Science.gov

Sample records for potentiation synaptic transmission

  1. Astrocytes Potentiate Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Nadkarni, Suhita

    2005-03-01

    A recent experimental study shows that astrocytes, a subtype of glia, are able to influence the spontaneous activity in the brain via calcium dependent glutamate release. We model the coupling mechanism between an astrocyte and a neuron based on experimental data. This coupling is dynamic and bi-directional, such that the modulations in intracellular calcium concentrations in astrocytes affect neuronal excitability and vice versa via a glutamatergic pathway. We demonstrate through simple neural-glial circuits that increases in the intracellular calcium concentration in astrocytes nearby can enhance spontaneous activity in a neuron, a significant mechanism said to be involved in plasticity and learning. The pattern of this marked increase in spontaneous firing rate in our model quantitatively follows that observed in the experiment. Further, depending on the type of synaptic connections diverging from the neuron, it can either inhibit or excite the ensuing dynamics and potentiate synaptic transmission, thus reinstating the integral role played by astrocytes in normal neuronal dynamics.

  2. Leptin potentiates GABAergic synaptic transmission in the developing rodent hippocampus

    PubMed Central

    Guimond, Damien; Diabira, Diabe; Porcher, Christophe; Bader, Francesca; Ferrand, Nadine; Zhu, Mingyan; Appleyard, Suzanne M.; Wayman, Gary A.; Gaiarsa, Jean-Luc

    2014-01-01

    It is becoming increasingly clear that leptin is not only a hormone regulating energy homeostasis but also a neurotrophic factor impacting a number of brain regions, including the hippocampus. Although leptin promotes the development of GABAergic transmission in the hypothalamus, little is known about its action on the GABAergic system in the hippocampus. Here we show that leptin modulates GABAergic transmission onto developing CA3 pyramidal cells of newborn rats. Specifically, leptin induces a long-lasting potentiation (LLP-GABAA) of miniature GABAA receptor-mediated postsynaptic current (GABAA-PSC) frequency. Leptin also increases the amplitude of evoked GABAA-PSCs in a subset of neurons along with a decrease in the coefficient of variation and no change in the paired-pulse ratio, pointing to an increased recruitment of functional synapses. Adding pharmacological blockers to the recording pipette showed that the leptin-induced LLP-GABAA requires postsynaptic calcium released from internal stores, as well as postsynaptic MAPK/ERK kinases 1 and/or 2 (MEK1/2), phosphoinositide 3 kinase (PI3K) and calcium-calmodulin kinase kinase (CaMKK). Finally, study of CA3 pyramidal cells in leptin-deficient ob/ob mice revealed a reduction in the basal frequency of miniature GABAA-PSCs compared to wild type littermates. In addition, presynaptic GAD65 immunostaining was reduced in the CA3 stratum pyramidale of mutant animals, both results converging to suggest a decreased number of functional GABAergic synapses in ob/ob mice. Overall, these results show that leptin potentiates and promotes the development of GABAergic synaptic transmission in the developing hippocampus likely via an increase in the number of functional synapses, and provide insights into the intracellular pathways mediating this effect. This study further extends the scope of leptin's neurotrophic action to a key regulator of hippocampal development and function, namely GABAergic transmission. PMID:25177272

  3. Two Distinct Mechanisms Mediate Potentiating Effects of Depolarization on Synaptic Transmission

    PubMed Central

    Ludwar, Bjoern Ch.; Evans, Colin G.; Jing, Jian; Cropper, Elizabeth C.

    2009-01-01

    Two distinct mechanisms mediate potentiating effects of depolarization on synaptic transmission. Recently there has been renewed interest in a type of plasticity in which a neuron's somatic membrane potential influences synaptic transmission. We study mechanisms that mediate this type of control at a synapse between a mechanoafferent, B21, and B8, a motor neuron that receives chemical synaptic input. Previously we demonstrated that the somatic membrane potential determines spike propagation within B21. Namely, B21 must be centrally depolarized if spikes are to propagate to an output process. We now demonstrate that this will occur with central depolarizations that are only a few millivolts. Depolarizations of this magnitude are not, however, sufficient to induce synaptic transmission to B8. B21-induced postsynaptic potentials (PSPs) are only observed if B21 is centrally depolarized by ≥10 mV. Larger depolarizations have a second impact on B21. They induce graded changes in the baseline intracellular calcium concentration that are virtually essential for the induction of chemical synaptic transmission. During motor programs, subthreshold depolarizations that increase calcium concentrations are observed during one of the two antagonistic phases of rhythmic activity. Chemical synaptic transmission from B21 to B8 is, therefore, likely to occur in a phase-dependent manner. Other neurons that receive mechanoafferent input are electrically coupled to B21. Differential control of spike propagation and chemical synaptic transmission may, therefore, represent a mechanism that permits selective control of afferent transmission to different types of neurons contacted by B21. Afferent transmission to neurons receiving chemical synaptic input will be phase specific, whereas transmission to electrically coupled followers will be phase independent. PMID:19605611

  4. Strontium supports synaptic transmission and long-lasting potentiation in the hippocampus.

    PubMed

    Wigström, H; Swann, J W

    1980-07-21

    (1) Synaptic transmission was studied in isolated transverse hippocampal slices from guinea pigs. Extracellular evoked potentials were recorded in the region CA1. (2) Changing the normal perfusion solution (containing 2 mM Ca2+) to calcium-free Ringer abolished synaptic transmission which was again restored by adding strontium. A synaptic efficacy of 25--50% ofn normal was obtained for 10 mM Sr2+. (3) Two different synaptic inputs to CA1 pyramidal cells were tested with respect to their ability to produce long-lasting synaptic potentiation after tetanization in strontium Ringer. Following a brief tetanus the field EPSP and, especially, the population spike were greatly enhanced. (4) The potentiation so produced was similar to the long-lasting potentiation seen in the normal slice, because it (i) had a very long duration (hours), (ii) was specific for the tetanized pathway, (iii) showed potentiation of both 'volley-EPSP' and 'EPSP-spike' relations, and (iv) was accompanied by short-lasting (less than 5 min) generalized depression.

  5. Action-potential-independent GABAergic tone mediated by nicotinic stimulation of immature striatal miniature synaptic transmission.

    PubMed

    Liu, Zhi; Otsu, Yo; Vasuta, Cristina; Nawa, Hiroyuki; Murphy, Timothy H

    2007-08-01

    Stimulation of presynaptic nicotinic acetylcholine receptors (nAChRs) increases the frequency of miniature excitatory synaptic activity (mEPSCs) to a point where they can promote cell firing in hippocampal CA3 neurons. We have evaluated whether nicotine regulation of miniature synaptic activity can be extended to inhibitory transmission onto striatal medium spiny projection neurons (MSNs) in acute brain slices. Bath application of micromolar nicotine typically induced 12-fold increases in the frequency of miniature inhibitory synaptic currents (mIPSCs). Little effect was observed on the amplitude of mIPSCs or mEPSCs under these conditions. Nicotine stimulation of mIPSCs was dependent on entry of extracellular calcium because removal of calcium from perfusate was able to block its action. To assess the potential physiological significance of the nicotine-stimulated increase in mIPSC frequency, we also examined the nicotine effect on evoked IPSCs (eIPSCs). eIPSCs were markedly attenuated by nicotine. This effect could be attributed to two potential mechanisms: transmitter depletion due to extremely high mIPSC rates and/or a reduction in presynaptic excitability associated with nicotinic depolarization. Treatment with low concentrations of K(+) was able to in part mimic nicotine's stimulatory effect on mIPSCs and inhibitory effect on eIPSCs. Current-clamp recordings confirmed a direct depolarizing action of nicotine that could dampen eIPSC activity leading to a switch to striatal inhibitory synaptic transmission mediated by tonic mIPSCs.

  6. Graded Synaptic Transmission between Spiking Neurons

    NASA Astrophysics Data System (ADS)

    Graubard, Katherine; Raper, Jonathan A.; Hartline, Daniel K.

    1980-06-01

    Graded synaptic transmission occurs between spiking neurons of the lobster stomatogastric ganglion. In addition to eliciting spike-evoked inhibitory potentials in postsynaptic cells, these neurons also release functionally significant amounts of transmitter below the threshold for action potentials. The spikeless postsynaptic potentials grade in amplitude with presynaptic voltage and can be maintained for long periods. Graded synaptic transmission can be modulated by synaptic input to the presynaptic neuron.

  7. Action potential broadening induced by lithium may cause a presynaptic enhancement of excitatory synaptic transmission in neonatal rat hippocampus.

    PubMed

    Colino, A; García-Seoane, J J; Valentín, A

    1998-07-01

    Lithium enhances excitatory synaptic transmission in CA1 pyramidal cells, but the mechanisms remain unclear. The present study demonstrates that lithium enhances the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) receptor-mediated components of the excitatory postsynaptic current (EPSC). Lithium decreased the magnitude of paired-pulse facilitation and presented an inverse correlation between the lithium-induced enhancement of synaptic transmission and initial paired-pulse facilitation, which is consistent with a presynaptic mode of action. The enhancement of synaptic strength is likely to act, at least in part, by increasing the amplitude of the presynaptic Ca2+ transient. One mechanism which could account for this change of the presynaptic Ca2+ transient is an increase in the duration of the action potential. We investigated action potential in hippocampal pyramidal neurons and found that lithium (0.5-6 mM) increased the half-amplitude duration and reduced the rate of repolarization, whereas the rate of depolarization remained similar. To find out whether the lithium synaptic effects might be explained by spike broadening, we investigated the field recording of the excitatory postsynaptic potential (EPSP) in hippocampal slices and found three lines of evidence. First, the prolongation of the presynaptic action potential with 4-aminopyridine and tetraethylammonium blocked or reduced the synaptic effects of lithium. Second, the lithium-induced synaptic enhancement was modulated when presynaptic Ca2+ influx was varied by changing the external Ca2+ concentration. Finally, both effects, the synaptic transmission increment and the action potential broadening, were independent of inositol depletion. These results suggest that lithium enhances synaptic transmission in the hippocampus via a presynaptic site of action: the mechanism underlying the potentiating effect may be attributable to an increased Ca2+ influx consequent

  8. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels.

    PubMed

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S; Klyachko, Vitaly A

    2013-02-20

    Loss of FMRP causes fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx, and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation independent and are mediated selectively by BK channels via interaction of FMRP with BK channel's regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology.

  9. Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons.

    PubMed

    Sun, Yan-Gang; Pita-Almenar, Juan D; Wu, Chia-Shan; Renger, John J; Uebele, Victor N; Lu, Hui-Chen; Beierlein, Michael

    2013-01-30

    Cholinergic neurons in the basal forebrain and the brainstem form extensive projections to a number of thalamic nuclei. Activation of cholinergic afferents during distinct behavioral states can regulate neuronal firing, transmitter release at glutamatergic and GABAergic synapses, and synchrony in thalamic networks, thereby controlling the flow of sensory information. These effects are thought to be mediated by slow and persistent increases in extracellular ACh levels, resulting in the modulation of populations of thalamic neurons over large temporal and spatial scales. However, the synaptic mechanisms underlying cholinergic signaling in the thalamus are not well understood. Here, we demonstrate highly reliable cholinergic transmission in the mouse thalamic reticular nucleus (TRN), a brain structure essential for sensory processing, arousal, and attention. We find that ACh release evoked by low-frequency stimulation leads to biphasic excitatory-inhibitory (E-I) postsynaptic responses, mediated by the activation of postsynaptic α4β2 nicotinic ACh receptors (nAChRs) and M2 muscarinic ACh receptors (mAChRs), respectively. In addition, ACh can bind to mAChRs expressed near cholinergic release sites, resulting in autoinhibition of release. We show that the activation of postsynaptic nAChRs by transmitter release from only a small number of individual axons is sufficient to trigger action potentials in TRN neurons. Furthermore, short trains of cholinergic synaptic inputs can powerfully entrain ongoing TRN neuronal activity. Our study demonstrates fast and precise synaptic E-I signaling mediated by ACh, suggesting novel computational mechanisms for the cholinergic control of neuronal activity in thalamic circuits.

  10. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation.

    PubMed

    Artola, A; Singer, W

    1993-11-01

    In many brain areas, including the cerebellar cortex, neocortex, hippocampus, striatum and nucleus accumbens, brief activation of an excitatory pathway can produce long-term depression (LTD) of synaptic transmission. In most preparations, induction of LTD has been shown to require a minimum level of postsynaptic depolarization and a rise in the intracellular Ca2+ concentration [Ca2+]i in the postsynaptic neurone. Thus, induction conditions resemble those described for the initiation of associative long-term potentiation (LTP). However, data from structures susceptible to both LTD and LTP suggest that a stronger depolarization and a greater increase in [Ca2+]i are required to induce LTP than to initiate LTD. The source of Ca2+ appears to be less critical for the differential induction of LTP and LTD than the amplitude of the Ca2+ surge, since the activation of voltage- and ligand-gated Ca2+ conductances as well as the release from intracellular stores have all been shown to contribute to both LTD and LTP induction. LTD is induceable even at inactive synapses if [Ca2+]i is raised to the appropriate level by antidromic or heterosynaptic activation, or by raising the extracellular Ca2+ concentration [Ca2+]o. These conditions suggest a rule (called here the ABS rule) for activity-dependent synaptic modifications that differs from the classical Hebb rule and that can account for both homosynaptic LTD and LTP as well as for heterosynaptic competition and associativity.

  11. Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus.

    PubMed

    Caillard, O; Ben-Ari, Y; Gaiarsa, J L

    1999-07-01

    1. The plasticity of GABAergic synapses was investigated in neonatal rat hippocampal slices obtained between postnatal days 3 and 6 using intracellular recording techniques. Ionotropic glutamate receptor antagonists were present throughout the experiments to isolate GABAA receptor-mediated postsynaptic potentials (GABAA PSPs) or currents (GABAA PSCs). 2. Repetitive depolarizing pulses (20 pulses, 0.5 s duration, at 0.1 Hz, each pulse generating 4-6 action potentials) induced a long-term potentiation in the slope and amplitude of the evoked GABAA PSPs and GABAA PSCs. 3. Long-term potentiation was prevented by intracellular injection of the calcium chelator BAPTA (50 mM), or when the voltage-dependent calcium channels blockers Ni2+ (50 microM) and nimodipine (10 microM) were bath applied. 4. Repetitive depolarizing pulses induced a persistent (over 1 h) increase in the frequency of spontaneous GABAA PSCs. 5. Repetitive depolarizing pulses induced a long-lasting increase in the frequency of miniature GABAA PSCs, without altering their amplitude or decay-time constant. 6. It is concluded that the postsynaptic activation of voltage-dependent calcium channels leads to a long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. This form of plasticity is expressed as an increase in the probability of GABA release or in the number of functional synapses, rather than as an upregulation of postsynaptic GABAA receptor numbers or conductance at functional synapses.

  12. CNQX and AMPA inhibit electrical synaptic transmission: a potential interaction between electrical and glutamatergic synapses

    PubMed Central

    Li, Qin; Burrell, Brian D.

    2008-01-01

    Electrical synapses play an important role in signaling between neurons and the synaptic connections between many neurons possess both electrical and chemical components. Although modulation of electrical synapses is frequently observed, the cellular processes that mediate such changes have not been studied as thoroughly as plasticity in chemical synapses. In the leech (Hirudo sp), the competitive AMPA receptor antagonist CNQX inhibited transmission at the rectifying electrical synapse of a mixed glutamatergic/electrical synaptic connection. This CNQX-mediated inhibition of the electrical synapse was blocked by concanavalin A (Con A) and dynamin inhibitory peptide (DIP), both of which are known to inhibit endocytosis of neurotransmitter receptors. CNQX-mediated inhibition was also blocked by pep2-SVKI (SVKI), a synthetic peptide that prevents internalization of AMPA-type glutamate receptor. AMPA itself also inhibited electrical synaptic transmission and this AMPA-mediated inhibition was partially blocked by Con A, DIP and SVKI. Low frequency stimulation induced long-term depression (LTD) in both the electrical and chemical components of these synapses and this LTD was blocked by SVKI. GYKI 52466, a selective non-competitive antagonist of AMPA receptors, did not affect the electrical EPSP, although it did block the chemical component of these synapses. CNQX did not affect non-rectifying electrical synapses in two different pairs of neurons. These results suggest an interaction between AMPA-type glutamate receptors and the gap junction proteins that mediate electrical synaptic transmission. This putative interaction between glutamate receptors and gap junction proteins represents a novel mechanism for regulating the strength of synaptic transmission. PMID:18601913

  13. Aminopyridines potentiate synaptic and neuromuscular transmission by targeting the voltage-activated calcium channel beta subunit.

    PubMed

    Wu, Zi-Zhen; Li, De-Pei; Chen, Shao-Rui; Pan, Hui-Lin

    2009-12-25

    Aminopyridines such as 4-aminopyridine (4-AP) are widely used as voltage-activated K(+) (Kv) channel blockers and can improve neuromuscular function in patients with spinal cord injury, myasthenia gravis, or multiple sclerosis. Here, we present novel evidence that 4-AP and several of its analogs directly stimulate high voltage-activated Ca(2+) channels (HVACCs) in acutely dissociated neurons. 4-AP, 4-(aminomethyl)pyridine, 4-(methylamino)pyridine, and 4-di(methylamino)pyridine profoundly increased HVACC, but not T-type, currents in dissociated neurons from the rat dorsal root ganglion, superior cervical ganglion, and hippocampus. The widely used Kv channel blockers, including tetraethylammonium, alpha-dendrotoxin, phrixotoxin-2, and BDS-I, did not mimic or alter the effect of 4-AP on HVACCs. In HEK293 cells expressing various combinations of N-type (Cav2.2) channel subunits, 4-AP potentiated Ca(2+) currents primarily through the intracellular beta(3) subunit. In contrast, 4-AP had no effect on Cav3.2 channels expressed in HEK293 cells. Furthermore, blocking Kv channels did not mimic or change the potentiating effects of 4-AP on neurotransmitter release from sensory and motor nerve terminals. Thus, our findings challenge the conventional view that 4-AP facilitates synaptic and neuromuscular transmission by blocking Kv channels. Aminopyridines can directly target presynaptic HVACCs to potentiate neurotransmitter release independent of Kv channels.

  14. Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission.

    PubMed

    Tsuzuki, Kenzo; Xing, Hong; Ling, Jennifer; Gu, Jianguo G

    2004-01-21

    Menthol and many of its derivatives produce profound sensory and mental effects. The receptor for menthol has been cloned and named cold- and menthol-sensitive receptor-1 (CMR1) or transient receptor potential channel M8 (TRPM8) receptor. Using a dorsal root ganglion (DRG) and dorsal horn (DH) coculture system as a model for the first sensory synapse in the CNS, we studied menthol effects on sensory synaptic transmission and the underlying mechanisms. We found that menthol increased the frequency of miniature EPSCs (mEPSCs). The effects persisted under an extracellular Ca2+-free condition but were abolished by intracellular BAPTA and pretreatment with thapsigargin. Menthol-induced increases of mEPSC frequency were blocked by 2-aminoethoxydiphenylborane (2-APB) but not affected by the phospholipase C inhibitor U73122 [GenBank] or by the cADP receptor inhibitor 8-bromo-cADPR (8Br-cADPR). Double-patch recordings from DRG-DH pairs showed that menthol could potentiate evoked EPSCs (eEPSCs) and change the paired-pulse ratio of eEPSCs. A Ca2+ imaging study on DRG neurons demonstrated that menthol could directly release Ca2+ from intracellular Ca2+ stores. Menthol-induced Ca2+ release was abolished by 2-APB but not affected by U73122 [GenBank] or 8Br-cADPR. Taken together, our results indicate that menthol can act directly on presynaptic Ca2+ stores of sensory neurons to release Ca2+, resulting in a facilitation of glutamate release and a modulation of neuronal transmission at sensory synapses. Expression of TRPM8 receptor on presynaptic Ca2+ stores, a novel localization for this ligand-gated ion channel, is also strongly suggested.

  15. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK channels

    PubMed Central

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A.; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S.; Klyachko, Vitaly A.

    2013-01-01

    SUMMARY Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation-independent and are mediated selectively by BK channels via interaction of FMRP with BK channel’s regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology. PMID:23439122

  16. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction.

    PubMed

    Guzman, Segundo J; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states.

  17. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  18. Synaptic facilitation by reflected action potentials: Enhancement of transmission when nerve impulses reverse direction at axon branch points

    PubMed Central

    Baccus, Stephen A.

    1998-01-01

    A rapid, reversible enhancement of synaptic transmission from a sensory neuron is reported and explained by impulses that reverse direction, or reflect, at axon branch points. In leech mechanosensory neurons, where one can detect reflection because it is possible simultaneously to study electrical activity in separate branches, action potentials reflected from branch points within the central nervous system under physiological conditions. Synapses adjacent to these branch points were activated twice in rapid succession, first by an impulse arriving from the periphery and then by its reflection. This fast double-firing facilitated synaptic transmission, increasing it to more than twice its normal level. Reflection occurred within a range of resting membrane potentials, and electrical activity produced by mechanical stimulation changed membrane potential so as to produce and cease reflection. A compartmental model was used to investigate how branch-point morphology and electrical activity contribute to produce reflection. The model shows that mechanisms that hyperpolarize the membrane so as to impair action potential propagation can increase the range of structures that can produce reflection. This suggests that reflection is more likely to occur in other structures where impulses fail, such as in axons and dendrites in the mammalian brain. In leech sensory neurons, reflection increased transmission from central synapses only in those axon branches that innervate the edges of the receptive field in the skin, thereby sharpening spatial contrast. Reflection thus allows a neuron to amplify synaptic transmission from a selected group of its branches in a way that can be regulated by electrical activity. PMID:9653189

  19. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus.

    PubMed

    Li, Yong; Kim, Jimok

    2016-03-01

    The effects of cannabinoids are mostly mediated by two types of cannabinoid receptors--CB1 receptors in the nervous system and CB2 receptors in the immune system. However, CB2 cannabinoid receptors have recently been discovered in the brain and also implicated in neurophysiological functions. The deletion of CB2 receptors in mice induces long-term memory deficits and schizophrenia-like behaviors, implying that endogenous activity of CB2 receptors might be involved in neuropsychiatric effects. Little is known about the cellular mechanisms by which physiological activation of CB2 receptors modulates neuronal functions. We aimed to determine how deletion of CB2 receptors in mice affects synaptic transmission and plasticity. Electrophysiological and morphological studies indicated that CB2 receptor knockout resulted in decreases in excitatory synaptic transmission, long-term potentiation, and dendritic spine density in the hippocampus. Our data imply that endogenous activity of CB2 receptors might contribute to the maintenance of synaptic functions and the expression of normal long-term potentiation. This study provides insights into the role of CB2 cannabinoid receptors in regulating cognitive functions such as long-term memory. © 2016 Wiley Periodicals, Inc.

  20. Endocannabinoid-Dependent Long-Term Potentiation of Synaptic Transmission at Rat Barrel Cortex.

    PubMed

    Maglio, Laura Eva; Noriega-Prieto, José Antonio; Maraver, Maria Jesús; Fernández de Sevilla, David

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in modulating plasticity in sensory cortices. Indeed, a BDNF-dependent long-term potentiation (LTP) at distal basal excitatory synapses of Layer 5 pyramidal neurons (L5PNs) has been demonstrated in disinhibited rat barrel cortex slices. Although it is well established that this LTP requires the pairing of excitatory postsynaptic potentials (PSPs) with Ca2+ spikes, its induction when synaptic inhibition is working remains unexplored. Here we show that low-frequency stimulation at basal dendrites of L5PNs is able to trigger a PSP followed by an action potential (AP) and a slow depolarization (termed PSP-Ca2+ response) in thalamocortical slices without blocking synaptic inhibition. We demonstrate that AP barrage-mediated release of endocannabinoids (eCBs) from the recorded L5PNs induces PSP-Ca2+ response facilitation and BDNF-dependent LTP. Indeed, this LTP requires the type 1 cannabinoid receptors activation, is prevented by postsynaptic intracellular 1,2-bis(2-aminophenoxy) ethane-N,N,N,N'-tetraacetic acid (BAPTA) or the anandamide membrane transporter inhibitor AM404, and only occurs in L5PNs neurons showing depolarization-induced suppression of inhibition. Additionally, electrical stimulation at the posteromedial thalamic nucleus induced similar response and LTP. These results reveal a novel form of eCB-dependent LTP at L5PNs that could be relevant in the processing of sensory information in the barrel cortex. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Neurotrophin-3 potentiates excitatory GABAergic synaptic transmission in cultured developing hypothalamic neurones of the rat

    PubMed Central

    Gao, Xiao-Bing; van den Pol, A N

    1999-01-01

    Neurotrophin-3 (NT-3) supports the survival and differentiation of neurones in the central and peripheral nervous systems through a number of mechanisms that occur in a matter of hours or days. NT-3 may also have a more rapid mode of action that influences synaptic activity in mature neurones. In the present study, the effect of NT-3 on developing GABAergic synapses was investigated in 3- to 7-day-old cultures of rat hypothalamic neurones with whole-cell patch-clamp recording. NT-3 induced a substantial dose-dependent potentiation of the frequency of spontaneous postsynaptic currents (sPSCs; 160 %) in developing neurones during a period when GABA evoked inward (depolarizing) current, as determined with gramicidin-perforated patch recordings. The NT-3 effect was long lasting; continued enhancement was found > 30 min after NT-3 wash-out. NT-3 evoked a substantial 202 % increase in total GABA-mediated inward current, measured as the time-current integral. Action potential frequency was also increased by NT-3 (to 220 %). The frequency of GABA-mediated miniature postsynaptic currents in developing neurones in the presence of tetrodotoxin was potentiated (to 140 %) by NT-3 with no change in the mean amplitude, suggesting a presynaptic locus of the effect. In striking contrast to immature neurones, when more mature neurones were studied, NT-3 did not enhance the frequency of GABA-mediated spontaneous postsynaptic currents (sPSCs), but instead evoked a slight (16 %) decrease. The frequency of miniature post-synaptic currents was also slightly decreased (16 %) by the NT-3, with no change in amplitude. These results were recorded during a later period of neuronal maturity when GABA would evoke outward (hyperpolarizing) currents. NT-3 had no effect on the mean amplitude of GABA-evoked postsynaptic currents in either developing or mature neurones. Intracellular application of K252a, a non-selective tyrosine kinase inhibitor, did not block the NT-3 effect postsynaptically. In

  2. A presynaptic locus for long-term potentiation of elementary synaptic transmission at mossy fiber synapses in culture.

    PubMed Central

    López-García, J C; Arancio, O; Kandel, E R; Baranes, D

    1996-01-01

    The complex circuitry of the CA3 region and the abundance of collateral connections has made it difficult to study the mossy fiber pathway in hippocampal slices and therefore to establish the site of expression of long-term potentiation at these synapses. Using a novel cell culture system, we have produced long-term potentiation of the elementary synaptic connections on single CA3 pyramidal neurons following tetanic stimulation of individual dentate gyrus granule cells. As is the case for the hippocampal slice, this potentiation was independent of N-methyl-D-aspartate receptor activation, was simulated by application of forskolin, and its induction did not require any modulatory input. The increase in synaptic strength was accompanied by a reduction in the number of failures of transmission and by an increase in the coefficient of variation of the responses and was prevented by presynaptic injection of an inhibitor of protein kinase A. These findings show that mossy fiber long-term potentiation has a presynaptic locus and that its expression is dependent on protein kinase A. PMID:8643468

  3. Changes in Synaptic Transmission and Long-term Potentiation Induction as a Possible Mechanism for Learning Disability in an Animal Model of Multiple Sclerosis

    PubMed Central

    2016-01-01

    Purpose: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. It has been shown that memory deficits is common in patients with MS. Recent studies using experimental autoimmune encephalomyelitis (EAE) as an animal model of MS have shown that indicated that EAE causes hippocampal-dependent impairment in learning and memory. Thus far, there have been no in vivo electrophysiological reports describing synaptic transmission in EAE animals. The aim of the present work is to evaluate the synaptic changes in the CA1 region of the hippocampus of EAE rats. Methods: To evaluate changes in synaptic transmission in the CA1 region of the hippocampus of EAE rats, field excitatory postsynaptic potentials (fEPSPs) from the stratum radiatum of CA1 neurons, were recorded following Schaffer collateral stimulation. Results: The results showed that EAE causes deficits in synaptic transmission and long-term potentiation (LTP) in the hippocampus. In addition, paired-pulse index with a 120 msec interstimulus interval was decreased in the EAE group. These findings indicate that EAE might induce suppression in synaptic transmission and LTP by increasing the inhibitory effect of GABAB receptors on the glutamate-mediated EPSP. Conclusions: In conclusion, influence of inflammation-triggered mechanisms on synaptic transmission may explain the negative effect of EAE on learning abilities in rats. PMID:27032554

  4. Fear Conditioning Potentiates Synaptic Transmission onto Long-Range Projection Neurons in the Lateral Subdivision of Central Amygdala

    PubMed Central

    Penzo, Mario A.; Robert, Vincent

    2014-01-01

    Recent studies indicate that the lateral subdivision of the central amygdala (CeL) is essential for fear learning. Specifically, fear conditioning induces cell-type-specific synaptic plasticity in CeL neurons that is required for the storage of fear memories. The CeL also controls fear expression by gating the activity of the medial subdivision of the central amygdala (CeM), the canonical amygdala output to areas that mediate defensive responses. In addition to the connection with CeM, the CeL sends long-range projections to innervate extra-amygdala areas. However, the long-range projection CeL neurons have not been well characterized, and their role in fear regulation is unknown. Here we show in mice that a subset of CeL neurons directly project to the midbrain periaqueductal gray (PAG) and the paraventricular nucleus of the thalamus, two brain areas implicated in defensive behavior. These long-range projection CeL neurons are predominantly somatostatin-positive (SOM+) neurons, which can directly inhibit PAG neurons, and some of which innervate both the PAG and paraventricular nucleus of the thalamus. Notably, fear conditioning potentiates excitatory synaptic transmission onto these long-range projection CeL neurons. Thus, our study identifies a subpopulation of SOM+ CeL neurons that may contribute to fear learning and regulate fear expression independent of CeM. PMID:24523533

  5. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala.

    PubMed

    Penzo, Mario A; Robert, Vincent; Li, Bo

    2014-02-12

    Recent studies indicate that the lateral subdivision of the central amygdala (CeL) is essential for fear learning. Specifically, fear conditioning induces cell-type-specific synaptic plasticity in CeL neurons that is required for the storage of fear memories. The CeL also controls fear expression by gating the activity of the medial subdivision of the central amygdala (CeM), the canonical amygdala output to areas that mediate defensive responses. In addition to the connection with CeM, the CeL sends long-range projections to innervate extra-amygdala areas. However, the long-range projection CeL neurons have not been well characterized, and their role in fear regulation is unknown. Here we show in mice that a subset of CeL neurons directly project to the midbrain periaqueductal gray (PAG) and the paraventricular nucleus of the thalamus, two brain areas implicated in defensive behavior. These long-range projection CeL neurons are predominantly somatostatin-positive (SOM(+)) neurons, which can directly inhibit PAG neurons, and some of which innervate both the PAG and paraventricular nucleus of the thalamus. Notably, fear conditioning potentiates excitatory synaptic transmission onto these long-range projection CeL neurons. Thus, our study identifies a subpopulation of SOM(+) CeL neurons that may contribute to fear learning and regulate fear expression independent of CeM.

  6. Potentiation of Schaffer-Collateral CA1 Synaptic Transmission by eEF2K and p38 MAPK Mediated Mechanisms

    PubMed Central

    Weng, Weiguang; Chen, Ying; Wang, Man; Zhuang, Yinghan; Behnisch, Thomas

    2016-01-01

    The elongation factor 2 kinase (eEF2K), likewise known as CaMKIII, has been demonstrated to be involved in antidepressant responses of NMDA receptor antagonists. Even so, it remains open whether direct inhibition of eEF2K without altering up-stream or other signaling pathways affects hippocampal synaptic transmission and neuronal network synchrony. Inhibition of eEF2K by the selective and potent eEF2K inhibitor A-484954 induced a fast pre-synaptically mediated enhancement of synaptic transmission and synchronization of neural network activity. The eEF2K-inhibition mediated potentiation of synaptic transmission of hippocampal CA1 neurons is most notably independent of protein synthesis and does not rely on protein kinase C, protein kinase A or mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase 1/2. Moreover, the strengthening of synaptic transmission in the response to the inhibition of eEF2K was strongly attenuated by the inhibition of p38 MAPK. In addition, we show the involvement of barium-sensitive and more specific the TWIK-related potassium-1 (TREK-1) channels in the eEF2K-inhibition mediated potentiation of synaptic transmission. These findings reveal a novel pathway of eEF2K mediated regulation of hippocampal synaptic transmission. Further research is required to study whether such compounds could be beneficial for the development of mood disorder treatments with a fast-acting antidepressant response. PMID:27826228

  7. Activation of kappa opioid receptors decreases synaptic transmission and inhibits long-term potentiation in the basolateral amygdala of the mouse.

    PubMed

    Huge, Volker; Rammes, Gerhard; Beyer, Antje; Zieglgänsberger, Walter; Azad, Shahnaz C

    2009-02-01

    The amygdala plays an important role in the processing of chronic pain and pain memory formation. Particularly, it is involved in the emotional and affective components of the pain circuitry. The role of kappa opioid receptors in these pain conditions is only partly known. The present study investigates the effect of kappa receptor activation on synaptic transmission and synaptic plasticity in the amygdala. Electrophysiological in vitro experiments were carried out in brain slices of male C57BL/6JOlaHsd mice. The effect of the kappa opioid receptor agonist U50,488H (5 microM) and the selective kappa opioid receptor antagonist nor-BNI (3 microM) on field potential (FP) amplitude and the induction of long-term potentiation (LTP) in the basolateral amygdala (BLA) was examined. High frequency stimulation (HFS) of afferents in the lateral amygdala with two trains of 100 pulses at 50 Hz increased the FP amplitudes to 119+/-2% (mean+/-SEM; n=6) in the BLA. U50,488H decreased synaptic transmission (baseline: 100+/-0.5%; U50,488H: 86.3+/-2.4%; n=6) and blocked the induction of LTP (U50,488H: 100+/-4.1%; HFS: 102.6+/-7%; n=6). The effect on synaptic transmission and on LTP was completely reversed or prevented by application of nor-BNI, which itself had no effect on synaptic transmission or the induction of LTP. Kappa opioid receptor activation decreases synaptic transmission and inhibits the induction of LTP in the BLA of the mouse. These findings may be associated with the effects of kappa opioid agonists in chronic pain and pain memory formation.

  8. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells

    PubMed Central

    Shen, Yin; Heimel, J. Alexander; Kamermans, Maarten; Peachey, Neal S.; Gregg, Ronald G.; Nawy, Scott

    2009-01-01

    On bipolar cells are connected to photoreceptors via a sign-inverting synapse. At this synapse, glutamate binds to a metabotropic receptor which couples to the closure of a cation-selective transduction channel. The molecular identity of both the receptor and the G protein are known, but the identity of the transduction channel has remained elusive. Here we show that the transduction channel in mouse rod bipolar cells, a subtype of On bipolar cell, is likely to be a member of the TRP family of channels. To evoke a transduction current, the metabotropic receptor antagonist LY341495 was applied to the dendrites of cells that were bathed in a solution containing the mGluR6 agonists L-AP4 or glutamate. The transduction current was suppressed by ruthenium red and the TRPV1 antagonists capsazepine and SB-366791. Furthermore, focal application of the TRPV1 agonists capsaicin and anandamide evoked a transduction-like current. The capsaicin-evoked and endogenous transduction current displayed prominent outward rectification, a property of the TRPV1 channel. To test the possibility that the transduction channel is TRPV1, we measured rod bipolar cell function in the TRPV1-/-mouse. The ERG b-wave, a measure of On bipolar cell function, as well as the transduction current and the response to TRPV1 agonists were normal, arguing against a role for TRPV1. However, ERG measurements from mice lacking TRPM1 receptors, another TRP channel implicated in retinal function, revealed the absence of a b-wave. Our results suggest that a TRP-like channel, possibly TRPM1, is essential for synaptic function in On bipolar cells. PMID:19439586

  9. Synaptic Transmission Correlates of General Mental Ability

    ERIC Educational Resources Information Center

    McRorie, Margaret; Cooper, Colin

    2004-01-01

    Nerve conduction velocity (NCV) and efficiency of synaptic transmission are two possible biological mechanisms that may underpin intelligence. Direct assessments of NCV, without synaptic transmission, show few substantial or reliable correlations with cognitive abilities ["Intelligence" 16 (1992) 273]. We therefore assessed the latencies…

  10. Synaptic Transmission Correlates of General Mental Ability

    ERIC Educational Resources Information Center

    McRorie, Margaret; Cooper, Colin

    2004-01-01

    Nerve conduction velocity (NCV) and efficiency of synaptic transmission are two possible biological mechanisms that may underpin intelligence. Direct assessments of NCV, without synaptic transmission, show few substantial or reliable correlations with cognitive abilities ["Intelligence" 16 (1992) 273]. We therefore assessed the latencies…

  11. Potentiation and depotentiation of DNQX-sensitive fast excitatory synaptic transmission in telencephalone of the quail chick.

    PubMed

    Matsushima, T; Aoki, K

    1995-02-13

    Whole-cell perforated-patch recording in slices revealed synaptic organization of the intermediate medial hyperstriatum ventrale, a telencephalic region intimately involved in the early learning processes in chicks. Local electrical stimuli elicited excitatory post-synaptic current (EPSC) mediated by monosynaptic activation of glutamate receptors of the non-N-methyl-D-aspartate type, which was followed by a late GABAA-ergic inhibition. The initial EPSC was potentiated at least for 60 min, when a tetanic stimulation (5 Hz x 60 s) was combined with post-synaptic depolarization at or above -30 mV. In some of these neurons, the potentiated responses underwent a subsequent depression when a second tetanus was accompanied by hyperpolarization at -80 mV or below.

  12. Activin Controls Ethanol Potentiation of Inhibitory Synaptic Transmission Through GABAA Receptors and Concomitant Behavioral Sedation

    PubMed Central

    Zheng, Fang; Puppel, Anne; Huber, Sabine E; Link, Andrea S; Eulenburg, Volker; van Brederode, Johannes F; Müller, Christian P; Alzheimer, Christian

    2016-01-01

    Activin, a member of the transforming growth factor-β family, exerts multiple functions in the nervous system. Originally identified as a neurotrophic and -protective agent, increasing evidence implicates activin also in the regulation of glutamatergic and GABAergic neurotransmission in brain regions associated with cognitive and affective functions. To explore how activin impacts on ethanol potentiation of GABA synapses and related behavioral paradigms, we used an established transgenic model of disrupted activin receptor signaling, in which mice express a dominant-negative activin receptor IB mutant (dnActRIB) under the control of the CaMKIIα promoter. Comparison of GABAA receptor currents in hippocampal neurons from dnActRIB mice and wild-type mice showed that all concentrations of ethanol tested (30–150 mM) produced much stronger potentiation of phasic inhibition in the mutant preparation. In dentate granule cells of dnActRIB mice, tonic GABA inhibition was more pronounced than in wild-type neurons, but remained insensitive to low ethanol (30 mM) in both preparations. The heightened ethanol sensitivity of phasic inhibition in mutant hippocampi resulted from both pre- and postsynaptic mechanisms, the latter probably involving PKCɛ. At the behavioral level, ethanol produced significantly stronger sedation in dnActRIB mice than in wild-type mice, but did not affect consumption of ethanol or escalation after withdrawal. We link the abnormal narcotic response of dnActRIB mice to ethanol to the excessive potentiation of inhibitory neurotransmission. Our study suggests that activin counteracts oversedation from ethanol by curtailing its augmenting effect at GABA synapses. PMID:26717882

  13. Regulation of NMDA-receptor synaptic transmission by Wnt signaling

    PubMed Central

    Cerpa, Waldo; Gambrill, Abigail; Inestrosa, Nibaldo C.; Barria, Andres

    2011-01-01

    Wnt ligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic connections is not known. We found that Wnt-5a acutely and specifically up-regulates synaptic NMDAR currents in rat hippocampal slices facilitating induction of LTP, a cellular model of learning and memory. This effect requires an increase in postsynaptic Ca2+ and activation of non-canonical downstream effectors of the Wnt signaling pathway. In contrast, Wnt-7a, an activator of the canonical Wnt signaling pathway, has no effect on NMDAR mediated synaptic transmission. Moreover, endogenous Wnt ligands are necessary to maintain basal NMDAR synaptic transmission adjusting the threshold for synaptic potentiation. This novel role for Wnt ligands provides a mechanism for Wnt signaling to acutely modulate synaptic plasticity and brain function in later stages of development and in the mature organism. PMID:21715611

  14. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  15. Reactive oxygen species mediate the potentiating effects of ATP on GABAergic synaptic transmission in the immature hippocampus.

    PubMed

    Safiulina, Victoria F; Afzalov, Ramil; Khiroug, Leonard; Cherubini, Enrico; Giniatullin, Rashid

    2006-08-18

    Reactive oxygen species (ROS) constitute important signaling molecules in the central nervous system. They regulate a number of different functions both under physiological conditions and under pathological conditions. Here we tested the hypothesis that in the immature hippocampus ATP, the most diffuse neurotransmitter in the brain, modulates synaptic transmission via ROS. We show that ATP, acting on metabotropic P2Y1 receptors, increased the frequency of GABA(A)-mediated spontaneous postsynaptic currents (SPSCs) in CA3 principal cells, an effect that was prevented by the antioxidant N-acetyl-cysteine or by catalase, an enzyme that breaks down H2O2. The effect of ATP on SPSCs was mimicked by H2O2 or by the pro-oxidant, Fe2+, which, through the Fentol reaction, catalyzes the conversion of H2O2 into highly reactive hydroxyl radicals. MRS-2179, a P2Y1 receptor antagonist, removed the facilitatory action of Fe2+ on SPSCs, suggesting that endogenous ATP acting on P2Y1 receptors is involved in Fe2+-induced modulation of synaptic transmission. Imaging ROS with the H2O2-sensitive dye DCF revealed that ATP induces generation of peroxide in astrocytes via activation of P2Y1 receptors coupled to intracellular calcium rise. Neither N-acetyl-cysteine nor catalase prevented Ca2+ transients induced by ATP in astrocytes. Since a single hippocampal astrocyte can contact many neurons, ATP-induced ROS signaling may control thousands of synapses. This may be crucial for information processing in the immature brain when GABAergic activity is essential for the proper wiring of the hippocampal network.

  16. GPCR Mediated Regulation of Synaptic Transmission

    PubMed Central

    Betke, Katherine M.; Wells, Christopher A.; Hamm, Heidi E.

    2012-01-01

    Synaptic transmission is a finely regulated mechanism of neuronal communication. The release of neurotransmitter at the synapse is not only the reflection of membrane depolarization events, but rather, is the summation of interactions between ion channels, G protein coupled receptors, second messengers, and the exocytotic machinery itself which exposes the components within a synaptic vesicle to the synaptic cleft. The focus of this review is to explore the role of G protein signaling as it relates to neurotransmission, as well as to discuss the recently determined inhibitory mechanism of Gβγ dimers acting directly on the exocytotic machinery proteins to inhibit neurotransmitter release. PMID:22307060

  17. Astrocytes Optimize the Synaptic Transmission of Information

    PubMed Central

    Nadkarni, Suhita; Jung, Peter; Levine, Herbert

    2008-01-01

    Chemical synapses transmit information via the release of neurotransmitter-filled vesicles from the presynaptic terminal. Using computational modeling, we predict that the limited availability of neurotransmitter resources in combination with the spontaneous release of vesicles limits the maximum degree of enhancement of synaptic transmission. This gives rise to an optimal tuning that depends on the number of active zones. There is strong experimental evidence that astrocytes that enwrap synapses can modulate the probabilities of vesicle release through bidirectional signaling and hence regulate synaptic transmission. For low-fidelity hippocampal synapses, which typically have only one or two active zones, the predicted optimal values lie close to those determined by experimentally measured astrocytic feedback, suggesting that astrocytes optimize synaptic transmission of information. PMID:18516277

  18. Ethanol potentiation of GABAergic synaptic transmission may be self-limiting: role of presynaptic GABA(B) receptors.

    PubMed

    Ariwodola, Olusegun J; Weiner, Jeffrey L

    2004-11-24

    Ethanol enhances GABAergic synaptic inhibition, and this interaction contributes to many of the behavioral and cognitive effects of this drug. Most studies suggest that ethanol enhances GABAergic neurotransmission via an allosteric potentiation of the postsynaptic GABA(A) receptors that mediate fast synaptic inhibition in the mammalian CNS. Despite widespread acceptance of this hypothesis, direct support for such a mechanism has been difficult to obtain. Ethanol does not enhance GABA(A) receptor function in all brain regions or under all experimental conditions, and factors responsible for this variability remain mostly unknown. Notably, blockade of GABA(B) receptors dramatically enhances ethanol potentiation of hippocampal GABA(A) IPSPs and IPSCs, suggesting that some unknown GABA(B) receptor mechanism limits the overall potentiating effect of ethanol on GABAergic synapses. In this study, we demonstrate that, at perisomatic synapses in the rat hippocampus, ethanol enhances presynaptic GABA(B) autoreceptor function and that this interaction reduces the overall potentiating effect of ethanol at these synapses. We further show that ethanol significantly elevates basal presynaptic GABA(B) receptor tone, possibly via an increase in spontaneous GABA release, and that pretreatment with a subthreshold concentration of the GABA(B) receptor agonist baclofen blocks ethanol but not flunitrazepam or pentobarbital potentiation of GABA(A) IPSCs. These data suggest that an interaction between ethanol and presynaptic GABA(B) autoreceptor activity regulates the ethanol sensitivity of GABAergic synapses. Given that the in vitro ethanol sensitivity of these synapses correlates with in vivo ethanol responsiveness in a number of rodent lines, our data further suggest that presynaptic GABA(B) receptor activity may play a role in regulating behavioral sensitivity to ethanol.

  19. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  20. Kinetic model of excitatory synaptic transmission to cerebellar Purkinje cells.

    PubMed

    Marienhagen, J; Keller, B U; Zippelius, A

    1997-09-21

    We present a minimal kinetic model for excitatory synaptic transmission to cerebellar Purkinje cells. The main components are a kinetic model for a single glutamate receptor, which is calibrated with the help of patch clamp data, and a mean field approximation for the dynamics of a population of channels, which generate an EPSC. The resulting minimal model of the parallel fiber-Purkinje cell synapse is used to estimate the dynamics of glutamate in the synaptic cleft and to clarify the role of receptor desensitization in synaptic transmission. We also apply the model to different aspects of synaptic modulation, like long-term depression and potentiation by pharmacological application of ampakines. In the framework of the minimal model these effects can be understood as the result of modified receptor kinetics.

  1. Lateral regulation of synaptic transmission by astrocytes.

    PubMed

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons.

  2. Modeling synaptic transmission of the tripartite synapse

    NASA Astrophysics Data System (ADS)

    Nadkarni, Suhita; Jung, Peter

    2007-03-01

    The tripartite synapse denotes the junction of a pre- and postsynaptic neuron modulated by a synaptic astrocyte. Enhanced transmission probability and frequency of the postsynaptic current-events are among the significant effects of the astrocyte on the synapse as experimentally characterized by several groups. In this paper we provide a mathematical framework for the relevant synaptic interactions between neurons and astrocytes that can account quantitatively for both the astrocytic effects on the synaptic transmission and the spontaneous postsynaptic events. Inferred from experiments, the model assumes that glutamate released by the astrocytes in response to synaptic activity regulates store-operated calcium in the presynaptic terminal. This source of calcium is distinct from voltage-gated calcium influx and accounts for the long timescale of facilitation at the synapse seen in correlation with calcium activity in the astrocytes. Our model predicts the inter-event interval distribution of spontaneous current activity mediated by a synaptic astrocyte and provides an additional insight into a novel mechanism for plasticity in which a low fidelity synapse gets transformed into a high fidelity synapse via astrocytic coupling.

  3. The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory

    PubMed Central

    Daumas, Stephanie; Hunter, Christopher J.; Mistry, Rajen B.; Cooper, Daniel D.; Reyskens, Kathleen M.; Flynn, Harry T.

    2017-01-01

    Abstract The later stages of long-term potentiation (LTP) in vitro and spatial memory in vivo are believed to depend upon gene transcription. Accordingly, considerable attempts have been made to identify both the mechanisms by which transcription is regulated and indeed the gene products themselves. Previous studies have shown that deletion of one regulator of transcription, the mitogen- and stress-activated kinase 1 (MSK1), causes an impairment of spatial memory. Given the ability of MSK1 to regulate gene expression via the phosphorylation of cAMP response element binding protein (CREB) at serine 133 (S133), MSK1 is a plausible candidate as a prime regulator of transcription underpinning synaptic plasticity and learning and memory. Indeed, prior work has revealed the necessity for MSK1 in homeostatic and experience-dependent synaptic plasticity. However, using a knock-in kinase-dead mouse mutant of MSK1, the current study demonstrates that, while the kinase function of MSK1 is important in regulating the phosphorylation of CREB at S133 and basal synaptic transmission in hippocampal area CA1, it is not required for metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), two forms of LTP or several forms of spatial learning in the watermaze. These data indicate that other functions of MSK1, such as a structural role for the whole enzyme, may explain previous observations of a role for MSK1 in learning and memory. PMID:28275711

  4. Disruption of hippocampal synaptic transmission and long-term potentiation by psychoactive synthetic cannabinoid 'Spice' compounds: comparison with Δ(9) -tetrahydrocannabinol.

    PubMed

    Hoffman, Alexander F; Lycas, Matthew D; Kaczmarzyk, Jakub R; Spivak, Charles E; Baumann, Michael H; Lupica, Carl R

    2017-03-01

    There has been a marked increase in the availability of synthetic drugs designed to mimic the effects of marijuana. These cannabimimetic drugs, sold illicitly as 'Spice' and related products, are associated with serious medical complications in some users. In vitro studies suggest that synthetic cannabinoids in these preparations are potent agonists at central cannabinoid CB1 receptors (CB1Rs), but few investigations have delineated their cellular effects, particularly in comparison with the psychoactive component of marijuana, Δ(9) -tetrahydrocannabinol (Δ(9) -THC). We compared the ability of three widely abused synthetic cannabinoids and Δ(9) -THC to alter glutamate release and long-term potentiation in the mouse hippocampus. JWH-018 was the most potent inhibitor of hippocampal synaptic transmission (EC50 ~15 nM), whereas its fluoropentyl derivative, AM2201, inhibited synaptic transmission with slightly lower potency (EC50 ~60 nM). The newer synthetic cannabinoid, XLR-11, displayed much lower potency (EC50 ~900 nM) that was similar to Δ(9) -THC (EC50 ~700 nM). The effects of all compounds occurred via activation of CB1Rs, as demonstrated by reversal with the selective antagonist/inverse agonist AM251 or the neutral CB1R antagonist PIMSR1. Moreover, AM2201 was without effect in the hippocampus of transgenic mice lacking the CB1R. Hippocampal slices exposed to either synthetic cannabinoids or Δ(9) -THC exhibited significantly impaired long-term potentiation (LTP). We find that, compared with Δ(9) -THC, the first-generation cannabinoids found in Spice preparations display higher potency, whereas a recent synthetic cannabinoid is roughly equipotent with Δ(9) -THC. The disruption of synaptic function by these synthetic cannabinoids is likely to lead to profound impairments in cognitive and behavioral function.

  5. Progesterone Regulation of Synaptic Transmission and Plasticity in Rodent Hippocampus

    ERIC Educational Resources Information Center

    Foy, Michael R.; Akopian, Garnik; Thompson, Richard F.

    2008-01-01

    Ovarian hormones influence memory formation by eliciting changes in neural activity. The effects of various concentrations of progesterone (P4) on synaptic transmission and plasticity associated with long-term potentiation (LTP) and long-term depression (LTD) were studied using in vitro hippocampal slices. Extracellular studies show that the…

  6. Progesterone Regulation of Synaptic Transmission and Plasticity in Rodent Hippocampus

    ERIC Educational Resources Information Center

    Foy, Michael R.; Akopian, Garnik; Thompson, Richard F.

    2008-01-01

    Ovarian hormones influence memory formation by eliciting changes in neural activity. The effects of various concentrations of progesterone (P4) on synaptic transmission and plasticity associated with long-term potentiation (LTP) and long-term depression (LTD) were studied using in vitro hippocampal slices. Extracellular studies show that the…

  7. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus.

    PubMed

    Wheeler, D B; Randall, A; Tsien, R W

    1996-04-01

    It has been established that multiple types of Ca2+ channels participate in triggering neurotransmitter release at central synapses, but there is uncertainty about the nature of their combined actions. We investigated synaptic transmission at CA3-CA1 synapses of rat hippocampal slices and asked whether the dependence on omega-CTx-GVIA-sensitive N-type channels and omega-Aga-IVA-sensitive P/Q-type Ca2+ channels can be altered by physiological mechanisms. The reliance on multiple types of Ca2+ channels was not absolute but depended strongly on the amount of Ca2+ influx through individual channels, which was manipulated by prolonging the presynaptic action potential with the K+ channel blocker 4-aminopyridine (4-AP) and by varying the extracellular Ca2+ concentration ([Ca2+]o). We quantified the influence of spike broadening on Ca2+ influx through various Ca2+ channels by imposing mock action potentials on voltage-clamped cerebellar granule neurons. In field recordings of the EPSP in hippocampal slices, action potential prolongation increased the EPSP slope by 2-fold and decreased its reliance on either N-type or P/Q-type Ca2+ channels. The inhibition of synaptic transmission by N-type channel blockade was virtually eliminated in the presence of 4-AP, but it could be restored by lowering [Ca2+]o. These results rule out a scenario in which a significant fraction of presynaptic terminals rely solely on N-type channels to trigger transmission. The change in sensitivity to the neurotoxins with 4-AP could be explained in terms of a nonlinear relationship between Ca2+ entry and synaptic strength, which rises steeply at low [Ca2+]o, but approaches saturation at high [Ca2+]o. This relationship was evaluated experimentally by varying [CA2+]o in the absence and presence of 4-AP. One consequence of this relationship is that down-modulation of presynaptic Ca2+ channels by various modulators would increase the relative impact of spike broadening greatly.

  8. The Excitatory Synaptic Transmission of the Nucleus of Solitary Tract Was Potentiated by Chronic Myocardial Infarction in Rats

    PubMed Central

    Feng, Ban; Zhang, Zi-Nan; Lei, Jie; Li, Yun-Qing; Du, Jian-Qing; Chen, Tao

    2015-01-01

    Angina pectoris is a common clinical symptom that often results from myocardial infarction. One typical characteristic of angina pectoris is that the pain does not match the severity of the myocardial ischemia. One possible explanation is that the intensity of cardiac nociceptive information could be dynamically regulated by certain brain areas. As an important nucleus for processing cardiac nociception, the nucleus of the solitary tract (NTS) has been studied to some extent. However, until now, the morphological and functional involvement of the NTS in chronic myocardial infarction (CMI) has remained unknown. In the present study, by exploring left anterior descending coronary artery ligation surgery, we found that the number of synaptophysin-immunoreactive puncta and Fos-immunoreactive neurons in the rat NTS two weeks after ligation surgery increased significantly. Excitatory pre- and postsynaptic transmission was potentiated. A bath application of a Ca2+ channel inhibitor GABApentin and Ca2+ permeable AMPA receptor antagonist NASPM could reverse the potentiated pre- and postsynaptic transmission, respectively. Meanwhile, rats with CMI showed significantly increased visceral pain behaviors. Microinjection of GABApentin or NASPM into the NTS decreased the CMI-induced visceral pain behaviors. In sum, our results suggest that the NTS is an important area for the process of cardiac afference in chronic myocardial infarction condition. PMID:25756354

  9. Slob, a Slowpoke channel–binding protein, modulates synaptic transmission

    PubMed Central

    Zhang, Jiaming

    2011-01-01

    Modulation of ion channels by regulatory proteins within the same macromolecular complex is a well-accepted concept, but the physiological consequences of such modulation are not fully understood. Slowpoke (Slo), a potassium channel critical for action potential repolarization and transmitter release, is regulated by Slo channel–binding protein (Slob), a Drosophila melanogaster Slo (dSlo) binding partner. Slob modulates the voltage dependence of dSlo channel activation in vitro and exerts similar effects on the dSlo channel in Drosophila central nervous system neurons in vivo. In addition, Slob modulates action potential duration in these neurons. Here, we investigate further the functional consequences of the modulation of the dSlo channel by Slob in vivo, by examining larval neuromuscular synaptic transmission in flies in which Slob levels have been altered. In Slob-null flies generated through P-element mutagenesis, as well as in Slob knockdown flies generated by RNA interference (RNAi), we find an enhancement of synaptic transmission but no change in the properties of the postsynaptic muscle cell. Using targeted transgenic rescue and targeted expression of Slob-RNAi, we find that Slob expression in neurons (but not in the postsynaptic muscle cell) is critical for its effects on synaptic transmission. Furthermore, inhibition of dSlo channel activity abolishes these effects of Slob. These results suggest that presynaptic Slob, by regulating dSlo channel function, participates in the modulation of synaptic transmission. PMID:21282401

  10. Serotonin is a facilitatory neuromodulator of synaptic transmission and "reinforces" long-term potentiation induction in the vertical lobe of Octopus vulgaris.

    PubMed

    Shomrat, T; Feinstein, N; Klein, M; Hochner, B

    2010-08-11

    The modern cephalopod mollusks (coleoids) are considered the most behaviorally advanced invertebrate, yet little is known about the neurophysiological basis of their behaviors. Previous work suggested that the vertical lobe (VL) of cephalopods is a crucial site for the learning and memory components of these behaviors. We are therefore studying the neurophysiology of the VL in Octopus vulgaris and have discovered a robust activity-dependent long-term potentiation (LTP) of the synaptic input to the VL. Moreover, we have shown that the VL and its LTP are involved in behavioral long-term memory acquisition. To advance our understanding of the VL as a learning neural network we explore the possible involvement of neuromodulation in VL function. Here we examine whether the well studied serotonergic modulation in simple models of learning in gastropods mollusks is conserved in the octopus VL. We demonstrate histochemically that the VL is innervated by afferent terminals containing 5-HT immunoreactivity (5-HT-IR). Physiologically, 5-HT has a robust facilitatory effect on synaptic transmission and activity-dependent LTP induction. These results suggest that serotonergic neuromodulation is a part of a reinforcing/reward signaling system conserved in both simple and complex learning systems of mollusks. However, there are notable functional differences. First, the effective concentration of 5-HT in the VL is rather high (100 microM); secondly, only neuropilar regions but not cell bodies in the VL are innervated by terminals containing 5-HT-IR. Thirdly, repetitive or long exposures to 5-HT do not lead to a clear long-term facilitation. We propose that in the octopus VL, while the basic facilitatory properties of molluscan 5-HT system are conserved, the system has adapted to convey signals from other brain areas to reinforce the activity-dependent associations at specific sites in the large connections matrix in the VL. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All

  11. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus.

    PubMed

    Yang, Jianmin; Harte-Hargrove, Lauren C; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; Lafrancois, John J; Bath, Kevin G; Mark, Willie; Ballon, Douglas; Lee, Francis S; Scharfman, Helen E; Hempstead, Barbara L

    2014-05-08

    Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF, which binds p75(NTR). In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knockin mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75(NTR). Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP, and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission, and plasticity, effects that are distinct from those of mature BDNF. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. ProBDNF negatively regulates neuronal remodeling, synaptic transmission and synaptic plasticity in hippocampus

    PubMed Central

    Yang, Jianmin; Harte-Hargrove, Lauren C.; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; LaFrancois, John J.; Bath, Kevin G.; Mark, Willie; Ballon, Douglas; Lee, Francis S.; Scharfman, Helen E.; Hempstead, Barbara L.

    2014-01-01

    Summary Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF which binds p75NTR. In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knock-in mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75NTR. Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission and plasticity, effects that are distinct from mature BDNF. PMID:24746813

  13. Rescue of tau-induced synaptic transmission pathology by paclitaxel

    PubMed Central

    Erez, Hadas; Shemesh, Or A.; Spira, Micha E.

    2014-01-01

    Behavioral and electrophysiological studies of Alzheimer’s disease (AD) and other tauopathies have revealed that the onset of cognitive decline correlates better with synaptic dysfunctions than with hallmark pathologies such as extracellular amyloid-β plaques, intracellular hyperphosphorylated tau or neuronal loss. Recent experiments have also demonstrated that anti-cancer microtubule (MT)-stabilizing drugs can rescue tau-induced behavioral decline and hallmark neuron pathologies. Nevertheless, the mechanisms underlying tau-induced synaptic dysfunction as well as those involved in the rescue of cognitive decline by MTs-stabilizing drugs remain unclear. Here we began to study these mechanisms using the glutaminergic sensory-motoneuron synapse derived from Aplysia ganglia, electrophysiological methods, the expression of mutant-human tau (mt-htau) either pre or postsynaptically and the antimitotic drug paclitaxel. Expression of mt-htau in the presynaptic neurons led to reduced excitatory postsynaptic potential (EPSP) amplitude generated by rested synapses within 3 days of mt-htau expression, and to deeper levels of homosynaptic depression. mt-htau-induced synaptic weakening correlated with reduced releasable presynaptic vesicle pools as revealed by the induction of asynchronous neurotransmitter release by hypertonic sucrose solution. Paclitaxel totally rescued tau-induced synaptic weakening by maintaining the availability of the presynaptic vesicle stores. Postsynaptic expression of mt-htau did not impair the above described synaptic-transmission parameters for up to 5 days. Along with earlier confocal microscope observations from our laboratory, these findings suggest that tau-induced synaptic dysfunction is the outcome of impaired axoplasmic transport and the ensuing reduction in the releasable presynaptic vesicle stores rather than the direct effects of mt-htau or paclitaxel on the synaptic release mechanisms. PMID:24574970

  14. Paradoxical (REM) Sleep Deprivation Causes a Large and Rapidly Reversible Decrease in Long-Term Potentiation, Synaptic Transmission, Glutamate Receptor Protein Levels, and ERK/MAPK Activation in the Dorsal Hippocampus

    PubMed Central

    Ravassard, Pascal; Pachoud, Bastien; Comte, Jean-Christophe; Mejia-Perez, Camila; Scoté-Blachon, Céline; Gay, Nadine; Claustrat, Bruno; Touret, Monique; Luppi, Pierre-Hervé; Salin, Paul Antoine

    2009-01-01

    Study Objectives: It has been shown that wake (W) and slow wave sleep (SWS) modulate synaptic transmission in neocortical projections. However the impact of paradoxical sleep (PS) quantities on synaptic transmission remains unknown. We examined whether PS modulated the excitatory transmission and expression of glutamate receptor subtypes and phosphorylated extracellular signal-regulated kinases (p-ERK1/2). Design: PS deprivation (PSD) was carried out with the multiple platforms method on adult male Sprague-Dawley rats. LTP, late-LTP, and synaptic transmission were studied in the dorsal and ventral hippocampus of controls, 75-h PSD and 150-min PS rebound (PSR). GluR1 and NR1 protein and mRNA expression were evaluated by western blot and real-time PCR. P-ERK1/2 level was quantified by western blot and immunohistochemistry. Measurement and Results: PSD decreased synaptic transmission and LTP selectively in dorsal CA1 and PSR rescued these deficits. PSD-induced synaptic modifications in CA1 were associated with a decrease in GluR1, NR1, and p-ERK1/2 levels in dorsal CA1 without change in GluR1 and NR1 mRNA expression. Regression analysis shows that LTP is positively correlated with both PS quantities and SWS episodes duration, whereas synaptic transmission and late-LTP are positively correlated with PS quantities and negatively correlated with SWS quantities. Conclusions: These findings unveil previously unrecognized roles of PSD on synaptic transmission and LTP in the dorsal, but not in the ventral, hippocampus. The fact that the decrease in protein expression of GluR1 and NR1 was not associated with a change in mRNA expression of these receptors suggests that a sleep-induced modulation of translational mechanisms occurs in dorsal CA1. Citation: Ravassard P; Pachoud B; Comte JC; Mejia-Perez C; Scoté-Blachon C; Gay N; Claustrat B; Touret M; Luppi PH; Salin PA. Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation

  15. Methamphetamine Reduces LTP and Increases Baseline Synaptic Transmission in the CA1 Region of Mouse Hippocampus

    PubMed Central

    Swant, Jarod; Chirwa, Sanika; Stanwood, Gregg; Khoshbouei, Habibeh

    2010-01-01

    Methamphetamine (METH) is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain—which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy) in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 µM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist) did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction. PMID:20614033

  16. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    SciTech Connect

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated f

  17. Regulation of information passing by synaptic transmission: a short review.

    PubMed

    Di Maio, Vito

    2008-08-15

    The largest part of information passed among neurons in the brain occurs by the means of chemical synapses connecting the axons of presynaptic neurons to the dendritic tree of the postsynaptic ones. In the present paper, the most relevant open problems related to the mechanisms of control of the information passing among neurons by synaptic transmission will be shortly reviewed. The "cross talking" between synapses, their mutual interactions and the control of the information flow between different areas of the dendritic tree will be also considered. The threshold mechanism based on the "reversal potential" will be considered for its role in the control of information transfer among neurons and also for its contribution to the information flow among different areas of the dendritic tree and to the computational ability of the single neuron. The concept of "competition for plasticity" will be proposed as a mechanism of competition based on the synaptic activation time.

  18. Data-driven modeling of synaptic transmission and integration.

    PubMed

    Rothman, Jason S; Silver, R Angus

    2014-01-01

    In this chapter, we describe how to create mathematical models of synaptic transmission and integration. We start with a brief synopsis of the experimental evidence underlying our current understanding of synaptic transmission. We then describe synaptic transmission at a particular glutamatergic synapse in the mammalian cerebellum, the mossy fiber to granule cell synapse, since data from this well-characterized synapse can provide a benchmark comparison for how well synaptic properties are captured by different mathematical models. This chapter is structured by first presenting the simplest mathematical description of an average synaptic conductance waveform and then introducing methods for incorporating more complex synaptic properties such as nonlinear voltage dependence of ionotropic receptors, short-term plasticity, and stochastic fluctuations. We restrict our focus to excitatory synaptic transmission, but most of the modeling approaches discussed here can be equally applied to inhibitory synapses. Our data-driven approach will be of interest to those wishing to model synaptic transmission and network behavior in health and disease. © 2014 Elsevier Inc. All rights reserved.

  19. Alterations in hippocampal excitability, synaptic transmission and synaptic plasticity in a neurodevelopmental model of schizophrenia.

    PubMed

    Sanderson, Thomas M; Cotel, Marie-Caroline; O'Neill, Michael J; Tricklebank, Mark D; Collingridge, Graham L; Sher, Emanuele

    2012-03-01

    The risk of developing schizophrenia has been linked to perturbations in embryonic development, but the physiological alterations that result from such insults are incompletely understood. Here, we have investigated aspects of hippocampal physiology in a proposed neurodevelopmental model of schizophrenia, induced during gestation in rats by injection of the antimitotic agent methylazoxymethanol acetate (MAM) at embryonic day 17 (MAM(E17)). We observed a reduction in synaptic innervation and synaptic transmission in the dorsal hippocampus of MAM(E17) treated rats, accompanied by a pronounced increase in CA1 pyramidal neuron excitability. Pharmacological investigations suggested that a deficit in GABAergic inhibition could account for the increase in excitability; furthermore, some aspects of the hyper-excitability could be normalised by the GABA(A) receptor (GABA(A)R) potentiator diazepam. Despite these alterations, two major forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) could be readily induced. In contrast, there was a substantial deficit in the reversal of LTP, depotentiation. These findings suggest that delivering neurodevelopmental insults at E17 may offer insights into some of the physiological alterations that underlie behavioural and cognitive symptoms observed in schizophrenia.

  20. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain.

    PubMed

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-03-14

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD.

  1. Synaptic unreliability facilitates information transmission in balanced cortical populations

    NASA Astrophysics Data System (ADS)

    Gatys, Leon A.; Ecker, Alexander S.; Tchumatchenko, Tatjana; Bethge, Matthias

    2015-06-01

    Synaptic unreliability is one of the major sources of biophysical noise in the brain. In the context of neural information processing, it is a central question how neural systems can afford this unreliability. Here we examine how synaptic noise affects signal transmission in cortical circuits, where excitation and inhibition are thought to be tightly balanced. Surprisingly, we find that in this balanced state synaptic response variability actually facilitates information transmission, rather than impairing it. In particular, the transmission of fast-varying signals benefits from synaptic noise, as it instantaneously increases the amount of information shared between presynaptic signal and postsynaptic current. Furthermore we show that the beneficial effect of noise is based on a very general mechanism which contrary to stochastic resonance does not reach an optimum at a finite noise level.

  2. Neurexin regulates nighttime sleep by modulating synaptic transmission

    PubMed Central

    Tong, Huawei; Li, Qian; Zhang, Zi Chao; Li, Yi; Han, Junhai

    2016-01-01

    Neurexins are cell adhesion molecules involved in synaptic formation and synaptic transmission. Mutations in neurexin genes are linked to autism spectrum disorders (ASDs), which are frequently associated with sleep problems. However, the role of neurexin-mediated synaptic transmission in sleep regulation is unclear. Here, we show that lack of the Drosophila α-neurexin homolog significantly reduces the quantity and quality of nighttime sleep and impairs sleep homeostasis. We report that neurexin expression in Drosophila mushroom body (MB) αβ neurons is essential for nighttime sleep. We demonstrate that reduced nighttime sleep in neurexin mutants is due to impaired αβ neuronal output, and show that neurexin functionally couples calcium channels (Cac) to regulate synaptic transmission. Finally, we determine that αβ surface (αβs) neurons release both acetylcholine and short neuropeptide F (sNPF), whereas αβ core (αβc) neurons release sNPF to promote nighttime sleep. Our findings reveal that neurexin regulates nighttime sleep by mediating the synaptic transmission of αβ neurons. This study elucidates the role of synaptic transmission in sleep regulation, and might offer insights into the mechanism of sleep disturbances in patients with autism disorders. PMID:27905548

  3. Porcupine controls hippocampal AMPAR levels, composition and synaptic transmission

    PubMed Central

    Erlenhardt, Nadine; Yu, Hong; Abiraman, Kavitha; Yamasaki, Tokiwa; Wadiche, Jacques I.; Tomita, Susumu; Bredt, David S.

    2016-01-01

    SUMMARY AMPAR (AMPAR) complexes contain auxiliary subunits that modulate receptor trafficking and gating. In addition to the transmembrane AMPAR regulatory proteins (TARPs) and cornichons (CNIH-2/3), recent proteomic studies identified a diverse array of additional AMPAR-associated transmembrane and secreted partners. We systematically surveyed these and found that PORCN and ABHD6 increase GluA1 levels in transfected cells. Knockdown of PORCN in rat hippocampal neurons, which express it in high amounts, selectively reduces levels of all tested AMPAR complex components. Regulation of AMPARs is independent of PORCN’s membrane-associated O-acyl transferase activity. PORCN knockdown in hippocampal neurons decreases AMPAR currents and accelerates desensitization, and leads to depletion of TARP γ-8 from AMPAR complexes. Conditional PORCN knockout mice also exhibit specific changes in AMPAR expression and gating that reduce basal synaptic transmission, but leave long-term potentiation intact. These studies define additional roles for PORCN in controlling synaptic transmission by regulating the level and composition of hippocampal AMPAR complexes. PMID:26776514

  4. Synaptic transmission at retinal ribbon synapses

    PubMed Central

    Heidelberger, Ruth; Thoreson, Wallace B.; Witkovsky, Paul

    2006-01-01

    The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels. PMID:16027025

  5. Very low concentrations of ethanol suppress excitatory synaptic transmission in rat visual cortex.

    PubMed

    Luong, Lucas; Bannon, Nicholas M; Redenti, Andrew; Chistiakova, Marina; Volgushev, Maxim

    2017-03-06

    Ethanol is one of the most commonly used substances in the world. Behavioral effects of alcohol are well described, however, cellular mechanisms of its action are poorly understood. There is an apparent contradiction between measurable behavioral changes produced by low concentrations of ethanol, and lack of evidence of synaptic changes at these concentrations. Furthermore, effects of ethanol on synaptic transmission in the neocortex are poorly understood. Here, we set to determine effects of ethanol on excitatory synaptic transmission in the neocortex. We show that 1-50 mm ethanol suppresses excitatory synaptic transmission to layer 2/3 pyramidal neurons in rat visual cortex in a concentration-dependent manner. To the best of our knowledge, this is the first demonstration of the effects of very low concentrations of ethanol (from 1 mm) on synaptic transmission in the neocortex. We further show that a selective antagonist of A1 adenosine receptors, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), blocks effects of 1-10 mm ethanol on synaptic transmission. However, the reduction in excitatory postsynaptic potential amplitude by 50 mm ethanol was not affected by DPCPX. We propose that ethanol depresses excitatory synaptic transmission in the neocortex by at least two mechanisms, engaged at different concentrations: low concentrations of ethanol reduce synaptic transmission via A1 R-dependent mechanism and involve presynaptic changes, while higher concentrations activate additional, adenosine-independent mechanisms with predominantly postsynaptic action. Involvement of adenosine signaling in mediating effects of low concentrations of ethanol may have important implications for understanding alcohol's effects on brain function, and provide a mechanistic explanation to the interaction between alcohol and caffeine.

  6. Changes in synaptic transmission produced by hydrogen peroxide.

    PubMed

    Colton, C A; Colton, J S; Gilbert, D L

    1986-01-01

    The effect of hydrogen peroxide (H2O2) on excitatory and inhibitory synaptic transmission was studied at the lobster neuromuscular junction. H2O2 produced a dose dependent decrease in the amplitude of the junction potential (Vejp). This decrease was due to changes in both presynaptic transmitter release and the postsynaptic response to the neurotransmitter. Observed presynaptic changes due to exposure to H2O2 were a decrease in the amount of transmitter released, that is, quantal content, as well as a decrease in the fast facilitation, that is, the amplitude increase of successive excitatory junction potentials at a rate of 3 Hz. To discern postsynaptic changes, glutamate, the putative excitatory neurotransmitter for this preparation was applied directly to the bathing medium in order to bypass the presynaptic release process. H2O2 produced a decreased response of the glutamate receptor/ionophore. The action of H2O2 was not selective to excitatory (glutamate-mediated) transmission because inhibitory (GABA-mediated) transmission was also depressed by H2O2. This effect was primarily presynaptic since H2O2 produced no change in the postsynaptic response to applied GABA.

  7. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    PubMed Central

    Dobson, Katharine L.; Bellamy, Tomas C.

    2015-01-01

    In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia. PMID:26171253

  8. Cannabidiol inhibits synaptic transmission in rat hippocampal cultures and slices via multiple receptor pathways

    PubMed Central

    Ledgerwood, CJ; Greenwood, SM; Brett, RR; Pratt, JA; Bushell, TJ

    2011-01-01

    BACKGROUND AND PURPOSE Cannabidiol (CBD) has emerged as an interesting compound with therapeutic potential in several CNS disorders. However, whether it can modulate synaptic activity in the CNS remains unclear. Here, we have investigated whether CBD modulates synaptic transmission in rat hippocampal cultures and acute slices. EXPERIMENTAL APPROACH The effect of CBD on synaptic transmission was examined in rat hippocampal cultures and acute slices using whole cell patch clamp and standard extracellular recordings respectively. KEY RESULTS Cannabidiol decreased synaptic activity in hippocampal cultures in a concentration-dependent and Pertussis toxin-sensitive manner. The effects of CBD in culture were significantly reduced in the presence of the cannabinoid receptor (CB1) inverse agonist, LY320135 but were unaffected by the 5-HT1A receptor antagonist, WAY100135. In hippocampal slices, CBD inhibited basal synaptic transmission, an effect that was abolished by the proposed CB1 receptor antagonist, AM251, in addition to LY320135 and WAY100135. CONCLUSIONS AND IMPLICATIONS Cannabidiol reduces synaptic transmission in hippocampal in vitro preparations and we propose a role for both 5-HT1A and CB1 receptors in these CBD-mediated effects. These data offer some mechanistic insights into the effects of CBD and emphasize that further investigations into the actions of CBD in the CNS are required in order to elucidate the full therapeutic potential of CBD. PMID:20825410

  9. Calcium channels, neuromuscular synaptic transmission and neurological diseases.

    PubMed

    Urbano, Francisco J; Pagani, Mario R; Uchitel, Osvaldo D

    2008-09-15

    Voltage-dependent calcium channels are essential in neuronal signaling and synaptic transmission, and their functional alterations underlie numerous human disorders whether monogenic (e.g., ataxia, migraine, etc.) or autoimmune. We review recent work on Ca(V)2.1 or P/Q channelopathies, mostly using neuromuscular junction preparations, and focus specially on the functional hierarchy among the calcium channels recruited to mediate neurotransmitter release when Ca(V)2.1 channels are mutated or depleted. In either case, synaptic transmission is greatly compromised; evidently, none of the reported functional replacements with other calcium channels compensates fully.

  10. Scaffold remodeling in space and time controls synaptic transmission

    PubMed Central

    Perroy, Julie; Moutin, Enora

    2012-01-01

    Scaffolding proteins that are associated with glutamate receptors in dendritic spines govern the location and function of receptors to control synaptic transmission. Unraveling the spatio-temporal dynamics of protein-protein interactions within components of the scaffolding complex will bring to light the function of these interactions. Combining bioluminescence resonance energy transfer (BRET) imaging to electrophysiological recordings, we have recently shown that GKAP, a core protein of the scaffolding complex, interacts with DLC2, a protein associated with molecular motors. Synaptic activity-induced GKAP-DLC2 interaction in spines stabilizes the scaffolding complex and enhances the NMDA currents. Interestingly, this work placed emphasis on the bioarchitectural dependence of protein-protein interaction dynamics. Depending on physiological conditions, the modulation in space and time of protein-protein interaction is acutely regulated, engendering a subtle control of synaptic transmission in the state of the individual synapse. PMID:22754626

  11. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    PubMed Central

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  12. Presynaptic strontium dynamics and synaptic transmission.

    PubMed

    Xu-Friedman, M A; Regehr, W G

    1999-04-01

    Strontium can replace calcium in triggering neurotransmitter release, although peak release is reduced and the duration of release is prolonged. Strontium has therefore become useful in probing release, but its mechanism of action is not well understood. Here we study the action of strontium at the granule cell to Purkinje cell synapse in mouse cerebellar slices. Presynaptic residual strontium levels were monitored with fluorescent indicators, which all responded to strontium (fura-2, calcium orange, fura-2FF, magnesium green, and mag-fura-5). When calcium was replaced by equimolar concentrations of strontium in the external bath, strontium and calcium both entered presynaptic terminals. Contaminating calcium was eliminated by including EGTA in the extracellular bath, or by loading parallel fibers with EGTA, enabling the actions of strontium to be studied in isolation. After a single stimulus, strontium reached higher peak free levels than did calcium (approximately 1.7 times greater), and decayed more slowly (half-decay time 189 ms for strontium and 32 ms for calcium). These differences in calcium and strontium dynamics are likely a consequence of greater strontium permeability through calcium channels, lower affinity of the endogenous buffer for strontium, and less efficient extrusion of strontium. Measurements of presynaptic divalent levels help to explain properties of release evoked by strontium. Parallel fiber synaptic currents triggered by strontium are smaller in amplitude and longer in duration than those triggered by calcium. In both calcium and strontium, release consists of two components, one more steeply dependent on divalent levels than the other. Strontium drives both components less effectively than does calcium, suggesting that the affinities of the sensors involved in both phases of release are lower for strontium than for calcium. Thus, the larger and slower strontium transients account for the prominent slow component of release triggered by

  13. Presynaptic strontium dynamics and synaptic transmission.

    PubMed Central

    Xu-Friedman, M A; Regehr, W G

    1999-01-01

    Strontium can replace calcium in triggering neurotransmitter release, although peak release is reduced and the duration of release is prolonged. Strontium has therefore become useful in probing release, but its mechanism of action is not well understood. Here we study the action of strontium at the granule cell to Purkinje cell synapse in mouse cerebellar slices. Presynaptic residual strontium levels were monitored with fluorescent indicators, which all responded to strontium (fura-2, calcium orange, fura-2FF, magnesium green, and mag-fura-5). When calcium was replaced by equimolar concentrations of strontium in the external bath, strontium and calcium both entered presynaptic terminals. Contaminating calcium was eliminated by including EGTA in the extracellular bath, or by loading parallel fibers with EGTA, enabling the actions of strontium to be studied in isolation. After a single stimulus, strontium reached higher peak free levels than did calcium (approximately 1.7 times greater), and decayed more slowly (half-decay time 189 ms for strontium and 32 ms for calcium). These differences in calcium and strontium dynamics are likely a consequence of greater strontium permeability through calcium channels, lower affinity of the endogenous buffer for strontium, and less efficient extrusion of strontium. Measurements of presynaptic divalent levels help to explain properties of release evoked by strontium. Parallel fiber synaptic currents triggered by strontium are smaller in amplitude and longer in duration than those triggered by calcium. In both calcium and strontium, release consists of two components, one more steeply dependent on divalent levels than the other. Strontium drives both components less effectively than does calcium, suggesting that the affinities of the sensors involved in both phases of release are lower for strontium than for calcium. Thus, the larger and slower strontium transients account for the prominent slow component of release triggered by

  14. Comparison of carbon monoxide and nitrogen induced effects on synaptic transmission in the rat hippocampal slice.

    PubMed

    Doolette, D J; Kerr, D I

    1992-04-13

    A comparison has been made of the effects of carbon monoxide (CO) or nitrogen (N2) exposure on synaptic transmission in the hippocampal slice. CA1 field potentials, evoked by Schaffer collateral stimulation, were unaffected by superfusion of slices with artificial cerebral spinal fluid (ACSF) equilibrated with either 15% CO or 15% N2 for 120 min. However, superfusion with hypoxic ACSF equilibrated with either 85% CO or 85% N2 caused a rapid depression of synaptic transmission. Reperfusion with control ACSF following 30 min hypoxia led to recovery of evoked responses and a slight hyperexcitability. In the hippocampal slice, synaptic transmission, as assessed by input/output curves, was not different during or following hypoxia induced by exposure to CO or N2. In the short term, CO is not toxic.

  15. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

    PubMed Central

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-01-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  16. Chondroitin Sulfate Induces Depression of Synaptic Transmission and Modulation of Neuronal Plasticity in Rat Hippocampal Slices.

    PubMed

    Albiñana, Elisa; Gutierrez-Luengo, Javier; Hernández-Juarez, Natalia; Baraibar, Andrés M; Montell, Eulalia; Vergés, Josep; García, Antonio G; Hernández-Guijo, Jesus M

    2015-01-01

    It is currently known that in CNS the extracellular matrix is involved in synaptic stabilization and limitation of synaptic plasticity. However, it has been reported that the treatment with chondroitinase following injury allows the formation of new synapses and increased plasticity and functional recovery. So, we hypothesize that some components of extracellular matrix may modulate synaptic transmission. To test this hypothesis we evaluated the effects of chondroitin sulphate (CS) on excitatory synaptic transmission, cellular excitability, and neuronal plasticity using extracellular recordings in the CA1 area of rat hippocampal slices. CS caused a reversible depression of evoked field excitatory postsynaptic potentials in a concentration-dependent manner. CS also reduced the population spike amplitude evoked after orthodromic stimulation but not when the population spikes were antidromically evoked; in this last case a potentiation was observed. CS also enhanced paired-pulse facilitation and long-term potentiation. Our study provides evidence that CS, a major component of the brain perineuronal net and extracellular matrix, has a function beyond the structural one, namely, the modulation of synaptic transmission and neuronal plasticity in the hippocampus.

  17. Nicotinic modulation of glutamatergic synaptic transmission in region CA3 of the hippocampus.

    PubMed

    Giocomo, Lisa M; Hasselmo, Michael E

    2005-09-01

    Cholinergic modulation of synaptic transmission in the hippocampus appears to be involved in learning, memory and attentional processes. In brain slice preparations of hippocampal region CA3, we have explored the effect of nicotine on the afferent connections of stratum lacunosum moleculare (SLM) vs. the intrinsic connections of stratum radiatum (SR). Nicotine application had a lamina-selective effect, causing changes in synaptic transmission only in SLM. The nicotinic effect in SLM was characterized by a transient decrease in synaptic potential size followed by a longer period of enhancement of synaptic transmission. The effect was blocked by gamma-aminobutyric acid (GABA)ergic antagonists, indicating the role of GABAergic interneurons in the observed nicotinic effect. The biphasic nature of the nicotinic effect could be due to a difference in receptor subtypes, as supported by the effects of the nicotinic antagonists mecamylamine and methyllycaconitine. Nicotinic modulation of glutamatergic synaptic transmission could complement muscarinic suppression of intrinsic connections, amplifying incoming information and providing a physiological mechanism for the memory-enhancing effect of nicotine.

  18. An electrophysiological analysis of oxygen and pressure on synaptic transmission.

    PubMed

    Colton, C A; Colton, J S

    1982-11-18

    The effect of oxygen at high pressure (OHP), helium at 150 PSIG and 100% oxygen at ambient pressure on excitatory synaptic transmission was studied using the lobster walking leg neuromuscular preparation. Both 100% oxygen at 150 PSIG (7135 mm Hg oxygen) and helium at 150 PSIG (7000 mm Hg helium plus 135 mm Hg oxygen) produced a significant decrease in the amplitude of the junction potential (Vejp). The decrease in Vejp induced by OHP, however, was greater than with pressure alone. OHP also produced a significant decrease in short term facilitation. Exposure to 100% oxygen at ambient pressure produced a transient increase in Vejp and a large increase in frequency of miniature junction potentials. In each case the change in Vejp was due to changes in presynaptic release of transmitter since quantal content per fiber (M') was shown to decrease for OHP and helium at 150 PSIG and to transiently rise with 100% oxygen at ambient pressure. In addition, the response to exogenously applied glutamate (the putative neurotransmitter) was not affected by OHP, 150 PSIG helium or 100% oxygen at ambient pressure. This further indicates a presynaptic site of action.

  19. Capsaicin augments synaptic transmission in the rat medial preoptic nucleus.

    PubMed

    Karlsson, Urban; Sundgren-Andersson, Anna K; Johansson, Staffan; Krupp, Johannes J

    2005-05-10

    The medial preoptic nucleus (MPN) is the major nucleus of the preoptic area (POA), a hypothalamic area involved in the regulation of body-temperature. Injection of capsaicin into this area causes hypothermia in vivo. Capsaicin also causes glutamate release from hypothalamic slices. However, no data are available on the effect of capsaicin on synaptic transmission within the MPN. Here, we have studied the effect of exogenously applied capsaicin on spontaneous synaptic activity in hypothalamic slices of the rat. Whole-cell patch-clamp recordings were made from visually identified neurons located in the MPN. In a subset of the studied neurons, capsaicin enhanced the frequency of spontaneous glutamatergic EPSCs. Remarkably, capsaicin also increased the frequency of GABAergic IPSCs, an effect that was sensitive to removal of extracellular calcium, but insensitive to tetrodotoxin. This suggests an action of capsaicin at presynaptic GABAergic terminals. In contrast to capsaicin, the TRPV4 agonist 4alpha-PDD did not affect GABAergic IPSCs. Our results show that capsaicin directly affects synaptic transmission in the MPN, likely through actions at presynaptic terminals as well as on projecting neurons. Our data add to the growing evidence that capsaicin receptors are not only expressed in primary afferent neurons, but also contribute to synaptic processing in some CNS regions.

  20. What Is Transmitted in "Synaptic Transmission"?

    ERIC Educational Resources Information Center

    Montagna, Erik; de Azevedo, Adriana M. S.; Romano, Camilla; Ranvaud, Ronald

    2010-01-01

    Even students that obtain a high grade in neurophysiology often carry away a serious misconception concerning the final result of the complex set of events that follows the arrival of an action potential at the presynaptic terminal. The misconception consists in considering that "at a synapse, information is passed on from one neuron to the next"…

  1. What Is Transmitted in "Synaptic Transmission"?

    ERIC Educational Resources Information Center

    Montagna, Erik; de Azevedo, Adriana M. S.; Romano, Camilla; Ranvaud, Ronald

    2010-01-01

    Even students that obtain a high grade in neurophysiology often carry away a serious misconception concerning the final result of the complex set of events that follows the arrival of an action potential at the presynaptic terminal. The misconception consists in considering that "at a synapse, information is passed on from one neuron to the next"…

  2. Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures.

    PubMed

    Bolton, M M; Pittman, A J; Lo, D C

    2000-05-01

    Brain-derived neurotrophic factor (BDNF) has been postulated to be a key signaling molecule in regulating synaptic strength and overall circuit activity. In this context, we have found that BDNF dramatically increases the frequency of spontaneously initiated action potentials in hippocampal neurons in dissociated culture. Using analysis of unitary synaptic transmission and immunocytochemical methods, we determined that chronic treatment with BDNF potentiates both excitatory and inhibitory transmission, but that it does so via different mechanisms. BDNF strengthens excitation primarily by augmenting the amplitude of AMPA receptor-mediated miniature EPSCs (mEPSCs) but enhances inhibition by increasing the frequency of mIPSC and increasing the size of GABAergic synaptic terminals. In contrast to observations in other systems, BDNF-mediated increases in AMPA-receptor mediated mEPSC amplitudes did not require activity, because blocking action potentials with tetrodotoxin for the entire duration of BDNF treatment had no effect on the magnitude of this enhancement. These forms of synaptic regulations appear to be a selective action of BDNF because intrinsic excitability, synapse number, and neuronal survival are not affected in these cultures. Thus, although BDNF induces a net increase in overall circuit activity, this results from potentiation of both excitatory and inhibitory synaptic drive through distinct and selective physiological mechanisms.

  3. Thalamic synaptic transmission of sensory information modulated by synergistic interaction of adenosine and serotonin.

    PubMed

    Yang, Ya-Chin; Hu, Chun-Chang; Huang, Chen-Syuan; Chou, Pei-Yu

    2014-03-01

    The thalamic synapses relay peripheral sensory information to the cortex, and constitute an important part of the thalamocortical network that generates oscillatory activities responsible for different vigilance (sleep and wakefulness) states. However, the modulation of thalamic synaptic transmission by potential sleep regulators, especially by combination of regulators in physiological scenarios, is not fully characterized. We found that somnogen adenosine itself acts similar to wake-promoting serotonin, both decreasing synaptic strength as well as short-term depression, at the retinothalamic synapse. We then combined the two modulators considering the coexistence of them in the hypnagogic (sleep-onset) state. Adenosine plus serotonin results in robust synergistic inhibition of synaptic strength and dramatic transformation of short-term synaptic depression to facilitation. These synaptic effects are not achievable with a single modulator, and are consistent with a high signal-to-noise ratio but a low level of signal transmission through the thalamus appropriate for slow-wave sleep. This study for the first time demonstrates that the sleep-regulatory modulators may work differently when present in combination than present singly in terms of shaping information flow in the thalamocortical network. The major synaptic characters such as the strength and short-term plasticity can be profoundly altered by combination of modulators based on physiological considerations.

  4. Antibody-mediated Impairment and Homeostatic Plasticity of Autonomic Ganglionic Synaptic Transmission

    PubMed Central

    Wang, Zhengbei; Low, Phillip A.; Vernino, Steven

    2010-01-01

    Antibodies against ganglionic acetylcholine receptors (AChR) are implicated as the cause of autoimmune autonomic ganglionopathy (AAG). To characterize ganglionic neurotransmission in an animal model of AAG, evoked and spontaneous excitatory post-synaptic potentials (EPSP) were recorded from neurons in isolated mouse superior cervical ganglia (SCG). In vitro exposure of ganglia to IgG from AAG patients progressively inhibited synaptic transmission. After passive transfer of antibody to mice, evoked EPSP amplitude decreased, and some neurons showed no synaptic responses. EPSP amplitude recovered by day seven despite persistence of ganglionic AChR antibody in the mouse serum. There was a more persistent (at least 14 day) reduction in miniature EPSP amplitude consistent with antibody-mediated reduction in post-synaptic AChR. Although the quantal size was reduced, a progressive increase in the frequency of spontaneous synaptic events occurred, suggesting a compensatory increase in presynaptic efficacy. The quantal size returned to baseline by 21 days while the frequency remained increased for at least four weeks. Ganglionic AChR antibodies cause an impairment of autonomic ganglionic synaptic transmission. Homeostatic plasticity in autonomic neurotransmission could help explain the spontaneous clinical recovery seen in some AAG patients and may also play an important role in regulating normal autonomic reflexes. PMID:20044994

  5. Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust.

    PubMed Central

    Burrows, M; Siegler, M V

    1978-01-01

    1. In the metathoracic ganglion of the locust some neurones can effect changes in the membrane potential of identified post-synaptic motor neurones without themselves spiking. 2. These 'non-spiking' neurones have processes only within the metathoracic ganglion, and therefore are local intraganglionic interneurones. 3. The absence of spikes in the interneurones reflects their normal physiological state and is not due to the experimental conditions. 4. When the interneurones are depolarized by the injection of current pulses lasting several hundred milliseconds, post-synaptic motor neurones are either depolarized, or hyperpolarized, for the duration of the pulse. 5. The magnitude of the change in post-synaptic voltage is graded according to the amount of presynaptic current. 6. A number of physiological tests indicate that the graded effects upon motor neurones are mediated by chemical synaptic transmission. For example, an evoked hyperpolarization of a motor neurone can be reversed in polarity by simultaneously hyperpolarizing the motor neurone with injected current. 7. At their resting potential some interneurones tonically release sufficient transmitter to have a measurable post-synaptic effect. The injection of depolarizing and hyperpolarizing currents into these interneurones effects opposite changes in post-synaptic potential. 8. Other interneurones must be depolarized from resting potential before a post-synaptic effect is observed, and hyperpolarizing currents have no post-synaptic effect. In these interneurones it is estimated that a depolarization of only 2 mV is sufficient to effect the release of transmitter. 9. The membrane potentials of non-spiking interneurones can fluctuate by as much as 15 mV during active movements of the hind legs and individual p.s.p.s as large as 5 mV can be recorded. Therefore, summed p.s.p.s or even single ones are expected to be the electrophysiological signals effecting transmitter release from these interneurones. PMID

  6. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain

    PubMed Central

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-01-01

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD. DOI: http://dx.doi.org/10.7554/eLife.23024.001 PMID:28290985

  7. Presynaptic muscarinic control of glutamatergic synaptic transmission.

    PubMed

    Buño, W; Cabezas, C; Fernández de Sevilla, D

    2006-01-01

    The hippocampus receives cholinergic projections from the medial septal nucleus and Broca's diagonal band that terminate in the CA1, CA3, and dentate gyrus regions (Frotscher and Leranth, 1985). Glutamatergic synapses between CA3 and CA1 pyramidal neurons are presynaptically inhibited by acetylcholine (ACh), via activation of muscarinic ACh receptors (mAChRs) at the terminals of Schaffer collaterals (SCs) (Hounsgaard, 1978; Fernández de Sevilla et al., 2002, 2003). There are two types of SC-CA1 pyramidal neuron synapses. One type, called functional synapse, shows postsynaptic alpha- amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-receptor mediated currents at resting potential (Vm) and both AMPA and N-methyl-D-aspartate receptor (NMDAR)-mediated currents when depolarized. The other type, termed silent synapse, only displays postsynaptic NMDAR-mediated currents at depolarized Vms, but does not respond at the resting Vm (Isaac et al., 1995). Using hippocampal slices obtained from young Wistar rats, we examined the effects of activation of cholinergic afferents at the stratum oriens/alveus on excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by stimulation of SCs. We also tested the action of the nonhydrolyzable cholinergic agonist carbamylcholine chloride (CCh) on EPSCs evoked by minimal stimulation of SCs (which activates a single or very few synapses) in functional and silent synapses.

  8. A novel synaptic plasticity rule explains homeostasis of neuromuscular transmission

    PubMed Central

    Ouanounou, Gilles; Baux, Gérard; Bal, Thierry

    2016-01-01

    Excitability differs among muscle fibers and undergoes continuous changes during development and growth, yet the neuromuscular synapse maintains a remarkable fidelity of execution. Here we show in two evolutionarily distant vertebrates (Xenopus laevis cell culture and mouse nerve-muscle ex-vivo) that the skeletal muscle cell constantly senses, through two identified calcium signals, synaptic events and their efficacy in eliciting spikes. These sensors trigger retrograde signal(s) that control presynaptic neurotransmitter release, resulting in synaptic potentiation or depression. In the absence of spikes, synaptic events trigger potentiation. Once the synapse is sufficiently strong to initiate spiking, the occurrence of these spikes activates a negative retrograde feedback. These opposing signals dynamically balance the synapse in order to continuously adjust neurotransmitter release to a level matching current muscle cell excitability. DOI: http://dx.doi.org/10.7554/eLife.12190.001 PMID:27138195

  9. Stability of thalamocortical synaptic transmission across awake brain states

    PubMed Central

    Stoelzel, Carl R.; Bereshpolova, Yulia; Swadlow, Harvey A.

    2009-01-01

    Sensory cortical neurons are highly sensitive to brain state, with many neurons showing changes in spatial and/or temporal response properties and some neurons becoming virtually unresponsive when subjects are not alert. While some of these changes are undoubtedly due to state-related filtering at the thalamic level, another likely source of such effects is the thalamocortical (TC) synapse, where activation of nicotinic receptors on TC terminals have been shown to enhance synaptic transmission in vitro. However, monosynaptic TC synaptic transmission has not been directly examined during different states of alertness. Here, in awake rabbits that shifted between alert and non-alert EEG states, we examined the monosynaptic TC responses and short-term synaptic dynamics generated by spontaneous impulses of single visual and somatosensory TC neurons. We did this using spike-triggered current source density analysis, an approach that enables assessment of monosynaptic extracellular currents generated in different cortical layers by impulses of single TC afferents. Spontaneous firing rates of TC neurons were higher, and burst rates were much lower in the alert state. However, we found no state-related changes in the amplitude of monosynaptic TC responses when TC spikes with similar preceding interspike interval were compared. Moreover, the relationship between the preceding interspike interval of the TC spike and postsynaptic response amplitude was not influenced by state. These data indicate that TC synaptic transmission and dynamics are highly conserved across different states of alertness and that observed state-related changes in receptive field properties that occur at the cortical level result from other mechanisms. PMID:19474312

  10. Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons

    PubMed Central

    Li, Chia; McCall, Nora M.; Lopez, Alberto J.; Kash, Thomas L.

    2014-01-01

    The role of dopamine (DA) signaling in regulating the rewarding properties of drugs, including alcohol, has been widely studied. The majority of these studies, however, have focused on the DA neurons located in the ventral tegmental area (VTA), and their projections to the nucleus accumbens. DA neurons within the ventral periaqueductal gray (vPAG) have been shown to regulate reward but little is known about the functional properties of these neurons, or how they are modified by drugs of abuse. This lack of knowledge is likely due to the highly heterogeneous cell composition of the vPAG, with both γ-amino-butyric acid (GABA) and glutamate neurons present in addition to DA neurons. In this study, we performed whole-cell recordings in a TH–eGFP transgenic mouse line to evaluate the properties of vPAG-DA neurons. Following this initial characterization, we examined how both acute and chronic alcohol exposure modify synaptic transmission onto vPAG-DA neurons. We found minimal effects of acute alcohol exposure on GABA transmission, but a robust enhancement of glutamatergic synaptic transmission in vPAG-DA. Consistent with this effect on excitatory transmission, we also found that alcohol caused an increase in firing rate. These data were in contrast to the effects of chronic intermittent alcohol exposure, which had no significant impact on either inhibitory or excitatory synaptic transmission on the vPAG-DA neurons. These data add to a growing body of literature that points to alcohol having both region-dependent and cell-type dependent effects on function. PMID:23597415

  11. How do astrocytes shape synaptic transmission? Insights from electrophysiology

    PubMed Central

    Dallérac, Glenn; Chever, Oana; Rouach, Nathalie

    2013-01-01

    A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy. PMID:24101894

  12. Probing fundamental aspects of synaptic transmission with strontium.

    PubMed

    Xu-Friedman, M A; Regehr, W G

    2000-06-15

    Strontium is capable of supporting synaptic transmission, but release is dramatically different from that evoked in calcium. By measuring presynaptic strontium levels, we gain insight into the actions of strontium, which has implications for the identification of molecules involved in different aspects of synaptic transmission. We examined presynaptic divalent levels and synaptic release at the granule cell to stellate cell synapse in mouse cerebellar slices. We find that the prolonged duration of release and paired-pulse facilitation in the presence of strontium can be accounted for by the slower removal of strontium from the presynaptic terminal. Phasic and delayed release are both driven by strontium less effectively than by calcium, indicating that a heightened sensitivity to strontium is not a feature of the binding sites involved in facilitation and delayed release. We also find that the cooperativity for phasic release is 1.7 for strontium compared with 3.2 for calcium, suggesting that differential binding may help to identify the calcium sensor involved in phasic release.

  13. Presynaptic calcium stores contribute to nicotine-elicited potentiation of evoked synaptic transmission at CA3-CA1 connections in the neonatal rat hippocampus.

    PubMed

    Le Magueresse, Corentin; Cherubini, Enrico

    2007-01-01

    Nicotine acetylcholine (ACh) receptors (nAChRs) are ligand-gated ion channels that are widely expressed throughout the central nervous system. It is well established that presynaptic, alpha7-containing nAChRs modulate glutamate release in several brain areas, and that this modulation requires extracellular calcium. However, the intracellular mechanisms consecutive to nAChR opening are unclear. Recent studies have suggested a role for presynaptic calcium stores in the increase of neurotransmitter release following nAChR activation. Using the minimal stimulation protocol at low-probability Schaffer collateral synapses in acute hippocampal slices from neonatal rats, we show that nicotine acting on presynaptic alpha7 nAChRs persistently upregulates glutamate release. We tested the role of calcium stores in this potentiation. First, we examined the relationship between calcium stores and glutamate release. We found that bath application of SERCA pump inhibitors (cyclopiazonic acid and thapsigargin), as well as an agonist of ryanodine receptors (ryanodine 2 microM) increases the probability of glutamate release at CA3-CA1 synapses, decreases the coefficient of variation and the paired-pulse ratio, indicating that presynaptic activation of calcium-induced calcium release can modulate glutamatergic transmission. Next, we investigated whether blocking calcium release from internal stores could alter the effect of nicotine. Preincubation with thapsigargin (10 microM), cyclopiazonic acid (30 microM), or with a high (blocking) concentration of ryanodine (100 microM) for 30 min to 5 h failed to block the effect of nicotine. However, after preincubation in ryanodine, nicotine-elicited potentiation was significantly shortened. These results indicate that at immature Schaffer collateral-CA1 synapses, activation of presynaptic calcium stores is not necessary for but contributes to nicotine-elicited increase of neurotransmitter release.

  14. Substance P selectively modulates GABA(A) receptor-mediated synaptic transmission in striatal cholinergic interneurons.

    PubMed

    Govindaiah, G; Wang, Yanyan; Cox, Charles L

    2010-02-01

    Substance P (SP) is co-localized and co-released with gamma-amino butyric acid (GABA) from approximately 50% of GABAergic medium spiny neurons (MSNs) in the striatum. MSNs innervate several cellular targets including neighboring MSNs and cholinergic interneurons via collaterals. However, the functional role of SP release onto striatal interneurons is unknown. Here we examined SP-mediated actions on inhibitory synaptic transmission in cholinergic interneurons using whole-cell recordings in mouse corticostriatal slices. We found that SP selectively suppressed GABA(A) receptor-mediated inhibitory post-synaptic currents (IPSCs), but not excitatory post-synaptic currents (EPSCs) in cholinergic interneurons. In contrast, SP did not alter IPSCs in fast-spiking interneurons and MSNs. SP suppressed IPSC amplitude in a concentration-dependent and reversible manner, and the NK1 receptor antagonist RP67580 attenuated the SP-mediated suppression. In addition, RP67580 alone enhanced the evoked IPSC amplitude in cholinergic interneurons, suggesting an endogenous action of SP on regulation of inhibitory synaptic transmission. SP did not alter the paired-pulse ratio, but reduced the amplitudes of GABA(A) agonist muscimol-induced outward currents and miniature IPSCs in cholinergic interneurons, suggesting SP exerts its effects primarily at the post-synaptic site. Our results indicate that the physiological effects of SP are to enhance the activity of striatal cholinergic interneurons and provide a rationale for designing potential new antiparkinsonian agents.

  15. An Engineered Metal Sensor Tunes the Kinetics of Synaptic Transmission

    PubMed Central

    Evans, Chantell S.; Ruhl, David A.

    2015-01-01

    The Ca2+ sensor synaptotagmin-1 (syt-1) regulates neurotransmitter release by interacting with anionic phospholipids. Here we test the idea that the intrinsic kinetics of syt–membrane interactions determine, in part, the time course of synaptic transmission. To tune the kinetics of this interaction, we grafted structural elements from the slowest isoform, syt-7, onto the fastest isoform, syt-1, resulting in a chimera with intermediate kinetic properties. Moreover, the chimera coupled a physiologically irrelevant metal, Sr2+, to membrane fusion in vitro. When substituted for syt-1 in mouse hippocampal neurons, the chimera slowed the kinetics of synaptic transmission. Neurons expressing the chimera also evinced rapid and efficient Sr2+ triggered release, in contrast to the weak response of neurons expressing syt-1. These findings reveal presynaptic sensor–membrane interactions as a major factor regulating the speed of the release machinery. Finally, the chimera failed to clamp the elevated spontaneous fusion rate exhibited by syt-1 KO neurons, indicating that the metal binding loops of syt-1 regulate the two modes of release by distinct mechanisms. SIGNIFICANCE STATEMENT In calcium, synaptotagmin-1 triggers neurotransmitter release by interacting with membranes. Here, we demonstrate that intrinsic properties of this interaction control the time course of synaptic transmission. We engineered a “chimera” using synaptotagmin-1 and elements of a slower isoform, synaptotagmin-7. When expressed in neurons, the chimera slowed the rate of neurotransmitter release. Furthermore, unlike native synaptotagmin-1, the chimera was able to function robustly in the presence of strontium–a metal not present in cells. We exploited this ability to show that a key function of synaptotagmin-1 is to penetrate cell membranes. This work sheds light on fundamental mechanisms of neurotransmitter release. PMID:26311762

  16. Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D.; Moreno, Herman; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2014-01-01

    Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa++ amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5–10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037

  17. Enhanced synaptic transmission at the squid giant synapse by artificial seawater based on physically modified saline.

    PubMed

    Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D; Moreno, Herman; Moreira, Jorge E; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2014-01-01

    Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa(++) amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5-10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement.

  18. Role of Rab27 in synaptic transmission at the squid giant synapse

    PubMed Central

    Yu, Eunah; Kanno, Eiko; Choi, Soonwook; Sugimori, Mutsuyuki; Moreira, Jorge E.; Llinás, Rodolfo R.; Fukuda, Mitsunori

    2008-01-01

    Small GTPase Rab is a member of a large family of Ras-related proteins, highly conserved in eukaryotic cells, and thought to regulate specific type(s) and/or specific step(s) in intracellular membrane trafficking. Given our interest in synaptic transmission, we addressed the possibility that Rab27 (a close isoform of Rab3) could be involved in cytosolic synaptic vesicle mobilization. Indeed, preterminal injection of a specific antibody against squid Rab27 (anti-sqRab27 antibody) combined with confocal microscopy demonstrated that Rab27 is present on squid synaptic vesicles. Electrophysiological study of injected synapses showed that the anti-sqRab27 antibody inhibited synaptic release in a stimulation-dependent manner without affecting presynaptic action potentials or inward Ca2+ current. This result was confirmed in in vitro synaptosomes by using total internal reflection fluorescence microscopy. Thus, synaptosomal Ca2+-stimulated release of FM1-43 dye was greatly impaired by intraterminal anti-sqRab27 antibody. Ultrastructural analysis of the injected giant preterminal further showed a reduced number of docked synaptic vesicles and an increase in nondocked vesicular profiles distant from the active zone. These results, taken together, indicate that Rab27 is primarily involved in the maturation of recycled vesicles and/or their transport to the presynaptic active zone in the squid giant synapse. PMID:18840683

  19. Role of Rab27 in synaptic transmission at the squid giant synapse.

    PubMed

    Yu, Eunah; Kanno, Eiko; Choi, Soonwook; Sugimori, Mutsuyuki; Moreira, Jorge E; Llinás, Rodolfo R; Fukuda, Mitsunori

    2008-10-14

    Small GTPase Rab is a member of a large family of Ras-related proteins, highly conserved in eukaryotic cells, and thought to regulate specific type(s) and/or specific step(s) in intracellular membrane trafficking. Given our interest in synaptic transmission, we addressed the possibility that Rab27 (a close isoform of Rab3) could be involved in cytosolic synaptic vesicle mobilization. Indeed, preterminal injection of a specific antibody against squid Rab27 (anti-sqRab27 antibody) combined with confocal microscopy demonstrated that Rab27 is present on squid synaptic vesicles. Electrophysiological study of injected synapses showed that the anti-sqRab27 antibody inhibited synaptic release in a stimulation-dependent manner without affecting presynaptic action potentials or inward Ca(2+) current. This result was confirmed in in vitro synaptosomes by using total internal reflection fluorescence microscopy. Thus, synaptosomal Ca(2+)-stimulated release of FM1-43 dye was greatly impaired by intraterminal anti-sqRab27 antibody. Ultrastructural analysis of the injected giant preterminal further showed a reduced number of docked synaptic vesicles and an increase in nondocked vesicular profiles distant from the active zone. These results, taken together, indicate that Rab27 is primarily involved in the maturation of recycled vesicles and/or their transport to the presynaptic active zone in the squid giant synapse.

  20. Stimulation of the nucleus raphe medialis modifies basal synaptic transmission at the dentate gyrus, but not long-term potentiation or its reinforcement by stimulation of the basolateral amygdala.

    PubMed

    Bergado, Jorge A; Scherf, Thomas; Almaguer-Melian, William; Frey, Sabine; López, Jeffrey; Frey, Julietta U

    2009-10-30

    Affective factors importantly interact with behavior and memory. Physiological mechanisms that underlie such interactions are objects of intensive studies. This involves the direct investigation of its relevance to understand learning and memory formation as well as the search for possibilities to treat memory disorders. The prolonged maintenance of long-term potentiation (LTP) - a cellular model for memory formation - is characterized by neuromodulatory, associative requirements. During the last years, we have delineated a neural system that may be responsible for affective-cognitive interactions at the cellular level. The stimulation of the basolateral amygdala (BLA), within an effective, associative time window, reinforces a normally transient, protein synthesis-independent early-LTP (less than 4-6h) into a long-lasting, protein synthesis-dependent late-LTP in the dentate gyrus (DG) in freely moving rats (Frey et al., 2001 [12]). LTP reinforcement by stimulation of the BLA was mediated by cholinergic projection of the medial septum to the DG, and the noradrenergic projection from the locus coeruleus (Bergado et al., 2007 [2]). We were now interested to investigate a possible interaction of the nucleus raphe medialis (NRM) with DG-LTP. Although, NRM stimulation resulted in a depressing effect on basal synaptic transmission, we did not observe any interactions with early-LTP or with the BLA-DG LTP-reinforcement system.

  1. Disruption of LGI1–linked synaptic complex causes abnormal synaptic transmission and epilepsy

    PubMed Central

    Fukata, Yuko; Lovero, Kathryn L.; Iwanaga, Tsuyoshi; Watanabe, Atsushi; Yokoi, Norihiko; Tabuchi, Katsuhiko; Shigemoto, Ryuichi; Nicoll, Roger A.; Fukata, Masaki

    2010-01-01

    Epilepsy is a devastating and poorly understood disease. Mutations in a secreted neuronal protein, leucine-rich glioma inactivated 1 (LGI1), were reported in patients with an inherited form of human epilepsy, autosomal dominant partial epilepsy with auditory features (ADPEAF). Here, we report an essential role of LGI1 as an antiepileptogenic ligand. We find that loss of LGI1 in mice (LGI1−/−) causes lethal epilepsy, which is specifically rescued by the neuronal expression of LGI1 transgene, but not LGI3. Moreover, heterozygous mice for the LGI1 mutation (LGI1+/−) show lowered seizure thresholds. Extracellularly secreted LGI1 links two epilepsy-related receptors, ADAM22 and ADAM23, in the brain and organizes a transsynaptic protein complex that includes presynaptic potassium channels and postsynaptic AMPA receptor scaffolds. A lack of LGI1 disrupts this synaptic protein connection and selectively reduces AMPA receptor–mediated synaptic transmission in the hippocampus. Thus, LGI1 may serve as a major determinant of brain excitation, and the LGI1 gene-targeted mouse provides a good model for human epilepsy. PMID:20133599

  2. Statistical analysis of synaptic transmission: model discrimination and confidence limits.

    PubMed Central

    Stricker, C; Redman, S; Daley, D

    1994-01-01

    Procedures for discriminating between competing statistical models of synaptic transmission, and for providing confidence limits on the parameters of these models, have been developed. These procedures were tested against simulated data and were used to analyze the fluctuations in synaptic currents evoked in hippocampal neurones. All models were fitted to data using the Expectation-Maximization algorithm and a maximum likelihood criterion. Competing models were evaluated using the log-likelihood ratio (Wilks statistic). When the competing models were not nested, Monte Carlo sampling of the model used as the null hypothesis (H0) provided density functions against which H0 and the alternate model (H1) were tested. The statistic for the log-likelihood ratio was determined from the fit of H0 and H1 to these probability densities. This statistic was used to determine the significance level at which H0 could be rejected for the original data. When the competing models were nested, log-likelihood ratios and the chi 2 statistic were used to determine the confidence level for rejection. Once the model that provided the best statistical fit to the data was identified, many estimates for the model parameters were calculated by resampling the original data. Bootstrap techniques were then used to obtain the confidence limits of these parameters. PMID:7948672

  3. Dopaminergic modulation of synaptic transmission in cortex and striatum

    PubMed Central

    Tritsch, Nicolas X.; Sabatini, Bernardo L.

    2015-01-01

    Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. For example, release of DA within nucleus accumbens signals reward and rapidly modifies brain function to drive repetition of motor action in search of further reward. The control that DA exerts over behavior is also clear in humans, as mimicry of dopaminergic reward signals underlies addiction to drugs of abuse, whereas death of midbrain dopaminergic neurons causes Parkinson’s disease (PD). In addition, perturbations of DA are implicated in the pathogenesis, or exploited in the treatment of many neuropsychiatric diseases including schizophrenia, obsessive compulsive disorder, and Tourette’s syndrome. Although the precise mechanisms employed by DA to exert its control over behavior are not fully understood, DA is known to regulate many electrical and biochemical aspects of neuronal function including excitability, synaptic transmission, integration and plasticity, protein trafficking and gene transcription. In this review, we discuss the actions of DA on ionic and synaptic signaling in neurons of the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to the above-mentioned diseases. We focus on actions of DA on the pre- and postsynaptic terminals and restrict our discussion to studies in which the site of action or the molecular target of DA is clearly identified. PMID:23040805

  4. Cortical Synaptic Transmission and Plasticity in Acute Liver Failure Are Decreased by Presynaptic Events.

    PubMed

    Popek, Mariusz; Bobula, Bartosz; Sowa, Joanna; Hess, Grzegorz; Polowy, Rafał; Filipkowski, Robert Kuba; Frontczak-Baniewicz, Małgorzata; Zabłocka, Barbara; Albrecht, Jan; Zielińska, Magdalena

    2017-01-23

    Neurological symptoms of acute liver failure (ALF) reflect decreased excitatory transmission, but the status of ALF-affected excitatory synapse has not been characterized in detail. We studied the effects of ALF in mouse on synaptic transmission and plasticity ex vivo and its relation to distribution of (i) synaptic vesicles (sv) and (ii) functional synaptic proteins within the synapse. ALF-competent neurological and biochemical changes were induced in mice with azoxymethane (AOM). Electrophysiological characteristics (long-term potentiation, whole-cell recording) as well as synapse ultrastructure were evaluated in the cerebral cortex. Also, sv were quantified in the presynaptic zone by electron microscopy. Finally, presynaptic proteins in the membrane-enriched (P2) and cytosolic (S2) fractions of cortical homogenates were quantitated by Western blot. Slices derived from symptomatic AOM mice presented a set of electrophysiological correlates of impaired transmitter release including decreased field potentials (FPs), increased paired-pulse facilitation (PPF), and decreased frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs/mEPSCs) accompanied by reduction of the spontaneous transmitter release-driving protein, vti1A. Additionally, an increased number of sv per synapse and a decrease of P2 content and/or P2/S2 ratio for sv-associated proteins, i.e. synaptophysin, synaptotagmin, and Munc18-1, were found, in spite of decreased content of the sv-docking protein, syntaxin-1. Slices from AOM-treated asymptomatic mice showed impaired long-term potentiation (LTP) and increased PPF but no changes in transmitter release or presynaptic protein composition. Our findings demonstrate that a decrease of synaptic transmission in symptomatic ALF is associated with inefficient recruitment of sv proteins and/or impaired sv trafficking to transmitter release sites.

  5. Separate serotonin and dopamine receptors modulate the duration of post-tetanic potentiation at an Aplysia synapse without affecting other aspects of synaptic transmission.

    PubMed

    Newlin, S A; Schlapfer, W T; Barondes, S H

    1980-01-06

    We have studied the effect of the biogenic amines, serotonin and dopamine, on post-tetanic potentiation (PTP) at an identified synapse in the abdominal ganglion of Aplysia californica. We found that: (1) 10(-7) M perfused serotonin doubles the rate constant of decay of PTP. The effect is specific in that neither the size of the non-potentiated (isolated) EPSP nor the amplitude of PTP is affected. As reported previously, higher doses of serotonin will also increase the amplitude of PTP and decrease the size of the isolated EPSP; (2) 5 X 10(-7) M dopamine in the perfusate increases the rate constant of decay of PTP by about 50%. The effect is also specific in that neither PTP amplitude nor the size of the isolated EPSP is affected; (3) SQ10,631, a serotonin antagonist, blocks the effect of perfused serotonin on PTP decay rate. It does not antagonize the dopamine effect. SQ10,631 also slows the endogenous decay of PTP in some preparations which exhibit an unusually fast PTP decay rate, suggesting a naturally occurring source of serotonin within the ganglion capable of affecting the rate constant of PTP decay; (4) (+)-butaclamol, a dopamine antagonist, blocks the effect of dopamine on the rate constant of PTP decay, whereas (-)-butaclamol has little effect. Butaclamol does not block the effect of serotonin on the rate constant of PTP decay; (5) phosphodiesterase inhibitors potentiate the effect of serotonin on the rate constant of PTP decay, and cyclic AMP analogues mimic the effect of the biogenic amines, suggesting that the aminergic modulation of the rate of decay of PTP is coupled with activation of adenylate cyclase and accumulation of cyclic AMP; and (6) the evidence presented is consistent with the hypothesis that serotonin and dopamine are capable of specifically modifying the rate of change in the efficacy of transmitter release which underlies PTP. It also suggests that the two biogenic amines operate separately and in parallel via presynaptic receptor

  6. Modulation of GABA-mediated synaptic transmission by endogenous zinc in the immature rat hippocampus in vitro.

    PubMed Central

    Xie, X; Hider, R C; Smart, T G

    1994-01-01

    1. Intracellular recordings from postnatal 2- to 12-day-old (P2-12) rat hippocampal CA3 pyramidal neurones exhibited spontaneous synaptic potentials mediated by GABAA receptors. These potentials can be separated on the basis of amplitude into two classes which are referred to as small and large. 2. The large depolarizing potentials were reversibly inhibited by the Zn2+ chelator 1,2-diethyl-3-hydroxypyridin-4-one (CP94). The small inhibitory postsynaptic potentials. (IPSPs) were apparently unaffected. 3. Stimulation of the mossy fibre pathway evoked composite excitatory postsynaptic potentials (EPSPs) and IPSPs. Threshold stimulus-evoked synaptic potentials were mediated by GABAA receptors and were reversibly blocked by CP94. The responses evoked by suprathreshold stimulation and persisting in the presence of bicuculline or CP94 were partially inhibited by 2-amino-5-phosphonopropionic acid (AP5) and were completely blocked with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). 4. L-Histidine, which preferentially forms complexes with Cu2+ > Zn2+ > Fe2+ > Mn2+, inhibited both naturally occurring spontaneous and evoked GABAA-mediated large synaptic potentials without affecting the neuronal resting membrane properties. Exogenously applied Zn2+ induced large spontaneous synaptic potentials and prolonged the duration of the evoked potentials. These effects were reversibly blocked by histidine. 5. The metal chelating agent diethyldithiocarbamate had little effect on the large amplitude synaptic potentials. 6. The transition metal divalent cations Fe2+ and Mn2+ did not initiate large synaptic potentials in CA3 neurones; however, Cu2+ depolarized the membrane and enhanced both excitatory and inhibitory synaptic transmission, resulting in a transient increase in the frequency of the large amplitude events. In comparison, zinc increased the frequency of the large potentials and also induced such events in neurons (P4-21) where innate potentials were absent. The postsynaptic

  7. NR2B-dependent Cyclophilin D translocation suppresses the recovery of synaptic transmission after oxygen-glucose deprivation

    PubMed Central

    Yan, Shijun; Du, Fang; Yan, Shirley Shidu

    2016-01-01

    N-methyl D-aspartate receptor (NMDA) subunit 2B (NR2B)-containing NMDA receptors and mitochondrial protein cyclophilin D (CypD) are well characterized in mediating neuronal death after ischemia, respectively. However, whether and how NR2B and CypD work together in mediating synaptic injury after ischemia remains elusive. Using a de novo ischemia model of oxygen-glucose deprivation (OGD) in hippocampal slices, we identified a NR2B-dependent mechanism for CypD translocation onto the mitochondrial inner membrane. CypD depletion (CypD null mice) prevented OGD-induced impairment in synaptic transmission recovery. Overexpression of neuronal CypD mice (CypD+) exacerbated OGD-induced loss of synaptic transmission. Inhibition of CypD-dependent mitochondrial permeability transition pore (mPTP) opening by cyclosporine A (CSA) attenuated ischemia-induced synaptic perturbation in CypD+ and non-transgenic (nonTg) mice. The treatment of antioxidant EUK134 to suppress mitochondrial oxidative stress rescued CypD-mediated synaptic dysfunction following OGD in CypD+ slices. Furthermore, OGD provoked the interaction of CypD with P53, which was enhanced in slices overexpressing CypD but was diminished in CypD-null slices Inhibition of p53 using a specific inhibitor of p53 (pifithrin-μ) attenuated the CypD/p53 interaction following OGD, along with a restored synaptic transmission in both nonTg and CypD+ hippocampal slices. Our results indicate that OGD-induced CypD translocation potentiates CypD/P53 interaction in a NR2B dependent manner, promoting oxidative stress and loss of synaptic transmission. We also evaluate a new ex-vivo chronic OGD-induced ischemia model for studying the effect of oxidative stress on synaptic damage. PMID:26232180

  8. NR2B-dependent cyclophilin D translocation suppresses the recovery of synaptic transmission after oxygen-glucose deprivation.

    PubMed

    Zhang, Zhihua; Wang, Yongfu; Yan, Shijun; Du, Fang; Yan, Shirley Shidu

    2015-10-01

    N-methyl d-aspartate receptor (NMDA) subunit 2B (NR2B)-containing NMDA receptors and mitochondrial protein cyclophilin D (CypD) are well characterized in mediating neuronal death after ischemia, respectively. However, whether and how NR2B and CypD work together in mediating synaptic injury after ischemia remains elusive. Using an ex vivo ischemia model of oxygen-glucose deprivation (OGD) in hippocampal slices, we identified a NR2B-dependent mechanism for CypD translocation onto the mitochondrial inner membrane. CypD depletion (CypD null mice) prevented OGD-induced impairment in synaptic transmission recovery. Overexpression of neuronal CypD mice (CypD+) exacerbated OGD-induced loss of synaptic transmission. Inhibition of CypD-dependent mitochondrial permeability transition pore (mPTP) opening by cyclosporine A (CSA) attenuated ischemia-induced synaptic perturbation in CypD+ and non-transgenic (non-Tg) mice. The treatment of antioxidant EUK134 to suppress mitochondrial oxidative stress rescued CypD-mediated synaptic dysfunction following OGD in CypD+ slices. Furthermore, OGD provoked the interaction of CypD with P53, which was enhanced in slices overexpressing CypD but was diminished in CypD-null slices. Inhibition of p53 using a specific inhibitor of p53 (pifithrin-μ) attenuated the CypD/p53 interaction following OGD, along with a restored synaptic transmission in both non-Tg and CypD+ hippocampal slices. Our results indicate that OGD-induced CypD translocation potentiates CypD/P53 interaction in a NR2B dependent manner, promoting oxidative stress and loss of synaptic transmission. We also evaluate a new ex vivo chronic OGD-induced ischemia model for studying the effect of oxidative stress on synaptic damage.

  9. Mice Deficient for Prion Protein Exhibit Normal Neuronal Excitability and Synaptic Transmission in the Hippocampus

    NASA Astrophysics Data System (ADS)

    Lledo, Pierre-Marie; Tremblay, Patrick; Dearmond, Stephen J.; Prusiner, Stanley B.; Nicoll, Roger A.

    1996-03-01

    We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus.

  10. Cancer metastasis-suppressing peptide metastin upregulates excitatory synaptic transmission in hippocampal dentate granule cells.

    PubMed

    Arai, Amy C; Xia, Yan-Fang; Suzuki, Erika; Kessler, Markus; Civelli, Olivier; Nothacker, Hans-Peter

    2005-11-01

    Metastin is an antimetastatic peptide encoded by the KiSS-1 gene in cancer cells. Recent studies found that metastin is a ligand for the orphan G-protein-coupled receptor GPR54, which is highly expressed in specific brain regions such as the hypothalamus and parts of the hippocampus. This study shows that activation of GPR54 by submicromolar concentrations of metastin reversibly enhances excitatory synaptic transmission in hippocampal dentate granule cells in a mitogen-activated protein (MAP) kinase-dependent manner. Synaptic enhancement by metastin was suppressed by intracellular application of the G-protein inhibitor GDP-beta-S and the calcium chelator BAPTA. Analysis of miniature excitatory postsynaptic currents (mEPSCs) revealed an increase in the mean amplitude but no change in event frequency. This indicates that GPR54 and the mechanism responsible for the increase in EPSCs are postsynaptic. Metastin-induced synaptic potentiation was abolished by 50 microM PD98059 and 20 microM U0126, two inhibitors of the MAP kinases ERK1 and ERK2. The effect was also blocked by inhibitors of calcium/calmodulin-dependent kinases and tyrosine kinases. RT-PCR experiments showed that both KiSS-1 and GPR54 are expressed in the hippocampal dentate gyrus. Metastin is thus a novel endogenous factor that modulates synaptic excitability in the dentate gyrus through mechanisms involving MAP kinases, which in turn may be controlled upstream by calcium-activated kinases and tyrosine kinases.

  11. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function.

    PubMed

    Lu, Wei; Bushong, Eric A; Shih, Tiffany P; Ellisman, Mark H; Nicoll, Roger A

    2013-05-08

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional segregation of excitatory synaptic transmission from neuronal morphological development.

  12. Suppression of excitatory synaptic transmission can facilitate low-calcium epileptiform activity in the hippocampus in vivo.

    PubMed

    Feng, Zhouyan; Durand, Dominique M

    2004-12-24

    It has been reported that the inhibitory postsynaptic potential (IPSP) is abolished before the excitatory postsynaptic potential (EPSP) when the extracellular concentration of Ca(2+) ([Ca(2+)](o)) is removed gradually in hippocampal slices. However, the low-Ca(2+) nonsynaptic epileptiform activity does not appear until the [Ca(2+)](o) is decreased to a level sufficient to depress the excitatory synaptic transmission. This suggests the hypothesis that the suppression of excitatory synaptic transmission itself could facilitate the generation of epileptiform activity. In the present study, we tested this hypothesis and developed a new model of nonsynaptic epileptiform activity by gradually raising the neuronal excitability and blocking the synaptic transmission with high K(+), zero Ca(2+) and calcium chelator ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) in the CA1 region of hippocampus in vivo. The changes of synaptic transmission and recurrent inhibitory activity during this process were evaluated by measuring the amplitude of the population spikes (PS) in response to paired-pulse orthodromic stimulation. The results show that the epileptiform activity appeared only when the excitatory synaptic transmission was depressed by further lowering [Ca(2+)](o) with EGTA. Similar epileptiform activity could be induced when EGTA was replaced by the excitatory postsynaptic amino acid antagonists D-(-)-2-amino-5-phosphonopentanoic acid (APV) plus 6,7-dinitroquinoxaline-2,3-dione (DNQX) or APV alone but not DNQX alone. The combination application of APV and cadmium enhanced the epileptiform activity. These results suggest that the suppression of excitatory synaptic transmission can facilitate the appearance of epileptiform activity in solution with high K(+) and low Ca(2+) in vivo. These data provide new information to be considered in the development of antiepileptic drugs. They also suggest a possible mechanism to explain the fact that low

  13. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse.

    PubMed

    Goldberg, Ethan M; Watanabe, Shigeo; Chang, Su Ying; Joho, Rolf H; Huang, Z Josh; Leonard, Christopher S; Rudy, Bernardo

    2005-05-25

    Potassium (K+) channel subunits of the Kv3 subfamily (Kv3.1-Kv3.4) display a positively shifted voltage dependence of activation and fast activation/deactivation kinetics when compared with other voltage-gated K+ channels, features that confer on Kv3 channels the ability to accelerate the repolarization of the action potential (AP) efficiently and specifically. In the cortex, the Kv3.1 and Kv3.2 proteins are expressed prominently in a subset of GABAergic interneurons known as fast-spiking (FS) cells and in fact are a significant determinant of the fast-spiking discharge pattern. However, in addition to expression at FS cell somata, Kv3.1 and Kv3.2 proteins also are expressed prominently at FS cell terminals, suggesting roles for Kv3 channels in neurotransmitter release. We investigated the effect of 1.0 mM tetraethylammonium (TEA; which blocks Kv3 channels) on inhibitory synaptic currents recorded in layer II/III neocortical pyramidal cells. Spike-evoked GABA release by FS cells was enhanced nearly twofold by 1.0 mM TEA, with a decrease in the paired pulse ratio (PPR), effects not reproduced by blockade of the non-Kv3 subfamily K+ channels also blocked by low concentrations of TEA. Moreover, in Kv3.1/Kv3.2 double knock-out (DKO) mice, the large effects of TEA were absent, spike-evoked GABA release was larger, and the PPR was lower than in wild-type mice. Together, these results suggest specific roles for Kv3 channels at FS cell terminals that are distinct from those of Kv1 and large-conductance Ca2+-activated K+ channels (also present at the FS cell synapse). We propose that at FS cell terminals synaptically localized Kv3 channels keep APs brief, limiting Ca2+ influx and hence release probability, thereby influencing synaptic depression at a synapse designed for sustained high-frequency synaptic transmission.

  14. Developmental Exposure to Perchlorate Alters Synaptic Transmission in Hippocampus of the Adult Rat

    PubMed Central

    Gilbert, Mary E.; Sui, Li

    2008-01-01

    Background Perchlorate is an environmental contaminant that blocks iodine uptake into the thyroid gland and reduces thyroid hormones. This action of perchlorate raises significant concern over its effects on brain development. Objectives The purpose of this study was to evaluate neurologic function in rats after developmental exposure to perchlorate. Methods Pregnant rats were exposed to 0, 30, 300, or 1,000 ppm perchlorate in drinking water from gestational day 6 until weaning. Adult male offspring were evaluated on a series of behavioral tasks and neurophysiologic measures of synaptic function in the hippocampus. Results At the highest perchlorate dose, triiodothyronine (T3) and thyroxine (T4) were reduced in pups on postnatal day 21. T4 in dams was reduced relative to controls by 16%, 28%, and 60% in the 30-, 300-, and 1,000-ppm dose groups, respectively. Reductions in T4 were associated with increases in thyroid-stimulating hormone in the high-dose group. No changes were seen in serum T3. Perchlorate did not impair motor activity, spatial learning, or fear conditioning. However, significant reductions in baseline synaptic transmission were observed in hippocampal field potentials at all dose levels. Reductions in inhibitory function were evident at 300 and 1,000 ppm, and augmentations in long-term potentiation were observed in the population spike measure at the highest dose. Conclusions Dose-dependent deficits in hippocampal synaptic function were detectable with relatively minor perturbations of the thyroid axis, indicative of an irreversible impairment in synaptic transmission in response to developmental exposure to perchlorate. PMID:18560531

  15. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification

    PubMed Central

    Palacios-Prado, Nicolás; Huetteroth, Wolf; Pereda, Alberto E.

    2014-01-01

    Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties. PMID:25360082

  16. Spontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord.

    PubMed

    Fedirchuk, B; Wenner, P; Whelan, P J; Ho, S; Tabak, J; O'Donovan, M J

    1999-03-15

    We examined the effects of spontaneous or evoked episodes of rhythmic activity on synaptic transmission in several spinal pathways of embryonic day 9-12 chick embryos. We compared the amplitude of synaptic potentials evoked by stimulation of the ventrolateral funiculus (VLF), the dorsal or ventral roots, before and after episodes of activity. With the exception of the short-latency responses evoked by dorsal root stimulation, the potentials were briefly potentiated and then reduced for several minutes after an episode of rhythmic activity. Their amplitude progressively recovered in the interval between successive episodes. The lack of post-episode depression in the short-latency component of the dorsal root evoked responses is probably attributable to the absence of firing in cut muscle afferents during an episode of activity. The post-episode depression of VLF-evoked potentials was mimicked by prolonged stimulation of the VLF, subthreshold for an episode of activity. By contrast, antidromically induced motoneuron firing and the accompanying calcium entry did not depress VLF-evoked potentials recorded from the stimulated ventral root. In addition, post-episode depression of VLF-evoked synaptic currents was observed in voltage-clamped spinal neurons. Collectively, these findings suggest that somatic postsynaptic activity and calcium entry are not required for the depression. We propose instead that the mechanism may involve a form of long-lasting activity-induced synaptic depression, possibly a combination of transmitter depletion and ligand-induced changes in the postsynaptic current accompanying transmitter release. This activity-dependent depression appears to be an important mechanism underlying the occurrence of spontaneous activity in developing spinal networks.

  17. Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons

    NASA Astrophysics Data System (ADS)

    He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming

    2005-03-01

    Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.

  18. The Features and Functions of Neuronal Assemblies: Possible Dependency on Mechanisms beyond Synaptic Transmission

    PubMed Central

    Badin, Antoine-Scott; Fermani, Francesco; Greenfield, Susan A.

    2017-01-01

    “Neuronal assemblies” are defined here as coalitions within the brain of millions of neurons extending in space up to 1–2 mm, and lasting for hundreds of milliseconds: as such they could potentially link bottom-up, micro-scale with top-down, macro-scale events. The perspective first compares the features in vitro versus in vivo of this underappreciated “meso-scale” level of brain processing, secondly considers the various diverse functions in which assemblies may play a pivotal part, and thirdly analyses whether the surprisingly spatially extensive and prolonged temporal properties of assemblies can be described exclusively in terms of classic synaptic transmission or whether additional, different types of signaling systems are likely to operate. Based on our own voltage-sensitive dye imaging (VSDI) data acquired in vitro we show how restriction to only one signaling process, i.e., synaptic transmission, is unlikely to be adequate for modeling the full profile of assemblies. Based on observations from VSDI with its protracted spatio-temporal scales, we suggest that two other, distinct processes are likely to play a significant role in assembly dynamics: “volume” transmission (the passive diffusion of diverse bioactive transmitters, hormones, and modulators), as well as electrotonic spread via gap junctions. We hypothesize that a combination of all three processes has the greatest potential for deriving a realistic model of assemblies and hence elucidating the various complex brain functions that they may mediate. PMID:28119576

  19. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  20. Effect of glycine on synaptic transmission at the third order giant synapse of the squids Alloteuthis subulata and Loligo vulgaris.

    PubMed

    Vinogradova, I M; Zajicek, J; Gentile, S; Brown, E R

    2002-05-31

    Intracellular microelectrode recordings were made from presynaptic and postsynaptic regions of the third order giant synapses of the squids Alloteuthis subulata and Loligo vulgaris. Synaptically generated postsynaptic action potential trains, and excitatory postsynaptic potentials (EPSPs) were reversibly decreased by glycine, beta - alanine or taurine while presynaptic action potentials (APs) were unaltered. Glycine was effective in the presence of strychnine (30-50 microM), NMDA (500 microM), AP-5 (50 microM), CPP (100 microM), or MK 801 (which also had no effect on normal synaptic transmission). The glycine effect was reduced reversibly by D-tubocurarine (100 microM) and blocked by reducing extracellular chloride by 50% with propionate. Excitatory postsynaptic currents (EPSCs) were decreased by glycine addition without altering resting membrane conductance. We postulate that glycine or a glycine like substance provides an excitatory postsynaptic input during synaptic stimulation. Bath addition of glycine desensitises these receptors and decreases the amplitude of the EPSPs and EPSCs. Modulation of this synaptic input may provide an effective mechanism to suppress or potentiate synaptic transmission in the squid giant synapse.

  1. Toluene decreases Purkinje cell output by enhancing inhibitory synaptic transmission in the cerebellar cortex.

    PubMed

    Gmaz, Jimmie M; McKay, Bruce E

    2014-02-07

    Toluene belongs to a class of psychoactive drugs known as inhalants. Found in common household products such as adhesives, paint products, and aerosols, toluene is inhaled for its intoxicating and euphoric properties. Additionally, exposure to toluene disrupts motor behaviors in a manner consistent with impairments to cerebellar function. Previous work has suggested a role of GABA in mediating toluene's neurobehavioral effects, but how this manifests in the cerebellar cortex is not yet understood. In the present study, we examined the effects of toluene on cerebellar Purkinje cell action potential output and inhibitory synaptic transmission onto Purkinje cells using patch clamp electrophysiology in acute rat cerebellar slices. Toluene (1mM) reduced the frequency of Purkinje cell action potential output without affecting input resistance. Furthermore, toluene dose-dependently enhanced inhibitory synaptic transmission onto Purkinje cells, increasing the amplitude and frequency of inhibitory postsynaptic currents; no change in the frequency of action potentials from molecular layer interneurons was noted. The observed decreases in Purkinje cell action potential output could contribute to toluene-evoked impairments in cerebellar and motor functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Inhibitory effects of propofol on excitatory synaptic transmission in supraoptic nucleus neurons in vitro.

    PubMed

    Zhang, Huan-Huan; Zheng, Chao; Wang, Bang-An; Wang, Meng-Ya

    2015-12-25

    The present study was designed to investigate the inhibitory effects of intravenous general anesthetic propofol (0.1-3.0 mmol/L) on excitatory synaptic transmission in supraoptic nucleus (SON) neurons of rats, and to explore the underlying mechanisms by using intracellular recording technique and hypothalamic slice preparation. It was observed that stimulation of the dorsolateral region of SON could elicit the postsynaptic potentials (PSPs) in SON neurons. Of the 8 tested SON neurons, the PSPs of 7 (88%, 7/8) neurons were decreased by propofol in a concentration-dependent manner, in terms of the PSPs' amplitude (P < 0.01), area under curve, duration, half-width and 10%-90% decay time (P < 0.05). The PSPs were completely and reversibly abolished by 1.0 mmol/L propofol at 2 out of 7 tested cells. The depolarization responses induced by pressure ejection of exogenous glutamate were reversibly and concentration-dependently decreased by bath application of propofol. The PSPs and glutamate-induced responses recorded simultaneously were reversibly and concentration-dependently decreased by propofol, but 0.3 mmol/L propofol only abolished PSPs. The excitatory postsynaptic potentials (EPSPs) of 7 cells increased in the condition of picrotoxin (30 µmol/L, a GABA(A) receptor antagonist) pretreatment. On this basis, the inhibitory effects of propofol on EPSPs were decreased. These data indicate that the presynaptic and postsynaptic mechanisms may be both involved in the inhibitory effects of propofol on excitatory synaptic transmission in SON neurons. The inhibitory effects of propofol on excitatory synaptic transmission of SON neurons may be related to the activation of GABA(A) receptors, but at a high concentration, propofol may also act directly on glutamate receptors.

  3. Transient Enhancement of Inhibitory Synaptic Transmission in Hippocampal CA1 Pyramidal Neurons after Cerebral Ischemia

    PubMed Central

    Liang, Rui; Pang, Zhi-Ping; Deng, Ping; Xu, Zao C.

    2009-01-01

    Pyramidal neurons in hippocampal CA1 regions are highly sensitive to cerebral ischemia. Alterations of excitatory and inhibitory synaptic transmission may contribute to the ischemia-induced neuronal degeneration. However, little is known about the changes of GABAergic synaptic transmission in the hippocampus following reperfusion. We examined the GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal neurons 12 hours and 24 hours after transient forebrain ischemia. The amplitudes of evoked IPSCs (eIPSCs) were increased significantly 12 hours after ischemia and returned to control levels 24 hours following reperfusion. The potentiation of eIPSCs was accompanied by an increase of miniature IPSCs (mIPSCs) amplitude, and an enhanced response to exogenous application of GABA, indicating the involvement of postsynaptic mechanisms. Furthermore, there was no obvious change of the paired-pulse ratio (PPR) of eIPSCs and the frequency of mIPSCs, suggesting that the potentiation of eIPSCs might not be due to the increased presynaptic release. Blockade of adenosine A1 receptors led to a decrease of eIPSCs amplitude in post-ischemic neurons but not in control neurons, without affecting the frequency of mIPSCs and the PPR of eIPSCs. Thus, tonic activation of adenosine A1 receptors might, at least in part, contribute to the enhancement of inhibitory synaptic transmission in CA1 neurons after forebrain ischemia. The transient enhancement of inhibitory neurotransmission might temporarily protect CA1 pyramidal neurons, and delay the process of neuronal death after cerebral ischemia. PMID:19258028

  4. TRPV1 receptors augment basal synaptic transmission in CA1 and CA3 pyramidal neurons in epilepsy.

    PubMed

    Saffarzadeh, F; Eslamizade, M J; Mousavi, S M M; Abraki, S B; Hadjighassem, M R; Gorji, A

    2016-02-09

    Temporal lobe epilepsy in human and animals is attributed to alterations in brain function especially hippocampus formation. Changes in synaptic activity might be causally related to the alterations during epileptogenesis. Transient receptor potential vanilloid 1 (TRPV1) as one of the non-selective ion channels has been shown to be involved in synaptic transmission. However, the potential role of TRPV1 receptors in synaptic function in the epileptic brain needs to be elucidated. In the present study, we used quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry to assess hippocampal TRPV1 mRNA expression, protein content, and distribution. Moreover, the effects of pharmacologic activation and inhibition of TRPV1 receptors on the slope of evoked field excitatory postsynaptic potentials (fEPSPs) were analyzed in CA1 and CA3 pyramidal neurons, after 3months of pilocarpine-induced status epilepticus (SE). SE induced an upregulation of TRPV1 mRNA and protein content in the whole hippocampal extract, as well as its distribution in both CA1 and CA3 regions. Activation and inhibition of TRPV1 receptors (via capsaicin 1μM and capsazepine 10μM, respectively) did not influence basal synaptic transmission in CA1 and CA3 regions of control slices, however, capsaicin increased and capsazepine decreased synaptic transmission in both regions in tissues from epileptic animals. Taken together, these findings suggest that a higher expression of TRPV1 in the epileptic condition is accompanied by alterations in basal synaptic transmission.

  5. Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons.

    PubMed

    Mine, N; Taniguchi, W; Nishio, N; Izumi, N; Miyazaki, N; Yamada, H; Nakatsuka, T; Yoshida, M

    2015-04-02

    Nicotinic acetylcholine receptors (nAChRs) are distributed widely in the central nervous system and play important roles in higher brain functions, including learning, memory, and recognition. However, functions of the cholinergic system in spinal motoneurons remain poorly understood. In this study, we investigated the actions of presynaptic and postsynaptic nAChRs in spinal ventral horn neurons by performing whole-cell patch-clamp recordings on lumbar slices from male rats. The application of nicotine or acetylcholine generated slow inward currents and increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Slow inward currents by acetylcholine or nicotine were not inhibited by tetrodotoxin (TTX) or glutamate receptor antagonists. In the presence of TTX, the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were also increased by acetylcholine or nicotine. A selective α4β2 nicotinic receptor antagonist, dihydro-β-erythroidine hydrobromide (DhβE), significantly decreased nicotine-induced inward currents without affecting the enhancement of sEPSCs and mEPSCs. In addition, a selective α7 nicotinic receptor antagonist, methyllycaconitine, did not affect either nicotine-induced inward currents or the enhancement of sEPSCs and mEPSCs. These results suggest that α4β2 AChRs are localized at postsynaptic sites in the spinal ventral horn, non-α4β2 and non-α7 nAChRs are located presynaptically, and nAChRs enhance excitatory synaptic transmission in the spinal ventral horn.

  6. A comparison between potencies of external calcium, strontium and barium to support GABAergic synaptic transmission in rat cultured hippocampal neurons.

    PubMed

    Ohno-Shosaku, T; Sawada, S; Hirata, K; Yamamoto, C

    1994-09-01

    Relative potencies of external Ca2+, Sr2+ and Ba2+ to trigger GABAergic synaptic transmission were evaluated by applying the patch-clamp technique to both presynaptic and postsynaptic hippocampal neurons prepared from neonatal rats. Action potentials were evoked by application of voltage pulses to presynaptic neurons, and GABAergic synaptic currents were recorded in voltage-clamped postsynaptic neurons. No stimuli were delivered during replacement with test solutions and only five pulses were applied to the presynaptic neuron in each test solution. During the five-pulse application, the amplitude of synaptic currents was constant in Ca(2+)-containing solutions, but decreased successively in Ba(2+)- and Sr(2+)-containing solutions without Ca2+. Thus, the amplitude of synaptic currents induced by the first pulse in each ionic condition was used to evaluate the potency of divalent cations. The lowest external concentration required to trigger the transmission was 0.3 mM for Ca2+, 1 mM for Sr2+ and 2 mM for Ba2+, and the concentration required to achieve the same effect as with 2 mM Ca2+ was 6 mM for Sr2+ and 10 mM for Ba2+. These results strongly suggest that Ba2+ as well as Sr2+ can be substituted for Ca2+ in GABAergic synaptic transmission and the order of potency is Ca2+ > Sr2+ > Ba2+.

  7. Extracellular ATP Hydrolysis Inhibits Synaptic Transmission by Increasing pH Buffering in the Synaptic Cleft

    PubMed Central

    Vroman, Rozan; Klaassen, Lauw J.; Howlett, Marcus H.C.; Cenedese, Valentina; Klooster, Jan; Sjoerdsma, Trijntje; Kamermans, Maarten

    2014-01-01

    Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca2+ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation

  8. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice

    PubMed Central

    Liu, Tong; Berta, Temugin; Xu, Zhen-Zhong; Park, Chul-Kyu; Zhang, Ling; Lü, Ning; Liu, Qin; Liu, Yang; Gao, Yong-Jing; Liu, Yen-Chin; Ma, Qiufu; Dong, Xinzhong; Ji, Ru-Rong

    2012-01-01

    Itch, also known as pruritus, is a common, intractable symptom of several skin diseases, such as atopic dermatitis and xerosis. TLRs mediate innate immunity and regulate neuropathic pain, but their roles in pruritus are elusive. Here, we report that scratching behaviors induced by histamine-dependent and -independent pruritogens are markedly reduced in mice lacking the Tlr3 gene. TLR3 is expressed mainly by small-sized primary sensory neurons in dorsal root ganglions (DRGs) that coexpress the itch signaling pathway components transient receptor potential subtype V1 and gastrin-releasing peptide. Notably, we found that treatment with a TLR3 agonist induces inward currents and action potentials in DRG neurons and elicited scratching in WT mice but not Tlr3–/– mice. Furthermore, excitatory synaptic transmission in spinal cord slices and long-term potentiation in the intact spinal cord were impaired in Tlr3–/– mice but not Tlr7–/– mice. Consequently, central sensitization–driven pain hypersensitivity, but not acute pain, was impaired in Tlr3–/– mice. In addition, TLR3 knockdown in DRGs also attenuated pruritus in WT mice. Finally, chronic itch in a dry skin condition was substantially reduced in Tlr3–/– mice. Our findings demonstrate a critical role of TLR3 in regulating sensory neuronal excitability, spinal cord synaptic transmission, and central sensitization. TLR3 may serve as a new target for developing anti-itch treatment. PMID:22565312

  9. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice.

    PubMed

    Liu, Tong; Berta, Temugin; Xu, Zhen-Zhong; Park, Chul-Kyu; Zhang, Ling; Lü, Ning; Liu, Qin; Liu, Yang; Gao, Yong-Jing; Liu, Yen-Chin; Ma, Qiufu; Dong, Xinzhong; Ji, Ru-Rong

    2012-06-01

    Itch, also known as pruritus, is a common, intractable symptom of several skin diseases, such as atopic dermatitis and xerosis. TLRs mediate innate immunity and regulate neuropathic pain, but their roles in pruritus are elusive. Here, we report that scratching behaviors induced by histamine-dependent and -independent pruritogens are markedly reduced in mice lacking the Tlr3 gene. TLR3 is expressed mainly by small-sized primary sensory neurons in dorsal root ganglions (DRGs) that coexpress the itch signaling pathway components transient receptor potential subtype V1 and gastrin-releasing peptide. Notably, we found that treatment with a TLR3 agonist induces inward currents and action potentials in DRG neurons and elicited scratching in WT mice but not Tlr3(-/-) mice. Furthermore, excitatory synaptic transmission in spinal cord slices and long-term potentiation in the intact spinal cord were impaired in Tlr3(-/-) mice but not Tlr7(-/-) mice. Consequently, central sensitization-driven pain hypersensitivity, but not acute pain, was impaired in Tlr3(-/-) mice. In addition, TLR3 knockdown in DRGs also attenuated pruritus in WT mice. Finally, chronic itch in a dry skin condition was substantially reduced in Tlr3(-/-) mice. Our findings demonstrate a critical role of TLR3 in regulating sensory neuronal excitability, spinal cord synaptic transmission, and central sensitization. TLR3 may serve as a new target for developing anti-itch treatment.

  10. Long-term changes in glutamatergic synaptic transmission in phenylketonuria.

    PubMed

    Glushakov, A V; Glushakova, O; Varshney, M; Bajpai, L K; Sumners, C; Laipis, P J; Embury, J E; Baker, S P; Otero, D H; Dennis, D M; Seubert, C N; Martynyuk, A E

    2005-02-01

    The cellular mechanisms that underlie impaired brain function during phenylketonuria (PKU), the most common biochemical cause of mental retardation in humans, remain unclear. Acute application of L-Phe at concentrations observed in the PKU brain depresses glutamatergic synaptic transmission but does not affect GABA receptor activity in cultured neurons. If these depressant effects of L-Phe take place in the PKU brain, then chronic impairment of the glutamate system, which may contribute to impaired brain function, could be detected as changes in postsynaptic glutamate receptors. This hypothesis was tested by using a combination of liquid chromatography-mass spectrometry, patch-clamp, radioligand binding and western blot approaches in forebrain tissue from heterozygous and homozygous (PKU) Pah(enu2) mice. Brain concentrations of L-Phe were nearly six-fold greater in PKU mice (863.12 +/- 17.96 micromol/kg) than in their heterozygous counterparts (149.32 +/- 10.23 micromol/kg). This concentration is significantly higher than the K(B) of 573 microM for L-Phe to compete for N-methyl-D-aspartate (NMDA) receptors. Receptor binding experiments with [3H]MK-801 showed significant up-regulation of NMDA receptor density in PKU mice. Consistent with the depressant effects of L-Phe, expression of NMDA receptor NR2A and (RS)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor Glu1 and Glu2/3 subunits was significantly increased, whereas expression of the NR2B subunit was decreased. There was no change in GABA alpha1 subunit expression. Given the role of the glutamatergic system in brain development and function, these changes may, at least in part, explain the brain disorders associated with PKU.

  11. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy.

    PubMed

    Casillas-Espinosa, Pablo M; Powell, Kim L; O'Brien, Terence J

    2012-12-01

    Synaptic transmission is the communication between a presynaptic and a postsynaptic neuron, and the subsequent processing of the signal. These processes are complex and highly regulated, reflecting their importance in normal brain functioning and homeostasis. Sustaining synaptic transmission depends on the continuing cycle of synaptic vesicle formation, release, and endocytosis, which requires proteins such as dynamin, syndapin, synapsin, and synaptic vesicle protein 2A. Synaptic transmission is regulated by diverse mechanisms, including presynaptic modulators of synaptic vesicle formation and release, postsynaptic receptors and signaling, and modulators of neurotransmission. Neurotransmitters released presynaptically can bind to their postsynaptic receptors, the inhibitory γ-aminobutyric acid (GABA)ergic receptors or the excitatory glutamate receptors. Once released, glutamate activates a variety of postsynaptic receptors including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA), kainate, and metabotropic receptors. The activation of the receptors triggers downstream signaling cascades generating a vast array of effects, which can be modulated by a numerous auxiliary regulatory subunits. Moreover, different neuropeptides such as neuropeptide Y, brain-derived neurotrophic factor (BDNF), somatostatin, ghrelin, and galanin, act as regulators of diverse synaptic functions and along with the classic neurotransmitters. Abnormalities in the regulation of synaptic transmission play a critical role in the pathogenesis of numerous brain diseases, including epilepsy. This review focuses on the different mechanisms involved in the regulation of synaptic transmission, which may play a role in the pathogenesis of epilepsy: the presynaptic modulators of synaptic vesicle formation and release, postsynaptic receptors, and modulators of neurotransmission, including the mechanism by which drugs can modulate the frequency and severity of

  12. Synapsin-dependent reserve pool of synaptic vesicles supports replenishment of the readily releasable pool under intense synaptic transmission.

    PubMed

    Vasileva, Mariya; Horstmann, Heinz; Geumann, Constanze; Gitler, Daniel; Kuner, Thomas

    2012-10-01

    Synapsins are abundant synaptic vesicle (SV)-associated proteins thought to mediate synaptic vesicle mobility and clustering at most synapses. We used synapsin triple knock-out (TKO) mice to examine the morphological and functional consequences of deleting all synapsin isoforms at the calyx of Held, a giant glutamatergic synapse located in the auditory brain stem. Quantitative three-dimensional (3D) immunohistochemistry of entire calyces showed lower amounts of the synaptic vesicle protein vGluT1 while the level of the active zone marker bassoon was unchanged in TKO terminals. Examination of brain lysates by ELISA revealed a strong reduction in abundance of several synaptic vesicle proteins, while proteins of the active zone cytomatrix or postsynaptic density were unaffected. Serial section scanning electron microscopy of large 3D-reconstructed segments confirmed a decrease in the number of SVs to approximately 50% in TKO calyces. Short-term depression tested at stimulus frequencies ranging from 10 to 300 Hz was accelerated only at frequencies above 100 Hz and the time course of recovery from depression was slowed in calyces lacking synapsins. These results reveal that in wild-type synapses, the synapsin-dependent reserve pool contributes to the replenishment of the readily releasable pool (RRP), although accounting only for a small fraction of the SVs that enter the RRP. In conclusion, our results suggest that synapsins may be required for normal synaptic vesicle biogenesis, trafficking and immobilization of synaptic vesicles, yet they are not essential for sustained high-frequency synaptic transmission at the calyx terminal.

  13. First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression

    PubMed Central

    Cummings, Damian M.; Liu, Wenfei; Portelius, Erik; Bayram, Sevinç; Yasvoina, Marina; Ho, Sui-Hin; Smits, Hélène; Ali, Shabinah S.; Steinberg, Rivka; Pegasiou, Chrysia-Maria; James, Owain T.; Matarin, Mar; Richardson, Jill C.; Zetterberg, Henrik; Blennow, Kaj; Hardy, John A.; Salih, Dervis A.

    2015-01-01

    Detecting and treating Alzheimer’s disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer’s disease is rising amyloid-β. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-β peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-β peptides in a mouse model of increasing amyloid-β (‘TASTPM’, transgenic for familial Alzheimer’s disease genes APP/PSEN1). In the third postnatal week, several amyloid-β peptides were above the limit of detection, including amyloid-β40, amyloid-β38 and amyloid-β42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-β levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-β40 rose by ∼7-fold, but amyloid-β42 rose by 25-fold, increasing the amyloid-β42:amyloid-β40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7–9; consistent with the proposed physiological effect of amyloid-β) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-β levels and amyloid-β42:amyloid-β40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2–4 months including synaptic genes being

  14. First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression.

    PubMed

    Cummings, Damian M; Liu, Wenfei; Portelius, Erik; Bayram, Sevinç; Yasvoina, Marina; Ho, Sui-Hin; Smits, Hélène; Ali, Shabinah S; Steinberg, Rivka; Pegasiou, Chrysia-Maria; James, Owain T; Matarin, Mar; Richardson, Jill C; Zetterberg, Henrik; Blennow, Kaj; Hardy, John A; Salih, Dervis A; Edwards, Frances A

    2015-07-01

    Detecting and treating Alzheimer's disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer's disease is rising amyloid-β. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-β peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-β peptides in a mouse model of increasing amyloid-β ('TASTPM', transgenic for familial Alzheimer's disease genes APP/PSEN1). In the third postnatal week, several amyloid-β peptides were above the limit of detection, including amyloid-β40, amyloid-β38 and amyloid-β42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-β levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-β40 rose by ∼7-fold, but amyloid-β42 rose by 25-fold, increasing the amyloid-β42:amyloid-β40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7-9; consistent with the proposed physiological effect of amyloid-β) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-β levels and amyloid-β42:amyloid-β40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2-4 months including synaptic genes being strongly

  15. Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels.

    PubMed

    Carta, Mario; Lanore, Frederic; Rebola, Nelson; Szabo, Zsolt; Da Silva, Silvia Viana; Lourenço, Joana; Verraes, Agathe; Nadler, André; Schultz, Carsten; Blanchet, Christophe; Mulle, Christophe

    2014-02-19

    Voltage-gated potassium (Kv) channels are involved in action potential (AP) repolarization in excitable cells. Exogenous application of membrane-derived lipids, such as arachidonic acid (AA), regulates the gating of Kv channels. Whether membrane-derived lipids released under physiological conditions have an impact on neuronal coding through this mechanism is unknown. We show that AA released in an activity-dependent manner from postsynaptic hippocampal CA3 pyramidal cells acts as retrograde messenger, inducing a robust facilitation of mossy fiber (Mf) synaptic transmission over several minutes. AA acts by broadening presynaptic APs through the direct modulation of Kv channels. This form of short-term plasticity can be triggered when postsynaptic cell fires with physiologically relevant patterns and sets the threshold for the induction of the presynaptic form of long-term potentiation (LTP) at hippocampal Mf synapses. Hence, direct modulation of presynaptic Kv channels by activity-dependent release of lipids serves as a physiological mechanism for tuning synaptic transmission.

  16. Histamine H3 receptor-mediated inhibition of excitatory synaptic transmission in the rat dentate gyrus in vivo.

    PubMed

    Chang, M; Saito, H; Abe, K

    1998-07-01

    We investigated the effects of histamine H3-receptor ligands on hippocampal synaptic transmission by using anesthetized rats in vivo. The medial perforant path was stimulated, and the population excitatory postsynaptic potential (pEPSP) and population spike were recorded from the granule cell layer of the dentate gyrus. Intracerebroventricular injection of the H3-receptor agonist (R)-alpha-methylhistamine decreased both the pEPSP and population spike, while H3-receptor antagonists, clobenpropit and thioperamide, increased both the pEPSP and population spike. These results suggest that the histaminergic system plays a role in inhibition of hippocampal synaptic excitation via the H3 receptor.

  17. Synaptic transmission and the susceptibility of HIV infection to anti-viral drugs

    NASA Astrophysics Data System (ADS)

    Komarova, Natalia L.; Levy, David N.; Wodarz, Dominik

    2013-07-01

    Cell-to-cell viral transmission via virological synapses has been argued to reduce susceptibility of the virus population to anti-viral drugs through multiple infection of cells, contributing to low-level viral persistence during therapy. Using a mathematical framework, we examine the role of synaptic transmission in treatment susceptibility. A key factor is the relative probability of individual virions to infect a cell during free-virus and synaptic transmission, a currently unknown quantity. If this infection probability is higher for free-virus transmission, then treatment susceptibility is lowest if one virus is transferred per synapse, and multiple infection of cells increases susceptibility. In the opposite case, treatment susceptibility is minimized for an intermediate number of virions transferred per synapse. Hence, multiple infection via synapses does not simply lower treatment susceptibility. Without further experimental investigations, one cannot conclude that synaptic transmission provides an additional mechanism for the virus to persist at low levels during anti-viral therapy.

  18. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors

    PubMed Central

    Parmelee, Caitlyn M.; Chen, Minghui; Cork, Karlene M.; Curto, Carina; Thoreson, Wallace B.

    2014-01-01

    At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca2+) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons. PMID:25311636

  19. Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells.

    PubMed

    Obholzer, Nikolaus; Wolfson, Sean; Trapani, Josef G; Mo, Weike; Nechiporuk, Alex; Busch-Nentwich, Elisabeth; Seiler, Christoph; Sidi, Samuel; Söllner, Christian; Duncan, Robert N; Boehland, Andrea; Nicolson, Teresa

    2008-02-27

    Hair cells detect sound and movement and transmit this information via specialized ribbon synapses. Here we report that asteroid, a gene identified in an ethylnitrosourea mutagenesis screen of zebrafish larvae for auditory/vestibular mutants, encodes vesicular glutamate transporter 3 (Vglut3). A splice site mutation in exon 2 of vglut3 results in a severe truncation of the predicted protein product and morpholinos directed against the vglut3 ATG start site or the affected splice junction replicate the asteroid phenotype. In situ hybridization shows that vglut3 is exclusively expressed in hair cells of the ear and lateral line organ. A second transporter gene, vglut1, is also expressed in zebrafish hair cells, but the level of vglut1 mRNA is not increased in the absence of Vglut3. Antibodies against Vglut3 label the basal end of hair cells and labeling is not present in asteroid/vglut3 mutants. Based on the localization of Vglut3 in hair cells, we suspected that the lack of vestibulo-ocular and acoustic startle reflexes in asteroid/vglut3 mutants was attributable to a defect in synaptic transmission in hair cells. In support of this notion, action currents in postsynaptic acousticolateralis neurons are absent in asteroid/vglut3 mutants. At the ultrastructural level, mutant asteroid/vglut3 hair cells show a decrease in the number of ribbon-associated synaptic vesicles, indicating a role for Vglut3 in synaptic vesicle biogenesis and/or tethering to the ribbon body. Lack of postsynaptic action currents in the mutants suggests that the remaining hair-cell synaptic vesicles contain insufficient levels of glutamate for generation of action potentials in first-order neurons.

  20. Synaptic transmission despite severe hypoxia in hippocampal slices of the deep-diving hooded seal.

    PubMed

    Geiseler, Samuel J; Larson, John; Folkow, Lars P

    2016-10-15

    Brain neurons of the deep-diving hooded seal (Cystophora cristata) are known to be inherently hypoxia tolerant. Here, we have used in vitro field potential recordings in hippocampal slices to compare effects of severe hypoxia on synaptic transmission in hooded seals vs. non-diving mammals. Synaptic responses of mice (Mus musculus) to hypoxia were in accordance with previously published data. Hippocampal slices of reindeer (Rangifer tarandus), an alternative large-mammal non-diving model, behaved in a similar way as mouse slices, in that synaptic activity disappeared rapidly without recovery after >20min in hypoxia. The synaptic activity of hooded seal slices decreased in hypoxia, but unlike mice and reindeer, it remained at >30% of the normoxic amplitude throughout 3h of severe hypoxia. Also, upon reoxygenation, the signal recovered to ∼50% of the pre-challenge (normoxic) amplitude. The AMPA-type glutamate receptor antagonist CNQX eliminated this signal, showing that it was not an artifact. Paired pulse facilitation (PPF), typically associated with increased presynaptic calcium (Ca(2+)) levels, was significantly reduced in the seal slices. We propose that the build-up of Ca(2+) concentration is limited in seal presynaptic terminals, possibly due to a high Ca(2+) buffering capacity, which could explain both the attenuated PPF and the remarkable neural hypoxia tolerance of this species. Although we found no significant hypoxia-induced upregulation of mRNA for the Ca(2+) binding proteins calbindin d28k or parvalbumin in hooded seal hippocampal slices, a recent study reports very high transcript levels of the Ca(2+) binding protein S100B in this species, which is in support of the hypothesis. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors.

    PubMed

    Van Hook, Matthew J; Parmelee, Caitlyn M; Chen, Minghui; Cork, Karlene M; Curto, Carina; Thoreson, Wallace B

    2014-11-01

    At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca(2+)) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons.

  2. Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning.

    PubMed

    Hartmann, Christoph; Miner, Daniel C; Triesch, Jochen

    2015-01-01

    Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP) are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses. To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar after sleep compared to after sleep deprivation. In conclusion, we show that synaptic normalization in conjunction with coordinated

  3. Differential Roles of Postsynaptic Density-93 Isoforms in Regulating Synaptic Transmission

    PubMed Central

    Krüger, Juliane M.; Favaro, Plinio D.; Liu, Mingna; Kitlińska, Agata; Huang, Xiaojie; Raabe, Monika; Akad, Derya S.; Liu, Yanling; Urlaub, Henning; Dong, Yan; Xu, Weifeng

    2013-01-01

    In the postsynaptic density of glutamatergic synapses, the discs large (DLG)-membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins coordinates a multiplicity of signaling pathways to maintain and regulate synaptic transmission. Postsynaptic density-93 (PSD-93) is the most variable paralog in this family; it exists in six different N-terminal isoforms. Probably because of the structural and functional variability of these isoforms, the synaptic role of PSD-93 remains controversial. To accurately characterize the synaptic role of PSD-93, we quantified the expression of all six isoforms in the mouse hippocampus and examined them individually in hippocampal synapses. Using molecular manipulations, including overexpression, gene knockdown, PSD-93 knock-out mice combined with biochemical assays, and slice electrophysiology both in rat and mice, we demonstrate that PSD-93 is required at different developmental synaptic states to maintain the strength of excitatory synaptic transmission. This strength is differentially regulated by the six isoforms of PSD-93, including regulations of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-active and inactive synapses, and activity-dependent modulations. Collectively, these results demonstrate that alternative combinations of N-terminal PSD-93 isoforms and DLG-MAGUK paralogs can fine-tune signaling scaffolds to adjust synaptic needs to regulate synaptic transmission. PMID:24068818

  4. Glutamate-AMPAR interaction in a model of synaptic transmission.

    PubMed

    Ventriglia, Francesco; Di Maio, Vito

    2013-11-06

    Over the last several years we have investigated the excitatory synaptic response by means of a mathematical model based on a detailed description of the synapse geometry, the Brownian motion of Glutamate molecules and their binding to postsynaptic receptors. Recently, the basic model has been modified for the numbers, the size and the 3D structure of receptors according to new data from the literature. Some results of simulations performed with the updated model are shown here. They were aimed to study the synaptic response in relation to the binding probability, to the probable height of the receptors in the synaptic cleft, and to the space-time distribution of Glutamate/Receptor collisions. A first series of simulations permitted to determine a possible range of values for the binding probability of Glutamate to receptors. Other simulations, investigating the changes induced on the synaptic response by the variations of the height of AMPA receptors in synaptic cleft, allowed to identify the height producing the higher amplitude peak of the mEPSCs. Finally, two new statistical descriptors for analyzing the synaptic response were presented. The first is based on the study of the space distribution of the number of Glutamate/Receptor collisions. Simulations investigating the effects of an increasing eccentricity of the releasing vesicle allowed assessing this method. The second one considers the inter-collision times between Glutamate molecules and binding sites. The results of some of the last simulations demonstrated its capacity to highlight the subtleties and the randomness underlying the activation of the receptors. This article is part of a Special Issue entitled Neural Coding 2012.

  5. The actions of pentobarbitone, procaine and tetrodotoxin on synaptic transmission in the olfactory cortex of the guinea-pig.

    PubMed Central

    Richards, C. D.

    1982-01-01

    1 It has been suggested that the depression of excitatory synaptic potentials produced by general anaesthetics can be attributed to a partial blockade of impulse conduction in the terminal branches of axons. This hypothesis has been tested by comparing the actions of pentobarbitone, procaine and tetrodotoxin (TTX) on synaptic transmission in the guinea-pig olfactory cortex. 2 Pentobarbitone (0.1-0.3mM) depressed the evoked synaptic potentials without any significant depression of impulse conduction in the afferent fibres of the lateral olfactory tract (1.o.t). It had no effect on the electrical excitability of either the l.o.t axons or the postsynaptic neurones. 3 Tetrodotoxin (TTX; 1-5x10(-8 M) slowed conduction of impulses in the l.o.t. and decreased the amplitude of the l.o.t compound action potential in proportion to the concentration applied. All concentrations of TTX elevated the electrical threshold of the l.o.t. axons and there was evidence to suggest that the threshold of the postsynaptic neurones was also elevated. The synaptic potentials were depressed in direct proportion to the depression of the l.o.t. compound action potential. 4 Procaine (0.1-0.5 mM) exhibited a pattern of activity intermediate between pentobarbitone and TTX. The most marked effect, seen at all concentrations tested, was a slowing of impulse conduction and a decrease in the electrical excitability of the l.o.t. axons. 5 It is concluded that general anaesthetics (exemplified by pentobarbitone) depress synaptic transmission by interfering with the processes involved in chemical transmission and not by blocking impulse conduction in the terminal branches of afferent nerves. PMID:6279219

  6. Acute suppression of spontaneous neurotransmission drives synaptic potentiation

    PubMed Central

    Nosyreva, Elena; Szabla, Kristen; Autry, Anita E.; Ryazanov, Alexey G.; Monteggia, Lisa M.; Kavalali, Ege T.

    2013-01-01

    The impact of spontaneous neurotransmission on neuronal plasticity remains poorly understood. Here, we show that acute suppression of spontaneous N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission potentiates synaptic responses in the CA1 regions of rat and mouse hippocampus. This potentiation requires protein synthesis, brain-derived neurotrophic factor (BDNF) expression, eukaryotic elongation factor-2 kinase (eEF2K) function and increased surface expression of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors. Our behavioral studies link this same synaptic signaling pathway to the fast-acting antidepressant responses elicited by ketamine. We also show that selective neurotransmitter depletion from spontaneously recycling vesicles triggers synaptic potentiation via the same pathway as NMDA receptor blockade, demonstrating that presynaptic impairment of spontaneous release, without manipulation of evoked neurotransmission, is sufficient to elicit postsynaptic plasticity. These findings uncover an unexpectedly dynamic impact of spontaneous glutamate release on synaptic efficacy and provide new insight into a key synaptic substrate for rapid antidepressant action. PMID:23595756

  7. Glutamatergic synaptic transmission participates in generating the hippocampal EEG.

    PubMed

    Leung, L Stan; Shen, Bixia

    2004-01-01

    The participation of ionotropic glutamatergic synapses in the generation of hippocampal electroencephalography (EEG) of behaving rats has not been systematically studied. In this study, field potentials in hippocampal CA1 were recorded following injection of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, or vehicle control, either into the lateral ventricles or directly into the hippocampus or the medial septum. Intraventricular (i.c.v.) AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX, 5-10 microg) decreased the commissural evoked potential and the amplitude of the hippocampal EEG, including the theta rhythm. Theta frequency was decreased by 10 microg, but not 5 microg DNQX i.c.v. Unilateral intrahippocampal injection of DNQX (5 microg) only decreased the amplitude, but not the frequency, of the theta rhythm near the site of injection, without affecting theta amplitude or frequency at the opposite hippocampus. Other than theta, the large irregular activity (with a delta frequency peak at 1-2 Hz) and gamma EEG (30-100 Hz) were also decreased by i.c.v. and intrahippocampal injections of DNQX. Intrahippocampal injection of NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV, 2.5 microg) decreased the amplitude of the theta rhythm and, less consistently, the gamma EEG. The frequency of the theta rhythm and the peak of the commissural evoked potential were not significantly affected by intrahippocampal D-APV injection. Medial septal injections of D-APV or D,L-APV (2.24 microg in 0.4 microl), but not DNQX (10 microg in 0.4 microl), decreased the amplitude of the hippocampal theta significantly, but theta frequency was not significantly affected. It is concluded that both NMDA and AMPA receptors in the hippocampus are involved in generating the amplitude of the hippocampal EEG of theta and gamma frequencies, while NMDA receptors in the medial septum are involved in

  8. Post-tetanic potentiation, habituation and facilitation of synaptic potentials in reticulospinal neurones of lamprey.

    PubMed

    Wickelgren, W O

    1977-08-01

    1. Synaptic potentials evoked by electrical stimulation of cranial nerves were recorded in giant reticulospinal neurones (Müller cells) of lamprey. A variety of patterns of stimulation was employed to explore further the functional properties of the pathways intervening between the cranial nerve fibres and Müller cells.2. Simultaneous low intensity stimulation of two different cranial nerves produced excitatory short-latency synaptic potentials whose amplitudes summed linearly.3. Tetanic (10/sec) stimulation of a cranial nerve depressed the evoked short-latency synaptic response, but following the tetanus the synaptic response was potentiated above control amplitude for several minutes. Tetanic stimulation of one cranial nerve had no effect upon the synaptic responses evoked by stimulation of other cranial nerves.4. Low-frequency stimulation (1/sec to 1/20 sec) of a cranial nerve produced a progressive decrease in the amplitude of the evoked short-latency synaptic response. This phenomenon was termed synaptic habituation because its characteristics were functionally similar to behavioural habituation in animals.5. Habituation of the synaptic response to stimulation of one cranial nerve had no effect on the synaptic responses produced by stimulation of other cranial nerves.6. Synaptic afterdischarges lasting from several seconds to several minutes were recorded in Müller cells. They occurred both spontaneously and in response to strong electrical stimulation of cranial nerves. For several minutes following an afterdischarge the amplitudes of short-latency synaptic potentials produced by stimulation of any one of the cranial nerves were increased as much as twofold. This facilitation occurred equally well whether the short-latency synaptic responses had been habituated or not.7. A theoretical cell-wiring diagram is proposed to account for the properties of short-latency evoked synaptic responses and synaptic afterdischarges and for the facilitation of short

  9. Synaptic potentials in locus coeruleus neurons in brain slices.

    PubMed

    Williams, J T; Bobker, D H; Harris, G C

    1991-01-01

    Neurons of the locus coeruleus (LC) fire action potentials spontaneously in vitro in the absence of any stimulation. This spontaneous activity is thought to arise from intrinsic membrane properties that include a balance between at least two ion conductances. One is a persistent inward sodium current that is active near the threshold for action potential generation. The second is a calcium-dependent potassium current that is activated following the entry of calcium during the action potential, is responsible for the after-hyperpolarization following the action potential, and decays over a period of 1-2 sec following the action potential. The spontaneous activity of LC neurons can be altered by both excitatory and inhibitory synaptic inputs. One excitatory input has been described that is mediated by glutamate receptors of both the non-NMDA and NMDA subtypes. Inhibitory synaptic potentials include those mediated by GABA (acting on GABAA-receptors), glycine (acting on a strychnine-sensitive receptor) and noradrenaline (acting on alpha 2-adrenoceptors). The presence of synaptic potentials mediated by these transmitters, studied in vitro, correlate with studies made in vivo and with histochemical identification of synaptic inputs to the locus coeruleus.

  10. High-Throughput All-Optical Analysis of Synaptic Transmission and Synaptic Vesicle Recycling in Caenorhabditis elegans

    PubMed Central

    Wabnig, Sebastian; Liewald, Jana Fiona; Yu, Szi-chieh; Gottschalk, Alexander

    2015-01-01

    Synaptic vesicles (SVs) undergo a cycle of biogenesis and membrane fusion to release transmitter, followed by recycling. How exocytosis and endocytosis are coupled is intensively investigated. We describe an all-optical method for identification of neurotransmission genes that can directly distinguish SV recycling factors in C. elegans, by motoneuron photostimulation and muscular RCaMP Ca2+ imaging. We verified our approach on mutants affecting synaptic transmission. Mutation of genes affecting SV recycling (unc-26 synaptojanin, unc-41 stonin, unc-57 endophilin, itsn-1 intersectin, snt-1 synaptotagmin) showed a distinct ‘signature’ of muscle Ca2+ dynamics, induced by cholinergic motoneuron photostimulation, i.e. faster rise, and earlier decrease of the signal, reflecting increased synaptic fatigue during ongoing photostimulation. To facilitate high throughput, we measured (3–5 times) ~1000 nematodes for each gene. We explored if this method enables RNAi screening for SV recycling genes. Previous screens for synaptic function genes, based on behavioral or pharmacological assays, allowed no distinction of the stage of the SV cycle in which a protein might act. We generated a strain enabling RNAi specifically only in cholinergic neurons, thus resulting in healthier animals and avoiding lethal phenotypes resulting from knockdown elsewhere. RNAi of control genes resulted in Ca2+ measurements that were consistent with results obtained in the respective genomic mutants, albeit to a weaker extent in most cases, and could further be confirmed by opto-electrophysiological measurements for mutants of some of the genes, including synaptojanin. We screened 95 genes that were previously implicated in cholinergic transmission, and several controls. We identified genes that clustered together with known SV recycling genes, exhibiting a similar signature of their Ca2+ dynamics. Five of these genes (C27B7.7, erp-1, inx-8, inx-10, spp-10) were further assessed in respective

  11. The impact of synaptic conductance on action potential waveform: evoking realistic action potentials with a simulated synaptic conductance.

    PubMed

    Johnston, Jamie; Postlethwaite, Michael; Forsythe, Ian D

    2009-10-15

    Most current clamp studies trigger action potentials (APs) by step current injection through the recording electrode and assume that the resulting APs are essentially identical to those triggered by orthodromic synaptic inputs. However this assumption is not always valid, particularly when the synaptic conductance is of large magnitude and of close proximity to the axon initial segment. We addressed this question of similarity using the Calyx of Held/MNTB synapse; we compared APs evoked by long duration step current injections, short step current injections and orthodromic synaptic stimuli. Neither injected current protocol evoked APs that matched the evoked orthodromic AP waveform, showing differences in AP height, half-width and after-hyperpolarization. We postulated that this 'error' could arise from changes in the instantaneous conductance during the combined synaptic and AP waveforms, since the driving forces for the respective ionic currents are integrating and continually evolving over this time-course. We demonstrate that a simple Ohm's law manipulation of the EPSC waveform, which accounts for the evolving driving force on the synaptic conductance during the AP, produces waveforms that closely mimic those generated by physiological synaptic stimulation. This stimulation paradigm allows supra-threshold physiological stimulation (single stimuli or trains) without the variability caused by quantal fluctuation in transmitter release, and can be implemented without a specialised dynamic clamp system. Combined with pharmacological tools this method provides a reliable means to assess the physiological roles of postsynaptic ion channels without confounding affects from the presynaptic input.

  12. Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Fuenzalida, Marco; Espinoza, Claudia; Pérez, Miguel Ángel; Tapia-Rojas, Cheril; Cuitino, Loreto; Brandan, Enrique; Inestrosa, Nibaldo C

    2016-02-01

    The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells.

    PubMed

    Cunha-Reis, Diana; Sebastião, Ana M; Wirkner, Kerstin; Illes, Peter; Ribeiro, Joaquim Alexandre

    2004-11-01

    Vasoactive intestinal peptide (VIP) is present in the hippocampus in three subtypes of GABAergic interneurones, two of which innervate preferentially other interneurones, responsible for pyramidal cell inhibition. We investigated how pre- and postsynaptic modulation of GABAergic transmission (to both pyramidal cells and interneurones) by VIP could influence excitatory synaptic transmission in the CA1 area of the hippocampus. VIP (0.1-100 nM) increased [(3)H]GABA release from hippocampal synaptosomes (maximum effect at 1 nM VIP; 63.8 +/- 4.0%) but did not change [(3)H]glutamate release. VIP (0.3-30 nM) enhanced synaptic transmission in hippocampal slices (maximum effect at 1 nM VIP; field excitatory postsynaptic potentials (epsp) slope: 23.7 +/- 1.1%; population spike amplitude: 20.3 +/- 1.7%). The action on field epsp slope was fully dependent on GABAergic transmission since it was absent in the presence of picrotoxin (50 microM) plus CGP55845 (1 microM). VIP (1 nM) did not change paired-pulse facilitation but increased paired-pulse inhibition in CA1 pyramidal cells (16.0 +/- 0.9%), reinforcing the involvement of GABAergic transmission in the action of VIP. VIP (1 nM) increased muscimol-evoked inhibitory currents by 36.4 +/- 8.7% in eight out of ten CA1 interneurones in the stratum radiatum. This suggests that VIP promotes increased inhibition of interneurones that control pyramidal cells, leading to disinhibition of synaptic transmission to pyramidal cell dendrites. In conclusion, concerted pre- and postsynaptic actions of VIP lead to disinhibition of pyramidal cell dendrites causing an enhancement of synaptic transmission.

  14. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats

    PubMed Central

    Li, Wei; Kong, Li-hong; Wang, Hui; Shen, Feng; Wang, Ya-wen; Zhou, Hua; Sun, Guo-jie

    2016-01-01

    The frequency range of electroacupuncture in treatment of Alzheimer's disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer's disease by injecting β-amyloid 1–42 (Aβ1–42) into the bilateral hippocampal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui (DU20) and Shenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer's disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These findings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disorders in Alzheimer's disease rats. PMID:27335565

  15. Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission.

    PubMed

    Meijer, Marieke; Burkhardt, Pawel; de Wit, Heidi; Toonen, Ruud F; Fasshauer, Dirk; Verhage, Matthijs

    2012-05-02

    Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission.

  16. Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission

    PubMed Central

    Meijer, Marieke; Burkhardt, Pawel; de Wit, Heidi; Toonen, Ruud F; Fasshauer, Dirk; Verhage, Matthijs

    2012-01-01

    Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission. PMID:22446389

  17. Effects of 4-aminopyridine on synaptic transmission in the cat spinal cord.

    PubMed

    Jankowska, E; Lundberg, A; Rudomin, P; Sykova, E

    1982-05-20

    An analysis was made of effects of 0.1-1.0 mg/kg 4-aminopyridine (4-AP) i.v. on excitatory and inhibitory spinal reflex pathways in lightly anaesthetized or decerebrated cats. The effects appeared within the first minutes of the injection, reached maximum after about 10-15 min and remained stable during at least several hours. 4-AP enhanced the following synaptic actions on motoneurones: monosynaptic excitation from Ia afferents and descending tracts, disynaptic and polysynaptic excitation from group Ib, group II, cutaneous and high threshold muscle afferents, disynaptic inhibition from Ia and Ib afferents and recurrent and polysynaptic inhibition from different afferents. 4-AP also increased primary afferent depolarization and excitation of ascending tract cells by peripheral stimuli. In the case of the disynaptic inhibitory pathways it has been shown that 4-AP may enhance the excitation of the interposed interneurones but it also increases the action of these interneurones on the motoneurones; monosynaptic inhibition evoked in motoneurones by electrical stimulation of the axons of the inhibitory interneurones was used as a test response in these experiments. No indications were found of direct effects of 4-AP on excitability of afferent fibres or motoneurones to electrical stimuli. No systematic changes were either found in the membrane potential of motoneurones or in the duration of action potentials of these neurones or primary afferents. It is therefore concluded that small doses of 4-AP enhance synaptic transmission in the spinal cord by an action at a presynaptic level.

  18. Regulation and Restoration of Motoneuronal Synaptic Transmission During Neuromuscular Regeneration in the Pulmonate Snail Helisoma trivolvis

    PubMed Central

    Turner, M. B.; Szabo-Maas, T. M.; Poyer, J. C.; Zoran, M. J.

    2015-01-01

    Regeneration of motor systems involves reestablishment of central control networks, reinnervation of muscle targets by motoneurons, and reconnection of neuromodulatory circuits. Still, how these processes are integrated as motor function is restored during regeneration remains ill defined. Here, we examined the mechanisms underlying motoneuronal regeneration of neuromuscular synapses related to feeding movements in the pulmonate snail Helisoma trivolvis. Neurons B19 and B110, although activated during different phases of the feeding pattern, innervate similar sets of muscles. However, the percentage of muscle fibers innervated, the efficacy of excitatory junction potentials, and the strength of muscle contractions were different for each cell’s specific connections. After peripheral nerve crush, a sequence of transient electrical and chemical connections formed centrally within the buccal ganglia. Neuromuscular synapse regeneration involved a three-phase process: the emergence of spontaneous synaptic transmission (P1), the acquisition of evoked potentials of weak efficacy (P2), and the establishment of functional reinnervation (P3). Differential synaptic efficacy at muscle contacts was recapitulated in cell culture. Differences in motoneuronal presynaptic properties (i.e., quantal content) were the basis of disparate neuromuscular synapse function, suggesting a role for retrograde target influences. We propose a homeostatic model of molluscan motor system regeneration. This model has three restoration events: (1) transient central synaptogenesis during axonal outgrowth, (2) intermotoneuronal inhibitory synaptogenesis during initial neuromuscular synapse formation, and (3) target-dependent regulation of neuromuscular junction formation. PMID:21876114

  19. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites.

    PubMed

    Nurrish, S; Ségalat, L; Kaplan, J M

    1999-09-01

    We show that serotonin inhibits synaptic transmission at C. elegans neuromuscular junctions, and we describe a signaling pathway that mediates this effect. Release of acetylcholine from motor neurons was assayed by measuring the sensitivity of intact animals to the acetylcholinesterase inhibitor aldicarb. By this assay, exogenous serotonin inhibited acetylcholine release, whereas serotonin antagonists stimulated release. The effects of serotonin on synaptic transmission were mediated by GOA-1 (a Galpha0 subunit) and DGK-1 (a diacylglycerol [DAG] kinase), both of which act in the ventral cord motor neurons. Mutants lacking goa-1 G(alpha)0 accumulated abnormally high levels of the DAG-binding protein UNC-13 at motor neuron nerve terminals, suggesting that serotonin inhibits synaptic transmission by decreasing the abundance of UNC-13 at release sites.

  20. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  1. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells123

    PubMed Central

    2016-01-01

    Abstract The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current–voltage (I–V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I–V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I–V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I–V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  2. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    PubMed

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses.

  3. Tetraspanin 6: A novel regulator of hippocampal synaptic transmission and long term plasticity

    PubMed Central

    Salas, Isabel H.; Callaerts-Vegh, Zsuzsanna; Arranz, Amaia M.; Guix, Francesc X.; D’Hooge, Rudi; Esteban, José A.

    2017-01-01

    Tetraspanins (Tspan) are transmembrane proteins with important scaffold and signalling functions. Deletions of Tetraspanin 6 (Tspan6) gene, a member of the tetraspanin family, have been reported in patients with Epilepsy Female-restricted with Mental Retardation (EFMR). Interestingly, mutations in Tspan7, highly homologous to Tspan6, are associated with X-linked intellectual disability, suggesting that these two proteins are important for cognition. Considering recent evidences showing that Tspan7 plays a key role in synapse development and AMPAR trafficking, we initiated the study of Tspan6 in synaptic function using a Tspan6 knock out mouse model. Here we report that hippocampal field recordings from Tspan6 knock out mice show an enhanced basal synaptic transmission and impaired long term potentiation (LTP). A normal paired-pulse facilitation response suggests that Tspan6 affects the properties of the postsynaptic rather than the presynaptic terminal. However, no changes in spine morphology or postsynaptic markers could be detected in Tspan6 KO mice compared with wild types. In addition, Tspan6 KO mice show normal locomotor behaviour and no defects in hippocampus-dependent memory tests. PMID:28207852

  4. Synaptic transmission at parasympathetic neurons of the major pelvic ganglion from normal and diabetic male mice

    PubMed Central

    Vizzard, Margaret A.; Parsons, Rodney L.

    2013-01-01

    Bladder and erectile dysfunction are common urologic complications of diabetes and are associated with reduced parasympathetic autonomic control. To determine whether disruption of ganglionic neurotransmission contributes to the loss of function, we investigated synaptic transmission at parasympathetic, major pelvic ganglion (MPG) neurons in control and chronically (20 wk) diabetic mice. In contrast to what has been reported for sympathetic neurons, diabetes did not cause an interruption of synaptic transmission at parasympathetic MPG neurons from streptozotocin-treated C57BL/6J (STZ) or db/db mice. Cholinergically mediated excitatory postsynaptic potentials (EPSPs) were suprathreshold during 5-s trains of 5-, 10-, and 20-Hz stimuli. Asynchronous neurotransmitter release, observed as miniature EPSPs (mEPSPs) during and after stimulation, permitted quantitative assessment of postganglionic, cholinergic receptor sensitivity. mEPSP amplitude following tetanic stimulation (recorded at −60 mV) was reduced in STZ (4.95 ± 0.4 vs. 3.71 ± 0.3 mV, P = 0.03), but not db/db mice. The number of posttetanic mEPSPs was significantly greater in db/db mice at all frequencies tested. Assessment of basic electrophysiological properties revealed that parasympathetic MPG neurons from db/db mice had less negative membrane potentials, lower input resistances, and shorter afterhyperpolarizations relative to their control. MPG neurons from STZ had longer afterhyperpolarizations but were otherwise similar to controls. Membrane excitability, measured by the membrane responsiveness to long-duration (1 s), suprathreshold depolarizing pulses, was unchanged in either model. The present study indicates that, while parasympathetic neurotransmission at the MPG is intact in chronically diabetic mice, obese, type 2 diabetic animals exhibit an altered presynaptic regulation of neurotransmitter release. PMID:23197460

  5. GABAAR-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo

    PubMed Central

    Shen, Wanhua; Da Silva, Jorge Santos; He, Haiyan; Cline, Hollis T.

    2009-01-01

    The emergence of dendritic arbor structure in vivo depends on synaptic inputs. We tested whether inhibitory GABAergic synaptic transmission regulates Xenopus optic tectal cell dendritic arbor development in vivo by expressing a peptide corresponding to an intracellular loop (ICL) of the γ2 subunit of GABAAR which is required to anchor GABAA receptors to the postsynaptic scaffold. GFP-tagged ICL (EGFP-ICL) was distributed in a punctate pattern at putative inhibitory synapses, identified by VGAT-immunoreactive puncta. ICL expression completely blocked GABAAR - mediated transmission in 36% of transfected neurons and significantly reduced GABAAR - mediated synaptic currents relative to AMPAR-mediated synaptic currents in the remaining transfected neurons without altering release probability or neuronal excitability. Further analysis of ICL-expressing neurons with residual GABAAR- mediated inputs showed that the capacity of benzodiazepine to enhance GABAergic synaptic responses was reduced in ICL-expressing neurons, indicating that they were likely depleted of γ2 subunit-containing GABAAR. Neurons expressing a mutant form of ICL were comparable to controls. In vivo time-lapse images showed that ICL-expressing neurons have more sparsely branched dendritic arbors which expand over larger neuropil areas than EGFP-expressing control neurons. Analysis of branch dynamics indicated that ICL expression affected arbor growth by reducing rates of branch addition. Furthermore, we found that decreasing GABAergic synaptic transmission with ICL expression blocked visual experience dependent dendritic arbor structural plasticity. Our findings establish an essential role for inhibitory GABAergic synaptic transmission in the regulation of dendritic structural plasticity in Xenopus in vivo. PMID:19369572

  6. Finite Post Synaptic Potentials Cause a Fast Neuronal Response

    PubMed Central

    Helias, Moritz; Deger, Moritz; Rotter, Stefan; Diesmann, Markus

    2011-01-01

    A generic property of the communication between neurons is the exchange of pulses at discrete time points, the action potentials. However, the prevalent theory of spiking neuronal networks of integrate-and-fire model neurons relies on two assumptions: the superposition of many afferent synaptic impulses is approximated by Gaussian white noise, equivalent to a vanishing magnitude of the synaptic impulses, and the transfer of time varying signals by neurons is assessable by linearization. Going beyond both approximations, we find that in the presence of synaptic impulses the response to transient inputs differs qualitatively from previous predictions. It is instantaneous rather than exhibiting low-pass characteristics, depends non-linearly on the amplitude of the impulse, is asymmetric for excitation and inhibition and is promoted by a characteristic level of synaptic background noise. These findings resolve contradictions between the earlier theory and experimental observations. Here we review the recent theoretical progress that enabled these insights. We explain why the membrane potential near threshold is sensitive to properties of the afferent noise and show how this shapes the neural response. A further extension of the theory to time evolution in discrete steps quantifies simulation artifacts and yields improved methods to cross check results. PMID:21427776

  7. Activation of α7 nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission and prevents Aß-mediated inhibition of LTP in the rat hippocampus.

    PubMed

    Ondrejcak, Tomas; Wang, Qinwen; Kew, James N C; Virley, David J; Upton, Neil; Anwyl, Roger; Rowan, Michael J

    2012-02-29

    Nicotinic acetylcholine receptors mediate fast cholinergic modulation of glutamatergic transmission and synaptic plasticity. Here we investigated the effects of subtype selective activation of the α7 nicotinic acetylcholine receptors on hippocampal transmission and the inhibition of synaptic long-term potentiation by the Alzheimer's disease associated amyloid ß-protein (Aß). The α7 nicotinic acetylcholine receptor agonist "compound A" ((R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl))thiophene-2-carboxamide) induced a rapid-onset persistent enhancement of synaptic transmission in the dentate gyrus in vitro. Consistent with a requirement for activation of α7 nicotinic acetylcholine receptors, the type II α7-selective positive allosteric modulator PheTQS ((3aR, 4S, 9bS)-4-(4-methylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) potentiated, and the antagonist methyllycaconitine (MLA) prevented the persistent enhancement. Systemic injection of the agonist also induced a similar MLA-sensitive persistent enhancement of synaptic transmission in the CA1 area in vivo. Remarkably, although compound A did not affect control long-term potentiation (LTP) in vitro, it prevented the inhibition of LTP by Aß1-42 and this effect was inhibited by MLA. These findings strongly indicate that activation of α7 nicotinic acetylcholine receptors is sufficient to persistently enhance hippocampal synaptic transmission and to overcome the inhibition of LTP by Aß.

  8. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy.

    PubMed

    Kole, Maarten H P; Letzkus, Johannes J; Stuart, Greg J

    2007-08-16

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.

  9. Bacopa monnieri extract enhances learning-dependent hippocampal long-term synaptic potentiation.

    PubMed

    Promsuban, Charkriya; Limsuvan, Suveerawan; Akarasereenont, Pravit; Tilokskulchai, Kanokwan; Tapechum, Sompol; Pakaprot, Narawut

    2017-11-08

    Bacopa monnieri has been used in Ayurvedic medicine as a memory enhancer for a long time; however, its direct effect on synaptic plasticity has not been investigated. To the best of our knowledge, this study is the first to report the effect of B. monnieri on long-term synaptic potentiation in acute hippocampal slices. Adult male Wistar rats were orally administered either sterile water or the ethanolic extract of B. monnieri for 60 days. The extracellular recording was performed to measure the field excitatory postsynaptic potential in the acute hippocampal slices of these rats. Our results showed that B. monnieri extract significantly increased long-term potentiation magnitude compared with the control group, whereas there was no change in basal synaptic transmission. The data support the beneficial mnemonic effect of B. monnieri, and suggest that this effect might be because of the increase of learning-associated synaptic machinery, resulting in the long-term potentiation enhancement and strengthening of hippocampal synapses, which plays a critical role in learning and memory formation.

  10. GABAergic and glycinergic inhibitory synaptic transmission in the ventral cochlear nucleus studied in VGAT channelrhodopsin-2 mice

    PubMed Central

    Xie, Ruili; Manis, Paul B.

    2014-01-01

    Both glycine and GABA mediate inhibitory synaptic transmission in the ventral cochlear nucleus (VCN). In mice, the time course of glycinergic inhibition is slow in bushy cells and fast in multipolar (stellate) cells, and is proposed to contribute to the processing of temporal cues in both cell types. Much less is known about GABAergic synaptic transmission in this circuit. Electrical stimulation of the auditory nerve or the tuberculoventral pathway evokes little GABAergic synaptic current in brain slice preparations, and spontaneous GABAergic miniature synaptic currents occur infrequently. To investigate synaptic currents carried by GABA receptors in bushy and multipolar cells, we used transgenic mice in which channelrhodopsin-2 and EYFP is driven by the vesicular GABA transporter (VGAT-ChR2-EYFP) and is expressed in both GABAergic and glycinergic neurons. Light stimulation evoked action potentials in EYFP-expressing presynaptic cells, and evoked inhibitory postsynaptic potentials (IPSPs) in non-expressing bushy and planar multipolar cells. Less than 10% of the IPSP amplitude in bushy cells arose from GABAergic synapses, whereas 40% of the IPSP in multipolar neurons was GABAergic. In voltage clamp, glycinergic IPSCs were significantly slower in bushy neurons than in multipolar neurons, whereas there was little difference in the kinetics of the GABAergic IPSCs between two cell types. During prolonged stimulation, the ratio of steady state vs. peak IPSC amplitude was significantly lower for glycinergic IPSCs. Surprisingly, the reversal potentials of GABAergic IPSCs were negative to those of glycinergic IPSCs in both bushy and multipolar neurons. In the absence of receptor blockers, repetitive light stimulation was only able to effectively evoke IPSCs up to 20 Hz in both bushy and multipolar neurons. We conclude that local GABAergic release within the VCN can differentially influence bushy and multipolar cells. PMID:25104925

  11. GABAergic and glycinergic inhibitory synaptic transmission in the ventral cochlear nucleus studied in VGAT channelrhodopsin-2 mice.

    PubMed

    Xie, Ruili; Manis, Paul B

    2014-01-01

    Both glycine and GABA mediate inhibitory synaptic transmission in the ventral cochlear nucleus (VCN). In mice, the time course of glycinergic inhibition is slow in bushy cells and fast in multipolar (stellate) cells, and is proposed to contribute to the processing of temporal cues in both cell types. Much less is known about GABAergic synaptic transmission in this circuit. Electrical stimulation of the auditory nerve or the tuberculoventral pathway evokes little GABAergic synaptic current in brain slice preparations, and spontaneous GABAergic miniature synaptic currents occur infrequently. To investigate synaptic currents carried by GABA receptors in bushy and multipolar cells, we used transgenic mice in which channelrhodopsin-2 and EYFP is driven by the vesicular GABA transporter (VGAT-ChR2-EYFP) and is expressed in both GABAergic and glycinergic neurons. Light stimulation evoked action potentials in EYFP-expressing presynaptic cells, and evoked inhibitory postsynaptic potentials (IPSPs) in non-expressing bushy and planar multipolar cells. Less than 10% of the IPSP amplitude in bushy cells arose from GABAergic synapses, whereas 40% of the IPSP in multipolar neurons was GABAergic. In voltage clamp, glycinergic IPSCs were significantly slower in bushy neurons than in multipolar neurons, whereas there was little difference in the kinetics of the GABAergic IPSCs between two cell types. During prolonged stimulation, the ratio of steady state vs. peak IPSC amplitude was significantly lower for glycinergic IPSCs. Surprisingly, the reversal potentials of GABAergic IPSCs were negative to those of glycinergic IPSCs in both bushy and multipolar neurons. In the absence of receptor blockers, repetitive light stimulation was only able to effectively evoke IPSCs up to 20 Hz in both bushy and multipolar neurons. We conclude that local GABAergic release within the VCN can differentially influence bushy and multipolar cells.

  12. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins.

    PubMed

    Dolly, Oliver

    2003-01-01

    Botulinum toxin type A, a protein long used in the successful treatment of various dystonias, has a complex mechanism of action that results in muscle relaxation. At the neuromuscular junction, the presynaptic nerve ending is packed with synaptic vesicles filled with acetylcholine, and clustered at the tip of the folds of the postsynaptic muscle membrane are the acetylcholine receptors. Synaptic vesicles fuse with the membrane in response to an elevation of intraneuronal calcium concentration and undergo release of their transmitter by exocytosis. Intracellular proteins that contribute to the fusion of the vesicles with the plasma membrane during exocytosis include synaptosomal protein with a molecular weight of 25 kDa (SNAP-25); vesicle-associated membrane protein (VAMP), also known as synaptobrevin; and syntaxin. Through their proteolytic action on these proteins, botulinum toxins prevent exocytosis, thereby inhibiting the release of acetylcholine. There are 7 serotypes of this toxin-A, B, C1, D, E, F, and G-and each cleaves a different intracellular protein or the same target at distinct bonds. The separate cleavage sites in SNAP-25 for botulinum toxin types A and E contribute to their dissimilar durations of muscle relaxation. This report describes the molecular basis for the inhibition by botulinum toxins of neuroexocytosis and subsequent functional recovery at the neuromuscular junction.

  13. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission.

    PubMed

    Karayannis, T; Au, E; Patel, J C; Kruglikov, I; Markx, S; Delorme, R; Héron, D; Salomon, D; Glessner, J; Restituito, S; Gordon, A; Rodriguez-Murillo, L; Roy, N C; Gogos, J A; Rudy, B; Rice, M E; Karayiorgou, M; Hakonarson, H; Keren, B; Huguet, G; Bourgeron, T; Hoeffer, C; Tsien, R W; Peles, E; Fishell, G

    2014-07-10

    Although considerable evidence suggests that the chemical synapse is a lynchpin underlying affective disorders, how molecular insults differentially affect specific synaptic connections remains poorly understood. For instance, Neurexin 1a and 2 (NRXN1 and NRXN2) and CNTNAP2 (also known as CASPR2), all members of the neurexin superfamily of transmembrane molecules, have been implicated in neuropsychiatric disorders. However, their loss leads to deficits that have been best characterized with regard to their effect on excitatory cells. Notably, other disease-associated genes such as BDNF and ERBB4 implicate specific interneuron synapses in psychiatric disorders. Consistent with this, cortical interneuron dysfunction has been linked to epilepsy, schizophrenia and autism. Using a microarray screen that focused upon synapse-associated molecules, we identified Cntnap4 (contactin associated protein-like 4, also known as Caspr4) as highly enriched in developing murine interneurons. In this study we show that Cntnap4 is localized presynaptically and its loss leads to a reduction in the output of cortical parvalbumin (PV)-positive GABAergic (γ-aminobutyric acid producing) basket cells. Paradoxically, the loss of Cntnap4 augments midbrain dopaminergic release in the nucleus accumbens. In Cntnap4 mutant mice, synaptic defects in these disease-relevant neuronal populations are mirrored by sensory-motor gating and grooming endophenotypes; these symptoms could be pharmacologically reversed, providing promise for therapeutic intervention in psychiatric disorders.

  14. Increased glutamate synaptic transmission in the nucleus raphe magnus neurons from morphine-tolerant rats

    PubMed Central

    Bie, Bihua; Pan, Zhizhong Z

    2005-01-01

    Currently, opioid-based drugs are the most effective pain relievers that are widely used in the treatment of pain. However, the analgesic efficacy of opioids is significantly limited by the development of tolerance after repeated opioid administration. Glutamate receptors have been reported to critically participate in the development and maintenance of opioid tolerance, but the underlying mechanisms remain unclear. Using whole-cell voltage-clamp recordings in brainstem slices, the present study investigated chronic morphine-induced adaptations in glutamatergic synaptic transmission in neurons of the nucleus raphe magnus (NRM), a key supraspinal relay for pain modulation and opioid analgesia. Chronic morphine significantly increased glutamate synaptic transmission exclusively in one class of NRM cells that contains μ-opioid receptors in a morphine-tolerant state. The adenylyl cyclase activator forskolin and the cAMP analog 8-bromo-cAMP mimicked the chronic morphine effect in control neurons and their potency in enhancing the glutamate synaptic current was significantly increased in neurons from morphine-tolerant rats. MDL12330a, an adenylyl cyclase inhibitor, and H89, a protein kinase A (PKA) inhibitor, reversed the increase in glutamate synaptic transmission induced by chronic morphine. In addition, PMA, a phorbol ester activator of protein kinase C (PKC), also showed an increased potency in enhancing the glutamate synaptic current in these morphine-tolerant cells. The PKC inhibitor GF109203X attenuated the chronic morphine effect. Taken together, these results suggest that chronic morphine increases presynaptic glutamate release in μ receptor-containing NRM neurons in a morphine-tolerant state, and that the increased glutamate synaptic transmission appears to involve an upregulation of both the cAMP/PKA pathway and the PKC pathway. This glutamate-mediated activation of these NRM neurons that are thought to facilitate spinal pain transmission may contribute to

  15. Increased glutamate synaptic transmission in the nucleus raphe magnus neurons from morphine-tolerant rats.

    PubMed

    Bie, Bihua; Pan, Zhizhong Z

    2005-02-09

    Currently, opioid-based drugs are the most effective pain relievers that are widely used in the treatment of pain. However, the analgesic efficacy of opioids is significantly limited by the development of tolerance after repeated opioid administration. Glutamate receptors have been reported to critically participate in the development and maintenance of opioid tolerance, but the underlying mechanisms remain unclear. Using whole-cell voltage-clamp recordings in brainstem slices, the present study investigated chronic morphine-induced adaptations in glutamatergic synaptic transmission in neurons of the nucleus raphe magnus (NRM), a key supraspinal relay for pain modulation and opioid analgesia. Chronic morphine significantly increased glutamate synaptic transmission exclusively in one class of NRM cells that contains mu-opioid receptors in a morphine-tolerant state. The adenylyl cyclase activator forskolin and the cAMP analog 8-bromo-cAMP mimicked the chronic morphine effect in control neurons and their potency in enhancing the glutamate synaptic current was significantly increased in neurons from morphine-tolerant rats. MDL12330a, an adenylyl cyclase inhibitor, and H89, a protein kinase A (PKA) inhibitor, reversed the increase in glutamate synaptic transmission induced by chronic morphine. In addition, PMA, a phorbol ester activator of protein kinase C (PKC), also showed an increased potency in enhancing the glutamate synaptic current in these morphine-tolerant cells. The PKC inhibitor GF109203X attenuated the chronic morphine effect. Taken together, these results suggest that chronic morphine increases presynaptic glutamate release in mu receptor-containing NRM neurons in a morphine-tolerant state, and that the increased glutamate synaptic transmission appears to involve an upregulation of both the cAMP/PKA pathway and the PKC pathway. This glutamate-mediated activation of these NRM neurons that are thought to facilitate spinal pain transmission may contribute to

  16. Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity

    PubMed Central

    De Pittà, Maurizio; Volman, Vladislav; Berry, Hugues; Parpura, Vladimir; Volterra, Andrea; Ben-Jacob, Eshel

    2012-01-01

    The complexity of the signaling network that underlies astrocyte-synapse interactions may seem discouraging when tackled from a theoretical perspective. Computational modeling is challenged by the fact that many details remain hitherto unknown and conventional approaches to describe synaptic function are unsuitable to explain experimental observations when astrocytic signaling is taken into account. Supported by experimental evidence is the possibility that astrocytes perform genuine information processing by means of their calcium signaling and are players in the physiological setting of the basal tone of synaptic transmission. Here we consider the plausibility of this scenario from a theoretical perspective, focusing on the modulation of synaptic release probability by the astrocyte and its implications on synaptic plasticity. The analysis of the signaling pathways underlying such modulation refines our notion of tripartite synapse and has profound implications on our understanding of brain function. PMID:23267326

  17. Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS.

    PubMed

    Lessmann, V

    1998-11-01

    1. The protein family of the neurotrophins, consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and Neurotrophin-3, -4/5, and -6 (NT-3; NT-4/5; NT-6) is well known to enhance the survival and to stabilize the phenotype of different populations of neurons in the central and the peripheral nervous system. These effects are mediated via binding to specific tyrosine kinase receptors (Trks) and to the low-affinity p75 neurotrophin receptor. 2. The neurotrophins NGF, BDNF, and NT-3 and the BDNF and NT-3 selective receptors (TrkB, TrkC) are expressed at high levels in neurons of the basal forebrain, the hippocampus, and the neocortex of the mammalian brain. The expression and secretion of NGF and BDNF in these brain areas is regulated by (physiological levels of) neuronal activity. 3. Exogenous application of the neurotrophins to hippocampal and neocortical neurons can enhance excitatory glutamatergic synaptic transmission via activation of Trk receptors. In addition, long-term potentiation (a potential cellular correlate for learning and memory formation in mammals) in the rodent hippocampus depends on endogenous supply of neurons with BDNF. 4. Judged by the analysis of electrophysiological data, the BDNF- and NT-3-induced enhancement of glutamatergic synapses is mediated by increasing the efficacy of glutamate release from the presynaptic neuron. However, neurotrophin-dependent postsynaptic enhancement of NMDA (but not AMPA) receptor responsiveness has also been shown. 5. On the molecular level, neither the pre- nor the postsynaptic modulation of glutamatergic synapses by neurotrophins is well understood. However, neurotrophins were shown to acutely affect intraneuronal Ca2+ levels and to influence molecular components of the transmitter release machinery, which could underly the presynaptic modifications, whereas BDNF-induced phosphorylation of NMDA-type glutamate receptors could account for the postsynaptic effects. 6. Taken together

  18. Nicotinic modulation of network and synaptic transmission in the immature hippocampus investigated with genetically modified mice

    PubMed Central

    Le Magueresse, Corentin; Safiulina, Victoria; Changeux, Jean-Pierre; Cherubini, Enrico

    2006-01-01

    The hippocampus, a key structure in learning and memory processes, receives a powerful cholinergic innervation from the septum and contains nicotinic acetylcholine receptors (nAChRs). Early in postnatal development, activation of nAChRs by nicotine or endogenous acetylcholine contributes to enhance synaptic signalling. Here, the patch-clamp technique was used to assess the contribution of α7 and β2-containing (α7* and β2*) nAChRs to nicotine-elicited modulation of GABAergic and glutamatergic activity at the network and single-cell level in the immature hippocampus of wild-type (WT), α7−/− and β2−/− mice. We found that α7* and β2* nAChRs were sufficient to modulate nicotine-induced increase in frequency of spontaneously occurring giant depolarizing potentials (GDPs), which are generated at the network level by the synergistic action of glutamate and depolarizing GABA, and thought to play a crucial role in neuronal wiring. However, α7* but not β2* receptors were essential in nicotine-induced increase of interictal discharge frequency recorded after postnatal day 3 in the presence of bicuculline, when GABA shifted from the depolarizing to the hyperpolarizing direction. To correlate these observations with nicotine-elicited changes in synaptic transmission, we recorded spontaneous GABAergic and glutamatergic postsynaptic currents in pyramidal cells and interneurons localized in stratum oriens, stratum pyramidale and stratum radiatum, in slices obtained from WT and knock-out animals. We found that early in postnatal life α7* and β2* nAChRs exert a fine regional modulation of GABAergic and glutamatergic transmission that underlies nicotine-elicited changes in network synchronization. PMID:16901939

  19. Functional properties of synaptic transmission in primary sense organs.

    PubMed

    Singer, Joshua H; Glowatzki, Elisabeth; Moser, Tobias; Strowbridge, Ben W; Bhandawat, Vikas; Sampath, Alapakkam P

    2009-10-14

    Sensory receptors transduce physical stimuli in the environment into neural signals that are interpreted by the brain. Although considerable attention has been given to how the sensitivity and dynamic range of sensory receptors is established, peripheral synaptic interactions improve the fidelity with which receptor output is transferred to the brain. For instance, synapses in the retina, cochlea, and primary olfactory system use mechanisms that fine-tune the responsiveness of postsynaptic neurons and the dynamics of exocytosis; these permit microcircuit interactions to encode efficiently the output of sensory receptors with the fidelity and dynamic range necessary to extract the salient features of the physical stimuli. The continuous matching of presynaptic and postsynaptic responsiveness highlight how the primary sensory organs have been optimized and can be modulated to resolve sparse sensory signals and to encode the entire range of receptor output.

  20. Pentylenetetrazol-Induced Epileptiform Activity Affects Basal Synaptic Transmission and Short-Term Plasticity in Monosynaptic Connections

    PubMed Central

    Giachello, Carlo Natale Giuseppe; Premoselli, Federica; Montarolo, Pier Giorgio; Ghirardi, Mirella

    2013-01-01

    Epileptic activity is generally induced in experimental models by local application of epileptogenic drugs, including pentylenetetrazol (PTZ), widely used on both vertebrate and invertebrate neurons. Despite the high prevalence of this neurological disorder and the extensive research on it, the cellular and molecular mechanisms underlying epileptogenesis still remain unclear. In this work, we examined PTZ-induced neuronal changes in Helix monosynaptic circuits formed in vitro, as a simpler experimental model to investigate the effects of epileptiform activity on both basal release and post-tetanic potentiation (PTP), a form of short-term plasticity. We observed a significant enhancement of basal synaptic strength, with kinetics resembling those of previously described use-dependent forms of plasticity, determined by changes in estimated quantal parameters, such as the readily releasable pool and the release probability. Moreover, these neurons exhibited a strong reduction in PTP expression and in its decay time constant, suggesting an impairment in the dynamic reorganization of synaptic vesicle pools following prolonged stimulation of synaptic transmission. In order to explain this imbalance, we determined whether epileptic activity is related to the phosphorylation level of synapsin, which is known to modulate synaptic plasticity. Using western blot and immunocytochemical staining we found a PTZ-dependent increase in synapsin phosphorylation at both PKA/CaMKI/IV and MAPK/Erk sites, both of which are important for modulating synaptic plasticity. Taken together, our findings suggest that prolonged epileptiform activity leads to an increase in the synapsin phosphorylation status, thereby contributing to an alteration of synaptic strength in both basal condition and tetanus-induced potentiation. PMID:23437283

  1. Impaired neural transmission and synaptic plasticity in superior cervical ganglia from β-amyloid rat model of Alzheimer's disease.

    PubMed

    Alzoubi, K H; Alhaider, I A; Tran, T T; Mosely, A; Alkadhi, K K

    2011-06-01

    Basal synaptic transmission and activity-dependent synaptic plasticity were evaluated in superior cervical sympathetic ganglia (SCG) of amyloid-β rat model of Alzheimer's disease (Aβ rat) using electrophysiological and molecular techniques. Rats were administered Aβ peptides (a mixture of 1:1 Aβ1-40 and Aβ1-42) by chronic intracerebroventricular infusion via 14-day mini-osmotic pumps (300 pmol/day). Control rats received Aβ40-1 (inactive reverse peptide: 300 pmol/day). Ganglionic compound action potentials were recorded before (basal) and after repetitive stimulation. In isolated SCG, ganglionic long-term potentiation (gLTP) was generated by a brief train of stimuli (20Hz for 20s) and ganglionic long-term depression (gLTD) was produced with trains of paired pulses. The input/output (I/O) curves of ganglia from Aβ rats showed a marked downward shift along all stimulus intensities, compared to those of ganglia from control animals, indicating impaired basal synaptic transmission. In addition, repetitive stimulation induced robust gLTP and gLTD in ganglia isolated from control animals, but, the same protocols failed to induce gLTP or gLTD in ganglia from Aβ rats indicating impairment of activity-dependent synaptic plasticity in these animals. Western blotting of SCG homogenate from Aβ rats revealed reduction in the ratio of phosphorylated-/total-CaMKII and in calcineurin protein levels. Although other mechanisms could be involved, these changes in signaling molecules could represent an important molecular mechanism linked to the failure to express synaptic plasticity in Aβ rat ganglia. Results of the current study could explain some of the peripheral nervous system manifestations of Alzheimer's disease.

  2. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade.

    PubMed

    Gainey, Melanie A; Tatavarty, Vedakumar; Nahmani, Marc; Lin, Heather; Turrigiano, Gina G

    2015-07-07

    Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing in response to changes in synapse number and strength. Scaling up in response to action-potential blockade is accomplished through increased synaptic accumulation of GluA2-containing AMPA receptors (AMPAR), but the receptor trafficking steps that drive this process remain largely obscure. Here, we show that the AMPAR-binding protein glutamate receptor-interacting protein-1 (GRIP1) is essential for regulated synaptic AMPAR accumulation during scaling up. Synaptic abundance of GRIP1 was enhanced by activity deprivation, directly increasing synaptic GRIP1 abundance through overexpression increased the amplitude of AMPA miniature excitatory postsynaptic currents (mEPSCs), and shRNA-mediated GRIP1 knockdown prevented scaling up of AMPA mEPSCs. Furthermore, knockdown and replace experiments targeting either GRIP1 or GluA2 revealed that scaling up requires the interaction between GRIP1 and GluA2. Finally, GRIP1 synaptic accumulation during scaling up did not require GluA2 binding. Taken together, our data support a model in which activity-dependent trafficking of GRIP1 to synaptic sites drives the forward trafficking and enhanced synaptic accumulation of GluA2-containing AMPAR during synaptic scaling up.

  3. Alpha-adrenergic modulation of synaptic transmission in rabbit pancreatic ganglia.

    PubMed

    Yi, Eunyoung; Love, Jeffrey A

    2005-10-30

    Pancreatic ganglia contain noradrenergic nerve terminals whose role in ganglionic transmission is unknown. Intracellular recordings from rabbit pancreatic neurons were used to study the effects of alpha-adrenergic agonists and antagonists on ganglionic transmission and to determine if endogenously released norepinephrine contributed to synaptic depression. Significant regional differences in alpha adrenergic effects were observed. In neurons from ganglia of the head/neck region norepinephrine or selective alpha(2) agonists presynaptically inhibited ganglionic transmission and this effect was antagonized by the alpha(2) antagonist yohimbine. In the majority of cells membrane hyperpolarization accompanied presynaptic inhibition during superfusion of alpha(2) agonists. Repetitive nerve stimulation evoked a presynaptic post-train depression (PTD) of ganglionic transmission in all neurons tested. A combination of nisoxetine (selective inhibitor of the norepinephrine transporter) and tyramine (releaser of endogenous catecholamines) increased PTD. Pretreatment with clonidine inhibited synaptic transmission and abolished PTD while yohimbine did not affect it. Pretreatment with guanethidine (>or=3.5 h) also failed reduce PTD while neurons unresponsive to alpha(2) adrenoceptor agonists routinely exhibited PTD, implying the presence of other inhibitory neurotransmitters sharing a common presynaptic mechanism with alpha(2) agonists. In the majority of neurons from ganglia of the body region superfusion of norepinephrine or the selective alpha(1) agonist phenylephrine evoked membrane depolarization and facilitated ganglionic transmission. These effects were antagonized by the alpha(1) antagonist prazosin. The remaining neurons exhibited either alpha(2)-mediated synaptic inhibition or no-response. In conclusion, inhibitory alpha(2) and excitatory alpha(1) adrenoceptors exist in pancreatic ganglia and predominate in the head/neck and body, respectively. Norepinephrine, released

  4. Histamine H3 receptor-mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro.

    PubMed Central

    Brown, R E; Reymann, K G

    1996-01-01

    1. The effects of histamine on excitatory synaptic transmission in the dentate gyrus region of rat hippocampal slices were examined using extracellular and whole-cell patch-clamp recording techniques. The GABAA receptor antagonist picrotoxin (50 microM) was present in the bath in all experiments. 2. Histamine (0.7-70 microM) reversibly depressed field excitatory postsynaptic potentials (fEPSPs) or excitatory postsynaptic currents (EPSCs) recorded intracellularly by up to 30%. The presynaptic fibre volley and EPSC reversal potential were unaffected by histamine, as were responses following pressure ejection of the glutamate receptor agonist S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (S-AMPA) into the slice. 3. Histamine (7 microM) depressed equally the AMPA and N-methyl-D-aspartate (NMDA) components of the dual-component EPSC, recorded at -40 mV. 4. In addition to depressing synaptic transmission, histamine also reduced the magnitude of paired-pulse depression (PPD; 40 ms interpulse interval) of the medial perforant path EPSC. 5. Histamine depressed medial perforant path EPSCs more strongly than lateral perforant path EPSCs. Paired-pulse facilitation (PPF; 40 ms interpulse interval) in the lateral perforant path was enhanced by histamine. 6. The effects of histamine on synaptic transmission and PPD were mimicked by the selective H3 receptor agonist R-alpha-methylhistamine (0.1-10 microM) but not by the selective H2 receptor agonist dimaprit (10 microM). Similarly, the H3 receptor antagonist thioperamide (10 microM) blocked the effect of histamine whereas the H1 antagonist mepyramine (1 microM) and the H2 receptor antagonist cimetidine (50 microM) were ineffective. 7. Histamine actions on synaptic transmission and PPD were not occluded by application of the metabotropic glutamate agonist L-2-amino-4-phosphonobutyrate (AP4). 8. The results indicate that histamine depresses synaptic transmission in the dentate gyrus by binding to histamine H3 receptors

  5. Multiple roles for mTOR signaling in both glutamatergic and GABAergic synaptic transmission

    PubMed Central

    Weston, Matthew C.; Chen, Hongmei; Swann, John W.

    2012-01-01

    Summary The mammalian target of rapamycin (mTOR) signaling pathway in neurons integrates a variety of extracellular signals to produce appropriate translational responses. mTOR signaling is hyperactive in neurological syndromes in both humans and mouse models that are characterized by epilepsy, autism and cognitive disturbances. In addition, rapamycin, a clinically important immunosuppressant, is a specific and potent inhibitor of mTOR signaling. While mTOR is known to regulate growth and synaptic plasticity of glutamatergic neurons, its effects on basic parameters of synaptic transmission are less well studied, and its role in regulating GABAergic transmission is unexplored. We therefore performed an electrophysiological and morphological comparison of glutamatergic and GABAergic neurons in which mTOR signaling was either increased by loss of the repressor Pten or decreased by treatment with rapamycin. We found that hyperactive mTOR signaling increased evoked synaptic responses in both glutamatergic and GABAergic neurons by approximately 50%, due to an increase in the number of synaptic vesicles available for release, the number of synapses formed and the miniature event size. Prolonged (72 hours) rapamycin treatment prevented these abnormalities and also decreased synaptic transmission in wild-type glutamatergic, but not GABAergic, neurons. Further analyses suggested that hyperactivation of the mTOR pathway also impairs presynaptic function, possibly by interfering with vesicle fusion. Despite this presynaptic impairment, the net effect of Pten loss is enhanced synaptic transmission in both GABAergic and glutamatergic neurons, which has numerous implications – depending on where in the brain mutations of an mTOR suppressor gene takes place during development. PMID:22895726

  6. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour.

    PubMed

    Pascoli, Vincent; Turiault, Marc; Lüscher, Christian

    2011-12-07

    Drug-evoked synaptic plasticity is observed at many synapses and may underlie behavioural adaptations in addiction. Mechanistic investigations start with the identification of the molecular drug targets. Cocaine, for example, exerts its reinforcing and early neuroadaptive effects by inhibiting the dopamine transporter, thus causing a strong increase in mesolimbic dopamine. Among the many signalling pathways subsequently engaged, phosphorylation of the extracellular signal-regulated kinase (ERK) in the nucleus accumbens is of particular interest because it has been implicated in NMDA-receptor and type 1 dopamine (D1)-receptor-dependent synaptic potentiation as well as in several behavioural adaptations. A causal link between drug-evoked plasticity at identified synapses and behavioural adaptations, however, is missing, and the benefits of restoring baseline transmission have yet to be demonstrated. Here we find that cocaine potentiates excitatory transmission in D1-receptor-expressing medium-sized spiny neurons (D1R-MSNs) in mice via ERK signalling with a time course that parallels locomotor sensitization. Depotentiation of cortical nucleus accumbens inputs by optogenetic stimulation in vivo efficiently restored normal transmission and abolished cocaine-induced locomotor sensitization. These findings establish synaptic potentiation selectively in D1R-MSNs as a mechanism underlying a core component of addiction, probably by creating an imbalance between distinct populations of MSNs in the nucleus accumbens. Our data also provide proof of principle that reversal of cocaine-evoked synaptic plasticity can treat behavioural alterations caused by addictive drugs and may inspire novel therapeutic approaches involving deep brain stimulation or transcranial magnetic stimulation.

  7. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    PubMed Central

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway. PMID:27148059

  8. MATERNAL HYPOTHYROXENEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN OFFSPRING.

    EPA Science Inventory

    MATERNAL HYPOTHYROXINEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN RAT OFFSPRING. M.E. Gilbert1 and Li Sui2, Neurotoxicology Division, 1US EPA and 2National Research Council, Research Triangle Pk, NC 27711.
    While severe hypothyroidis...

  9. MATERNAL HYPOTHYROXENEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN OFFSPRING.

    EPA Science Inventory

    MATERNAL HYPOTHYROXINEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN RAT OFFSPRING. M.E. Gilbert1 and Li Sui2, Neurotoxicology Division, 1US EPA and 2National Research Council, Research Triangle Pk, NC 27711.
    While severe hypothyroidis...

  10. Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse.

    PubMed

    González-Inchauspe, Carlota; Urbano, Francisco J; Di Guilmi, Mariano N; Uchitel, Osvaldo D

    2017-03-08

    Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. We found that these channels can be activated in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. A drop in extracellular pH induces transient inward ASIC currents (IASICs) in postsynaptic MNTB neurons from wild-type mice. The inhibition of IASICs by psalmotoxin-1 (PcTx1) and the absence of these currents in knock-out mice for ASIC-1a subunit (ASIC1a(-/-)) suggest that homomeric ASIC-1as are mediating these currents in MNTB neurons. Furthermore, we detect ASIC1a-dependent currents during synaptic transmission, suggesting an acidification of the synaptic cleft due to the corelease of neurotransmitter and H(+) from synaptic vesicles. These currents are capable of eliciting action potentials in the absence of glutamatergic currents. A significant characteristic of these homomeric ASIC-1as is their permeability to Ca(2+) Activation of ASIC-1a in MNTB neurons by exogenous H(+) induces an increase in intracellular Ca(2+) Furthermore, the activation of postsynaptic ASIC-1as during high-frequency stimulation (HFS) of the presynaptic nerve terminal leads to a PcTx1-sensitive increase in intracellular Ca(2+) in MNTB neurons, which is independent of glutamate receptors and is absent in neurons from ASIC1a(-/-) mice. During HFS, the lack of functional ASICs in synaptic transmission results in an enhanced short-term depression of glutamatergic EPSCs. These results strongly support the hypothesis of protons as neurotransmitters and demonstrate that presynaptic released protons modulate synaptic transmission by activating ASIC-1as at the calyx of Held-MNTB synapse.SIGNIFICANCE STATEMENT The manuscript demonstrates that postsynaptic neurons of the medial nucleus of the trapezoid body at the mouse calyx of Held synapse express functional homomeric Acid-sensing ion channel-1a (ASIC-1as) that can be activated by protons

  11. WASP-1, a canonical Wnt signaling potentiator, rescues hippocampal synaptic impairments induced by Aβ oligomers.

    PubMed

    Vargas, Jessica Y; Ahumada, Juan; Arrázola, Macarena S; Fuenzalida, Marco; Inestrosa, Nibaldo C

    2015-02-01

    Amyloid-β (Aβ) oligomers are a key factor in Alzheimer's disease (AD)-associated synaptic dysfunction. Aβ oligomers block the induction of hippocampal long-term potentiation (LTP) in rodents. The activation of Wnt signaling prevents Aβ oligomer-induced neurotoxic effects. The compound WASP-1 (Wnt-activating small molecule potentiator-1), has been described as a synergist of the ligand Wnt-3a, enhancing the activation of Wnt/β-catenin signaling. Herein, we report that WASP-1 administration successfully rescued Aβ-induced synaptic impairments both in vitro and in vivo. The activation of canonical Wnt/β-catenin signaling by WASP-1 increased synaptic transmission and rescued hippocampal LTP impairments induced by Aβ oligomers. Additionally, intra-hippocampal administration of WASP-1 to the double transgenic APPswe/PS1dE9 mouse model of AD prevented synaptic protein loss and reduced tau phosphorylation levels. Moreover, we found that WASP-1 blocked Aβ aggregation in vitro and reduced pathological tau phosphorylation in vivo. These results indicate that targeting canonical Wnt signaling with WASP-1 could have value for treating AD.

  12. Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo.

    PubMed

    Jedlicka, Peter; Vnencak, Matej; Krueger, Dilja D; Jungenitz, Tassilo; Brose, Nils; Schwarzacher, Stephan W

    2015-01-01

    Neuroligins are transmembrane cell adhesion proteins with a key role in the regulation of excitatory and inhibitory synapses. Based on previous in vitro and ex vivo studies, neuroligin-1 (NL1) has been suggested to play a selective role in the function of glutamatergic synapses. However, the role of NL1 has not yet been investigated in the brain of live animals. We studied the effects of NL1-deficiency on synaptic transmission in the hippocampal dentate gyrus using field potential recordings evoked by perforant path stimulation in urethane-anesthetized NL1 knockout (KO) mice. We report that in NL1 KOs the activation of glutamatergic perforant path granule cell inputs resulted in reduced synaptic responses. In addition, NL1 KOs displayed impairment in long-term potentiation. Furthermore, field EPSP-population spike (E-S) coupling was greater in NL1 KO than WT mice and paired-pulse inhibition was reduced, indicating a compensatory rise of excitability in NL1 KO granule cells. Consistent with changes in excitatory transmission, NL1 KOs showed a significant reduction in hippocampal synaptosomal expression levels of the AMPA receptor subunit GluA2 and NMDA receptor subunits GluN1, GluN2A and GluN2B. Taken together, we provide first evidence that NL1 is essential for normal excitatory transmission and long-term synaptic plasticity in the hippocampus of intact animals. Our data provide insights into synaptic and circuit mechanisms of neuropsychiatric abnormalities such as learning deficits and autism.

  13. Nicotine uses neuron-glia communication to enhance hippocampal synaptic transmission and long-term memory.

    PubMed

    López-Hidalgo, Mónica; Salgado-Puga, Karla; Alvarado-Martínez, Reynaldo; Medina, Andrea Cristina; Prado-Alcalá, Roberto A; García-Colunga, Jesús

    2012-01-01

    Nicotine enhances synaptic transmission and facilitates long-term memory. Now it is known that bi-directional glia-neuron interactions play important roles in the physiology of the brain. However, the involvement of glial cells in the effects of nicotine has not been considered until now. In particular, the gliotransmitter D-serine, an endogenous co-agonist of NMDA receptors, enables different types of synaptic plasticity and memory in the hippocampus. Here, we report that hippocampal long-term synaptic plasticity induced by nicotine was annulled by an enzyme that degrades endogenous D-serine, or by an NMDA receptor antagonist that acts at the D-serine binding site. Accordingly, both effects of nicotine: the enhancement of synaptic transmission and facilitation of long-term memory were eliminated by impairing glial cells with fluoroacetate, and were restored with exogenous D-serine. Together, these results show that glial D-serine is essential for the long-term effects of nicotine on synaptic plasticity and memory, and they highlight the roles of glial cells as key participants in brain functions.

  14. Nicotine Uses Neuron-Glia Communication to Enhance Hippocampal Synaptic Transmission and Long-term Memory

    PubMed Central

    López-Hidalgo, Mónica; Salgado-Puga, Karla; Alvarado-Martínez, Reynaldo; Medina, Andrea Cristina; Prado-Alcalá, Roberto A.; García-Colunga, Jesús

    2012-01-01

    Nicotine enhances synaptic transmission and facilitates long-term memory. Now it is known that bi-directional glia-neuron interactions play important roles in the physiology of the brain. However, the involvement of glial cells in the effects of nicotine has not been considered until now. In particular, the gliotransmitter D-serine, an endogenous co-agonist of NMDA receptors, enables different types of synaptic plasticity and memory in the hippocampus. Here, we report that hippocampal long-term synaptic plasticity induced by nicotine was annulled by an enzyme that degrades endogenous D-serine, or by an NMDA receptor antagonist that acts at the D-serine binding site. Accordingly, both effects of nicotine: the enhancement of synaptic transmission and facilitation of long-term memory were eliminated by impairing glial cells with fluoroacetate, and were restored with exogenous D-serine. Together, these results show that glial D-serine is essential for the long-term effects of nicotine on synaptic plasticity and memory, and they highlight the roles of glial cells as key participants in brain functions. PMID:23185511

  15. Adult-born neurons modify excitatory synaptic transmission to existing neurons

    PubMed Central

    Adlaf, Elena W; Vaden, Ryan J; Niver, Anastasia J; Manuel, Allison F; Onyilo, Vincent C; Araujo, Matheus T; Dieni, Cristina V; Vo, Hai T; King, Gwendalyn D; Wadiche, Jacques I; Overstreet-Wadiche, Linda

    2017-01-01

    Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene Bax in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons. Unexpectedly, we found that Bax deletion in developing and mature dentate neurons increased EPSCs and prevented neurogenesis-induced synaptic suppression. Together these results show that neurogenesis modifies synaptic transmission to mature neurons in a manner consistent with a redistribution of pre-existing synapses to newly integrating neurons and that a non-apoptotic function of the Bax signaling pathway contributes to ongoing synaptic refinement within the dentate circuit. DOI: http://dx.doi.org/10.7554/eLife.19886.001 PMID:28135190

  16. Increased Excitability and Excitatory Synaptic Transmission During in Vitro Ischemia in the Neonatal Mouse Hippocampus

    PubMed Central

    Santina Zanelli, A; Karthik Rajasekaran, K; Denise Grosenbaugh, K; Kapur, Jaideep

    2015-01-01

    Objective The present study tested the hypothesis that exposure to in vitro hypoxia-ischemia alters membrane properties and excitability as well as excitatory synaptic transmission of CA1 pyramidal neurons in the neonatal mouse. Methods Experiments were conducted in hippocampal slices in P7-P9 C57Bl/6 mice using whole-cell patch clamp in current- and voltage-clamp mode. Passive (membrane potential Vm, input resistance (Rin) and active (action potential (AP) threshold and amplitude) membrane properties of CA1 pyramidal neurons were assessed at baseline, during 10 min in vitro ischemia (oxygen-glucose deprivation (OGD)) and during reoxygenation. Spontaneous and miniature excitatory post-synaptic currents (s and mEPSCs) were studied under similar conditions. Results OGD caused significant depolarization of CA1 pyramidal neurons as well as decrease in AP threshold and increase in AP amplitude. These changes were blocked by the application of tetrodotoxin, indicating Na+ channels involvement. Following 10 min of reoxygenation, significant membrane hyperpolarization was noted and it was associated with a decrease in Rin. AP threshold and amplitude returned to baseline during that stage. sEPSC and mEPSC frequency increased during both OGD and reoxygenation but their amplitude remained unchanged. Additionally, we found that OGD decreases Ih (hyperpolarization activated depolarizing current) in CA1 neurons from neonatal mice and this effect persists during reoxygenation. Significance These results indicate that in vitro ischemia leads to changes in membrane excitability mediated by sodium and potassium channels. Further, it results in enhanced neurotransmitter release from presynaptic terminals. These changes are likely to represent one of the mechanisms of hypoxia/ischemia-mediated seizures in the neonatal period. PMID:26404876

  17. Acetyl-l-carnitine restores synaptic transmission and enhances the inducibility of stable LTP after oxygen-glucose deprivation.

    PubMed

    Kocsis, Kitti; Frank, Rita; Szabó, József; Knapp, Levente; Kis, Zsolt; Farkas, Tamás; Vécsei, László; Toldi, József

    2016-09-22

    Hypoxic circumstances result in functional and structural impairments of the brain. Oxygen-glucose deprivation (OGD) on hippocampal slices is a technique widely used to investigate the consequences of ischemic stroke and the potential neuroprotective effects of different drugs. Acetyl-l-carnitine (ALC) is a naturally occurring substance in the body, and it can therefore be administered safely even in relatively high doses. In previous experiments, ALC pretreatment proved to be effective against global hypoperfusion. In the present study, we investigated whether ALC can be protective in an OGD model. We are not aware of any earlier study in which the long-term potentiation (LTP) function on hippocampal slices was measured after OGD. Therefore, we set out to determine whether an effective ALC concentration has an effect on synaptic plasticity after OGD in the hippocampal CA1 subfield of rats. A further aim was to investigate the mechanism underlying the protective effect of this compound. The experiments revealed that ALC is neuroprotective against OGD in a dose-dependent manner, which is manifested not only in the regeneration of the impaired synaptic transmission after the OGD, but also in the inducibility and stability of the LTP. In the case of the most effective concentration of ALC (500μM), use of a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) revealed that the PI3K/Akt signaling pathway has a key role in the restoration of the synaptic transmission and plasticity reached by ALC treatment.

  18. Exogenous and endogenous cannabinoids control synaptic transmission in mice nucleus accumbens.

    PubMed

    Robbe, David; Alonso, Gerard; Manzoni, Oliver J

    2003-11-01

    Addictive drugs are thought to alter normal brain function and cause the remodeling of synaptic functions in areas important to memory and reward. Excitatory transmission to the nucleus accumbens (NAc) is involved in the actions of most drugs of abuse, including cannabis. We have explored the functions of the endocannabinoid system at the prefrontal cortex-NAc synapses. Immunocytochemistry showed cannabinoid receptor (CB1) expression on axonal terminals making contacts with NAc neurons. In NAc slices, synthetic cannabinoids inhibit spontaneous and evoked glutamate-mediated transmission through presynaptic activation of presynaptic K+ channels and GABA-mediated transmission most likely via a direct presynaptic action on the vesicular release machinery. How does synaptic activity lead to the production of endogenous cannabinoids (eCBs) in the NAc? More generally, do eCBs participate in long-term synaptic plasticity in the brain? We found that tetanic stimulation (mimicking naturally occurring frequencies) of prelimbic glutamatergic afferents induced a presynaptic LTD dependent on eCB and CB1 receptors (eCB-LTD). Induction of eCB-LTD required postsynaptic activation of mGlu5 receptors and a rise in postsynaptic Ca2+ from ryanodine-sensitive intracellular Ca2+ stores. This retrograde signaling cascade involved postsynaptic eCB release and activation of presynaptic CB1 receptors. In the NAc, eCB-LTD might be part of a negative feedback loop, reducing glutamatergic synaptic strength during sustained cortical activity. The fact that this new form of LTD was occluded by an exogenous cannabinoid suggested that cannabis derivatives, such as marijuana, may alter normal eCB-mediated synaptic plasticity. These data suggest a major role of the eCB system in long-term synaptic plasticity and give insights into how cannabis derivatives, such as marijuana, alter normal eCB functions in the brain reward system.

  19. Brevetoxin Depresses Synaptic Transmission in Guinea Pig Hippocampal Slices

    DTIC Science & Technology

    1993-01-01

    literature publication 4. TITLE AND SUBTITLE IS. FUNDING NUMBERS Brevetoxin depresses synpatic transmission in guinea pig hippocampal slices 61102A...The toxin produced a concentration -dependent depression of the orlhodroiiiicallk esoked population spl, , i~h an EC50 of 37 5 nM. Brevetoxin...precise mechanism b) which PbTx-3 depresses evoked responses is not certain, depolarization of the presynaptic nerve terminals leading to failure of

  20. Corticosterone targets distinct steps of synaptic transmission via concentration specific activation of mineralocorticoid and glucocorticoid receptors.

    PubMed

    Chatterjee, Sreejata; Sikdar, Sujit K

    2014-02-01

    Hippocampal neurons are affected by chronic stress and have a high density of cytoplasmic mineralocorticoid and glucocorticoid receptors (MR and GR). Detailed studies on the genomic effects of the stress hormone corticosterone at physiologically relevant concentrations on different steps in synaptic transmission are limited. In this study, we tried to delineate how activation of MR and GR by different concentrations of corticosterone affects synaptic transmission at various levels. The effect of 3-h corticosterone (25, 50, and 100 nM) treatment on depolarization-mediated calcium influx, vesicular release and properties of miniature excitatory post-synaptic currents (mEPSCs) were studied in cultured hippocampal neurons. Activation of MR with 25 nM corticosterone treatment resulted in enhanced depolarization-mediated calcium influx via a transcription-dependent process and increased frequency of mEPSCs with larger amplitude. On the other hand, activation of GR upon 100 nM corticosterone treatment resulted in increase in the rate of vesicular release via the genomic actions of GR. Furthermore, GR activation led to significant increase in the frequency of mEPSCs with larger amplitude and faster decay. Our studies indicate that differential activation of the dual receptor system of MR and GR by corticosterone targets the steps in synaptic transmission differently.

  1. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    PubMed Central

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  2. [Effect of calcium deficiency and addition of calcium antagonists on motoneuron synaptic potentials of isolated Emys orbicularis turtle spinal cord].

    PubMed

    Batueva, I V

    1980-01-01

    In experiments carried out on the isolated spinal cord of the tortoise Emys orbicularis postsynaptic potentials produced in spinal motoneurons by stimulation of the descending tracts and dorsal roots were investigated by means of the intracellular recording technique. Postsynaptic potentials were completely and reversibly blocked in Ca2+-free solutions containing 5.0 mM Mg2+ or 2.0 mM Mn2+. The amplitude and frequency of spontaneous synaptic potentials were also reduced under these conditions. The effect of Ca2+-free medium indicates that the synaptic transmission in these synapses is mediated by chemical mechanism.

  3. Implementing the cellular mechanisms of synaptic transmission in a neural mass model of the thalamo-cortical circuitry

    PubMed Central

    Bhattacharya, Basabdatta S.

    2013-01-01

    A novel direction to existing neural mass modeling technique is proposed where the commonly used “alpha function” for representing synaptic transmission is replaced by a kinetic framework of neurotransmitter and receptor dynamics. The aim is to underpin neuro-transmission dynamics associated with abnormal brain rhythms commonly observed in neurological and psychiatric disorders. An existing thalamocortical neural mass model is modified by using the kinetic framework for modeling synaptic transmission mediated by glutamatergic and GABA (gamma-aminobutyric-acid)-ergic receptors. The model output is compared qualitatively with existing literature on in vitro experimental studies of ferret thalamic slices, as well as on single-neuron-level model based studies of neuro-receptor and transmitter dynamics in the thalamocortical tissue. The results are consistent with these studies: the activation of ligand-gated GABA receptors is essential for generation of spindle waves in the model, while blocking this pathway leads to low-frequency synchronized oscillations such as observed in slow-wave sleep; the frequency of spindle oscillations increase with increased levels of post-synaptic membrane conductance for AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid) receptors, and blocking this pathway effects a quiescent model output. In terms of computational efficiency, the simulation time is improved by a factor of 10 compared to a similar neural mass model based on alpha functions. This implies a dramatic improvement in computational resources for large-scale network simulation using this model. Thus, the model provides a platform for correlating high-level brain oscillatory activity with low-level synaptic attributes, and makes a significant contribution toward advancements in current neural mass modeling paradigm as a potential computational tool to better the understanding of brain oscillations in sickness and in health. PMID:23847522

  4. Chronic exposure to a 60-Hz electric field: effects on synaptic transmission and peripheral nerve function in the rat.

    PubMed

    Jaffe, R A; Laszewski, B L; Carr, D B; Phillips, R D

    1980-01-01

    Several reports have suggested that the nervous system can be affected by exposure to electric fields and that these effects may have detrimental health consequences for the exposed organism. The purpose of this study was to investigate the effects of chronic (30-day) exposure of rats to a 60Hz, 100-kV/m electric field on synaptic transmission and peripheral-nerve function. One hundred forty-four rats, housed in individual polycarbonate cages were exposed to uniform, vertical, 60-Hz electric fields in a system free of corona discharge and ozone formation and in which the animals did not receive spark discharges or other shocks during exposure. Following 30 days of exposure to the electric field, superior cervical sympathetic ganglia, vagus and sciatic nerves were removed from rats anesthetized with urethan, placed in a temperature-controlled chamber, and superfused with a modified mammalian Ringer's solution equilibrated with 95% O2 and 5% CO2. Several measures and tests were used to characterize synaptic transmission and peripheral-nerve function. These included amplitude, area, and configuration of the postsynaptic or whole-nerve compound-action potential; conduction velocity; accommodation; refractory period; strength-duration curves; conditioning-test (C-T) response, frequency response; post-tetanic response; and high-frequency-induced fatigue. The results of a series of neurophysiologic tests and measurements indicate that only synaptic transmission is significantly and consistently affected by chronic (30-day) exposure to a 60-Hz, 100-kV/m electric field. Specifically, and increase in synaptic excitability was detected in replicated measurements of the C-T response ratio. In addition, there are trends in other data that can be interpreted to suggest a generalized increase in neuronal excitability in exposed animals.

  5. Synaptic Potentiation Facilitates Memory-like Attractor Dynamics in Cultured In Vitro Hippocampal Networks

    PubMed Central

    Conant, Katherine; Dzakpasu, Rhonda

    2013-01-01

    Collective rhythmic dynamics from neurons is vital for cognitive functions such as memory formation but how neurons self-organize to produce such activity is not well understood. Attractor-based computational models have been successfully implemented as a theoretical framework for memory storage in networks of neurons. Additionally, activity-dependent modification of synaptic transmission is thought to be the physiological basis of learning and memory. The goal of this study is to demonstrate that using a pharmacological treatment that has been shown to increase synaptic strength within in vitro networks of hippocampal neurons follows the dynamical postulates theorized by attractor models. We use a grid of extracellular electrodes to study changes in network activity after this perturbation and show that there is a persistent increase in overall spiking and bursting activity after treatment. This increase in activity appears to recruit more “errant” spikes into bursts. Phase plots indicate a conserved activity pattern suggesting that a synaptic potentiation perturbation to the attractor leaves it unchanged. Lastly, we construct a computational model to demonstrate that these synaptic perturbations can account for the dynamical changes seen within the network. PMID:23526935

  6. Synaptic transmission changes in fear memory circuits underlie key features of an animal model of schizophrenia.

    PubMed

    Pollard, Marie; Varin, Christophe; Hrupka, Brian; Pemberton, Darrel J; Steckler, Thomas; Shaban, Hamdy

    2012-02-01

    Non-competitive antagonists of the N-methyl-d-aspartate receptor (NMDA) such as phencyclidine (PCP) elicit schizophrenia-like symptoms in healthy individuals. Similarly, PCP dosing in rats produces typical behavioral phenotypes that mimic human schizophrenia symptoms. Although schizophrenic behavioral phenotypes of the PCP model have been extensively studied, the underlying alterations of intrinsic neuronal properties and synaptic transmission in relevant limbic brain microcircuits remain elusive. Acute brain slice electrophysiology and immunostaining of inhibitory neurons were used to identify neuronal circuit alterations of the amygdala and hippocampus associated with changes in extinction of fear learning in rats following PCP treatment. Subchronic PCP application led to impaired long-term potentiation (LTP) and marked increases in the ratio of NMDA to 2-amino-3(5-methyl-3-oxo-1,2-oxazol-4-yl)propionic acid (AMPA) receptor-mediated currents at lateral amygdala (LA) principal neurons without alterations in parvalbumin (PV) as well as non-PV, glutamic acid decarboxylase 67 (GAD 67) immunopositive neurons. In addition, LTP was impaired at the Schaffer collateral to CA1 hippocampal pathway coincident with a reduction in colocalized PV and GAD67 immunopositive neurons in the CA3 hippocampal area. These effects occurred without changes in spontaneous events or intrinsic membrane properties of principal cells in the LA. The impairment of LTP at both amygdalar and hippocampal microcircuits, which play a key role in processing relevant survival information such as fear and extinction memory concurred with a disruption of extinction learning of fear conditioned responses. Our results show that subchronic PCP administration in rats impairs synaptic functioning in the amygdala and hippocampus as well as processing of fear-related memories.

  7. Kismet positively regulates glutamate receptor localization and synaptic transmission at the Drosophila neuromuscular junction.

    PubMed

    Ghosh, Rupa; Vegesna, Srikar; Safi, Ramia; Bao, Hong; Zhang, Bing; Marenda, Daniel R; Liebl, Faith L W

    2014-01-01

    The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse that is structurally and functionally similar to mammalian glutamatergic synapses. These synapses can, as a result of changes in activity, alter the strength of their connections via processes that require chromatin remodeling and changes in gene expression. The chromodomain helicase DNA binding (CHD) protein, Kismet (Kis), is expressed in both motor neuron nuclei and postsynaptic muscle nuclei of the Drosophila larvae. Here, we show that Kis is important for motor neuron synaptic morphology, the localization and clustering of postsynaptic glutamate receptors, larval motor behavior, and synaptic transmission. Our data suggest that Kis is part of the machinery that modulates the development and function of the NMJ. Kis is the homolog to human CHD7, which is mutated in CHARGE syndrome. Thus, our data suggest novel avenues of investigation for synaptic defects associated with CHARGE syndrome.

  8. Kismet Positively Regulates Glutamate Receptor Localization and Synaptic Transmission at the Drosophila Neuromuscular Junction

    PubMed Central

    Ghosh, Rupa; Vegesna, Srikar; Safi, Ramia; Bao, Hong; Zhang, Bing; Marenda, Daniel R.; Liebl, Faith L. W.

    2014-01-01

    The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse that is structurally and functionally similar to mammalian glutamatergic synapses. These synapses can, as a result of changes in activity, alter the strength of their connections via processes that require chromatin remodeling and changes in gene expression. The chromodomain helicase DNA binding (CHD) protein, Kismet (Kis), is expressed in both motor neuron nuclei and postsynaptic muscle nuclei of the Drosophila larvae. Here, we show that Kis is important for motor neuron synaptic morphology, the localization and clustering of postsynaptic glutamate receptors, larval motor behavior, and synaptic transmission. Our data suggest that Kis is part of the machinery that modulates the development and function of the NMJ. Kis is the homolog to human CHD7, which is mutated in CHARGE syndrome. Thus, our data suggest novel avenues of investigation for synaptic defects associated with CHARGE syndrome. PMID:25412171

  9. Leptin inhibits 4-aminopyridine- and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents.

    PubMed

    Xu, Lin; Rensing, Nicholas; Yang, Xiao-Feng; Zhang, Hai Xia; Thio, Liu Lin; Rothman, Steven M; Weisenfeld, Aryan E; Wong, Michael; Yamada, Kelvin A

    2008-01-01

    Leptin is a hormone that reduces excitability in some hypothalamic neurons via leptin receptor activation of the JAK2 and PI3K intracellular signaling pathways. We hypothesized that leptin receptor activation in other neuronal subtypes would have anticonvulsant activity and that intranasal leptin delivery would be an effective route of administration. We tested leptin's anticonvulsant action in 2 rodent seizure models by directly injecting it into the cortex or by administering it intranasally. Focal seizures in rats were induced by neocortical injections of 4-aminopyridine, an inhibitor of voltage-gated K+ channels. These seizures were briefer and less frequent upon coinjection of 4-aminopyridine and leptin. In mice, intranasal administration of leptin produced elevated brain and serum leptin levels and delayed the onset of chemical convulsant pentylenetetrazole-induced generalized convulsive seizures. Leptin also reduced neuronal spiking in an in vitro seizure model. Leptin inhibited alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor-mediated synaptic transmission in mouse hippocampal slices but failed to inhibit synaptic responses in slices from leptin receptor-deficient db/db mice. JAK2 and PI3K antagonists prevented leptin inhibition of AMPAergic synaptic transmission. We conclude that leptin receptor activation and JAK2/PI3K signaling may be novel targets for anticonvulsant treatments. Intranasal leptin administration may have potential as an acute abortive treatment for convulsive seizures in emergency situations.

  10. Leptin inhibits 4-aminopyridine– and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents

    PubMed Central

    Xu, Lin; Rensing, Nicholas; Yang, Xiao-Feng; Zhang, Hai Xia; Thio, Liu Lin; Rothman, Steven M.; Weisenfeld, Aryan E.; Wong, Michael; Yamada, Kelvin A.

    2007-01-01

    Leptin is a hormone that reduces excitability in some hypothalamic neurons via leptin receptor activation of the JAK2 and PI3K intracellular signaling pathways. We hypothesized that leptin receptor activation in other neuronal subtypes would have anticonvulsant activity and that intranasal leptin delivery would be an effective route of administration. We tested leptin’s anticonvulsant action in 2 rodent seizure models by directly injecting it into the cortex or by administering it intranasally. Focal seizures in rats were induced by neocortical injections of 4-aminopyridine, an inhibitor of voltage-gated K+ channels. These seizures were briefer and less frequent upon coinjection of 4-aminopyridine and leptin. In mice, intranasal administration of leptin produced elevated brain and serum leptin levels and delayed the onset of chemical convulsant pentylenetetrazole-induced generalized convulsive seizures. Leptin also reduced neuronal spiking in an in vitro seizure model. Leptin inhibited α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor–mediated synaptic transmission in mouse hippocampal slices but failed to inhibit synaptic responses in slices from leptin receptor–deficient db/db mice. JAK2 and PI3K antagonists prevented leptin inhibition of AMPAergic synaptic transmission. We conclude that leptin receptor activation and JAK2/PI3K signaling may be novel targets for anticonvulsant treatments. Intranasal leptin administration may have potential as an acute abortive treatment for convulsive seizures in emergency situations. PMID:18097472

  11. Nitric oxide regulates synaptic transmission between spiny projection neurons.

    PubMed

    Sagi, Yotam; Heiman, Myriam; Peterson, Jayms D; Musatov, Sergei; Scarduzio, Mariangela; Logan, Stephen M; Kaplitt, Michael G; Surmeier, Dalton J; Heintz, Nathaniel; Greengard, Paul

    2014-12-09

    Recurrent axon collaterals are a major means of communication between spiny projection neurons (SPNs) in the striatum and profoundly affect the function of the basal ganglia. However, little is known about the molecular and cellular mechanisms that underlie this communication. We show that intrastriatal nitric oxide (NO) signaling elevates the expression of the vesicular GABA transporter (VGAT) within recurrent collaterals of SPNs. Down-regulation of striatal NO signaling resulted in an attenuation of GABAergic signaling in SPN local collaterals, down-regulation of VGAT expression in local processes of SPNs, and impaired motor behavior. PKG1 and cAMP response element-binding protein are involved in the signal transduction that transcriptionally regulates VGAT by NO. These data suggest that transcriptional control of the vesicular GABA transporter by NO regulates GABA transmission and action selection.

  12. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    NASA Astrophysics Data System (ADS)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  13. Statistical models of synaptic transmission evaluated using the expectation-maximization algorithm.

    PubMed Central

    Stricker, C; Redman, S

    1994-01-01

    Amplitude fluctuations of evoked synaptic responses can be used to extract information on the probabilities of release at the active sites, and on the amplitudes of the synaptic responses generated by transmission at each active site. The parameters that describe this process must be obtained from an incomplete data set represented by the probability density of the evoked synaptic response. In this paper, the equations required to calculate these parameters using the Expectation-Maximization algorithm and the maximum likelihood criterion have been derived for a variety of statistical models of synaptic transmission. These models are ones where the probabilities associated with the different discrete amplitudes in the evoked responses are a) unconstrained, b) binomial, and c) compound binomial. The discrete amplitudes may be separated by equal (quantal) or unequal amounts, with or without quantal variance. Alternative models have been considered where the variance associated with the discrete amplitudes is sufficiently large such that no quantal amplitudes can be detected. These models involve the sum of a normal distribution (to represent failures) and a unimodal distribution (to represent the evoked responses). The implementation of the algorithm is described in each case, and its accuracy and convergence have been demonstrated. PMID:7948679

  14. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission.

    PubMed

    Fukata, Yuko; Adesnik, Hillel; Iwanaga, Tsuyoshi; Bredt, David S; Nicoll, Roger A; Fukata, Masaki

    2006-09-22

    Abnormally synchronized synaptic transmission in the brain causes epilepsy. Most inherited forms of epilepsy result from mutations in ion channels. However, one form of epilepsy, autosomal dominant partial epilepsy with auditory features (ADPEAF), is characterized by mutations in a secreted neuronal protein, LGI1. We show that ADAM22, a transmembrane protein that when mutated itself causes seizure, serves as a receptor for LGI1. LGI1 enhances AMPA receptor-mediated synaptic transmission in hippocampal slices. The mutated form of LGI1 fails to bind to ADAM22. ADAM22 is anchored to the postsynaptic density by cytoskeletal scaffolds containing stargazin. These studies in rat brain indicate possible avenues for understanding human epilepsy.

  15. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning.

    PubMed

    Nakashiba, Toshiaki; Young, Jennie Z; McHugh, Thomas J; Buhl, Derek L; Tonegawa, Susumu

    2008-02-29

    The hippocampus is an area of the brain involved in learning and memory. It contains parallel excitatory pathways referred to as the trisynaptic pathway (which carries information as follows: entorhinal cortex --> dentate gyrus --> CA3 --> CA1 --> entorhinal cortex) and the monosynaptic pathway (entorhinal cortex --> CA1 --> entorhinal cortex). We developed a generally applicable tetanus toxin-based method for transgenic mice that permits inducible and reversible inhibition of synaptic transmission and applied it to the trisynaptic pathway while preserving transmission in the monosynaptic pathway. We found that synaptic output from CA3 in the trisynaptic pathway is dispensable and the short monosynaptic pathway is sufficient for incremental spatial learning. In contrast, the full trisynaptic pathway containing CA3 is required for rapid one-trial contextual learning, for pattern completion-based memory recall, and for spatial tuning of CA1 cells.

  16. Snx14 Regulates Neuronal Excitability, Promotes Synaptic Transmission, and Is Imprinted in the Brain of Mice

    PubMed Central

    Huang, Hsien-Sung; Yoon, Bong-June; Brooks, Sherian; Bakal, Robert; Berrios, Janet; Larsen, Rylan S.; Wallace, Michael L.; Han, Ji Eun; Chung, Eui Hwan; Zylka, Mark J.; Philpot, Benjamin D.

    2014-01-01

    Genomic imprinting describes an epigenetic process through which genes can be expressed in a parent-of-origin-specific manner. The monoallelic expression of imprinted genes renders them particularly susceptible to disease causing mutations. A large proportion of imprinted genes are expressed in the brain, but little is known about their functions. Indeed, it has proven difficult to identify cell type-specific imprinted genes due to the heterogeneity of cell types within the brain. Here we used laser capture microdissection of visual cortical neurons and found evidence that sorting nexin 14 (Snx14) is a neuronally imprinted gene in mice. SNX14 protein levels are high in the brain and progressively increase during neuronal development and maturation. Snx14 knockdown reduces intrinsic excitability and severely impairs both excitatory and inhibitory synaptic transmission. These data reveal a role for monoallelic Snx14 expression in maintaining normal neuronal excitability and synaptic transmission. PMID:24859318

  17. Long-lasting synaptic potentiation induced by depolarization under conditions that eliminate detectable Ca2+ signals.

    PubMed

    Reyes, Fredy D; Walters, Edgar T

    2010-03-01

    Activity-dependent alterations of synaptic transmission important for learning and memory are often induced by Ca(2+) signals generated by depolarization. While it is widely assumed that Ca(2+) is the essential transducer of depolarization into cellular plasticity, little effort has been made to test whether Ca(2+)-independent responses to depolarization might also induce memory-like alterations. It was recently discovered that peripheral axons of nociceptive sensory neurons in Aplysia display long-lasting hyperexcitability triggered by conditioning depolarization in the absence of Ca(2+) entry (using nominally Ca(2+)-free solutions containing EGTA, "0Ca/EGTA") or the absence of detectable Ca(2+) transients (adding BAPTA-AM, "0Ca/EGTA/BAPTA-AM"). The current study reports that depolarization of central ganglia to approximately 0 mV for 2 min in these same solutions induced hyperexcitability lasting >1 h in sensory neuron processes near their synapses onto motor neurons. Furthermore, conditioning depolarization in these solutions produced a 2.5-fold increase in excitatory postsynaptic potential (EPSP) amplitude 1-3 h afterward despite a drop in motor neuron input resistance. Depolarization in 0 Ca/EGTA produced long-term potentiation (LTP) of the EPSP lasting > or = 1 days without changing postsynaptic input resistance. When re-exposed to extracellular Ca(2+) during synaptic tests, prior exposure to 0Ca/EGTA or to 0Ca/EGTA/BAPTA-AM decreased sensory neuron survival. However, differential effects on neuronal health are unlikely to explain the observed potentiation because conditioning depolarization in these solutions did not alter survival rates. These findings suggest that unrecognized Ca(2+)-independent signals can transduce depolarization into long-lasting synaptic potentiation, perhaps contributing to persistent synaptic alterations following large, sustained depolarizations that occur during learning, neural injury, or seizures.

  18. Effects of Modafinil on Behavioral Learning and Hippocampal Synaptic Transmission in Rats

    PubMed Central

    Chen, Chong; Wang, Hai-Xia; Li, Chu-Hua; Huang, Jun-Ni; Xiao, Peng

    2015-01-01

    Purpose: Modafinil is a wake-promoting agent that has been proposed to improve cognitive performance at the preclinical and clinical levels. Since there is insufficient evidence for modafinil to be regarded as a cognitive enhancer, the aim of this study was to investigate the effects of chronic modafinil administration on behavioral learning in healthy adult rats. Methods: Y-maze training was used to assess learning performance, and the whole-cell patch clamp technique was used to assess synaptic transmission in pyramidal neurons of the hippocampal CA1 region of rats. Results: Intraperitoneal administration of modafinil at 200 mg/kg or 300 mg/kg significantly improved learning performance. Furthermore, perfusion with 1mM modafinil enhanced the frequency and amplitude of spontaneous postsynaptic currents and spontaneous excitatory postsynaptic currents in CA1 pyramidal neurons in hippocampal slices. However, the frequency and amplitude of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons were inhibited by treatment with 1mM modafinil. Conclusions: These results indicate that modafinil improves learning and memory in rats possibly by enhancing glutamatergic excitatory synaptic transmission and inhibiting GABAergic (gamma-aminobutyric acid-ergic) inhibitory synaptic transmission. PMID:26739176

  19. Sex differences of excitatory synaptic transmission in RA projection neurons of adult zebra finches.

    PubMed

    Wang, Songhua; Meng, Wei; Liu, Shaoyi; Liao, Congshu; Huang, Qingyao; Li, Dongfeng

    2014-10-17

    Zebra finches are ideal animals to investigate sex difference in songbirds. Only males can sing. The brain nuclei controlling song learning and production in males are considerably larger than in females. The robust nucleus of the arcopallium (RA) is a premotor nucleus, playing a key role in controlling singing. RA receives denser synapse inputs in males than in females. Sex differences of excitatory synaptic transmission in the RA projection neurons (PNs) have not been reported. In the present study, using whole-cell voltage-clamp recording, spontaneous EPSCs (sEPSCs) and miniature EPSCs (mEPSCs) of RA PNs in the intact males and females were recorded. The average frequency and amplitude of sEPSCs/mEPSCs in the intact males were higher than females. The half-width and decay time of sEPSCs/mEPSCs in the intact males were longer than females. In order to verify whether these sex differences related to sex steroids, males were castrated. The average frequency of sEPSCs/mEPSCs in castrated males was lower than intact males and was similar to in females; the amplitude was not changed after castrating. These results demonstrate the sexually dimorphic of the excitatory synaptic transmission in the RA PNs, the RA PNs in males receive more excitatory synaptic transmission and these sex differences were partly affected by sex hormones. These findings contribute to further illuminate the neural mechanisms under the sexually dimorphism in song production of adult zebra finches.

  20. The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction

    PubMed Central

    Machamer, James B.; Collins, Sarah E.; Lloyd, Thomas E.

    2014-01-01

    Mutations in the RNA binding protein Fused in sarcoma (FUS) are estimated to account for 5–10% of all inherited cases of amyotrophic lateral sclerosis (ALS), but the function of FUS in motor neurons is poorly understood. Here, we investigate the early functional consequences of overexpressing wild-type or ALS-associated mutant FUS proteins in Drosophila motor neurons, and compare them to phenotypes arising from loss of the Drosophila homolog of FUS, Cabeza (Caz). We find that lethality and locomotor phenotypes correlate with levels of FUS transgene expression, indicating that toxicity in developing motor neurons is largely independent of ALS-linked mutations. At the neuromuscular junction (NMJ), overexpression of either wild-type or mutant FUS results in decreased number of presynaptic active zones and altered postsynaptic glutamate receptor subunit composition, coinciding with a reduction in synaptic transmission as a result of both reduced quantal size and quantal content. Interestingly, expression of human FUS downregulates endogenous Caz levels, demonstrating that FUS autoregulation occurs in motor neurons in vivo. However, loss of Caz from motor neurons increases synaptic transmission as a result of increased quantal size, suggesting that the loss of Caz in animals expressing FUS does not contribute to motor deficits. These data demonstrate that FUS/Caz regulates NMJ development and plays an evolutionarily conserved role in modulating the strength of synaptic transmission in motor neurons. PMID:24569165

  1. Archaerhodopsin Voltage Imaging: Synaptic Calcium and BK Channels Stabilize Action Potential Repolarization at the Drosophila Neuromuscular Junction

    PubMed Central

    Ford, Kevin J.

    2014-01-01

    The strength and dynamics of synaptic transmission are determined, in part, by the presynaptic action potential (AP) waveform at the nerve terminal. The ion channels that shape the synaptic AP waveform remain essentially unknown for all but a few large synapses amenable to electrophysiological interrogation. The Drosophila neuromuscular junction (NMJ) is a powerful system for studying synaptic biology, but it is not amenable to presynaptic electrophysiology. Here, we demonstrate that Archaerhodopsin can be used to quantitatively image AP waveforms at the Drosophila NMJ without disrupting baseline synaptic transmission or neuromuscular development. It is established that Shaker mutations cause a dramatic increase in neurotransmitter release, suggesting that Shaker is predominantly responsible for AP repolarization. Here we demonstrate that this effect is caused by a concomitant loss of both Shaker and slowpoke (slo) channel activity because of the low extracellular calcium concentrations (0.2–0.5 mm) used typically to assess synaptic transmission in Shaker. In contrast, at physiological extracellular calcium (1.5 mm), the role of Shaker during AP repolarization is limited. We then provide evidence that calcium influx through synaptic CaV2.1 channels and subsequent recruitment of Slo channel activity is important, in concert with Shaker, to ensure proper AP repolarization. Finally, we show that Slo assumes a dominant repolarizing role during repetitive nerve stimulation. During repetitive stimulation, Slo effectively compensates for Shaker channel inactivation, stabilizing AP repolarization and limiting neurotransmitter release. Thus, we have defined an essential role for Slo channels during synaptic AP repolarization and have revised our understanding of Shaker channels at this model synapse. PMID:25355206

  2. Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction.

    PubMed

    Ford, Kevin J; Davis, Graeme W

    2014-10-29

    The strength and dynamics of synaptic transmission are determined, in part, by the presynaptic action potential (AP) waveform at the nerve terminal. The ion channels that shape the synaptic AP waveform remain essentially unknown for all but a few large synapses amenable to electrophysiological interrogation. The Drosophila neuromuscular junction (NMJ) is a powerful system for studying synaptic biology, but it is not amenable to presynaptic electrophysiology. Here, we demonstrate that Archaerhodopsin can be used to quantitatively image AP waveforms at the Drosophila NMJ without disrupting baseline synaptic transmission or neuromuscular development. It is established that Shaker mutations cause a dramatic increase in neurotransmitter release, suggesting that Shaker is predominantly responsible for AP repolarization. Here we demonstrate that this effect is caused by a concomitant loss of both Shaker and slowpoke (slo) channel activity because of the low extracellular calcium concentrations (0.2-0.5 mM) used typically to assess synaptic transmission in Shaker. In contrast, at physiological extracellular calcium (1.5 mM), the role of Shaker during AP repolarization is limited. We then provide evidence that calcium influx through synaptic CaV2.1 channels and subsequent recruitment of Slo channel activity is important, in concert with Shaker, to ensure proper AP repolarization. Finally, we show that Slo assumes a dominant repolarizing role during repetitive nerve stimulation. During repetitive stimulation, Slo effectively compensates for Shaker channel inactivation, stabilizing AP repolarization and limiting neurotransmitter release. Thus, we have defined an essential role for Slo channels during synaptic AP repolarization and have revised our understanding of Shaker channels at this model synapse.

  3. Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission

    PubMed Central

    Jalini, Shirin; Ye, Hui; Tonkikh, Alexander A.; Charlton, Milton P.; Carlen, Peter L.

    2016-01-01

    Oxygen-glucose deprivation (OGD) leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs). Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging), increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM) partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX), also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery. PMID:26934214

  4. Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission.

    PubMed

    Jalini, Shirin; Ye, Hui; Tonkikh, Alexander A; Charlton, Milton P; Carlen, Peter L

    2016-01-01

    Oxygen-glucose deprivation (OGD) leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs). Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging), increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM) partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX), also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery.

  5. Pten deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities

    PubMed Central

    Fraser, Melissa M.; Bayazitov, Ildar T.; Zakharenko, Stanislav S.; Baker, Suzanne J.

    2008-01-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway modulates growth, proliferation and cell survival in diverse tissue types and plays specialized roles in the nervous system including influences on neuronal polarity, dendritic branching and synaptic plasticity. The tumor-suppressor phosphatase with tensin homology (PTEN) is the central negative regulator of the PI3K pathway. Germline PTEN mutations result in cancer predisposition, macrocephaly and benign hamartomas in many tissues, including Lhermitte-Duclos disease, a cerebellar growth disorder. Neurological abnormalities including autism, seizures and ataxia have been observed in association with inherited PTEN mutation with variable penetrance. It remains unclear how loss of PTEN activity contributes to neurological dysfunction. To explore the effects of Pten deficiency on neuronal structure and function, we analyzed several ultra-structural features of Pten-deficient neurons in Pten conditional knockout mice. Using Golgi stain to visualize full neuronal morphology, we observed that increased size of nuclei and somata in Pten-deficient neurons was accompanied by enlarged caliber of neuronal projections and increased dendritic spine density. Electron microscopic evaluation revealed enlarged abnormal synaptic structures in the cerebral cortex and cerebellum. Severe myelination defects included thickening and unraveling of the myelin sheath surrounding hypertrophic axons in the corpus callosum. Defects in myelination of axons of normal caliber were observed in the cerebellum, suggesting intrinsic abnormalities in Pten-deficient oligodendrocytes. We did not observe these abnormalities in wild-type or conditional Pten heterozygous mice. Moreover, conditional deletion of Pten drastically weakened synaptic transmission and synaptic plasticity at excitatory synapses between CA3 and CA1 pyramidal neurons in the hippocampus. These data suggest that Pten is involved in mechanisms that control development of

  6. Gastrodin protects against chronic inflammatory pain by inhibiting spinal synaptic potentiation

    PubMed Central

    Xiao, Mei-Mei; Zhang, Yu-Qi; Wang, Wen-Ting; Han, Wen-Juan; Lin, Zhen; Xie, Rou-Gang; Cao, Zhi; Lu, Na; Hu, San-Jue; Wu, Sheng-Xi; Dong, Hui; Luo, Ceng

    2016-01-01

    Tissue injury is known to produce inflammation and pain. Synaptic potentiation between peripheral nociceptors and spinal lamina I neurons has been proposed to serve as a trigger for chronic inflammatory pain. Gastrodin is a main bioactive constituent of the traditional Chinese herbal medicine Gastrodia elata Blume, which has been widely used as an analgesic since ancient times. However, its underlying cellular mechanisms have remained elusive. The present study demonstrated for the first time that gastrodin exhibits an analgesic effect at the spinal level on spontaneous pain, mechanical and thermal pain hypersensitivity induced by peripheral inflammation, which is not dependent on opioid receptors and without tolerance. This analgesia by gastrodin is at least in part mediated by depressing spinal synaptic potentiation via blockade of acid-sensing ion channels. Further studies with miniature EPSCs and paired-pulse ratio analysis revealed the presynaptic origin of the action of gastrodin, which involves a decrease in transmitter release probability. In contrast, neither basal nociception nor basal synaptic transmission was altered. This study revealed a dramatic analgesic action of gastrodin on inflammatory pain and uncovered a novel spinal mechanism that could underlie the analgesia by gastrodin, pointing the way to a new analgesic for treating chronic inflammatory pain. PMID:27853254

  7. Adult Onset-hypothyroidism has Minimal Effects on Synaptic Transmission in the Hippocampus of Rats Independent of Hypothermia

    EPA Science Inventory

    Introduction: Thyroid hormones (TH) influence central nervous system (CNS) function during development and in adulthood. The hippocampus, a brain area critical for learning and memory is sensitive to TH insufficiency. Synaptic transmission in the hippocampus is impaired following...

  8. Adult Onset-hypothyroidism has Minimal Effects on Synaptic Transmission in the Hippocampus of Rats Independent of Hypothermia

    EPA Science Inventory

    Introduction: Thyroid hormones (TH) influence central nervous system (CNS) function during development and in adulthood. The hippocampus, a brain area critical for learning and memory is sensitive to TH insufficiency. Synaptic transmission in the hippocampus is impaired following...

  9. Both pre- and post-synaptic alterations contribute to aberrant cholinergic transmission in superior cervical ganglia of APP(-/-) mice.

    PubMed

    Cai, Zhao-Lin; Zhang, Jia-Jia; Chen, Ming; Wang, Jin-Zhao; Xiao, Peng; Yang, Li; Long, Cheng

    2016-11-01

    Though amyloid precursor protein (APP) can potentially be cleaved to generate the pathological amyloid β peptide (Aβ), APP itself plays an important role in regulating neuronal activity. APP deficiency causes functional impairment in cholinergic synaptic transmission and cognitive performance. However, the mechanisms underlying altered cholinergic synaptic transmission in APP knock-out mice (APP(-/-)) are poorly understood. In this study, we conducted in vivo extracellular recording to investigate cholinergic compound action potentials (CAPs) of the superior cervical ganglion (SCG) in APP(-/-) and littermate wild-type (WT) mice. Our results demonstrate that APP not only regulates presynaptic activity, but also affects postsynaptic function at cholinergic synapses in SCG. APP deficiency reduces the number of vesicles in presynaptic terminalsand attenuatesthe amplitude of CAPs, likely due to dysfunction of high-affinity choline transporters. Pharmacological and biochemical examination showed that postsynaptic responsesmediated by α4β2 and α7 nicotinic acetylcholine receptors are reduced in the absence of APP. Our research provides evidences on how APP regulates cholinergic function and therefore may help to identify potential therapeutic targets to treat cholinergic dysfunction associated with Alzheimer's disease pathogenesis.

  10. Temperature sensitivity of graded synaptic transmission in the lobster stomatogastric ganglion.

    PubMed

    Johnson, B R; Peck, J H; Harris-Warrick, R M

    1991-03-01

    We examined the temperature sensitivity of graded chemical synaptic strength within the pyloric circuit of the spiny lobster stomatogastric ganglion. Cooling from 20.4 degrees C to 11.3 degrees C reduced the graded synaptic potential (GSP) amplitude at all six pyloric synapses tested. Cooling appeared to reduce the slope of the linear part of the input-output curve at three of these synapses, and did not significantly alter the threshold for transmitter release at any synapses. Pairs of neurons with a presynaptic pyloric dilator (PD) cell showed reductions in graded synaptic strength at 16.5 degrees C but those with presynaptic lateral pyloric (LP) or ventral dilator (VD) cells did not. A generalized decrease in input resistance is not responsible for the reduced GSP amplitude upon cooling, as determined by input resistance, action potential amplitude and electrical coupling measurements. We conclude that cooling reduces graded chemical strength by a direct synaptic action. Since the PD and VD cells use the same transmitter and act on some of the same postsynaptic cells, their differential sensitivity to cooling further suggests a presynaptic site of action. The temperature range used in our experiments encompasses the range that the animal normally encounters in nature. Thus, the relative importance of graded synaptic interactions in generating the pyloric motor rhythm may vary with transient changes in temperature.

  11. Synaptic transmission from splanchnic nerves to the adrenal medulla of guinea-pigs.

    PubMed Central

    Holman, M E; Coleman, H A; Tonta, M A; Parkington, H C

    1994-01-01

    1. Membrane potentials were recorded with conventional intracellular microelectrodes from chromaffin cells in isolated, bisected adrenal glands from guinea-pigs. 2. All cells were electrically excitable and responded to depolarizing current with all-or-nothing action potentials that were blocked by tetrodotoxin. 3. Input resistance was 180 +/- 14 M omega and this was lower than that reported for isolated chromaffin cells using patch electrodes. 4. All cells responded to transmural stimulation with action potentials that arose from excitatory synaptic potentials in response to the excitation of one or more preganglionic fibres, many having strong synaptic action. Other fibres had weaker synaptic action but in all cases, maximal transmural stimulation caused depolarization well above threshold for action potential initiation. 5. Spontaneous excitatory synaptic potentials were observed whose frequency was greatly increased by repetitive stimulation at 10 or 30 Hz. 6. No evidence was found for the desensitization of nicotinic receptors in response to acetylcholine released from presynaptic nerve terminals. 7. These experiments show that there are many similarities between the responses to splanchnic nerve stimulation of guinea-pig chromaffin cells in situ and sympathetic ganglion cells from the same species. PMID:7965827

  12. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission

    PubMed Central

    Baltz, Thomas; Voigt, Thomas

    2015-01-01

    The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input–output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input–output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability. PMID:26236196

  13. pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract

    PubMed Central

    McCrimmon, Donald R.; Martina, Marco

    2013-01-01

    The nucleus of the solitary tract (NTS) is the major site for termination of visceral sensory afferents contributing to homeostatic regulation of, for example, arterial pressure, gastric motility, and breathing. Whereas much is known about how different neuronal populations influence these functions, information about the role of glia remains scant. In this article, we propose that glia may contribute to NTS functions by modulating excitatory neurotransmission. We found that acidification (pH 7.0) depolarizes NTS glia by inhibiting K+-selective membrane currents. NTS glia also showed functional expression of voltage-sensitive glutamate transporters, suggesting that extracellular acidification regulates synaptic transmission by compromising glial glutamate uptake. To test this hypothesis, we evoked glutamatergic slow excitatory potentials (SEPs) in NTS neurons with repetitive stimulation (20 pulses at 10 Hz) of the solitary tract. This SEP depends on accumulation of glutamate following repetitive stimulation, since it was potentiated by blocking glutamate uptake with dl-threo-β-benzyloxyaspartic acid (TBOA) or a glia-specific glutamate transport blocker, dihydrokainate (DHK). Importantly, extracellular acidification (pH 7.0) also potentiated the SEP. This effect appeared to be mediated through a depolarization-induced inhibition of glial transporter activity, because it was occluded by TBOA and DHK. In agreement, pH 7.0 did not directly alter d-aspartate-induced responses in NTS glia or properties of presynaptic glutamate release. Thus acidification-dependent regulation of glial function affects synaptic transmission within the NTS. These results suggest that glia play a modulatory role in the NTS by integrating local tissue signals (such as pH) with synaptic inputs from peripheral afferents. PMID:23615553

  14. AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability

    PubMed Central

    Brechet, Aline; Buchert, Rebecca; Schwenk, Jochen; Boudkkazi, Sami; Zolles, Gerd; Siquier-Pernet, Karine; Schaber, Irene; Bildl, Wolfgang; Saadi, Abdelkrim; Bole-Feysot, Christine; Nitschke, Patrick; Reis, Andre; Sticht, Heinrich; Al-Sanna’a, Nouriya; Rolfs, Arndt; Kulik, Akos; Schulte, Uwe; Colleaux, Laurence; Abou Jamra, Rami; Fakler, Bernd

    2017-01-01

    AMPA-type glutamate receptors (AMPARs), key elements in excitatory neurotransmission in the brain, are macromolecular complexes whose properties and cellular functions are determined by the co-assembled constituents of their proteome. Here we identify AMPAR complexes that transiently form in the endoplasmic reticulum (ER) and lack the core-subunits typical for AMPARs in the plasma membrane. Central components of these ER AMPARs are the proteome constituents FRRS1l (C9orf4) and CPT1c that specifically and cooperatively bind to the pore-forming GluA1-4 proteins of AMPARs. Bi-allelic mutations in the human FRRS1L gene are shown to cause severe intellectual disability with cognitive impairment, speech delay and epileptic activity. Virus-directed deletion or overexpression of FRRS1l strongly impact synaptic transmission in adult rat brain by decreasing or increasing the number of AMPARs in synapses and extra-synaptic sites. Our results provide insight into the early biogenesis of AMPARs and demonstrate its pronounced impact on synaptic transmission and brain function. PMID:28675162

  15. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury

    PubMed Central

    Cao, Lei; Bie, Xiaohua; Huo, Su; Du, Jubao; Liu, Lin; Song, Weiqun

    2014-01-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after fluid percussion injury. Diazepam can inhibit the hyperexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment significantly increased the slope of input-output curves in rat neurons after fluid percussion injury. Diazepam significantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the fluid percussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area. PMID:25558239

  16. Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions

    PubMed Central

    Liu, Chien-Cheng; Gao, Yong-Jing; Luo, Hao; Berta, Temugin; Xu, Zhen-Zhong; Ji, Ru-Rong; Tan, Ping-Heng

    2016-01-01

    It is well known that interferons (IFNs), such as type-I IFN (IFN-α) and type-II IFN (IFN-γ) are produced by immune cells to elicit antiviral effects. IFNs are also produced by glial cells in the CNS to regulate brain functions. As a proinflammatory cytokine, IFN-γ drives neuropathic pain by inducing microglial activation in the spinal cord. However, little is known about the role of IFN-α in regulating pain sensitivity and synaptic transmission. Strikingly, we found that IFN-α/β receptor (type-I IFN receptor) was expressed by primary afferent terminals in the superficial dorsal horn that co-expressed the neuropeptide CGRP. In the spinal cord IFN-α was primarily expressed by astrocytes. Perfusion of spinal cord slices with IFN-α suppressed excitatory synaptic transmission by reducing the frequency of spontaneous excitatory postsynaptic current (sEPSCs). IFN-α also inhibited nociceptive transmission by reducing capsaicin-induced internalization of NK-1 and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial dorsal horn neurons. Finally, spinal (intrathecal) administration of IFN-α reduced inflammatory pain and increased pain threshold in naïve rats, whereas removal of endogenous IFN-α by a neutralizing antibody induced hyperalgesia. Our findings suggest a new form of neuronal-glial interaction by which IFN-α, produced by astrocytes, inhibits nociceptive transmission in the spinal cord. PMID:27670299

  17. Wiring prior to firing: the evolutionary rise of electrical and chemical modes of synaptic transmission.

    PubMed

    Ovsepian, Saak V; Vesselkin, Nikolai P

    2014-01-01

    Paracrine signaling and coupling via intercellular conduits are widely utilized for cell-cell interactions from primitive eukaryotes to advanced metazoa. Here, we review the functional and molecular data suggestive of a phylogenic continuum between these primeval forms of communication with the chemical and electrical synaptic transmission of neurons. We discuss selective evidence for the essential role played by the shift of function in early cellular morphologies and protosynaptic scaffolds, with their co-optation for new functionality, which ultimately lead to the rise of the chemical synapse. It is proposed that, rather than representing a transitional element, mixed electrochemical synapses exemplify an exaptive effect. The nonadaptive model of the synaptic origin described herein supports the pluralistic hypothesis of evolutionary change.

  18. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease

    PubMed Central

    Ben Shimon, Marina; Lenz, Maximilian; Ikenberg, Benno; Becker, Denise; Shavit Stein, Efrat; Chapman, Joab; Tanne, David; Pick, Chaim G.; Blatt, Ilan; Neufeld, Miri; Vlachos, Andreas; Maggio, Nicola

    2015-01-01

    Thrombin, a serine protease involved in the blood coagulation cascade has been shown to affect neural function following blood-brain barrier breakdown. However, several lines of evidence exist that thrombin is also expressed in the brain under physiological conditions, suggesting an involvement of thrombin in the regulation of normal brain functions. Here, we review ours’ as well as others’ recent work on the role of thrombin in synaptic transmission and plasticity through direct or indirect activation of Protease-Activated Receptor-1 (PAR1). These studies propose a novel role of thrombin in synaptic plasticity, both in physiology as well as in neurological diseases associated with increased brain thrombin/PAR1 levels. PMID:25954157

  19. Taurine-Induced Long-Lasting Enhancement of Synaptic Transmission in Mice: Role of Transporters

    PubMed Central

    Sergeeva, O A; Chepkova, A N; Doreulee, N; Eriksson, K S; Poelchen, W; Mönnighoff, I; Heller-Stilb, B; Warskulat, U; Häussinger, D; Haas, H L

    2003-01-01

    Taurine, a major osmolyte in the brain evokes a long-lasting enhancement (LLETAU) of synaptic transmission in hippocampal and cortico-striatal slices. Hippocampal LLETAU was abolished by the GABA uptake blocker nipecotic acid (NPA) but not by the taurine-uptake inhibitor guanidinoethyl sulphonate (GES). Striatal LLETAU was sensitive to GES but not to NPA. Semiquantitative PCR analysis and immunohistochemistry revealed that taurine transporter expression is significantly higher in the striatum than in the hippocampus. Taurine transporter-deficient mice displayed very low taurine levels in both structures and a low ability to develop LLETAU in the striatum, but not in the hippocampus. The different mechanisms of taurine-induced synaptic plasticity may reflect the different vulnerabilities of these brain regions under pathological conditions that are accompanied by osmotic changes such as hepatic encephalopathy. PMID:12824447

  20. Non-apoptotic function of BAD and BAX in long-term depression of synaptic transmission

    PubMed Central

    Jiao, Song; Li, Zheng

    2011-01-01

    Summary It has recently been found that caspases not only function in apoptosis, but are also crucial for non-apoptotic processes such as NMDA receptor-dependent long-term depression (LTD) of synaptic transmission. It remains unknown, however, how caspases are activated and how neurons escape death in LTD. Here we show that caspase-3 is activated by the BAD-BAX cascade for LTD induction. This cascade is required specifically for NMDA receptor-dependent LTD but not for mGluR-LTD, and its activation is sufficient to induce synaptic depression. In contrast to apoptosis, however, BAD is activated only moderately and transiently and BAX is not translocated to mitochondria, resulting in only modest caspase-3 activation. We further demonstrate that the intensity and duration of caspase-3 activation determin whether it leads to cell death or LTD, thus fine-tuning of caspase-3 activation is critical in distinguishing between these two pathways. PMID:21609830

  1. Calcium channels and synaptic transmission in familial hemiplegic migraine type 1 animal models.

    PubMed

    Uchitel, Osvaldo D; González Inchauspe, Carlota; Di Guilmi, Mariano N

    2014-03-01

    One of the outstanding developments in clinical neurology has been the identification of ion channel mutations as the origin of a wide variety of inherited disorders like migraine, epilepsy, and ataxia. The study of several channelopathies has provided crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological diseases. This review addresses the mutations underlying familial hemiplegic migraine (FHM) with particular interest in Cav2.1 (i.e., P/Q-type) voltage-activated Ca(2+) channel FHM type-1 mutations (FHM1). Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of Cav2.1 channels. FHM1 Cav2.1 channels activate at more hyperpolarizing potentials and show an increased open probability. These biophysical alterations may lead to a gain-of-function on synaptic transmission depending upon factors such as action potential waveform and/or Cav2.1 splice variants and auxiliary subunits. Analysis of FHM knock-in mouse models has demonstrated a deficient regulation of the cortical excitation/inhibition (E/I) balance. The resulting excessive increases in cortical excitation may be the mechanisms that underlie abnormal sensory processing together with an increase in the susceptibility to cortical spreading depression (CSD). Increasing evidence from FHM KI animal studies support the idea that CSD, the underlying mechanism of aura, can activate trigeminal nociception, and thus trigger the headache mechanisms.

  2. Effects of prenatal protein malnutrition on kindling-induced alterations in dentate granule cell excitability. I. Synaptic transmission measures.

    PubMed

    Bronzino, J D; Austin-LaFrance, R J; Morgane, P J; Galler, J R

    1991-05-01

    The effects of prenatal protein malnutrition upon the efficacy of excitatory synaptic transmission at the level of the perforant path/dentate granule cell synapse were examined during development of perforant path kindling in chronically implanted adults rats. Rats born to dams fed a low protein (6% casein) or control protein (25% casein) diet were fostered to lactating dams fed the 25% casein diet 24 h after birth and were maintained on this diet throughout life following weaning. Beginning at 90-120 days of age, animals received daily kindling stimulations applied to the perforant path. Extracellular field potentials recorded from the granule cell layer of the dentate gyrus in response to single-pulse stimulation of the perforant path were analyzed to determine the effects of prenatal protein malnutrition on the efficacy of synaptic transmission during the kindling process. Measures used for these analyses included the EPSP slope, an indicator of the level of synaptic drive, the population spike amplitude which is a measure of postsynaptic activation and cellular firing, and the ratio of the population spike amplitude relative to the corresponding EPSP slope value, which was used to evaluate the overall efficacy of synaptic transmission. animals of the 6%/25% diet group were found to have significantly lower afterdischarge thresholds, yet required significantly more daily kindling stimulations to develop generalized motor convulsions (stage 5 seizure) than control animals. Examination of dentate field potentials obtained prior to kindling revealed no significant between group differences in measures of EPSP slope or population spike amplitude. Statistically significant increases in measures of both the population EPSP slope and population spike amplitude were observed in both diet groups 24 h after the first kindled afterdischarge. The degree of increase in both of these measures was significantly greater in animals of the 6%/25% group. Evaluation of input

  3. Dendritic morphology, synaptic transmission, and activity of mature granule cells born following pilocarpine-induced status epilepticus in the rat

    PubMed Central

    Gao, Fei; Song, Xueying; Zhu, Dexiao; Wang, Xiaochen; Hao, Aijun; Nadler, J. Victor; Zhan, Ren-Zhi

    2015-01-01

    To understand the potential role of enhanced hippocampal neurogenesis after pilocarpine-induced status epilepticus (SE) in the development of epilepsy, we quantitatively analyzed the geometry of apical dendrites, synaptic transmission, and activation levels of normotopically distributed mature newborn granule cells in the rat. SE in male Sprague-Dawley rats (between 6 and 7 weeks old) lasting for more than 2 h was induced by an intraperitoneal injection of pilocarpine. The complexity, spine density, miniature post-synaptic currents, and activity-regulated cytoskeleton-associated protein (Arc) expression of granule cells born 5 days after SE were studied between 10 and 17 weeks after CAG-GFP retroviral vector-mediated labeling. Mature granule cells born after SE had dendritic complexity similar to that of granule cells born naturally, but with denser mushroom-like spines in dendritic segments located in the outer molecular layer. Miniature inhibitory post-synaptic currents (mIPSCs) were similar between the controls and rats subjected to SE; however, smaller miniature excitatory post-synaptic current (mEPSC) amplitude with a trend toward less frequent was found in mature granule cells born after SE. After maturation, granule cells born after SE did not show denser Arc expression in the resting condition or 2 h after being activated by pentylenetetrazol-induced transient seizure activity than vicinal GFP-unlabeled granule cells. Thus our results suggest that normotopic granule cells born after pilocarpine-induced SE are no more active when mature than age-matched, naturally born granule cells. PMID:26500490

  4. The effect of omega-conotoxin GVIA on synaptic transmission within the nucleus accumbens and hippocampus of the rat in vitro.

    PubMed Central

    Horne, A. L.; Kemp, J. A.

    1991-01-01

    1. The actions of two calcium channel antagonists, the N-channel blocker omega-conotoxin GVIA (omega-CgTx) and the L-channel antagonist nisoldipine, on synaptic transmission were investigated in the hippocampus and nucleus accumbens of the rat in vitro. 2. omega-CgTx (100 nM for 10 min) produced a marked and irreversible reduction of focally evoked population spikes and intracellularly recorded excitatory postsynaptic potentials (e.p.s.ps) in the nucleus accumbens, which could not be overcome by increasing the stimulus strength. 3. Nisoldipine (10 microM for 10 min) had no effect on population spikes in the nucleus accumbens or the CA1 of the hippocampus. 4. In the hippocampus, population spikes were not irreversibly reduced by omega-CgTx (100 nM for 10 min) but rather, multiple population spikes were produced along with spontaneous synchronous discharges. This indicated that inhibitory synaptic transmission was being preferentially reduced. 5. Intracellular recordings demonstrated that omega-CgTx powerfully reduced inhibitory synaptic transmission in an irreversible manner and that excitatory transmission was also reduced but to a lesser extent. Unlike excitatory transmission in the nucleus accumbens and inhibitory transmission in the hippocampus, increasing the stimulus strength overcame the reduction of hippocampal excitatory transmission. 6. It is concluded that omega-CgTx-sensitive calcium channels are involved in the calcium entry that precedes the synaptic transmission in all these synapses. The apparent lower sensitivity of the hippocampal excitatory fibres to omega-CgTx may indicate that calcium entry that promotes transmitter release at central synapses may be mediated by pharmacologically distinct calcium channels. PMID:1657265

  5. CaV2.1 voltage activated calcium channels and synaptic transmission in familial hemiplegic migraine pathogenesis.

    PubMed

    Uchitel, Osvaldo D; Inchauspe, Carlota González; Urbano, Francisco J; Di Guilmi, Mariano N

    2012-01-01

    Studies on the genetic forms of epilepsy, chronic pain, and migraine caused by mutations in ion channels have given crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological disorders. In this review we focus on the role of mutated CaV2.1 (i.e., P/Q-type) voltage-activated Ca2+ channels, and on the ultimate consequences that mutations causing familial hemiplegic migraine type-1 (FHM1) have in neurotransmitter release. Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of CaV2.1 channels. Mutated CaV2.1 channels activate at more hyperpolarizing potentials and lead to a gain-of-function in synaptic transmission. This gain-of-function might underlie alterations in the excitatory/ inhibitory balance of synaptic transmission, favoring a persistent state of hyperexcitability in cortical neurons that would increase the susceptibility for cortical spreading depression (CSD), a mechanism believed to initiate the attacks of migraine with aura.

  6. Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression

    PubMed Central

    Brown, Joshua C.; Petersen, Amber; Zhong, Ling; Himelright, Miranda L.; Murphy, Jessica A.; Walikonis, Randall S.; Gerges, Nashaat Z.

    2016-01-01

    Dysfunction of the proteins regulating synaptic function can cause synaptic plasticity imbalance that underlies neurological disorders such as intellectual disability. A study found that four distinct mutations within BRAG1, an Arf-GEF synaptic protein, each led to X-chromosome-linked intellectual disability (XLID). Although the physiological functions of BRAG1 are poorly understood, each of these mutations reduces BRAG1's Arf-GEF activity. Here we show that BRAG1 is required for the activity-dependent removal of AMPA receptors in rat hippocampal pyramidal neurons. Moreover, we show that BRAG1 bidirectionally regulates synaptic transmission. On one hand, BRAG1 is required for the maintenance of synaptic transmission. On the other hand, BRAG1 expression enhances synaptic transmission, independently of BRAG1 Arf-GEF activity or neuronal activity, but dependently on its C-terminus interactions. This study demonstrates a dual role of BRAG1 in synaptic function and highlights the functional relevance of reduced BRAG1 Arf-GEF activity as seen in the XLID-associated human mutations. PMID:27009485

  7. Synaptic long-term potentiation realized in Pavlov's dog model based on a NiOx-based memristor

    NASA Astrophysics Data System (ADS)

    Hu, S. G.; Liu, Y.; Liu, Z.; Chen, T. P.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, Sumio

    2014-12-01

    Synaptic Long-Term Potentiation (LTP), which is a long-lasting enhancement in signal transmission between neurons, is widely considered as the major cellular mechanism during learning and memorization. In this work, a NiOx-based memristor is found to be able to emulate the synaptic LTP. Electrical conductance of the memristor is increased by electrical pulse stimulation and then spontaneously decays towards its initial state, which resembles the synaptic LTP. The lasting time of the LTP in the memristor can be estimated with the relaxation equation, which well describes the conductance decay behavior. The LTP effect of the memristor has a dependence on the stimulation parameters, including pulse height, width, interval, and number of pulses. An artificial network consisting of three neurons and two synapses is constructed to demonstrate the associative learning and LTP behavior in extinction of association in Pavlov's dog experiment.

  8. Circadian Rhythm in Inhibitory Synaptic Transmission in the Mouse Suprachiasmatic Nucleus

    PubMed Central

    Itri, Jason; Michel, Stephan; Waschek, James A.; Colwell, Christopher S.

    2008-01-01

    It is widely accepted that most suprachiasmatic nucleus (SCN) neurons express the neurotransmitter GABA and are likely to use this neurotransmitter to regulate excitability within the SCN. To evaluate the possibility that inhibitory synaptic transmission varies with a circadian rhythm within the mouse SCN, we used whole cell patch-clamp recording in an acute brain slice preparation to record GABA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs). We found that the sIPSC frequency in the dorsal SCN (dSCN) exhibited a TTX-sensitive daily rhythm that peaked during the late day and early night in mice held in a light:dark cycle. We next evaluated whether vasoactive intestinal peptide (VIP) was responsible for the observed rhythm in IPSC frequency. Pretreatment of SCN slices with VPAC1/VPAC2- or VPAC2-specific receptor antagonists prevented the increase in sIPSC frequency in the dSCN. The rhythm in sIPSC frequency was absent in VIP/peptide histidine isoleucine (PHI)-deficient mice. Finally, we were able to detect a rhythm in the frequency of inhibitory synaptic transmission in mice held in constant darkness that was also dependent on VIP and the VPAC2 receptor. Overall, these data demonstrate that there is a circadian rhythm in GABAergic transmission in the dorsal region of the mouse SCN and that the VIP is required for expression of this rhythm. PMID:14973316

  9. Corticotropin releasing factor dose-dependently modulates excitatory synaptic transmission in the noradrenergic nucleus locus coeruleus.

    PubMed

    Prouty, Eric W; Waterhouse, Barry D; Chandler, Daniel J

    2017-03-01

    The noradrenergic nucleus locus coeruleus (LC) is critically involved in the stress response and receives afferent input from a number of corticotropin releasing factor (CRF) containing structures. Several in vivo and in vitro studies in rat have shown that CRF robustly increases the firing rate of LC neurons in a dose-dependent manner. While it is known that these increases are dependent on CRF receptor subtype 1 and mediated by effects of cAMP intracellular signaling cascades on potassium conductance, the impact of CRF on synaptic transmission within LC has not been clarified. In the present study, we used whole-cell patch clamp electrophysiology to assess how varying concentrations of bath-applied CRF affect AMPA-receptor dependent spontaneous excitatory post-synaptic currents (sEPSCs). Compared to vehicle, 10, 25, and 100 nm CRF had no significant effects on any sEPSC parameters. Fifty nanomolar CRF, however, significantly increased sEPSC amplitude, half-width, and charge transfer, while these measures were significantly decreased by 200 nm CRF. These observations suggest that stress may differentially affect ongoing excitatory synaptic transmission in LC depending on how much CRF is released from presynaptic terminals. Combined with the well-documented effects of CRF on membrane properties and spontaneous LC discharge, these observations may help explain how stress and CRF release are able to modulate the signal to noise ratio of LC neurons. These findings have implications for how stress affects the fidelity of signal transmission and information flow through LC and how it might impact norepinephrine release in the CNS.

  10. GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum

    PubMed Central

    Kirmse, Knut; Dvorzhak, Anton; Kirischuk, Sergei; Grantyn, Rosemarie

    2008-01-01

    GABAergic medium-sized striatal output neurons (SONs) provide the principal output for the neostriatum. In vitro and in vivo data indicate that spike discharge of SONs is tightly controlled by effective synaptic inhibition. Although phasic GABAergic transmission critically depends on ambient GABA levels, the role of GABA transporters (GATs) in neostriatal GABAergic synaptic transmission is largely unknown. In the present study we aimed at elucidating the role of GAT-1 in the developing mouse neostriatum (postnatal day (P) 7–34). We recorded GABAergic postsynaptic currents (PSCs) using the whole-cell patch-clamp technique. Based on the effects of NO-711, a specific GAT-1 blocker, we demonstrate that GAT-1 is operative at this age and influences GABAergic synaptic transmission by presynaptic and postsynaptic mechanisms. Presynaptic GABABR-mediated suppression of GABA release was found to be functional at all ages tested; however, there was no evidence for persistent GABABR activity under control conditions, unless GAT-1 was blocked (P12–34). In addition, whereas no tonic GABAAR-mediated conductances were detected in SONs until P14, application of a specific GABAAR antagonist caused distinct tonic outward currents later in development (P19–34). In the presence of NO-711, tonic GABAAR-mediated currents were also observed at P7–14 and were dramatically increased at more mature stages. Furthermore, GAT-1 block reduced the median amplitude of GABAergic miniature PSCs indicating a decrease in quantal size. We conclude that in the murine neostriatum GAT-1 operates in a net uptake mode. It prevents the persistent activation of presynaptic GABABRs (P12–34) and prevents (P7–14) or reduces (P19–34) tonic postsynaptic GABAAR activity. PMID:18832421

  11. Laser-evoked synaptic transmission in cultured hippocampal neurons expressing Channelrhodopsin-2 delivered by adeno-associated virus

    PubMed Central

    Wang, Jennifer; Hasan, Mazahir T.; Seung, H. Sebastian

    2009-01-01

    We present a method for studying synaptic transmission in mass cultures of dissociated hippocampal neurons based on patch clamp recording combined with laser stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Our goal was to use the high spatial resolution of laser illumination to come as close as possible to the ideal of identifying monosynaptically coupled pairs of neurons, which is conventionally done using microisland rather than mass cultures. Using recombinant adeno-associated virus (rAAV) to deliver the ChR2 gene, we focused on the time period between 14 and 20 days in vitro, during which expression levels are high, and spontaneous bursting activity has not yet started. Stimulation by wide-field illumination is sufficient to make the majority of ChR2-expressing neurons spike. Stimulation with a laser spot at least 10 μm in diameter also produces action potentials, but in a reduced fraction of neurons. We studied synaptic transmission by voltage-clamping a neuron with low expression of ChR2 and scanning a 40 μm laser spot at surrounding locations. Responses were observed to stimulation at a subset of locations in the culture, indicating spatial localization of stimulation. Pharmacological means were used to identify responses that were synaptic. Many responses were of smaller amplitude than those typically found in microisland cultures. We were unable to find an entirely reliable criterion for distinguishing between monosynaptic and polysynaptic responses. However, we propose that postsynaptic currents with small amplitudes, simple shapes, and latencies not much greater than 8 msec are reasonable candidates for monosynaptic interactions. PMID:19560489

  12. Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats

    PubMed Central

    Petruska, Jeffrey C.; Kitay, Brandon; Boyce, Vanessa S.; Kaspar, Brian; Pearse, Damien; Gage, Fred H.; Mendell, Lorne M.

    2010-01-01

    We examined whether elevating levels of neurotrophin-3 (NT-3) in the spinal cord and dorsal root ganglion (DRG) would alter connections made by muscle spindle afferent fibers on motoneurons. Adeno-associated virus (AAV) serotypes AAV1, AAV2 and AAV5, selected for their tropism profile, were engineered with the NT-3 gene and administered to the medial gastrocnemius muscle in adult rats. ELISA studies in muscle, DRG and spinal cord revealed that NT-3 concentration in all tissues peaked about 3 months after a single viral injection; after 6 months NT-3 concentration returned to normal values. Intracellular recording in triceps surae motoneurons revealed complex electrophysiological changes. Moderate elevation in cord NT-3 resulted in diminished segmental excitatory postsynaptic potential (EPSP) amplitude, perhaps as a result of the observed decrease in motoneuron input resistance. With further elevation in NT-3 expression, the decline in EPSP amplitude was reversed indicating that NT-3 at higher concentration could increase EPSP amplitude. No correlation was observed between EPSP amplitude and NT-3 concentration in the DRG. Treatment with control viruses could elevate NT-3 levels minimally resulting in measurable electrophysiological effects, perhaps as a result of inflammation associated with injection. EPSPs elicited by stimulation of the ventrolateral funiculus underwent a consistent decline in amplitude independent of NT-3 level. These novel correlations between modified NT-3 expression and single-cell electrophysiological parameters indicate that intramuscular administration of AAV(NT-3) can exert long lasting effects on synaptic transmission to motoneurons. This approach to neurotrophin delivery could be useful in modifying spinal function after injury. PMID:20849530

  13. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    PubMed

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion.

  14. Stochastic resonance in Hodgkin-Huxley neuron induced by unreliable synaptic transmission.

    PubMed

    Guo, Daqing; Li, Chunguang

    2012-09-07

    We systematically investigate the stochastic dynamics of a single Hodgkin-Huxley neuron driven by stochastic excitatory and inhibitory input spikes via unreliable synapses in this paper. Based on the mean-filed theory, a novel intrinsic neuronal noise regulation mechanism stemming from unreliable synapses is presented. Our simulation results show that, under certain conditions, the stochastic resonance phenomenon is able to be induced by the unreliable synaptic transmission, which can be well explained by the theoretical prediction. To a certain degree, the results presented here provide insights into the functional roles of unreliable synapses in neural information processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Impaired Photoreceptor Protein Transport and Synaptic Transmission in a Mouse Model of Bardet-Biedl Syndrome

    PubMed Central

    Abd-El-Barr, Muhammad M.; Sykoudis, Kristen; Andrabi, Sara; Eichers, Erica R.; Pennesi, Mark E.; Tan, Perciliz L.; Wilson, John H.; Katsanis, Nicholas; Lupski, James R.; Wu, Samuel M.

    2009-01-01

    Bardet-Biedl Syndrome (BBS) is an oligogenic syndrome whose manifestations include retinal degeneration, renal abnormalities, obesity and polydactylia. Evidence suggests that the main etiopathophysiology of this syndrome is impaired Intraflagellar Transport (IFT). In this study, we study the Bbs4-null mouse and investigate photoreceptor structure and function after loss of this gene. We find that Bbs4-null mice have defects in the transport of phototransduction proteins from the inner segments to the outer segments, before signs of cell death. Additionally, we show defects in synaptic transmission from the photoreceptors to secondary neurons of the visual system, demonstrating multiple functions for BBS4 in photoreceptors. PMID:18022666

  16. Tuning synaptic transmission in the hippocampus by stress: the CRH system

    PubMed Central

    Chen, Yuncai; Andres, Adrienne L.; Frotscher, Michael; Baram, Tallie Z.

    2012-01-01

    To enhance survival, an organism needs to remember—and learn from—threatening or stressful events. This fact necessitates the presence of mechanisms by which stress can influence synaptic transmission in brain regions, such as hippocampus, that subserve learning and memory. A major focus of this series of monographs is on the role and actions of adrenal-derived hormones, corticosteroids, and of brain-derived neurotransmitters, on synaptic function in the stressed hippocampus. Here we focus on the contribution of hippocampus-intrinsic, stress-activated CRH-CRH receptor signaling to the function and structure of hippocampal synapses. Corticotropin-releasing hormone (CRH) is expressed in interneurons of adult hippocampus, and is released from axon terminals during stress. The peptide exerts time- and dose-dependent effects on learning and memory via modulation of synaptic function and plasticity. Whereas physiological levels of CRH, acting over seconds to minutes, augment memory processes, exposure to presumed severe-stress levels of the peptide results in spine retraction and loss of synapses over more protracted time-frames. Loss of dendritic spines (and hence of synapses) takes place through actin cytoskeleton collapse downstream of CRHR1 receptors that reside within excitatory synapses on spine heads. Chronic exposure to stress levels of CRH may promote dying-back (atrophy) of spine-carrying dendrites. Thus, the acute effects of CRH may contribute to stress-induced adaptive mechanisms, whereas chronic or excessive exposure to the peptide may promote learning problems and premature cognitive decline. PMID:22514519

  17. Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress.

    PubMed

    Kelty, Jonathan D; Noseworthy, Peter A; Feder, Martin E; Robertson, R Meldrum; Ramirez, Jan-Marino

    2002-01-01

    As with other tissues, exposing the mammalian CNS to nonlethal heat stress (i.e., thermal preconditioning) increases levels of heat-shock proteins (Hsps) such as Hsp70 and enhances the viability of neurons under subsequent stress. Using a medullary slice preparation from a neonatal mouse, including the site of the neural network that generates respiratory rhythm (the pre-Bötzinger complex), we show that thermal preconditioning has an additional fundamental effect, protection of synaptic function. Relative to 30 degrees C baseline, initial thermal stress (40 degrees C) greatly increased the frequency of synaptic currents recorded without pharmacological manipulation by approximately 17-fold (p < 0.01) and of miniature postsynaptic currents (mPSCs) elicited by GABA (20-fold) glutamate (10-fold), and glycine (36-fold). Thermal preconditioning (15 min at 40 degrees C) eliminated the increase in frequency of overall synaptic transmission during acute thermal stress and greatly attenuated the frequency increases of GABAergic, glutamatergic, and glycinergic mPSCs (for each, p < 0.05). Moreover, without thermal preconditioning, incubation of slices in solution containing inducible Hsp70 (Hsp72) mimicked the effect of thermal preconditioning on the stress-induced release of neurotransmitter. That preconditioning and exogenous Hsp72 can affect and preserve normal physiological function has important therapeutic implications.

  18. TH-9 (a theophylline derivative) induces long-lasting enhancement in excitatory synaptic transmission in the rat hippocampus that is occluded by frequency-dependent plasticity in vitro.

    PubMed

    Nashawi, H; Bartl, T; Bartl, P; Novotny, L; Oriowo, M A; Kombian, S B

    2012-09-18

    Dementia, especially Alzheimer's disease, is a rapidly increasing medical condition that presents with enormous challenge for treatment. It is characterized by impairment in memory and cognitive function often accompanied by changes in synaptic transmission and plasticity in relevant brain regions such as the hippocampus. We recently synthesized TH-9, a conjugate racetam-methylxanthine compound and tested if it had potential for enhancing synaptic function and possibly, plasticity, by examining its effect on hippocampal fast excitatory synaptic transmission and plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 hippocampal area of naïve juvenile male Sprague-Dawley rats using conventional electrophysiological recording techniques. TH-9 caused a concentration-dependent, long-lasting enhancement in fEPSPs. This effect was blocked by adenosine A1, acetylcholine (muscarinic and nicotinic) and glutamate (N-methyl-d-aspartate) receptor antagonists but not by a γ-aminobutyric acid receptor type B (GABA(B)) receptor antagonist. The TH-9 effect was also blocked by enhancing intracellular cyclic adenosine monophosphate and inhibiting protein kinase A. Pretreatment with TH-9 did not prevent the induction of long-term potentiation (LTP) or long-term depression (LTD). Conversely, induction of LTP or LTD completely occluded the ability of TH-9 to enhance fEPSPs. Thus, TH-9 utilizes cholinergic and adenosinergic mechanisms to cause long-lasting enhancement in fEPSPs which were occluded by LTP and LTD. TH-9 may therefore employ similar or convergent mechanisms with frequency-dependent synaptic plasticities to produce the observed long-lasting enhancement in synaptic transmission and may thus, have potential for use in improving memory.

  19. Roles of N-Type and Q-Type Ca2+ Channels in Supporting Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Wheeler, David B.; Randall, Andrew; Tsien, Richard W.

    1994-04-01

    Several types of calcium channels found in the central nervous system are possible participants in triggering neurotransmitter release. Synaptic transmission between hippocampal CA3 and CA1 neurons was mediated by N-type calcium channels, together with calcium channels whose pharmacology differs from that of L- and P-type channels but resembles that of the Q-type channel encoded by the α1A subunit gene. Blockade of either population of channels strongly increased enhancement of synaptic transmission with repetitive stimuli. Even after complete blockade of N-type channels, transmission was strongly modulated by stimulation of neurotransmitter receptors or protein kinase C. These findings suggest a role for α1A subunits in synaptic transmission and support the idea that neurotransmitter release may depend on multiple types of calcium channels under physiological conditions.

  20. Cocaine-Induced Changes of Synaptic Transmission in the Striatum are Modulated by Adenosine A2A Receptors and Involve the Tyrosine Phosphatase STEP

    PubMed Central

    Chiodi, Valentina; Mallozzi, Cinzia; Ferrante, Antonella; Chen, Jiang F; Lombroso, Paul J; Di Stasi, Anna Maria Michela; Popoli, Patrizia; Domenici, Maria Rosaria

    2014-01-01

    The striatum is a brain area implicated in the pharmacological action of drugs of abuse. Adenosine A2A receptors (A2ARs) are highly expressed in the striatum and mediate, at least in part, cocaine-induced psychomotor effects in vivo. Here we studied the synaptic mechanisms implicated in the pharmacological action of cocaine in the striatum and investigated the influence of A2ARs. We found that synaptic transmission was depressed in corticostriatal slices after perfusion with cocaine (10 μM). This effect was reduced by the A2AR antagonist ZM241385 and almost abolished in striatal A2AR-knockout mice (mice lacking A2ARs in striatal neurons, stA2ARKO). The effect of cocaine on synaptic transmission was also prevented by the protein tyrosine phosphatases (PTPs) inhibitor sodium orthovanadate (Na3VO4). In synaptosomes prepared from striatal slices, we found that the activity of striatal-enriched protein tyrosine phosphatase (STEP) was upregulated by cocaine, prevented by ZM241385, and absent in synaptosomes from stA2ARKO. The role played by STEP in cocaine modulation of synaptic transmission was investigated in whole-cell voltage clamp recordings from medium spiny neurons of the striatum. We found that TAT-STEP, a peptide that renders STEP enzymatically inactive, prevented cocaine-induced reduction in AMPA- and NMDA-mediated excitatory post-synaptic currents, whereas the control peptide, TAT-myc, had no effect. These results demonstrate that striatal A2ARs modulate cocaine-induced synaptic depression in the striatum and highlight the potential role of PTPs and specifically STEP in the effects of cocaine. PMID:23989619

  1. Cocaine-induced changes of synaptic transmission in the striatum are modulated by adenosine A2A receptors and involve the tyrosine phosphatase STEP.

    PubMed

    Chiodi, Valentina; Mallozzi, Cinzia; Ferrante, Antonella; Chen, Jiang F; Lombroso, Paul J; Di Stasi, Anna Maria Michela; Popoli, Patrizia; Domenici, Maria Rosaria

    2014-02-01

    The striatum is a brain area implicated in the pharmacological action of drugs of abuse. Adenosine A2A receptors (A2ARs) are highly expressed in the striatum and mediate, at least in part, cocaine-induced psychomotor effects in vivo. Here we studied the synaptic mechanisms implicated in the pharmacological action of cocaine in the striatum and investigated the influence of A2ARs. We found that synaptic transmission was depressed in corticostriatal slices after perfusion with cocaine (10 μM). This effect was reduced by the A2AR antagonist ZM241385 and almost abolished in striatal A2AR-knockout mice (mice lacking A2ARs in striatal neurons, stA2ARKO). The effect of cocaine on synaptic transmission was also prevented by the protein tyrosine phosphatases (PTPs) inhibitor sodium orthovanadate (Na3VO4). In synaptosomes prepared from striatal slices, we found that the activity of striatal-enriched protein tyrosine phosphatase (STEP) was upregulated by cocaine, prevented by ZM241385, and absent in synaptosomes from stA2ARKO. The role played by STEP in cocaine modulation of synaptic transmission was investigated in whole-cell voltage clamp recordings from medium spiny neurons of the striatum. We found that TAT-STEP, a peptide that renders STEP enzymatically inactive, prevented cocaine-induced reduction in AMPA- and NMDA-mediated excitatory post-synaptic currents, whereas the control peptide, TAT-myc, had no effect. These results demonstrate that striatal A2ARs modulate cocaine-induced synaptic depression in the striatum and highlight the potential role of PTPs and specifically STEP in the effects of cocaine.

  2. [The mechanisms of depression by benzodiazepines, barbiturates and propofol of excitatory synaptic transmissions mediated by adenosine neuromodulation].

    PubMed

    Narimatsu, Eichi; Niiya, Tomohisa; Kawamata, Mikito; Namiki, Akiyoshi

    2006-06-01

    Adenosine is known to modulate synaptic functions through adenosine receptors and the related adenosine neuromodulatory system. Benzodiazepines, barbiturates and propofol, the main actins of which are facilitation of GABAA receptor functions, also facilitate accumulation of endogenous adenosine in the extracellular space by inhibiting adenosine uptake via adenosine transporters. The accumulated adenosine depresses excitatory synaptic transmission by decreasing transmitter release, depressing postsynaptic sensitivity and inhibiting neuronal excitability through adenosine A1 receptors and the related adenosine neuromodulatory system. The adenosine-induced depressions of excitatory synaptic transmissions probably contribute to the mechanisms of the anesthetic, sedative, anticonvulsant and neuroprotective effects of these anesthetics and sedatives. An understanding of the synaptic mechanisms of these anesthetics and sedatives through the adenosine neuromodulatory system is needed for rational clinical use of the drugs.

  3. Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels

    PubMed Central

    Mochida, Sumiko; Westenbroek, Ruth E.; Yokoyama, Charles T.; Itoh, Kanako; Catterall, William A.

    2003-01-01

    Fast cholinergic neurotransmission between superior cervical ganglion neurons (SCGNs) in cell culture is initiated by N-type Ca2+ currents through Cav2.2 channels. To test the ability of different Ca2+-channel subtypes to initiate synaptic transmission in these cells, SCGNs were injected with cDNAs encoding Cav1.2 channels, which conduct L-type currents, Cav2.1 channels, which conduct P/Q-type Ca2+ currents, and Cav2.3 channels, which conduct R-type Ca2+ currents. Exogenously expressed Cav2.1 channels were localized in nerve terminals, as assessed by immunocytochemistry with subtype-specific antibodies, and these channels effectively initiated synaptic transmission. Injection with cDNA encoding Cav2.3 channels yielded a lower level of presynaptic labeling and synaptic transmission, whereas injection with cDNA encoding Cav1.2 channels resulted in no presynaptic labeling and no synaptic transmission. Our results show that exogenously expressed Ca2+ channels can mediate synaptic transmission in SCGNs and that the specificity of reconstitution of neurotransmission (Cav2.1 > Cav2.3 ≫ Cav1.2) follows the same order as in neurons in vivo. The specificity of reconstitution of neurotransmission parallels the specificity of trafficking of these Cav channels to nerve terminals. PMID:12601155

  4. MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity.

    PubMed

    Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W

    2017-05-09

    Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission.

  5. Synchronous and asynchronous modes of synaptic transmission utilize different calcium sources

    PubMed Central

    Wen, Hua; Hubbard, Jeffrey M; Rakela, Benjamin; Linhoff, Michael W; Mandel, Gail; Brehm, Paul

    2013-01-01

    Asynchronous transmission plays a prominent role at certain synapses but lacks the mechanistic insights of its synchronous counterpart. The current view posits that triggering of asynchronous release during repetitive stimulation involves expansion of the same calcium domains underlying synchronous transmission. In this study, live imaging and paired patch clamp recording at the zebrafish neuromuscular synapse reveal contributions by spatially distinct calcium sources. Synchronous release is tied to calcium entry into synaptic boutons via P/Q type calcium channels, whereas asynchronous release is boosted by a propagating intracellular calcium source initiated at off-synaptic locations in the axon and axonal branch points. This secondary calcium source fully accounts for the persistence following termination of the stimulus and sensitivity to slow calcium buffers reported for asynchronous release. The neuromuscular junction and CNS neurons share these features, raising the possibility that secondary calcium sources are common among synapses with prominent asynchronous release. DOI: http://dx.doi.org/10.7554/eLife.01206.001 PMID:24368731

  6. Acetylcholine Mediates a Slow Synaptic Potential in Hippocampal Pyramidal Cells

    NASA Astrophysics Data System (ADS)

    Cole, A. E.; Nicoll, R. A.

    1983-09-01

    The hippocampal slice preparation was used to study the role of acetylcholine as a synaptic transmitter. Bath-applied acetylcholine had three actions on pyramidal cells: (i) depolarization associated with increased input resistance, (ii) blockade of calcium-activated potassium responses, and (iii) blockade of accommodation of cell discharge. All these actions were reversed by the muscarinic antagonist atropine. Stimulation of sites in the slice known to contain cholinergic fibers mimicked all the actions. Furthermore, these evoked synaptic responses were enhanced by the cholinesterase inhibitor eserine and were blocked by atropine. These findings provide electrophysiological support for the role of acetylcholine as a synaptic transmitter in the brain and demonstrate that nonclassical synaptic responses involving the blockade of membrane conductances exist in the brain.

  7. Src, a Molecular Switch Governing Gain Control of Synaptic Transmission Mediated by N-methyl-D-Aspartate Receptors

    NASA Astrophysics Data System (ADS)

    Yu, Xian-Min; Salter, Michael W.

    1999-07-01

    The N-methyl-D-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.

  8. Comparison of baroreceptive to other afferent synaptic transmission to the medial solitary tract nucleus.

    PubMed

    Andresen, Michael C; Peters, James H

    2008-11-01

    Cranial nerve visceral afferents enter the brain stem to synapse on neurons within the solitary tract nucleus (NTS). The broad heterogeneity of both visceral afferents and NTS neurons makes understanding afferent synaptic transmission particularly challenging. To study a specific subgroup of second-order neurons in medial NTS, we anterogradely labeled arterial baroreceptor afferents of the aortic depressor nerve (ADN) with lipophilic fluorescent tracer (i.e., ADN+) and measured synaptic responses to solitary tract (ST) activation recorded from dye-identified neurons in medial NTS in horizontal brain stem slices. Every ADN+ NTS neuron received constant-latency ST-evoked excitatory postsynaptic currents (EPSCs) (jitter < 192 micros, SD of latency). Stimulus-recruitment profiles showed single thresholds and no suprathreshold recruitment, findings consistent with EPSCs arising from a single, branched afferent axon. Frequency-dependent depression of ADN+ EPSCs averaged approximately 70% for five shocks at 50 Hz, but single-shock failure rates did not exceed 4%. Whether adjacent ADN- or those from unlabeled animals, other second-order NTS neurons (jitters < 200 micros) had ST transmission properties indistinguishable from ADN+. Capsaicin (CAP; 100 nM) blocked ST transmission in some neurons. CAP-sensitive ST-EPSCs were smaller and failed over five times more frequently than CAP-resistant responses, whether ADN+ or from unlabeled animals. Variance-mean analysis of ST-EPSCs suggested uniformly high probabilities for quantal glutamate release across second-order neurons. While amplitude differences may reflect different numbers of contacts, higher frequency-dependent failure rates in CAP-sensitive ST-EPSCs may arise from subtype-specific differences in afferent axon properties. Thus afferent transmission within medial NTS differed by axon class (e.g., CAP sensitive) but was indistinguishable by source of axon (e.g., baroreceptor vs. nonbaroreceptor).

  9. Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction.

    PubMed

    Gerasimova, E; Lebedeva, J; Yakovlev, A; Zefirov, A; Giniatullin, R; Sitdikova, G

    2015-09-10

    Hydrogen sulfide (H2S) is a widespread gasotransmitter also known as a powerful neuroprotective agent in the central nervous system. However, the action of H2S in peripheral synapses is much less studied. In the current project we studied the modulatory effects of the H2S donor sodium hydrosulfide (NaHS) on synaptic transmission in the mouse neuromuscular junction using microelectrode technique. Using focal recordings of presynaptic response and evoked transmitter release we have shown that NaHS (300 μM) increased evoked end-plate currents (EPCs) without changes of presynaptic waveforms which indicated the absence of NaHS effects on sodium and potassium currents of motor nerve endings. Using intracellular recordings it was shown that NaHS increased the frequency of miniature end-plate potentials (MEPPs) without changing their amplitudes indicating a pure presynaptic effect. Furthermore, NaHS increased the amplitude of end-plate potentials (EPPs) without influencing the resting membrane potential of muscle fibers. L-cysteine, a substrate of H2S synthesis induced, similar to NaHS, an increase of EPC amplitudes whereas inhibitors of H2S synthesis (β-cyano-L-alanine and aminooxyacetic acid) had the opposite effect. Inhibition of adenylate cyclase using MDL 12,330A hydrochloride (MDL 12,330A) or elevation of cAMP level with 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (pCPT-cAMP) completely prevented the facilitatory action of NaHS indicating involvement of the cAMP signaling cascade. The facilitatory effect of NaHS was significantly diminished when intracellular calcium (Ca(2+)) was buffered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester (EGTA-AM). Activation of ryanodine receptors by caffeine or ryanodine increased acetylcholine release and prevented further action of NaHS on transmitter release, likely due to

  10. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    PubMed

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation.

  11. Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.

    PubMed

    Tran-Van-Minh, Alexandra; Abrahamsson, Therése; Cathala, Laurence; DiGregorio, David A

    2016-08-17

    Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage integration is unknown. We examined the properties and cellular mechanisms of these dendritic operations in cerebellar molecular layer interneurons using dendritic voltage and calcium imaging, in combination with synaptic stimulation or glutamate uncaging. We show that, while synaptic potentials summate sublinearly, concomitant dendritic calcium signals summate either linearly or supralinearly depending on the number of synapses activated. The supralinear dendritic calcium triggers a branch-specific, short-term suppression of neurotransmitter release that alters the pattern of synaptic activation. Thus, differential voltage and calcium integration permits dynamic regulation of neuronal input-output transformations without altering intrinsic nonlinear integration mechanisms.

  12. Impact of the leaner P/Q-type Ca2+ channel mutation on excitatory synaptic transmission in cerebellar Purkinje cells

    PubMed Central

    Liu, Shaolin; Friel, David D

    2008-01-01

    Loss-of-function mutations in the gene encoding P/Q-type Ca2+ channels cause cerebellar ataxia in mice and humans, but the underlying mechanism(s) are unknown. These Ca2+ channels play important roles in regulating both synaptic transmission and intrinsic membrane properties, and defects in either could contribute to ataxia. Our previous work described changes in intrinsic properties and excitability of cerebellar Purkinje cells (PCs) resulting from the leaner mutation, which is known to reduce whole-cell Ca2+ currents in PCs and cause severe ataxia. Here we describe the impact of this mutation on excitatory synaptic transmission from parallel and climbing fibres (PFs, CFs) to PCs in acute cerebellar slices. We found that in leaner PCs, PF-evoked excitatory postsynaptic currents (PF-EPSCs) are ˜50% smaller, and CF-evoked EPSCs are ˜80% larger, than in wild-type (WT) mice. To investigate whether reduced presynaptic Ca2+ entry plays a role in attenuating PF-EPSCs in leaner mice, we examined paired-pulse facilitation (PPF). We found that PPF is enhanced in leaner, suggesting that reduced presynaptic Ca2+ entry reduces neurotransmitter release at these synapses. Short-term plasticity was unchanged at CF–PC synapses, suggesting that CF-EPSCs are larger in leaner PCs because of increased synapse number or postsynaptic sensitivity, rather than enhanced presynaptic Ca2+ entry. To investigate the functional impact of the observed EPSC changes, we also compared excitatory postsynaptic potentials (EPSPs) elicited by PF and CF stimulation in WT and leaner PCs. Importantly, we found that despite pronounced changes in PF- and CF-EPSCs, evoked EPSPs in leaner mice are very similar to those observed in WT animals. These results suggest that changes in synaptic currents and intrinsic properties of PCs produced by the leaner mutation together maintain PC responsiveness to excitatory synaptic inputs. They also implicate other consequences of the leaner mutation as causes of

  13. Neonatal Propofol and Etomidate Exposure Enhance Inhibitory Synaptic Transmission in Hippocampal Cornus Ammonis 1 Pyramidal Neurons

    PubMed Central

    Zhang, Jia-Qiang; Xu, Wan-Ying; Xu, Chang-Qing

    2016-01-01

    Background: Propofol and etomidate are the most important intravenous general anesthetics in the current clinical use and that mediate gamma-aminobutyric acid's (GABAergic) synaptic transmission. However, their long-term effects on GABAergic synaptic transmission induced by neonatal propofol or etomidate exposure remain unclear. We investigated the long-term GABAergic neurotransmission alterations, following neonatal propofol and etomidate administration. Methods: Sprague-Dawley rat pups at postnatal days 4–6 were underwent 6-h-long propofol-induced or 5-h-long etomidate-induced anesthesia. We performed whole-cell patch-clamp recording from pyramidal cells in the cornus ammonis 1 area of acute hippocampal slices of postnatal 80–90 days. Spontaneous and miniature inhibitory GABAergic currents (spontaneous inhibitory postsynaptic currents [sIPSCs] and miniature inhibitory postsynaptic currents [mIPSCs]) and their kinetic characters were measured. The glutamatergic tonic effect on inhibitory transmission and the effect of bumetanide on neonatal propofol exposure were also examined. Results: Neonatal propofol exposure significantly increased the frequency of mIPSCs (from 1.87 ± 0.35 Hz to 3.43 ± 0.51 Hz, P < 0.05) and did not affect the amplitude of mIPSCs and sIPSCs. Both propofol and etomidate slowed the decay time of mIPSCs kinetics (168.39 ± 27.91 ms and 267.02 ± 100.08 ms vs. 68.18 ± 12.43 ms; P < 0.05). Bumetanide significantly blocked the frequency increase and reversed the kinetic alteration of mIPSCs induced by neonatal propofol exposure (3.01 ± 0.45 Hz and 94.30 ± 32.56 ms). Conclusions: Neonatal propofol and etomidate exposure has long-term effects on inhibitory GABAergic transmission. Propofol might act at pre- and post-synaptic GABA receptor A (GABAA) receptors within GABAergic synapses and impairs the glutamatergic tonic input to GABAergic synapses; etomidate might act at the postsynaptic site. PMID:27824005

  14. Properties of GABA-mediated synaptic potentials induced by zinc in adult rat hippocampal pyramidal neurones.

    PubMed Central

    Xie, X; Smart, T G

    1993-01-01

    -nitroquinoxaline-2,3-dione (CNQX, 10 microM) did not affect the amplitude but slightly reduced the frequency of the giant depolarizations. 9. It is concluded that zinc induces a synchronized release of GABA, quite independent of intact excitatory synaptic transmission, which acts on GABAA receptors producing large depolarizing synaptic potentials. This increased level of GABA release may be of physiological and pathological importance since zinc is a naturally occurring metal ion endogenous to the central nervous system. PMID:8387588

  15. GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons

    PubMed Central

    Gu, Xinglong; Mao, Xia; Lussier, Marc P.; Hutchison, Mary Anne; Zhou, Liang; Hamra, F. Kent; Roche, Katherine W.; Lu, Wei

    2016-01-01

    Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs. PMID:26932439

  16. The release and trans-synaptic transmission of Tau via exosomes.

    PubMed

    Wang, Yipeng; Balaji, Varun; Kaniyappan, Senthilvelrajan; Krüger, Lars; Irsen, Stephan; Tepper, Katharina; Chandupatla, RamReddy; Maetzler, Walter; Schneider, Anja; Mandelkow, Eckhard; Mandelkow, Eva-Maria

    2017-01-13

    Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Our study demonstrates that exosomes contribute

  17. Altered inhibitory synaptic transmission in superficial dorsal horn neurones in spastic and oscillator mice

    PubMed Central

    Graham, B A; Schofield, P R; Sah, P; Callister, R J

    2003-01-01

    The spastic (spa) and oscillator (ot) mouse have naturally occurring mutations in the inhibitory glycine receptor (GlyR) and exhibit severe motor disturbances when exposed to unexpected sensory stimuli. We examined the effects of the spa and ot mutations on GlyR- and GABAAR-mediated synaptic transmission in the superficial dorsal horn (SFDH), a spinal cord region where inhibition is important for nociceptive processing. Spontaneous mIPSCs were recorded from visually identified neurones in parasagittal spinal cord slices. Neurones received exclusively GABAAR-mediated mIPSCs, exclusively GlyR-mediated mIPSCs or both types of mIPSCs. In control mice (wild-type and spa/+) over 40 % of neurones received both types of mIPSCs, over 30 % received solely GABAAR-mediated mIPSCs and the remainder received solely GlyR-mediated mIPSCs. In spa/spa animals, 97 % of the neurones received exclusively GABAAergic or both types of mIPSCs. In ot/ot animals, over 80 % of the neurones received exclusively GABAAR-mediated mIPSCs. GlyR-mediated mIPSC amplitude and charge were reduced in spa/spa and ot/ot animals. GABAAR-mediated mIPSC amplitude and charge were elevated in spa/spa but unaltered in ot/ot animals. GlyR- and GABAAR-mediated mIPSC decay times were similar for all genotypes, consistent with the mutations altering receptor numbers but not kinetics. These findings suggest the spastic and oscillator mutations, traditionally considered motor disturbances, also disrupt inhibition in a sensory region associated with nociceptive transmission. Furthermore, the spastic mutation results in a compensatory increase in GABAAergic transmission in SFDH neurones, a form of inhibitory synaptic plasticity absent in the oscillator mouse. PMID:12837931

  18. Excitatory Post-Synaptic Potential Mimicked in Indium-Zinc-Oxide Synaptic Transistors Gated by Methyl Cellulose Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Guo, Liqiang; Wen, Juan; Ding, Jianning; Wan, Changjin; Cheng, Guanggui

    2016-12-01

    The excitatory postsynaptic potential (EPSP) of biological synapses is mimicked in indium-zinc-oxide synaptic transistors gated by methyl cellulose solid electrolyte. These synaptic transistors show excellent electrical performance at an operating voltage of 0.8 V, Ion/off ratio of 2.5 × 106, and mobility of 38.4 cm2/Vs. After this device is connected to a resistance of 4 MΩ in series, it exhibits excellent characteristics as an inverter. A threshold potential of 0.3 V is achieved by changing the gate pulse amplitude, width, or number, which is analogous to biological EPSP.

  19. Excitatory Post-Synaptic Potential Mimicked in Indium-Zinc-Oxide Synaptic Transistors Gated by Methyl Cellulose Solid Electrolyte

    PubMed Central

    Guo, Liqiang; Wen, Juan; Ding, Jianning; Wan, Changjin; Cheng, Guanggui

    2016-01-01

    The excitatory postsynaptic potential (EPSP) of biological synapses is mimicked in indium-zinc-oxide synaptic transistors gated by methyl cellulose solid electrolyte. These synaptic transistors show excellent electrical performance at an operating voltage of 0.8 V, Ion/off ratio of 2.5 × 106, and mobility of 38.4 cm2/Vs. After this device is connected to a resistance of 4 MΩ in series, it exhibits excellent characteristics as an inverter. A threshold potential of 0.3 V is achieved by changing the gate pulse amplitude, width, or number, which is analogous to biological EPSP. PMID:27924838

  20. Loss of Predominant Shank3 Isoforms Results in Hippocampus-Dependent Impairments in Behavior and Synaptic Transmission

    PubMed Central

    Kouser, Mehreen; Speed, Haley E.; Dewey, Colleen M.; Reimers, Jeremy M.; Widman, Allie J.; Gupta, Natasha; Liu, Shunan; Jaramillo, Thomas C.; Bangash, Muhammad; Xiao, Bo; Worley, Paul F.

    2013-01-01

    The Shank3 gene encodes a scaffolding protein that anchors multiple elements of the postsynaptic density at the synapse. Previous attempts to delete the Shank3 gene have not resulted in a complete loss of the predominant naturally occurring Shank3 isoforms. We have now characterized a homozygous Shank3 mutation in mice that deletes exon 21, including the Homer binding domain. In the homozygous state, deletion of exon 21 results in loss of the major naturally occurring Shank3 protein bands detected by C-terminal and N-terminal antibodies, allowing us to more definitively examine the role of Shank3 in synaptic function and behavior. This loss of Shank3 leads to an increased localization of mGluR5 to both synaptosome and postsynaptic density-enriched fractions in the hippocampus. These mice exhibit a decrease in NMDA/AMPA excitatory postsynaptic current ratio in area CA1 of the hippocampus, reduced long-term potentiation in area CA1, and deficits in hippocampus-dependent spatial learning and memory. In addition, these mice also exhibit motor-coordination deficits, hypersensitivity to heat, novelty avoidance, altered locomotor response to novelty, and minimal social abnormalities. These data suggest that Shank3 isoforms are required for normal synaptic transmission/plasticity in the hippocampus, as well as hippocampus-dependent spatial learning and memory. PMID:24259569

  1. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration.

    PubMed

    Bae, Jae-Sung; Han, Hyung Soo; Youn, Dong-Ho; Carter, Janet E; Modo, Michel; Schuchman, Edward H; Jin, Hee Kyung

    2007-05-01

    Recent studies have shown that bone marrow-derived MSCs (BM-MSCs) improve neurological deficits when transplanted into animal models of neurological disorders. However, the precise mechanism by which this occurs remains unknown. Herein we demonstrate that BM-MSCs are able to promote neuronal networks with functional synaptic transmission after transplantation into Niemann-Pick disease type C (NP-C) mouse cerebellum. To address the mechanism by which this occurs, we used gene microarray, whole-cell patch-clamp recordings, and immunohistochemistry to evaluate expression of neurotransmitter receptors on Purkinje neurons in the NP-C cerebellum. Gene microarray analysis revealed upregulation of genes involved in both excitatory and inhibitory neurotransmission encoding subunits of the ionotropic glutamate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA) GluR4 and GABA(A) receptor beta2. We also demonstrated that BM-MSCs, when originated by fusion-like events with existing Purkinje neurons, develop into electrically active Purkinje neurons with functional synaptic formation. This study provides the first in vivo evidence that upregulation of neurotransmitter receptors may contribute to synapse formation via cell fusion-like processes after BM-MSC transplantation into mice with neurodegenerative disease. Disclosure of potential conflicts of interest is found at the end of this article.

  2. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex.

    PubMed

    Sakata, Kazuko; Woo, Newton H; Martinowich, Keri; Greene, Joshua S; Schloesser, Robert J; Shen, Liya; Lu, Bai

    2009-04-07

    Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant deficits in GABAergic interneurons in the prefrontal cortex (PFC), particularly those expressing parvalbumin, a subtype implicated in executive function and schizophrenia. Moreover, disruption of promoter IV-driven Bdnf transcription impaired inhibitory but not excitatory synaptic transmission recorded from layer V pyramidal neurons in the PFC. The attenuation of GABAergic inputs resulted in an aberrant appearance of spike-timing-dependent synaptic potentiation (STDP) in PFC slices derived from BDNF-KIV, but not wild-type littermates. These results demonstrate the importance of promoter IV-dependent Bdnf transcription in GABAergic function and reveal an unexpected regulation of STDP in the PFC by BDNF.

  3. Lengthening of the Stargazin Cytoplasmic Tail Increases Synaptic Transmission by Promoting Interaction to Deeper Domains of PSD-95.

    PubMed

    Hafner, Anne-Sophie; Penn, Andrew C; Grillo-Bosch, Dolors; Retailleau, Natacha; Poujol, Christel; Philippat, Amandine; Coussen, Françoise; Sainlos, Matthieu; Opazo, Patricio; Choquet, Daniel

    2015-04-22

    PSD-95 is a prominent organizer of the postsynaptic density (PSD) that can present a filamentous orientation perpendicular to the plasma membrane. Interactions between PSD-95 and transmembrane proteins might be particularly sensitive to this orientation, as "long" cytoplasmic tails might be required to reach deeper PSD-95 domains. Extension/retraction of transmembrane protein C-tails offer a new way of regulating binding to PSD-95. Using stargazin as a model, we found that enhancing the apparent length of stargazin C-tail through phosphorylation or by an artificial linker was sufficient to potentiate binding to PSD-95, AMPAR anchoring, and synaptic transmission. A linear extension of stargazin C-tail facilitates binding to PSD-95 by preferentially engaging interaction with the farthest located PDZ domains regarding to the plasma membrane, which present a greater affinity for the stargazin PDZ-domain-binding motif. Our study reveals that the concerted orientation of the stargazin C-tail and PSD-95 is a major determinant of synaptic strength. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx

    PubMed Central

    Qian, Jing; Saggau, Peter

    1997-01-01

    Modulation of presynaptic voltage-dependent calcium channels (VDCCs) by muscarinic receptors at the CA3–CA1 synapse of rat hippocampal slices was investigated by using the calcium indicator fura-2. Stimulation-evoked presynaptic calcium transients ([Capre]t) and field excitatory postsynaptic potentials (fe.p.s.ps) were simultaneously recorded. The relationship between presynaptic calcium influx and synaptic transmission was studied. Activation of muscarinic receptors inhibited [Capre]t, thereby reducing synaptic transmission. Carbachol (CCh, 10 μM) inhibited [Capre]t by 35% and reduced fe.p.s.p. by 85%. The inhibition was completely antagonized by 1 μM atropine. An approximate 4th power relationship was found between presynaptic calcium influx and postsynaptic responses. Application of the N-type VDCC-blocking peptide toxin ω-conotoxin GVIA (ω-CTx GVIA, 1 μM) inhibited [Capre]t and fe.p.s.ps by 21% and 49%, respectively, while the P/Q-type VDCC blocker ω-agatoxin IVA (ω-Aga IVA, 1 μM) reduced [Capre]t and fe.p.s.ps by 35% and 85%, respectively. Muscarinic receptor activation differentially inhibited distinct presynaptic VDCCs. ω-CTx GVIA-sensitive calcium channels were inhibited by muscarinic receptors, while ω-Aga IVA-sensitive channels were not. The percentage inhibition of ω-CTx GVIA-sensitive [Capre]t was about 63%. Muscarinic receptors inhibited presynaptic VDCCs in a way similar to adenosine (Ad) receptors. The percentage inhibition of ω-CTx GVIA-sensitive [Capre]t by Ad (100 μM) was about 59%. There was no significant inhibition of ω-Aga IVA-sensitive channels by Ad. The inhibitions of [Capre]t by CCh and Ad were mutually occlusive. These results indicate that inhibition of synaptic transmission by muscarinic receptors is mainly the consequence of a reduction of the [Capre]t due to inhibition of presynaptic VDCCs. PMID:9351508

  5. Synaptojanin1 is required for temporal fidelity of synaptic transmission in hair cells.

    PubMed

    Trapani, Josef G; Obholzer, Nikolaus; Mo, Weike; Brockerhoff, Susan E; Nicolson, Teresa

    2009-05-01

    To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses.

  6. synaptojanin1 Is Required for Temporal Fidelity of Synaptic Transmission in Hair Cells

    PubMed Central

    Mo, Weike; Brockerhoff, Susan E.; Nicolson, Teresa

    2009-01-01

    To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses. PMID:19424431

  7. Investigation of hippocampal synaptic transmission and plasticity in mice deficient in the actin-binding protein Drebrin

    PubMed Central

    Willmes, Claudia G.; Mack, Till G. A.; Ledderose, Julia; Schmitz, Dietmar; Wozny, Christian; Eickholt, Britta J.

    2017-01-01

    The dynamic regulation of the actin cytoskeleton plays a key role in controlling the structure and function of synapses. It is vital for activity-dependent modulation of synaptic transmission and long-term changes in synaptic morphology associated with memory consolidation. Several regulators of actin dynamics at the synapse have been identified, of which a salient one is the postsynaptic actin stabilising protein Drebrin (DBN). It has been suggested that DBN modulates neurotransmission and changes in dendritic spine morphology associated with synaptic plasticity. Given that a decrease in DBN levels is correlated with cognitive deficits associated with ageing and dementia, it was hypothesised that DBN protein abundance instructs the integrity and function of synapses. We created a novel DBN deficient mouse line. Analysis of gross brain and neuronal morphology revealed no phenotype in the absence of DBN. Electrophysiological recordings in acute hippocampal slices and primary hippocampal neuronal cultures showed that basal synaptic transmission, and both long-term and homeostatic synaptic plasticity were unchanged, suggesting that loss of DBN is not sufficient in inducing synapse dysfunction. We propose that the overall lack of changes in synaptic function and plasticity in DBN deficient mice may indicate robust compensatory mechanisms that safeguard cytoskeleton dynamics at the synapse. PMID:28198431

  8. Cholinergic suppression of excitatory synaptic transmission in layers II/III of the parasubiculum.

    PubMed

    Glasgow, S D; Glovaci, I; Karpowicz, L S; Chapman, C A

    2012-01-10

    Layer II of the parasubiculum (PaS) receives excitatory synaptic input from the CA1 region of the hippocampus and sends a major output to layer II of the medial and lateral entorhinal cortex. The PaS also receives heavy cholinergic innervation from the medial septum, which contributes to the generation of theta-frequency (4-12 Hz) electroencephalographic (EEG) activity. Cholinergic receptor activation exerts a wide range of effects in other areas of the hippocampal formation, including membrane depolarization, changes in neuronal excitability, and suppression of excitatory synaptic responses. The present study was aimed at determining how cholinergic receptor activation modulates excitatory synaptic input to the layer II/III neurons of the PaS in acute brain slices. Field excitatory postsynaptic potentials (fEPSPs) in layer II/III of the PaS were evoked by stimulation of either layer I afferents, or ascending inputs from layer V. Bath-application of the cholinergic agonist carbachol (0.5-10 μM) suppressed the amplitude of fEPSPs evoked by both superficial- and deep layer stimulation, and also enhanced paired-pulse facilitation. Constant bath-application of the GABA(A) antagonist bicuculline (10 μM) failed to eliminate the suppression, indicating that the cholinergic suppression of fEPSPs is not due to increased inhibitory tone. The muscarinic receptor antagonist atropine (1 μM) blocked the suppression of fEPSPs, and the selective M(1)-preferring receptor antagonist pirenzepine (1 μM), but not the M(2)-preferring antagonist methoctramine (1-5 μM), also significantly attenuated the suppression. Therefore, cholinergic receptor activation suppresses excitatory synaptic input to layer II/III neurons of the PaS, and this suppression is mediated in part by M(1) receptor activation.

  9. Long-term suppression of synaptic transmission by tetanization of a single pyramidal cell in the mouse hippocampus in vitro

    PubMed Central

    Yanovsky, Yevgenij; Haas, Helmut L

    1999-01-01

    The consequences of stimulating a single pyramidal cell in the CA1 area of the hippocampus for synaptic transmission in the stratum radiatum were investigated. Tetanic activation of single pyramids caused by depolarizing current injection, but not an equal number of distributed action potentials, reduced excitatory transmission by 20%, with a delayed onset, for more than 1 h. EPSPs in the tetanized pyramidal cells were increased for equally long periods but this was not the cause of the field EPSP reduction. Spontaneous somatic IPSPs were not affected; evoked IPSPs were decreased in the tetanized cell. Paired pulse facilitation of the field EPSPs was unchanged. The field EPSP reduction was markedly diminished by a knife cut along the base of pyramidal cells in CA1. The addition of antagonists of GABA, NMDA and metabotropic glutamate receptors blocked or diminished the field EPSP slope reduction evoked by intracellular stimulation. Simultaneous recordings revealed long-lasting excitations of interneurons located in the outer oriens layer as a result of single pyramid tetanization. Intense firing of small numbers of pyramidal cells can thus persistently inhibit mass transmission through the hippocampus. This effect involves activation of interneurons by glutamate receptors. PMID:10066902

  10. LAMP5 Fine-Tunes GABAergic Synaptic Transmission in Defined Circuits of the Mouse Brain

    PubMed Central

    Tiveron, Marie-Catherine; Beurrier, Corinne; Céni, Claire; Andriambao, Naly; Combes, Alexis; Koehl, Muriel; Maurice, Nicolas; Gatti, Evelina; Abrous, Dhoher Nora; Kerkerian-Le Goff, Lydia; Pierre, Philippe; Cremer, Harold

    2016-01-01

    LAMP5 is member of the LAMP family of membrane proteins. In contrast to the canonical members of this protein family, LAMP1 and LAMP2, which show widespread expression in many tissues, LAMP 5 is brain specific in mice. In C. elegans, the LAMP5 ortholog UNC-46 has been suggested to act a trafficking chaperone, essential for the correct targeting of the nematode vesicular GABA-transporter UNC-47. We show here that in the mouse brain LAMP5 is expressed in subpopulations of GABAergic forebrain neurons in the striato-nigral system and the olfactory bulb. The protein was present at synaptic terminals, overlapping with the mammalian vesicular GABA-transporter VGAT. In LAMP5-deficient mice localization of the transporter was unaffected arguing against a conserved role in VGAT trafficking. Electrophysiological analyses in mutants showed alterations in short term synaptic plasticity suggesting that LAMP5 is involved in controlling the dynamics of evoked GABAergic transmission. At the behavioral level, LAMP5 mutant mice showed decreased anxiety and deficits in olfactory discrimination. Altogether, this work implicates LAMP5 function in GABAergic neurotransmission in defined neuronal subpopulations. PMID:27272053

  11. Chronic activation of CB2 cannabinoid receptors in the hippocampus increases excitatory synaptic transmission

    PubMed Central

    Kim, Jimok; Li, Yong

    2015-01-01

    The roles of CB1 cannabinoid receptors in regulating neuronal activity have been extensively characterized. Although early studies show that CB1 receptors are present in the nervous system and CB2 cannabinoid receptors are in the immune system, recent evidence indicates that CB2 receptors are also expressed in the brain. Activation or blockade of CB2 receptors in vivo induces neuropsychiatric effects, but the cellular mechanisms of CB2 receptor function are unclear. The aim of this study is to determine how activation of CB2 receptors present in the hippocampus regulates synaptic function. Here, we show that when organotypic cultures of rodent hippocampal slices were treated with a CB2 receptor agonist (JWH133 or GP1a) for 7–10 days, quantal glutamate release became more frequent and spine density was increased via extracellular signal-regulated kinases. Chronic intraperitoneal injection of JWH133 into mice also increased excitatory synaptic transmission. These effects were blocked by a CB2 receptor antagonist (SR144528) or absent from hippocampal slices of CB2 receptor knock-out mice. This study reveals a novel cellular function of CB2 cannabinoid receptors in the hippocampus and provides insights into how cannabinoid receptor subtypes diversify the roles of cannabinoids in the brain. PMID:25504573

  12. Synaptic transmission parallels neuromodulation in a central food-intake circuit

    PubMed Central

    Schlegel, Philipp; Texada, Michael J; Miroschnikow, Anton; Schoofs, Andreas; Hückesfeld, Sebastian; Peters, Marc; Schneider-Mizell, Casey M; Lacin, Haluk; Li, Feng; Fetter, Richard D; Truman, James W; Cardona, Albert; Pankratz, Michael J

    2016-01-01

    NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level. DOI: http://dx.doi.org/10.7554/eLife.16799.001 PMID:27845623

  13. Cocaine-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area.

    PubMed

    Lüscher, Christian

    2013-05-01

    Cocaine leads to a strong euphoria, which is at the origin of its recreational use. Past the acute effects, the drug leaves traces in the brain that persist long after it has been cleared from the body. These traces eventually shape behavior such that drug use may become compulsive and addiction develops. Here we discuss cocaine-evoked synaptic plasticity of glutamatergic transmission onto dopamine (DA) neurons of the ventral tegmental area (VTA) as one of the earliest traces after a first injection of cocaine. We review the literature that has examined the induction requirements as well as the expression mechanism of this form of plasticity and ask the question about its functional significance.

  14. Propagation of Epileptiform Activity Can Be Independent of Synaptic Transmission, Gap Junctions, or Diffusion and Is Consistent with Electrical Field Transmission

    PubMed Central

    Zhang, Mingming; Ladas, Thomas P.; Qiu, Chen; Shivacharan, Rajat S.; Gonzalez-Reyes, Luis E.

    2014-01-01

    The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission. PMID:24453330

  15. Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons.

    PubMed

    Zhang, Shuzhuo; Jin, Yuelei; Liu, Xiaoyan; Yang, Lujia; Ge, Zhi juan; Wang, Hui; Li, Jin; Zheng, Jianquan

    2014-09-25

    Methamphetamine (METH) is a psychostimulant drug. Abuse of METH produces long-term behavioral changes including behavioral, sensitization, tolerance, and dependence. It induces neurotoxic effects in several areas of the brain via enhancing dopamine (DA) level abnormally, which may cause a secondary release of glutamate (GLU). However, repeated administration of METH still increases release of GLU even when dopamine content in tissue is significantly depleted. It implies that some other mechanisms are likely to involve in METH-induced GLU release. The goal of this study was to observe METH affected glutamatergic synaptic transmission in rat primary cultured hippocampal neurons and to explore the mechanism of METH modulated GLU release. Using whole-cell patch-clamp recordings, we found that METH (0.1-50.0μM) increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs). However, METH decreased the frequency of sEPSCs and mEPSCs at high concentration of 100μM. The postsynaptic NMDA receptor currents and P/Q-type calcium channel were not affected by the use of METH (10,100μM). METH did not present visible effect on N-type Ca(2+) channel current at the concentration lower than 50.0μM, but it was inhibited by use of METH at a 100μM. The effect of METH on glutamatergic synaptic transmission was not revered by pretreated with DA receptor antagonist SCH23390. These results suggest that METH directly modulated presynaptic GLU release at a different concentration, while dopaminergic system was not involved in METH modulated release of GLU in rat primary cultured hippocampal neurons. Copyright © 2014. Published by Elsevier B.V.

  16. SLEEPLESS is a bi-functional regulator of excitability and cholinergic synaptic transmission

    PubMed Central

    Wu, Meilin; Robinson, James E.; Joiner, William J.

    2014-01-01

    Summary Background Although sleep is conserved throughout evolution, the molecular basis of its control is still largely a mystery. We previously showed that the quiver/sleepless (qvr/sss) gene encodes a membrane-tethered protein that is required for normal sleep in Drosophila. SLEEPLESS (SSS) protein functions, at least in part, by upregulating the levels and open probability of Shaker (Sh) potassium channels to suppress neuronal excitability and enable sleep. Consistent with this proposed mechanism, loss-of-function mutations in Sh phenocopy qvr/sss null mutants. However, sleep is more genetically modifiable in Sh than in qvr/sss mutants, suggesting that sss may regulate additional molecules to influence sleep. Results Here we show that SSS also antagonizes nicotinic acetylcholine receptors (nAChRs) to reduce synaptic transmission and promote sleep. Mimicking this antagonism with the nAChR inhibitor mecamylamine or by RNAi knockdown of specific nAChR subunits is sufficient to restore sleep to qvr/sss mutants. Regulation of nAChR activity by SSS occurs post-transcriptionally since the levels of nAChR mRNAs are unchanged in qvr/sss mutants. Regulation of nAChR activity by SSS may in fact be direct, since SSS forms a stable complex with and antagonizes fly nAChR function in transfected cells. Intriguingly, lynx1, a mammalian homolog of SSS, can partially restore normal sleep to qvr/sss mutants, and lynx1 can form stable complexes with Shaker-type channels and nAChRs. Conclusions Together, our data point to an evolutionarily conserved, bi-functional role for SSS and its homologs in controlling excitability and synaptic transmission in fundamental processes of the nervous system such as sleep. PMID:24613312

  17. SLEEPLESS is a bifunctional regulator of excitability and cholinergic synaptic transmission.

    PubMed

    Wu, Meilin; Robinson, James E; Joiner, William J

    2014-03-17

    Although sleep is conserved throughout evolution, the molecular basis of its control is still largely a mystery. We previously showed that the quiver/sleepless (qvr/sss) gene encodes a membrane-tethered protein that is required for normal sleep in Drosophila. SLEEPLESS (SSS) protein functions, at least in part, by upregulating the levels and open probability of Shaker (Sh) potassium channels to suppress neuronal excitability and enable sleep. Consistent with this proposed mechanism, loss-of-function mutations in Sh phenocopy qvr/sss-null mutants. However, sleep is more genetically modifiable in Sh than in qvr/sss mutants, suggesting that SSS may regulate additional molecules to influence sleep. Here we show that SSS also antagonizes nicotinic acetylcholine receptors (nAChRs) to reduce synaptic transmission and promote sleep. Mimicking this antagonism with the nAChR inhibitor mecamylamine or by RNAi knockdown of specific nAChR subunits is sufficient to restore sleep to qvr/sss mutants. Regulation of nAChR activity by SSS occurs posttranscriptionally, since the levels of nAChR mRNAs are unchanged in qvr/sss mutants. Regulation of nAChR activity by SSS may in fact be direct, since SSS forms a stable complex with and antagonizes nAChR function in transfected cells. Intriguingly, lynx1, a mammalian homolog of SSS, can partially restore normal sleep to qvr/sss mutants, and lynx1 can form stable complexes with Shaker-type channels and nAChRs. Together, our data point to an evolutionarily conserved, bifunctional role for SSS and its homologs in controlling excitability and synaptic transmission in fundamental processes of the nervous system such as sleep. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Control of excitatory synaptic transmission by capsaicin is unaltered in TRPV1 vanilloid receptor knockout mice

    PubMed Central

    Benninger, Felix; Freund, Tamás F.; Hájos, Norbert

    2008-01-01

    Several studies have shown that capsaicin could effectively regulate excitatory synaptic transmission in the central nervous system, but the assumption that this effect is mediated by TRPV1 vanilloid receptors (TRPV1Rs) has not been tested directly. To provide direct evidence, we compared the effect of capsaicin on excitatory synapses in wild type mice and TRPV1R knockouts. Using whole-cell patch-clamp techniques, excitatory postsynaptic currents (EPSCs) were recorded in granule cells of the dentate gyrus. First, we investigated the effect of capsaicin on EPSCs evoked by focal stimulation of fibers in the stratum moleculare. Bath application of 10 μM capsaicin reduced the amplitude of evoked EPSCs both in wild type and TRPV1R knockout animals to a similar extent. Treatment of the slices with the TRPV1R antagonist capsazepine (10 μM) alone, or together with the agonist capsaicin, also caused a decrease in the EPSC amplitude both in wild type and TRPV1R knockout animals. Both drugs appeared to affect the efficacy of excitatory synapses at presynaptic sites, since a significant increase was observed in paired-pulse ratio of EPSC amplitude after drug treatment. Next we examined the effect of capsaicin on spontaneously occurring EPSCs. This prototypic vanilloid ligand increased the frequency of events without changing their amplitude in wild type mice. Similar enhancement in the frequency without altering the amplitude of spontaneous EPSCs was observed in TRPV1R knockout mice. These data strongly argue against the hypothesis that capsaicin modulates excitatory synaptic transmission by activating TRPV1Rs, at least in the hippocampal network. PMID:17651868

  19. Prolonged modification of action potential shape by synaptic inputs in molluscan neurones.

    PubMed

    Winlow, W

    1985-01-01

    1. Somatic action potentials of Lymnaea neurons are modified by excitatory or inhibitory synaptic inputs and have been studied using phase-plane techniques and an action potential duration monitor. 2. Excitatory synaptic inputs increase the rate of neuronal discharge, cause action potential broadening, a decrease in the maximum rate of depolarization (Vd) and a decrease in the maximum rate of repolarization (Vr). 3. Inhibitory synaptic inputs decrease the discharge rate and cause narrowing of action potentials, an increase in Vd and an increase in Vr. 4. The effects reported above outlast the original synaptic inputs by many seconds and, if the somatic action potentials are similar to those in the axon terminals, they may have far-reaching effects on transmitter release.

  20. New Tools for Targeted Disruption of Cholinergic Synaptic Transmission in Drosophila melanogaster

    PubMed Central

    Mejia, Monica; Heghinian, Mari D.; Marí, Frank; Godenschwege, Tanja A.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson’s disease, Alzheimer’s disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR’s ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the circuits

  1. GABAergic synaptic scaling in embryonic motoneurons is mediated by a shift in the chloride reversal potential

    PubMed Central

    Gonzalez-Islas, Carlos; Chub, Nikolai; Garcia-Bereguiain, Miguel Angel; Wenner, Peter

    2010-01-01

    Homeostatic synaptic plasticity ensures that networks maintain specific levels of activity by regulating synaptic strength in a compensatory manner. When spontaneous network activity (SNA) was blocked in vivo in the embryonic spinal cord, compensatory increases in excitatory GABAergic synaptic inputs were observed. This homeostatic synaptic strengthening was observed as an increase in the amplitude of GABAergic miniature postsynaptic currents (mPSCs). We find that this process is mediated by an increase in chloride accumulation which produces a depolarizing shift in the GABAergic reversal potential (EGABA). The findings demonstrate a previously unrecognized mechanism underlying homeostatic synaptic scaling. Similar shifts in EGABA have been described following various forms of neuronal injury, introducing the possibility that these shifts in EGABA represent a homeostatic response. PMID:20881119

  2. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    PubMed

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  3. Modulation of hippocampus-prefrontal cortex synaptic transmission and disruption of executive cognitive functions by MK-801.

    PubMed

    Blot, Kevin; Kimura, Shin-Ichi; Bai, Jing; Kemp, Anne; Manahan-Vaughan, Denise; Giros, Bruno; Tzavara, Eleni; Otani, Satoru

    2015-05-01

    Noncompetitive N-methyl-d-aspartate receptor antagonists such as phencyclidine and MK-801 are known to impair cognitive function in rodents and humans, and serve as a useful tool to study the cellular basis for pathogenesis of schizophrenia cognitive symptoms. In the present study, we tested in rats the effect of MK-801 on ventral hippocampus (HPC)-medial prefrontal cortex (mPFC) synaptic transmission and the performance in 2 cognitive tasks. We found that single injection of MK-801 (0.1 mg/kg) induced gradual and long-lasting increases of the HPC-mPFC response, which shares the common expression mechanisms with long-term potentiation (LTP). But unlike LTP, its induction required no enhanced or synchronized synaptic inputs, suggesting aberrant characteristics. In parallel, rats injected with MK-801 showed impairments of mPFC-dependent cognitive flexibility and HPC-mPFC pathway-dependent spatial working memory. The effects of MK-801 on HPC-mPFC responses and spatial working memory decayed in parallel within 24 h. Moreover, the therapeutically important subtype 2/3 metabotropic glutamate receptor agonist LY379268, which blocked MK-801-induced potentiation, ameliorated the MK-801-induced impairment of spatial working memory. Our results show a novel form of use-independent long-lasting potentiation in HPC-mPFC pathway induced by MK-801, which is associated with impairment of HPC-mPFC projection-dependent cognitive function. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. DAMGO depresses inhibitory synaptic transmission via different downstream pathways of μ opioid receptors in ventral tegmental area and periaqueductal gray.

    PubMed

    Zhang, W; Yang, H L; Song, J J; Chen, M; Dong, Y; Lai, B; Yu, Y G; Ma, L; Zheng, P

    2015-08-20

    Opioid-induced rewarding and motorstimulant effects are mediated by an increased activity of the ventral tegmental area (VTA) dopamine (DA) neurons. The excitatory mechanism of opioids on VTA-DA neurons has been proposed to be due to the depression of GABAergic synaptic transmission in VTA-DA neurons. However, how opioids depress GABAergic synaptic transmission in VTA-DA neurons remain to be studied. In the present study, we explored the mechanism of the inhibitory effect of [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) on GABAergic synaptic transmission in VTA-DA neurons using multiple approaches and techniques. Our results showed that (1) DAMGO inhibits GABAergic inputs in VTA-DA neurons at presynaptic sites; (2) effect of DAMGO on GABAergic inputs in VTA-DA neurons is inhibited by potassium channel blocker 4-aminopyridine (4-AP) and Gi protein inhibitor N-ethylmaleimide (NEM); (3) phospholipase A2 (PLA2) does not mediate the effect of DAMGO on GABAergic inputs in VTA-DA neurons, but mediates it in the periaqueductal gray (PAG); (4) multiple downstream signaling molecules of μ receptors do not mediate the effect of DAMGO on GABAergic inputs in VTA-DA neurons. These results suggest that DAMGO depresses inhibitory synaptic transmission via μ receptor-Gi protein-Kv channel pathway in VTA-DA neurons, but via μ receptor-PLA2 pathway in PAG neurons.

  5. Intrinsic variability in Pv, RRP size, Ca(2+) channel repertoire, and presynaptic potentiation in individual synaptic boutons.

    PubMed

    Ariel, Pablo; Hoppa, Michael B; Ryan, Timothy A

    2012-01-01

    The strength of individual synaptic contacts is considered a key modulator of information flow across circuits. Presynaptically the strength can be parsed into two key parameters: the size of the readily releasable pool (RRP) and the probability that a vesicle in that pool will undergo exocytosis when an action potential fires (Pv). How these variables are controlled and the degree to which they vary across individual nerve terminals is crucial to understand synaptic plasticity within neural circuits. Here we report robust measurements of these parameters in rat hippocampal neurons and their variability across populations of individual synapses. We explore the diversity of presynaptic Ca(2+) channel repertoires and evaluate their effect on synaptic strength at single boutons. Finally, we study the degree to which synapses can be differentially modified by a known potentiator of presynaptic function, forskolin. Our experiments revealed that both Pv and RRP spanned a large range, even for synapses made by the same axon, demonstrating that presynaptic efficacy is governed locally at the single synapse level. Synapses varied greatly in their dependence on N or P/Q type Ca(2+) channels for neurotransmission, but there was no association between specific channel repertoires and synaptic efficacy. Increasing cAMP concentration using forskolin enhanced synaptic transmission in a Ca(2+)-independent manner that was inversely related with a synapse's initial Pv, and independent of its RRP size. We propose a simple model based on the relationship between Pv and calcium entry that can account for the variable potentiation of synapses based on initial probability of vesicle fusion.

  6. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles

    PubMed Central

    Tucker, Kristal R.; Block, Ethan R.; Levitan, Edwin S.

    2015-01-01

    Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H+-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca2+-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP+), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H+ countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs. PMID:26216995

  7. Drosophila-Cdh1 (Rap/Fzr) a regulatory subunit of APC/C is required for synaptic morphology, synaptic transmission and locomotion

    PubMed Central

    Wise, Alexandria; Schatoff, Emma; Flores, Julian; Hua, Shao-Ying; Ueda, Atsushi; Wu, Chun-Fang; Venkatesh, Tadmiri

    2013-01-01

    The assembly of functional synapses requires the orchestration of the synthesis and degradation of a multitude of proteins. Protein degradation and modification by the conserved ubiquitination pathway has emerged as a key cellular regulatory mechanism during nervous system development and function (Kawabe and Brose, 2011). The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit ubiquitin ligase complex primarily characterized for its role in the regulation of mitosis (Peters, 2002). In recent years, a role for APC/C in nervous system development and function has been rapidly emerging (Stegmuller and Bonni, 2005; Li et al., 2008). In the mammalian central nervous system the activator subunit, APC/C-Cdh1, has been shown to be a regulator of axon growth and dendrite morphogenesis (Konishi et al. 2004). In the Drosophila peripheral nervous system (PNS), APC2, a ligase subunit of the APC/C complex has been shown to regulate synaptic bouton size and activity (Van Roessel et al., 2004). To investigate the role of APC/C-Cdh1 at the synapse we examined loss-of-function mutants of Rap/Fzr (Retina aberrant in pattern/Fizzy related), a Drosophila homolog of the mammalian Cdh1 during the development of the larval neuromuscular junction in Drosophila. Our cell biological, ultrastructural, electrophysiological, and behavioral data showed that rap/fzr loss-of-function mutations lead to changes in synaptic structure and function as well as locomotion defects. Data presented here show changes in size and morphology of synaptic boutons, and, muscle tissue organization. Electrophysiological experiments show that loss-of-function mutants exhibit increased frequency of spontaneous miniature synaptic potentials, indicating a higher rate of spontaneous synaptic vesicle fusion events. In addition, larval locomotion and peristaltic movement were also impaired. These findings suggest a role for Drosophila APC/C-Cdh1 mediated ubiquitination in regulating synaptic morphology

  8. Drosophila-Cdh1 (Rap/Fzr) a regulatory subunit of APC/C is required for synaptic morphology, synaptic transmission and locomotion.

    PubMed

    Wise, Alexandria; Schatoff, Emma; Flores, Julian; Hua, Shao-Ying; Ueda, Atsushi; Wu, Chun-Fang; Venkatesh, Tadmiri

    2013-11-01

    The assembly of functional synapses requires the orchestration of the synthesis and degradation of a multitude of proteins. Protein degradation and modification by the conserved ubiquitination pathway has emerged as a key cellular regulatory mechanism during nervous system development and function (Kwabe and Brose, 2011). The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit ubiquitin ligase complex primarily characterized for its role in the regulation of mitosis (Peters, 2002). In recent years, a role for APC/C in nervous system development and function has been rapidly emerging (Stegmuller and Bonni, 2005; Li et al., 2008). In the mammalian central nervous system the activator subunit, APC/C-Cdh1, has been shown to be a regulator of axon growth and dendrite morphogenesis (Konishi et al., 2004). In the Drosophila peripheral nervous system (PNS), APC2, a ligase subunit of the APC/C complex has been shown to regulate synaptic bouton size and activity (van Roessel et al., 2004). To investigate the role of APC/C-Cdh1 at the synapse we examined loss-of-function mutants of Rap/Fzr (Retina aberrant in pattern/Fizzy related), a Drosophila homolog of the mammalian Cdh1 during the development of the larval neuromuscular junction in Drosophila. Our cell biological, ultrastructural, electrophysiological, and behavioral data showed that rap/fzr loss-of-function mutations lead to changes in synaptic structure and function as well as locomotion defects. Data presented here show changes in size and morphology of synaptic boutons, and, muscle tissue organization. Electrophysiological experiments show that loss-of-function mutants exhibit increased frequency of spontaneous miniature synaptic potentials, indicating a higher rate of spontaneous synaptic vesicle fusion events. In addition, larval locomotion and peristaltic movement were also impaired. These findings suggest a role for Drosophila APC/C-Cdh1 mediated ubiquitination in regulating synaptic morphology

  9. Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation

    PubMed Central

    Petrini, Enrica Maria; Lu, Jiuyi; Cognet, Laurent; Lounis, Brahim; Ehlers, Michael D.; Choquet, Daniel

    2010-01-01

    SUMMARY At excitatory glutamatergic synapses, postsynaptic endocytic zones (EZs), which are adjacent to the postsynaptic density (PSD), mediate clathrin-dependent endocytosis of surface AMPA Receptors (AMPAR) as a first step to receptor recycling or degradation. However, it remains unknown if receptor recycling influences AMPARs lateral diffusion, and if EZs are important for the expression of synaptic potentiation. Here we demonstrate that the presence of both EZs and AMPAR recycling maintain a large pool of mobile AMPARs at synapses. In addition, we find that synaptic potentiation is accompanied by an accumulation and immobilization of AMPARs at synapses resulting from both their exocytosis and stabilization at the PSD. Displacement of EZs from the postsynaptic region impairs the expression of synaptic potentiation by blocking AMPAR recycling. Thus receptor recycling is crucial for maintaining a mobile population of surface AMPARs which can be delivered to synapses for increases in synaptic strength. PMID:19607795

  10. MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity

    PubMed Central

    Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W

    2017-01-01

    Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission. DOI: http://dx.doi.org/10.7554/eLife.22904.001 PMID:28485711

  11. Synaptic Transmission from Horizontal Cells to Cones Is Impaired by Loss of Connexin Hemichannels

    PubMed Central

    Klaassen, Lauw J.; Sun, Ziyi; Steijaert, Marvin N.; Bolte, Petra; Fahrenfort, Iris; Sjoerdsma, Trijntje; Klooster, Jan; Claassen, Yvonne; Shields, Colleen R.; Ten Eikelder, Huub M. M.; Janssen-Bienhold, Ulrike; Zoidl, Georg; McMahon, Douglas G.; Kamermans, Maarten

    2011-01-01

    long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina. PMID:21811399

  12. De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies

    PubMed Central

    Appenzeller, Silke; Balling, Rudi; Barisic, Nina; Baulac, Stéphanie; Caglayan, Hande; Craiu, Dana; De Jonghe, Peter; Depienne, Christel; Dimova, Petia; Djémié, Tania; Gormley, Padhraig; Guerrini, Renzo; Helbig, Ingo; Hjalgrim, Helle; Hoffman-Zacharska, Dorota; Jähn, Johanna; Klein, Karl Martin; Koeleman, Bobby; Komarek, Vladimir; Krause, Roland; Kuhlenbäumer, Gregor; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R.; Lerche, Holger; Linnankivi, Tarja; Marini, Carla; May, Patrick; Møller, Rikke S.; Muhle, Hiltrud; Pal, Deb; Palotie, Aarno; Pendziwiat, Manuela; Robbiano, Angela; Roelens, Filip; Rosenow, Felix; Selmer, Kaja; Serratosa, Jose M.; Sisodiya, Sanjay; Stephani, Ulrich; Sterbova, Katalin; Striano, Pasquale; Suls, Arvid; Talvik, Tiina; von Spiczak, Sarah; Weber, Yvonne; Weckhuysen, Sarah; Zara, Federico; Abou-Khalil, Bassel; Alldredge, Brian K.; Andermann, Eva; Andermann, Frederick; Amron, Dina; Bautista, Jocelyn F.; Berkovic, Samuel F.; Bluvstein, Judith; Boro, Alex; Cascino, Gregory; Consalvo, Damian; Crumrine, Patricia; Devinsky, Orrin; Dlugos, Dennis; Epstein, Michael P.; Fiol, Miguel; Fountain, Nathan B.; French, Jacqueline; Friedman, Daniel; Geller, Eric B.; Glauser, Tracy; Glynn, Simon; Haas, Kevin; Haut, Sheryl R.; Hayward, Jean; Helmers, Sandra L.; Joshi, Sucheta; Kanner, Andres; Kirsch, Heidi E.; Knowlton, Robert C.; Kossoff, Eric H.; Kuperman, Rachel; Kuzniecky, Ruben; Lowenstein, Daniel H.; McGuire, Shannon M.; Motika, Paul V.; Novotny, Edward J.; Ottman, Ruth; Paolicchi, Juliann M.; Parent, Jack; Park, Kristen; Poduri, Annapurna; Sadleir, Lynette; Scheffer, Ingrid E.; Shellhaas, Renée A.; Sherr, Elliott; Shih, Jerry J.; Singh, Rani; Sirven, Joseph; Smith, Michael C.; Sullivan, Joe; Thio, Liu Lin; Venkat, Anu; Vining, Eileen P.G.; Von Allmen, Gretchen K.; Weisenberg, Judith L.; Widdess-Walsh, Peter; Winawer, Melodie R.; Allen, Andrew S.; Berkovic, Samuel F.; Cossette, Patrick; Delanty, Norman; Dlugos, Dennis; Eichler, Evan E.; Epstein, Michael P.; Glauser, Tracy; Goldstein, David B.; Han, Yujun; Heinzen, Erin L.; Johnson, Michael R.; Kuzniecky, Ruben; Lowenstein, Daniel H.; Marson, Anthony G.; Mefford, Heather C.; Nieh, Sahar Esmaeeli; O’Brien, Terence J.; Ottman, Ruth; Petrou, Stephen; Petrovski, Slavé; Poduri, Annapurna; Ruzzo, Elizabeth K.; Scheffer, Ingrid E.; Sherr, Elliott

    2014-01-01

    Emerging evidence indicates that epileptic encephalopathies are genetically highly heterogeneous, underscoring the need for large cohorts of well-characterized individuals to further define the genetic landscape. Through a collaboration between two consortia (EuroEPINOMICS and Epi4K/EPGP), we analyzed exome-sequencing data of 356 trios with the “classical” epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1 in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p = 8.2 × 10−4), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have an identifiable causal de novo mutation. Strikingly, 75% of mutations in these probands are predicted to disrupt a protein involved in regulating synaptic transmission, and there is a significant enrichment of de novo mutations in genes in this pathway in the entire cohort as well. These findings emphasize an important role for synaptic dysregulation in epileptic encephalopathies, above and beyond that caused by ion channel dysfunction. PMID:25262651

  13. Novel Mutations in Synaptic Transmission Genes Suppress Neuronal Hyperexcitation in Caenorhabditis elegans

    PubMed Central

    McCulloch, Katherine A.; Qi, Yingchuan B.; Takayanagi-Kiya, Seika; Jin, Yishi; Cherra, Salvatore J.

    2017-01-01

    Acetylcholine (ACh) receptors (AChR) regulate neural circuit activity in multiple contexts. In humans, mutations in ionotropic acetylcholine receptor (iAChR) genes can cause neurological disorders, including myasthenia gravis and epilepsy. In Caenorhabditis elegans, iAChRs play multiple roles in the locomotor circuit. The cholinergic motor neurons express an ACR-2-containing pentameric AChR (ACR-2R) comprised of ACR-2, ACR-3, ACR-12, UNC-38, and UNC-63 subunits. A gain-of-function mutation in the non-α subunit gene acr-2 [acr-2(gf)] causes defective locomotion as well as spontaneous convulsions. Previous studies of genetic suppressors of acr-2(gf) have provided insights into ACR-2R composition and assembly. Here, to further understand how the ACR-2R regulates neuronal activity, we expanded the suppressor screen for acr-2(gf)-induced convulsions. The majority of these suppressor mutations affect genes that play critical roles in synaptic transmission, including two novel mutations in the vesicular ACh transporter unc-17. In addition, we identified a role for a conserved major facilitator superfamily domain (MFSD) protein, mfsd-6, in regulating neural circuit activity. We further defined a role for the sphingosine (SPH) kinase (Sphk) sphk-1 in cholinergic neuron activity, independent of previously known signaling pathways. Overall, the genes identified in our study suggest that optimal modulation of synaptic activity is balanced by the differential activities of multiple pathways, and the novel alleles provide valuable reagents to further dissect neuronal mechanisms regulating the locomotor circuit. PMID:28468816

  14. Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdala neurons

    PubMed Central

    Koyama, Susumu; Kubo, Chiharu; Rhee, Jeong-Seop; Akaike, Norio

    1999-01-01

    The basolateral amygdala (ABL) nuclei contribute to the process of anxiety. GABAergic transmission is critical in these nuclei and serotonergic inputs from dorsal raphe nuclei also significantly regulate GABA release. In mechanically dissociated rat ABL neurons, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) arising from attached GABAergic presynaptic nerve terminals were recorded with the nystatin-perforated patch method and pharmacological isolation.5-HT reversibly reduced the GABAergic mIPSC frequency without affecting the mean amplitude. The serotonergic effect was mimicked by the 5-HT1A specific agonist 8-OH DPAT (8-hydroxy-2-(di-n-propylamino)tetralin) and blocked by the 5-HT1A antagonist spiperone.The GTP-binding protein inhibitor N-ethylmaleimide removed the serotonergic inhibition of mIPSC frequency. In either K+-free or Ca2+-free external solution, 5-HT could inhibit mIPSC frequency.High K+ stimulation increased mIPSC frequency and 8-OH DPAT inhibited this increase even in the presence of Cd2+.Forskolin, an activator of adenylyl cyclase (AC), significantly increased synaptic GABA release frequency. Pretreatment with forskolin prevented the serotonergic inhibition of mIPSC frequency in both the standard and high K+ external solution.Ruthenium Red (RR), an agent facilitating the secretory process in a Ca2+-independent manner, increased synaptic GABA release. 5-HT also suppressed RR-facilitated mIPSC frequency.We conclude that 5-HT inhibits GABAergic mIPSCs by inactivating the AC-cAMP signal transduction pathway via a G-protein-coupled 5-HT1A receptor and this intracellular pathway directly acts on the GABA-releasing process independent of K+ and Ca2+ channels in the presynaptic nerve terminals. PMID:10381597

  15. Vibrodissociation of Neurons from Rodent Brain Slices to Study Synaptic Transmission and Image Presynaptic Terminals

    PubMed Central

    Jun, Sang Beom; Cuzon Carlson, Verginia; Ikeda, Stephen; Lovinger, David

    2011-01-01

    Mechanical dissociation of neurons from the central nervous system has the advantage that presynaptic boutons remain attached to the isolated neuron of interest. This allows for examination of synaptic transmission under conditions where the extracellular and postsynaptic intracellular environments can be well controlled. A vibration-based technique without the use of proteases, known as vibrodissociation, is the most popular technique for mechanical isolation. A micropipette, with the tip fire-polished to the shape of a small ball, is placed into a brain slice made from a P1-P21 rodent. The micropipette is vibrated parallel to the slice surface and lowered through the slice thickness resulting in the liberation of isolated neurons. The isolated neurons are ready for study within a few minutes of vibrodissociation. This technique has advantages over the use of primary neuronal cultures, brain slices and enzymatically isolated neurons including: rapid production of viable, relatively mature neurons suitable for electrophysiological and imaging studies; superior control of the extracellular environment free from the influence of neighboring cells; suitability for well-controlled pharmacological experiments using rapid drug application and total cell superfusion; and improved space-clamp in whole-cell recordings relative to neurons in slice or cell culture preparations. This preparation can be used to examine synaptic physiology, pharmacology, modulation and plasticity. Real-time imaging of both pre- and postsynaptic elements in the living cells and boutons is also possible using vibrodissociated neurons. Characterization of the molecular constituents of pre- and postsynaptic elements can also be achieved with immunological and imaging-based approaches. PMID:21654624

  16. Modulation of synaptic transmission by adenosine in layer 2/3 of the rat visual cortex in vitro.

    PubMed

    Bannon, N M; Zhang, P; Ilin, V; Chistiakova, M; Volgushev, M

    2014-02-28

    Adenosine is a wide-spread endogenous neuromodulator. In the central nervous system it activates A1 and A2A receptors (A1Rs and A2ARs) which have differential distributions, different affinities to adenosine, are coupled to different G-proteins, and have opposite effects on synaptic transmission. Although effects of adenosine are studied in detail in several brain areas, such as the hippocampus and striatum, the heterogeneity of the effects of A1R and A2AR activation and their differential distribution preclude generalization over brain areas and cell types. Here we study adenosine's effects on excitatory synaptic transmission to layer 2/3 pyramidal neurons in slices of the rat visual cortex. We measured effects of bath application of adenosine receptor ligands on evoked excitatory postsynaptic potentials (EPSPs), miniature excitatory postsynaptic potentials (mEPSPs), and membrane properties. Adenosine reduced the amplitude of evoked EPSPs and excitatory postsynaptic currents (EPSCs), and reduced frequency of mEPSPs in a concentration-dependent and reversible manner. Concurrent with EPSP/C amplitude reduction was an increase in the paired-pulse ratio. These effects were blocked by application of the selective A1R antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine), suggesting that activation of presynaptic A1Rs suppresses excitatory transmission by reducing release probability. Adenosine (20μM) hyperpolarized the cell membrane from -65.3±1.5 to -67.7±1.8mV, and reduced input resistance from 396.5±44.4 to 314.0±36.3MOhm (∼20%). These effects were also abolished by DPCPX, suggesting postsynaptic A1Rs. Application of the selective A2AR antagonist SCH-58261 (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-a-mine) on the background of high adenosine concentrations revealed an additional decrease in EPSP amplitude. Moreover, application of the A2AR agonist CGS-21680 (4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H

  17. Millisecond Coupling of Local Field Potentials to Synaptic Currents in the Awake Visual Cortex

    PubMed Central

    Haider, Bilal; Schulz, David P.A.; Häusser, Michael; Carandini, Matteo

    2016-01-01

    Summary The cortical local field potential (LFP) is a common measure of population activity, but its relationship to synaptic activity in individual neurons is not fully established. This relationship has been typically studied during anesthesia and is obscured by shared slow fluctuations. Here, we used patch-clamp recordings in visual cortex of anesthetized and awake mice to measure intracellular activity; we then applied a simple method to reveal its coupling to the simultaneously recorded LFP. LFP predicted membrane potential as accurately as synaptic currents, indicating a major role for synaptic currents in the relationship between cortical LFP and intracellular activity. During anesthesia, cortical LFP predicted excitation far better than inhibition; during wakefulness, it predicted them equally well, and visual stimulation further enhanced predictions of inhibition. These findings reveal a central role for synaptic currents, and especially inhibition, in the relationship between the subthreshold activity of individual neurons and the cortical LFP during wakefulness. PMID:27021173

  18. Exposure to Cocaine Regulates Inhibitory Synaptic Transmission in the Nucleus Accumbens

    PubMed Central

    Otaka, Mami; Ishikawa, Masago; Lee, Brian R.; Liu, Lei; Neumann, Peter A.; Cui, Ranji; Huang, Yanhua; Schlüter, Oliver M.; Dong, Yan

    2013-01-01

    Medium spiny neurons (MSNs) within the nucleus accumbens shell (NAc) function to gate and prioritize emotional/motivational arousals for behavioral output. The neuronal output NAc MSNs is mainly determined by the integration of membrane excitability and excitatory/inhibitory synaptic inputs. Whereas cocaine-induced alterations at excitatory synapses and membrane excitability have been extensively examined, the overall functional output of NAc MSNs following cocaine exposure still poorly defined because little is known about whether inhibitory synaptic input to these neurons is affected by cocaine. Here, our results demonstrate multidimensional alterations at inhibitory synapses in NAc neurons following cocaine self-administration in rats. Specifically, the amplitude of miniature (m) inhibitory postsynaptic currents (IPSCs) was decreased after 21-d withdrawal from 5-d cocaine self-administration. Upon re-exposure to cocaine after 21-day withdrawal, whereas the amplitude of mIPSCs remained down-regulated, the frequency became significantly higher. Furthermore, the reversal potential of IPSCs, which was not significantly altered during withdrawal, became more hyperpolarized upon cocaine re-exposure. Moreover, the relative weight of excitatory and inhibitory inputs to NAc MSNs was significantly decreased after 1-d cocaine withdrawal, increased after 21-d withdrawal, and returned to the basal level upon cocaine re-exposure after 21-d withdrawal. These results, taken together with previous results showing cocaine-induced adaptations at excitatory synapses and intrinsic membrane excitability of NAc MSNs, may provide a relatively thorough picture of the functional state of NAc MSNs following cocaine exposure. PMID:23595733

  19. Major Impairments of Glutamatergic Transmission and Long-Term Synaptic Plasticity in the Hippocampus of Mice Lacking the Melanin-Concentrating Hormone Receptor-1

    PubMed Central

    Pachoud, Bastien; Adamantidis, Antoine; Ravassard, Pascal; Luppi, Pierre-Hervé; Grisar, Thierry; Lakaye, Bernard

    2010-01-01

    The hypothalamic neuropeptide melanin-concentrating hormone (MCH) plays important roles in energy homeostasis, anxiety, and sleep regulation. Since the MCH receptor-1 (MCH-R1), the only functional receptor that mediates MCH functions in rodents, facilitates behavioral performance in hippocampus-dependent learning tasks, we investigated whether glutamatergic transmission in CA1 pyramidal cells could be modulated in mice lacking the MCH-R1 gene (MCH-R1−/−). We found that both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptor-mediated transmissions were diminished in the mutant mice compared with their controls. This deficit was explained, at least in part, by a postsynaptic down-regulation of these receptors since the amplitude of miniature excitatory postsynaptic currents and the NMDA/AMPA ratio were decreased. Long-term synaptic potentiation (LTP) was also impaired in MCH-R1−/− mice. This was due to an altered induction, rather than an impaired, expression because repeating the induction stimulus restored LTP to a normal magnitude. In addition, long-term synaptic depression was strongly diminished in MCH-R1−/− mice. These results suggest that MCH exerts a facilitatory effect on CA1 glutamatergic synaptic transmission and long-term synaptic plasticity. Recently, it has been shown that MCH neurons fire exclusively during sleep and mainly during rapid eye movement sleep. Thus these findings provide a mechanism by which sleep might facilitate memory consolidation. PMID:20592115

  20. Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory.

    PubMed

    Bröker-Lai, Jenny; Kollewe, Astrid; Schindeldecker, Barbara; Pohle, Jörg; Nguyen Chi, Vivan; Mathar, Ilka; Guzman, Raul; Schwarz, Yvonne; Lai, Alan; Weißgerber, Petra; Schwegler, Herbert; Dietrich, Alexander; Both, Martin; Sprengel, Rolf; Draguhn, Andreas; Köhr, Georg; Fakler, Bernd; Flockerzi, Veit; Bruns, Dieter; Freichel, Marc

    2017-09-15

    Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high-resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5-triple-knockout (Trpc1/4/5(-/-)) mice, lacking any TRPC1-, TRPC4-, or TRPC5-containing channels, action potential-triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5(-/-) mice displayed impaired cross-frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5(-/-) animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons. © 2017 The Authors.

  1. Inhibitory effects of dopamine on spinal synaptic transmission via dopamine D1-like receptors in neonatal rats

    PubMed Central

    Kawamoto, K; Otsuguro, K; Ishizuka, M; Ito, S

    2012-01-01

    BACKGROUND AND PURPOSE Dopamine released from the endings of descending dopaminergic nerve fibres in the spinal cord may be involved in modulating functions such as locomotion and nociception. Here, we examined the effects of dopamine on spinal synaptic transmissions in rats. EXPERIMENTAL APPROACH Spinal reflex potentials, monosynaptic reflex potential (MSR) and slow ventral root potential (sVRP), were measured in the isolated spinal cord of the neonatal rat. Dopamine release was measured by HPLC. KEY RESULTS Dopamine at lower concentrations (<1 µM) depressed sVRP, which is a C fibre-evoked polysynaptic response and believed to reflect nociceptive transmission. At higher concentrations (>1 µM), in addition to a potent sVRP depression, dopamine depolarized baseline potential and slightly depressed MSR. Depression of sVRP by dopamine was partially reversed by dopamine D1-like but not by D2-like receptor antagonists. SKF83959 and SKF81297, D1-like receptor agonists, and methamphetamine, an endogenous dopamine releaser, also caused the inhibition of sVRP. Methamphetamine also depressed MSR, which was inhibited by ketanserin, a 5-HT2A/2C receptor antagonist. Methamphetamine induced the release of dopamine and 5-HT from spinal cords, indicating that the release of endogenous dopamine and 5-HT depresses sVRP and MSR respectively. CONCLUSION AND IMPLICATIONS These results suggested that dopamine at lower concentrations preferentially inhibited sVRP, which is mediated via dopamine D1-like and other unidentified receptors. The dopamine-evoked depression is involved in modulating the spinal functions by the descending dopaminergic pathways. PMID:22168428

  2. Enhancement of Synaptic Potentials in Rabbit CA1 Pyramidal Neurons Following Classical Conditioning

    NASA Astrophysics Data System (ADS)

    Loturco, Joseph J.; Coulter, Douglas A.; Alkon, Daniel L.

    1988-03-01

    A synaptic potential elicited by high-frequency stimulation of the Schaffer collaterals was enhanced in hippocampal CA1 pyramidal cells from rabbits that were classically conditioned relative to cells from control rabbits. In addition, confirming previous reports, the after-hyperpolarization was reduced in cells from conditioned animals. We suggest that reduced after-hyperpolarization and enhanced synaptic responsiveness in cells from conditioned animals work in concert to contribute to the functioning of hippocampal CA1 pyramidal cells during classical conditioning.

  3. The effect of sevoflurane on the cognitive function of rats and its association with the inhibition of synaptic transmission

    PubMed Central

    Zhang, Deng-Xin; Jiang, Shan; Yu, Li-Na; Zhang, Feng-Jiang; Zhuang, Qing; Yan, Min

    2015-01-01

    To observe the effects of different concentrations of sevoflurane on synaptotagmin 1 (Syt1) expression, synaptic long term depression (LTD), and paired pulse depression (PPD) in the rat hippocampus as well as to investigate the association between these effects and the cognitive function of rats. A total of 24 male Sprague-Dawley (SD) rats were selected and randomly divided into 3 groups: the control group (group A), which inhaled air; group B, which inhaled 0.65 minimum alveolar concentration (MAC) sevoflurane for 2 h; and group C, which inhaled 1.30 MAC sevoflurane for 2 h. The subsequent experiments were performed after one day. (1) Y maze tests were performed, and the expression of Syt1 in hippocampal tissues was detected using western blot. (2) The changes in LTD and PPD in rat hippocampal slices were examined using electrophysiological techniques. Compared to the control group, the cognitive function was decreased and Syt1 expression in the hippocampus was significantly decreased in rats in the 1.30 MAC sevoflurane inhalation group. After 60 min of low frequency stimulation, the amplitudes of population spike (PS) potentials in rat hippocampal slices were significantly decreased. After induction of PPD, the P2/P1 ratio was significantly increased. No indicators in the 0.65 MAC sevoflurane inhalation group showed any significant changes. Inhalation of high concentrations of sevoflurane significantly reduced Syt1 protein levels in the rat hippocampus, significantly inhibited the release of presynaptic neurotransmitters, and reduced the efficiency of synaptic transmission, thus causing memory impairment. PMID:26885010

  4. Non-additive modulation of synaptic transmission by serotonin, adenosine, and cholinergic modulators in the sensory thalamus.

    PubMed

    Yang, Ya-Chin; Hu, Chun-Chang; Lai, Yi-Chen

    2015-01-01

    The thalamus relays sensory information to the cortex. Oscillatory activities of the thalamocortical network are modulated by monoamines, acetylcholine, and adenosine, and could be the key features characteristic of different vigilance states. Although the thalamus is almost always subject to the actions of more than just one neuromodulators, reports on the modulatory effect of coexisting neuromodulators on thalamic synaptic transmission are unexpectedly scarce. We found that, if present alone, monoamine or adenosine decreases retinothalamic synaptic strength and short-term depression, whereas cholinergic modulators generally enhance postsynaptic response to presynaptic activity. However, coexistence of different modulators tends to produce non-additive effect, not predictable based on the action of individual modulators. Acetylcholine, acting via nicotinic receptors, can interact with either serotonin or adenosine to abolish most short-term synaptic depression. Moreover, the coexistence of adenosine and monoamine, with or without acetylcholine, results in robustly decreased synaptic strength and transforms short-term synaptic depression to facilitation. These findings are consistent with a view that acetylcholine is essential for an "enriched" sensory flow through the thalamus, and the flow is trimmed down by concomitant monoamine or adenosine (presumably for the wakefulness and rapid-eye movement, or REM, sleep states, respectively). In contrast, concomitant adenosine and monoamine would lead to a markedly "deprived" (and high-pass filtered) sensory flow, and thus the dramatic decrease of monoamine may constitute the basic demarcation between non-REM and REM sleep. The collective actions of different neuromodulators on thalamic synaptic transmission thus could be indispensable for the understanding of network responsiveness in different vigilance states.

  5. Non-additive modulation of synaptic transmission by serotonin, adenosine, and cholinergic modulators in the sensory thalamus

    PubMed Central

    Yang, Ya-Chin; Hu, Chun-Chang; Lai, Yi-Chen

    2015-01-01

    The thalamus relays sensory information to the cortex. Oscillatory activities of the thalamocortical network are modulated by monoamines, acetylcholine, and adenosine, and could be the key features characteristic of different vigilance states. Although the thalamus is almost always subject to the actions of more than just one neuromodulators, reports on the modulatory effect of coexisting neuromodulators on thalamic synaptic transmission are unexpectedly scarce. We found that, if present alone, monoamine or adenosine decreases retinothalamic synaptic strength and short-term depression, whereas cholinergic modulators generally enhance postsynaptic response to presynaptic activity. However, coexistence of different modulators tends to produce non-additive effect, not predictable based on the action of individual modulators. Acetylcholine, acting via nicotinic receptors, can interact with either serotonin or adenosine to abolish most short-term synaptic depression. Moreover, the coexistence of adenosine and monoamine, with or without acetylcholine, results in robustly decreased synaptic strength and transforms short-term synaptic depression to facilitation. These findings are consistent with a view that acetylcholine is essential for an “enriched” sensory flow through the thalamus, and the flow is trimmed down by concomitant monoamine or adenosine (presumably for the wakefulness and rapid-eye movement, or REM, sleep states, respectively). In contrast, concomitant adenosine and monoamine would lead to a markedly “deprived” (and high-pass filtered) sensory flow, and thus the dramatic decrease of monoamine may constitute the basic demarcation between non-REM and REM sleep. The collective actions of different neuromodulators on thalamic synaptic transmission thus could be indispensable for the understanding of network responsiveness in different vigilance states. PMID:25852468

  6. Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus

    PubMed Central

    Lipton, Peter; Whittingham, Tim S.

    1982-01-01

    1. Experiments were performed to determine whether a decrease in tissue ATP contributes to the rapid failure of cerebral synaptic transmission during hypoxia. Transmission between the perforant path and the dentate granule cells in the in vitro hippocampus was studied. 2. Hippocampal slice ATP is decreased by ∼ 15% at the time that the evoked response begins to diminish in standard Krebs bicarbonate buffer. This is about 2 min after the onset of hypoxia. 3. When transmission failure is accelerated by increasing extracellular K+ from 4·4 to 13·4 mM, the evoked response begins to decay about 30 sec after exposure to hypoxia. There is no decrease in hippocampal slice ATP at this time. 4. However, ATP in the molecular layer (the synaptic region of the tissue) is decreased by ∼ 15% at the time the evoked response begins to decay in the slices exposed to elevated K+ concentration. 5. Exposing the hippocampal slice to 25 mM-creatine for 3 hr elevates molecular layer phosphocreatine fourfold. Synaptic transmission during hypoxia survives three times as long as it does in the absence of creatine. 6. In the creatine fortified medium, molecular layer ATP no longer declines within 30 sec of hypoxia. However the molecular layer ATP does decline within 90 sec of hypoxia, the time at which the evoked response begins to decay in this creatine-fortified buffer. 7. The results establish that ATP in the region of the active synapses is lowered when the first signs of electrophysiological failure appear during hypoxia. They also show that maintaining ATP for longer than normal during hypoxia is associated with a prolonged maintenance of the evoked response. They thus suggest that a decline in ATP is one factor causing hypoxic block of synaptic transmission. 8. It is further suggested that the very rapid failure of the electroencephalogram during anoxia may also result from a decline in ATP. PMID:6286944

  7. Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami.

    PubMed

    Caddick, S J; Wang, C; Fletcher, C F; Jenkins, N A; Copeland, N G; Hosford, D A

    1999-05-01

    Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami. Recent studies of the homozygous tottering (Cacna1atg) and lethargic mouse (Cacnb4(lh)) models of absence seizures have identified mutations in the genes encoding the alpha1A and beta4 subunits, respectively, of voltage-gated Ca2+ channels (VGCCs). beta subunits normally regulate Ca2+ currents via a direct interaction with alpha1 (pore-forming) subunits of VGCCs, and VGCCs are known to play a significant role in controlling the release of transmitter from presynaptic nerve terminals in the CNS. Because the gene mutation in Cacnb4(lh) homozygotes results in loss of the beta4 subunit's binding site for alpha1 subunits, we hypothesized that synaptic transmission would be altered in the CNS of Cacnb4(lh) homozygotes. We tested this hypothesis by using whole cell recordings of single cells in an in vitro slice preparation to investigate synaptic transmission in one of the critical neuronal populations that generate seizure activity in this strain, the somatosensory thalamus. The primary finding reported here is the observation of a significant decrease in glutamatergic synaptic transmission mediated by both N-methyl-D-aspartate (NMDA) and non-NMDA receptors in somatosensory thalamic neurons of Cacnb4(lh) homozygotes compared with matched, nonepileptic mice. In contrast, there was no significant decrease in GABAergic transmission in Cacnb4(lh) homozygotes nor was there any difference in effects mediated by presynaptic GABAB receptors. We found a similar decrease in glutamatergic but not GABAergic responses in Cacna1atg homozygotes, suggesting that the independent mutations in the two strains each affected P/Q channel function by causing defective neurotransmitter release specific to glutamatergic synapses in the somatosensory thalamus. This may be an important factor underlying the generation of seizures in these models.

  8. Running Opposes the Effects of Social Isolation on Synaptic Plasticity and Transmission in a Rat Model of Depression

    PubMed Central

    Gómez-Galán, Marta; Femenía, Teresa; Åberg, Elin; Graae, Lisette; Van Eeckhaut, Ann; Smolders, Ilse; Brené, Stefan; Lindskog, Maria

    2016-01-01

    Stress, such as social isolation, is a well-known risk factor for depression, most probably in combination with predisposing genetic factors. Physical exercise on the other hand, is depicted as a wonder-treatment that makes you healthier, happier and live longer. However, the published results on the effects of exercise are ambiguous, especially when it comes to neuropsychiatric disorders. Here we combine a paradigm of social isolation with a genetic rat model of depression, the Flinders Sensitive Line (FSL), already known to have glutamatergic synaptic alterations. Compared to group-housed FSL rats, we found that social isolation further affects synaptic plasticity and increases basal synaptic transmission in hippocampal CA1 pyramidal neurons. These functional synaptic alterations co-exist with changes in hippocampal protein expression levels: social isolation in FSL rats reduce expression of the glial glutamate transporter GLT-1, and increase expression of the GluA2 AMPA-receptor subunit. We further show that physical exercise in form of voluntary running prevents the stress-induced synaptic effects but do not restore the endogenous mechanisms of depression already present in the FSL rat. PMID:27764188

  9. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx

    PubMed Central

    Highstein, Stephen M.; Mann, Mary Anne; Holstein, Gay R.

    2015-01-01

    Spontaneous and stimulus-evoked excitatory postsynaptic currents (EPSCs) were recorded in calyx nerve terminals from the turtle vestibular lagena to quantify key attributes of quantal transmission at this synapse. On average, EPSC events had a magnitude of ∼42 pA, a rise time constant of τ0 ∼229 μs, decayed to baseline with a time constant of τR ∼690 μs, and carried ∼46 fC of charge. Individual EPSCs varied in magnitude and decay time constant. Variability in the EPSC decay time constant was hair cell dependent and due in part to a slow protraction of the EPSC in some cases. Variability in EPSC size was well described by an integer summation of unitary quanta, with each quanta of glutamate gating a unitary postsynaptic current of ∼23 pA. The unitary charge was ∼26 fC for EPSCs with a simple exponential decay and increased to ∼48 fC for EPSCs exhibiting a slow protraction. The EPSC magnitude and the number of simultaneous unitary quanta within each event increased with presynaptic stimulus intensity. During tonic hair cell depolarization, both the EPSC magnitude and event rate exhibited adaptive run down over time. Present data from a reptilian calyx are remarkably similar to noncalyceal vestibular synaptic terminals in diverse species, indicating that the skewed EPSC size distribution and multiquantal release might be an ancestral property of inner ear ribbon synapses. PMID:25878150

  10. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    SciTech Connect

    Holman, Holly A.; Nguyen, Lynn Y.; Tran, Vy M.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-12-31

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  11. Orexin-A modulates excitatory synaptic transmission and neuronal excitability in the spinal cord substantia gelatinosa.

    PubMed

    Jeon, Younghoon; Park, Ki Bum; Pervin, Rokeya; Kim, Tae Wan; Youn, Dong-ho

    2015-09-14

    Although intrathecal orexin-A has been known to be antinociceptive in various pain models, the role of orexin-A in antinociception is not well characterized. In the present study, we examined whether orexin-A modulates primary afferent fiber-mediated or spontaneous excitatory synaptic transmission using transverse spinal cord slices with attached dorsal root. Bath-application of orexin-A (100nM) reduced the amplitude of excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation of Aδ- or C-primary afferent fibers. The magnitude of reduction was much larger for EPSCs evoked by polysynaptic C-fibers than polysynaptic Aδ-fibers, whereas it was similar in EPSCs evoked by monosynaptic Aδ- or C-fibers. SB674042, an orexin-1 receptor antagonist, but not EMPA, an orexin-2 receptor antagonist, significantly inhibited the orexin-A-induced reduction in EPSC amplitude from mono- or polysynaptic Aδ-fibers, as well as from mono- or polysynaptic C-fibers. Furthermore, orexin-A significantly increased the frequency of spontaneous EPSCs but not the amplitude. This increase was almost completely blocked by both SB674042 and EMPA. On the other hand, orexin-A produced membrane oscillations and inward currents in the SG neurons that were partially or completely inhibited by SB674042 or EMPA, respectively. Thus, this study suggests that the spinal actions of orexin-A underlie orexin-A-induced antinociceptive effects via different subtypes of orexin receptors.

  12. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Holman, Holly A.; Tran, Vy M.; Nguyen, Lynn Y.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-12-01

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  13. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx.

    PubMed

    Highstein, Stephen M; Mann, Mary Anne; Holstein, Gay R; Rabbitt, Richard D

    2015-06-01

    Spontaneous and stimulus-evoked excitatory postsynaptic currents (EPSCs) were recorded in calyx nerve terminals from the turtle vestibular lagena to quantify key attributes of quantal transmission at this synapse. On average, EPSC events had a magnitude of ∼ 42 pA, a rise time constant of τ(0) ∼ 229 μs, decayed to baseline with a time constant of τ(R) ∼ 690 μs, and carried ∼ 46 fC of charge. Individual EPSCs varied in magnitude and decay time constant. Variability in the EPSC decay time constant was hair cell dependent and due in part to a slow protraction of the EPSC in some cases. Variability in EPSC size was well described by an integer summation of unitary quanta, with each quanta of glutamate gating a unitary postsynaptic current of ∼ 23 pA. The unitary charge was ∼ 26 fC for EPSCs with a simple exponential decay and increased to ∼ 48 fC for EPSCs exhibiting a slow protraction. The EPSC magnitude and the number of simultaneous unitary quanta within each event increased with presynaptic stimulus intensity. During tonic hair cell depolarization, both the EPSC magnitude and event rate exhibited adaptive run down over time. Present data from a reptilian calyx are remarkably similar to noncalyceal vestibular synaptic terminals in diverse species, indicating that the skewed EPSC size distribution and multiquantal release might be an ancestral property of inner ear ribbon synapses.

  14. Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development.

    PubMed

    Flores, A; Manilla, S; Huidobro, N; De la Torre-Valdovinos, B; Kristeva, R; Mendez-Balbuena, I; Galindo, F; Treviño, M; Manjarrez, E

    2016-05-13

    The stochastic resonance (SR) is a phenomenon of nonlinear systems in which the addition of an intermediate level of noise improves the response of such system. Although SR has been studied in isolated hair cells and in the bullfrog sacculus, the occurrence of this phenomenon in the vestibular system in development is unknown. The purpose of the present study was to explore for the existence of SR via natural mechanical-stimulation in the hair cell-vestibular primary afferent transmission. In vitro experiments were performed on the posterior semicircular canal of the chicken inner ear during development. Our experiments showed that the signal-to-noise ratio of the afferent multiunit activity from E15 to P5 stages of development exhibited the SR phenomenon, which was characterized by an inverted U-like response as a function of the input noise level. The inverted U-like graphs of SR acquired their higher amplitude after the post-hatching stage of development. Blockage of the synaptic transmission with selective antagonists of the NMDA and AMPA/Kainate receptors abolished the SR of the afferent multiunit activity. Furthermore, computer simulations on a model of the hair cell - primary afferent synapse qualitatively reproduced this SR behavior and provided a possible explanation of how and where the SR could occur. These results demonstrate that a particular level of mechanical noise on the semicircular canals can improve the performance of the vestibular system in their peripheral sensory processing even during embryonic stages of development. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Dynasore blocks evoked release while augmenting spontaneous synaptic transmission from primary visceral afferents

    PubMed Central

    Andresen, Michael C.

    2017-01-01

    The recycling of vesicle membrane fused during exocytosis is essential to maintaining neurotransmission. The GTPase dynamin is involved in pinching off membrane to complete endocytosis and can be inhibited by dynasore resulting in activity-dependent depletion of release-competent synaptic vesicles. In rat brainstem slices, we examined the effects of dynasore on three different modes of glutamate release–spontaneous, evoked, and asynchronous release–at solitary tract (ST) inputs to neurons in the nucleus of the solitary tract (NTS). Intermittent bursts of stimuli to the ST interspersed with pauses in stimulation allowed examination of these three modes in each neuron continuously. Application of 100 μM dynasore rapidly increased the spontaneous EPSC (sEPSC) frequency which was followed by inhibition of both ST-evoked EPSCs (ST-EPSC) as well as asynchronous EPSCs. The onset of ST-EPSC failures was not accompanied by amplitude reduction–a pattern more consistent with conduction block than reduced probability of vesicle release. Neither result suggested that dynasore interrupted endocytosis. The dynasore response profile resembled intense presynaptic TRPV1 activation. The TRPV1 antagonist capsazepine failed to prevent dynasore increases in sEPSC frequency but did prevent the block of the ST-EPSC. In contrast, the TRPV1 antagonist JNJ 17203212 prevented both actions of dynasore in neurons with TRPV1-expressing ST inputs. In a neuron lacking TRPV1-expressing ST inputs, however, dynasore promptly increased sEPSC rate followed by block of ST-evoked EPSCs. Together our results suggest that dynasore actions on ST-NTS transmission are TRPV1-independent and changes in glutamatergic transmission are not consistent with changes in vesicle recycling and endocytosis. PMID:28358887

  16. Dynasore blocks evoked release while augmenting spontaneous synaptic transmission from primary visceral afferents.

    PubMed

    Hofmann, Mackenzie E; Andresen, Michael C

    2017-01-01

    The recycling of vesicle membrane fused during exocytosis is essential to maintaining neurotransmission. The GTPase dynamin is involved in pinching off membrane to complete endocytosis and can be inhibited by dynasore resulting in activity-dependent depletion of release-competent synaptic vesicles. In rat brainstem slices, we examined the effects of dynasore on three different modes of glutamate release-spontaneous, evoked, and asynchronous release-at solitary tract (ST) inputs to neurons in the nucleus of the solitary tract (NTS). Intermittent bursts of stimuli to the ST interspersed with pauses in stimulation allowed examination of these three modes in each neuron continuously. Application of 100 μM dynasore rapidly increased the spontaneous EPSC (sEPSC) frequency which was followed by inhibition of both ST-evoked EPSCs (ST-EPSC) as well as asynchronous EPSCs. The onset of ST-EPSC failures was not accompanied by amplitude reduction-a pattern more consistent with conduction block than reduced probability of vesicle release. Neither result suggested that dynasore interrupted endocytosis. The dynasore response profile resembled intense presynaptic TRPV1 activation. The TRPV1 antagonist capsazepine failed to prevent dynasore increases in sEPSC frequency but did prevent the block of the ST-EPSC. In contrast, the TRPV1 antagonist JNJ 17203212 prevented both actions of dynasore in neurons with TRPV1-expressing ST inputs. In a neuron lacking TRPV1-expressing ST inputs, however, dynasore promptly increased sEPSC rate followed by block of ST-evoked EPSCs. Together our results suggest that dynasore actions on ST-NTS transmission are TRPV1-independent and changes in glutamatergic transmission are not consistent with changes in vesicle recycling and endocytosis.

  17. Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I

    PubMed Central

    Liu, Huisheng; Dean, Camin; Arthur, Christopher P.; Dong, Min; Chapman, Edwin R.

    2009-01-01

    Synaptotagmin-I (syt-I) is required for rapid neurotransmitter release in mouse hippocampal neurons. However, contradictory results have been reported regarding evoked and spontaneous secretion from syt-I knockout (KO) neurons. Here, we compared synaptic transmission in two different hippocampal neuron preparations: autaptic cultures in which a single isolated cell innervates itself, and dissociated mass cultures in which individual cells are innervated by neighboring cells. In autaptic cultures, the total extent of evoked release, size of readily releasable pool of synaptic vesicles, and release probability, were unchanged in syt-I KO neurons. In contrast, in cultures containing multiple interconnected neurons, total evoked release, the number of docked vesicles, and release probability, were significantly reduced in syt-I KO neurons. Using a micro-network system in which we varied the number of cells on an island, we found that the frequency of spontaneous synaptic vesicle fusion events (minis) was unchanged in syt-I KO neurons when ≤ 2 cells were present on an island. However, in micro-networks composed of ≥ 3 neurons, mini frequency was increased three to five-fold in syt-I KO neurons compared to wild-type. Moreover, inter-neuronal synapses exhibited higher rates of spontaneous release than autaptic synapses. This higher rate was due to an increase in release probability because excitatory hippocampal neurons in micro-networks formed a set number of synapses per cell regardless of the number of connected neurons. Thus, aspects of synaptic transmission differ between autaptic and dissociated cultures and the synaptic transmission phenotype, due to loss of syt-I, is dictated by the connectivity of neurons. PMID:19515907

  18. A Novel Egr-1-Agrin Pathway and Potential Implications for Regulation of Synaptic Physiology and Homeostasis at the Neuromuscular Junction.

    PubMed

    MacDonald, Ryen; Barbat-Artigas, Sebastien; Cho, Chulmin; Peng, Huashan; Shang, Jijun; Moustaine, Ayman; Carbonetto, Salvatore; Robitaille, Richard; Chalifour, Lorraine E; Paudel, Hemant

    2017-01-01

    Synaptic transmission requires intricate coordination of the components involved in processing of incoming signals, formation and stabilization of synaptic machinery, neurotransmission and in all related signaling pathways. Changes to any of these components cause synaptic imbalance and disruption of neuronal circuitry. Extensive studies at the neuromuscular junction (NMJ) have greatly aided in the current understanding of synapses and served to elucidate the underlying physiology as well as associated adaptive and homeostatic processes. The heparan sulfate proteoglycan agrin is a vital component of the NMJ, mediating synaptic formation and maintenance in both brain and muscle, but very little is known about direct control of its expression. Here, we investigated the relationship between agrin and transcription factor early growth response-1 (Egr-1), as Egr-1 regulates the expression of many genes involved in synaptic homeostasis and plasticity. Using chromatin immunoprecipitation (ChIP), cell culture with cell lines derived from brain and muscle, and animal models, we show that Egr-1 binds to the AGRN gene locus and suppresses its expression. When compared with wild type (WT), mice deficient in Egr-1 (Egr-1-/-) display a marked increase in AGRN mRNA and agrin full-length and cleavage fragment protein levels, including the 22 kDa, C-terminal fragment in brain and muscle tissue homogenate. Because agrin is a crucial component of the NMJ, we explored possible physiological implications of the Egr-1-agrin relationship. In the diaphragm, Egr-1-/- mice display increased NMJ motor endplate density, individual area and area of innervation. In addition to increased density, soleus NMJs also display an increase in fragmented and faint endplates in Egr-1-/- vs. WT mice. Moreover, the soleus NMJ electrophysiology of Egr-1-/- mice revealed increased quantal content and motor testing showed decreased movement and limb muscle strength compared with WT. This study provides

  19. Regulation of Synaptic Transmission at the Caenorhabditis elegans M4 Neuromuscular Junction by an Antagonistic Relationship Between Two Calcium Channels

    PubMed Central

    Steciuk, Mark; Cheong, Mi Cheong; Waite, Christopher; You, Young-Jai; Avery, Leon

    2014-01-01

    In wild-type Caenorhabditis elegans, the synapse from motor neuron M4 to pharyngeal terminal bulb (TB) muscles is silent, and the muscles are instead excited by gap junction connections from adjacent muscles. An eat-5 innexin mutant lacking this electrical connection has few TB contractions and is unable to grow well on certain foods. We showed previously that this defect can be overcome by activation of the M4 → TB synapse. To identify genes that negatively regulate synaptic transmission, we isolated new suppressors of eat-5. To our surprise, these suppressors included null mutations in NPQR-type calcium channel subunit genes unc-2 and unc-36. Our results are consistent with the hypothesis that Ca2+ entry through the NPQR-type channel inhibits synaptic transmission by activating the calcium-activated K+ channel SLO-1, thus antagonizing the EGL-19 L-type calcium channel. PMID:25378475

  20. Regulation of synaptic transmission at the Caenorhabditis elegans M4 neuromuscular junction by an antagonistic relationship between two calcium channels.

    PubMed

    Steciuk, Mark; Cheong, Mi; Waite, Christopher; You, Young-Jai; Avery, Leon

    2014-11-04

    In wild-type Caenorhabditis elegans, the synapse from motor neuron M4 to pharyngeal terminal bulb (TB) muscles is silent, and the muscles are instead excited by gap junction connections from adjacent muscles. An eat-5 innexin mutant lacking this electrical connection has few TB contractions and is unable to grow well on certain foods. We showed previously that this defect can be overcome by activation of the M4 → TB synapse. To identify genes that negatively regulate synaptic transmission, we isolated new suppressors of eat-5. To our surprise, these suppressors included null mutations in NPQR-type calcium channel subunit genes unc-2 and unc-36. Our results are consistent with the hypothesis that Ca(2+) entry through the NPQR-type channel inhibits synaptic transmission by activating the calcium-activated K(+) channel SLO-1, thus antagonizing the EGL-19 L-type calcium channel.

  1. Slow synaptic transmission mediated by TRPV1 channels in CA3 interneurons of the hippocampus.

    PubMed

    Eguchi, Noriomi; Hishimoto, Akitoyo; Sora, Ichiro; Mori, Masahiro

    2016-03-11

    Metabotropic glutamate receptors (mGluRs) modulate various neuronal functions in the central nervous system. Many studies reported that mGluRs have linkages to neuronal disorders such as schizophrenia and autism related disorders, indicating that mGluRs are involved in critical functions of the neuronal circuits. To study this possibility further, we recorded mGluR-induced synaptic responses in the interneurons of the CA3 stratum radiatum using rat hippocampal organotypic slice cultures. Electrical stimulation in the CA3 pyramidal cell layer evoked a slow inward current in the interneurons at a holding potential of -70mV in the presence of antagonists for AMPA/kainate receptors, NMDA receptors, GABAA receptors and GABAB receptors. The slow inward current was blocked in the absence of extracellular calcium, suggesting that this was a synaptic response. The slow excitatory postsynaptic current (EPSC) reversed near 0mV, reflecting an increase in a non-selective cationic conductance. The slow EPSC is mediated by group I mGluRs, as it was blocked by AP3, a group I mGluR antagonist. Neither a calcium chelator BAPTA nor a phospholipase C (PLC) inhibitor U73122 affected the slow EPSC. La(3+), a general TRP channel blocker or capsazepine, a selective TRPV1 channel antagonist significantly suppressed the slow EPSC. DHPG, a selective group I mGluRs agonist induced an inward current, which was suppressed by capsazepine. These results indicate that in the interneurons of the hippocampal CA3 stratum radiatum group I mGluRs activate TRPV1 channels independently of PLC and intracellular Ca(2+), resulting in the slow EPSC in the interneurons.

  2. [Involvement of stress-induced hippocampal synaptic potentiation in the novelty acquisition].

    PubMed

    Liu, Na; Xing, Hua; Jiang, Shan-Xiang

    2011-04-25

    To study the influence of behavioral stress on hippocampal spatial learning and memory, we used the freely moving rats that had undergone chronic implantation of a recording electrode in the hippocampus CA1 region and a bipolar stimulating electrode in the ipsilateral Schaffer collateral-commissural pathway. The field excitatory postsynaptic potentials (fEPSPs) were recorded in the absence of exogenous induction of high-frequency stimulation (HFS) or low-frequency stimulation (LFS) and reflected the effect of stress on the hippocampal spatial learning. And we also investigated the change of hippocampal synaptic plasticity when rats were re-exposed to the same environment at 24 h after novelty acquisition. We found that exploration of a novel environment induced the hippocampal synaptic depression in the rats with stress-adaption, whereas exposure to the novel environment induced the hippocampal synaptic potentiation in the behavioral stress rats. Furthermore, re-exposure to the same environment no longer elicited the hippocampal synaptic potentiation or depression at 24 h after the first novel acquisition in the behavioral stress rats. These results demonstrate that behavioral stress induces the hippocampal synaptic potentiation under novelty acquisition and further damages the hippocampal spatial learning and memory. However, the stress can be adapted by re-exposure to the novelty and thus does not further damage the hippocampal spatial learning and memory.

  3. Botulinum and Tetanus Neurotoxin Induced Blockage of Synaptic Transmission in Networked Cultures of Human and Rodent Neurons

    DTIC Science & Technology

    2015-11-28

    CONTRACT NUMBER Networked Cultures of Human and Rodent Neurons 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Beske, PH, Bradford AB...Neurotoxin-Induced Blockade of Synaptic Transmission in Networked Cultures of Human and Rodent Neurons Phillip H. Beske, Aaron B. Bradford, Justin O...as well as human andmouse stem cell-derived neurons exposed to botulinum neurotoxin serotypes A–G and tetanus neurotoxin. The sensitivity and

  4. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels.

    PubMed

    Nishio, N; Taniguchi, W; Sugimura, Y K; Takiguchi, N; Yamanaka, M; Kiyoyuki, Yasukuni; Yamada, H; Miyazaki, N; Yoshida, M; Nakatsuka, T

    2013-09-05

    Central neuropathic pain (CNP) in the spinal cord, such as chronic pain after spinal cord injury (SCI), is an incurable ailment. However, little is known about the spinal cord mechanisms underlying CNP. Recently, reactive oxygen species (ROS) have been recognized to play an important role in CNP of the spinal cord. However, it is unclear how ROS affect synaptic transmission in the dorsal horn of the spinal cord. To clarify how ROS impact on synaptic transmission, we investigated the effects of ROS on synaptic transmission in rat spinal cord substantia gelatinosa (SG) neurons using whole-cell patch-clamp recordings. Administration of tert-butyl hydroperoxide (t-BOOH), an ROS donor, into the spinal cord markedly increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in SG neurons. This t-BOOH-induced enhancement was not suppressed by the Na(+) channel blocker tetrodotoxin. However, in the presence of a non-N-methyl-D-aspartate glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, t-BOOH did not generate any sEPSCs. Furthermore, in the presence of a transient receptor potential ankyrin 1 (TRPA1) channel antagonist (HC-030031) or a transient receptor potential vanilloid 1 (TRPV1) channel antagonist (capsazepine or AMG9810), the t-BOOH-induced increase in the frequency of sEPSCs was inhibited. These results indicate that ROS enhance the spontaneous release of glutamate from presynaptic terminals onto SG neurons through TRPA1 and TRPV1 channel activation. Excessive activation of these ion channels by ROS may induce central sensitization in the spinal cord and result in chronic pain such as that following SCI.

  5. Prenatal melamine exposure impairs spatial cognition and hippocampal synaptic plasticity by presynaptic and postsynaptic inhibition of glutamatergic transmission in adolescent offspring.

    PubMed

    An, Lei; Sun, Wei

    2017-03-05

    Our previous studies showed that prenatal melamine exposure (PME) could impair spatial cognition and hippocampal long-term potentiation (LTP). More importantly, the synaptic dysfunction induced by PME was associated with the probability of presynaptic glutamate release. Considering the crucial role of the other form of synaptic plasticity, long-term depression (LTD), in some types of learning and memory process, the aim of present study was to investigate if the hippocampal LTD and cognitive flexibility were affected. And then we attempted to explore the underlying mechanism. The animal model was produced by melamine exposure throughout gestational period with 400mg/kg bodyweight, the male offspring rats were used in the study. Morris water maze (MWM) test was performed, and then LTD was recorded from Schaffer collaterals to CA1 region in the hippocampus. Behavioral test showed that learning, reference memory and re-acquisition learning abilities were impaired significantly by PME. The field excitatory postsynaptic potentials (fEPSPs) slopes of LTD were significantly higher after PME. Furthermore, the data of whole-cell patch-clamp experiments showed that PME markedly diminished the frequencies of spontaneous EPSCs (sEPSCs) and simultaneously reduced the amplitude of sEPSCs. In conclusion, PME inhibited glutamate transmission presynaptically and postsynaptically which could contribute importantly to the depressed hippocampal synaptic plasticity and further induced cognitive deficits in MWM tests.

  6. A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance

    ERIC Educational Resources Information Center

    Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.

    2005-01-01

    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…

  7. A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance

    ERIC Educational Resources Information Center

    Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.

    2005-01-01

    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…

  8. The taurine transporter substrate guanidinoethyl sulfonate mimics the action of taurine on long-term synaptic potentiation.

    PubMed

    Suárez, Luz M; Muñoz, María-Dolores; González, José C; Bustamante, Julián; Del Río, Rafael Martín; Solís, José M

    2016-11-01

    Taurine is especially abundant in rodent brain where it appears to be involved in osmoregulation and synaptic plasticity mechanisms. The demonstration of a physiological role for taurine has been hampered by the difficulty in modifying taurine levels in most tissues, including the brain. We used an experimental strategy to reduce taurine levels, involving treatment with guanidinoethyl sulfonate (GES), a structural analogue of taurine that, among other properties, acts as a competitive inhibitor of taurine transport. GES delivered in the drinking water of rats for 1 month effectively reduced taurine levels in brain structures (hippocampus, cerebellum and cortex) and outside the brain (heart, muscle, kidney, liver and plasma) by between 50 and 80 %, depending on the tissue. This partial taurine depletion did not affect either basal synaptic transmission or the late phase of long-term potentiation (late-LTP) in hippocampal slices. In vivo microdialysis studies in the hippocampus revealed that GES treatment reduced extracellular taurine levels and the magnitude of taurine released in response to the application of either N-methyl-D-aspartate (NMDA) or a hypoosmotic solution, without affecting release mechanisms. Finally, we demonstrated in hippocampal slices that a brief GES application can mimic taurine action on the conversion of a decremental LTP into a perdurable late-LTP, concluding that GES might replace taurine function in some mechanisms such as those implicated in synaptic plasticity.

  9. Differential modulation of short-term synaptic dynamics by long-term potentiation at mouse hippocampal mossy fibre synapses.

    PubMed

    Gundlfinger, Anja; Leibold, Christian; Gebert, Katja; Moisel, Marion; Schmitz, Dietmar; Kempter, Richard

    2007-12-15

    Synapses continuously experience short- and long-lasting activity-dependent changes in synaptic strength. Long-term plasticity refers to persistent alterations in synaptic efficacy, whereas short-term plasticity (STP) reflects the instantaneous and reversible modulation of synaptic strength in response to varying presynaptic stimuli. The hippocampal mossy fibre synapse onto CA3 pyramidal cells is known to exhibit both a presynaptic, NMDA receptor-independent form of long-term potentiation (LTP) and a pronounced form of STP. A detailed description of their exact interdependence is, however, lacking. Here, using electrophysiological and computational techniques, we have developed a descriptive model of transmission dynamics to quantify plasticity at the mossy fibre synapse. STP at this synapse is best described by two facilitatory processes acting on time-scales of a few hundred milliseconds and about 10 s. We find that these distinct types of facilitation are differentially influenced by LTP such that the impact of the fast process is weakened as compared to that of the slow process. This attenuation is reflected by a selective decrease of not only the amplitude but also the time constant of the fast facilitation. We henceforth argue that LTP, involving a modulation of parameters determining both amplitude and time course of STP, serves as a mechanism to adapt the mossy fibre synapse to its temporal input.

  10. Enhanced sensitivity of hippocampal pyramidal neurons from mdx mice to hypoxia-induced loss of synaptic transmission.

    PubMed Central

    Mehler, M F; Haas, K Z; Kessler, J A; Stanton, P K

    1992-01-01

    The gene at the Duchenne/Becker muscular dystrophy locus encodes dystrophin, a member of a protein superfamily that links the actin cytoskeleton to transmembrane plasmalemmal proteins. In mature skeletal myocytes, the absence of dystrophin is associated with decreased membrane stability, altered kinetics of several calcium channels, and increased intracellular calcium concentration. In the central nervous system, dystrophin is restricted to specific neuronal populations that show heightened susceptibility to excitotoxic damage and is localized in proximal dendrites and the neuronal somata. We report that CA1 pyramidal neurons in a hippocampal slice preparation from a dystrophin-deficient mouse genetic model of Duchenne muscular dystrophy (the mdx mouse) exhibit significant increased susceptibility to hypoxia-induced damage to synaptic transmission. This selective vulnerability was substantially ameliorated by pretreatment with diphenylhydantoin, an anticonvulsant that blocks both sodium-dependent action potentials and low-threshold transient calcium conductances. These findings suggest that dystrophin deficiency could predispose susceptible neuronal populations to cumulative hypoxic insults that may contribute to the development of cognitive deficits in Duchenne/Becker muscular dystrophy patients and that the effects of such periods of hypoxia may be pharmacologically remediable. PMID:1549609

  11. Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises

    PubMed Central

    2011-01-01

    The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals. PMID:21304459

  12. Role of Heterogeneous Macromolecular Crowding and Geometrical Irregularity at Central Excitatory Synapses in Shaping Synaptic Transmission

    PubMed Central

    Gupta, Rahul; Reneaux, Melissa; Karmeshu

    2016-01-01

    Besides the geometrical tortousity due to the extrasynaptic structures, macromolecular crowding and geometrical irregularities constituting the cleft composition at central excitatory synapses has a major and direct role in retarding the glutamate diffusion within the cleft space. However, the cleft composition may not only coarsely reduce the overall diffusivity of the glutamate but may also lead to substantial spatial variation in the diffusivity across the cleft space. Decrease in the overall diffusivity of the glutamate may have straightforward consequences to the glutamate transients in the cleft. However, how spatial variation in the diffusivity may further affect glutamate transients is an intriguing aspect. Therefore, to understand the role of cleft heterogeneity, the present study adopts a novel approach of glutamate diffusion which considers a gamma statistical distribution of the diffusion coefficient of glutamate (Dglut) across the cleft space, such that its moments discernibly capture the dual impacts of the cleft composition, and further applies the framework of superstatistics. The findings reveal a power law behavior in the glutamate transients, akin to the long-range anomalous subdiffusion, which leads to slower decay profile of cleft glutamate at higher intensity of cleft heterogeneity. Moreover, increase in the cleft heterogeneity is seen to eventually cause slower-rising excitatory postsynaptic currents with higher amplitudes, lesser noise, and prolonged duration of charge transfer across the postsynaptic membrane. Further, with regard to the conventional standard diffusion approach, the study suggests that the effective Dglut essentially derives from the median of the Dglut distribution and does not necessarily need to be the mean Dglut. Together, the findings indicate a strong implication of cleft heterogeneity to the metabolically cost-effective tuning of synaptic response during the phenomenon of plasticity at individual synapses and also

  13. Investigations of photoreceptor synaptic transmission and light adaptation in the zebrafish visual mutant nrc.

    PubMed

    Van Epps, H A; Yim, C M; Hurley, J B; Brockerhoff, S E

    2001-03-01

    To characterize the retinal physiology of the zebrafish visual mutant no optokinetic response c (nrc) and to identify the genetic map position of the nrc mutation. Electroretinograms were recorded from wild-type and nrc zebrafish larvae between 5 to 6 days postfertilization. Responses to flash stimuli, On and Off responses to prolonged light stimuli, and responses to flash stimuli with constant background illumination were characterized. The glutamate agonist, 2-amino-4-phosphonobutyric acid (APB) was used to examine the photoreceptor specific a-wave component of the electroretinogram. Amplified fragment length polymorphism methodology was used to place the nrc mutation on the zebrafish genomic map. nrc and wild-type zebrafish larvae 5 to 6 days postfertilization have similar threshold responses to light, but the b-wave of the nrc electroretinogram is significantly delayed and reduced in amplitude. On and Off responses of nrc larvae to prolonged light have multiple oscillations that do not occur in normal zebrafish larvae after 5 days postfertilization. Analysis of the b-wave demonstrated a light adaptation defect in nrc that causes saturation at background light levels approximately 1 order of magnitude less than those with wild-type larvae. Application of the glutamate analog, APB, uncovered the photoreceptor component of the electroretinogram and revealed a light adaptation defect in nrc photoreceptors. The nrc mutation was placed approximately 0.2 cM from sequence length polymorphism marker Z7504 on linkage group 10. The zebrafish mutant nrc is a possible model for human retinal disease. nrc has defects in photoreceptor synaptic transmission and light adaptation. The nrc mutant phenotype shows striking similarities with phenotypes of dystrophin glycoprotein complex mutants, including patients with Duchenne/Becker muscular dystrophy. Localization of the nrc mutation now makes it possible to evaluate candidate genes and clone the nrc gene.

  14. LAP proteins are localized at the post-synaptic membrane of neuromuscular junctions and appear to modulate synaptic morphology and transmission.

    PubMed

    Kravic, Bojana; Huraskin, Danyil; Frick, Alexander D; Jung, Jasmin; Redai, Veronika; Palmisano, Ralf; Marchetto, Sylvie; Borg, Jean-Paul; Mei, Lin; Hashemolhosseini, Said

    2016-11-01

    Erbin, Lano, Scribble, and Densin-180 belong to LAP (leucine-rich repeats and PDZ domain) adaptor proteins involved in cell signaling pathways. Previously, we identified Erbin, Lano, and Scribble, but not Densin-180, in muscle cells, where they are involved in regulating the aggregation of nicotinic acetylcholine receptors in vitro. Here, we analyzed their cellular localization at the neuromuscular junction (NMJ) in skeletal muscles of mice. Erbin, Lano, and Scribble were significantly accumulated at NMJs and localized in different synaptic cells. Moreover, we used mouse mutants to analyze the role of Erbin at the NMJ. We used two Erbin mutant mouse strains that either completely lack Erbin protein (Erbin(null/null) ) or express a truncated Erbin mutant where the carboxy-terminal PDZ domain is replaced by β-galactosidase (Erbin(ΔC/ΔC) ) thereby abolishing its interaction with ErbB receptor tyrosine kinases. Neither the lack of the PDZ domain of Erbin, nor its complete absence interfered with the general localization of LAP proteins at NMJs, but Lano and Scribble transcript levels were up-regulated in homozygous Erbin-null muscles. Furthermore, grip strength was reduced and neural transmission impaired in homozygous aged Erbin-null but not Erbin-ΔC mice. Erbin-null skeletal muscles did not reveal any conspicuous impairment of the muscle fiber. Localization of other NMJ marker proteins was not affected either. Quantitative 3D morphometry showed that NMJs of Erbin-null muscles were significantly smaller and fragmented in the soleus. We speculate that Erbin, Lano, and Scribble act at the post-synaptic membrane of NMJs in a concerted fashion to regulate nicotinic acetylcholine receptors cluster morphology and neural transmission. Cover Image for this issue: doi: 10.1111/jnc.13340.

  15. Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity

    PubMed Central

    Luo, Ceng; Gangadharan, Vijayan; Bali, Kiran Kumar; Xie, Rou-Gang; Agarwal, Nitin; Kurejova, Martina; Tappe-Theodor, Anke; Tegeder, Irmgard; Feil, Susanne; Lewin, Gary; Polgar, Erika; Todd, Andrew J.; Schlossmann, Jens; Hofmann, Franz; Liu, Da-Lu; Hu, San-Jue; Feil, Robert; Kuner, Thomas; Kuner, Rohini

    2012-01-01

    Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I−/− mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I−/− mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I−/− mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are

  16. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo

    PubMed Central

    Buschler, Arne; Manahan-Vaughan, Denise

    2012-01-01

    Long-term environmental enrichment (EE) elicits enduring effects on the adult brain, including altered synaptic plasticity. Synaptic plasticity may underlie memory formation and includes robust (>24 h) and weak (<2 h) forms of long-term potentiation (LTP) and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy have examined the consequences of very prolonged EE-exposure. It is unclear whether brief exposure to EE can alter synaptic plasticity. Clarifying this issue could help develop strategies to address cognitive deficits arising from neglect in children or adults. We assessed whether short-term EE elicits alterations in hippocampal synaptic plasticity and if social context may play a role. Adult mice were exposed to EE for 14 consecutive days. We found that robust late-LTP (>24 h) and short-term depression (<2 h) at Schaffer-collateral-CA1 synapses in freely behaving mice were unaltered, whereas early-LTP (E-LTP, <2 h) was significantly enhanced by EE. Effects were transient: E-LTP returned to control levels 1 week after cessation of EE. Six weeks later, animals were re-exposed to EE for 14 days. Under these conditions, E-LTP was facilitated into L-LTP (>24 h), suggesting that metaplasticity was induced during the first EE experience and that EE-mediated modifications are cumulative. Effects were absent in mice that underwent solitary enrichment or were group-housed without EE. These data suggest that EE in naïve animals strengthens E-LTP, and also promotes L-LTP in animals that underwent EE in the past. This indicates that brief exposure to EE, particularly under social conditions can elicit lasting positive effects on synaptic strength that may have beneficial consequences for cognition that depends on synaptic plasticity. PMID:23248592

  17. Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice.

    PubMed

    Cheng, Sin-Jhong; Chen, Chien-Chang; Yang, Hsiu-Wen; Chang, Ya-Ting; Bai, Shin-Wen; Chen, Chih-Cheng; Yen, Chen-Tung; Min, Ming-Yuan

    2011-02-09

    Application of phorbol 12,13-diacetate (PDA) caused marked enhancement of synaptic transmission of nociceptive parabrachio-amygdaloid (PBA) input onto neurons of the capsular central amygdaloid (CeAC) nucleus. The potentiation of PBA-CeAC EPSCs by PDA involved a presynaptic protein kinase C (PKC)-dependent component and a postsynaptic PKC-extracellular-regulated kinase (ERK)-dependent component. NMDA glutamatergic receptor (NMDAR)-dependent long-term potentiation (LTP) of PBA-CeAC EPSCs, which was also dependent on the PKC-ERK signaling pathway, was induced by tetanus stimulation at 100 Hz. In slices from mice subjected to acid-induced muscle pain (AIMP), phosphorylated ERK levels in the CeAC increased, and PBA-CeAC synaptic transmission was postsynaptically enhanced. The enhanced PBA-CeAC synaptic transmission in AIMP mice shared common mechanisms with the postsynaptic potentiation effect of PDA and induction of NMDAR-dependent LTP by high-frequency stimulation in normal slices, both of which required ERK activation. Since the CeAC plays an important role in the emotionality of pain, enhanced synaptic function of nociceptive (PBA) inputs onto CeAC neurons might partially account for the supraspinal mechanisms underlying central sensitization.

  18. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses

    PubMed Central

    Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern. PMID:25520631

  19. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP

    PubMed Central

    Herring, Bruce E.; Nicoll, Roger A.

    2016-01-01

    The molecular mechanism underlying long-term potentiation (LTP) is critical for understanding learning and memory. CaMKII, a key kinase involved in LTP, is both necessary and sufficient for LTP induction. However, how CaMKII gives rise to LTP is currently unknown. Recent studies suggest that Rho GTPases are necessary for LTP. Rho GTPases are activated by Rho guanine exchange factors (RhoGEFs), but the RhoGEF(s) required for LTP also remain unknown. Here, using a combination of molecular, electrophysiological, and imaging techniques, we show that the RhoGEF Kalirin and its paralog Trio play critical and redundant roles in excitatory synapse structure and function. Furthermore, we show that CaMKII phosphorylation of Kalirin is sufficient to enhance synaptic AMPA receptor expression, and that preventing CaMKII signaling through Kalirin and Trio prevents LTP induction. Thus, our data identify Kalirin and Trio as the elusive targets of CaMKII phosphorylation responsible for AMPA receptor up-regulation during LTP. PMID:26858404

  20. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP.

    PubMed

    Herring, Bruce E; Nicoll, Roger A

    2016-02-23

    The molecular mechanism underlying long-term potentiation (LTP) is critical for understanding learning and memory. CaMKII, a key kinase involved in LTP, is both necessary and sufficient for LTP induction. However, how CaMKII gives rise to LTP is currently unknown. Recent studies suggest that Rho GTPases are necessary for LTP. Rho GTPases are activated by Rho guanine exchange factors (RhoGEFs), but the RhoGEF(s) required for LTP also remain unknown. Here, using a combination of molecular, electrophysiological, and imaging techniques, we show that the RhoGEF Kalirin and its paralog Trio play critical and redundant roles in excitatory synapse structure and function. Furthermore, we show that CaMKII phosphorylation of Kalirin is sufficient to enhance synaptic AMPA receptor expression, and that preventing CaMKII signaling through Kalirin and Trio prevents LTP induction. Thus, our data identify Kalirin and Trio as the elusive targets of CaMKII phosphorylation responsible for AMPA receptor up-regulation during LTP.

  1. Apolipoprotein E in Synaptic Plasticity and Alzheimer’s Disease: Potential Cellular and Molecular Mechanisms

    PubMed Central

    Kim, Jaekwang; Yoon, Hyejin; Basak, Jacob; Kim, Jungsu

    2014-01-01

    Alzheimer’s disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-β (Aβ) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ɛ4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates Aβ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on Aβ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2. PMID:25358504

  2. Timing is Essential for Rapid Effects of Corticosterone on Synaptic Potentiation in the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Joels, Marian; Krugers, Harm; Wiegert, Olof

    2006-01-01

    Stress facilitates memory formation, but only when the stressor is closely linked to the learning context. These effects are, at least in part, mediated by corticosteroid hormones. Here we demonstrate that corticosterone rapidly facilitates synaptic potentiation in the mouse hippocampal CA1 area when high levels of the hormone and high-frequency…

  3. Timing is Essential for Rapid Effects of Corticosterone on Synaptic Potentiation in the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Joels, Marian; Krugers, Harm; Wiegert, Olof

    2006-01-01

    Stress facilitates memory formation, but only when the stressor is closely linked to the learning context. These effects are, at least in part, mediated by corticosteroid hormones. Here we demonstrate that corticosterone rapidly facilitates synaptic potentiation in the mouse hippocampal CA1 area when high levels of the hormone and high-frequency…

  4. Defective synaptic transmission and structure in the dentate gyrus and selective fear memory impairment in the Rsk2 mutant mouse model of Coffin-Lowry syndrome.

    PubMed

    Morice, Elise; Farley, Séverine; Poirier, Roseline; Dallerac, Glenn; Chagneau, Carine; Pannetier, Solange; Hanauer, André; Davis, Sabrina; Vaillend, Cyrille; Laroche, Serge

    2013-10-01

    The Coffin-Lowry syndrome (CLS) is a syndromic form of intellectual disability caused by loss-of-function of the RSK2 serine/threonine kinase encoded by the rsk2 gene. Rsk2 knockout mice, a murine model of CLS, exhibit spatial learning and memory impairments, yet the underlying neural mechanisms are unknown. In the current study, we examined the performance of Rsk2 knockout mice in cued, trace and contextual fear memory paradigms and identified selective deficits in the consolidation and reconsolidation of hippocampal-dependent fear memories as task difficulty and hippocampal demand increase. Electrophysiological, biochemical and electron microscopy analyses were carried out in the dentate gyrus of the hippocampus to explore potential alterations in neuronal functions and structure. In vivo and in vitro electrophysiology revealed impaired synaptic transmission, decreased network excitability and reduced AMPA and NMDA conductance in Rsk2 knockout mice. In the absence of RSK2, standard measures of short-term and long-term potentiation (LTP) were normal, however LTP-induced CREB phosphorylation and expression of the transcription factors EGR1/ZIF268 were reduced and that of the scaffolding protein SHANK3 was blocked, indicating impaired activity-dependent gene regulation. At the structural level, the density of perforated and non-perforated synapses and of multiple spine boutons was not altered, however, a clear enlargement of spine neck width and post-synaptic densities indicates altered synapse ultrastructure. These findings show that RSK2 loss-of-function is associated in the dentate gyrus with multi-level alterations that encompass modifications of glutamate receptor channel properties, synaptic transmission, plasticity-associated gene expression and spine morphology, providing novel insights into the mechanisms contributing to cognitive impairments in CLS. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Excitatory and inhibitory synaptic transmission is differentially influenced by two ortho-substituted polychlorinated biphenyls in the hippocampal slice preparation

    SciTech Connect

    Kim, Kyung Ho; Inan, Salim Yalcin; Berman, Robert F.; Pessah, Isaac N.

    2009-06-01

    Exposure to polychlorinated biphenyls impairs cognition and behavior in children. Two environmental PCBs 2,2',3,3',4,4',5-heptachlorobiphenyl (PCB170) and 2,2',3,5',6-pentachlorobiphenyl (PCB95) were examined in vitro for influences on synaptic transmission in rat hippocampal slices. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 region using a multi-electrode array. Perfusion with PCB170 (10 nM) had no effect on fEPSP slope relative to baseline period, whereas (100 nM) initially enhanced then depressed fEPSP slope. Perfusion of PCB95 (10 or 100 nM) persistently enhanced fEPSP slope > 200%, an effect that could be inhibited by dantrolene, a drug that attenuates ryanodine receptor signaling. Perfusion with picrotoxin (PTX) to block GABA neurotransmission resulted in a modest increase in fEPSP slope, whereas PTX + PCB170 (1-100 nM) persistently enhanced fEPSP slope in a dose dependent manner. fEPSP slope reached > 250% of baseline period in the presence of PTX + 100 nM PCB170, conditions that evoked marked epileptiform after-potential discharges. PCB95 and PCB170 were found to differentially influence the Ca{sup 2+}-dependence of [{sup 3}H]ryanodine-binding to hippocampal ryanodine receptors. Non-coplanar PCB congeners can differentially alter neurotransmission in a manner suggesting they can elicit imbalances between inhibitory and excitatory circuits within the hippocampus. Differential sensitization of ryanodine receptors by Ca{sup 2+} appears to mediate, at least in part, hippocampal excitotoxicity by non-coplanar PCBs.

  6. Enhancement of synaptic transmission and nociceptive behaviour in HPC-1/syntaxin 1A knockout mice following peripheral nerve injury.

    PubMed

    Takasusuki, T; Fujiwara, T; Yamaguchi, S; Fukushima, T; Akagawa, K; Hori, Y

    2007-10-01

    Our previous analysis of HPC-1/syntaxin 1A knockout (KO) mice indicated that HPC-1/syntaxin 1A plays an important role in the synaptic plasticity of the hippocampus in vitro and learning behaviour in vivo. In order to gain further insights into the physiological functions of HPC-1/syntaxin 1A, we studied the changes in the plasticity of synaptic transmission in the superficial dorsal horn of the spinal cord following a peripheral nerve injury in HPC-1/syntaxin 1A KO and wild-type (WT) mice. The von Frey filament test revealed that partial ligation of the sciatic nerve caused neuropathic pain in both WT and KO mice. However, KO mice showed significant enhancement of mechanical allodynia as compared with WT mice. Tight-seal whole-cell recordings were obtained from neurons in the superficial dorsal horn of the spinal cord slices. Electrical stimulus-evoked excitatory postsynaptic currents (EPSCs), asynchronous EPSCs (aEPSCs) in the presence of strontium, and spontaneously occurring miniature EPSCs (mEPSCs) were analysed. Prior to peripheral nerve ligation, no significant differences were observed in the properties of evoked EPSCs, aEPSCs and mEPSCs in KO and WT mice. Seven-14 days after partial ligation, the amplitude of evoked EPSCs and the frequency of aEPSCs and mEPSCs in KO mice were significantly greater than those in WT mice; however, the amplitude of aEPSCs and mEPSCs remained unchanged in both groups. Enhanced allodynia behaviour and significant enhancement of excitatory synaptic transmission following peripheral nerve ligation in KO mice suggest that HPC-1/syntaxin 1A might play a role in synaptic plasticity in the nociceptive pathway.

  7. Histone Deacetylase Inhibitor Entinostat (MS-275) Restores Anesthesia-induced Alteration of Inhibitory Synaptic Transmission in the Developing Rat Hippocampus.

    PubMed

    Joksimovic, Srdjan M; Osuru, Hari Prasad; Oklopcic, Azra; Beenhakker, Mark P; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M

    2017-08-24

    Recent evidence strongly supports the idea that common general anesthetics (GAs) such as isoflurane (Iso) and nitrous oxide (N2O; laughing gas), as well as sedative drugs such as midazolam are neurotoxic for the developing mammalian brain having deleterious effects on neural circuits involved in cognition, learning and memory. However, to date, very little is known about epigenetic mechanisms involved in GA-induced plasticity of synaptic transmission in the hippocampus, the main memory-processing region in the brain. Here, we used patch-clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) from hippocampal neurons in slice cultures exposed to the clinically relevant GA combination. We found that in vitro exposure to a combination of midazolam, 0.75% Iso, and 70% N2O for 6 h leads to lasting increase in frequency of mIPSCs, while amplitudes and kinetics of the events were spared. Importantly, co-application of entinostat (MS-275), a selective inhibitor of class I histone deacetylases (HDAC), completely reversed GA-induced synaptic plasticity. Furthermore, when given in vivo to P7 pups exposed to GA with midazolam, Iso and N2O for 6 h, MS-275 reversed GA-induced histone-3 hypoacetylation as shown by an increase in Ac-H3 protein expression in the hippocampus. We conclude that exposure to a combination of Iso with N2O and midazolam causes plasticity of mIPSCs in hippocampal neurons by epigenetic mechanisms that target presynaptic sites. We hypothesize that GA-induced epigenetic alterations in inhibitory synaptic transmission in the hippocampus may contribute to altered neuronal excitability and consequently abnormal learning and memory later in life.

  8. Quantifying the transmission potential of pandemic influenza

    NASA Astrophysics Data System (ADS)

    Chowell, Gerardo; Nishiura, Hiroshi

    2008-03-01

    This article reviews quantitative methods to estimate the basic reproduction number of pandemic influenza, a key threshold quantity to help determine the intensity of interventions required to control the disease. Although it is difficult to assess the transmission potential of a probable future pandemic, historical epidemiologic data is readily available from previous pandemics, and as a reference quantity for future pandemic planning, mathematical and statistical analyses of historical data are crucial. In particular, because many historical records tend to document only the temporal distribution of cases or deaths (i.e. epidemic curve), our review focuses on methods to maximize the utility of time-evolution data and to clarify the detailed mechanisms of the spread of influenza. First, we highlight structured epidemic models and their parameter estimation method which can quantify the detailed disease dynamics including those we cannot observe directly. Duration-structured epidemic systems are subsequently presented, offering firm understanding of the definition of the basic and effective reproduction numbers. When the initial growth phase of an epidemic is investigated, the distribution of the generation time is key statistical information to appropriately estimate the transmission potential using the intrinsic growth rate. Applications of stochastic processes are also highlighted to estimate the transmission potential using similar data. Critically important characteristics of influenza data are subsequently summarized, followed by our conclusions to suggest potential future methodological improvements.

  9. NMDA receptor dysfunction contributes to impaired brain-derived neurotrophic factor-induced facilitation of hippocampal synaptic transmission in a Tau transgenic model.

    PubMed

    Burnouf, Sylvie; Martire, Alberto; Derisbourg, Maxime; Laurent, Cyril; Belarbi, Karim; Leboucher, Antoine; Fernandez-Gomez, Francisco J; Troquier, Laetitia; Eddarkaoui, Sabiha; Grosjean, Marie-Eve; Demeyer, Dominique; Muhr-Tailleux, Anne; Buisson, Alain; Sergeant, Nicolas; Hamdane, Malika; Humez, Sandrine; Popoli, Patrizia; Buée, Luc; Blum, David

    2013-02-01

    While the spatiotemporal development of Tau pathology has been correlated with occurrence of cognitive deficits in Alzheimer's patients, mechanisms underlying these deficits remain unclear. Both brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB play a critical role in hippocampus-dependent synaptic plasticity and memory. When applied on hippocampal slices, BDNF is able to enhance AMPA receptor-dependent hippocampal basal synaptic transmission through a mechanism involving TrkB and N-methyl-d-Aspartate receptors (NMDAR). Using THY-Tau22 transgenic mice, we demonstrated that hippocampal Tau pathology is associated with loss of synaptic enhancement normally induced by exogenous BDNF. This defective response was concomitant to significant memory impairments. We show here that loss of BDNF response was due to impaired NMDAR function. Indeed, we observed a significant reduction of NMDA-induced field excitatory postsynaptic potential depression in the hippocampus of Tau mice together with a reduced phosphorylation of NR2B at the Y1472, known to be critical for NMDAR function. Interestingly, we found that both NR2B and Src, one of the NR2B main kinases, interact with Tau and are mislocalized to the insoluble protein fraction rich in pathological Tau species. Defective response to BDNF was thus likely related to abnormal interaction of Src and NR2B with Tau in THY-Tau22 animals. These are the first data demonstrating a relationship between Tau pathology and synaptic effects of BDNF and supporting a contribution of defective BDNF response and impaired NMDAR function to the cognitive deficits associated with Tauopathies.

  10. Short-term potentiation of GABAergic synaptic inputs to vasopressin and oxytocin neurones.

    PubMed

    Morton, Linda A; Popescu, Ion R; Haam, Juhee; Tasker, Jeffrey G

    2014-10-01

    The magnocellular vasopressin (VP) and oxytocin (OT) neurones undergo long-term synaptic plasticity to accommodate prolonged hormone demand. By contrast, rapidly induced,transient synaptic plasticity in response to brief stimuli could enable the activation of magnocellular neurones in response to acute challenges. Here, we report a robust short-term potentiation of asynchronous GABAergic synaptic inputs (STP(GABA)) to VP and OT neurones of the hypothalamic supraoptic nucleus elicited by repetitive extracellular electrical stimulation.The STP(GABA) required extracellular Ca2+, but did not require activation of glutamate, VP or OT receptors or nitric oxide synthesis. Presynaptic action potential generation was necessary for the induction, but not the maintenance, of STP(GABA). The STP(GABA) led to a minutes-long GABA(A)receptor-dependent increase in spike frequency in VP neurones, but not in OT neurones,consistent with an excitatory function of GABA in only VP neurones and with the generation of prolonged bursts of action potentials in VP neurones. Therefore, this short-term plasticity of GABAergic synaptic inputs is likely to play very different roles in the regulation of OT and VP neurones and their distinct patterns of physiological activation.

  11. Short-term potentiation of GABAergic synaptic inputs to vasopressin and oxytocin neurones

    PubMed Central

    Morton, Linda A; Popescu, Ion R; Haam, Juhee; Tasker, Jeffrey G

    2014-01-01

    The magnocellular vasopressin (VP) and oxytocin (OT) neurones undergo long-term synaptic plasticity to accommodate prolonged hormone demand. By contrast, rapidly induced, transient synaptic plasticity in response to brief stimuli could enable the activation of magnocellular neurones in response to acute challenges. Here, we report a robust short-term potentiation of asynchronous GABAergic synaptic inputs (STPGABA) to VP and OT neurones of the hypothalamic supraoptic nucleus elicited by repetitive extracellular electrical stimulation. The STPGABA required extracellular Ca2+, but did not require activation of glutamate, VP or OT receptors or nitric oxide synthesis. Presynaptic action potential generation was necessary for the induction, but not the maintenance, of STPGABA. The STPGABA led to a minutes-long GABAA receptor-dependent increase in spike frequency in VP neurones, but not in OT neurones, consistent with an excitatory function of GABA in only VP neurones and with the generation of prolonged bursts of action potentials in VP neurones. Therefore, this short-term plasticity of GABAergic synaptic inputs is likely to play very different roles in the regulation of OT and VP neurones and their distinct patterns of physiological activation. PMID:25063825

  12. Artificially imposed electrical potentials drive L-glutamate uptake into synaptic vesicles of bovine cerebral cortex.

    PubMed Central

    Shioi, J; Ueda, T

    1990-01-01

    L-Glutamate is a major excitatory neurotransmitter in the central nervous system. MgATP-dependent glutamate uptake and H(+)-pumping ATPase activity were reported in highly purified synaptic vesicles [Naito & Ueda (1983) J. Biol. Chem. 258, 696-699; Shioi, Naito & Ueda (1989) Biochem. J. 258, 499-504], and it is hypothesized that an electrochemical H+ gradient across the vesicle membrane, the so-called protonmotive force, elicits the neurotransmitter uptake. An inside-positive diffusion potential across the vesicle membrane was established with valinomycin plus Rb+. This artificial electrical potential promoted the uptake of glutamate, but not aspartate, in the synaptic vesicles prepared from bovine cerebral cortex. The uptake was inhibited by the protonmotive-force dissipators carbonyl cyanide p-trifluoro-methoxyphenylhydrazone or nigericin, and was enhanced by concomitant imposition of a pH jump (alkalinization) in the external medium. Subcellular and subvesicular distributions showed the uptake system to be predominantly associated with small synaptic vesicles. The results support the hypothesis that glutamate uptake into synaptic vesicles is coupled with a H+ efflux down the electrochemical potential gradient, which is generated by H(+)-pumping ATPase. Images Fig. 3. PMID:1970243

  13. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling.

    PubMed

    Glovaci, I; Caruana, D A; Chapman, C A

    2014-01-31

    The modulatory neurotransmitter dopamine induces concentration-dependent changes in synaptic transmission in the entorhinal cortex, in which high concentrations of dopamine suppress evoked excitatory postsynaptic potentials (EPSPs) and lower concentrations induce an acute synaptic facilitation. Whole-cell current-clamp recordings were used to investigate the dopaminergic facilitation of synaptic responses in layer II neurons of the rat lateral entorhinal cortex. A constant bath application of 1 μM dopamine resulted in a consistent facilitation of EPSPs evoked in layer II fan cells by layer I stimulation; the size of the facilitation was more variable in pyramidal neurons, and synaptic responses in a small group of multiform neurons were not modulated by dopamine. Isolated inhibitory synaptic responses were not affected by dopamine, and the facilitation of EPSPs was not associated with a change in paired-pulse facilitation ratio. Voltage-clamp recordings of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptor-mediated excitatory postsynaptic currents (EPSCs) were facilitated by dopamine, but N-methyl-D-aspartate receptor-mediated currents were not. Bath application of the dopamine D₁-like receptor blocker SCH23390 (50 μM), but not the D₂-like receptor blocker sulpiride (50 μM), prevented the facilitation, indicating that it is dependent upon D₁-like receptor activation. Dopamine D₁ receptors lead to activation of protein kinase A (PKA), and including the PKA inhibitor H-89 or KT 5720 in the recording pipette solution prevented the facilitation of EPSCs. PKA-dependent phosphorylation of inhibitor 1 or the dopamine- and cAMP-regulated protein phosphatase (DARPP-32) can lead to a facilitation of AMPA receptor responses by inhibiting the activity of protein phosphatase 1 (PP1) that reduces dephosphorylation of AMPA receptors, and we found here that inhibition of PP1 occluded the facilitatory effect of dopamine. The dopamine

  14. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.

    PubMed

    Ruan, Hongyu; Yao, Wei-Dong

    2017-01-25

    Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca(2+) channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to

  15. Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1.

    PubMed

    Law, Janice W S; Lee, Alan Y W; Sun, Mu; Nikonenko, Alexander G; Chung, Sookja K; Dityatev, Alexander; Schachner, Melitta; Morellini, Fabio

    2003-11-12

    L1, a neural cell adhesion molecule of the immunoglobulin superfamily, is involved in neuronal migration and differentiation and axon outgrowth and guidance. Mutations in the human and mouse L1 gene result in similarly severe neurological abnormalities. To dissociate the functional roles of L1 in the adult brain from developmental abnormalities, we have generated a mutant in which the L1 gene is inactivated by cre-recombinase under the control of the calcium/calmodulin-dependent kinase II promoter. This mutant (L1fy+) did not show the overt morphological and behavioral abnormalities observed previously in constitutive L1-deficient (L1-/-) mice; however, there was an increase in basal excitatory synaptic transmission that was not apparent in L1-/- mice. Similar to L1-/- mice, no defects in short- and long-term potentiation in the CA1 region of the hippocampus were observed. Interestingly, L1fy+ mice showed decreased anxiety in the open field and elevated plus-maze, contrary to L1-/- mice, and altered place learning in the water maze, similar to L1-/- mice. Thus, mice conditionally deficient in L1 expression in the adult brain share some abnormalities, but also display different ones, as compared with L1-/- mice, highlighting the role of L1 in the regulation of synaptic transmission and behavior in adulthood.

  16. Ethanol inhibits epileptiform activity and NMDA receptor-mediated synaptic transmission in rat amygdaloid slices

    SciTech Connect

    Gean, P.W. )

    1992-02-26

    The effect of ethanol on the epileptiform activity induced by Mg{sup ++}-free solution was studied in rat amygdalar slices using intracellular recording techniques. The spontaneous and evoked epileptiform discharges consisting of an initial burst followed by afterdischarges were observed 20-30 min after switching to Mg{sup ++}-free medium. Superfusion with ethanol reversibly reduced the duration of spontaneous and evoked bursting discharges in a concentration-dependent manner. Synaptic response mediated by N-methyl-D-aspartate (NMDA) receptor activation was isolated by application of a solution containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and either in Mg{sup ++}-free solution or in the presence of 50 {mu}M bicuculline. Application of ethanol reversibly suppressed the duration of NMDA receptor-mediated synaptic response. These results suggest that intoxicating concentrations of ethanol possess anticonvulsant activity through blocking the NMDA receptor-mediated synaptic excitation.

  17. [The role of synaptic transmission in memory and neurodegeneration processes and effects of neurotropic preparations].

    PubMed

    Voronina, T A

    2003-01-01

    Academician Zakusov, in his book Pharmacology of Central Synapses (Moscow, 1973), emphasized the central role of synaptic processes in regulation of various forms of behavior, memory, and psychotropic drug action. The paper considers most promising directions in the search for substances possessing nootropic and neuroprotector properties, many of which were developed at the Institute of Pharmacology based on the notion about synaptic processes. These investigations led to the creation of well-known drugs such as mexidole, noopept, nooglutyl, beglimin, etc. Special attention is devoted to the implementation and modern development of the ideas of Academician Zakusov. Recent data are presented on the role of neuropeptides, neurotrophins, and intracellular signaling mechanisms in synaptic plasticity, memory processes, and development of neurodegenerative states.

  18. Disruption of Akt signaling decreases dopamine sensitivity in modulation of inhibitory synaptic transmission in rat prefrontal cortex.

    PubMed

    Li, Yan-Chun; Yang, Sha-Sha; Gao, Wen-Jun

    2016-09-01

    Akt is a serine/threonine kinase, which is dramatically reduced in the prefrontal cortex (PFC) of patients with schizophrenia, and a deficiency in Akt1 results in PFC function abnormalities. Although the importance of Akt in dopamine (DA) transmission is well established, how impaired Akt signaling affects the DA modulation of synaptic transmission in the PFC has not been characterized. Here we show that Akt inhibitors significantly decreased receptor sensitivity to DA by shifting DA modulation of GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in prefrontal cortical neurons. Akt inhibition caused a significant decrease in synaptic dopamine D2 receptor (D2R) levels with high-dose DA exposure. In addition, Akt inhibition failed to affect DA modulation of IPSCs after blockade of β-arrestin 2. β-arrestin 2-mediated interaction of clathrin with D2R was enhanced by co-application of a Akt inhibitor and DA. Taken together, the reduced response in DA modulation of inhibitory transmission mainly involved β-arrestin 2-dependent D2R desensitization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. miR-135a Regulates Synaptic Transmission and Anxiety-Like Behavior in Amygdala.

    PubMed

    Mannironi, Cecilia; Biundo, Antonio; Rajendran, Samyutha; De Vito, Francesca; Saba, Luana; Caioli, Silvia; Zona, Cristina; Ciotti, Teresa; Caristi, Silvana; Perlas, Emerald; Del Vecchio, Giorgia; Bozzoni, Irene; Rinaldi, Arianna; Mele, Andrea; Presutti, Carlo

    2017-05-09

    MicroRNAs are a class of non-coding RNAs with a growing relevance in the regulation of gene expression related to brain function and plasticity. They have the potential to orchestrate complex phenomena, such as the neuronal response to homeostatic challenges. We previously demonstrated the involvement of miR-135a in the regulation of early stress response. In the present study, we examine the role of miR-135a in stress-related behavior. We show that the knockdown (KD) of miR-135a in the mouse amygdala induces an increase in anxiety-like behavior. Consistently with behavioral studies, electrophysiological experiments in acute brain slices indicate an increase of amygdala spontaneous excitatory postsynaptic currents, as a result of miR-135a KD. Furthermore, we presented direct evidences, by in vitro assays and in vivo miRNA overexpression in the amygdala, that two key regulators of synaptic vesicle fusion, complexin-1 and complexin-2, are direct targets of miR-135a. In vitro analysis of miniature excitatory postsynaptic currents on miR-135a KD primary neurons indicates unpaired quantal excitatory neurotransmission. Finally, increased levels of complexin-1 and complexin-2 proteins were detected in the mouse amygdala after acute stress, accordingly to the previously observed stress-induced miR-135a downregulation. Overall, our results unravel a previously unknown miRNA-dependent mechanism in the amygdala for regulating anxiety-like behavior, providing evidences of a physiological role of miR-135a in the modulation of presynaptic mechanisms of glutamatergic neurotransmission.

  20. Long-term enhancement of synaptic transmission between antennal lobe and mushroom body in cultured Drosophila brain.

    PubMed

    Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru

    2013-01-01

    In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca(2+) indicator in the MBs, we investigated synaptic transmission and plasticity at the AL-MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca(2+) responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca(2+) responses were mediated through Drosophila NMDA receptors (dNRs). AL-MB synaptic transmission was enhanced more than 2 h after the simultaneous 'associative-stimulation' of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL-MB synapses but not at the AFV-MB synapses. AL-MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL-MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL-MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL-MB LTE might be a relevant cellular model for olfactory memory.

  1. Long-term enhancement of synaptic transmission between antennal lobe and mushroom body in cultured Drosophila brain

    PubMed Central

    Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru

    2013-01-01

    In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca2+ indicator in the MBs, we investigated synaptic transmission and plasticity at the AL–MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca2+ responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca2+ responses were mediated through Drosophila NMDA receptors (dNRs). AL–MB synaptic transmission was enhanced more than 2 h after the simultaneous ‘associative-stimulation’ of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL–MB synapses but not at the AFV–MB synapses. AL–MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL–MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL–MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL–MB LTE might be a relevant cellular model for olfactory memory. PMID:23027817

  2. [Changes in the kinetics of quanta secretion-effective mechanism of synaptic transmission modulation].

    PubMed

    Bukharaeva, É A; Nikol'skiĭ, E E

    2010-08-01

    It is widely accepted that the leading presynaptic mechanisms underlying the synaptic plasticity involve changes of the number of neurotransmitter quanta released by one nerve pulse (the quantal content of postsynaptic response) and of the size of a single quantum. In addition, the existence of one more effective though previously ignored mechanism of modulation of synaptic plasticity was suggested related to the change in the time course (kinetics) of secretion of single neurotransmitter quanta forming the multiquantal response. This article reviews current data (including the authors' own results) on the kinetics of evoked neurotransmitter quanta secretion from motor nerve endings in peripheral synapses, mechanisms of their modulation and methods of quantitative analysis.

  3. A caged Ab reveals an immediate/instructive effect of BDNF during hippocampal synaptic potentiation

    PubMed Central

    Kossel, Albrecht H.; Cambridge, Sidney B.; Wagner, Uta; Bonhoeffer, Tobias

    2001-01-01

    Neurotrophins have been shown to be involved in functional strengthening of central nervous system synapses. Although their general importance in this process is undisputed, it remains unresolved whether neurotrophins are truly mediators of synaptic strengthening or merely important cofactors. To address this question, we have devised a method to inactivate endogenous brain-derived neurotrophic factor (BDNF) with high time resolution by “caging” a function-blocking mAb against BDNF with a photosensitive protecting compound. Different assays were used to show that this inactivation of the Ab is reversible by UV light. Synaptic potentiation after τ-burst stimulation in the CA1 region of acute hippocampal slices was significantly less when applying the unmodified Ab compared with the caged Ab. Importantly, photoactivation of the caged Ab during the time of induction of synaptic enhancement led to a marked decrease in potentiation. Our experiments therefore strengthen the view that endogenous BDNF has fast effects during induction of synaptic plasticity. The results additionally show that caged Abs can provide a tool for precise spatiotemporal control over endogenous protein levels. PMID:11724927

  4. Signaling Cascades for δ-Opioid Receptor-Mediated Inhibition of GABA Synaptic Transmission and Behavioral Antinociception

    PubMed Central

    Zhang, Zhi

    2012-01-01

    Membrane trafficking of the δ-opioid receptor (DOR) from intracellular compartments to plasma membrane in central neurons, induced by various pathological conditions such as long-term opioid exposure, represents unique receptor plasticity involved in the mechanisms of long-term opioid effects in opioid addiction and opioid treatment of chronic pain. However, the signaling pathways coupled to the newly emerged functional DOR in central neurons are largely unknown at present. In this study, we investigated the signaling cascades of long-term morphine-induced DOR for its cellular and behavioral effects in neurons of the rat brainstem nucleus raphe magnus (NRM), a key supraspinal site for opioid analgesia. We found that, among the three phospholipase A2 (PLA2)-regulated arachidonic acid (AA) metabolic pathways of lipoxygenase, cyclooxygenase, and epoxygenase, 12-lipoxygenase of the lipoxygenase pathway primarily mediated DOR inhibition of GABA synaptic transmission, because inhibitors of 12-lipoxygenase as well as lipoxygenases and PLA2 largely blocked the DOR- or AA-induced GABA inhibition in NRM neurons in brainstem slices in vitro. Blockade of the epoxygenase pathway was ineffective, whereas blocking either 5-lipoxygenase of the lipoxygenase pathway or the cyclooxygenase pathway enhanced the DOR-mediated GABA inhibition. Behaviorally in rats in vivo, NRM infusion of 12-lipoxygenase inhibitors significantly reduced DOR-induced antinociceptive effect whereas inhibitors of 5-lipoxygenase and cyclooxygenase augmented the DOR antinociception. These findings suggest the PLA2-AA-12-lipoxygenase pathway as a primary signaling cascade for DOR-mediated analgesia through inhibition of GABA neurotransmission and indicate potential therapeutic benefits of combining 5-lipoxygenase and cyclooxygenase inhibitors for maximal pain inhibition. PMID:22144670

  5. Static and dynamic properties of synaptic transmission at the cyto- neural junction of frog labyrinth posterior canal

    PubMed Central

    1989-01-01

    The properties of synaptic transmission have been studied at the cyto- neural junction of the frog labyrinth posterior canal by examining excitatory postsynaptic potential (EPSP) activity recorded intraaxonally from the afferent nerve after abolishing spike firing by tetrodotoxin. The waveform, amplitude, and rate of occurrence of the EPSPs have been evaluated by means of a procedure of fluctuation analysis devised to continuously monitor these parameters, at rest as well as during stimulation of the semicircular canal by sinusoidal rotation at 0.1 Hz, with peak accelerations ranging from 8 to 87 deg.s- 2. Responses to excitatory and inhibitory accelerations were quantified in terms of maximum and minimum EPSP rates, respectively, as well as total numbers of EPSPs occurring during the excitatory and inhibitory half cycles. Excitatory responses were systematically larger than inhibitory ones (asymmetry). Excitatory responses were linearly related either to peak acceleration or to its logarithm, and the same occurred for inhibitory responses. In all units examined, the asymmetry of the response yielded nonlinear two-sided input-output intensity functions. Silencing of EPSPs during inhibition (rectification) was never observed. Comparison of activity during the first cycle of rotation with the average response over several cycles indicated that variable degrees of adaptation (up to 48%) characterize the excitatory response, whereas no consistent adaptation was observed in the inhibitory response. All fibers appeared to give responses nearly in phase with angular velocity, at 0.1 Hz, although the peak rates generally anticipated by a few degrees the peak angular velocity. From the data presented it appears that asymmetry, adaptation, and at least part of the phase lead in afferent nerve response are of presynaptic origin, whereas rectification and possible further phase lead arise at the encoder. To confirm these conclusions a simultaneous though limited study of spike

  6. A subnanomolar concentration of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) pre-synaptically modulates glutamatergic transmission in the rat hippocampus acting through acetylcholine.

    PubMed

    Pecoraro, Valeria; Sardone, Lara Maria; Chisari, Mariangela; Licata, Flora; Li Volsi, Guido; Perciavalle, Vincenzo; Ciranna, Lucia; Costa, Lara

    2017-01-06

    The neuropeptide PACAP modulates synaptic transmission in the hippocampus exerting multiple effects through different receptor subtypes: the underlying mechanisms have not yet been completely elucidated. The neurotransmitter acetylcholine (ACh) also exerts a well-documented modulation of hippocampal synaptic transmission and plasticity. Since PACAP was shown to stimulate ACh release in the hippocampus, we tested whether PACAP acting through ACh might indirectly modulate glutamate-mediated synaptic transmission at a pre- and/or at a post-synaptic level. Using patch clamp on rat hippocampal slices, we tested PACAP effects on stimulation-evoked AMPA receptor-mediated excitatory post-synaptic currents (EPSCsAMPA) in the CA3-CA1 synapse and on spontaneous miniature EPSCs (mEPSCs) in CA1 pyramidal neurons. A subnanomolar dose of PACAP (0.5nM) decreased EPSCsAMPA amplitude, enhanced EPSC paired-pulse facilitation (PPF) and reduced mEPSC frequency, indicating a pre-synaptic decrease of glutamate release probability: these effects were abolished by simultaneous blockade of muscarinic and nicotinic ACh receptors, indicating the involvement of endogenous ACh. The effect of subnanomolar PACAP was abolished by a PAC1 receptor antagonist but not by a VPAC receptor blocker. At a higher concentration (10nM), PACAP inhibited EPSCsAMPA: this effect persisted in the presence of ACh receptor antagonists and did not involve any change in PPF or in mEPSC frequency, thus was not mediated by ACh and was exerted post- synaptically on CA1 pyramidal neurons. We suggest that a high-affinity PAC1 receptor pre-synaptically modulates hippocampal glutamatergic transmission acting through ACh. Therefore, administration of PACAP at very low doses might be envisaged in cognitive diseases with reduced cholinergic transmission.

  7. Giant synaptic potentials in immature rat CA3 hippocampal neurones.

    PubMed

    Ben-Ari, Y; Cherubini, E; Corradetti, R; Gaiarsa, J L

    1989-09-01

    1. Intracellular recordings were made from rat CA3 hippocampal neurones in vitro during the first eighteen days of postnatal life. The cells had resting membrane potentials more negative than -51 mV, action potentials greater than 55 mV and membrane input resistances of 117 +/- 12 M omega. An unusual characteristic of these cells was the presence of spontaneous giant depolarizing potentials (GDPs) which were observed during the first eight postnatal (P) days in over 85% of neurones. They were less frequent between P9 and P12 (48%) and disappeared after P12. 2. The GDPs were synchronously generated by a population of neurones; they reversed polarity at -27 mV when recorded with KCl-containing electrodes and at -51 mV with potassium acetate- or potassium methylsulphate-filled electrodes. 3. The GDPs were blocked by bath application of bicuculline (10 microM) or picrotoxin (100-200 microM). Exogenously applied gamma-aminobutyric acid (GABA; 0.2-1 mM) induced at resting membrane potential a bicuculline-sensitive membrane depolarization which reversed polarity at -25 and -51 mV when recorded with KCl- or potassium methylsulphate-filled electrodes respectively. 4. The GDPs were reduced in frequency or blocked by the N-methyl-D-aspartate (NMDA) receptor antagonists DL-2-amino-7-phosphonoheptanoate (AP-7; 50 microM), D(-)2-amino-5-phosphonovalerate (AP-5, 10-50 microM) and (+-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10-50 microM) or NMDA channel blockers phencyclidine (2 microM) and ketamine (20 microM). 5. Stimulation of the hilus during the first week of life evoked a GDP followed by a hyperpolarization. The GDPs were generated by a population of synchronized neurones and reversed polarity at -27 mV with KCl-filled electrodes and at -52 mV with potassium acetate- or potassium methylsulphate-containing electrodes. 6. Bath application of bicuculline (1-10 microM) or picrotoxin (100-200 microM) reversibly blocked the evoked GDPs in the majority of cells

  8. Giant synaptic potentials in immature rat CA3 hippocampal neurones.

    PubMed Central

    Ben-Ari, Y; Cherubini, E; Corradetti, R; Gaiarsa, J L

    1989-01-01

    1. Intracellular recordings were made from rat CA3 hippocampal neurones in vitro during the first eighteen days of postnatal life. The cells had resting membrane potentials more negative than -51 mV, action potentials greater than 55 mV and membrane input resistances of 117 +/- 12 M omega. An unusual characteristic of these cells was the presence of spontaneous giant depolarizing potentials (GDPs) which were observed during the first eight postnatal (P) days in over 85% of neurones. They were less frequent between P9 and P12 (48%) and disappeared after P12. 2. The GDPs were synchronously generated by a population of neurones; they reversed polarity at -27 mV when recorded with KCl-containing electrodes and at -51 mV with potassium acetate- or potassium methylsulphate-filled electrodes. 3. The GDPs were blocked by bath application of bicuculline (10 microM) or picrotoxin (100-200 microM). Exogenously applied gamma-aminobutyric acid (GABA; 0.2-1 mM) induced at resting membrane potential a bicuculline-sensitive membrane depolarization which reversed polarity at -25 and -51 mV when recorded with KCl- or potassium methylsulphate-filled electrodes respectively. 4. The GDPs were reduced in frequency or blocked by the N-methyl-D-aspartate (NMDA) receptor antagonists DL-2-amino-7-phosphonoheptanoate (AP-7; 50 microM), D(-)2-amino-5-phosphonovalerate (AP-5, 10-50 microM) and (+-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10-50 microM) or NMDA channel blockers phencyclidine (2 microM) and ketamine (20 microM). 5. Stimulation of the hilus during the first week of life evoked a GDP followed by a hyperpolarization. The GDPs were generated by a population of synchronized neurones and reversed polarity at -27 mV with KCl-filled electrodes and at -52 mV with potassium acetate- or potassium methylsulphate-containing electrodes. 6. Bath application of bicuculline (1-10 microM) or picrotoxin (100-200 microM) reversibly blocked the evoked GDPs in the majority of cells

  9. Drosophila cdk5 is needed for locomotive behavior and NMJ elaboration, but seems dispensable for synaptic transmission.

    PubMed

    Kissler, Alexander E; Pettersson, Nina; Frölich, Andreas; Sigrist, Stephan J; Suter, Beat

    2009-05-01

    Cyclin-dependent kinase 5 (Cdk5) functions in postmitotic neuronal cells and play roles in cell differentiation, cell migration, axonal guidance, and synaptic function. Here, we demonstrate that Drosophila cdk5 is dispensable for adult viability and fertility, a feature that allows us to study its physiological function in the whole animal model. For the adult, cdk5 is needed for proper locomotion and flight performance. Larvae lacking cdk5 in the presynaptic tissue display abnormal crawling motion, and their neuromuscular junctions (NMJ) are elongated and contain a higher number of boutons that are smaller. As a result of these two counteracting effects, the total synaptic area/NMJ is similar to wild type, leading to normal synaptic transmission, indicating that a compensatory mechanism is capable of correcting the problem caused by the lack of cdk5. futsch, the Drosophila MAP1B homolog, is also involved in NMJ morphogenesis, and analysis of the NMJ phenotype of the double mutant futsch(K68); cdk5(-) indicates that cdk5 is epistatic to futsch in this process.

  10. Electrotonic profile and passive propagation of synaptic potentials in three subpopulations of hippocampal CA1 interneurons.

    PubMed

    Emri, Z; Antal, K; Gulyás, A I; Megías, M; Freund, T F

    2001-01-01

    To elucidate the role of dendritic morphology in signal transfer, the passive propagation of somatic and dendritic potentials was compared in multi-compartment models of three interneuron subpopulations in the CA1 region. Nine calbindin-, 15 calretinin- and 10 parvalbumin-containing cells were modelled incorporating the detailed geometry, the currents of the action potentials in the soma, and the AMPA, N-methyl-D-aspartate and GABA-B receptor-mediated postsynaptic currents in the dendrites. The cable properties show characteristic differences among the subpopulations. The morphotonic length of calbindin and calretinin cell dendrites is larger than of parvalbumin cells. Thus parvalbumin cells are more compact than calbindin or calretinin cells unless the ratio of their axial and membrane resistivities exceeds the ratios of the other two cell types by more than 33%. In calbindin cells, the distal parts of the extremely long dendrites that invade the alveus are virtually isolated from the soma for passively propagating signals. The synaptic potentials evoked at a given morphotonic distance from the soma show larger differences locally on the dendrites than on the soma in all subpopulations. Both the somatic and dendritic amplitude ratios are the smallest in PV cells. In calbindin cells the somatic amplitude of synaptic potentials evoked at the same morphotonic distance from the soma is similar regardless of the number of branchpoints along their path. In calretinin and parvalbumin cells, from dendrites with long primary segments synaptic potentials reach the soma with larger amplitude than from dendrites that are branching close to the soma. The dendrites with the larger impact on somatic membrane potential are usually the dendrites that enter the stratum lacunosum-moleculare. These results indicate that dendritic morphology plays a role in changing the effectiveness of synaptic potentials evoked at different dendritic locations, and in this way is likely to be an

  11. From Synaptic Transmission to Cognition: An Intermediary Role for Dendritic Spines

    ERIC Educational Resources Information Center

    Gonzalez-Burgos, Ignacio

    2012-01-01

    Dendritic spines are cytoplasmic protrusions that develop directly or indirectly from the filopodia of neurons. Dendritic spines mediate excitatory neurotransmission and they can isolate the electrical activity generated by synaptic impulses, enabling them to translate excitatory afferent information via several types of plastic changes, including…

  12. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons.

    PubMed

    Mao, Wenjie; Watanabe, Takuya; Cho, Sukhee; Frost, Jeffrey L; Truong, Tina; Zhao, Xiaohu; Futai, Kensuke

    2015-04-01

    The Shank genes (SHANK1, 2, 3) encode scaffold proteins highly enriched in postsynaptic densities where they regulate synaptic structure in spiny neurons. Mutations in human Shank genes are linked to autism spectrum disorder and schizophrenia. Shank1 mutant mice exhibit intriguing cognitive phenotypes reminiscent of individuals with autism spectrum disorder. However, the molecular mechanisms leading to the human pathophysiological phenotypes and mouse behaviors have not been elucidated. In this study it is shown that Shank1 protein is highly localized in parvalbumin-expressing (PV+) fast-spiking inhibitory interneurons in the hippocampus. Importantly, a lack of Shank1 in hippocampal CA1 PV+ neurons reduced excitatory synaptic inputs and inhibitory synaptic outputs to pyramidal neurons. Furthermore, it is demonstrated that hippocampal CA1 pyramidal neurons in Shank1 mutant mice exhibit a shift in the excitatory and inhibitory balance (E-I balance), a pathophysiological hallmark of autism spectrum disorder. The mutant mice also exhibit lower expression of gephyrin (a scaffold component of inhibitory synapses), supporting the dysregulation of E-I balance in the hippocampus. These results suggest that Shank1 scaffold in PV+ interneurons regulates excitatory synaptic strength and participates in the maintenance of E-I balance in excitatory neurons.

  13. From Synaptic Transmission to Cognition: An Intermediary Role for Dendritic Spines

    ERIC Educational Resources Information Center

    Gonzalez-Burgos, Ignacio

    2012-01-01

    Dendritic spines are cytoplasmic protrusions that develop directly or indirectly from the filopodia of neurons. Dendritic spines mediate excitatory neurotransmission and they can isolate the electrical activity generated by synaptic impulses, enabling them to translate excitatory afferent information via several types of plastic changes, including…

  14. A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors

    PubMed Central

    Parrish, Walker P.; Shonesy, Brian C.; Marks, Christian R.; Mortlock, Douglas P.; Nakagawa, Terunaga

    2017-01-01

    Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple Ca

  15. A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors.

    PubMed

    Stephenson, Jason R; Wang, Xiaohan; Perfitt, Tyler L; Parrish, Walker P; Shonesy, Brian C; Marks, Christian R; Mortlock, Douglas P; Nakagawa, Terunaga; Sutcliffe, James S; Colbran, Roger J

    2017-02-22

    Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes.SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions

  16. ANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization.

    PubMed

    Tindi, Jaafar O; Chávez, Andrés E; Cvejic, Svetlana; Calvo-Ochoa, Erika; Castillo, Pablo E; Jordan, Bryen A

    2015-06-17

    NMDA receptors (NMDARs) are key mediators of glutamatergic transmission and synaptic plasticity, and their dysregulation has been linked to diverse neuropsychiatric and neurodegenerative disorders. While normal NMDAR function requires regulated expression and trafficking of its different subunits, the molecular mechanisms underlying these processes are not fully understood. Here we report that the amyloid precursor protein intracellular domain associated-1 protein (AIDA-1), which associates with NMDARs and is encoded by ANKS1B, a gene recently linked to schizophrenia, regulates synaptic NMDAR subunit composition. Forebrain-specific AIDA-1 conditional knock-out (cKO) mice exhibit reduced GluN2B-mediated and increased GluN2A-mediated synaptic transmission, and biochemical analyses show AIDA-1 cKO mice have low GluN2B and high GluN2A protein levels at isolated hippocampal synaptic junctions compared with controls. These results are corroborated by immunocytochemical and electrophysiological analyses in primary neuronal cultures following acute lentiviral shRNA-mediated knockdown of AIDA-1. Moreover, hippocampal NMDAR-dependent but not metabotropic glutamate receptor-dependent plasticity is impaired in AIDA-1 cKO mice, further supporting a role for AIDA-1 in synaptic NMDAR function. We also demonstrate that AIDA-1 preferentially associates with GluN2B and with the adaptor protein Ca(2+)/calmodulin-dependent serine protein kinase and kinesin KIF17, which regulate the transport of GluN2B-containing NMDARs from the endoplasmic reticulum (ER) to synapses. Consistent with this function, GluN2B accumulates in ER-enriched fractions in AIDA-1 cKO mice. These findings suggest that AIDA-1 regulates NMDAR subunit composition at synapses by facilitating transport of GluN2B from the ER to synapses, which is critical for NMDAR plasticity. Our work provides an explanation for how AIDA-1 dysfunction might contribute to neuropsychiatric conditions, such as schizophrenia. Copyright

  17. Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3.

    PubMed

    Matsukawa, Hiroshi; Wolf, Alexander M; Matsushita, Shinichi; Joho, Rolf H; Knöpfel, Thomas

    2003-08-20

    Micelacking both Kv3.1 and both Kv3.3 K+ channel alleles display severe motor deficits such as tremor, myoclonus, and ataxic gait. Micelacking one to three alleles at the Kv3.1 and Kv3.3 loci exhibit in an allele dose-dependent manner a modest degree of ataxia. Cerebellar granule cells coexpress Kv3.1 and Kv3.3 K+ channels and are therefore candidate neurons that might be involved in these behavioral deficits. Hence, we investigated the synaptic mechanisms of transmission in the parallel fiber-Purkinje cell system. Action potentials of parallel fibers were broader in mice lacking both Kv3.1 and both Kv3.3 alleles and in mice lacking both Kv3.1 and a single Kv3.3 allele compared with those of wild-type mice. The transmission of high-frequency trains of action potentials was only impaired at 200 Hz but not at 100 Hz in mice lacking both Kv3.1 and Kv3.3 genes. However, paired-pulse facilitation (PPF) at parallel fiber-Purkinje cell synapses was dramatically reduced in a gene dose-dependent manner in mice lacking Kv3.1 or Kv3.3 alleles. Normal PPF could be restored by reducing the extracellular Ca2+ concentration indicating that increased activity-dependent presynaptic Ca2+ influx, at least in part caused the altered PPF in mutant mice. Induction of metabotropic glutamate receptor-mediated EPSCs was facilitated, whereas longterm depression was not impaired but rather facilitated in Kv3.1/Kv3.3 double-knockout mice. These results demonstrate the importance of Kv3 potassium channels in regulating the dynamics of synaptic transmission at the parallel fiber-Purkinje cell synapse and suggest a correlation between short-term plasticity at the parallel fiber-Purkinje cell synapse and motor performance.

  18. Developmental enhancement of alpha2-adrenoceptor-mediated suppression of inhibitory synaptic transmission onto mouse cerebellar Purkinje cells.

    PubMed

    Hirono, M; Matsunaga, W; Chimura, T; Obata, K

    2008-09-22

    Noradrenaline (NA) modulates glutamatergic and GABAergic transmission in various areas of the brain. It is reported that some alpha2-adrenoceptor subtypes are expressed in the cerebellar cortex and alpha2-adrenoceptors may play a role in motor coordination. Our previous study demonstrated that the selective alpha2-adrenoceptor agonist clonidine partially depresses spontaneous inhibitory postsynaptic currents (sIPSCs) in mouse cerebellar Purkinje cells (PCs). Here we found that the inhibitory effect of clonidine on sIPSCs was enhanced during postnatal development. The activation of alpha2-adrenoceptors by clonidine did not affect sIPSCs in PCs at postnatal days (P) 8-10, when PCs showed a few sIPSCs and interneurons in the molecular layer (MLIs) did not cause action potential (AP). In the second postnatal week, the frequency of sIPSCs increased temporarily and reached a plateau at P14. By contrast, MLIs began to fire at P11 with the firing rate gradually increasing thereafter and reaching a plateau at P21. In parallel with this rise in the rate of firing, the magnitude of the clonidine-mediated inhibition of sIPSCs increased during postnatal development. Furthermore, the magnitude of the clonidine-mediated firing suppression in MLIs, which seemed to be mediated by a reduction in amplitude of the hyperpolarization-activated nonselective cation current, I(h), was constant across development. Both alpha2A- and alpha2B-, but not alpha2C-, adrenoceptors were strongly expressed in MLIs at P13, and P31. Therefore, the developmental enhancement of the clonidine-mediated inhibition of sIPSCs is attributed to an age-dependent increase in AP-derived sIPSCs, which can be blocked by clonidine. Thus, presynaptic activation of alpha2-adrenoceptors inhibits cerebellar inhibitory synaptic transmission after the second postnatal week, leading to a restriction of NA signaling, which is mainly mediated by alpha1- and beta2-adrenoceptors in the adult cerebellar neuronal circuit.

  19. Activity-Dependent Calpain Activation Plays a Critical Role in Synaptic Facilitation and Post-Tetanic Potentiation

    ERIC Educational Resources Information Center

    Khoutorsky, Arkady; Spira, Micha E.

    2009-01-01

    Synaptic facilitation and post-tetanic potentiation (PTP) are believed to necessitate active regeneration of the release machinery and supply of synaptic vesicles to a ready-releasable site. The prevailing hypothesis assumes that synapsins play pivotal roles in these processes. Using a cholinergic synapse formed between cultured "Aplysia" neurons…

  20. Activity-Dependent Calpain Activation Plays a Critical Role in Synaptic Facilitation and Post-Tetanic Potentiation

    ERIC Educational Resources Information Center

    Khoutorsky, Arkady; Spira, Micha E.

    2009-01-01

    Synaptic facilitation and post-tetanic potentiation (PTP) are believed to necessitate active regeneration of the release machinery and supply of synaptic vesicles to a ready-releasable site. The prevailing hypothesis assumes that synapsins play pivotal roles in these processes. Using a cholinergic synapse formed between cultured "Aplysia" neurons…

  1. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  2. 5-HT(1A) and 5-HT(7) receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission.

    PubMed

    Costa, L; Trovato, C; Musumeci, S A; Catania, M V; Ciranna, L

    2012-04-01

    We have studied the effects of 5-HT(1A) and 5-HT(7) serotonin receptor activation in hippocampal CA3-CA1 synaptic transmission using patch clamp on mouse brain slices. Application of either 5-HT or 8-OH DPAT, a mixed 5-HT(1A)/5-HT(7) receptor agonist, inhibited AMPA receptor-mediated excitatory post synaptic currents (EPSCs); this effect was mimicked by the 5-HT(1A) receptor agonist 8-OH PIPAT and blocked by the 5-HT(1A) antagonist NAN-190. 8-OH DPAT increased paired-pulse facilitation and reduced the frequency of mEPSCs, indicating a presynaptic reduction of glutamate release probability. In another group of neurons, 8-OH DPAT enhanced EPSC amplitude but did not alter paired-pulse facilitation, suggesting a postsynaptic action; this effect persisted in the presence of NAN-190 and was blocked by the 5-HT(7) receptor antagonist SB-269970. To confirm that EPSC enhancement was mediated by 5-HT(7) receptors, we used the compound LP-44, which is considered a selective 5-HT(7) agonist. However, LP-44 reduced EPSC amplitude in most cells and instead increased EPSC amplitude in a subset of neurons, similarly to 8-OH DPAT. These effects were respectively antagonized by NAN-190 and by SB-269970, indicating that under our experimental condition LP-44 behaved as a mixed agonist. 8-OH DPAT also modulated the current evoked by exogenously applied AMPA, inducing either a reduction or an increase of amplitude in distinct neurons; these effects were respectively blocked by 5-HT(1A) and 5-HT(7) receptor antagonists, indicating that both receptors exert a postsynaptic action. Our results show that 5-HT(1A) receptors inhibit CA3-CA1 synaptic transmission acting both pre- and postsynaptically, whereas 5-HT(7) receptors enhance CA3-CA1 synaptic transmission acting exclusively at a postsynaptic site. We suggest that a selective pharmacological targeting of either subtype may be envisaged in pathological loss of hippocampal-dependent cognitive functions. In this respect, we underline the

  3. Diacylglycerol Kinases in the Coordination of Synaptic Plasticity

    PubMed Central

    Lee, Dongwon; Kim, Eunjoon; Tanaka-Yamamoto, Keiko

    2016-01-01

    Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although, detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG)-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Recent evidences indicate that DAG kinases (DGKs), which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins. PMID:27630986

  4. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina.

    PubMed

    Van Hook, Matthew J; Thoreson, Wallace B

    2015-09-01

    Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca(2+) dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of IC l(Ca) confirmed that endogenous Ca(2+) buffering is equivalent to ~0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca(2+)] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca(2+) currents. Peak efficiency of ~0.2 vesicles/channel was similar to that of cones (~0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca(2+) buffering. However, weak Ca(2+) buffering speeded Ca(2+)/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca(2+) buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca(2+)] at nonribbon sites in cones with weak Ca(2+) buffering and by inhibiting Ca(2+) extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca(2+) buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca(2+)/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods.

  5. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina

    PubMed Central

    Van Hook, Matthew J; Thoreson, Wallace B

    2015-01-01

    Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods. PMID:26416977

  6. Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord.

    PubMed

    Kosugi, Masafumi; Nakatsuka, Terumasa; Fujita, Tsugumi; Kuroda, Yasuo; Kumamoto, Eiichi

    2007-04-18

    TRPA1 is expressed in primary sensory neurons and hair cells, and it is proposed to be activated by cold stimuli, mechanical stimuli, or pungent ingredients. However, its role in regulating synaptic transmission has never been documented yet. In the present study, we examined whether activation of the TRPA1 channels affects synaptic transmission in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. A chief ingredient of mustard oil, allyl isothiocyanate (AITC), superfused for 2 min markedly increased the frequency and amplitude of spontaneous EPSCs (sEPSCs), which was accompanied by an inward current. Similar actions were produced by cinnamaldehyde and allicin. The AITC-induced increases in sEPSC frequency and amplitude were resistant to tetrodotoxin (TTX) and La3+, whereas being significantly reduced in extent in a Ca2+-free bath solution. In the presence of glutamate receptor antagonists CNQX and AP5, AITC did not generate any synaptic activities. The AITC-induced increases in sEPSC frequency and amplitude were reduced by ruthenium red, whereas being unaffected by capsazepine. AITC also increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents; this AITC action was abolished in the presence of TTX or glutamate receptor antagonists. These results indicate that TRPA1 appears to be localized not only at presynaptic terminals on SG neurons to enhance glutamate release, but also in terminals of primary afferents innervating onto spinal inhibitory interneurons, which make synapses with SG neurons. This central modulation of sensory signals may be associated with physiological and pathological pain sensations.

  7. Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse

    PubMed Central

    Yao, Cong; Vanderpool, Kimberly G.; Delfiner, Matthew; Eddy, Vanessa; Lucaci, Alexander G.; Soto-Riveros, Carolina; Yasumura, Thomas; Rash, John E.

    2014-01-01

    In contrast to the knowledge of chemical synapses, little is known regarding the properties of gap junction-mediated electrical synapses in developing zebrafish, which provide a valuable model to study neural function at the systems level. Identifiable “mixed” (electrical and chemical) auditory synaptic contacts known as “club endings” on Mauthner cells (2 large reticulospinal neurons involved in tail-flip escape responses) allow exploration of electrical transmission in fish. Here, we show that paralleling the development of auditory responses, electrical synapses at these contacts become anatomically identifiable at day 3 postfertilization, reaching a number of ∼6 between days 4 and 9. Furthermore, each terminal contains ∼18 gap junctions, representing between 2,000 and 3,000 connexon channels formed by the teleost homologs of mammalian connexin 36. Electrophysiological recordings revealed that gap junctions at each of these contacts are functional and that synaptic transmission has properties that are comparable with those of adult fish. Thus a surprisingly small number of mixed synapses are responsible for the acquisition of auditory responses by the Mauthner cells, and these are likely sufficient to support escape behaviors at early developmental stages. PMID:25080573

  8. Activity-regulated Somatostatin Expression Reduces Dendritic Spine Density and Lowers Excitatory Synaptic Transmission via Postsynaptic Somatostatin Receptor 4*

    PubMed Central

    Hou, Zai-Hua; Yu, Xiang

    2013-01-01

    Neuronal activity regulates multiple aspects of the morphological and functional development of neural circuits. One mechanism by which it achieves this is through regulation of gene expression. In a screen for activity-induced genes, we identified somatostatin (SST), a neuropeptide secreted by the SST subtype of interneurons. Using real time quantitative PCR and ELISA, we showed that persistent elevation of neuronal activity increased both the gene expression and protein secretion of SST over a relatively prolonged time course of 48 h. Using primary hippocampal neuronal cultures, we found that SST treatment for 1 day significantly reduced the density of dendritic spines, the morphological bases of excitatory synapses. Furthermore, the density of pre- and postsynaptic markers of excitatory synapses was significantly lowered following SST treatment, whereas that of inhibitory synapses was not affected. Consistently, SST treatment reduced the frequency of miniature excitatory postsynaptic currents, without affecting inhibition. Finally, lowering the endogenous level of SST receptor subtype 4 in individual hippocampal pyramidal neurons significantly blocked the effect of SST in reducing spine density and excitatory synaptic transmission in a cell autonomous fashion, suggesting that the effect of SST in regulating excitatory synaptic transmission is mainly mediated by SST receptor subtype 4. Together, our results demonstrated that activity-dependent release of SST reduced the density of dendritic spines and the number of excitatory synapses through postsynaptic activation of SST receptor subtype 4 in pyramidal neurons. To our knowledge, this is the first demonstration of the long term effect of SST on neuronal morphology. PMID:23233668

  9. Relative contribution of TARPs γ-2 and γ-7 to cerebellar excitatory synaptic transmission and motor behavior.

    PubMed

    Yamazaki, Maya; Le Pichon, Claire E; Jackson, Alexander C; Cerpas, Manuel; Sakimura, Kenji; Scearce-Levie, Kimberly; Nicoll, Roger A

    2015-01-27

    Transmembrane AMPA receptor regulatory proteins (TARPs) play an essential role in excitatory synaptic transmission throughout the central nervous system (CNS) and exhibit subtype-specific effects on AMPA receptor (AMPAR) trafficking, gating, and pharmacology. The function of TARPs has largely been determined through work on canonical type I TARPs such as stargazin (TARP γ-2), absent in the ataxic stargazer mouse. Little is known about the function of atypical type II TARPs, such as TARP γ-7, which exhibits variable effects on AMPAR function. Because γ-2 and γ-7 are both strongly expressed in multiple cell types in the cerebellum, we examined the relative contribution of γ-2 and γ-7 to both synaptic transmission in the cerebellum and motor behavior by using both the stargazer mouse and a γ-7 knockout (KO) mouse. We found that the loss of γ-7 alone had little effect on climbing fiber (cf) responses in Purkinje neurons (PCs), yet the additional loss of γ-2 all but abolished cf responses. In contrast, γ-7 failed to make a significant contribution to excitatory transmission in stellate cells and granule cells. In addition, we generated a PC-specific deletion of γ-2, with and without γ-7 KO background, to examine the relative contribution of γ-2 and γ-7 to PC-dependent motor behavior. Selective deletion of γ-2 in PCs had little effect on motor behavior, yet the additional loss of γ-7 resulted in a severe disruption in motor behavior. Thus, γ-7 is capable of supporting a component of excitatory transmission in PCs, sufficient to maintain essentially normal motor behavior, in the absence of γ-2.

  10. The endocannabinoid system regulates synaptic transmission in nucleus accumbens by increasing DAGL-α expression following short-term morphine withdrawal.

    PubMed

    Wang, Xing-Qin; Ma, Jie; Cui, Wei; Yuan, Wei-Xin; Zhu, Gang; Yang, Qian; Heng, Li-Jun; Gao, Guo-Dong

    2016-04-01

    The endocannabinoid (eCB) system is involved in pathways that regulate drug addiction and eCB-mediated synaptic plasticity has been linked with addictive behaviours. Here, we investigated the molecular mechanisms underlying the changes in eCB-dependent synaptic plasticity in the nucleus accumbens core (NAcc) following short-term withdrawal from repeated morphine treatment. Conditioned place preference (CPP) was used to evaluate the rewarding effects of morphine in rats. Evoked inhibitory postsynaptic currents of medium spiny neurons in NAcc were measured using whole-cell patch-clamp recordings. Changes in depolarization-induced suppression of inhibition (DSI) in the NAcc were assessed to determine the effect of short-term morphine withdrawal on the eCB system. To identify the potential modulation mechanism of short-term morphine withdrawal on the eCB system, the expression of diacylglycerol lipase α (DGL-α) and monoacylglycerol lipase was detected by Western blot analysis. Repeated morphine administration for 7 days induced stable CPP. Compared with the saline group, the level of DSI in the NAcc was significantly increased in rats after short-term morphine withdrawal. Furthermore, this increase in DSI coincided with a significant increase in the expression of DGL-α. Short-term morphine withdrawal potentiates eCB modulation of inhibitory synaptic transmission in the NAcc. We also found that DGL-α expression was elevated after short-term morphine withdrawal, suggesting that the eCB 2-arachidonyl-glycerol but not anandamide mediates the increase in DSI. These findings provide useful insights into the mechanisms underlying eCB-mediated plasticity in the NAcc during drug addiction. This article is part of a themed section on Endocannabinoids. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.7/issuetoc. © 2014 The British Pharmacological Society.

  11. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    SciTech Connect

    Krueger, Katharina Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-11-15

    In this study, the effects of pentavalent dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and trivalent dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 {mu}mol/l. DMA{sup V} had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA{sup III} significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 {mu}mol/l DMA{sup III} in adult and 10 {mu}mol/l DMA{sup III} in young rats. Moreover, DMA{sup III} significantly affected the LTP-induction. Application of 10 {mu}mol/l DMA{sup III} resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA{sup III}. In slices of young rats, the depressant effects of DMA{sup III} were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA{sup V} on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential.

  12. Modulation of spike-evoked synaptic transmission: The role of presynaptic calcium and potassium channels.

    PubMed

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2015-09-01

    Action potentials are usually considered as the smallest unit of neuronal information conveyed by presynaptic neurons to their postsynaptic target. Thus, neuronal signaling in brain circuits is all-or-none or digital. However, recent studies indicate that subthreshold analog variation in presynaptic membrane potential modulates spike-evoked transmission. The informational content of each presynaptic action potential is therefore greater than initially expected. This property constitutes a form of fast activity-dependent modulation of functional coupling. Therefore, it could have important consequences on information processing in neural networks in parallel with more classical forms of presynaptic short-term facilitation based on repetitive stimulation, modulation of presynaptic calcium or modifications of the release machinery. We discuss here how analog voltage shift in the presynaptic neuron may regulate spike-evoked release of neurotransmitter through the modulation of voltage-gated calcium and potassium channels in the axon and presynaptic terminal. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Intracellular chloride ions regulate the time-course of GABA-mediated inhibitory synaptic transmission

    PubMed Central

    Houston, Catriona M.; Bright, Damian P.; Sivilotti, Lucia G; Beato, Marco; Smart, Trevor G.

    2009-01-01

    The time-dependent integration of excitatory and inhibitory synaptic currents is an important process for shaping the input-output profiles of individual excitable cells, and therefore the activity of neuronal networks. Here, we show that the decay time-course of GABAergic inhibitory synaptic currents is considerably faster when recorded with physiological internal Cl− concentrations than with symmetrical Cl− solutions. This effect of intracellular Cl− is due to a direct modulation of the GABAA receptor that is independent of the net direction of current flow through the ion channel. As a consequence, the time window during which GABAergic inhibition can counteract coincident excitatory inputs is much shorter, under physiological conditions, compared to that previously measured using high internal Cl−. This is expected to have implications for neuronal network excitability and neurodevelopment, and for our understanding of pathological conditions, such as epilepsy and chronic pain, where intracellular Cl− concentrations can be altered. PMID:19692617

  14. Regulation of Synaptic Transmission by Presynaptic CaMKII and BK channels

    PubMed Central

    Wang, Zhao-Wen

    2009-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the BK channel are enriched at the presynaptic nerve terminal, where CaMKII associates with synaptic vesicles whereas the BK channel colocalizes with voltage-sensitive Ca2+ channels (VSCCs) in the plasma membrane. Mounting evidence suggests that these two proteins play important roles in controlling neurotransmitter release. Presynaptic BK channels primarily serve as a negative regulator of neurotransmitter release. In contrast, presynaptic CaMKII either enhances or inhibits neurotransmitter release and synaptic plasticity depending on experimental/physiological conditions and properties of specific synapses. The different functions of presynaptic CaMKII appear to be mediated by distinct downstream proteins, including the BK channel. PMID:18759010

  15. Intracellular chloride ions regulate the time course of GABA-mediated inhibitory synaptic transmission.

    PubMed

    Houston, Catriona M; Bright, Damian P; Sivilotti, Lucia G; Beato, Marco; Smart, Trevor G

    2009-08-19

    The time-dependent integration of excitatory and inhibitory synaptic currents is an important process for shaping the input-output profiles of individual excitable cells, and therefore the activity of neuronal networks. Here, we show that the decay time course of GABAergic inhibitory synaptic currents is considerably faster when recorded with physiological internal Cl(-) concentrations than with symmetrical Cl(-) solutions. This effect of intracellular Cl(-) is due to a direct modulation of the GABA(A) receptor that is independent of the net direction of current flow through the ion channel. As a consequence, the time window during which GABAergic inhibition can counteract coincident excitatory inputs is much shorter, under physiological conditions, than that previously measured using high internal Cl(-). This is expected to have implications for neuronal network excitability and neurodevelopment, and for our understanding of pathological conditions, such as epilepsy and chronic pain, where intracellular Cl(-) concentrations can be altered.

  16. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    PubMed Central

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  17. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    ERIC Educational Resources Information Center

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  18. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    ERIC Educational Resources Information Center

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  19. Modulation of synaptic transmission by adenosine in layer 2/3 of the rat visual cortex in vitro

    PubMed Central

    Bannon, Nicholas; Zhang, Pei; Ilin, Vladimir; Chistiakova, Marina; Volgushev, Maxim

    2014-01-01

    Adenosine is a wide-spread endogenous neuromodulator. In the central nervous system it activates A1 and A2A receptors (A1Rs and A2ARs) which have differential distributions, different affinities to adenosine, are coupled to different G-proteins, and have opposite effects on synaptic transmission. Although effects of adenosine are studied in detail in several brain areas, such as hippocampus and striatum, the heterogeneity of the effects of A1R and A 2A R activation and their differential distribution preclude generalization over brain areas and cell types. Here we study adenosine's effects on excitatory synaptic transmission to layer 2/3 pyramidal neurons in slices of the rat visual cortex. We measured effects of bath application of adenosine receptor ligands on evoked EPSPs, miniature EPSPs (mEPSPs), and membrane properties. Adenosine reduced the amplitude of evoked EPSPs and EPSCs, and reduced frequency of mEPSPs in a concentration dependent and reversible manner. Concurrent with EPSP/C amplitude reduction was an increase in the paired-pulse ratio. These effects were blocked by application of the selective A1R antagonist DPCPX, suggesting that activation of presynaptic A1Rs suppresses excitatory transmission by reducing release probability. Adenosine (20 μM) hyperpolarized the cell membrane from 65.3±1.5 to -67.7±1.8 mV, and reduced input resistance from 396.5±44.4 to 314.0±36.3 MOhm (~20%). These effects were also abolished by DPCPX, suggesting postsynaptic A1Rs. Application of the selective A2AR antagonist SCH-58261 on the background of high adenosine concentrations revealed an additional decrease in EPSP amplitude. Moreover, application of the A2AR agonist CGS-21680 led to an A1R-dependent increase in mEPSP frequency. Dependence of the A2AR effects on the A1R availability suggests interaction between these receptors, whereby A2ARs exert their facilitatory effect on synaptic transmission by inhibiting the A1R mediated suppression. Our results demonstrate

  20. Impaired Synaptic Development, Maintenance, and Neuromuscular Transmission in LRP4 Myasthenia

    PubMed Central

    Selcen, Duygu; Ohkawara, Bisei; Shen, Xin-Ming; McEvoy, Kathleen; Ohno, Kinji; Engel, Andrew G.

    2015-01-01

    IMPORTANCE Congenital myasthenic syndromes (CMS) are heterogeneous disorders. Defining the phenotypic features, genetic basis, and pathomechanisms of a CMS is relevant to prognosis, genetic counseling, and therapy. OBJECTIVE To characterize clinical, structural, electrophysiologic, and genetic features of a CMS and search for optimal therapy. DESIGN, SETTINGS, AND PARTICIPANTS Two sisters, 34 and 20 years of age suffering from a CMS affecting the limb-girdle muscles were investigated at an academic medical center by clinical observation, in vitro analysis of neuromuscular transmission, cytochemical and electron microscopy studies of the neuromuscular junction, exome sequencing, expression studies in HEK293 and COS-7 cells, and for response to therapy. MAIN OUTCOMES AND MEASURES We identified the disease gene and mutation, confirmed pathogenicity of the mutation by expression studies, and instituted optimal pharmacotherapy. RESULTS Intercostal muscle endplates (EPs) were abnormally small with attenuated reactivities for the acetylcholine receptor and acetylcholine esterase. Most EPs had poorly differentiated or degenerate junctional folds and some appeared denuded of nerve terminals. The amplitude of the EP potential (EPP), the miniature EPP, and the quantal content of the EPP were all markedly reduced. Exome sequencing identified a novel homozygous p.Glu1233Ala mutation in LRP4, a coreceptor for agrin to activate MuSK, required for EP development and maintenance. Expression studies indicate the mutation compromises ability of LRP4 to bind to, phosphorylate, and activate MuSK. Albuterol improved the patients’ symptoms. CONCLUSIONS AND RELEVANCE We identify a second CMS kinship harboring mutations in LRP4, identify the mechanisms that impair neuromuscular transmission, and mitigate the disease by appropriate therapy. PMID:26052878

  1. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats

    SciTech Connect

    Krueger, Katharina Straub, Heidrun; Hirner, Alfred V.; Hippler, Joerg; Binding, Norbert; Musshoff, Ulrich

    2009-04-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krueger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mu{beta}hoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krueger, K., Straub, H., Binding, N., Mu{beta}hoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krueger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Mu{beta}hoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA{sup V}) and monomethylarsonous acid (MMA{sup III}) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA{sup V} had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA{sup III} strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 {mu}mol/l (adult rats) and 25 {mu}mol/l (young rats) and LTP amplitudes at concentrations of 25 {mu}mol/l (adult rats) and 10 {mu}mol/l (young rats), respectively. In contrast, application of 1 {mu}mol/l MMA{sup III} led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at

  2. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats.

    PubMed

    Krüger, Katharina; Straub, Heidrun; Hirner, Alfred V; Hippler, Jörg; Binding, Norbert; Musshoff, Ulrich

    2009-04-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krüger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mubetahoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krüger, K., Straub, H., Binding, N., Mubetahoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krüger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Mubetahoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA(V)) and monomethylarsonous acid (MMA(III)) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA(V) had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA(III) strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 micromol/l (adult rats) and 25 micromol/l (young rats) and LTP amplitudes at concentrations of 25 micromol/l (adult rats) and 10 micromol/l (young rats), respectively. In contrast, application of 1 micromol/l MMA(III) led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at this concentration (Kr

  3. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model.

    PubMed

    Smolen, Paul; Baxter, Douglas A; Byrne, John H

    2012-01-01

    Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.

  4. Depotentiation from Potentiated Synaptic Strength in a Tristable System of Coupled Phosphatase and Kinase

    PubMed Central

    Chen, Mengjiao; Ren, Wei; Wang, Xingang

    2016-01-01

    Lo