paper addresses reasons why most provocation studies could not find any association between EMF exposure and EHS and presents a hypothesis on diagnosis and differentiation of this condition. Simultaneous recordings of heart rate variability, microcirculation and electric skin potentials are used for classification of EHS. Thus, it could be possible to distinguish "genuine" electromagnetic hypersensitive individuals from those who suffer from other conditions.
Transformation of the nitrogen cycle: recent trends, questions, and potential solutions.
Galloway, James N; Townsend, Alan R; Erisman, Jan Willem; Bekunda, Mateete; Cai, Zucong; Freney, John R; Martinelli, Luiz A; Seitzinger, Sybil P; Sutton, Mark A
2008-05-16
Humans continue to transform the global nitrogen cycle at a record pace, reflecting an increased combustion of fossil fuels, growing demand for nitrogen in agriculture and industry, and pervasive inefficiencies in its use. Much anthropogenic nitrogen is lost to air, water, and land to cause a cascade of environmental and human health problems. Simultaneously, food production in some parts of the world is nitrogen-deficient, highlighting inequities in the distribution of nitrogen-containing fertilizers. Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.
Taccardi, B; Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S
1987-01-01
An olive-shaped probe (25 X 12 mm) with 41 evenly distributed recording electrodes on its surface was introduced into the left ventricles of seven open-chest dogs via the left atrium. In two other dogs a cylindrical probe (40 X 3 mm) was used. Electrical stimuli were delivered at 66 endocardial, midwall, or epicardial sites in the left and right ventricular walls and the septum. Mechanical stimuli were also applied at various epicardial sites. On-line mapping of equipotential contour lines on the surface of the probe invariably revealed a clear-cut potential minimum on the electrode that faced the pacing site. Time of appearance of potential minimum was 3 to 5 msec after endocardial stimuli, 10 to 25 msec for midwall and epicardial pacing, and 30 msec or more for right ventricular stimulation. Simultaneous stimulation at two sites 1.2 cm apart gave rise to two separate minima on the maps. "Pseudoisochrones" derived from electrograms recorded by the new probe were slightly less accurate in indicating the site of origin of extrasystoles. We conclude that equipotential and "isochrone" contour maps recorded from an array of semidirect electrodes, regularly distributed on the surface of an intraventricular probe, provide information on the site of origin (location and intramural depth) of ectopic paced beats in a normal dog heart.
Jayant, Krishna; Singhai, Amit; Cao, Yingqiu; Phelps, Joshua B; Lindau, Manfred; Holowka, David A; Baird, Barbara A; Kan, Edwin C
2015-12-21
We present non-faradaic electrochemical recordings of exocytosis from populations of mast and chromaffin cells using chemoreceptive neuron MOS (CνMOS) transistors. In comparison to previous cell-FET-biosensors, the CνMOS features control (CG), sensing (SG) and floating gates (FG), allows the quiescent point to be independently controlled, is CMOS compatible and physically isolates the transistor channel from the electrolyte for stable long-term recordings. We measured exocytosis from RBL-2H3 mast cells sensitized by IgE (bound to high-affinity surface receptors FcεRI) and stimulated using the antigen DNP-BSA. Quasi-static I-V measurements reflected a slow shift in surface potential () which was dependent on extracellular calcium ([Ca]o) and buffer strength, which suggests sensitivity to protons released during exocytosis. Fluorescent imaging of dextran-labeled vesicle release showed evidence of a similar time course, while un-sensitized cells showed no response to stimulation. Transient recordings revealed fluctuations with a rapid rise and slow decay. Chromaffin cells stimulated with high KCl showed both slow shifts and extracellular action potentials exhibiting biphasic and inverted capacitive waveforms, indicative of varying ion-channel distributions across the cell-transistor junction. Our approach presents a facile method to simultaneously monitor exocytosis and ion channel activity with high temporal sensitivity without the need for redox chemistry.
Jayant, Krishna; Singhai, Amit; Cao, Yingqiu; Phelps, Joshua B.; Lindau, Manfred; Holowka, David A.; Baird, Barbara A.; Kan, Edwin C.
2015-01-01
We present non-faradaic electrochemical recordings of exocytosis from populations of mast and chromaffin cells using chemoreceptive neuron MOS (CνMOS) transistors. In comparison to previous cell-FET-biosensors, the CνMOS features control (CG), sensing (SG) and floating gates (FG), allows the quiescent point to be independently controlled, is CMOS compatible and physically isolates the transistor channel from the electrolyte for stable long-term recordings. We measured exocytosis from RBL-2H3 mast cells sensitized by IgE (bound to high-affinity surface receptors FcεRI) and stimulated using the antigen DNP-BSA. Quasi-static I-V measurements reflected a slow shift in surface potential () which was dependent on extracellular calcium ([Ca]o) and buffer strength, which suggests sensitivity to protons released during exocytosis. Fluorescent imaging of dextran-labeled vesicle release showed evidence of a similar time course, while un-sensitized cells showed no response to stimulation. Transient recordings revealed fluctuations with a rapid rise and slow decay. Chromaffin cells stimulated with high KCl showed both slow shifts and extracellular action potentials exhibiting biphasic and inverted capacitive waveforms, indicative of varying ion-channel distributions across the cell-transistor junction. Our approach presents a facile method to simultaneously monitor exocytosis and ion channel activity with high temporal sensitivity without the need for redox chemistry. PMID:26686301
Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R
2018-01-01
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.
MIMO nonlinear ultrasonic tomography by propagation and backpropagation method.
Dong, Chengdong; Jin, Yuanwei
2013-03-01
This paper develops a fast ultrasonic tomographic imaging method in a multiple-input multiple-output (MIMO) configuration using the propagation and backpropagation (PBP) method. By this method, ultrasonic excitation signals from multiple sources are transmitted simultaneously to probe the objects immersed in the medium. The scattering signals are recorded by multiple receivers. Utilizing the nonlinear ultrasonic wave propagation equation and the received time domain scattered signals, the objects are to be reconstructed iteratively in three steps. First, the propagation step calculates the predicted acoustic potential data at the receivers using an initial guess. Second, the difference signal between the predicted value and the measured data is calculated. Third, the backpropagation step computes updated acoustical potential data by backpropagating the difference signal to the same medium computationally. Unlike the conventional PBP method for tomographic imaging where each source takes turns to excite the acoustical field until all the sources are used, the developed MIMO-PBP method achieves faster image reconstruction by utilizing multiple source simultaneous excitation. Furthermore, we develop an orthogonal waveform signaling method using a waveform delay scheme to reduce the impact of speckle patterns in the reconstructed images. By numerical experiments we demonstrate that the proposed MIMO-PBP tomographic imaging method results in faster convergence and achieves superior imaging quality.
21 CFR 520.390a - Chloramphenicol tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Because of potential antagonism, chloramphenicol should not be administered simultaneously with penicillin.... Because of potential antagonism, chloramphenicol should not be administered simultaneously with penicillin...
21 CFR 520.390a - Chloramphenicol tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Because of potential antagonism, chloramphenicol should not be administered simultaneously with penicillin.... Because of potential antagonism, chloramphenicol should not be administered simultaneously with penicillin...
Mishra, Abhishek; Malik, Anushree
2012-10-15
Toxic impacts of heavy metals in the environment have lead to intensive research on various methods of heavy metal remediation. However, in spite of abundant work on heavy metals removal from simple synthetic solutions, a very few studies demonstrate the potential of microbial strains for the treatment of industrial effluents containing mixtures of metals. In the present study, the efficiency of an environmental isolate (Aspergillus lentulusFJ172995), for simultaneous removal of chromium, copper and lead from a small-scale electroplating industry effluent was investigated. Initial studies with synthetic solutions infer that A. lentulus has a remarkable tolerance against Cr, Cu, Pb and Ni. During its growth, a significant bioaccumulation of individual metal was recorded. After 5 d of growth, the removal of metals from synthetic solutions followed the trend Pb(2+) (100%) > Cr(3+) (79%) > Cu(2+) (78%), > Ni(2+) (42%). When this strain was applied to the treatment of multiple metal containing electroplating effluent (after pH adjustment), the metal concentrations decreased by 71%, 56% and 100% for Cr, Cu and Pb, respectively within 11 d. Based on our results, we propose that the simultaneous removal of hazardous metals from industrial effluents can be accomplished using A. lentulus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers
DiFranco, Marino; Herrera, Alvaro
2011-01-01
Chloride fluxes are the main contributors to the resting conductance of mammalian skeletal muscle fibers. ClC-1, the most abundant chloride channel isoform in this preparation, is believed to be responsible for this conductance. However, the actual distribution of ClC-1 channels between the surface and transverse tubular system (TTS) membranes has not been assessed in intact muscle fibers. To investigate this issue, we voltageclamped enzymatically dissociated short fibers using a two-microelectrode configuration and simultaneously recorded chloride currents (ICl) and di-8-ANEPPS fluorescence signals to assess membrane potential changes in the TTS. Experiments were conducted in conditions that blocked all but the chloride conductance. Fibers were equilibrated with 40 or 70 mM intracellular chloride to enhance the magnitude of inward ICl, and the specific ClC-1 blocker 9-ACA was used to eliminate these currents whenever necessary. Voltage-dependent di-8-ANEPPS signals and ICl acquired before (control) and after the addition of 9-ACA were comparatively assessed. Early after the onset of stimulus pulses, di-8-ANEPPS signals under control conditions were smaller than those recorded in the presence of 9-ACA. We defined as attenuation the normalized time-dependent difference between these signals. Attenuation was discovered to be ICl dependent since its magnitude varied in close correlation with the amplitude and time course of ICl. While the properties of ICl, and those of the attenuation seen in optical records, could be simultaneously predicted by model simulations when the chloride permeability (PCl) at the surface and TTS membranes were approximately equal, the model failed to explain the optical data if PCl was precluded from the TTS membranes. Since the ratio between the areas of TTS membranes and the sarcolemma is large in mammalian muscle fibers, our results demonstrate that a significant fraction of the experimentally recorded ICl arises from TTS contributions. PMID:21149546
Miller, Evan W.; Slak Rupnik, Marjan
2013-01-01
Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777
Removal of BCG artefact from concurrent fMRI-EEG recordings based on EMD and PCA.
Javed, Ehtasham; Faye, Ibrahima; Malik, Aamir Saeed; Abdullah, Jafri Malin
2017-11-01
Simultaneous electroencephalography (EEG) and functional magnetic resonance image (fMRI) acquisitions provide better insight into brain dynamics. Some artefacts due to simultaneous acquisition pose a threat to the quality of the data. One such problematic artefact is the ballistocardiogram (BCG) artefact. We developed a hybrid algorithm that combines features of empirical mode decomposition (EMD) with principal component analysis (PCA) to reduce the BCG artefact. The algorithm does not require extra electrocardiogram (ECG) or electrooculogram (EOG) recordings to extract the BCG artefact. The method was tested with both simulated and real EEG data of 11 participants. From the simulated data, the similarity index between the extracted BCG and the simulated BCG showed the effectiveness of the proposed method in BCG removal. On the other hand, real data were recorded with two conditions, i.e. resting state (eyes closed dataset) and task influenced (event-related potentials (ERPs) dataset). Using qualitative (visual inspection) and quantitative (similarity index, improved normalized power spectrum (INPS) ratio, power spectrum, sample entropy (SE)) evaluation parameters, the assessment results showed that the proposed method can efficiently reduce the BCG artefact while preserving the neuronal signals. Compared with conventional methods, namely, average artefact subtraction (AAS), optimal basis set (OBS) and combined independent component analysis and principal component analysis (ICA-PCA), the statistical analyses of the results showed that the proposed method has better performance, and the differences were significant for all quantitative parameters except for the power and sample entropy. The proposed method does not require any reference signal, prior information or assumption to extract the BCG artefact. It will be very useful in circumstances where the reference signal is not available. Copyright © 2017 Elsevier B.V. All rights reserved.
Arvind, Hemamalini; Klistorner, Alexander; Graham, Stuart L; Grigg, John R
2006-05-01
Multifocal visual evoked potentials (mfVEPs) have demonstrated good diagnostic capabilities in glaucoma and optic neuritis. This study aimed at evaluating the possibility of simultaneously recording mfVEP for both eyes with dichoptic stimulation using virtual reality goggles and also to determine the stimulus characteristics that yield maximum amplitude. ten healthy volunteers were recruited and temporally sparse pattern pulse stimuli were presented dichoptically using virtual reality goggles. Experiment 1 involved recording responses to dichoptically presented checkerboard stimuli and also confirming true topographic representation by switching off specific segments. Experiment 2 involved monocular stimulation and comparison of amplitude with Experiment 1. In Experiment 3, orthogonally oriented gratings were dichoptically presented. Experiment 4 involved dichoptic presentation of checkerboard stimuli at different levels of sparseness (5.0 times/s, 2.5 times/s, 1.66 times/s and 1.25 times/s), where stimulation of corresponding segments of two eyes were separated by 16.7, 66.7,116.7 & 166.7 ms respectively. Experiment 1 demonstrated good traces in all regions and confirmed topographic representation. However, there was suppression of amplitude of responses to dichoptic stimulation by 17.9+/-5.4% compared to monocular stimulation. Experiment 3 demonstrated similar suppression between orthogonal and checkerboard stimuli (p = 0.08). Experiment 4 demonstrated maximum amplitude and least suppression (4.8%) with stimulation at 1.25 times/s with 166.7 ms separation between eyes. It is possible to record mfVEP for both eyes during dichoptic stimulation using virtual reality goggles, which present binocular simultaneous patterns driven by independent sequences. Interocular suppression can be almost eliminated by using a temporally sparse stimulus of 1.25 times/s with a separation of 166.7 ms between stimulation of corresponding segments of the two eyes.
Learning the Cardiac Cycle: Simultaneous Observations of Electrical and Mechanical Events.
ERIC Educational Resources Information Center
Kenney, Richard Alec; Frey, Mary Anne Bassett
1980-01-01
Described is a method for integrating electrical and mechanical events of the cardiac cycle by measuring systolic time intervals, which involves simultaneous recording of the ECG, a phonocardiogram, and the contour of the carotid pulse. Both resting and stress change data are provided as bases for class discussion. (CS)
Saucedo-A, Tonatiuh; De la Torre-Ibarra, M H; Santoyo, F Mendoza; Moreno, Ivan
2010-09-13
The use of digital holographic interferometry for 3D measurements using simultaneously three illumination directions was demonstrated by Saucedo et al. (Optics Express 14(4) 2006). The technique records two consecutive images where each one contains three holograms in it, e.g., one before the deformation and one after the deformation. A short coherence length laser must be used to obtain the simultaneous 3D information from the same laser source. In this manuscript we present an extension of this technique now illuminating simultaneously with three different lasers at 458, 532 and 633 nm, and using only one high resolution monochrome CMOS sensor. This new configuration gives the opportunity to use long coherence length lasers allowing the measurement of large object areas. A series of digital holographic interferograms are recorded and the information corresponding to each laser is isolated in the Fourier spectral domain where the corresponding phase difference is calculated. Experimental results render the orthogonal displacement components u, v and w during a simple load deformation.
Cama-Moncunill, Raquel; Markiewicz-Keszycka, Maria; Dixit, Yash; Cama-Moncunill, Xavier; Casado-Gavalda, Maria P; Cullen, Patrick J; Sullivan, Carl
2016-07-01
Powdered infant formula (PIF) is a worldwide, industrially produced, human milk substitute. Manufacture of PIF faces strict quality controls in order to ensure that the product meets all compositional requirements. Near-infrared (NIR) spectroscopy is a rapid, non-destructive and well-qualified technique for food quality assessments. The use of fibre-optic NIR sensors allows measuring in-line and at real-time, and can record spectra from different stages of the process. The non-contact character of fibre-optic sensors can be enhanced by fitting collimators, which allow operation at various distances. The system, based on a Fabry-Perot interferometer, records four spectra concurrently, rather than consecutively as in the "quasi-simultaneous" multipoint NIR systems. In the present study, a novel multipoint NIR spectroscopy system equipped with four fibre-optic probes with collimators was assessed to determine carbohydrate and protein contents of PIF samples under static and motion conditions (0.02, 0.15 and 0.30m/s) to simulate possible industrial scenarios. Best results were obtained under static conditions providing a R(2) of calibration of 0.95 and RMSEP values of 1.89%. Yet, considerably low values of RMSEP, for instance 2.70% at 0.15m/s, were provided with the in-motion predictions, demonstrating the system's potential for in/on-line applications at various levels of speed. The current work also evaluated the viability of using general off-line calibrations developed under static conditions for on/in-line applications subject to motion. To this end, calibrations in both modes were developed and compared. Best results were obtained with specific calibrations; however, reasonably accurate models were obtained with the general calibration. Furthermore, this work illustrated independency of the collimator-probe setup by characterizing PIF samples simultaneously recorded according to their carbohydrate content, even when measured under different conditions. Therefore, the improved multipoint NIR approach constitutes a potential in/on-line tool for quality evaluation of PIF over the manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.
Multi-segment earthquakes and tsunami potential of the Aleutian megathrust
Shennan, I.; Bruhn, R.; Plafker, G.
2009-01-01
Large to great earthquakes and related tsunamis generated on the Aleutian megathrust produce major hazards for both the area of rupture and heavily populated coastlines around much of the Pacific Ocean. Here we use paleoseismic records preserved in coastal sediments to investigate whether segment boundaries control the largest ruptures or whether in some seismic cycles segments combine to produce earthquakes greater than any observed since instrumented records began. Virtually the entire megathrust has ruptured since AD1900, with four different segments generating earthquakes >M8.0. The largest was the M9.2 great Alaska earthquake of March 1964 that ruptured ???800 km of the eastern segment of the megathrust. The tsunami generated caused fatalities in Alaska and along the coast as far south as California. East of the 1964 zone of deformation, the Yakutat microplate experienced two >M8.0 earthquakes, separated by a week, in September 1899. For the first time, we present evidence that earthquakes ???900 and ???1500 years ago simultaneously ruptured adjacent segments of the Aleutian megathrust and the Yakutat microplate, with a combined area ???15% greater than 1964, giving an earthquake of greater magnitude and increased tsunamigenic potential. ?? 2008 Elsevier Ltd. All rights reserved.
Nerve-mediated descending inhibition in the proximal colon of the rabbit.
Julé, Y
1980-12-01
1. Descending inhibition in the rabbit proximal colon, evoked by distension, was studied in vivo by recording extracellularly electrical activity from pressure electrodes placed on the serosa. 2. Distention produced, blow the level of the balloon, a brief hyperpolarization of smooth muscle fibres which could be recorded up to 20 cm from the point of distension. 3. This hyperpolarization like that produced by vagal stimulation (inhibitory junction potentials) persisted in the presence of sympathetic blocking agents and atropine, and was produced by non-adrenergic non-cholinergic intramural neurones. 4. In the presence of vagally evoked excitatory junction potentials (e.j.p.s), distension produced a transient inhibition of e.j.p.s, in addition to the hyperpolarization of smooth muscle. 5. The inhibition of these e.j.p.s persisted in the presence of sympathetic blocking agents, but in contrast to the hyperpolarization of smooth muscle produced by distension alone, was modulated by drugs interfering with 5-HT synthesis, re-uptake and activity. 6. The results indicate that descending inhibition in the rabbit proximal colon was produced by two distinct neuronal non-adrenergic inhibitory mechanisms exerted simultaneously on the smooth muscle and on the cholinergic excitatory pathways which innervate it.
Nerve-mediated descending inhibition in the proximal colon of the rabbit.
Julé, Y
1980-01-01
1. Descending inhibition in the rabbit proximal colon, evoked by distension, was studied in vivo by recording extracellularly electrical activity from pressure electrodes placed on the serosa. 2. Distention produced, blow the level of the balloon, a brief hyperpolarization of smooth muscle fibres which could be recorded up to 20 cm from the point of distension. 3. This hyperpolarization like that produced by vagal stimulation (inhibitory junction potentials) persisted in the presence of sympathetic blocking agents and atropine, and was produced by non-adrenergic non-cholinergic intramural neurones. 4. In the presence of vagally evoked excitatory junction potentials (e.j.p.s), distension produced a transient inhibition of e.j.p.s, in addition to the hyperpolarization of smooth muscle. 5. The inhibition of these e.j.p.s persisted in the presence of sympathetic blocking agents, but in contrast to the hyperpolarization of smooth muscle produced by distension alone, was modulated by drugs interfering with 5-HT synthesis, re-uptake and activity. 6. The results indicate that descending inhibition in the rabbit proximal colon was produced by two distinct neuronal non-adrenergic inhibitory mechanisms exerted simultaneously on the smooth muscle and on the cholinergic excitatory pathways which innervate it. PMID:6454779
Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland
2015-09-18
The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.
Ji, Hong; Petro, Nathan M; Chen, Badong; Yuan, Zejian; Wang, Jianji; Zheng, Nanning; Keil, Andreas
2018-02-06
Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis. © 2018 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Establishing a gold standard for manual cough counting: video versus digital audio recordings
Smith, Jaclyn A; Earis, John E; Woodcock, Ashley A
2006-01-01
Background Manual cough counting is time-consuming and laborious; however it is the standard to which automated cough monitoring devices must be compared. We have compared manual cough counting from video recordings with manual cough counting from digital audio recordings. Methods We studied 8 patients with chronic cough, overnight in laboratory conditions (diagnoses were 5 asthma, 1 rhinitis, 1 gastro-oesophageal reflux disease and 1 idiopathic cough). Coughs were recorded simultaneously using a video camera with infrared lighting and digital sound recording. The numbers of coughs in each 8 hour recording were counted manually, by a trained observer, in real time from the video recordings and using audio-editing software from the digital sound recordings. Results The median cough frequency was 17.8 (IQR 5.9–28.7) cough sounds per hour in the video recordings and 17.7 (6.0–29.4) coughs per hour in the digital sound recordings. There was excellent agreement between the video and digital audio cough rates; mean difference of -0.3 coughs per hour (SD ± 0.6), 95% limits of agreement -1.5 to +0.9 coughs per hour. Video recordings had poorer sound quality even in controlled conditions and can only be analysed in real time (8 hours per recording). Digital sound recordings required 2–4 hours of analysis per recording. Conclusion Manual counting of cough sounds from digital audio recordings has excellent agreement with simultaneous video recordings in laboratory conditions. We suggest that ambulatory digital audio recording is therefore ideal for validating future cough monitoring devices, as this as this can be performed in the patients own environment. PMID:16887019
Tan, Ao; Hu, Li; Tu, Yiheng; Chen, Rui; Hung, Yeung Sam; Zhang, Zhiguo
2016-07-01
N1 component of auditory evoked potentials is extensively used to investigate the propagation and processing of auditory inputs. However, the substantial interindividual variability of N1 could be a possible confounding factor when comparing different individuals or groups. Therefore, identifying the neuronal mechanism and origin of the interindividual variability of N1 is crucial in basic research and clinical applications. This study is aimed to use simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data to investigate the coupling between N1 and spontaneous functional connectivity (FC). EEG and fMRI data were simultaneously collected from a group of healthy individuals during a pure-tone listening task. Spontaneous FC was estimated from spontaneous blood oxygenation level-dependent (BOLD) signals that were isolated by regressing out task evoked BOLD signals from raw BOLD signals and then was correlated to N1 magnitude across individuals. It was observed that spontaneous FC between bilateral Heschl's gyrus was significantly and positively correlated with N1 magnitude across individuals (Spearman's R = 0.829, p < 0.001). The specificity of this observation was further confirmed by two whole-brain voxelwise analyses (voxel-mirrored homotopic connectivity analysis and seed-based connectivity analysis). These results enriched our understanding of the functional significance of the coupling between event-related brain responses and spontaneous brain connectivity, and hold the potential to increase the applicability of brain responses as a probe to the mechanism underlying pathophysiological conditions.
A device for recording automatic audio tape recording1
Bernal, Martha E.; Gibson, Dennis M.; Williams, Donald E.; Pesses, Danny I.
1971-01-01
Adaptation of a commercially available timer for use as a means of operating an audio tape recorder several times during the day is described. Data on a mother's rates of commanding her children were collected via both physically present observer and recorder methods in order to compare the usefulness of the recordings with direct observation. There was a high positive relationship between observer-recorder command rates, with the observer rates being consistently higher, when data were collected via both methods simultaneously as well as at different points in time. ImagesFig. 1 PMID:16795287
A device for recording automatic audio tape recording.
Bernal, M E; Gibson, D M; Williams, D E; Pesses, D I
1971-01-01
Adaptation of a commercially available timer for use as a means of operating an audio tape recorder several times during the day is described. Data on a mother's rates of commanding her children were collected via both physically present observer and recorder methods in order to compare the usefulness of the recordings with direct observation. There was a high positive relationship between observer-recorder command rates, with the observer rates being consistently higher, when data were collected via both methods simultaneously as well as at different points in time.
ROPES reveals past land cover and pollen productivity estimates from single pollen records
NASA Astrophysics Data System (ADS)
Theuerkauf, Martin; Couwenberg, John
2018-04-01
Quantitative reconstructions of past vegetation cover commonly require pollen productivity estimates (PPEs). PPEs are calibrated in extensive and rather cumbersome surface-sample studies, and are so far only available for selected regions. Moreover, it may be questioned whether present-day pollen-landcover relationships are valid for palaeo-situations. We here introduce the ROPES approach that simultaneously derives PPEs and mean plant abundances from single pollen records. ROPES requires pollen counts and pollen accumulation rates (PARs, grains cm-2 year-1). Pollen counts are used to reconstruct plant abundances following the REVEALS approach. The principle of ROPES is that changes in plant abundance are linearly represented in observed PAR values. For example, if the PAR of pine doubles, so should the REVEALS reconstructed abundance of pine. Consequently, if a REVEALS reconstruction is ‘correct’ (i.e. ‘correct’ PPEs are used) the ratio ‘PAR over REVEALS’ is constant for each taxon along all samples of a record. With incorrect PPEs, the ratio will instead vary. ROPES starts from random (likely incorrect) PPEs, but then adjusts them using an optimization algorithm with the aim to minimize variation in the ‘PAR over REVEALS’ ratio across the record. ROPES thus simultaneously calculates mean plant abundances and PPEs. We illustrate the approach with test applications on nine synthetic pollen records. The results show that good performance of ROPES requires data sets with high underlying variation, many samples and low noise in the PAR data. ROPES can deliver first landcover reconstructions in regions for which PPEs are not yet available. The PPEs provided by ROPES may then allow for further REVEALS-based reconstructions. Similarly, ROPES can provide insight in pollen productivity during distinct periods of the past such as the Lateglacial. We see a potential to study spatial and temporal variation in pollen productivity for example in relation to site parameters, climate and land use. It may even be possible to detect expansion of non-pollen producing areas in a landscape. Overall, ROPES will help produce more accurate landcover reconstructions and expand reconstructions into new study regions and non-analogue situations of the past. ROPES will be available within the R package DISQOVER.
NASA Technical Reports Server (NTRS)
Marti, Willy
1937-01-01
Test equipment is described that includes a system of three quartz indicators whereby three different pressures could be synchronized and simultaneously recorded on a single oscillogram. This equipment was used to test the reliction of waves at ends of valve spring, the dynamical stress of the valve spring for a single lift of the valve, and measurement of the curve of the cam tested. Other tests included simultaneous recording of the stress at both ends of the spring, spring oscillation during a single lift as a function of speed, computation of amplitude of oscillation for a single lift by harmonic analysis, effect of cam profile, the setting up of resonance, and forced spring oscillation with damping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, E.S.; Ivoilov, N.G.
A buffer memory unit and an interface for the UNO-4096-90 accumulator with an Elektronika D3-28 microcomputer are described that allow simultaneous recording of four Moessbauer spectra with zero dead time. For complete elimination of dead time, the pulses from each detector are fed to two buffer counters units, which operate alternately in the write and interrogate modes. This organization of the buffer memory also completely eliminates the effect of the sensors on one another. The use of these circuits does not require any modifications of the computer or accumulator.
Lefebvre, Baptiste; Deny, Stéphane; Gardella, Christophe; Stimberg, Marcel; Jetter, Florian; Zeck, Guenther; Picaud, Serge; Duebel, Jens
2018-01-01
In recent years, multielectrode arrays and large silicon probes have been developed to record simultaneously between hundreds and thousands of electrodes packed with a high density. However, they require novel methods to extract the spiking activity of large ensembles of neurons. Here, we developed a new toolbox to sort spikes from these large-scale extracellular data. To validate our method, we performed simultaneous extracellular and loose patch recordings in rodents to obtain ‘ground truth’ data, where the solution to this sorting problem is known for one cell. The performance of our algorithm was always close to the best expected performance, over a broad range of signal-to-noise ratios, in vitro and in vivo. The algorithm is entirely parallelized and has been successfully tested on recordings with up to 4225 electrodes. Our toolbox thus offers a generic solution to sort accurately spikes for up to thousands of electrodes. PMID:29557782
Quickly updatable hologram images with high performance photorefractive polymer composites
NASA Astrophysics Data System (ADS)
Tsutsumi, Naoto; Kinashi, Kenji; Nonomura, Asato; Sakai, Wataru
2012-02-01
We present here quickly updatable hologram images using high performance photorefractive (PR) polymer composite based on poly(N-vinyl carbazole) (PVCz). PVCz is one of the pioneer materials for photoconductive polymer. PVCz/7- DCST/CzEPA/TNF (44/35/20/1 by wt) gives high diffraction efficiency of 68 % at E = 45 V/μm with fast response speed. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. Key parameter for obtaining quickly updatable hologram images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam) in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using coin object, object image produced by a computer was displayed on a spatial light modulator (SLM) is used as an object for hologram. Reflected object beam from a SLM interfered with reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam. Movie produced in a computer was recorded as a realtime hologram in the PR polymer composite and simultaneously clearly reconstructed with a video rate.
Missouri University Multi-Plane Imager (MUMPI): A high sensitivity rapid dynamic ECT brain imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, K.W.; Holmes, R.A.
1984-01-01
The authors have designed a unique ECT imaging device that can record rapid dynamic images of brain perfusion. The Missouri University Multi-Plane Imager (MUMPI) uses a single crystal detector that produces four orthogonal two-dimensional images simultaneously. Multiple slice images are reconstructed from counts recorded from stepwise or continuous collimator rotation. Four simultaneous 2-d image fields may also be recorded and reviewed. The cylindrical sodium iodide crystal and the rotating collimator concentrically surround the source volume being imaged with the collimator the only moving part. The design and function parameters of MUMPI have been compared to other competitive tomographic head imagingmore » devices. MUMPI's principal advantages are: 1) simultaneous direct acquisition of four two-dimensional images; 2) extremely rapid project set acquisition for ECT reconstruction; and 3) instrument practicality and economy due to single detector design and the absence of heavy mechanical moving components (only collimator rotation is required). MUMPI should be ideal for imaging neutral lipophilic chelates such as Tc-99m-PnAO which passively diffuses across the intact blood-brain-barrier and rapidly clears from brain tissue.« less
Markou, T; Theophilidis, G
2000-11-01
Combined intracellular and extracellular recordings from various parts of the isolated dorsal vessel of Tenebrio molitor revealed some of the following electrophysiological properties of the heart and the aorta. (i) The wave of depolarization causing forward pulsation of the dorsal vessel was always transmitted from posterior to anterior, with a conduction velocity of 0.014 m s(-1) in the heart and 0.001 m s(-1) in the aorta when the heart rate was 60 beats min(-1). (ii) There was no pacemaker activity in the aorta. (iii) The duration of the compound action potential in the aortic muscle depended on the duration of the pacemaker action potential generated in the heart. (iv) Isolated parts of the heart continued to contract rhythmically for hours, indicating powerful pacemaker activity in individual cardiac segments. (v) There was a direct relationship between action potential duration and the length of the preceding diastolic interval. (vi) The rhythmic wave of depolarization was dependent on the influx of Ca(2+). (vii) The recovery of the electrical properties of myocardial cells that had been disrupted by sectioning was rapid. (viii) In hearts sectioned into two halves, the rhythmic pacemaker action potentials recorded simultaneously from the two isolated halves eventually drifted out of phase, but they had the same intrinsic frequency. In the light of these data, we discuss two alternative models for the generation of spontaneous rhythmic pumping movements of the heart and aorta.
Correlation of invasive EEG and scalp EEG.
Ramantani, Georgia; Maillard, Louis; Koessler, Laurent
2016-10-01
Ever since the implementation of invasive EEG recordings in the clinical setting, it has been perceived that a considerable proportion of epileptic discharges present at a cortical level are missed by routine scalp EEG recordings. Several in vitro, in vivo, and simulation studies have been performed in the past decades aiming to clarify the interrelations of cortical sources with their scalp and invasive EEG correlates. The amplitude ratio of cortical potentials to their scalp EEG correlates, the extent of the cortical area involved in the discharge, as well as the localization of the cortical source and its geometry have been each independently linked to the recording of the cortical discharge with scalp electrodes. The need to elucidate these interrelations has been particularly imperative in the field of epilepsy surgery with its rapidly growing EEG-based localization technologies. Simultaneous multiscale EEG recordings with scalp, subdural and/or depth electrodes, applied in presurgical epilepsy workup, offer an excellent opportunity to shed some light to this fundamental issue. Whereas past studies have considered predominantly neocortical sources in the context of temporal lobe epilepsy, current investigations have included deep sources, as in mesial temporal epilepsy, as well as extratemporal sources. Novel computational tools may serve to provide surrogates for the shortcomings of EEG recording methodology and facilitate further developments in modern electrophysiology. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M
2013-08-01
Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly merged in 3D for the first time using macroporous nanoelectronic scaffolds that are analogous to synthetic tissue scaffold and the extracellular matrix in tissue. Free-standing 3D nanoelectronic scaffolds were cultured with neurons, cardiomyocytes and smooth muscle cells to yield electronically-innervated synthetic or 'cyborg' tissues. Measurements demonstrate that innervated tissues exhibit similar cell viability as with conventional tissue scaffolds, and importantly, demonstrate that the real-time response to drugs and pH changes can be mapped in 3D through the tissues. These results open up a new field of research, wherein nanoelectronics are merged with biological systems in 3D thereby providing broad opportunities, ranging from a nanoelectronic/tissue platform for real-time pharmacological screening in 3D to implantable 'cyborg' tissues enabling closed-loop monitoring and treatment of diseases. Furthermore, the capability of high density scale-up of the above extra- and intracellular nanoscopic probes for action potential recording provide important tools for large-scale high spatio-temporal resolution electrical neural activity mapping in both 2D and 3D, which promises to have a profound impact on many research areas, including the mapping of activity within the brain.
Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M.
2013-01-01
Summary Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly merged in 3D for the first time using macroporous nanoelectronic scaffolds that are analogous to synthetic tissue scaffold and the extracellular matrix in tissue. Free-standing 3D nanoelectronic scaffolds were cultured with neurons, cardiomyocytes and smooth muscle cells to yield electronically-innervated synthetic or ‘cyborg’ tissues. Measurements demonstrate that innervated tissues exhibit similar cell viability as with conventional tissue scaffolds, and importantly, demonstrate that the real-time response to drugs and pH changes can be mapped in 3D through the tissues. These results open up a new field of research, wherein nanoelectronics are merged with biological systems in 3D thereby providing broad opportunities, ranging from a nanoelectronic/tissue platform for real-time pharmacological screening in 3D to implantable ‘cyborg’ tissues enabling closed-loop monitoring and treatment of diseases. Furthermore, the capability of high density scale-up of the above extra- and intracellular nanoscopic probes for action potential recording provide important tools for large-scale high spatio-temporal resolution electrical neural activity mapping in both 2D and 3D, which promises to have a profound impact on many research areas, including the mapping of activity within the brain. PMID:24073014
Lisiecki, R S; Voigt, H F
1995-08-01
A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.
NASA Astrophysics Data System (ADS)
Salumbides, E. J.; Eikema, K. S. E.; Ubachs, W.; Hollenstein, U.; Knöckel, H.; Tiemann, E.
2008-04-01
The light from one single frequency cw laser was employed in a double saturation spectroscopy experiment to record high resolution spectra of 129I2 and 127I129I together with spectra of 127I2 which is used as a simultaneous frequency reference. Two separate saturation spectroscopy set ups were used. The frequencies of lines of 129I2 and 127I129I were determined with respect to lines of 127I2. More than 380 frequency differences between lines of 127I2 and of the other isotopomers have been included in the data set. By a direct potential fit a precise description of the potential energy curves of the B and the X state and of effective Born-Oppenheimer correction functions valid for all three isotopomers of I2 are given.
MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB.
Egert, U; Knott, Th; Schwarz, C; Nawrot, M; Brandt, A; Rotter, S; Diesmann, M
2002-05-30
Recent advances in electrophysiological techniques have created new tools for the acquisition and storage of neuronal activity recorded simultaneously with numerous electrodes. These techniques support the analysis of the function as well as the structure of individual electrogenic cells in the context of surrounding neuronal or cardiac network. Commercially available tools for the analysis of such data, however, cannot be easily adapted to newly emerging requirements for data analysis and visualization, and cross compatibility between them is limited. In this report we introduce a free open source toolbox called microelectrode array tools (MEA-Tools) for the analysis of multi-electrode data based on the common data analysis environment MATLAB (version 5.3-6.1, The Mathworks, Natick, MA). The toolbox itself is platform independent. The file interface currently supports files recorded with MCRack (Multi Channel Systems, Reutlingen, Germany) under Microsoft Windows 95, 98, NT, and 2000, but can be adapted to other data acquisition systems. Functions are controlled via command line input and graphical user interfaces, and support common requirements for the analysis of local field potentials, extracellular spike activity, and continuous recordings, in addition to supplementary data acquired by additional instruments, e.g. intracellular amplifiers. Data may be processed as continuous recordings or time windows triggered to some event.
45 CFR 150.459 - Judicial review.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS CMS...) Simultaneously sending a copy of the notice of appeal by registered mail to CMS. (b) Certification of administrative record. CMS promptly certifies and files with the court the record upon which the penalty was...
Clinicopathological study of glomerular diseases associated with sarcoidosis: a multicenter study
2013-01-01
Background The association between sarcoidosis and glomerular diseases has not been extensively investigated in a large series and the potential features of this uncommon association remain to be determined. Methods We retrospectively identified 26 patients with biopsy-proven glomerular lesions that occurred in a sarcoidosis context. Potential remission of glomerular disease and sarcoidosis under specific treatment (steroid and/or immunosuppressive agents) was recorded for all patients. Demographic, clinical and biological characteristics were assessed at the time of kidney biopsy for each patient. Therapeutic data were analyzed for all patients. Results Glomerular disease occurred after the diagnosis of sarcoidosis in 11 of 26 cases (42%) (mean delay of 9.7 years). In six patients (23%), the glomerulopathy preceded the sarcoidosis diagnosis (mean delay 8 years). In the last nine patients (35%), both conditions occurred simultaneously. The most frequent glomerular disease occurring in sarcoidosis patients was membranous nephropathy in eleven cases. Other glomerular lesions included IgA nephropathy in six cases, focal segmental glomerulosclerosis in four patients, minimal change nephrotic syndrome for three patients and proliferative lupus nephritis in two patients. Granulomatous interstitial nephritis was associated with glomerular disease in six patients and was exclusively found in patients in whom the both disease occurred simultaneously. In nine patients with simultaneous glomerular and sarcoidosis diseases, we observed a strong dissociation between glomerular disease and sarcoidosis in terms of steroid responsiveness. At the end of the follow-up (mean of 8.4 years), six patients had reached end-stage renal disease and three patients had died. Conclusions A wide spectrum of glomerular lesions is associated with sarcoidosis. The close temporal relationship observed in some patients suggests common causative molecular mechanisms of glomerular injury but complete remission of both diseases in response to exclusive steroid therapy is infrequent. PMID:23631446
Neural spike sorting using iterative ICA and a deflation-based approach.
Tiganj, Z; Mboup, M
2012-12-01
We propose a spike sorting method for multi-channel recordings. When applied in neural recordings, the performance of the independent component analysis (ICA) algorithm is known to be limited, since the number of recording sites is much lower than the number of neurons. The proposed method uses an iterative application of ICA and a deflation technique in two nested loops. In each iteration of the external loop, the spiking activity of one neuron is singled out and then deflated from the recordings. The internal loop implements a sequence of ICA and sorting for removing the noise and all the spikes that are not fired by the targeted neuron. Then a final step is appended to the two nested loops in order to separate simultaneously fired spikes. We solve this problem by taking all possible pairs of the sorted neurons and apply ICA only on the segments of the signal during which at least one of the neurons in a given pair was active. We validate the performance of the proposed method on simulated recordings, but also on a specific type of real recordings: simultaneous extracellular-intracellular. We quantify the sorting results on the extracellular recordings for the spikes that come from the neurons recorded intracellularly. The results suggest that the proposed solution significantly improves the performance of ICA in spike sorting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shcheslavskiy, V. I.; Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod 603005; Neubauer, A.
We present a lifetime imaging technique that simultaneously records the fluorescence and phosphorescence lifetime images in confocal laser scanning systems. It is based on modulating a high-frequency pulsed laser synchronously with the pixel clock of the scanner, and recording the fluorescence and phosphorescence signals by multidimensional time-correlated single photon counting board. We demonstrate our technique on the recording of the fluorescence/phosphorescence lifetime images of human embryonic kidney cells at different environmental conditions.
Sonner, Patrick M; Filosa, Jessica A; Stern, Javier E
2008-01-01
Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (IA) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca2+ levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in IA current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished IA availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K+ channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca2+ imaging demonstrated enhanced action potential-evoked intracellular Ca2+ transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished IA availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension. PMID:18238809
NASA Astrophysics Data System (ADS)
Doan, Bich-Thuy; Autret, Gwennhael; Mispelter, Joël; Méric, Philippe; Même, William; Montécot-Dubourg, Céline; Corrèze, Jean-Loup; Szeremeta, Frédéric; Gillet, Brigitte; Beloeil, Jean-Claude
2009-05-01
13C spectroscopy combined with the injection of 13C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of 13C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4 T: a bi-voxel 1H-( 13C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel 1H-( 13C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U- 13C glucose, two 1H-( 13C) spectra of distinct (4 × 4 × 4 mm 3) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two 1H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The 1H-( 13C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel 1H-( 13C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions.
NASA Astrophysics Data System (ADS)
Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-08-01
Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.
Video-rate nanoscopy enabled by sCMOS camera-specific single-molecule localization algorithms
Huang, Fang; Hartwich, Tobias M. P.; Rivera-Molina, Felix E.; Lin, Yu; Duim, Whitney C.; Long, Jane J.; Uchil, Pradeep D.; Myers, Jordan R.; Baird, Michelle A.; Mothes, Walther; Davidson, Michael W.; Toomre, Derek; Bewersdorf, Joerg
2013-01-01
Newly developed scientific complementary metal–oxide–semiconductor (sCMOS) cameras have the potential to dramatically accelerate data acquisition in single-molecule switching nanoscopy (SMSN) while simultaneously increasing the effective quantum efficiency. However, sCMOS-intrinsic pixel-dependent readout noise substantially reduces the localization precision and introduces localization artifacts. Here we present algorithms that overcome these limitations and provide unbiased, precise localization of single molecules at the theoretical limit. In combination with a multi-emitter fitting algorithm, we demonstrate single-molecule localization super-resolution imaging at up to 32 reconstructed images/second (recorded at 1,600–3,200 camera frames/second) in both fixed and living cells. PMID:23708387
Exact computation of the maximum-entropy potential of spiking neural-network models.
Cofré, R; Cessac, B
2014-05-01
Understanding how stimuli and synaptic connectivity influence the statistics of spike patterns in neural networks is a central question in computational neuroscience. The maximum-entropy approach has been successfully used to characterize the statistical response of simultaneously recorded spiking neurons responding to stimuli. However, in spite of good performance in terms of prediction, the fitting parameters do not explain the underlying mechanistic causes of the observed correlations. On the other hand, mathematical models of spiking neurons (neuromimetic models) provide a probabilistic mapping between the stimulus, network architecture, and spike patterns in terms of conditional probabilities. In this paper we build an exact analytical mapping between neuromimetic and maximum-entropy models.
47 CFR 79.104 - Closed caption decoder requirements for recording devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) BROADCAST RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING § 79.104 Closed... to record video programming transmitted simultaneously with sound, if such apparatus is manufactured...-activate the closed captions as the video programming is played back as described in § 79.103(c). (c) All...
47 CFR 79.104 - Closed caption decoder requirements for recording devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) BROADCAST RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING § 79.104 Closed... to record video programming transmitted simultaneously with sound, if such apparatus is manufactured... such that viewers are able to activate and de-activate the closed captions as the video programming is...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Video description and emergency information... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.106 Video..., 2015, all apparatus that is designed to record video programming transmitted simultaneously with sound...
Widdowson, Christopher; Ganhotra, Jatin; Faizal, Mohammed; Wilko, Marissa; Parikh, Saurin; Adhami, Zainulabidin; Hernandez, Manuel E
2016-08-01
Falls are a leading cause of injury and mortality among adults over the age of 65 years. Given the strong relation between fear of falling and fall risk, identification of the mechanisms that underlie anxiety-related changes in postural control may pave the way to the development of novel therapeutic strategies aimed at reducing fall risk in older adults. First, we review potential mechanisms underlying anxiety-mediated changes in postural control in older adults with and without neurological conditions. We then present a system that allows for the simultaneous recording of neural, physiological, and behavioral data in an immersive virtual reality (VR) environment while implementing sensory and mechanical perturbations to evaluate alterations in sensorimotor integration under conditions with high postural threat. We also discuss applications of VR in minimizing falls in older adults and potential future studies.
A study of the potential of remote sensors in urban transportation planning
NASA Technical Reports Server (NTRS)
Rietschier, D.; Modlin, D. G., Jr.
1973-01-01
The potential uses of remotely sensed data as applied to the transportation planning process are presented. By utilizing the remote sensing technology developed by the National Aeronautics and Space Administration in the various space programs, it is hoped that both the expense and errors inherent in the conventional data collection techniques can be avoided. Additional bonuses derived from the use of remotely sensed data are those of the permanent record nature of the data and the traffic engineering data simultaneously made available. The major mathematical modeling phases and the role remotely sensed data might play in replacing conventionally collected data are discussed. Typical surveys undertaken in the overall planning process determine the nature and extent of travel desires, land uses, transportation facilities and socio-economic characteristics. Except for the socio-economic data, data collected in the other surveys mentioned can be taken from photographs in sufficient detail to be useful in the modeling procedures.
Digital memory encoding in Chinese dyscalculia: An event-related potential study.
Wang, Enguo; Qin, Shutao; Chang, MengYan; Zhu, Xiangru
2014-10-22
This study reports the neurophysiological and behavioral correlates of digital memory encoding features in Chinese individuals with and without dyscalculia. Eighteen children with dyscalculia (ages 11.5-13.5) and 18 matched controls were tested, and their event-related potentials (ERPs) were digitally recorded simultaneously with behavioral measures. The results showed that both groups had a significant Dm effect, and this effect was greater in the control group. In the 300-400-ms, 400-500-ms, and 600-700-ms processing stages, both groups showed significant differences of digital memory encoding in the frontal, central, and parietal regions. In the 500-600-ms period, the Dm effect in the control group was significantly greater than that in the dyscalculia group only in the parietal region. These results suggest that individuals with dyscalculia exhibit impaired digital memory encoding and deficits in psychological resource allocation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiple-channel detection of cellular activities by ion-sensitive transistors
NASA Astrophysics Data System (ADS)
Machida, Satoru; Shimada, Hideto; Motoyama, Yumi
2018-04-01
An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.
Frequency spectrum might act as communication code between retina and visual cortex I
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156
Iturrate, Iñaki; Grizou, Jonathan; Omedes, Jason; Oudeyer, Pierre-Yves; Lopes, Manuel; Montesano, Luis
2015-01-01
This paper presents a new approach for self-calibration BCI for reaching tasks using error-related potentials. The proposed method exploits task constraints to simultaneously calibrate the decoder and control the device, by using a robust likelihood function and an ad-hoc planner to cope with the large uncertainty resulting from the unknown task and decoder. The method has been evaluated in closed-loop online experiments with 8 users using a previously proposed BCI protocol for reaching tasks over a grid. The results show that it is possible to have a usable BCI control from the beginning of the experiment without any prior calibration. Furthermore, comparisons with simulations and previous results obtained using standard calibration hint that both the quality of recorded signals and the performance of the system were comparable to those obtained with a standard calibration approach. PMID:26131890
Frequency spectrum might act as communication code between retina and visual cortex I.
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.
Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor
2012-01-29
Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.
Improving data quality in neuronal population recordings
Harris, Kenneth D.; Quian Quiroga, Rodrigo; Freeman, Jeremy; Smith, Spencer
2017-01-01
Understanding how the brain operates requires understanding how large sets of neurons function together. Modern recording technology makes it possible to simultaneously record the activity of hundreds of neurons, and technological developments will soon allow recording of thousands or tens of thousands. As with all experimental techniques, these methods are subject to confounds that complicate the interpretation of such recordings, and could lead to erroneous scientific conclusions. Here, we discuss methods for assessing and improving the quality of data from these techniques, and outline likely future directions in this field. PMID:27571195
Mapping of the human upper arm muscle activity with an electrode matrix.
Côté, J; Mathieu, P A
2000-06-01
Surface electrode matrices allow measurement of muscle activity while avoiding certain hazardous risks and inconvenience associated with invasive techniques. Major challenges of such equipment involve optimizing spatial resolution, and designing simple acquisition systems able to record simultaneously many potentials over large anatomical areas. We present a surface electromyography acquisition system comprising of 3 x 8 Ag-AgCl electrodes mounted onto an elastic band, which can be adjusted to fit an entire human upper limb segment. Using this equipment, we acquired a simultaneous representation of muscular activity from a segment of the upper limb surface of 6 healthy subjects during isometric contractions at various intensities. We found that the location of regions of highest activity depended on elbow torque direction but also varied among subjects. Signals obtained with such equipment can be used to solve the inverse problem and help optimize the electrode configuration in volume conduction studies. The efficacy of decision algorithms of multi-functional myoelectric prostheses can be tested with the global muscle activity patterns gathered. The electrode cuff could also be used in the investigation of fatigue and injury mechanisms during occupational activities.
NASA Astrophysics Data System (ADS)
Tornow, Ralf P.; Milczarek, Aleksandra; Odstrcilik, Jan; Kolar, Radim
2017-07-01
A parallel video ophthalmoscope was developed to acquire short video sequences (25 fps, 250 frames) of both eyes simultaneously with exact synchronization. Video sequences were registered off-line to compensate for eye movements. From registered video sequences dynamic parameters like cardiac cycle induced reflection changes and eye movements can be calculated and compared between eyes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shera, E.B.; Casper, K.J.
>A technique is described which allows the angular correlations of several radiations, each in cascade with one common gamma ray, to be determined simultaneously through the use of a multichannel analyzer. Normalization is provided by simultaneously recording both the singles and coincidence spectra using the subgrouping facilities of the analyzer. A subgroup programmer has been constructed which provides this capability while maintaining identical calibration for the two spectra. (auth)
Ogunyemi, A O; Breen, H
1993-01-01
Musicogenic epilepsy is a rare disorder. Much remains to be learned about the electroclinical features. This report describes a patient who has been followed at our institution for 17 years, and was investigated with long-term telemetered simultaneous video-EEG recordings. She began to have seizures at the age of 10 years. She experienced complex partial seizures, often preceded by elementary auditory hallucination and complex auditory illusion. The seizures occurred in relation to singing, listening to music or thinking about music. She also had occasional generalized tonic clonic seizures during sleep. There was no significant antecedent history. The family history was negative for epilepsy. The physical examination was unremarkable. CT and MRI scans of the brain were normal. During long-term simultaneous video-EEG recordings, clinical and electrographic seizure activities were recorded in association with singing and listening to music. Mathematical calculation, copying or viewing geometric patterns and playing the game of chess failed to evoke seizures.
Timofeev, Igor; Grenier, François; Bazhenov, Maxim; Houweling, Arthur R; Sejnowski, Terrence J; Steriade, Mircea
2002-01-01
Plastic changes in the synaptic responsiveness of neocortical neurones, which occur after rhythmic stimuli within the frequency range of sleep spindles (10 Hz), were investigated in isolated neocortical slabs and intact cortex of anaesthetized cats by means of single, dual and triple simultaneous intracellular recordings in conjunction with recordings of local field potential responses. In isolated cortical slabs (10 mm long, 6 mm wide and 4–5 mm deep), augmenting responses to pulse-trains at 10 Hz (responses with growing amplitudes from the second stimulus in a train) were elicited only by relatively high-intensity stimuli. At low intensities, responses were decremental. The largest augmenting responses were evoked in neurones located close to the stimulation site. Quantitative analyses of the number of action potentials and the amplitude and area of depolarization during augmenting responses in a population of neurones recorded from slabs showed that the most dramatic increases in the number of spikes with successive stimuli, and the greatest increase in depolarization amplitude, were found in conventional fast-spiking (FS) neurones. The largest increase in the area of depolarization was found in regular-spiking (RS) neurones. Dual intracellular recordings from a pair of FS and RS neurones in the slab revealed more action potentials in the FS neurone during augmenting responses and a significant increase in the depolarization area of the RS neurone that was dependent on the firing of the FS neurone. Self-sustained seizures could occur in the slab after rhythmic stimuli at 10 Hz. In the intact cortex, repeated sequences of stimuli generating augmenting responses or spontaneous spindles could induce an increased synaptic responsiveness to single stimuli, which lasted for several minutes. A similar time course of increased responsiveness was obtained with induction of cellular plasticity. These data suggest that augmenting responses elicited by stimulation, as well as spontaneously occurring spindles, may induce short- and medium-term plasticity of neuronal responses. PMID:12122155
Whole plantar nerve conduction study with disposable strip electrodes.
Hemmi, Shoji; Kurokawa, Katsumi; Nagai, Taiji; Okamoto, Toshio; Murakami, Tatsufumi; Sunada, Yoshihide
2016-02-01
A new method to evaluate whole plantar nerve conduction with disposable strip electrodes (DSEs) is described. Whole plantar compound nerve action potentials (CNAPs) were recorded at the ankle. DSEs were attached to the sole for simultaneous stimulation of medial and lateral plantar nerves. We also conducted medial plantar nerve conduction studies using an established method and compared the findings. Whole plantar CNAPs were recorded bilaterally from 32 healthy volunteers. Mean baseline to peak amplitude for CNAPs was 26.9 ± 11.8 μV, and mean maximum conduction velocity was 65.8 ± 8.3 m/s. The mean amplitude of CNAPs obtained by our method was 58.2% higher than that of CNAPs obtained by the Saeed method (26.9 μV vs. 17.0 μV; P < 0.0001). The higher mean amplitude of whole plantar CNAPs obtained by our method suggests that it enables CNAPs to be obtained easily, even in elderly people. © 2015 Wiley Periodicals, Inc.
Dual-energy micro-CT with a dual-layer, dual-color, single-crystal scintillator.
Maier, Daniel Simon; Schock, Jonathan; Pfeiffer, Franz
2017-03-20
A wide range of X-ray imaging applications demand micrometer spatial resolution. In material science and biology especially, there is a great interest in material determination and material separation methods. Here we present a new detector design that allows the recording of a low- and a high-energy radiography image simultaneously with micrometer spatial resolution. The detector system is composed of a layered scintillator stack, two CCDs and an optical system to image the scintillator responses onto the CCDs. We used the detector system with a standard laboratory microfocus X-ray tube to prove the working principle of the system and derive important design characteristics. With the recorded and registered dual-energy data set, the material separation and determination could be shown at an X-ray tube peak energy of up to 160 keV with a spatial resolution of 12 μm. The detector design shows a great potential for further development and a wide range of possible applications.
Wulf, J S; Rühmann, S; Rego, I; Puhl, I; Treutter, D; Zude, M
2008-05-14
Laser-induced fluorescence spectroscopy (LIFS) was nondestructively applied on strawberries (EX = 337 nm, EM = 400-820 nm) to test the feasibility of quantitatively determining native phenolic compounds in strawberries. Eighteen phenolic compounds were identified in fruit skin by UV and MS spectroscopy and quantitatively determined by use of rp-HPLC for separation and diode-array or chemical reaction detection. Partial least-squares calibration models were built for single phenolic compounds by means of nondestructively recorded fluorescence spectra in the blue-green wavelength range using different data preprocessing methods. The direct orthogonal signal correction resulted in r (2) = 0.99 and rmsep < 8% for p-coumaroyl-glucose, and r (2) = 0.99 and rmsep < 24% for cinnamoyl-glucose. In comparison, the correction of the fluorescence spectral data with simultaneously recorded reflectance spectra did not further improve the calibration models. Results show the potential of LIFS for a rapid and nondestructive assessment of contents of p-coumaroyl-glucose and cinnamoyl-glucose in strawberry fruits.
Integration of fMRI, NIROT and ERP for studies of human brain function.
Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel
2006-05-01
Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.
Wavelength-multiplexing surface plasmon holographic microscopy.
Zhang, Jiwei; Dai, Siqing; Zhong, Jinzhan; Xi, Teli; Ma, Chaojie; Li, Ying; Di, Jianglei; Zhao, Jianlin
2018-05-14
Surface plasmon holographic microscopy (SPHM), which combines surface plasmon microscopy with digital holographic microscopy, can be applied for amplitude- and phase-contrast surface plasmon resonance (SPR) imaging. In this paper, we propose an improved SPHM with the wavelength multiplexing technique based on two laser sources and a common-path hologram recording configuration. Through recording and reconstructing the SPR images at two wavelengths simultaneously employing the improved SPHM, tiny variation of dielectric refractive index in near field is quantitatively monitored with an extended measurement range while maintaining the high sensitivity. Moreover, imaging onion tissues is performed to demonstrate that the detection sensitivities of two wavelengths can compensate for each other in SPR imaging. The proposed wavelength-multiplexing SPHM presents simple structure, high temporal stability and inherent capability of phase curvature compensation, as well as shows great potentials for further applications in monitoring diverse dynamic processes related with refractive index variations and imaging biological tissues with low-contrast refractive index distributions in the near field.
Statistical approach for the detection of motion/noise artifacts in Photoplethysmogram.
Selvaraj, Nandakumar; Mendelson, Yitzhak; Shelley, Kirk H; Silverman, David G; Chon, Ki H
2011-01-01
Motion and noise artifacts (MNA) have been a serious obstacle in realizing the potential of Photoplethysmogram (PPG) signals for real-time monitoring of vital signs. We present a statistical approach based on the computation of kurtosis and Shannon Entropy (SE) for the accurate detection of MNA in PPG data. The MNA detection algorithm was verified on multi-site PPG data collected from both laboratory and clinical settings. The accuracy of the fusion of kurtosis and SE metrics for the artifact detection was 99.0%, 94.8% and 93.3% in simultaneously recorded ear, finger and forehead PPGs obtained in a clinical setting, respectively. For laboratory PPG data recorded from a finger with contrived artifacts, the accuracy was 88.8%. It was identified that the measurements from the forehead PPG sensor contained the most artifacts followed by finger and ear. The proposed MNA algorithm can be implemented in real-time as the computation time was 0.14 seconds using Matlab®.
Brown, Ninita H.; Dobrovolny, Hana M.; Gauthier, Daniel J.; Wolf, Patrick D.
2007-01-01
Optical fiber-based mapping systems are used to record the cardiac action potential (AP) throughout the myocardium. The optical AP contains a contraction-induced motion artifact (MA), which makes it difficult to accurately measure the action potential duration (APD). MA is removed by preventing contraction with electrical-mechanical uncoupling drugs, such as 2,3-butanedione monoxime (BDM). We designed a novel fiber-based ratiometric optical channel using a blue light emitting diode, a diffraction grating, and a split photodetector that can accurately measure the cardiac AP without the need for BDM. The channel was designed based on simulations using the optical design software ZEMAX. The channel has an electrical bandwidth of 150 Hz and an root mean-square dark noise of 742 μV. The channel successfully recorded the cardiac AP from the wall of five rabbit heart preparations without the use of BDM. After 20-point median filtering, the mean signal/noise ratio was 25.3 V/V. The APD measured from the base of a rabbit heart was 134 ± 8.4 ms, compared to 137.6 ± 3.3 ms from simultaneous microelectrode recordings. This difference was not statistically significant (p-value = 0.3). The quantity of MA removed was also measured using the motion ratio. The reduction in MA was significant (p-value = 0.0001). This fiber-based system is the first of its kind to enable optical APD measurements in the beating heart wall without the use of BDM. PMID:17416627
Preece, Kathryn A.; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve
2015-01-01
Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under “passive” and “active” listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of ‘high’ (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children’s late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component. PMID:25922794
Badcock, Nicholas A; Preece, Kathryn A; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve
2015-01-01
Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under "passive" and "active" listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of 'high' (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children's late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component.
Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B
2017-09-20
Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In brain slices from these animals, single-trial hybrid optical voltage sensor recordings revealed voltage changes with submillisecond resolution in multiple neurons simultaneously. This imaging tool will allow for the study of the emergent properties of neural circuits and permit experimental tests of the roles of specific types of neurons in complex circuit activity. Copyright © 2017 the authors 0270-6474/17/379305-15$15.00/0.
A low-power current-reuse dual-band analog front-end for multi-channel neural signal recording.
Sepehrian, H; Gosselin, B
2014-01-01
Thoroughly studying the brain activity of freely moving subjects requires miniature data acquisition systems to measure and wirelessly transmit neural signals in real time. In this application, it is mandatory to simultaneously record the bioelectrical activity of a large number of neurons to gain a better knowledge of brain functions. However, due to limitations in transferring the entire raw data to a remote base station, employing dedicated data reduction techniques to extract the relevant part of neural signals is critical to decrease the amount of data to transfer. In this work, we present a new dual-band neural amplifier to separate the neuronal spike signals (SPK) and the local field potential (LFP) simultaneously in the analog domain, immediately after the pre-amplification stage. By separating these two bands right after the pre-amplification stage, it is possible to process LFP and SPK separately. As a result, the required dynamic range of the entire channel, which is determined by the signal-to-noise ratio of the SPK signal of larger bandwidth, can be relaxed. In this design, a new current-reuse low-power low-noise amplifier and a new dual-band filter that separates SPK and LFP while saving capacitors and pseudo resistors. A four-channel dual-band (SPK, LFP) analog front-end capable of simultaneously separating SPK and LFP is implemented in a TSMC 0.18 μm technology. Simulation results present a total power consumption per channel of 3.1 μw for an input referred noise of 3.28 μV and a NEF for 2.07. The cutoff frequency of the LFP band is fc=280 Hz, and fL=725 Hz and fL=11.2 KHz for SPK, with 36 dB gain for LFP band 46 dB gain for SPK band.
Coding of vocalizations by single neurons in ventrolateral prefrontal cortex.
Plakke, Bethany; Diltz, Mark D; Romanski, Lizabeth M
2013-11-01
Neuronal activity in single prefrontal neurons has been correlated with behavioral responses, rules, task variables and stimulus features. In the non-human primate, neurons recorded in ventrolateral prefrontal cortex (VLPFC) have been found to respond to species-specific vocalizations. Previous studies have found multisensory neurons which respond to simultaneously presented faces and vocalizations in this region. Behavioral data suggests that face and vocal information are inextricably linked in animals and humans and therefore may also be tightly linked in the coding of communication calls in prefrontal neurons. In this study we therefore examined the role of VLPFC in encoding vocalization call type information. Specifically, we examined previously recorded single unit responses from the VLPFC in awake, behaving rhesus macaques in response to 3 types of species-specific vocalizations made by 3 individual callers. Analysis of responses by vocalization call type and caller identity showed that ∼19% of cells had a main effect of call type with fewer cells encoding caller. Classification performance of VLPFC neurons was ∼42% averaged across the population. When assessed at discrete time bins, classification performance reached 70 percent for coos in the first 300 ms and remained above chance for the duration of the response period, though performance was lower for other call types. In light of the sub-optimal classification performance of the majority of VLPFC neurons when only vocal information is present, and the recent evidence that most VLPFC neurons are multisensory, the potential enhancement of classification with the addition of accompanying face information is discussed and additional studies recommended. Behavioral and neuronal evidence has shown a considerable benefit in recognition and memory performance when faces and voices are presented simultaneously. In the natural environment both facial and vocalization information is present simultaneously and neural systems no doubt evolved to integrate multisensory stimuli during recognition. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheu, Y. H.; Young, M. S.
1998-04-01
A combined long-term measurement and recording system for neurotransmission research of brain slices is presented in this study. This system, based on the IBM PC or compatible computer, is capable of simultaneously measuring and recording both single-unit neural electropotential signals and the electrochemical signals of neurotransmitter efflux from the same neuron in a brain slice for long periods of time (time limited largely by hard disk capacity, 100 h or more not being unreasonable with contemporary hardware) using a single carbon microelectrode for both measurements. The combined long-term recording system uses a simple switching circuit to switch periodically the single microelectrode between two data acquisition subsystems, one for electrochemical data and one for electrophysiological data. The simple switching circuit separates the electrophysiological signals and electrochemical signals, overcoming the traditional interference problem caused by the two different measuring techniques. Software designed for the proposed system allows easy reconstruction of the full time course of the compressed measured data and easy, simultaneous display of both types of signals on the same time scale. On-line and recorded displays are available. Test results of a practical implementation of the proposed system verify that the combined long-term recording system meets actual requirements for electrophysiological and neurochemical research.
NASA Astrophysics Data System (ADS)
Krajcik, Joseph S.; Simmons, Patricia E.; Lunetta, Vincent N.
Microcomputers and appropriate software have the potential to help students learn. They can also serve as appropriate media for investigating how students learn. In this article we describe a research strategy examining learning and behavior when students interacted with microcomputers and software. Results from two preliminary studies illustrate the strategy.A major feature of the strategy included recording students interacting with microcomputer software interfaced with a VCR. The VCR recorded the video output from a microcomputer and students' verbal commentary via microphone input. This technique allowed students' comments about their observations, perceptions, predictions, explanations, and decisions to be recorded simultaneously with their computer input and the display on the microcomputer monitor.The research strategy described can provide important information about cognitive and affective behaviors of students engaged in using instructional software. Research studies utilizing this strategy can enhance our understanding of how students develop and employ important concepts and scientific relationships, how students develop problem-solving skills and solve problems, and how they interact with instructional software. Results of such studies have important implications for teaching and for the design of instructional software.
Intrinsic and synaptic properties of vertical cells of the mouse dorsal cochlear nucleus
Kuo, Sidney P.; Lu, Hsin-Wei
2012-01-01
Multiple classes of inhibitory interneurons shape the activity of principal neurons of the dorsal cochlear nucleus (DCN), a primary target of auditory nerve fibers in the mammalian brain stem. Feedforward inhibition mediated by glycinergic vertical cells (also termed tuberculoventral or corn cells) is thought to contribute importantly to the sound-evoked response properties of principal neurons, but the cellular and synaptic properties that determine how vertical cells function are unclear. We used transgenic mice in which glycinergic neurons express green fluorescent protein (GFP) to target vertical cells for whole cell patch-clamp recordings in acute slices of DCN. We found that vertical cells express diverse intrinsic spiking properties and could fire action potentials at high, sustained spiking rates. Using paired recordings, we directly examined synapses made by vertical cells onto fusiform cells, a primary DCN principal cell type. Vertical cell synapses produced unexpectedly small-amplitude unitary currents in fusiform cells, and additional experiments indicated that multiple vertical cells must be simultaneously active to inhibit fusiform cell spike output. Paired recordings also revealed that a major source of inhibition to vertical cells comes from other vertical cells. PMID:22572947
NASA Astrophysics Data System (ADS)
Wang, Can; Bin, Chen; Christman, Lilianna E.; Glen, Jonathan M. G.; Klemperer, Simon L.; McPhee, Darcy K.; Kappler, Karl N.; Bleier, Tom E.; Dunson, J. Clark
2018-04-01
When working with ultra-low-frequency (ULF) magnetic datasets, as with most geophysical time-series data, it is important to be able to distinguish between cultural signals, internal instrument noise, and natural external signals with their induced telluric fields. This distinction is commonly attempted using simultaneously recorded data from a spatially remote reference site. Here, instead, we compared data recorded by two systems with different instrumental characteristics at the same location over the same time period. We collocated two independent ULF magnetic systems, one from the QuakeFinder network and the other from the United States Geological Survey (USGS)-Stanford network, in order to cross-compare their data, characterize data reproducibility, and characterize signal origin. In addition, we used simultaneous measurements at a remote geomagnetic observatory to distinguish global atmospheric signals from local cultural signals. We demonstrated that the QuakeFinder and USGS-Stanford systems have excellent coherence, despite their different sensors and digitizers. Rare instances of isolated signals recorded by only one system or only one sensor indicate that caution is needed when attributing specific recorded signal features to specific origins.[Figure not available: see fulltext.
Simultaneous Nanoscale Surface Charge and Topographical Mapping.
Perry, David; Al Botros, Rehab; Momotenko, Dmitry; Kinnear, Sophie L; Unwin, Patrick R
2015-07-28
Nanopipettes are playing an increasingly prominent role in nanoscience, for sizing, sequencing, delivery, detection, and mapping interfacial properties. Herein, the question of how to best resolve topography and surface charge effects when using a nanopipette as a probe for mapping in scanning ion conductance microscopy (SICM) is addressed. It is shown that, when a bias modulated (BM) SICM scheme is used, it is possible to map the topography faithfully, while also allowing surface charge to be estimated. This is achieved by applying zero net bias between the electrode in the SICM tip and the one in bulk solution for topographical mapping, with just a small harmonic perturbation of the potential to create an AC current for tip positioning. Then, a net bias is applied, whereupon the ion conductance current becomes sensitive to surface charge. Practically this is optimally implemented in a hopping-cyclic voltammetry mode where the probe is approached at zero net bias at a series of pixels across the surface to reach a defined separation, and then a triangular potential waveform is applied and the current response is recorded. Underpinned with theoretical analysis, including finite element modeling of the DC and AC components of the ionic current flowing through the nanopipette tip, the powerful capabilities of this approach are demonstrated with the probing of interfacial acid-base equilibria and high resolution imaging of surface charge heterogeneities, simultaneously with topography, on modified substrates.
Porkkala, T; Jäntti, V; Kaukinen, S; Häkkinen, V
1997-04-01
Electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) are altered by inhalation anaesthesia. Nitrous oxide is commonly used in combination with volatile anaesthetics. We have studied the effects of nitrous oxide on both EEG and SEPs simultaneously during isoflurane burst-suppression anaesthesia. Twelve ASA I-II patients undergoing abdominal or orthopaedic surgery were anaesthetized with isoflurane by mask. After intubation and relaxation the isoflurane concentration was increased to a level at which an EEG burst-suppression pattern occurred (mean isoflurane end-tidal concentration 1.9 (SD 0.2) %. With a stable isoflurane concentration, the patients received isoflurane-air-oxygen and isoflurane-nitrous oxide-oxygen (FiO2 0.4) in a randomized cross-over manner. EEG and SEPs were simultaneously recorded before, and after wash-out or wash-in periods for nitrous oxide. The proportion of EEG suppressions as well as SEP amplitudes for cortical N20 were calculated. The proportion of EEG suppressions decreased from 53.5% to 34% (P < 0.05) when air was replaced by nitrous oxide. At the same time, the cortical N20 amplitude was reduced by 69% (P < 0.01). The results suggest that during isoflurane anaesthesia, nitrous oxide has a different effect on EEG and cortical SEP at the same time. The effects of nitrous oxide may be mediated by cortical and subcortical generators.
NASA Astrophysics Data System (ADS)
Cotic, M.; Chiu, A. W. L.; Jahromi, S. S.; Carlen, P. L.; Bardakjian, B. L.
2011-08-01
To study cell-field dynamics, physiologists simultaneously record local field potentials and the activity of individual cells from animals performing cognitive tasks, during various brain states or under pathological conditions. However, apart from spike shape and spike timing analyses, few studies have focused on elucidating the common time-frequency structure of local field activity relative to surrounding cells across different periods of phenomena. We have used two algorithms, multi-window time frequency analysis and wavelet phase coherence (WPC), to study common intracellular-extracellular (I-E) spectral features in spontaneous seizure-like events (SLEs) from rat hippocampal slices in a low magnesium epilepsy model. Both algorithms were applied to 'pairs' of simultaneously observed I-E signals from slices in the CA1 hippocampal region. Analyses were performed over a frequency range of 1-100 Hz. I-E spectral commonality varied in frequency and time. Higher commonality was observed from 1 to 15 Hz, and lower commonality was observed in the 15-100 Hz frequency range. WPC was lower in the non-SLE region compared to SLE activity; however, there was no statistical difference in the 30-45 Hz band between SLE and non-SLE modes. This work provides evidence of strong commonality in various frequency bands of I-E SLEs in the rat hippocampus, not only during SLEs but also immediately before and after.
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa
2016-01-01
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja
2016-08-10
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.
Yu, Yuguo; Shu, Yousheng; McCormick, David A.
2008-01-01
Neocortical action potential responses in vivo are characterized by considerable threshold variability, and thus timing and rate variability, even under seemingly identical conditions. This finding suggests that cortical ensembles are required for accurate sensorimotor integration and processing. Intracellularly, trial-to-trial variability results not only from variation in synaptic activities, but also in the transformation of these into patterns of action potentials. Through simultaneous axonal and somatic recordings and computational simulations, we demonstrate that the initiation of action potentials in the axon initial segment followed by backpropagation of these spikes throughout the neuron results in a distortion of the relationship between the timing of synaptic and action potential events. In addition, this backpropagation also results in an unusually high rate of rise of membrane potential at the foot of the action potential. The distortion of the relationship between the amplitude time course of synaptic inputs and action potential output caused by spike back-propagation results in the appearance of high spike threshold variability at the level of the soma. At the point of spike initiation, the axon initial segment, threshold variability is considerably less. Our results indicate that spike generation in cortical neurons is largely as expected by Hodgkin—Huxley theory and is more precise than previously thought. PMID:18632930
Scale-Free Brain-Wave Music from Simultaneously EEG and fMRI Recordings
Lu, Jing; Wu, Dan; Yang, Hua; Luo, Cheng; Li, Chaoyi; Yao, Dezhong
2012-01-01
In the past years, a few methods have been developed to translate human EEG to music. In 2009, PloS One 4 e5915, we developed a method to generate scale-free brainwave music where the amplitude of EEG was translated to music pitch according to the power law followed by both of them, the period of an EEG waveform is translated directly to the duration of a note, and the logarithm of the average power change of EEG is translated to music intensity according to the Fechner's law. In this work, we proposed to adopt simultaneously-recorded fMRI signal to control the intensity of the EEG music, thus an EEG-fMRI music is generated by combining two different and simultaneous brain signals. And most importantly, this approach further realized power law for music intensity as fMRI signal follows it. Thus the EEG-fMRI music makes a step ahead in reflecting the physiological process of the scale-free brain. PMID:23166768
Simultaneous CT and SPECT tomography using CZT detectors
Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.
2002-01-01
A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.
Awada, Hassan K; Fletter, Paul C; Zaszczurynski, Paul J; Cooper, Mitchell A; Damaser, Margot S
2015-08-01
The objective of this study was to compare the simultaneous responses of water-filled (WFC) and air-charged (ACC) catheters during simulated urodynamic pressures and develop an algorithm to convert peak pressures measured using an ACC to those measured by a WFC. Examples of cough leak point pressure and valsalva leak point pressure data (n = 4) were obtained from the literature, digitized, and modified in amplitude and duration to create a set of simulated data that ranged in amplitude from 15 to 220 cm H2 O (n = 25) and duration from 0.1 to 3.0 sec (n = 25) for each original signal. Simulated pressure signals were recorded simultaneously by WFCs, ACCs, and a reference transducer in a specially designed pressure chamber. Peak pressure and time to peak pressure were calculated for each simulated pressure signal and were used to develop an algorithm to convert peak pressures recorded with ACCs to corresponding peak pressures recorded with WFCs. The algorithm was validated with additional simulated urodynamic pressure signals and additional catheters that had not been utilized to develop the algorithm. ACCs significantly underestimated peak pressures of more rapidly changing pressures, as in coughs, compared to those measured by WFCs. The algorithm corrected 90% of peak pressures measured by ACCs to within 5% of those measured by WFCs when simultaneously exposed to the same pressure signals. The developed algorithm can be used to convert rapidly changing urodynamic pressures, such as cough leak point pressure, obtained using ACC systems to corresponding values expected from WFC systems. © 2014 Wiley Periodicals, Inc.
2015-01-01
Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087
Helmstaedter, Victor; Lenarz, Thomas; Erfurt, Peter; Kral, Andrej; Baumhoff, Peter
2017-12-14
For the increasing number of cochlear implantations in subjects with residual hearing, hearing preservation, and thus the prevention of implantation trauma, is crucial. A method for monitoring the intracochlear position of a cochlear implant (CI) and early indication of imminent cochlear trauma would help to assist the surgeon to achieve this goal. The aim of this study was to evaluate the reliability of the different electric components recorded by an intracochlear electrocochleography (ECochG) as markers for the cochleotopic position of a CI. The measurements were made directly from the CI, combining intrasurgical diagnostics with the therapeutical use of the CI, thus, turning the CI into a "theragnostic probe." Intracochlear ECochGs were measured in 10 Dunkin Hartley guinea pigs of either sex, with normal auditory brainstem response thresholds. All subjects were fully implanted (4 to 5 mm) with a custom six contact CI. The ECochG was recorded simultaneously from all six contacts with monopolar configuration (retroauricular reference electrode). The gross ECochG signal was filtered off-line to separate three of its main components: compound action potential, cochlear microphonic, and summating potential (SP). Additionally, five cochleae were harvested and histologically processed to access the spatial position of the CI contacts. Both ECochG data and histological reconstructions of the electrode position were fitted with the Greenwood function to verify the reliability of the deduced cochleotopic position of the CI. SPs could be used as suitable markers for the frequency position of the recording electrode with an accuracy of ±1/4 octave in the functioning cochlea, verified by histology. Cochlear microphonics showed a dependency on electrode position but were less reliable as positional markers. Compound action potentials were not suitable for CI position information but were sensitive to "cochlear health" (e.g., insertion trauma). SPs directly recorded from the contacts of a CI during surgery can be used to access the intracochlear frequency position of the CI. Using SP monitoring, implantation may be stopped before penetrating functioning cochlear regions. If the technique was similarly effective in humans, it could prevent implantation trauma and increase hearing preservation during CI surgery. Diagnostic hardware and software for recording biological signals with a CI without filter limitations might be a valuable add-on to the portfolios of CI manufacturers.
Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku
2017-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.
Onisawa, Naomi; Mori, Kensaku
2016-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591
Speed and pressure recording in three-dimensional flow
NASA Technical Reports Server (NTRS)
Krisam, F
1932-01-01
Van der Megge Zijnen's spherical Pitot tube with its 5 test holes insures a simultaneous record of static pressure and magnitude and direction of velocity in three-dimensional flow. The report treats the method as well as the range of application of this Pitot in the light of modern knowledge on flow around spheres.
Effect of weather patterns on preweaning growth of beef calves in the Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Beef production records collected over a 76-year investigation into effects of linebreeding and selection of Hereford cattle, and concurrent weather records were used to assess effects of weather patterns on the growth of calves from birth to weaning. Data were simultaneously adjusted for trends in ...
Remote Imaging by Nanosecond Terahertz Spectrometer with Standoff Detector
NASA Astrophysics Data System (ADS)
Huang, J.-G.; Huang, Z.-M.; Andreev, Yu. M.; Kokh, K. A.; Lanskii, G. V.; Potekaev, A. I.; Svetlichnyi, V. A.
2018-01-01
Creation and application of the remote imaging spectrometer based on high power nanosecond terahertz source with standoff detector is reported. 2D transmission images of metal objects hided in nonconductive (dielectric) materials were recorded. Reflection images of metal objects mounted on silicon wafers are recorded with simultaneous determination of the wafer parameters (thickness/material).
Simultaneous neural and movement recording in large-scale immersive virtual environments.
Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard
2013-10-01
Virtual reality (VR) allows precise control and manipulation of rich, dynamic stimuli that, when coupled with on-line motion capture and neural monitoring, can provide a powerful means both of understanding brain behavioral relations in the high dimensional world and of assessing and treating a variety of neural disorders. Here we present a system that combines state-of-the-art, fully immersive, 3D, multi-modal VR with temporally aligned electroencephalographic (EEG) recordings. The VR system is dynamic and interactive across visual, auditory, and haptic interactions, providing sight, sound, touch, and force. Crucially, it does so with simultaneous EEG recordings while subjects actively move about a 20 × 20 ft² space. The overall end-to-end latency between real movement and its simulated movement in the VR is approximately 40 ms. Spatial precision of the various devices is on the order of millimeters. The temporal alignment with the neural recordings is accurate to within approximately 1 ms. This powerful combination of systems opens up a new window into brain-behavioral relations and a new means of assessment and rehabilitation of individuals with motor and other disorders.
Flexible multielectrodes can resolve multiple muscles in an insect appendage.
Spence, Andrew J; Neeves, Keith B; Murphy, Devon; Sponberg, Simon; Land, Bruce R; Hoy, Ronald R; Isaacson, Michael S
2007-01-15
Research into the neuromechanical basis of behavior, either in biomechanics, neuroethology, or neuroscience, is frequently limited by methods of data collection. Two of the most pressing needs are for methods with which to (1) record from multiple neurons or muscles simultaneously and (2) perform this recording in intact, behaving animals. In this paper we present the fabrication and testing of flexible multielectrode arrays (fMEAs) that move us significantly towards these goals. The fMEAs were used to record the activity of several distinct units in the coxa of the cockroach Blaberus discoidalis. The devices fabricated here address the first goal in two ways: (1) their flexibility allows them to be inserted into an animal and guided through internal tissues in order to access distinct groups of neurons and muscles and (2) their recording site geometry has been tuned to suit the anatomy under study, yielding multichannel spike waveforms that are easily separable under conditions of spike overlap. The flexible nature of the devices simultaneously addresses the second goal, in that it is less likely to interfere with the natural movement of the animal.
Garcia-Febrero, Raul; Valera, Enrique; Muriano, Alejandro; Pividori, M-Isabel; Sanchez-Baeza, Francisco; Marco, M-Pilar
2013-09-01
An electrochemical magneto immunosensor for the detection of low concentrations of paraquat (PQ) in food samples has been developed and its performance evaluated in a complex sample such as potato extracts. The immunosensor presented uses immunoreagents specifically developed for the recognition of paraquat, a magnetic graphite-epoxy composite (m-GEC) electrode and biofunctionalized magnetic micro-particles (PQ1-BSAMP) that allow reduction of the potential interferences caused by the matrix components. The amperometric signal is provided by an enzymatic probe prepared by covalently linking an enzyme to the specific antibodies (Ab198-cc-HRP). The use of hydroquinone, as mediator, allows recording of the signal at a low potential, which also contributes to reducing the background noise potentially caused by the sample matrix. The immunocomplexes formed on top of the modified MP are easily captured by the m-GEC, which acts simultaneously as transducer. PQ can be detected at concentrations as low as 0.18 ± 0.09 μg L(-1). Combined with an efficient extraction procedure, PQ residues can be directly detected and accurately quantified in potato extracts without additional clean-up or purification steps, with a limit of detection (90% of the maximum signal) of 2.18 ± 2.08 μg kg(-1), far below the maximum residue level (20 μg kg(-1)) established by the EC. The immunosensor presented here is suitable for on-site analysis. Combined with the use of magnetic racks, multiple samples can be run simultaneously in a reasonable time.
Ramifications of a potential gap in passive microwave data for the long-term sea ice climate record
NASA Astrophysics Data System (ADS)
Meier, W.; Stewart, J. S.
2017-12-01
The time series of sea ice concentration and extent from passive microwave sensors is one of the longest satellite-derived climate records and the significant decline in Arctic sea ice extent is one of the most iconic indicators of climate change. However, this continuous and consistent record is under threat due to the looming gap in passive microwave sensor coverage. The record started in late 1978 with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) and has continued with a series of Special Sensor Microwave Imager (SSMI) and Special Sensor Microwave Imager and Sounder (SSMIS) instruments on U.S. Defense Meteorological Satellite Program (DMSP) satellites. The data from the different sensors are intercalibrated at the algorithm level by adjusting algorithm coefficients so that the output sea ice data is as consistent as possible between the older and the newer sensor. A key aspect in constructing the time series is to have at least two sensors operating simultaneously so that data from the older and newer sensor can be obtained from the same locations. However, with recent losses of the DMSP F19 and F20, the remaining SSMIS sensors are all well beyond their planned mission lifetime. This means that risk of failure is not small and is increasing with each day of operation. The newest passive microwave sensor, the JAXA Advanced Microwave Scanning Radiometer-2 (AMSR2), is a potential contributor to the time series (though it too is now beyond it's planned 5-year mission lifetime). However, AMSR2's larger antenna and higher spatial resolution presents a challenge in integrating its data with the rest of the sea ice record because the ice edge is quite sensitive to the sensor resolution, which substantially affects the total sea ice extent and area estimates. This will need to be adjusted for if AMSR2 is used to continue the time series. Here we will discuss efforts at NSIDC to integrate AMSR2 estimates into the sea ice climate record if needed. We will also discuss potential contingency plans, such as using operational sea ice charts, to fill any gaps. This would allow the record to continue, but the consistency of the time series will be degraded because the ice charts use human analysis and differing sources, amounts and quality of input data, which makes them sub-optimal for long-term climate records.
Evidence for simultaneous sound production in the bowhead whale (Balaena mysticetus).
Tervo, Outi M; Christoffersen, Mads Fage; Parks, Susan E; Kristensen, Reinhardt Møbjerg; Madsen, Peter Teglberg
2011-10-01
Simultaneous production of two harmonically independent sounds, the two-voice phenomenon, is a well-known feature in bird song. Some toothed whales can click and whistle simultaneously, and a few studies have also reported simultaneous sound production by baleen whales. The mechanism for sound production in toothed whales has been largely uncovered within the last three decades, whereas mechanism for sound production in baleen whales remains poorly understood. This study provides three lines of evidence from recordings made in 2008 and 2009 in Disko Bay, Western Greenland, strongly indicating that bowhead whales are capable of simultaneous dual frequency sound production. This capability may function to enable more complex singing in an acoustically mediated reproductive advertisement display, as has been suggested for songbirds, and/or have significance in individual recognition. © 2011 Acoustical Society of America
Long-range correlation of the membrane potential in neocortical neurons during slow oscillation
Volgushev, Maxim; Chauvette, Sylvain; Timofeev, Igor
2012-01-01
Large amplitude slow waves are characteristic for the summary brain activity, recorded as electroencephalogram (EEG) or local field potentials (LFP), during deep stages of sleep and some types of anesthesia. Slow rhythm of the synchronized EEG reflects an alternation of active (depolarized, UP) and silent (hyperpolarized, DOWN) states of neocortical neurons. In neurons, involvement in the generalized slow oscillation results in a long-range synchronization of changes of their membrane potential as well as their firing. Here, we aimed at intracellular analysis of details of this synchronization. We asked which components of neuronal activity exhibit long-range correlations during the synchronized EEG? To answer this question, we made simultaneous intracellular recordings from two to four neocortical neurons in cat neocortex. We studied how correlated is the occurrence of active and silent states, and how correlated are fluctuations of the membrane potential in pairs of neurons located close one to the other or separated by up to 13 mm. We show that strong long-range correlation of the membrane potential was observed only (i) during the slow oscillation but not during periods without the oscillation, (ii) during periods which included transitions between the states but not during within-the-state periods, and (iii) for the low-frequency (<5 Hz) components of membrane potential fluctuations but not for the higher-frequency components (>10 Hz). In contrast to the neurons located several millimeters one from the other, membrane potential fluctuations in neighboring neurons remain strongly correlated during periods without slow oscillation. We conclude that membrane potential correlation in distant neurons is brought about by synchronous transitions between the states, while activity within the states is largely uncorrelated. The lack of the generalized fine-scale synchronization of membrane potential changes in neurons during the active states of slow oscillation may allow individual neurons to selectively engage in short living episodes of correlated activity—a process that may be similar to dynamical formation of neuronal ensembles during activated brain states. PMID:21854963
Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland
2015-01-01
The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620
3D plasmonic nanoantennas integrated with MEA biosensors.
Dipalo, Michele; Messina, Gabriele C; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; De Angelis, Francesco
2015-02-28
Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.
NASA Astrophysics Data System (ADS)
Näsi, Tiina; Kotilahti, Kalle; Mäki, Hanna; Nissilä, Ilkka; Meriläinen, Pekka
2009-07-01
The objective of the study was to assess the usability of a near-infrared spectroscopy (NIRS) device in multimodal measurements. We combined NIRS with electroencephalography (EEG) to record hemodynamic responses and evoked potentials simultaneously, and with transcranial magnetic stimulation (TMS) to investigate hemodynamic responses to repetitive TMS (rTMS). Hemodynamic responses and visual evoked potentials (VEPs) to 3, 6, and 12 s stimuli consisting of pattern-reversing checkerboards were successfully recorded in the NIRS/EEG measurement, and ipsi- and contralateral hemodynamic responses to 0.5, 1, and 2 Hz rTMS in the NIRS/TMS measurement. In the NIRS/EEG measurements, the amplitudes of the hemodynamic responses increased from 3- to 6-s stimulus, but not from 6- to 12-s stimulus, and the VEPs showed peaks N75, P100, and N135. In the NIRS/TMS measurements, the 2-Hz stimulus produced the strongest hemodynamic responses compared to the 0.5- and 1-Hz stimuli. In two subjects oxyhemoglobin concentration decreased and in one increased as a consequence of the 2-Hz rTMS. To locate the origin of the measured NIRS responses, methods have to be developed to investigate TMS-induced scalp muscle contractions. In the future, multimodal measurements may prove useful in monitoring or treating diseases such as stroke or Alzheimer's disease.
Specialization of the auditory processing in harbor porpoise, characterized by brain-stem potentials
NASA Astrophysics Data System (ADS)
Bibikov, Nikolay G.
2002-05-01
Brain-stem auditory evoked potentials (BAEPs) were recorded from the head surface of the three awaked harbor porpoises (Phocoena phocoena). Silver disk placed on the skin surface above the vertex bone was used as an active electrode. The experiments were performed at the Karadag biological station (the Crimea peninsula). Clicks and tone bursts were used as stimuli. The temporal and frequency selectivity of the auditory system was estimated using the methods of simultaneous and forward masking. An evident minimum of the BAEPs thresholds was observed in the range of 125-135 kHz, where the main spectral component of species-specific echolocation signal is located. In this frequency range the tonal forward masking demonstrated a strong frequency selectivity. Off-response to such tone bursts was a typical observation. An evident BAEP could be recorded up to the frequencies 190-200 kHz, however, outside the acoustical fovea the frequency selectivity was rather poor. Temporal resolution was estimated by measuring BAER recovery functions for double clicks, double tone bursts, and double noise bursts. The half-time of BAERs recovery was in the range of 0.1-0.2 ms. The data indicate that the porpoise auditory system is strongly adapted to detect ultrasonic closely spaced sounds like species-specific locating signals and echoes.
A New Micro-holder Device for Local Drug Delivery during In Vivo Whole-cell Recordings.
Sáez, María; Ketzef, Maya; Alegre-Cortés, Javier; Reig, Ramón; Silberberg, Gilad
2018-06-15
Focal administration of pharmacological agents during in vivo recordings is a useful technique to study the functional properties of neural microcircuits. However, the lack of visual control makes this task difficult and inaccurate, especially when targeting small and deep regions where spillover to neighboring regions is likely to occur. An additional problem with recording stability arises when combining focal drug administration with in vivo intracellular recordings, which are highly sensitive to mechanical vibrations. To address these technical issues, we designed a micro-holder that enables accurate local application of pharmacological agents during in vivo whole-cell recordings. The holder couples the recording and drug delivery pipettes with adjustable distance between the respective tips adapted to the experimental needs. To test the efficacy of the micro-holder we first performed whole-cell recordings in mouse primary somatosensory cortex (S1) with simultaneous extracellular recordings in S1 and motor cortex (M1), before and after local application of bicuculline methiodide (BMI 200 µM). The blockade of synaptic inhibition resulted in increased amplitudes and rising slopes of "Up states", and shortening of their duration. We then checked the usability of the micro-holder in a deeper brain structure, the striatum. We applied tetrodotoxin (TTX 10 µM) during whole-cell recordings in the striatum, while simultaneously obtaining extracellular recordings in S1 and M1. The focal application of TTX in the striatum blocked Up states in the recorded striatal neurons, without affecting the cortical activity. We also describe two different approaches for precisely releasing the drugs without unwanted leakage along the pipette approach trajectory. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Rotary head type reproducing apparatus
Takayama, Nobutoshi; Edakubo, Hiroo; Kozuki, Susumu; Takei, Masahiro; Nagasawa, Kenichi
1986-01-01
In an apparatus of the kind arranged to reproduce, with a plurality of rotary heads, an information signal from a record bearing medium having many recording tracks which are parallel to each other with the information signal recorded therein and with a plurality of different pilot signals of different frequencies also recorded one by one, one in each of the recording tracks, a plurality of different reference signals of different frequencies are simultaneously generated. A tracking error is detected by using the different reference signals together with the pilot signals which are included in signals reproduced from the plurality of rotary heads.
Steward, James E.; Clemons, Jessica D.; Zaszczurynski, Paul J.; Butler, Robert S.; Damaser, Margot S.; Jiang, Hai-Hong
2009-01-01
Purpose Accuracy in the recording of external urethral sphincter (EUS) electromyography (EMG) is an important goal in the quantitative evaluation of urethral function. This study aim was to quantitatively compare electrode recordings taken during tonic activity and leak point pressure (LPP) testing. Methods Several electrodes, including the surface electrode (SE), concentric electrode (CE), and wire electrode (WE), were placed on the EUS singly and simultaneously in six female Sprague-Dawley rats under urethane anesthesia. The bladder was filled via a retropubic catheter while LPP testing and EUS EMG recording were done. Quantitative baseline correction of the EUS EMG signal was performed to reduce baseline variation. Amplitude and frequency of one-second samples of the EUS EMG signal were measured before LPP (tonic activity) and during peak LPP activity. Results The SE, CE, and WE signals demonstrated tonic activity before LPP and an increase in activity during LPP, suggesting that the electrodes accurately recorded EUS activity during tonic activity and during the bladder-to-EUS guarding reflex, regardless of the size or location of detection areas. SE recordings required significantly less baseline correction than both CE and WE recordings. The activity in CE-recorded EMG was significantly higher than that of the SE and WE both in single and simultaneous recordings. Conclusions These electrodes may be suitable for testing EUS EMG activity. The SE signal had significantly less baseline variation and the CE detected local activity more sensitively than the other electrodes, which may provide insight into choosing an appropriate electrode for EUS EMG recording. PMID:19680661
The use of MP3 recorders to log data from equine hoof mounted accelerometers.
Parsons, K J; Wilson, A M
2006-11-01
MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction time and stride time). These parameters are invaluable for the characterisation and assessment of equine locomotion.
A simultaneous all-optical half/full-subtraction strategy using cascaded highly nonlinear fibers
NASA Astrophysics Data System (ADS)
Singh, Karamdeep; Kaur, Gurmeet; Singh, Maninder Lal
2018-02-01
Using non-linear effects such as cross-gain modulation (XGM) and cross-phase modulation (XPM) inside two highly non-linear fibres (HNLF) arranged in cascaded configuration, a simultaneous half/full-subtracter is proposed. The proposed simultaneous half/full-subtracter design is attractive due to several features such as input data pattern independence and usage of minimal number of non-linear elements i.e. HNLFs. Proof of concept simulations have been conducted at 100 Gbps rate, indicating fine performance, as extinction ratio (dB) > 6.28 dB and eye opening factors (EO) > 77.1072% are recorded for each implemented output. The proposed simultaneous half/full-subtracter can be used as a key component in all-optical information processing circuits.
Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit
Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi
2015-01-01
We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics –linked to ferroelectricity– as well as strain –arising from converse piezoelectric effects– have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345
Greensmith, David J.
2014-01-01
Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. PMID:24125908
Hashitani, H; Hayase, M; Suzuki, H
2008-01-01
Background and purpose: Effects of imatinib mesylate, a Kit receptor tyrosine kinase inhibitor, on spontaneous activity of interstitial cells of Cajal (ICC) and smooth muscles in the stomach were investigated. Experimental approach: Effects of imatinib on spontaneous electrical and mechanical activity were investigated by measuring changes in the membrane potential and tension recorded from smooth muscles of the guinea-pig stomach. Its effects on spontaneous changes in intracellular concentration of Ca2+ ([Ca2+]i) (Ca2+ transients) were also examined in fura-2-loaded preparations. Key results: Imatinib (1–10 μM) suppressed spontaneous contractions and Ca2+ transients. Simultaneous recordings of electrical and mechanical activity demonstrated that imatinib (1 μM) reduced the amplitude of spontaneous contractions without suppressing corresponding slow waves. In the presence of nifedipine (1 μM), imatinib (10 μM) reduced the duration of slow waves and follower potentials in the antrum and accelerated their generation, but had little affect on their amplitude. In contrast, imatinib reduced the amplitude of antral slow potentials and slow waves in the corpus. Conclusions and implications: Imatinib may suppress spontaneous contractions of gastric smooth muscles by inhibiting pathways that increase [Ca2+]i in smooth muscles rather than by specifically inhibiting the activity of ICC. A high concentration of imatinib (10 μM) reduced the duration of slow waves or follower potentials in the antrum, which reflect activity of ICC distributed in the myenteric layers (ICC-MY), and suppressed antral slow potentials or corporal slow waves, which reflect activity of ICC within the muscle bundles (ICC-IM), presumably by inhibiting intracellular Ca2+ handling. PMID:18414381
Ceruti, Paola; Bellia, Elisabetta; Gianfranco, Gassino; Carossa, Stefano
2015-01-01
Technical difficulties in the construction of hard palate obturators following oncologic surgery are due to the recording limitations of the entire defect area, plus prosthesis base instability during recording of maxillomandibular relationships. This article describes a time-saving technique that ensures stable and precise recording bases. A light-polymerizing acrylic resin layer is used for making the first impression of the defect, while simultaneously obtaining an acrylic resin impression tray and base for recording maxillomandibular relationships. Adhesive paper copies are used for the arrangement of the anterior teeth.
Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control.
Bercich, Rebecca A; Wang, Zhi; Mei, Henry; Hammer, Lauren H; Seburn, Kevin L; Hargrove, Levi J; Irazoqui, Pedro P
2016-08-01
A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject's forearm. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device's programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system's functional protocol for patient- or algorithm-specific needs.
A unique problem of muscle adaptation from weightlessness: The deceleration deficiency
NASA Technical Reports Server (NTRS)
Stauber, William T.
1989-01-01
Decelerator problems of the knee are emphasized since the lower leg musculature is known to atrophy in response to weightlessness. However, other important decelerator functions are served by the shoulder muscles, in particular the rotator cuff muscles. Problems in these muscles often result in tears and dislocations as seen in baseball pitchers. It is noteworthy that at least one device currently exists that can measure concentric and eccentric muscle loading including a submaximal simulated free weight exercise (i.e., force-controlled) and simultaneously record integrated EMG analysis appropriate for assessment of all muscle functional activities. Studies should be undertaken to provide information as to the performance of maximal and submaximal exercise in space travelers to define potential problems and provide rationale for prevention.
NASA Astrophysics Data System (ADS)
Speidel, Steven
1992-08-01
Our ultimate goal is to develop neural-like cognitive sensory processing within non-neuronal systems. Toward this end, computational models are being developed for selectivity attending the task-relevant parts of composite sensory excitations in an example sound processing application. Significant stimuli partials are selectively attended through the use of generalized neural adaptive beamformers. Computational components are being tested by experiment in the laboratory and also by use of recordings from sensor deployments in the ocean. Results will be presented. These computational components are being integrated into a comprehensive processing architecture that simultaneously attends memory according to stimuli, attends stimuli according to memory, and attends stimuli and memory according to an ongoing thought process. The proposed neural architecture is potentially very fast when implemented in special hardware.
Puckett, Yana; Baronia, Benedicto C
2016-09-20
With the recent advances in eye tracking technology, it is now possible to track surgeons' eye movements while engaged in a surgical task or when surgical residents practice their surgical skills. Several studies have compared eye movements of surgical experts and novices and developed techniques to assess surgical skill on the basis of eye movement utilizing simulators and live surgery. None have evaluated simultaneous visual tracking between an expert and a novice during live surgery. Here, we describe a successful simultaneous deployment of visual tracking of an expert and a novice during live laparoscopic cholecystectomy. One expert surgeon and one chief surgical resident at an accredited surgical program in Lubbock, TX, USA performed a live laparoscopic cholecystectomy while simultaneously wearing the visual tracking devices. Their visual attitudes and movements were monitored via video recordings. The recordings were then analyzed for correlation between the expert and the novice. The visual attitudes and movements correlated approximately 85% between an expert surgeon and a chief surgical resident. The surgery was carried out uneventfully, and the data was abstracted with ease. We conclude that simultaneous deployment of visual tracking during live laparoscopic surgery is a possibility. More studies and subjects are needed to verify the success of our results and obtain data analysis.
Hardy, Matthew E L; Pervolaraki, Eleftheria; Bernus, Olivier; White, Ed
2018-01-01
We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na + -channel blocker (5 μM) ranolazine or the intracellular Ca 2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus, our study links electrical restitution remodeling to a defining mechanical characteristic of heart failure, the reduced ability to respond to an increase in demand.
Structural-Vibration-Response Data Analysis
NASA Technical Reports Server (NTRS)
Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.
1983-01-01
Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.
ERIC Educational Resources Information Center
Sato, Yosuke; Oishi, Makoto; Fukuda, Masafumi; Fujii, Yukihiko
2012-01-01
We applied near-infrared spectroscopy (NIRS) and electrocorticography (ECoG) recordings during cortical stimulation to a temporal lobe epilepsy patient who underwent subdural electrode implantation. Using NIRS, changes in blood concentrations of oxyhemoglobin (HbO[subscript 2]) and deoxyhemoglobin (HbR) during cortical stimulation of the left…
Remote Capture of Human Voice Acoustical Data by Telephone: A Methods Study
ERIC Educational Resources Information Center
Cannizzaro, Michael S.; Reilly, Nicole; Mundt, James C.; Snyder, Peter J.
2005-01-01
In this pilot study we sought to determine the reliability and validity of collecting speech and voice acoustical data via telephone transmission for possible future use in large clinical trials. Simultaneous recordings of each participant's speech and voice were made at the point of participation, the local recording (LR), and over a telephone…
Subthalamic nucleus long-range synchronization—an independent hallmark of human Parkinson's disease
Moshel, Shay; Shamir, Reuben R.; Raz, Aeyal; de Noriega, Fernando R.; Eitan, Renana; Bergman, Hagai; Israel, Zvi
2013-01-01
Beta-band synchronous oscillations in the dorsolateral region of the subthalamic nucleus (STN) of human patients with Parkinson's disease (PD) have been frequently reported. However, the correlation between STN oscillations and synchronization has not been thoroughly explored. The simultaneous recordings of 2390 multi-unit pairs recorded by two parallel microelectrodes (separated by fixed distance of 2 mm, n = 72 trajectories with two electrode tracks >4 mm STN span) in 57 PD patients undergoing STN deep brain stimulation surgery were analyzed. Automatic procedures were utilized to divide the STN into dorsolateral oscillatory and ventromedial non-oscillatory regions, and to quantify the intensity of STN oscillations and synchronicity. Finally, the synchronicity of simultaneously vs. non-simultaneously recorded pairs were compared using a shuffling procedure. Synchronization was observed predominately in the beta range and only between multi-unit pairs in the dorsolateral oscillatory region (n = 615). In paired recordings between sites in the dorsolateral and ventromedial (n = 548) and ventromedial-ventromedial region pairs (n = 1227), no synchronization was observed. Oscillation and synchronicity intensity decline along the STN dorsolateral-ventromedial axis suggesting a fuzzy border between the STN regions. Synchronization strength was significantly correlated to the oscillation power, but synchronization was no longer observed following shuffling. We conclude that STN long-range beta oscillatory synchronization is due to increased neuronal coupling in the Parkinsonian brain and does not merely reflect the outcome of oscillations at similar frequency. The neural synchronization in the dorsolateral (probably the motor domain) STN probably augments the pathological changes in firing rate and patterns of subthalamic neurons in PD patients. PMID:24312018
NASA Astrophysics Data System (ADS)
Hirst, Edwin; Kaye, Paul H.; Foot, Virginia E.; Clark, James M.; Withers, Philip B.
2004-12-01
We describe the construction of a bio-aerosol monitor designed to capture and record intrinsic fluorescence spectra from individual aerosol particles carried in a sample airflow and to simultaneously capture data relating to the spatial distribution of elastically scattered light from each particle. The spectral fluorescence data recorded by this PFAS (Particle Fluorescence and Shape) monitor contains information relating to the particle material content and specifically to possible biological fluorophores. The spatial scattering data from PFAS yields information relating to particle size and shape. The combination of these data can provide a means of aiding the discrimination of bio-aerosols from background or interferent aerosol particles which may have similar fluorescence properties but exhibit shapes and/or sizes not normally associated with biological particles. The radiation used both to excite particle fluorescence and generate the necessary spatially scattered light flux is provided by a novel compact UV fiber laser operating at 266nm wavelength. Particles drawn from the ambient environment traverse the laser beam in single file. Intrinsic particle fluorescence in the range 300-570nm is collected via an ellipsoidal concentrator into a concave grating spectrometer, the spectral data being recorded using a 16-anode linear array photomultiplier detector. Simultaneously, the spatial radiation pattern scattered by the particle over 5°-30° scattering angle and 360° of azimuth is recorded using a custom designed 31-pixel radial hybrid photodiode array. Data from up to ~5,000 particles per second may be acquired for analysis, usually performed by artificial neural network classification.
An Internet-Based Real-Time Audiovisual Link for Dual MEG Recordings
Zhdanov, Andrey; Nurminen, Jussi; Baess, Pamela; Hirvenkari, Lotta; Jousmäki, Veikko; Mäkelä, Jyrki P.; Mandel, Anne; Meronen, Lassi; Hari, Riitta; Parkkonen, Lauri
2015-01-01
Hyperscanning Most neuroimaging studies of human social cognition have focused on brain activity of single subjects. More recently, “two-person neuroimaging” has been introduced, with simultaneous recordings of brain signals from two subjects involved in social interaction. These simultaneous “hyperscanning” recordings have already been carried out with a spectrum of neuroimaging modalities, such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and functional near-infrared spectroscopy (fNIRS). Dual MEG Setup We have recently developed a setup for simultaneous magnetoencephalographic (MEG) recordings of two subjects that communicate in real time over an audio link between two geographically separated MEG laboratories. Here we present an extended version of the setup, where we have added a video connection and replaced the telephone-landline-based link with an Internet connection. Our setup enabled transmission of video and audio streams between the sites with a one-way communication latency of about 130 ms. Our software that allows reproducing the setup is publicly available. Validation We demonstrate that the audiovisual Internet-based link can mediate real-time interaction between two subjects who try to mirror each others’ hand movements that they can see via the video link. All the nine pairs were able to synchronize their behavior. In addition to the video, we captured the subjects’ movements with accelerometers attached to their index fingers; we determined from these signals that the average synchronization accuracy was 215 ms. In one subject pair we demonstrate inter-subject coherence patterns of the MEG signals that peak over the sensorimotor areas contralateral to the hand used in the task. PMID:26098628
Fully integrated silicon probes for high-density recording of neural activity.
Jun, James J; Steinmetz, Nicholas A; Siegle, Joshua H; Denman, Daniel J; Bauza, Marius; Barbarits, Brian; Lee, Albert K; Anastassiou, Costas A; Andrei, Alexandru; Aydın, Çağatay; Barbic, Mladen; Blanche, Timothy J; Bonin, Vincent; Couto, João; Dutta, Barundeb; Gratiy, Sergey L; Gutnisky, Diego A; Häusser, Michael; Karsh, Bill; Ledochowitsch, Peter; Lopez, Carolina Mora; Mitelut, Catalin; Musa, Silke; Okun, Michael; Pachitariu, Marius; Putzeys, Jan; Rich, P Dylan; Rossant, Cyrille; Sun, Wei-Lung; Svoboda, Karel; Carandini, Matteo; Harris, Kenneth D; Koch, Christof; O'Keefe, John; Harris, Timothy D
2017-11-08
Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca 2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-μm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.
Fully Integrated Silicon Probes for High-Density Recording of Neural Activity
Jun, James J.; Steinmetz, Nicholas A.; Siegle, Joshua H.; Denman, Daniel J.; Bauza, Marius; Barbarits, Brian; Lee, Albert K.; Anastassiou, Costas A.; Andrei, Alexandru; Aydın, Çağatay; Barbic, Mladen; Blanche, Timothy J.; Bonin, Vincent; Couto, João; Dutta, Barundeb; Gratiy, Sergey L.; Gutnisky, Diego A.; Häusser, Michael; Karsh, Bill; Ledochowitsch, Peter; Lopez, Carolina Mora; Mitelut, Catalin; Musa, Silke; Okun, Michael; Pachitariu, Marius; Putzeys, Jan; Rich, P. Dylan; Rossant, Cyrille; Sun, Wei-lung; Svoboda, Karel; Carandini, Matteo; Harris, Kenneth D.; Koch, Christof; O'Keefe, John; Harris, Timothy D.
2018-01-01
Summary Paragraph Sensory, motor, and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures1,2. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution but from only a few dozen neurons per shank. Optical Ca2+ imaging3–5 offers more coverage but lacks the temporal resolution to reliably distinguish individual spikes and does not measure local field potentials. To date, no technology compatible with unrestrained animals has combined high spatiotemporal resolution with large volume coverage. To satisfy this need, we designed, fabricated, and tested a new silicon probe called Neuropixels. Each probe has 384 recording channels that can programmably address 960 CMOS processing-compatible low-impedance TiN6 sites that tile a single 10 mm long, 70x20 µm cross section shank. The 6x9 mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed, and digitized on the base, allowing noise-free digital data transmission directly from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were simultaneously recorded from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed recording large populations of neurons from multiple brain structures in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens the path to record brain-wide neural activity during behavior. PMID:29120427
Vasseljen, Ottar; Fladmark, Anne M; Westad, Christian; Torp, Hans G
2009-04-01
Delayed onset of muscle activity in abdominal muscles has been related to low back pain. To investigate this in larger clinical trials it would be beneficial if non-invasive and less cumbersome alternatives to intramuscular electromyography (EMG) were available. This study was designed to compare onset of muscle activity recorded by intramuscular EMG to onset of muscle deformations by ultrasound imaging. Muscle deformations were recorded by two ultrasound imaging modes at high time resolution (m-mode and tissue velocity) in separate sessions and compared to simultaneously recorded intramuscular EMG in three abdominal muscles. Tissue velocity imaging was converted to strain rate which measures deformation velocity gradients within small regions, giving information about the rate of local tissue shortening or lengthening along the beam axis. Onsets in transversus abdominis (TrA), obliquus internus abdominis (OI) and obliquus externus abdominis (OE) were recorded during rapid arm flexions in ten healthy subjects. During ultrasound m-mode recordings, the results showed that mean onsets by EMG were detected 7 ms (95% CI of mean difference; +/-4 ms) and 2 ms (95% CI of mean difference; +/-6 ms) before concurrent ultrasound m-mode detected onsets in TrA and OI, respectively. In contrast, OE onset was recorded 54 ms (95% CI of bias; +/-16 ms) later by EMG compared to ultrasound m-mode. The discrepancy of ultrasound m-mode to accurately record onset in OE was practically corrected in the ultrasound-based strain rate recordings. However, this could only be applied on half of the subjects due to the angle dependency between the ultrasound beam and the direction of the contraction in strain rate recordings. The angle dependency needs to be further explored.
Prolongation of ERP latency and reaction time (RT) in simultaneous EEG/fMRI data acquisition.
Chun, Jinsoo; Peltier, Scott J; Yoon, Daehyun; Manschreck, Theo C; Deldin, Patricia J
2016-08-01
Recording EEG and fMRI data simultaneously inside a fully-operating scanner has been recognized as a novel approach in human brain research. Studies have demonstrated high concordance between the EEG signals and hemodynamic response. However, a few studies reported altered cognitive process inside the fMRI scanner such as delayed reaction time (RT) and reduced and/or delayed N100 and P300 event-related brain potential (ERP) components. The present study investigated the influence of electromagnetic field (static magnetic field, radio frequency (RF) pulse, and gradient switching) and experimental environment on posterior N100 and P300 ERP components in four different settings with six healthy subjects using a visual oddball task: (1) classic fMRI acquisition inside the scanner (e.g., supine position, mirror glasses for stimulus presentation), (2) standard behavioral experiment outside the scanner (e.g., seated position, keyboard response), (3) controlled fMRI acquisition inside the scanner (e.g., organic light-emitting diode (OLED) goggles for stimulus presentation) inside; and (4) modified behavioral experiment outside the scanner (e.g., supine position, OLED goggles). The study findings indicated that the experimental environment in simultaneous EEG/fMRI acquisition could substantially delay N1P, P300 latency, and RT inside the scanner, and was associated with a reduced N1P amplitude. There was no effect of electromagnetic field in the prolongation of RT, N1P and P300 latency inside the scanner. N1P, but not P300, latency was sensitive to stimulus presentation method inside the scanner. Future simultaneous EEG/fMRI data collection should consider experimental environment in both design and analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Meng; Delacruz, Joannalyn B; Ruelas, John C; Rathore, Shailendra S; Lindau, Manfred
2018-01-01
Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.
Hu, Meng; Clark, Kelsey L.; Gong, Xiajing; Noudoost, Behrad; Li, Mingyao; Moore, Tirin
2015-01-01
Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working memory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regression analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultaneously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula model has the potential to provide unique neurophysiological insights about network properties of the brain. PMID:26063909
Paavilainen, Petri; Illi, Janne; Moisseinen, Nella; Niinisalo, Maija; Ojala, Karita; Reinikainen, Johanna; Vainio, Lari
2016-06-01
The task-irrelevant spatial location of a cue stimulus affects the processing of a subsequent target. This "Posner effect" has been explained by an exogenous attention shift to the spatial location of the cue, improving perceptual processing of the target. We studied whether the left/right location of task-irrelevant and uninformative tones produces cueing effects on the processing of visual targets. Tones were presented randomly from left or right. In the first condition, the subsequent visual target, requiring response either with the left or right hand, was presented peripherally to left or right. In the second condition, the target was a centrally presented left/right-pointing arrow, indicating the response hand. In the third condition, the tone and the central arrow were presented simultaneously. Data were recorded on compatible (the tone location and the response hand were the same) and incompatible trials. Reaction times were longer on incompatible than on compatible trials. The results of the second and third conditions are difficult to explain with the attention-shift model emphasizing improved perceptual processing in the cued location, as the central target did not require any location-based processing. Consequently, as an alternative explanation they suggest response priming in the hand corresponding to the spatial location of the tone. Simultaneous lateralized readiness potential (LRP) recordings were consistent with the behavioral data, the tone cues eliciting on incompatible trials a fast preparation for the incorrect response and on compatible trials preparation for the correct response. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Kirino, Eiji; Tanaka, Shoji; Fukuta, Mayuko; Inami, Rie; Arai, Heii; Inoue, Reiichi; Aoki, Shigeki
2017-04-01
It remains unclear how functional connectivity (FC) may be related to specific cognitive domains in neuropsychiatric disorders. Here we used simultaneous resting-state functional magnetic resonance imaging (rsfMRI) and electroencephalography (EEG) recording in patients with schizophrenia, to evaluate FC within and outside the default mode network (DMN). Our study population included 14 patients with schizophrenia and 15 healthy control participants. From all participants, we acquired rsfMRI data, and simultaneously recorded EEG data using an MR-compatible amplifier. We analyzed the rsfMRI-EEG data, and used the CONN toolbox to calculate the FC between regions of interest. We also performed between-group comparisons of standardized low-resolution electromagnetic tomography-based intracortical lagged coherence for each EEG frequency band. FC within the DMN, as measured by rsfMRI and EEG, did not significantly differ between groups. Analysis of rsfMRI data showed that FC between the right posterior inferior temporal gyrus and medial prefrontal cortex was stronger among patients with schizophrenia compared to control participants. Analysis of FC within the DMN using rsfMRI and EEG data revealed no significant differences between patients with schizophrenia and control participants. However, rsfMRI data revealed over-modulated FC between the medial prefrontal cortex and right posterior inferior temporal gyrus in patients with schizophrenia compared to control participants, suggesting that the patients had altered FC, with higher correlations across nodes within and outside of the DMN. Further studies using simultaneous rsfMRI and EEG are required to determine whether altered FC within the DMN is associated with schizophrenia. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
Iterative deblending of simultaneous-source data using a coherency-pass shaping operator
NASA Astrophysics Data System (ADS)
Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Zhang, Dong; Li, Chao; Pan, Xiao; Chen, Yangkang
2017-10-01
Simultaneous-source acquisition helps greatly boost an economic saving, while it brings an unprecedented challenge of removing the crosstalk interference in the recorded seismic data. In this paper, we propose a novel iterative method to separate the simultaneous source data based on a coherency-pass shaping operator. The coherency-pass filter is used to constrain the model, that is, the unblended data to be estimated, in the shaping regularization framework. In the simultaneous source survey, the incoherent interference from adjacent shots greatly increases the rank of the frequency domain Hankel matrix that is formed from the blended record. Thus, the method based on rank reduction is capable of separating the blended record to some extent. However, the shortcoming is that it may cause residual noise when there is strong blending interference. We propose to cascade the rank reduction and thresholding operators to deal with this issue. In the initial iterations, we adopt a small rank to severely separate the blended interference and a large thresholding value as strong constraints to remove the residual noise in the time domain. In the later iterations, since more and more events have been recovered, we weaken the constraint by increasing the rank and shrinking the threshold to recover weak events and to guarantee the convergence. In this way, the combined rank reduction and thresholding strategy acts as a coherency-pass filter, which only passes the coherent high-amplitude component after rank reduction instead of passing both signal and noise in traditional rank reduction based approaches. Two synthetic examples are tested to demonstrate the performance of the proposed method. In addition, the application on two field data sets (common receiver gathers and stacked profiles) further validate the effectiveness of the proposed method.
Larkum, M E; Zhu, J J; Sakmann, B
2001-01-01
Double, triple and quadruple whole-cell voltage recordings were made simultaneously from different parts of the apical dendritic arbor and the soma of adult layer 5 (L5) pyramidal neurons. We investigated the membrane mechanisms that support the conduction of dendritic action potentials (APs) between the dendritic and axonal AP initiation zones and their influence on the subsequent AP pattern. The duration of the current injection to the distal dendritic initiation zone controlled the degree of coupling with the axonal initiation zone and the AP pattern. Two components of the distally evoked regenerative potential were pharmacologically distinguished: a rapidly rising peak potential that was TTX sensitive and a slowly rising plateau-like potential that was Cd2+ and Ni2+ sensitive and present only with longer-duration current injection. The amplitude of the faster forward-propagating Na+-dependent component and the amplitude of the back-propagating AP fell into two classes (more distinctly in the forward-propagating case). Current injection into the dendrite altered propagation in both directions. Somatic current injections that elicited single Na+ APs evoked bursts of Na+ APs when current was injected simultaneously into the proximal apical dendrite. The mechanism did not depend on dendritic Na+–Ca2+ APs. A three-compartment model of a L5 pyramidal neuron is proposed. It comprises the distal dendritic and axonal AP initiation zones and the proximal apical dendrite. Each compartment contributes to the initiation and to the pattern of AP discharge in a distinct manner. Input to the three main dendritic arbors (tuft dendrites, apical oblique dendrites and basal dendrites) has a dominant influence on only one of these compartments. Thus, the AP pattern of L5 pyramids reflects the laminar distribution of synaptic activity in a cortical column. PMID:11389204
Development of a brain monitoring system for multimodality investigation in awake rats.
Limnuson, Kanokwan; Narayan, Raj K; Chiluwal, Amrit; Bouton, Chad; Ping Wang; Chunyan Li
2016-08-01
Multimodal brain monitoring is an important approach to gain insight into brain function, modulation, and pathology. We have developed a unique micromachined neural probe capable of real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables. However, to date, it has only been used in anesthetized animals due to a lack of an appropriate interface for awake animals. We have developed a versatile headstage for recording the small neural signal and bridging the sensors to the remote sensing units for multimodal brain monitoring in awake rats. The developed system has been successfully validated in awake rats by simultaneously measuring four cerebral variables: electrocorticography, oxygen tension, temperature and cerebral blood flow. Reliable signal recordings were obtained with minimal artifacts from movement and environmental noise. For the first time, multiple variables of cerebral function and metabolism were simultaneously recorded from awake rats using a single neural probe. The system is envisioned for studying the effects of pharmacologic treatments, mapping the development of central nervous system diseases, and better understanding normal cerebral physiology.
Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian
2014-12-25
The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.
2013-01-01
Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning. PMID:23316957
Simultaneous, proportional, multi-axis prosthesis control using multichannel surface EMG.
Yatsenko, Dimitri; McDonnall, Daniel; Guillory, K Shane
2007-01-01
Most upper limb prosthesis controllers only allow the individual selection and control of single joints of the limb. The main limiting factor for simultaneous multi-joint control is usually the availability of reliable independent control signals that can intuitively be used. In this paper, a novel method is presented for extraction of individual muscle source signals from surface EMG array recordings, based on EMG energy orthonormalization along principle movement vectors. In cases where independently-controllable muscles are present in residual limbs, this method can be used to provide simultaneous, multi-axis, proportional control of prosthetic systems. Initial results are presented for simultaneous control of wrist rotation, wrist flexion/extension, and grip open/close for two intact subjects under both isometric and non-isometric conditions and for one subject with transradial amputation.
Rajshekhar, Gannavarpu; Gorthi, Sai Siva; Rastogi, Pramod
2011-12-01
The paper introduces a method for simultaneously measuring the in-plane and out-of-plane displacement derivatives of a deformed object in digital holographic interferometry. In the proposed method, lasers of different wavelengths are used to simultaneously illuminate the object along various directions such that a unique wavelength is used for a given direction. The holograms formed by multiple reference-object beam pairs of different wavelengths are recorded by a 3-color CCD camera with red, green, and blue channels. Each channel stores the hologram related to the corresponding wavelength and hence for the specific direction. The complex reconstructed interference field is obtained for each wavelength by numerical reconstruction and digital processing of the recorded holograms before and after deformation. Subsequently, the phase derivative is estimated for a given wavelength using two-dimensional pseudo Wigner-Ville distribution and the in-plane and out-of-plane components are obtained from the estimated phase derivatives using the sensitivity vectors of the optical configuration. © 2011 Optical Society of America
Rymarczyk, Krystyna; Żurawski, Łukasz; Jankowiak-Siuda, Kamila; Szatkowska, Iwona
2018-01-01
Facial mimicry (FM) is an automatic response to imitate the facial expressions of others. However, neural correlates of the phenomenon are as yet not well established. We investigated this issue using simultaneously recorded EMG and BOLD signals during perception of dynamic and static emotional facial expressions of happiness and anger. During display presentations, BOLD signals and zygomaticus major (ZM), corrugator supercilii (CS) and orbicularis oculi (OO) EMG responses were recorded simultaneously from 46 healthy individuals. Subjects reacted spontaneously to happy facial expressions with increased EMG activity in ZM and OO muscles and decreased CS activity, which was interpreted as FM. Facial muscle responses correlated with BOLD activity in regions associated with motor simulation of facial expressions [i.e., inferior frontal gyrus, a classical Mirror Neuron System (MNS)]. Further, we also found correlations for regions associated with emotional processing (i.e., insula, part of the extended MNS). It is concluded that FM involves both motor and emotional brain structures, especially during perception of natural emotional expressions. PMID:29467691
Electrophysiological correlates of forming memories for faces, names, and face-name associations.
Guo, Chunyan; Voss, Joel L; Paller, Ken A
2005-02-01
The ability to put a name to a face is a vital aspect of human interaction, but many people find this extremely difficult, especially after being introduced to someone for the first time. Creating enduring associations between arbitrary stimuli in this manner is also a prime example of what patients with amnesia find most difficult. To help develop a better understanding of this type of memory, we sought to obtain measures of the neural events responsible for successfully forming a new face-name association. We used event-related potentials (ERPs) extracted from high-density scalp EEG recordings in order to compare (1) memory for faces, (2) memory for names, and (3) memory for face-name associations. Each visual face appeared simultaneously with a unique spoken name. Signals observed 200-800 ms after the onset of face-name pairs predicted subsequent memory for faces, names, or face-name associations. Difference potentials observed as a function of subsequent memory performance were not identical for these three memory tests, nor were potentials predicting associative memory equivalent to the sum of potentials predicting item memory, suggesting that different neural events at the time of encoding are relevant for these distinct aspects of remembering people.
Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging
USDA-ARS?s Scientific Manuscript database
The potential of Raman chemical imaging for simultaneously detecting multiple adulterants in milk powder was investigated. Potential chemical adulterants, including ammonium sulfate, dicyandiamide, melamine, and urea, were mixed together into skim dry milk in the concentration range of 0.1–5.0% for ...
High-resolution simultaneous voltage and Ca2+ imaging
Vogt, Kaspar E; Gerharz, Stephan; Graham, Jeremy; Canepari, Marco
2011-01-01
Combining voltage and Ca2+ imaging allows the correlation of electrical and chemical activity at sub-cellular level. Here we describe a novel apparatus designed to obtain simultaneous voltage and Ca2+ measurements with single-trial resolution from sites as small as a few microns. These measurements can be obtained with negligible optical cross-talk between the two signals and negligible photo-damage of the preparation. The capability of the technique was assessed recording either from individual neurons in brain slices or from networks of cultured neurons. The present achievements open the gate to many novel physiological investigations requiring simultaneous measurement of voltage and Ca2+ signals. PMID:21115640
Nishiyama, A; Petersen, O H
1975-01-01
1. Intracellular recordings of membrane potential, input resistance and time constant have been made in vitro from the exocrine acinar cells of the mouse pancreas using glass micro-electrodes. The acinar cells were stimulated by acetylcholine (ACh). In some cases ACh was simply directly added to the tissue superfusion bath, in other experiments ACh was applied locally to pancreatic acini by micro-iontophoresis. 2. Current-voltage relations were investigated by injecting rectangular de- or hyperpolarizing current pulses through the recording micro-electrode. Within a relatively wide range (-20 to -70 mV) there was a linear relation between injected current and change in membrane potential. The slope of such linear curves corresponded to an input resistance of about 3-8 M omega. The membrane time constant was about 5-10 msec. 3. ACh depolarized the cell membrane and caused a marked reduction of input resistance and time constant. The minimum latency of the ACh-induced depolarization (microiontophoretic application) was 100-300 msec. Maximal depolarization was about 20 mV. The effect of this local ACh application was abolished by atropine (1-4 x 10-6 M). The blocking effect of atropine was fully reversible. 4. Stimulating with ACh during the passage of large depolarizing current pulses made it possible simultaneously to observe the effect of ACh at two different levels of resting potential (RP). At the spontaneous RP of about minus 40 mV ACh evoked a depolarization of usual magnitude (15-20 mV) while at the artificially displaced level of about -10 mV a small hyperpolarization (about 5 mV) was observed. It therefore appears that the reversal potential of the transmitter equilibrium potential is about -20 mV. 5. Replacement of the superfusion fluid C1 by sulphate or methylsulphate caused an initial short-lasting depolarization, thereafter the normal resting potential was reassumed... PMID:1142124
Method and apparatus for checking the stability of a setup for making reflection type holograms
NASA Technical Reports Server (NTRS)
Lackner, H. G. (Inventor)
1974-01-01
A method and apparatus are described for checking the stability of a setup for recording reflection-type (white light) holograms. Two sets of interference fringes are simultaneously obtained, one giving information about coherence and stability of the setup alone and the other demonstrating coherence of the entire system, including the holographic recording plate. Special emphasis is given to the stability of the plate, due to the fact that any minute vibration might severely degrade or completely destroy the recording.
NASA Astrophysics Data System (ADS)
Chaudhary, Ujwal; Thompson, Bryant; Gonzalez, Jean; Jung, Young-Jin; Davis, Jennifer; Gonzalez, Patricia; Rice, Kyle; Bloyer, Martha; Elbaum, Leonard; Godavarty, Anuradha
2013-03-01
Cerebral palsy (CP) is a term that describes a group of motor impairment syndromes secondary to genetic and/or acquired disorders of the developing brain. In the current study, NIRS and motion capture were used simultaneously to correlate the brain's planning and execution activity during and with arm movement in healthy individual. The prefrontal region of the brain is non-invasively imaged using a custom built continuous-wave based near infrared spectroscopy (NIRS) system. The kinematics of the arm movement during the studies is recorded using an infrared based motion capture system, Qualisys. During the study, the subjects (over 18 years) performed 30 sec of arm movement followed by 30 sec rest for 5 times, both with their dominant and non-dominant arm. The optical signal acquired from NIRS system was processed to elucidate the activation and lateralization in the prefrontal region of participants. The preliminary results show difference, in terms of change in optical response, between task and rest in healthy adults. Currently simultaneous NIRS imaging and kinematics data are acquired in healthy individual and individual with CP in order to correlate brain activity to arm movement in real-time. The study has significant implication in elucidating the evolution in the functional activity of the brain as the physical movement of the arm evolves using NIRS. Hence the study has potential in augmenting the designing of training and hence rehabilitation regime for individuals with CP via kinematic monitoring and imaging brain activity.
Musical chords and emotion: major and minor triads are processed for emotion.
Bakker, David Radford; Martin, Frances Heritage
2015-03-01
Musical chords are arguably the smallest building blocks of music that retain emotional information. Major chords are generally perceived as positive- and minor chords as negative-sounding, but there has been debate concerning how early these emotional connotations may be processed. To investigate this, emotional facial stimuli and musical chord stimuli were simultaneously presented to participants, and facilitation of processing was measured via event-related potential (ERP) amplitudes. Decreased amplitudes of the P1 and N2 ERP components have been found to index the facilitation of early processing. If simultaneously presented musical chords and facial stimuli are perceived at early stages as belonging to the same emotional category, then early processing should be facilitated for these congruent pairs, and ERP amplitudes should therefore be decreased as compared to the incongruent pairs. ERPs were recorded from 30 musically naive participants as they viewed happy, sad, and neutral faces presented simultaneously with a major or minor chord. When faces and chords were presented that contained congruent emotional information (happy-major or sad-minor), processing was facilitated, as indexed by decreased N2 ERP amplitudes. This suggests that musical chords do possess emotional connotations that can be processed as early as 200 ms in naive listeners. The early stages of processing that are involved suggest that major and minor chords have deeply connected emotional meanings, rather than superficially attributed ones, indicating that minor triads possess negative emotional connotations and major triads possess positive emotional connotations.
Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya
2014-06-01
To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.
NASA Astrophysics Data System (ADS)
Lin, Yuting; Ghijsen, Michael; Thayer, David; Nalcioglu, Orhan; Gulsen, Gultekin
2011-03-01
Dynamic contrast enhanced MRI (DCE-MRI) has been proven to be the most sensitive modality in detecting breast lesions. Currently available MR contrast agent, Gd-DTPA, is a low molecular weight extracellular agent and can diffuse freely from the vascular space into interstitial space. Due to this reason, DCE-MRI has low sensitivity in differentiating benign and malignant tumors. Meanwhile, diffuse optical tomography (DOT) can be used to provide enhancement kinetics of an FDA approved optical contrast agent, ICG, which behaves like a large molecular weight optical agent due to its binding to albumin. The enhancement kinetics of ICG may have a potential to distinguish between the malignant and benign tumors and hence improve the specificity. Our group has developed a high speed hybrid MRI-DOT system. The DOT is a fully automated, MR-compatible, multi-frequency and multi-spectral imaging system. Fischer-344 rats bearing subcutaneous R3230 tumor are injected simultaneously with Gd-DTPA (0.1nmol/kg) and IC-Green (2.5mg/kg). The enhancement kinetics of both contrast agents are recorded simultaneously with this hybrid MRI-DOT system and evaluated for different tumors.
Prause, N; Heiman, J R
2009-05-01
The labial thermistor offers several potential psychometric advantages over existing measures of female sexual response; however, the thermistor lacked data to support these presumed advantages, especially with respect to its discriminant validity. In this study, both the labial thermistor was worn simultaneously with the vaginal photoplethysmograph as women viewed films. They also indicated their level of subjective sexual arousal using a lever. The labial thermistor discriminated sexual from nonsexual arousing stimuli and was sensitive to different levels of sexual arousal. The correspondence of the instrument with subjective sexual arousal, measured using a continuous lever, was lower during the mildly arousing sexual film and higher during the maximally sexual arousing film. One woman reported that the labial thermistor was very uncomfortable, while others indicated no or mild discomfort from each instrument. The vaginal photoplethysmograph largely replicated the effects documented by the labial thermistor, although it did not discriminate sexual stimuli of different intensity nor correspond with women's continuous lever responses as closely during the more arousing stimulus. Difficulties recording simultaneously with these instruments are noted. The labial thermistor adequately discriminates between generally arousing and sexually arousing stimuli, increasing its utility as a measure for between-subject study designs.
Detection of Bursts and Pauses in Spike Trains
Ko, D.; Wilson, C. J.; Lobb, C. J.; Paladini, C. A.
2012-01-01
Midbrain dopaminergic neurons in vivo exhibit a wide range of firing patterns. They normally fire constantly at a low rate, and speed up, firing a phasic burst when reward exceeds prediction, or pause when an expected reward does not occur. Therefore, the detection of bursts and pauses from spike train data is a critical problem when studying the role of phasic dopamine (DA) in reward related learning, and other DA dependent behaviors. However, few statistical methods have been developed that can identify bursts and pauses simultaneously. We propose a new statistical method, the Robust Gaussian Surprise (RGS) method, which performs an exhaustive search of bursts and pauses in spike trains simultaneously. We found that the RGS method is adaptable to various patterns of spike trains recorded in vivo, and is not influenced by baseline firing rate, making it applicable to all in vivo spike trains where baseline firing rates vary over time. We compare the performance of the RGS method to other methods of detecting bursts, such as the Poisson Surprise (PS), Rank Surprise (RS), and Template methods. Analysis of data using the RGS method reveals potential mechanisms underlying how bursts and pauses are controlled in DA neurons. PMID:22939922
Greensmith, David J
2014-01-01
Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Effect of varying ventricular function by extrasystolic potentiation on closure of the mitral valve.
NASA Technical Reports Server (NTRS)
Vandenberg, R. A.; Williams, J. C. P.; Sturm, R. E.; Wood , E. H.
1971-01-01
Mitral regurgitant indexes were measured by roentgen videodensitometry in anesthetized dogs without thoracotomy before, during and after extrasystolic potentiation of ventricular contraction while the atria and ventricles were driven in normal temporal sequence simultaneously or in such a way as to induce atrial fibrillation. Small amounts of mitral reflux were observed with simultaneous atrial and ventricular driving and with atrial fibrillation in the control measurements before initiation of extrasystolic potentiation. Reflux became negligible during extrasystolic potentiation and increased beyond control levels after termination of extrasystolic potentiation.
The Role of Functional Neuroimaging in Pre-Surgical Epilepsy Evaluation
Pittau, Francesca; Grouiller, Frédéric; Spinelli, Laurent; Seeck, Margitta; Michel, Christoph M.; Vulliemoz, Serge
2014-01-01
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy. PMID:24715886
Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays
Grosberg, Lauren E.; Madugula, Sasidhar; Litke, Alan; Cunningham, John; Chichilnisky, E. J.; Paninski, Liam
2017-01-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible. PMID:29131818
A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies.
Puce, Aina; Hämäläinen, Matti S
2017-05-31
Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.
Tang, M H; Zhang, Zongzhi; Tian, S Y; Wang, J; Ma, B; Jin, Q Y
2015-06-15
Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo(100-x) alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo(100-x) alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo(100-x) or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique.
Mena, Gonzalo E; Grosberg, Lauren E; Madugula, Sasidhar; Hottowy, Paweł; Litke, Alan; Cunningham, John; Chichilnisky, E J; Paninski, Liam
2017-11-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible.
Knapen, Lotte M; Koornstra, Rutger H T; Driessen, Johanna H M; van Vlijmen, Bas; Croes, Sander; Schalkwijk, Stein; Colbers, Angela; Gerritsen, Winald R; Burger, David M; de Vries, Frank; van Erp, Nielka P
2018-04-11
The impact of dose and simultaneous use of acid-reducing agents (ARAs) on the effectiveness of vemurafenib is unknown. To determine the association between progression of metastatic BRAF V600 mutated melanoma and (1) dose reductions of vemurafenib and (2) simultaneous use of vemurafenib and ARAs. A retrospective cohort study of 112 first-line vemurafenib users for melanoma was conducted (March 2012-March 2016), using electronic patient records and pharmacy dispensing records of a Dutch academic hospital. Cox regression analysis was used to estimate the risk of progression with full-dose (n = 64) versus reduced-dose vemurafenib (n = 48) and with simultaneous use of vemurafenib and ARAs (n = 35) versus vemurafenib alone (n = 77). Analyses were adjusted for age and sex. In total, disease progression occurred in 55% of treated patients on vemurafenib, with a median progression-free survival of 6.0 (95% confidence interval [CI] 5.0-6.9) months. Compared to patients on vemurafenib alone, there was no increased risk of progression among patients requiring vemurafenib at a reduced dose or among patients receiving simultaneous therapy with vemurafenib and ARAs. In addition, there was no increased risk of progression among patients who used reduced-dose vemurafenib and ARAs versus those receiving full-dose vemurafenib as sole therapy. However, a tendency for progression was observed among patients who used full-dose vemurafenib and ARAs versus full-dose vemurafenib alone (adjusted hazard ratio [HRa] 2.37; 95% CI 0.97-5.76), which became statistically significant in a sensitivity analysis (HRa 4.56; 95% CI 1.51-13.75). There was no association between the use of vemurafenib in a reduced dose or the simultaneous use of vemurafenib and ARAs and the risk of progression. In addition, there was no association between the simultaneous use of vemurafenib in a reduced dose and ARAs and the risk of progression. However, patients tolerating full-dose vemurafenib simultaneously with ARAs might have an increased risk of progression. This finding requires prospective validation.
Tronstad, Christian; Kalvøy, Håvard; Grimnes, Sverre; Martinsen, Ørjan G
2013-11-01
The shapes of skin conductance (SC) and skin potential (SP) responses are often similar, but can also be very different due to an unexplained cause. Using a new method to measure SC and SP simultaneously at the same electrode, this difference was investigated in a new way by comparing their temporal peak differences. SC, SP, skin susceptance (SS), and transepidermal water loss (TEWL) were recorded from 40 participants during relaxation and stress. The SP response could peak anywhere between the onset of an SC response to some time after the peak of an SC response. This peak time difference was associated with the magnitude of the SCR, the hydration of the skin, and the filling of the sweat ducts. Interpretation of the results in light of existing biophysical theories suggests that this peak difference may indicate the hydraulic capacity state of the sweat ducts at the time of a response. Copyright © 2013 Society for Psychophysiological Research.
Utianski, Rene L; Caviness, John N; Liss, Julie M
2015-01-01
High-density electroencephalography was used to evaluate cortical activity during speech comprehension via a sentence verification task. Twenty-four participants assigned true or false to sentences produced with 3 noise-vocoded channel levels (1--unintelligible, 6--decipherable, 16--intelligible), during simultaneous EEG recording. Participant data were sorted into higher- (HP) and lower-performing (LP) groups. The identification of a late-event related potential for LP listeners in the intelligible condition and in all listeners when challenged with a 6-Ch signal supports the notion that this induced potential may be related to either processing degraded speech, or degraded processing of intelligible speech. Different cortical locations are identified as neural generators responsible for this activity; HP listeners are engaging motor aspects of their language system, utilizing an acoustic-phonetic based strategy to help resolve the sentence, while LP listeners do not. This study presents evidence for neurophysiological indices associated with more or less successful speech comprehension performance across listening conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F
2009-11-18
Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.
Correlates of a single cortical action potential in the epidural EEG
Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel
2015-01-01
To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430
Spinal cord stimulation paresthesia and activity of primary afferents.
North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay
2012-10-01
A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.
Using a Smart Phone as a Standalone Platform for Detection and Monitoring of Pathological Tremors
Daneault, Jean-François; Carignan, Benoit; Codère, Carl Éric; Sadikot, Abbas F.; Duval, Christian
2013-01-01
Introduction: Smart phones are becoming ubiquitous and their computing capabilities are ever increasing. Consequently, more attention is geared toward their potential use in research and medical settings. For instance, their built-in hardware can provide quantitative data for different movements. Therefore, the goal of the current study was to evaluate the capabilities of a standalone smart phone platform to characterize tremor. Results: Algorithms for tremor recording and online analysis can be implemented within a smart phone. The smart phone provides reliable time- and frequency-domain tremor characteristics. The smart phone can also provide medically relevant tremor assessments. Discussion: Smart phones have the potential to provide researchers and clinicians with quantitative short- and long-term tremor assessments that are currently not easily available. Methods: A smart phone application for tremor quantification and online analysis was developed. Then, smart phone results were compared to those obtained simultaneously with a laboratory accelerometer. Finally, results from the smart phone were compared to clinical tremor assessments. PMID:23346053
Zużewicz, Krystyna; Roman-Liu, Danuta; Konarska, Maria; Bartuzi, Paweł; Matusiak, Krzysztof; Korczak, Dariusz; Lozia, Zbigniew; Guzek, Marek
2013-10-01
The aim of the study was to verify whether simultaneous responses from the muscular and circulatory system occur in the driver's body under simulated conditions of a crash threat. The study was carried out in a passenger car driving simulator. The crash was included in the driving test scenario developed in an urban setting. In the group of 22 young male subjects, two physiological signals - ECG and EMG were continuously recorded. The length of the RR interval in the ECG signal was assessed. A HRV analysis was performed in the time and frequency domains for 1-minute record segments at rest (seated position), during undisturbed driving as well as during and several minutes after the crash. For the left and right side muscles: m. trapezius (TR) and m. flexor digitorum superficialis (FDS), the EMG signal amplitude was determined. The percentage of maximal voluntary contraction (MVC) was compared during driving and during the crash. As for the ECG signal, it was found that in most of the drivers changes occurred in the parameter values reflecting HRV in the time domain. Significant changes were noted in the mean length of RR intervals (mRR). As for the EMG signal, the changes in the amplitude concerned the signal recorded from the FDS muscle. The changes in ECG and EMG were simultaneous in half of the cases. Such parameters as mRR (ECG signal) and FDS-L amplitude (EMG signal) were the responses to accident risk. Under simulated conditions, responses from the circulatory and musculoskeletal systems are not always simultaneous. The results indicate that a more complete driver's response to a crash in road traffic is obtained based on parallel recording of two physiological signals (ECG and EMG).
Hagen, Espen; Ness, Torbjørn V; Khosrowshahi, Amir; Sørensen, Christina; Fyhn, Marianne; Hafting, Torkel; Franke, Felix; Einevoll, Gaute T
2015-04-30
New, silicon-based multielectrodes comprising hundreds or more electrode contacts offer the possibility to record spike trains from thousands of neurons simultaneously. This potential cannot be realized unless accurate, reliable automated methods for spike sorting are developed, in turn requiring benchmarking data sets with known ground-truth spike times. We here present a general simulation tool for computing benchmarking data for evaluation of spike-sorting algorithms entitled ViSAPy (Virtual Spiking Activity in Python). The tool is based on a well-established biophysical forward-modeling scheme and is implemented as a Python package built on top of the neuronal simulator NEURON and the Python tool LFPy. ViSAPy allows for arbitrary combinations of multicompartmental neuron models and geometries of recording multielectrodes. Three example benchmarking data sets are generated, i.e., tetrode and polytrode data mimicking in vivo cortical recordings and microelectrode array (MEA) recordings of in vitro activity in salamander retinas. The synthesized example benchmarking data mimics salient features of typical experimental recordings, for example, spike waveforms depending on interspike interval. ViSAPy goes beyond existing methods as it includes biologically realistic model noise, synaptic activation by recurrent spiking networks, finite-sized electrode contacts, and allows for inhomogeneous electrical conductivities. ViSAPy is optimized to allow for generation of long time series of benchmarking data, spanning minutes of biological time, by parallel execution on multi-core computers. ViSAPy is an open-ended tool as it can be generalized to produce benchmarking data or arbitrary recording-electrode geometries and with various levels of complexity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Development of a portable wireless system for bipolar concentric ECG recording
NASA Astrophysics Data System (ADS)
Prats-Boluda, G.; Ye-Lin, Y.; Bueno Barrachina, J. M.; Senent, E.; Rodriguez de Sanabria, R.; Garcia-Casado, J.
2015-07-01
Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization).
Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li
2013-01-01
Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378
Ver Donck, L; Lammers, W J E P; Moreaux, B; Smets, D; Voeten, J; Vekemans, J; Schuurkes, J A J; Coulie, B
2006-03-01
Myoelectric recordings from the intestines in conscious animals have been limited to a few electrode sites with relatively large inter-electrode distances. The aim of this project was to increase the number of recording sites to allow high-resolution reconstruction of the propagation of myoelectrical signals. Sets of six unipolar electrodes, positioned in a 3x2 array, were constructed. A silver ring close to each set served as the reference electrodes. Inter-electrode distances varied from 4 to 8 mm. Electrode sets, to a maximum of 4, were implanted in various configurations allowing recording from 24 sites simultaneously. Four sets of 6 electrodes each were implanted successfully in 11 female Beagles. Implantation sites evaluated were the upper small intestine (n=10), the lower small intestine (n=4) and the stomach (n=3). The implants remained functional for 7.2 months (median; range 1.4-27.3 months). Recorded signals showed slow waves at regular intervals and spike potentials. In addition, when the sets were positioned close together, it was possible to re-construct the propagation of individual slow waves, to determine their direction of propagation and to calculate their propagation velocity. No signs or symptoms of interference with normal GI-function were observed in the tested animals. With this approach, it is possible to implant 24 extracellular electrodes on the serosal surface of the intestines without interfering with its normal physiology. This approach makes it possible to study the electrical activities of the GI system at high resolution in vivo in the conscious animal.
Simultaneous dual-band radar development
NASA Technical Reports Server (NTRS)
Liskow, C. L.
1974-01-01
Efforts to design and construct an airborne imaging radar operating simultaneously at L band and X band with an all-inertial navigation system in order to form a dual-band radar system are described. The areas of development include duplex transmitters, receivers, and recorders, a control module, motion compensation for both bands, and adaptation of a commercial inertial navigation system. Installation of the system in the aircraft and flight tests are described. Circuit diagrams, performance figures, and some radar images are presented.
Baronia, Benedicto C
2016-01-01
With the recent advances in eye tracking technology, it is now possible to track surgeons’ eye movements while engaged in a surgical task or when surgical residents practice their surgical skills. Several studies have compared eye movements of surgical experts and novices and developed techniques to assess surgical skill on the basis of eye movement utilizing simulators and live surgery. None have evaluated simultaneous visual tracking between an expert and a novice during live surgery. Here, we describe a successful simultaneous deployment of visual tracking of an expert and a novice during live laparoscopic cholecystectomy. One expert surgeon and one chief surgical resident at an accredited surgical program in Lubbock, TX, USA performed a live laparoscopic cholecystectomy while simultaneously wearing the visual tracking devices. Their visual attitudes and movements were monitored via video recordings. The recordings were then analyzed for correlation between the expert and the novice. The visual attitudes and movements correlated approximately 85% between an expert surgeon and a chief surgical resident. The surgery was carried out uneventfully, and the data was abstracted with ease. We conclude that simultaneous deployment of visual tracking during live laparoscopic surgery is a possibility. More studies and subjects are needed to verify the success of our results and obtain data analysis. PMID:27774359
NASA Astrophysics Data System (ADS)
Levy, M. C.; Thompson, S. E.; Cohn, A.
2014-12-01
Land use/cover change (LUCC) has occurred extensively in the Brazilian Amazon rainforest-savanna transition. Agricultural development-driven LUCC at regional scales can alter surface energy budgets, evapotranspiration (ET) and rainfall; these hydroclimatic changes impact streamflows, and thus hydropower. To date, there is only limited empirical understanding of these complex land-water-energy nexus dynamics, yet understanding is important to developing countries where both agriculture and hydropower are expanding and intensifying. To observe these changes and their interconnections, we synthesize a novel combination of ground network, remotely sensed, and empirically modeled data for LUCC, rainfall, flows, and hydropower potential. We connect the extensive temporal and spatial trends in LUCC occurring from 2000-2012 (and thus observable in the satellite record) to long-term historical flow records and run-of-river hydropower generation potential estimates. Changes in hydrologic condition are observed in terms of dry and wet season moments, extremes, and flow duration curves. Run-of-river hydropower generation potential is modeled at basin gauge points using equation models parameterized with literature-based low-head turbine efficiencies, and simple algorithms establishing optimal head and capacity from elevation and flows, respectively. Regression analyses are used to demonstrate a preliminary causal analysis of LUCC impacts to flow and energy, and discuss extension of the analysis to ungauged basins. The results are transferable to tropical and transitional forest regions worldwide where simultaneous agricultural and hydropower development potentially compete for coupled components of regional water cycles, and where policy makers and planners require an understanding of LUCC impacts to hydroclimate-dependent industries and ecosystems.
NASA Astrophysics Data System (ADS)
O'Shea, Daniel J.; Shenoy, Krishna V.
2018-04-01
Objective. Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. Approach. We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. Main results. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. Significance. We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovinger, D.M.; Zhou, O.
1992-01-01
Ethanol (EtOH) and trichloroethanol (TCEt) potentiate 5-HT[sub 3] receptor-mediated ion current in NCB-20 neuroblastoma cells and nodose ganglion neurons. TCEt potentiates GABA[sub A] receptor-mediated current in dorsal root ganglion neurons. Whole-cell patch-clamp recording was used to examine the interactions of alcohols with current activation and receptor desensitization. Alcohols increased the potency of 5-HT, consistent with an increase in channel activation rate. Current decay rate increased in the presence of alcohols such that potentiation decreased with time following in onset of agonist + alcohol treatment. Potentiation of 5-HT-activated current by EtOH was 61 [plus minus] 17% above control at the startmore » of application but was absent 10 sec after current onset. Agonist pretreatment decreased potentiation by subsequent agonist + alcohol application. Potentiation by TCEt of 5-HT-activated current decreased from 96% above control with simultaneous application of 5-HT + TCEt to 44% after a 30 sec 5-HT treatment. This agonist- and time-dependent loss of potentiation was observed prior to the onset of current decay when low agonist concentrations were used. Agonist pretreatment appears to drive the channel into an alcohol-insensitive. Current activated by GABA + TCEt recovers from desensitization produced by GABA alone more slowly than recovery tested in the absence of TCEt.« less
Acceleration Recorder and Playback Module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1994-11-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-09-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1994-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Microstates in resting-state EEG: current status and future directions.
Khanna, Arjun; Pascual-Leone, Alvaro; Michel, Christoph M; Farzan, Faranak
2015-02-01
Electroencephalography (EEG) is a powerful method of studying the electrophysiology of the brain with high temporal resolution. Several analytical approaches to extract information from the EEG signal have been proposed. One method, termed microstate analysis, considers the multichannel EEG recording as a series of quasi-stable "microstates" that are each characterized by a unique topography of electric potentials over the entire channel array. Because this technique simultaneously considers signals recorded from all areas of the cortex, it is capable of assessing the function of large-scale brain networks whose disruption is associated with several neuropsychiatric disorders. In this review, we first introduce the method of EEG microstate analysis. We then review studies that have discovered significant changes in the resting-state microstate series in a variety of neuropsychiatric disorders and behavioral states. We discuss the potential utility of this method in detecting neurophysiological impairments in disease and monitoring neurophysiological changes in response to an intervention. Finally, we discuss how the resting-state microstate series may reflect rapid switching among neural networks while the brain is at rest, which could represent activity of resting-state networks described by other neuroimaging modalities. We conclude by commenting on the current and future status of microstate analysis, and suggest that EEG microstates represent a promising neurophysiological tool for understanding and assessing brain network dynamics on a millisecond timescale in health and disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microstates in Resting-State EEG: Current Status and Future Directions
Khanna, Arjun; Pascual-Leone, Alvaro; Michel, Christoph M.; Farzan, Faranak
2015-01-01
Electroencephalography (EEG) is a powerful method of studying the electrophysiology of the brain with high temporal resolution. Several analytical approaches to extract information from the EEG signal have been proposed. One method, termed microstate analysis, considers the multichannel EEG recording as a series of quasi-stable “microstates” that are each characterized by a unique topography of electric potentials over the entire channel array. Because this technique simultaneously considers signals recorded from all areas of the cortex, it is capable of assessing the function of large-scale brain networks whose disruption is associated with several neuropsychiatric disorders. In this review, we first introduce the method of EEG microstate analysis. We then review studies that have discovered significant changes in the resting-state microstate series in a variety of neuropsychiatric disorders and behavioral states. We discuss the potential utility of this method in detecting neurophysiological impairments in disease and monitoring neurophysiological changes in response to an intervention. Finally, we discuss how the resting-state microstate series may reflect rapid switching among neural networks while the brain is at rest, which could represent activity of resting-state networks described by other neuroimaging modalities. We conclude by commenting on the current and future status of microstate analysis, and suggest that EEG microstates represent a promising neurophysiological tool for understanding and assessing brain network dynamics on a millisecond timescale in health and disease. PMID:25526823
Empson, R M; Heinemann, U
1995-05-01
1. The perforant path projection from layer III of the entorhinal cortex to CA1 of the hippocampus was studied within a hippocampal-entorhinal combined slice preparation. We prevented contamination from the other main hippocampal pathways by removal of CA3 and the dentate gyrus. 2. Initially the projection was mapped using field potential recordings that suggested an excitatory sink in stratum lacunosum moleculare with an associated source in stratum pyramidale. 3. However, recording intracellularly from CA1 cells, stimulation of the perforant path produced prominent fast GABAA and slow GABAB IPSPs often preceded by small EPSPs. In a small number of cells we observed EPSPs only. 4. CNQX blocked excitatory and inhibitory responses. This indicated the presence of an intervening excitatory synapse between the inhibitory interneurone and the pyramidal cell. 5. Focal bicuculline applications revealed that the major site of GABAA inhibitory input was to stratum radiatum of CA1. 6. The inhibition activated by the perforant path was very effective at reducing simultaneously activated Schaffer collateral mediated EPSPs and suprathreshold-stimulated action potentials. 7. Blockade of fast inhibition increased excitability and enhanced slow inhibition. Both increases relied upon the activation of NMDA receptors. 8. Perforant path inputs activated prominent and effective disynaptic inhibition of CA1 cells. This has significance for the output of hippocampal processing during normal behaviour and also under pathological conditions.
Independent components of neural activity carry information on individual populations.
Głąbska, Helena; Potworowski, Jan; Łęski, Szymon; Wójcik, Daniel K
2014-01-01
Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges.
Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials
Shtrahman, Matthew; Aharoni, Daniel B.; Hardy, Nicholas F.; Buonomano, Dean V.; Arisaka, Katsushi; Otis, Thomas S.
2015-01-01
In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920
Independent Components of Neural Activity Carry Information on Individual Populations
Głąbska, Helena; Potworowski, Jan; Łęski, Szymon; Wójcik, Daniel K.
2014-01-01
Local field potential (LFP), the low-frequency part of the potential recorded extracellularly in the brain, reflects neural activity at the population level. The interpretation of LFP is complicated because it can mix activity from remote cells, on the order of millimeters from the electrode. To understand better the relation between the recordings and the local activity of cells we used a large-scale network thalamocortical model to compute simultaneous LFP, transmembrane currents, and spiking activity. We used this model to study the information contained in independent components obtained from the reconstructed Current Source Density (CSD), which smooths transmembrane currents, decomposed further with Independent Component Analysis (ICA). We found that the three most robust components matched well the activity of two dominating cell populations: superior pyramidal cells in layer 2/3 (rhythmic spiking) and tufted pyramids from layer 5 (intrinsically bursting). The pyramidal population from layer 2/3 could not be well described as a product of spatial profile and temporal activation, but by a sum of two such products which we recovered in two of the ICA components in our analysis, which correspond to the two first principal components of PCA decomposition of layer 2/3 population activity. At low noise one more cell population could be discerned but it is unlikely that it could be recovered in experiment given typical noise ranges. PMID:25153730
Dykstra, Andrew R.; Halgren, Eric; Thesen, Thomas; Carlson, Chad E.; Doyle, Werner; Madsen, Joseph R.; Eskandar, Emad N.; Cash, Sydney S.
2011-01-01
The auditory system must constantly decompose the complex mixture of sound arriving at the ear into perceptually independent streams constituting accurate representations of individual sources in the acoustic environment. How the brain accomplishes this task is not well understood. The present study combined a classic behavioral paradigm with direct cortical recordings from neurosurgical patients with epilepsy in order to further describe the neural correlates of auditory streaming. Participants listened to sequences of pure tones alternating in frequency and indicated whether they heard one or two “streams.” The intracranial EEG was simultaneously recorded from sub-dural electrodes placed over temporal, frontal, and parietal cortex. Like healthy subjects, patients heard one stream when the frequency separation between tones was small and two when it was large. Robust evoked-potential correlates of frequency separation were observed over widespread brain areas. Waveform morphology was highly variable across individual electrode sites both within and across gross brain regions. Surprisingly, few evoked-potential correlates of perceptual organization were observed after controlling for physical stimulus differences. The results indicate that the cortical areas engaged during the streaming task are more complex and widespread than has been demonstrated by previous work, and that, by-and-large, correlates of bistability during streaming are probably located on a spatial scale not assessed – or in a brain area not examined – by the present study. PMID:21886615
Micro-crack detection in CFRP laminates using coda wave NDE
NASA Astrophysics Data System (ADS)
Dayal, Vinay; Barnard, Dan; Livings, Richard
2018-04-01
Coda Waves or diffuse field has been touted to be an NDE method that does not require the damage to be in the path of the ultrasound. The object is insonified with ultrasound and instead of catching the first or second arrival, the waves are allowed to bounce multiple times. This aspect is very important in structural health monitoring (SHM) where the potential damage development location is unknown. Researchers have used Coda waves in the interrogation of seismic damage and metallic materials. In this work we have applied the technique to composite material, and present the results herein. The coda wave and acoustic emission signals are recorded simultaneously and corroborated. Development of small incipient damage in the form of micro-crack and their detection is the objective of this work.
Birch, A A; Eynon, C A; Schley, D
2006-01-01
The objective of this report is to highlight the potential for false pressure measurements from systems that combine intracranial pressure (ICP) measurement and ventricular drainage. If the ports of the drain become blocked to the extent that they present a high resistance to cerebrospinal fluid flow, then a significant pressure gradient between the inside and outside of the catheter may be established. Thus, any intracatheter transducer will faithfully record a pressure much lower than true ICP. This holds true for catheter-tip transducers when the transducer lies inside the catheter. In the absence of flow, however, pressures will equalize; therefore, accurate measurements may be taken if the drain is temporarily closed. We model this situation and provide simulations of expected measurements in such situations; these compare well to observed clinical readings.
Korczowski, L; Congedo, M; Jutten, C
2015-08-01
The classification of electroencephalographic (EEG) data recorded from multiple users simultaneously is an important challenge in the field of Brain-Computer Interface (BCI). In this paper we compare different approaches for classification of single-trials Event-Related Potential (ERP) on two subjects playing a collaborative BCI game. The minimum distance to mean (MDM) classifier in a Riemannian framework is extended to use the diversity of the inter-subjects spatio-temporal statistics (MDM-hyper) or to merge multiple classifiers (MDM-multi). We show that both these classifiers outperform significantly the mean performance of the two users and analogous classifiers based on the step-wise linear discriminant analysis. More importantly, the MDM-multi outperforms the performance of the best player within the pair.
Rojas-Líbano, Daniel; Frederick, Donald E.; Egaña, José I.; Kay, Leslie M.
2014-01-01
Sensory-motor relationships are part of the normal operation of sensory systems. Sensing occurs in the context of active sensor movement, which in turn influences sensory processing. We address such a process in the rat olfactory system. Through recordings of the diaphragm electromyogram (EMG), we monitored the motor output of the respiratory circuit involved in sniffing behavior, simultaneously with the local field potential (LFP) of the olfactory bulb (OB) in rats moving freely in a familiar environment, where they display a wide range of respiratory frequencies. We show that the OB LFP represents the sniff cycle with high reliability at every sniff frequency and can therefore be used to study the neural representation of motor drive in a sensory cortex. PMID:24966821
Auditory stream segregation in children with Asperger syndrome
Lepistö, T.; Kuitunen, A.; Sussman, E.; Saalasti, S.; Jansson-Verkasalo, E.; Nieminen-von Wendt, T.; Kujala, T.
2009-01-01
Individuals with Asperger syndrome (AS) often have difficulties in perceiving speech in noisy environments. The present study investigated whether this might be explained by deficient auditory stream segregation ability, that is, by a more basic difficulty in separating simultaneous sound sources from each other. To this end, auditory event-related brain potentials were recorded from a group of school-aged children with AS and a group of age-matched controls using a paradigm specifically developed for studying stream segregation. Differences in the amplitudes of ERP components were found between groups only in the stream segregation conditions and not for simple feature discrimination. The results indicated that children with AS have difficulties in segregating concurrent sound streams, which ultimately may contribute to the difficulties in speech-in-noise perception. PMID:19751798
Fauser, Susanne; Schulze-Bonhage, Andreas
2006-01-01
Hippocampal sclerosis is often associated with macroscopic or microscopic dysplasia in the temporal neocortex (TN). The relevance of such a dual pathology with regard to epileptogenesis is unclear. This study investigates the role of both pathologies in the generation of ictal and interictal activity. Ictal (113 seizures) and interictal data from invasive EEG recordings with simultaneous depth electrodes in the hippocampus and subdural electrodes over the TN were analysed retrospectively in 12 patients with variable degrees of hippocampal sclerosis and different types of histologically confirmed temporal cortical dysplasia [all male, age at epilepsy onset <1-29 years (mean 9.6 years), age when invasive recordings were performed 6-50 years (mean 28.2 years)]. Of the seizures 41.3% arose from the amygdala/hippocampus complex (AHC), 34.7% from the TN, 22% were simultaneously recorded from AHC and TN (indeterminate seizure onset), and 2% from other regions. In three patients, seizure onset was recorded only from the AHC. In patients with severe hippocampal sclerosis only 12% of the seizures arose from the TN, whereas in patients with mild hippocampal sclerosis 58% arose from the TN. The type of cortical dysplasia, however, did not predict seizure onset in the AHC or TN. Propagation time from the TN to the AHC tended to be shorter (mean 7.4 s) than vice versa (mean 13.7 s). The most common initial ictal patterns in the AHC were rhythmic beta activity (<25 Hz) and repetitive sharp waves, and in the TN were fast activity (>25 Hz) and repetitive sharp waves. The interictal patterns over the TN were similar to those seen over extratemporal focal cortical dysplasias. Simultaneous recordings from the hippocampus and the TN strongly suggest that dysplastic tissue in the TN is often epileptogenic. The quantitative contribution of the hippocampus to seizure generation corresponded with the degree of hippocampal pathology, whereas different subtypes of cortical dysplasia did not affect its relative contribution to seizure generation and even mild forms of dysplasia were epileptogenic.
Simultaneity, relativity and conventionality
NASA Astrophysics Data System (ADS)
Janis, Allen I.
2008-01-01
The view of simultaneity presented by Max Jammer is almost breathtaking, encompassing, as the book's subtitle suggests, the period from antiquity to the 21st century. Many interesting things are to be found along the way. For example, what Jammer (p. 49) says "may well be regarded as probably the earliest recorded example of an operational definition of distant simultaneity" is due to St. Augustine (in his Confessions, written in 397 A.D.; for a modern translation, see Augustine, 2006). He was arguing against astrology by presenting the story of two women, one rich and one poor, who gave birth simultaneously. Although the two children thus had precisely the same horoscopes, their lives followed quite different courses. And how was it determined that the births were simultaneous? A messenger went from each birth site to the other, leaving the instant the child was born (and, presumably, traveling with equal speeds). Since the messengers met at the midpoint between the locations of the two births, the births must have been simultaneous. This is, of course, quite analogous to Albert Einstein's definition of simultaneity (given more than 1500 years later), which will be discussed in Section 2.1.
Rundshagen, I; Kochs, E; Bischoff, P; Schulte am Esch, J
1997-10-01
Evoked potentials are used for intraoperative monitoring to assess changes of cerebral function. This prospective randomised study assesses the influence of surgical stimulation on midlatency components of somatosensory (SEPs) and auditory evoked potentials (AEPs) in anaesthetised patients. After approval of the Ethics Committee and written informed consent 36 orthopaedic patients (34 +/- 15 y, 73 +/- 14 kg. 1.71 +/- 0.07 m, ASA I-II) were randomly included in the study. Anaesthesia was induced with 1.5 micrograms/kg fentanyl, 0.3 mg/kg etomidate and 0.1 mg/kg vecuronium. The lungs were intubated and patients normoventilated in steady state anaesthesia with isoflurane (end-tidal 0.6%) and 66% nitrous oxide. 18 patients (group 1) were assigned to the SEP group: median nerve stimulation, recording at Erb, C 6 and the contralateral somatosensory cortex (N20, P25, N35) vs Fz. AEPs were recorded in group 2 (n = 18): binaural stimulation, recording at Cz versus linked mastoid (V, Na, Pa, Nb). Recordings were performed during 30 min before the start of surgery (baseline: BL), at skin incision (SURG1) and at the preparation of the periost (SURG2). Heart rate, mean arterial blood pressure, oxygen saturation, endtidal pCO2 and isoflurane (PetISO) concentrations were registered simultaneously. Data were analysed by one-way analysis of variance. Post hoc comparison were made by Mann-Whitney U-Wilcoxon Rank Sum Test with p < 0.05 significant. During steady state isoflurane anaesthesia surgical stimulation (SURG2) resulted in significant increases of N20 P25 amplitudes compared with BL (BL: 1.4 +/- 0.7 microV; SURG2: 2.0 +/- 0.8 microV; p < 0.05). Latencies of SEPs and midlatency components of AEPs did not change over time. There were no differences in autonomic parameters between SEP and AEP groups. MAP increased from 76 +/- 6 mmHg at BL to 93 +/- 16 mmHg at SURG1 and 96 +/- 17 mmHg at SURG2 (n = 36; p < 0.05). HR increased from BL (60 +/- 8 beats/min) to SURG2 (76 +/- 12 beats/min). Increases of amplitudes of midlatency SEP amplitudes indicate increased nociceptive signal transmission which is not blunted by isoflurane-nitrous oxide anaesthesia. In contrast, unchanged AEPs indicate adequate levels of the hypnotic components of anaesthesia.
Dragas, Jelena; Jäckel, David; Hierlemann, Andreas; Franke, Felix
2017-01-01
Reliable real-time low-latency spike sorting with large data throughput is essential for studies of neural network dynamics and for brain-machine interfaces (BMIs), in which the stimulation of neural networks is based on the networks' most recent activity. However, the majority of existing multi-electrode spike-sorting algorithms are unsuited for processing high quantities of simultaneously recorded data. Recording from large neuronal networks using large high-density electrode sets (thousands of electrodes) imposes high demands on the data-processing hardware regarding computational complexity and data transmission bandwidth; this, in turn, entails demanding requirements in terms of chip area, memory resources and processing latency. This paper presents computational complexity optimization techniques, which facilitate the use of spike-sorting algorithms in large multi-electrode-based recording systems. The techniques are then applied to a previously published algorithm, on its own, unsuited for large electrode set recordings. Further, a real-time low-latency high-performance VLSI hardware architecture of the modified algorithm is presented, featuring a folded structure capable of processing the activity of hundreds of neurons simultaneously. The hardware is reconfigurable “on-the-fly” and adaptable to the nonstationarities of neuronal recordings. By transmitting exclusively spike time stamps and/or spike waveforms, its real-time processing offers the possibility of data bandwidth and data storage reduction. PMID:25415989
Dragas, Jelena; Jackel, David; Hierlemann, Andreas; Franke, Felix
2015-03-01
Reliable real-time low-latency spike sorting with large data throughput is essential for studies of neural network dynamics and for brain-machine interfaces (BMIs), in which the stimulation of neural networks is based on the networks' most recent activity. However, the majority of existing multi-electrode spike-sorting algorithms are unsuited for processing high quantities of simultaneously recorded data. Recording from large neuronal networks using large high-density electrode sets (thousands of electrodes) imposes high demands on the data-processing hardware regarding computational complexity and data transmission bandwidth; this, in turn, entails demanding requirements in terms of chip area, memory resources and processing latency. This paper presents computational complexity optimization techniques, which facilitate the use of spike-sorting algorithms in large multi-electrode-based recording systems. The techniques are then applied to a previously published algorithm, on its own, unsuited for large electrode set recordings. Further, a real-time low-latency high-performance VLSI hardware architecture of the modified algorithm is presented, featuring a folded structure capable of processing the activity of hundreds of neurons simultaneously. The hardware is reconfigurable “on-the-fly” and adaptable to the nonstationarities of neuronal recordings. By transmitting exclusively spike time stamps and/or spike waveforms, its real-time processing offers the possibility of data bandwidth and data storage reduction.
Zhao, Jing; Kwok, Rosa K. W.; Liu, Menglian; Liu, Hanlong; Huang, Chen
2017-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency. PMID:28119663
Zhao, Jing; Kwok, Rosa K W; Liu, Menglian; Liu, Hanlong; Huang, Chen
2016-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency.
A Concealed Information Test with multimodal measurement.
Ambach, Wolfgang; Bursch, Stephanie; Stark, Rudolf; Vaitl, Dieter
2010-03-01
A Concealed Information Test (CIT) investigates differential physiological responses to deed-related (probe) vs. irrelevant items. The present study focused on the detection of concealed information using simultaneous recordings of autonomic and brain electrical measures. As a secondary issue, verbal and pictorial presentations were compared with respect to their influence on the recorded measures. Thirty-one participants underwent a mock-crime scenario with a combined verbal and pictorial presentation of nine items. The subsequent CIT, designed with respect to event-related potential (ERP) measurement, used a 3-3.5s interstimulus interval. The item presentation modality, i.e. pictures or written words, was varied between subjects; no response was required from the participants. In addition to electroencephalogram (EEG), electrodermal activity (EDA), electrocardiogram (ECG), respiratory activity, and finger plethysmogram were recorded. A significant probe-vs.-irrelevant effect was found for each of the measures. Compared to sole ERP measurement, the combination of ERP and EDA yielded incremental information for detecting concealed information. Although, EDA per se did not reach the predictive value known from studies primarily designed for peripheral physiological measurement. Presentation modality neither influenced the detection accuracy for autonomic measures nor EEG measures; this underpins the equivalence of verbal and pictorial item presentation in a CIT, regardless of the physiological measures recorded. Future studies should further clarify whether the incremental validity observed in the present study reflects a differential sensitivity of ERP and EDA to different sub-processes in a CIT. Copyright 2009 Elsevier B.V. All rights reserved.
Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control
NASA Astrophysics Data System (ADS)
Bercich, Rebecca A.; Wang, Zhi; Mei, Henry; Hammer, Lauren H.; Seburn, Kevin L.; Hargrove, Levi J.; Irazoqui, Pedro P.
2016-08-01
Objective. A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. Approach. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. Main results. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject’s forearm. Significance. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device’s programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system’s functional protocol for patient- or algorithm-specific needs.
Quantifying losses and thermodynamic limits in nanophotonic solar cells
NASA Astrophysics Data System (ADS)
Mann, Sander A.; Oener, Sebastian Z.; Cavalli, Alessandro; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.; Garnett, Erik C.
2016-12-01
Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly and the record open-circuit voltages are becoming comparable to the records for planar equivalents. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).
Karakaş, H M; Karakaş, S; Ozkan Ceylan, A; Tali, E T
2009-08-01
Event-related potentials (ERPs) have high temporal resolution, but insufficient spatial resolution; the converse is true for the functional imaging techniques. The purpose of the study was to test the utility of a multimodal EEG/ERP-MRI technique which combines electroencephalography (EEG) and magnetic resonance imaging (MRI) for a simultaneously high temporal and spatial resolution. The sample consisted of 32 healthy young adults of both sexes. Auditory stimuli were delivered according to the active and passive oddball paradigms in the MRI environment (MRI-e) and in the standard conditions of the electrophysiology laboratory environment (Lab-e). Tasks were presented in a fixed order. Participants were exposed to the recording environments in a counterbalanced order. EEG data were preprocessed for MRI-related artifacts. Source localization was made using a current density reconstruction technique. The ERP waveforms for the MRI-e were morphologically similar to those for the Lab-e. The effect of the recording environment, experimental paradigm and electrode location were analyzed using a 2x2x3 analysis of variance for repeated measures. The ERP components in the two environments showed parametric variations and characteristic topographical distributions. The calculated sources were in line with the related literature. The findings indicated effortful cognitive processing in MRI-e. The study provided preliminary data on the feasibility of the multimodal EEG/ERP-MRI technique. It also indicated lines of research that are to be pursued for a decisive testing of this technique and its implementation to clinical practice.
Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison
NASA Astrophysics Data System (ADS)
Bleichner, Martin G.; Mirkovic, Bojana; Debener, Stefan
2016-12-01
Objective. This study presents a direct comparison of a classical EEG cap setup with a new around-the-ear electrode array (cEEGrid) to gain a better understanding of the potential of ear-centered EEG. Approach. Concurrent EEG was recorded from a classical scalp EEG cap and two cEEGrids that were placed around the left and the right ear. Twenty participants performed a spatial auditory attention task in which three sound streams were presented simultaneously. The sound streams were three seconds long and differed in the direction of origin (front, left, right) and the number of beats (3, 4, 5 respectively), as well as the timbre and pitch. The participants had to attend to either the left or the right sound stream. Main results. We found clear attention modulated ERP effects reflecting the attended sound stream for both electrode setups, which agreed in morphology and effect size. A single-trial template matching classification showed that the direction of attention could be decoded significantly above chance (50%) for at least 16 out of 20 participants for both systems. The comparably high classification results of the single trial analysis underline the quality of the signal recorded with the cEEGrids. Significance. These findings are further evidence for the feasibility of around the-ear EEG recordings and demonstrate that well described ERPs can be measured. We conclude that concealed behind-the-ear EEG recordings can be an alternative to classical cap EEG acquisition for auditory attention monitoring.
Fukuike, C; Kodama, N; Manda, Y; Hashimoto, Y; Sugimoto, K; Hirata, A; Pan, Q; Maeda, N; Minagi, S
2015-05-01
The wave analysis of swallowing sounds has been receiving attention because the recording process is easy and non-invasive. However, up until now, an expert has been needed to visually examine the entire recorded wave to distinguish swallowing from other sounds. The purpose of this study was to establish a methodology to automatically distinguish the sound of swallowing from sound data recorded during a meal in the presence of everyday ambient sound. Seven healthy participants (mean age: 26·7 ± 1·3 years) participated in this study. A laryngeal microphone and a condenser microphone attached to the nostril were used for simultaneous recording. Recoding took place while participants were taking a meal and talking with a conversational partner. Participants were instructed to step on a foot pedal trigger switch when they swallowed, representing self-enumeration of swallowing, and also to achieve six additional noise-making tasks during the meal in a randomised manner. The automated analysis system correctly detected 342 out of the 352 self-enumerated swallowing events (sensitivity: 97·2%) and 479 out of the 503 semblable wave periods of swallowing (specificity: 95·2%). In this study, the automated detection system for swallowing sounds using a nostril microphone was able to detect the swallowing event with high sensitivity and specificity even under the conditions of daily life, thus showing potential utility in the diagnosis or screening of dysphagic patients in future studies. © 2014 John Wiley & Sons Ltd.
Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison.
Bleichner, Martin G; Mirkovic, Bojana; Debener, Stefan
2016-12-01
This study presents a direct comparison of a classical EEG cap setup with a new around-the-ear electrode array (cEEGrid) to gain a better understanding of the potential of ear-centered EEG. Concurrent EEG was recorded from a classical scalp EEG cap and two cEEGrids that were placed around the left and the right ear. Twenty participants performed a spatial auditory attention task in which three sound streams were presented simultaneously. The sound streams were three seconds long and differed in the direction of origin (front, left, right) and the number of beats (3, 4, 5 respectively), as well as the timbre and pitch. The participants had to attend to either the left or the right sound stream. We found clear attention modulated ERP effects reflecting the attended sound stream for both electrode setups, which agreed in morphology and effect size. A single-trial template matching classification showed that the direction of attention could be decoded significantly above chance (50%) for at least 16 out of 20 participants for both systems. The comparably high classification results of the single trial analysis underline the quality of the signal recorded with the cEEGrids. These findings are further evidence for the feasibility of around the-ear EEG recordings and demonstrate that well described ERPs can be measured. We conclude that concealed behind-the-ear EEG recordings can be an alternative to classical cap EEG acquisition for auditory attention monitoring.
Face-off: A new identification procedure for child eyewitnesses.
Price, Heather L; Fitzgerald, Ryan J
2016-09-01
In 2 experiments, we introduce a new "face-off" procedure for child eyewitness identifications. The new procedure, which is premised on reducing the stimulus set size, was compared with the showup and simultaneous procedures in Experiment 1 and with modified versions of the simultaneous and elimination procedures in Experiment 2. Several benefits of the face-off procedure were observed: it was significantly more diagnostic than the showup procedure; it led to significantly more correct rejections of target-absent lineups than the simultaneous procedures in both experiments, and it led to greater information gain than the modified elimination and simultaneous procedures. The face-off procedure led to consistently more conservative responding than the simultaneous procedures in both experiments. Given the commonly cited concern that children are too lenient in their decision criteria for identification tasks, the face-off procedure may offer a concrete technique to reduce children's high choosing rates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Middlebrooks, Catherine D; Castel, Alan D
2018-05-01
Learners make a number of decisions when attempting to study efficiently: they must choose which information to study, for how long to study it, and whether to restudy it later. The current experiments examine whether documented impairments to self-regulated learning when studying information sequentially, as opposed to simultaneously, extend to the learning of and memory for valuable information. In Experiment 1, participants studied lists of words ranging in value from 1-10 points sequentially or simultaneously at a preset presentation rate; in Experiment 2, study was self-paced and participants could choose to restudy. Although participants prioritized high-value over low-value information, irrespective of presentation, those who studied the items simultaneously demonstrated superior value-based prioritization with respect to recall, study selections, and self-pacing. The results of the present experiments support the theory that devising, maintaining, and executing efficient study agendas is inherently different under sequential formatting than simultaneous. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Significant events in low-level flow conditions hazardous to aircraft
NASA Technical Reports Server (NTRS)
Alexander, M. B.; Camp, D. W.
1983-01-01
Atmospheric parameters recorded during high surface winds are analyzed to determine magnitude, frequency, duration, and simultaneity of occurrence of low level flow conditions known to be hazardous to the ascent and descent of conventional aircraft and the space shuttle. Graphic and tabular presentations of mean and extreme values and simultaneous occurrences of turbulence (gustiness and a gust factor), wind shear (speed and direction), and vertical motion (updrafts and downdrafts), along with associated temperature inversions are included as function of tower height, layer and/or distance for six 5 sec intervals (one interval every 100 sec) of parameters sampled simultaneously at the rate of 10 speeds, directions and temperatures per second during an approximately 10 min period.
NASA Astrophysics Data System (ADS)
Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus
2017-10-01
An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.
NASA Astrophysics Data System (ADS)
Wu, Guanhao; Yang, Yan; Zeng, Lijiang
2006-11-01
A novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish is described. Spontaneous and continuous swimming behaviors of a variegated carp (Cyprinus carpio) are recorded by two cameras mounted on a translation stage which is controlled to track the fish. By processing the images recorded during tracking, the detailed kinematics based on calculated midlines and quantitative analysis of the flow in the wake during a low-speed turn and burst-and-coast swimming are revealed. We also draw the trajectory of the fish during a continuous swimming bout containing several moderate maneuvers. The results prove that our method is effective for studying maneuvers of fish both from kinematic and hydrodynamic viewpoints.
A User-Configurable Headstage for Multimodality Neuromonitoring in Freely Moving Rats
Limnuson, Kanokwan; Narayan, Raj K.; Chiluwal, Amrit; Golanov, Eugene V.; Bouton, Chad E.; Li, Chunyan
2016-01-01
Multimodal monitoring of brain activity, physiology, and neurochemistry is an important approach to gain insight into brain function, modulation, and pathology. With recent progress in micro- and nanotechnology, micro-nano-implants have become important catalysts in advancing brain research. However, to date, only a limited number of brain parameters have been measured simultaneously in awake animals in spite of significant recent progress in sensor technology. Here we have provided a cost and time effective approach to designing a headstage to conduct a multimodality brain monitoring in freely moving animals. To demonstrate this method, we have designed a user-configurable headstage for our micromachined multimodal neural probe. The headstage can reliably record direct-current electrocorticography (DC-ECoG), brain oxygen tension (PbrO2), cortical temperature, and regional cerebral blood flow (rCBF) simultaneously without significant signal crosstalk or movement artifacts for 72 h. Even in a noisy environment, it can record low-level neural signals with high quality. Moreover, it can easily interface with signal conditioning circuits that have high power consumption and are difficult to miniaturize. To the best of our knowledge, this is the first time where multiple physiological, biochemical, and electrophysiological cerebral variables have been simultaneously recorded from freely moving rats. We anticipate that the developed system will aid in gaining further insight into not only normal cerebral functioning but also pathophysiology of conditions such as epilepsy, stroke, and traumatic brain injury. PMID:27594826
Constructing Carbon Fiber Motion-Detection Loops for Simultaneous EEG–fMRI
Abbott, David F.; Masterton, Richard A. J.; Archer, John S.; Fleming, Steven W.; Warren, Aaron E. L.; Jackson, Graeme D.
2015-01-01
One of the most significant impediments to high-quality EEG recorded in an MRI scanner is subject motion. Availability of motion artifact sensors can substantially improve the quality of the recorded EEG. In the study of epilepsy, it can also dramatically increase the confidence that one has in discriminating true epileptiform activity from artifact. This is due both to the reduction in artifact and the ability to visually inspect the motion sensor signals when reading the EEG, revealing whether or not head motion is present. We have previously described the use of carbon fiber loops for detecting and correcting artifact in EEG acquired simultaneously with MRI. The loops, attached to the subject’s head, are electrically insulated from the scalp. They provide a simple and direct measure of specific artifact that is contaminating the EEG, including both subject motion and residual artifact arising from magnetic field gradients applied during MRI. Our previous implementation was used together with a custom-built EEG–fMRI system that differs substantially from current commercially available EEG–fMRI systems. The present technical note extends this work, describing in more detail how to construct the carbon fiber motion-detection loops, and how to interface them with a commercially available simultaneous EEG–fMRI system. We hope that the information provided may help those wishing to utilize a motion-detection/correction solution to improve the quality of EEG recorded within an MRI scanner. PMID:25601852
Buckner, Samuel L; Jenkins, Nathaniel D M; Costa, Pablo B; Ryan, Eric D; Herda, Trent J; Cramer, Joel T
2015-05-01
The purpose of the present study was to compare the passive angle-torque curves and the passive stiffness (PS, N m °(-)(1)) values recorded simultaneously from a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments in vivo. Nine healthy men (mean ± SD age = 21.4 ± 1.6 years) completed stretch tolerance assessments on a custom-built apparatus where passive torque was measured simultaneously from an isokinetic dynamometer and a load cell. Passive torque values that corresponded with the last 10° of dorsiflexion, verified by surface electromyographic amplitude, were analyzed for each device (θ1, θ2, θ3, …, θ10). Passive torque values measured with the load cell were greater (p ≤ 0.05) than the dynamometer torque values for θ4 through θ10. There were more statistical differentiations among joint angles for passive torque measured by the load cell, and the load cell measured a greater (p ≤ 0.01) increase in passive torque and PS than the isokinetic dynamometer. These findings suggested that when examining the angle-torque curves from passive dorsiflexion stretch tolerance tests, a load cell placed under the distal end of the foot may be more sensitive than the torque recorded from an isokinetic dynamometer. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Using Groundwater physiochemical properties for assessing potential earthquake precursor
NASA Astrophysics Data System (ADS)
Inbar, Nimrod; Reuveni, Yuval; Anker, Yaakov; Guttman, Joseph
2017-04-01
Worldwide studies reports pre-seismic, co-seismic and post-seismic reaction of groundwater to earthquakes. The unique hydrological and geological situation in Israel resulted in relatively deep water wells which are located close to seismically active tectonic plate boundary. Moreover, the Israeli experience show that anomalies may occurs 60-90 minutes prior to the seismic event (Guttman et al., 2005; Anker et al., 2016). Here, we try to assess the possible connection between changes in physiochemical parameters of groundwater and earthquakes along the Dead Sea Transform (DST) region. A designated network of monitoring stations was installed in MEKOROT abandoned deep water wells, continuously measuring water table, conductivity and temperature at a sampling rate of 1 minute. Preliminary analysis compares changes in the measured parameters with rain events, tidal effects and earthquake occurrences of all measured magnitudes (>2.5Md) at monitoring area surroundings. The acquired data set over one year recorded simultaneous abrupt changes in several wells which seems disconnected from standard hydrological occurrences such as precipitation, abstraction or tidal effects. At this stage, our research aims to determine and rationalize a baseline for "normal response" of the measured parameters to external occurrences while isolating those cases in which "deviations" from that base line is recorded. We apply several analysis techniques both in time and frequency domain with the measured signal as well as statistical analysis of several measured earthquake parameters, which indicate potential correlations between earthquakes occurrences and the measured signal. We show that at least in one seismic event (5.1 Md) a potential precursor may have been recorded. Reference: Anker, Y., N. Inbar, A. Y. Dror, Y. Reuveni, J. Guttman, A. Flexer, (2016). Groundwater response to ground movements, as a tool for earthquakes monitoring and a possible precursor. 8th International Conference on Urban Planning and Transportation. Guttman, J., Flexer, A. & Yellin-Dror, A. (2005). Water level changes in wells - a predictor for earthquakes? IAHS Publ. Vol. 303, pp. 1-5.
Whitmore, Nathan W; Lin, Shih-Chieh
2016-05-15
Local field potentials (LFPs) are commonly thought to reflect the aggregate dynamics in local neural circuits around recording electrodes. However, we show that when LFPs are recorded in awake behaving animals against a distal reference on the skull as commonly practiced, LFPs are significantly contaminated by non-local and non-neural sources arising from the reference electrode and from movement-related noise. In a data set with simultaneously recorded LFPs and electroencephalograms (EEGs) across multiple brain regions while rats perform an auditory oddball task, we used independent component analysis (ICA) to identify signals arising from electrical reference and from volume-conducted noise based on their distributed spatial pattern across multiple electrodes and distinct power spectral features. These sources of distal electrical signals collectively accounted for 23-77% of total variance in unprocessed LFPs, as well as most of the gamma oscillation responses to the target stimulus in EEGs. Gamma oscillation power was concentrated in volume-conducted noise and was tightly coupled with the onset of licking behavior, suggesting a likely origin of muscle activity associated with body movement or orofacial movement. The removal of distal signal contamination also selectively reduced correlations of LFP/EEG signals between distant brain regions but not within the same region. Finally, the removal of contamination from distal electrical signals preserved an event-related potential (ERP) response to auditory stimuli in the frontal cortex and also increased the coupling between the frontal ERP amplitude and neuronal activity in the basal forebrain, supporting the conclusion that removing distal electrical signals unmasked local activity within LFPs. Together, these results highlight the significant contamination of LFPs by distal electrical signals and caution against the straightforward interpretation of unprocessed LFPs. Our results provide a principled approach to identify and remove such contamination to unmask local LFPs. Published by Elsevier Inc.
Whitmore, Nathan W.; Lin, Shih-Chieh
2016-01-01
Local field potentials (LFPs) are commonly thought to reflect the aggregate dynamics in local neural circuits around recording electrodes. However, we show that when LFPs are recorded in awake behaving animals against a distal reference on the skull as commonly practiced, LFPs are significantly contaminated by non-local and non-neural sources arising from the reference electrode and from movement-related noise. In a data set with simultaneously recorded LFPs and electroencephalograms (EEGs) across multiple brain regions while rats perform an auditory oddball task, we used independent component analysis (ICA) to identify signals arising from electrical reference and from volume-conducted noise based on their distributed spatial pattern across multiple electrodes and distinct power spectral features. These sources of distal electrical signals collectively accounted for 23–77% of total variance in unprocessed LFPs, as well as most of the gamma oscillation responses to the target stimulus in EEGs. Gamma oscillation power was concentrated in volume-conducted noise and was tightly coupled with the onset of licking behavior, suggesting a likely origin of muscle activity associated with body movement or orofacial movement. The removal of distal signal contamination also selectively reduced correlations of LFP/EEG signals between distant brain regions but not within the same region. Finally, the removal of contamination from distal electrical signals preserved an event-related potential (ERP) response to auditory stimuli in the frontal cortex and also increased the coupling between the frontal ERP amplitude and neuronal activity in the basal forebrain, supporting the conclusion that removing distal electrical signals unmasked local activity within LFPs. Together, these results highlight the significant contamination of LFPs by distal electrical signals and caution against the straightforward interpretation of unprocessed LFPs. Our results provide a principled approach to identify and remove such contamination to unmask local LFPs. PMID:26899209