Designing, Constructing, and Using an Inexpensive Electronic Buret
ERIC Educational Resources Information Center
Cao, Tingting; Zhang, Qing; Thompson, Jonathan E.
2015-01-01
A syringe-based, electronic fluid dispenser is described. The device mechanically connects a syringe plunger to a linear slide potentiometer. As the syringe plunger moves, the electrical resistance between terminals of the potentiometer varies. Application and subsequent measurement of a DC voltage between the potentiometer pins is used to track…
Instrumented Glove Measures Positions Of Fingers
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1993-01-01
Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.
ZERO SUPPRESSION FOR RECORDERS
Fort, W.G.S.
1958-12-30
A zero-suppression circuit for self-balancing recorder instruments is presented. The essential elements of the circuit include a converter-amplifier having two inputs, one for a reference voltage and the other for the signal voltage under analysis, and a servomotor with two control windings, one coupled to the a-c output of the converter-amplifier and the other receiving a reference input. Each input circuit to the converter-amplifier has a variable potentiometer and the sliders of the potentiometer are ganged together for movement by the servoinotor. The particular noveity of the circuit resides in the selection of resistance values for the potentiometer and a resistor in series with the potentiometer of the signal circuit to ensure the full value of signal voltage variation is impressed on a recorder mechanism driven by servomotor.
Compact high-sensitivity potentiometer for detection of low ion concentrations in liquids
NASA Astrophysics Data System (ADS)
Balevicius, Z.; Lescinskas, R.; Celiesiute, R.; Stirke, A.; Balevicius, S.; Kersulis, S.; Bleizgys, V.; Maciuleviciene, R.; Ramanavicius, A.; Zurauskiene, N.
2018-04-01
The compact potentiometer, based on an electronic circuit protected from electrostatic and electromagnetic interference, was developed for the measurement of low ion concentrations in liquids. The electronic circuit of the potentiometer, consisting of analogous and digital parts, enables the measurement of fA currents. This makes it possible to perform reliable measurements of ion concentrations in liquids that are as small as 10-8-10-7M. The instrument was tested using electrodes that were selective for tetraphenylphosphonium (TPP+) ions. It was demonstrated that the characteristic response time of the potentiometer electronic circuit to changes in the concentration of these ions in a liquid was in the order of 10 s. An investigation of TPP+ absorption by baker yeast has shown that this device can be successfully used for long term (several hours) measurements with zero signal drift, which was about 1 μV/s. Finally, due to the small dimensions of the electronic circuit (7.5 × 2 × 1.5 cm), this potentiometer can be easily installed at a large apparatus in the laboratory condition (≈25 °C), such as high pulsed electrical generators of magnetic fields that are used in electroporation studies of biological cells.
A Multiple-range Self-balancing Thermocouple Potentiometer
NASA Technical Reports Server (NTRS)
Warshawsky, I; Estrin, M
1951-01-01
A multiple-range potentiometer circuit is described that provides automatic measurement of temperatures or temperature differences with any one of several thermocouple-material pairs. Techniques of automatic reference junction compensation, span adjustment, and zero suppression are described that permit rapid selection of range and wire material, without the necessity for restandardization, by setting of two external tap switches.
Eliminating Deadbands In Resistive Angle Sensors
NASA Technical Reports Server (NTRS)
Salomon, Phil M.; Allen, Russell O.; Marchetto, Carl A.
1992-01-01
Proposed shaft-angle-measuring circuit provides continuous indication of angle of rotation from 0 degree to 360 degrees. Sensing elements are two continuous-rotation potentiometers, and associated circuitry eliminates deadband that occurs when wiper contact of potentiometer crosses end contacts near 0 degree position of circular resistive element. Used in valve-position indicator or similar device in which long operating life and high angular precision not required.
Navy’s N-Layer Magnetic Model with Application to Naval Magnetic Demining
2010-09-01
and Safety ( MACAS ) surveys are used to obtain ED/AD and Q values. This is done by measuring voltages in the water produced by a pulsing magnetic...model The sweep type can be: STRAIGHT = 1, SINGLE JIG = 2, DOUBLE JIG = 3, or MACAS = 4 SWEEP TYPE = 4 The actual water depth in meters WATER...CABLE LENGTH = 238.6584 MINE DEPTH = xx Depth of the electrodes (meters) ELECTRODE DEPTH = 0.5 MACAS Potentiometer depth (meters) POTENTIOMETER
Arduino-based experiment demonstrating Malus’s law
NASA Astrophysics Data System (ADS)
Freitas, W. P. S.; Cena, C. R.; Alves, D. C. B.; Goncalves, A. M. B.
2018-05-01
Malus’s law states that the intensity of light after passing through two polarizers is proportional to the square of the cosine of the angle between the polarizers. We present a simple setup demonstrating this law. The novelty of our work is that we use a multi-turn potentiometer mechanically linked to one of the polarizers to measure the polarizer’s rotation angle while keeping the other polarizer fixed. Both the potentiometer and light sensor used to measure the transmitted light intensity are connected to an Arduino board so that the intensity of light is measured as a function of the rotation angle.
Mars Exploration Rover Potentiometer Problems, Failures and Lessons Learned
NASA Technical Reports Server (NTRS)
Balzer, Mark
2006-01-01
During qualification testing of three types of non-wire-wound precision potentiometers for the Mars Exploration Rover, a variety of problems and failures were encountered. This paper will describe some of the more interesting problems, detail their investigations and present their final solutions. The failures were found to be caused by design errors, manufacturing errors, improper handling, test errors, and carelessness. A trend of decreasing total resistance was noted, and a resistance histogram was used to identify an outlier. A gang fixture is described for simultaneously testing multiple pots, and real time X-ray imaging was used extensively to assist in the failure analyses. Lessons learned are provided.
Mars Exploration Rover potentiometer problems, failures and lessons learned
NASA Technical Reports Server (NTRS)
Balzer, Mark A.
2006-01-01
During qualification testing of three types of nonwire-wound precision potentiometers for the Mars Exploration Rover, a variety of problems and failures were encountered. This paper will describe some of the more interesting problems, detail their investigations and present their final solutions. The failures were found to be caused by design errors, manufacturing errors, improper handling, test errors, and carelessness. A trend of decreasing total resistance was noted, and a resistance histogram was used to identify an outlier. A gang fixture is described for simultaneously testing multiple pots, and real time X-ray imaging was used extensively to assist in the failure analyses. Lessons learned are provided.
Macleish, K.G.
1958-02-11
ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.
Spectrophone stabilized laser with line center offset frequency control
NASA Technical Reports Server (NTRS)
Kavaya, M. J.; Menzies, R. T. (Inventor)
1984-01-01
Continuous offset tuning of a frequency stabilized CW gas laser is achieved by using a spectrophone filled with the same gas as the laser for sensing a dither modulation, detecting a first or second derivative of the spectrophone output with a lock-in amplifier, the detected output of which is integrated, and applying the integrator output as a correction signal through a circuit which adds to the dither signal from an oscillator a dc offset that is adjusted with a potentiometer to a frequency offset from the absorption line center of the gas, but within the spectral linewidth of the gas. Tuning about that offset frequency is achieved by adding a dc value to the detected output of the dither modulation before integration using a potentiometer.
Dynamically variable spot size laser system
NASA Technical Reports Server (NTRS)
Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)
2012-01-01
A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.
Head assembly for multiposition borehole extensometer
Frank, Donald N.
1983-01-01
A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.
18 CFR 367.3950 - Account 395, Laboratory equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (4) Calorimeters-bomb, flow, recording types, and other similar items. (5) Current batteries. (6... batteries. (29) Potentiometers. (30) Rotating standards. (31) Specific gravity apparatus. (32) Standard...
18 CFR 367.3950 - Account 395, Laboratory equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (4) Calorimeters-bomb, flow, recording types, and other similar items. (5) Current batteries. (6... batteries. (29) Potentiometers. (30) Rotating standards. (31) Specific gravity apparatus. (32) Standard...
18 CFR 367.3950 - Account 395, Laboratory equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (4) Calorimeters-bomb, flow, recording types, and other similar items. (5) Current batteries. (6... batteries. (29) Potentiometers. (30) Rotating standards. (31) Specific gravity apparatus. (32) Standard...
Signal conditioner for potentiometer type transducers
NASA Technical Reports Server (NTRS)
Armentrout, E. C.; Gross, E.
1973-01-01
Low cost method is described for signal conditioning of pot-type transducers utilizing printed circuitry. Conditioner fits into standard rack, accommodates 56 channels, and can be operated by one attendant.
A Study on the Propulsive Mechanism of a Double Jointed Fish Robot Utilizing Self-Excitation Control
NASA Astrophysics Data System (ADS)
Nakashima, Motomu; Ohgishi, Norifumi; Ono, Kyosuke
This paper describes a numerical and experimental study of a double jointed fish robot utilizing self-excitation control. The fish robot is composed of a streamlined body and a rectangular caudal fin. The body length is 280mm and it has a DC motor to actuate its first joint and a potentiometer to detect the angle of its second joint. The signal from the potentiometer is fed back into the DC motor, so that the system can be self-excited. In order to obtain a stable oscillation and a resultant stable propulsion, a torque limiter circuit is employed. From the experiment, it has been found that the robot can stably propel using this control and the maximum propulsive speed is 0.42m/s.
Tension is servo controlled in film advance system
NASA Technical Reports Server (NTRS)
1965-01-01
Servocontrol device feeds film into a roller system. Two linear potentiometers connected to spring loaded tension rollers furnish servo input signal. Can be used in any continuous material transport system.
49 CFR 572.155 - Test conditions and instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation potentiometer response (if used)—CFC 60. (3) Thorax: (i) Spine and pendulum accelerations—Class 180; (ii) Shoulder forces—Class 600; (4...
49 CFR 572.155 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation potentiometer response (if used)—CFC 60. (3) Thorax: (i) Spine and pendulum accelerations—Class 180; (ii) Shoulder forces—Class 600; (4...
49 CFR 572.155 - Test conditions and instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation potentiometer response (if used)—CFC 60. (3) Thorax: (i) Spine and pendulum accelerations—Class 180; (ii) Shoulder forces—Class 600; (4...
49 CFR 572.155 - Test conditions and instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation potentiometer response (if used)—CFC 60. (3) Thorax: (i) Spine and pendulum accelerations—Class 180; (ii) Shoulder forces—Class 600; (4...
49 CFR 572.155 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Moments—Class 600; (iii) Pendulum acceleration—Class 180; (iv) Rotation potentiometer response (if used)—CFC 60. (3) Thorax: (i) Spine and pendulum accelerations—Class 180; (ii) Shoulder forces—Class 600; (4...
Saleh, Tawfik A; Abulkibash, A M; Ibrahim, Atta E
2012-04-01
A simple and fast-automated method was developed and validated for the assay of promethazine hydrochloride in pharmaceutical formulations, based on the oxidation of promethazine by cerium in an acidic medium. A portable system, consisting of a programmable syringe pump connected to a potentiometer, was constructed. The developed change in potential during promethazine oxidation was monitored. The related optimum working conditions, such as supporting electrolyte concentration, cerium(IV) concentration and flow rate were optimized. The proposed method was successfully applied to pharmaceutical samples as well as synthetic ones. The obtained results were realized by the official British pharmacopoeia (BP) method and comparable results were obtained. The obtained t-value indicates no significant differences between the results of the proposed and BP methods, with the advantages of the proposed method being simple, sensitive and cost effective.
Load positioning system with gravity compensation
NASA Technical Reports Server (NTRS)
Hollow, R. H.
1984-01-01
A load positioning system with gravity compensation has a servomotor, position sensing feedback potentiometer and velocity sensing tachometer in a conventional closed loop servo arrangement to cause a lead screw and a ball nut to vertically position a load. Gravity compensating components comprise the DC motor, gears, which couple torque from the motor to the lead screw, and constant current power supply. The constant weight of the load applied to the lead screw via the ball nut tend to cause the lead screw to rotate, the constant torque of which is opposed by the constant torque produced by the motor when fed from the constant current source. The constant current is preset as required by the potentiometer to effect equilibration of the load which thereby enables the positioning servomotor to see the load as weightless under both static and dynamic conditions. Positioning acceleration and velocity performance are therefore symmetrical.
Saleh, Tawfik A.; Abulkibash, A.M.; Ibrahim, Atta E.
2011-01-01
A simple and fast-automated method was developed and validated for the assay of promethazine hydrochloride in pharmaceutical formulations, based on the oxidation of promethazine by cerium in an acidic medium. A portable system, consisting of a programmable syringe pump connected to a potentiometer, was constructed. The developed change in potential during promethazine oxidation was monitored. The related optimum working conditions, such as supporting electrolyte concentration, cerium(IV) concentration and flow rate were optimized. The proposed method was successfully applied to pharmaceutical samples as well as synthetic ones. The obtained results were realized by the official British pharmacopoeia (BP) method and comparable results were obtained. The obtained t-value indicates no significant differences between the results of the proposed and BP methods, with the advantages of the proposed method being simple, sensitive and cost effective. PMID:23960787
Rail passenger equipment collision tests : analysis of structural measurements
DOT National Transportation Integrated Search
2000-11-01
A two-car full-scale collision test was conducted on April 4, 2000. Two coupled rail passenger cars impacted a rigid wall at 26 mph. The cars were instrumented with strain gauges, accelerometers, and string potentiometers, to measure the deformation ...
Burr, Melvin J.
1990-01-30
An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.
Master/slave manipulator system
NASA Technical Reports Server (NTRS)
Vykukal, H. C.; King, R. F.; Vallotton, W. C.
1973-01-01
System capabilities are equivalent to mobility, dexterity, and strength of human arm. Arrangement of torque motor, harmonic drive, and potentiometer combination allows all power and control leads to pass through center of slave with position-transducer arrangement of master, and "stovepipe joint" is incorporated for manipulator applications.
Design criteria monograph for actuators and operators
NASA Technical Reports Server (NTRS)
1974-01-01
Instrumentation for actuators and operators includes electrical position-indicating switches, potentiometers, and transducers and pressure-indicating switches and transducers. Monograph is based on critical evaluation of experiences and practices in design, test, and use of these control devices and instruments in operational space vehicles.
Redundant electronic circuit provides fail-safe control
NASA Technical Reports Server (NTRS)
Archer, J. W.
1970-01-01
Circuit using dual control amplifiers and dual position demand potentiometers powered from separate sources is used for reliable hydraulic valve controller that prevents closure of valve when control circuits fail, and maintains valve control to close tolerance for more common modes of controller failure.
Long-life electromechanical sine-cosine generator
NASA Technical Reports Server (NTRS)
Flagge, B.
1971-01-01
Sine-cosine generator with no sliding parts is capable of withstanding a 20 Hz oscillation for more than 14 hours. Tests show that generator is electrically equal to potentiometer and that it has excellent dynamic characteristics. Generator shows promise of higher-speed applications than was previously possible.
Lessons Learned form Selecting and Testing Spaceflight Potentiometers
NASA Technical Reports Server (NTRS)
Iskenderian, T.
1994-01-01
A solar array drive (SAD) was designed for operation on the TOPEX/POSEIDON spacecraft that was launched in August of 1992. The experience gained in selecting, specifying, testing to failure, and redesigning its position sensor produced valuable lessons for future component selection and qualification.
Launcher Dynamic Data Acquisition
2012-07-31
K PR Pressure PR Pressure PR Accelerometer PR Accelerometer PR Accelerometer PR Pressure PR Pressure IEPE Microphone IEPE ...transducers, displacement potentiometers, or Integrated Electronics Piezoelectric ( IEPE ) microphones and accelerometers. The characteristics of these...Engineering Units HCl hydrogen chloride HVAC heating ventilation and cooling Hz hertz IEC International Electrotechnical Commission IEPE
Oscillator or Amplifier With Wide Frequency Range
NASA Technical Reports Server (NTRS)
Kleinberg, L.; Sutton, J.
1987-01-01
Inductive and capacitive effects synthesized with feedback circuits. Oscillator/amplifier resistively tunable over wide frequency range. Feedback circuits containing operational amplifiers, resistors, and capacitors synthesize electrical effects of inductance and capacitance in parallel between input terminals. Synthetic inductance and capacitance, and, therefore, resonant frequency of input admittance, adjusted by changing potentiometer setting.
Detecting the presence of microorganisms
NASA Technical Reports Server (NTRS)
Wilkins, Judd R. (Inventor); Stoner, Glenn E. (Inventor)
1977-01-01
The presence of microorganisms in a sample is determined by culturing microorganisms in a growth medium which is in contact with a measuring electrode and a reference electrode and detecting a change in potential between the electrodes caused by the presence of the microorganisms in the medium with a high impedance potentiometer.
Defense Automation Resources Management Manual
1988-09-01
Electronic Command Signals Programmer, Plugboard Programmers Punch, Card Punch, Paper Tape Reader, Character Reader-Generator, Time Cards Reader...Multiplexor-Shift Register Group Multiplier Panel Control, Plugboard Panel, Interconnection, Digital Computer Panel, Meter-Attenuator, Tape Recorder PC Cards...Perforator, Tape Plug-In Unit Potentiometer, Coefficient, Analog Computer Programmer, Plugboard Punch, Paper Tape Racks Reader, Time Code Reader
Two-Wire to Four-Wire Audio Converter
NASA Technical Reports Server (NTRS)
Talley, G. L., Jr; Seale, B. L.
1983-01-01
Simple circuit provides interface between normally incompatible voicecommunication lines. Circuit maintains 40 dB of isolation between input and output halves of four-wire line permitting two-wire line to be connected. Balancing potentiometer, Rg, adjusts gain of IC2 to null feed through from input to output. Adjustment is done on workbench just after assembly.
ERIC Educational Resources Information Center
Evanson, Nick
2004-01-01
Basic electronic devices have been used to great effect with console computer games. This paper looks at a range of devices from the very simple, such as microswitches and potentiometers, up to the more complex Hall effect probe. There is a great deal of relatively straightforward use of simple devices in computer games systems, and having read…
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accelerometers as specified in 49 CFR 572.200(d), and deflection potentiometers for the thorax and shoulder as... paragraphs (b)(3) and (4) of this section, the top of the shoulder rib mount (drawing 180-3352) orientation... the seat back incline passing through the center of the shoulder yoke assembly arm rotation pivot...
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accelerometers as specified in 49 CFR 572.200(d), and deflection potentiometers for the thorax and shoulder as... paragraphs (b)(3) and (4) of this section, the top of the shoulder rib mount (drawing 180-3352) orientation... the seat back incline passing through the center of the shoulder yoke assembly arm rotation pivot...
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accelerometers as specified in 49 CFR 572.200(d), and deflection potentiometers for the thorax and shoulder as... paragraphs (b)(3) and (4) of this section, the top of the shoulder rib mount (drawing 180-3352) orientation... the seat back incline passing through the center of the shoulder yoke assembly arm rotation pivot...
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accelerometers as specified in 49 CFR 572.200(d), and deflection potentiometers for the thorax and shoulder as... paragraphs (b)(3) and (4) of this section, the top of the shoulder rib mount (drawing 180-3352) orientation... the seat back incline passing through the center of the shoulder yoke assembly arm rotation pivot...
A calibration mechanism based on worm drive for space telescope
NASA Astrophysics Data System (ADS)
Chong, Yaqin; Li, Chuang; Xia, Siyu; Zhong, Peifeng; Lei, Wang
2017-08-01
In this paper, a new type of calibration mechanism based on worm drive is presented for a space telescope. This calibration mechanism based on worm drive has the advantages of compact size and self-lock. The mechanism mainly consists of thirty-six LEDs as the light source for flat calibration, a diffuse plate, a step motor, a worm gear reducer and a potentiometer. As the main part of the diffuse plate, a PTFE tablet is mounted in an aluminum alloy frame. The frame is fixed on the shaft of the worm gear, which is driven by the step motor through the worm. The shaft of the potentiometer is connected to that of the worm gear to measure the rotation angle of the diffuse plate through a flexible coupler. Firstly, the calibration mechanism is designed, which includes the LEDs assembly design, the worm gear reducer design and the diffuse plate assembly design. The counterweight blocks and two end stops are also designed for the diffuse plate assembly. Then a modal analysis with finite element method for the diffuse plate assembly is completed.
NASA Technical Reports Server (NTRS)
Garner, H. D. (Inventor)
1983-01-01
Devices are disclosed for vectorially summing two signals. In a first embodiment, the vectorial summation is implemented by a mechanical sin/cos mechanism in which a crank drives two linear potentiometers out of phase. In a second embodiment, a polarized light resolver generates the sin and cos functions. In a third embodiment, a printed circuit resolver generates the sin and cos functions.
Arduino-Based Experiment Demonstrating Malus's Law
ERIC Educational Resources Information Center
de Freitas, Welica P. S.; Cena, Cicero R.; Alves, Diego C. B.; Goncalves, Alem-Mar B.
2018-01-01
Malus's law states that the intensity of light after passing through two polarizers is proportional to the square of the cosine of the angle between the polarizers. We present a simple setup demonstrating this law. The novelty of our work is that we use a multi-turn potentiometer mechanically linked to one of the polarizers to measure the…
An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.
ERIC Educational Resources Information Center
Caceci, Marco S.
1984-01-01
Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…
Method and device for the detection of phenol and related compounds. [in an electrochemical cell
NASA Technical Reports Server (NTRS)
Schiller, J. G.; Liu, C. C. (Inventor)
1979-01-01
A method is described which permits the selective oxidation and potentiometric detection of phenol and related compounds in an electrochemical cell. An anode coated with a gel immobilized oxidative enzyme and a cathode are each placed in an electrolyte solution. The potential of the cell is measured by a potentiometer connected to the electrodes.
1950-12-01
Potentiometer Loading Compensation K. Limiting an Integral - - - L. Deadspace and Backlash - - - M. Accuracy IV. Plugboard Wiring - - - - - - - 110 113... plugboard is the major modification made on the REAC and as a copsequence will receive the major emphasis. This manual demands of the reader a...weeks depending on the problem complexity, while individual runs require the order of a minute once the plugboard has been wired. However, altering
An automated data collection system for a Charpy impact tester
NASA Technical Reports Server (NTRS)
Weigman, Bernard J.; Spiegel, F. Xavier
1993-01-01
A method for automated data collection has been developed for a Charpy impact tester. A potentiometer is connected to the pivot point of the hammer and measures the angular displacement of the hammer. This data is collected with a computer and, through appropriate software, accurately records the energy absorbed by the specimen. The device can be easily calibrated with minimal effort.
Aeroelastic Considerations for Torsionally Soft Rotors,
1986-08-01
Data potentiometers mounted on the rotor hub and Acquisition geared to the blade cuff. Rotor shaft speed is determined by a magnetic sensor . One...Anhedral Tipo I I* 9.2 ACR2 0 ACM1F LHNGIIUDINNL NOSE-OOWN ELASTICCYCLIC TWIS 0fC. ~J~M PITCH SLa ELASTIC .4 ICIIIDAt AT At# qV. AT , C I 0. 4 a, PIC
Chen, Qingshan; Lazennec, Jean Yves; Guyen, Olivier; Kinbrum, Amy; Berry, Daniel J; An, Kai-Nan
2005-07-01
Tripolar total hip arthroplasty (THA) prosthesis had been suggested as a method to reduce the occurrence of hip dislocation and microseparation. Precisely measuring the motion of the intermediate component in vitro would provide fundamental knowledge for understanding its mechanism. The present study validates the accuracy and repeatability of a three-dimensional motion analysis system to quantitatively measure the relative motion of the intermediate component of tripolar total hip arthroplasty prostheses. Static and dynamic validations of the system were made by comparing the measurement to that of a potentiometer. Differences between the mean system-calculated angle and the angle measured by the potentiometer were within +/-1 degrees . The mean within-trial variability was less than 1 degrees . The mean slope was 0.9-1.02 for different angular velocities. The dynamic noise was within 1 degrees . The system was then applied to measure the relative motion of an eccentric THA prosthesis. The study shows that this motion analysis system provides an accurate and practical method for measuring the relative motion of the tripolar THA prosthesis in vitro, a necessary first step towards the understanding of its in vivo kinematics.
REMOTE RECORDING ANNULAR VANE ASSEMBLY
Wehmann, G.
1963-06-25
A weather vane apparatus is described which is capable of movement in horizontal and vertical planes. Associated with the vane are tangent potentiometers, commutators, and other electrical apparatus for deriving electrical output voltages as a function of the wind direction. The apparatus is particularly adapted for use with an anemometer to provide an electrical output indicating the amount and direction of an up or down draft. (AEC)
ERIC Educational Resources Information Center
Enikov, E. T.; Campa, G.
2012-01-01
This paper presents a low-cost hands-on experiment for a classical undergraduate controls course for non-electrical engineering majors. The setup consists of a small dc electrical motor attached to one of the ends of a light rod. The motor drives a 2-in propeller and allows the rod to swing. Angular position is measured by a potentiometer attached…
TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research
2015-09-01
inferred roll angles that are found with the IMU . This is usually done with UNCLASSIFIED UNCLASSIFIED linear potentiometers, which have an electrical...wire electric, Electric traction control. Suspension Styles: Suspension is what keeps the vehicle off the ground and mechanically isolated from the...lot” maneuvers. Because of this, they roll with no slip angles. This means that the steering angles of the front wheels must be calibrated perfectly
An automated system for creep testing
NASA Technical Reports Server (NTRS)
Spiegel, F. Xavier; Weigman, Bernard J.
1992-01-01
A completely automated data collection system was devised to measure, analyze, and graph creep versus time using a PC, a 16 channel multiplexed analog to digital converter, and low friction potentiometers to measure length. The sampling rate for each experiment can be adjusted in the software to meet the needs of the material tested. Data is collected and stored on a diskette for permanent record and also for later data analysis on a different machine.
1974-09-01
appropriate to tha substances being studied. For the high pressure work, the quartz delay line is mounted inside a heater wound on a soapstone cylinder and...insulated bv another soapstone cvlinder. »■ « 2F.4 As another approach to the desire to measure the glass transition with experimental times of...indications by a factor of 10) and by a minimum reading on the conductance magnetic potentiometer. The least count is 1», of full scale and although
Winter, T.C.; LaBaugh, J.W.; Rosenberry, P.O.
1988-01-01
The hydraulic potentiomanometer described herein consists of a potentiometer connected to a manometer by a flexible tube. The device is used to directly measure the direction of seepage as well as the hydraulic-head difference between groundwater and surface water. The device works most effectively in sandy materials. For accurate measurements the device must be free of air leaks. -Authors
Winter, Thomas C.; LaBaugh, James W.; Rosenberry, Donald O.
1988-01-01
The hydraulic potentiomanometer described herein consists of a potentiometer connected to a manometer by a flexible tube. The device is used to directly measure the direction of seepage as well as the hydraulic-head difference between groundwater and surface water. The device works most effectively in sandy materials. For accurate measurements the device must be free of air leaks.
Horn, F.L.; Binns, J.E.
1961-05-01
Apparatus for continuously and automatically measuring and computing the specific heat of a flowing solution is described. The invention provides for the continuous measurement of all the parameters required for the mathematical solution of this characteristic. The parameters are converted to logarithmic functions which are added and subtracted in accordance with the solution and a null-seeking servo reduces errors due to changing voltage drops to a minimum. Logarithmic potentiometers are utilized in a unique manner to accomplish these results.
IUSThrust Vector Control (TVC) servo system
NASA Technical Reports Server (NTRS)
Conner, G. E.
1979-01-01
The IUS TVC SERVO SYSTEM which consists of four electrically redundant electromechanical actuators, four potentiometer assemblies, and two controllers to provide movable nozzle control on both IUS solid rocket motors is developed. An overview of the more severe IUS TVC servo system design requirements, the system and component designs, and test data acquired on a preliminary development unit is presented. Attention is focused on the unique methods of sensing movable nozzle position and providing for redundant position locks.
Model-Scale Experiment of the Seakeeping Performance for R/V Melville, Model 5720
2012-07-01
Angle 1 Y None Deg Sensor Bourns Rotary Potentiometer 6574S-1-103 NA 39596 KVH Sin 2 Y None volts Sensor KVH Fluxgate Compass C-100...NA Deg Sensor KVH Calc Heading NA N None DegM Calculated KVH Fluxgate Compass C-100 39449 Bow Tracker Sensor Bottom NA N None...3DM-3XI combined three axis of angular rate gyros, accelerometers, and magnetometers to provide various combinations of gyro stabilized Euler
NASA Technical Reports Server (NTRS)
Nunnelee, Mark (Inventor)
2004-01-01
A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.
Identification and Description of Geophysical Techniques.
1980-11-01
electrodes are used for voltage measurements with the potentiometer. Current elec- trodes may be stainless-steel or copper rods, buried copper screens, drill...steel in a borehole, or buried metal culverts. Potential elec- trodes may be stainless steel rods or porous containers filled with copper sulfate...Granite 28-2,700 Diorite 47 Gabbro 68-2,370 Porphyry 47 Diabase 78-1,050 Basalt 680 Olivine-Diabase 2,000 1. Peridotite 12,500 I (1)Adapted from C. A
Direct Energy Conversion Literature Abstracts
1963-12-01
as the temperature rises through -35 C. nonalkali glass containing Fe oxide. The For all high-purity specimens this thermal e.m.f. and the contact...potentiometer at >3000. is affected very little by variations in The thermal e.m.f. of nonalkali glass the interstitial impurities nitrogen and...by changes The thermal e.m.f. depends on the com- in grain size. The results are considered position of the glass and varies from 0.55 in terms of
Measurement of uterine activity in vitro by integrating muscle tension
Styles, P. R.; Sullivan, T. J.
1962-01-01
Spontaneous or electrically stimulated activity of the uterus is measured isometrically in vitro by integrating tension against time. Uterine contractions move the operating rod of a potentiometer transducer, the output voltage from which is coupled to an electrical integrator motor and a servo recorder. Several parameters of uterine activity can be expressed in a single measurement, and a record of isometric contractions is obtained simultaneously. Oxytocin can be assayed accurately and the effect of drugs on uterine motility can be measured. PMID:13918066
Chase, R.L.
1963-05-01
An electronic fast multiplier circuit utilizing a transistor controlled voltage divider network is presented. The multiplier includes a stepped potentiometer in which solid state or transistor switches are substituted for mechanical wipers in order to obtain electronic switching that is extremely fast as compared to the usual servo-driven mechanical wipers. While this multiplier circuit operates as an approximation and in steps to obtain a voltage that is the product of two input voltages, any desired degree of accuracy can be obtained with the proper number of increments and adjustment of parameters. (AEC)
Multiple-Frequency Ultrasonic Pulse-Echo Display System.
1982-09-28
will sweep across some time interval. Adjust the ramp rate potentiometer to set this interval to exactly 10 ps. Ramp Delay None Set time base to 1.0 lis...the function keys. The table is a printout which results F.irectly from exercising Program KEE, listed in Appendix C-I. Note that "(ESC)B" refers to...flag +21 ŕ" = one-time flag (nessage is presented prior to full plot once per session) +22 time- base duration code +23 (High order digit) +24 * +25
Frequency to Voltage Converter Analog Front-End Prototype
NASA Technical Reports Server (NTRS)
Mata, Carlos; Raines, Matthew
2012-01-01
The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.
Research on application of photoelectric rotary encoder in space optical remote sensor
NASA Astrophysics Data System (ADS)
Zheng, Jun; Qi, Shao-fan; Wang, Yuan-yuan; Zhang, Zhan-dong
2016-11-01
For space optical remote sensor, especially wide swath detecting sensor, the focusing control system for the focal plane should be well designed to obtain the best image quality. The crucial part of this system is the measuring instrument. For previous implements, the potentiometer, which is essentially a voltage divider, is usually introduced to conduct the position in feedback closed-loop control process system. However, the performances of both electro-mechanical and digital potentiometers is limited in accuracy, temperature coefficients, and scale range. To have a better performance of focal plane moving detection, this article presents a new measuring implement with photoelectric rotary encoder, which consists of the photoelectric conversion system and the signal process system. In this novel focusing control system, the photoelectric conversion system is fixed on main axis, which can transform the angle information into a certain analog signal. Through the signal process system, after analog-to-digital converting and data format processing of the certain analog signal, the focusing control system can receive the digital precision angle position which can be used to deduct the current moving position of the focal plane. For utilization of space optical remote sensor in aerospace areas, the reliability design of photoelectric rotary encoder system should be considered with highest priority. As mentioned above, this photoelectric digital precision angle measurement device is well designed for this real-time control and dynamic measurement system, because its characters of high resolution, high accuracy, long endurance, and easy to maintain.
1981-09-01
the rock, the other end attached to a linear potentiometer sensor . All sensors would be connected by underground cable to a central control terminal...soil and rock mass comprising the subfoundation. We have also placed four tiltmeters on the top of the reservoir wall at Its Intersection with the axes...quarter points. These, too, must nut be disturbed. The holes prepared for instrumentation are being regularly "read" with a Digitilt Sensor blaxial
The Transmission of Vertical Vibration to the Heads and Shoulders of Seated Men.
1977-05-01
was fed into an SEL ac carrier amp l i f i e r , which contained the other hail of the bridge together with a balancing potentiometer which was used as...transport etc — you will be told in advance if the other 1% is to be used). People who have had recent transfusions , intestinal operations , a his...A052 009 ROYAL AIRCRAFT ESTABLISI CNT FARNSCROUS4I (ENILAIC) F/S 515TIC TRANSMISSION Off VERTICAL VIBRATION TO ThE CADS AIC SHOILOC—ETCIUP NAY 77
Shaft transducer having dc output proportional to angular velocity
NASA Technical Reports Server (NTRS)
Handlykken, M. B. (Inventor)
1984-01-01
A brushless dc tachometer is disclosed that includes a high strength toroidal permanent magnet for providing a uniform magnetic field in an air gap, an annular pole piece opposite the magnet, and a pickup coil wound around the pole piece and adapted to rotate about the axis of the pole piece. The pickup coil is rotated by an input shaft to which the coil is coupled with the friction clip. The output of the coil is conducted to circuitry by a twisted wire pair. The input shaft also activates a position transducing potentiometer.
Technical Note: High temporal resolution characterization of gating response time.
Wiersma, Rodney D; McCabe, Bradley P; Belcher, Andrew H; Jensen, Patrick J; Smith, Brett; Aydogan, Bulent
2016-06-01
Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.
Technical Note: High temporal resolution characterization of gating response time
Wiersma, Rodney D.; McCabe, Bradley P.; Belcher, Andrew H.; Jensen, Patrick J.; Smith, Brett; Aydogan, Bulent
2016-01-01
Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly. PMID:27277028
YADCLAN: yet another digitally-controlled linear artificial neuron.
Frenger, Paul
2003-01-01
This paper updates the author's 1999 RMBS presentation on digitally controlled linear artificial neuron design. Each neuron is based on a standard operational amplifier having excitatory and inhibitory inputs, variable gain, an amplified linear analog output and an adjustable threshold comparator for digital output. This design employs a 1-wire serial network of digitally controlled potentiometers and resistors whose resistance values are set and read back under microprocessor supervision. This system embodies several unique and useful features, including: enhanced neuronal stability, dynamic reconfigurability and network extensibility. This artificial neuronal is being employed for feature extraction and pattern recognition in an advanced robotic application.
Lessons learned from selecting and testing spaceflight potentiometers
NASA Technical Reports Server (NTRS)
Iskenderian, T.
1994-01-01
A solar array drive (SAD) was designed for operation on the TOPEX/POSEIDON spacecraft that was launched in August, 1992. The experience gained in selecting, specifying, testing to failure, and redesigning its position sensor produced valuable lessons for future component selection and qualification. Issues of spaceflight heritage, cost/benefit/risk assessment, and component specification are addressed. It was found that costly schedule and budget overruns may have been avoided if the capability of the candidate sensors to meet requirements had been more critically examined prior to freezing the design. The use of engineering models and early qualification tests is also recommended.
Technical Note: High temporal resolution characterization of gating response time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, Rodney D., E-mail: rwiersma@uchicago.edu; McCabe, Bradley P.; Belcher, Andrew H.
2016-06-15
Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ONmore » and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.« less
Development of a one-dimensional Position Sensitive Detector for tracking applications
NASA Astrophysics Data System (ADS)
Lydecker, Leigh Kent, IV
Optical Position Sensitive Detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS processing, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. Because they are non-contact, they do not degrade over time from surface friction due to repetitive sliding motion associated with standard full contact sliding potentiometers. This results in long, reliable device lifetimes. In this work, an innovative PSD was developed to replace the linear hard contact potentiometer currently being used in a human-computer interface architecture. First, a basic lateral effect PSD was developed to provide real-time positioning of the mouthpiece used in the interface architecture which tracks along a single axis. During the course of this work, multiple device geometries were fabricated and analyzed resulting in a down selection of a final design. This final device design was then characterized in terms of resolution and responsivity and produced in larger quantities as initial prototypes for the test product integration. Finally, an electronic readout circuit was developed in order to interface the dual- line lateral effect PSD developed in this thesis with specifications required for product integration. To simplify position sensing, an innovative type of optical position sensor was developed using a linear photodiodes with back-to-back connections. This so- called Self-Balancing Position Sensitive Detector (SBPSD) requires significantly fewer processing steps than the basic lateral effect position sensitive detector discussed above and eliminates the need for external readout circuitry entirely. Prototype devices were fabricated in this work, and the performance characteristics of these devices were established paving the way for ultimate integration into the target product as well as additional applications.
NASA Astrophysics Data System (ADS)
Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah
2018-05-01
Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Kaiming; Teo, Peng; Kawalec, Philip
2016-08-15
Purpose: This work reports on the development of a mechanical slider system for the counter-steering of tumor motion in adaptive Radiation Therapy (RT). The tumor motion was tracked using a weighted optical flow algorithm and its position is being predicted with a neural network (NN). Methods: The components of the proposed mechanical counter-steering system includes: (1) an actuator which provides the tumor motion, (2) the motion detection using an optical flow algorithm, (3) motion prediction using a neural network, (4) a control module and (5) a mechanical slider to counter-steer the anticipated motion of the tumor phantom. An asymmetrical cosinemore » function and five patient traces (P1–P5) were used to evaluate the tracking of a 3D printed lung tumor. In the proposed mechanical counter-steering system, both actuator (Zaber NA14D60) and slider (Zaber A-BLQ0070-E01) were programed to move independently with LabVIEW and their positions were recorded by 2 potentiometers (ETI LCP12S-25). The accuracy of this counter-steering system is given by the difference between the two potentiometers. Results: The inherent accuracy of the system, measured using the cosine function, is −0.15 ± 0.06 mm. While the errors when tracking and prediction were included, is (0.04 ± 0.71) mm. Conclusion: A prototype tumor motion counter-steering system with tracking and prediction was implemented. The inherent errors are small in comparison to the tracking and prediction errors, which in turn are small in comparison to the magnitude of tumor motion. The results show that this system is suited for evaluating RT tracking and prediction.« less
Circuit For Control Of Electromechanical Prosthetic Hand
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.
1983-09-01
6061 aluminum alloy. The watertight hull is divided into three chambers and a central in- strument well. The entire hull, except for the instrument...see calibration curve in Fig. 7). The aluminum cups have a turning radius of . -l , 4.4 cm and a threshold less than 0.7 m s o The cup assembly has a...of sheet aluminum and has a threshold less than 0.7 m al* The vane utilizes a 10 ohm conductive-plastic potentiometer mounted in the lower part of the
A new chaotic oscillator with free control
NASA Astrophysics Data System (ADS)
Li, Chunbiao; Sprott, Julien Clinton; Akgul, Akif; Iu, Herbert H. C.; Zhao, Yibo
2017-08-01
A novel chaotic system is explored in which all terms are quadratic except for a linear function. The slope of the linear function rescales the amplitude and frequency of the variables linearly while its zero intercept allows offset boosting for one of the variables. Therefore, a free-controlled chaotic oscillation can be obtained with any desired amplitude, frequency, and offset by an easy modification of the linear function. When implemented as an electronic circuit, the corresponding chaotic signal can be controlled by two independent potentiometers, which is convenient for constructing a chaos-based application system. To the best of our knowledge, this class of chaotic oscillators has never been reported.
Orthotic arm joint. [for use in mechanical arms
NASA Technical Reports Server (NTRS)
Dane, D. H. (Inventor)
1974-01-01
An improved orthopedic (orthotic) arm joint that can be used in various joint of mechanical arms is described. The arm joints includes a worm, which is coupled to an electric motor for rotating a worm gear carried within a rotatable housing. The worm gear is supported on a thrust bearing and the rotatable housing is supported on a radial thrust bearing. A bolt extends through the housing, bearings, and worm gear for securing the device together. A potentiometer extends through the bolt, and is coupled to the rotatable housing for rotating therewith, so as to produce an electrical signal indicating the angular position of the rotatable housing.
A slewing control experiment for flexible structures
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Horta, L. G.; Robertshaw, H. H.
1985-01-01
A hardware set-up has been developed to study slewing control for flexible structures including a steel beam and a solar panel. The linear optimal terminal control law is used to design active controllers which are implemented in an analog computer. The objective of this experiment is to demonstrate and verify the dynamics and optimal terminal control laws as applied to flexible structures for large angle maneuver. Actuation is provided by an electric motor while sensing is given by strain gages and angle potentiometer. Experimental measurements are compared with analytical predictions in terms of modal parameters of the system stability matrix and sufficient agreement is achieved to validate the theory.
Investigation into the common mode rejection ratio of the physiological signal conditioner circuit
NASA Technical Reports Server (NTRS)
Obrien, Edward M.
1992-01-01
The common mode rejection ratio (CMRR) of the single operational amplifier (op amp) differential amplifier and of the three operational amplifier differential amplifier was investigated. The three op amp differential amplifier circuit is used in the signal conditioner circuit which amplifies signals such as the electromyograph or electrocardiogram. The investigation confirmed via SPICE modeling what has been observed by others in the recent literature that the CMRR for the circuit can be maximized without precision resistor values or precisely matched op amps. This can be done if one resistor in the final stage can be adjusted either by a potentiometer or by laser trimming in the case of hybrid circuit fabrication.
Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head
NASA Technical Reports Server (NTRS)
Vassilakos, Gregory J.
2014-01-01
Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.
NASA Technical Reports Server (NTRS)
Hrabak, R. R.; Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described.
Electrical Resistivity of Ten Selected Binary Alloy Systems.
1981-04-01
100 m 2 L q2 2 J 4m v 2 1 ......... 13 I Here e , m, and v are the electronic charge, mass, and velocity, q is the screening parameter, and I is the...potentiometer method E Eddy current decay method wpik* -7 25 P Van der Pauw method R Rotating magnetic field method V Voltmeter and ammeter direct...r:~ 0; tz 0 hi~~ 0*~ . 0 . 6 0 M 0 0 % -0 0 e o C M -" I- I n WT 8 L a .44 44 -44 4 %. -~~ 0 0 0 0 U0. ii S 4. 0c .2 s , Q t 04 INN ) nW V W 33
Minichan, Richard L.
1993-01-01
An end effector for use in probing a surface with a robotic arm. The end effector has a first portion that carries a gimbal with a probe, the gimbal holding the probe normal to the surface, and a second portion with a set of three shafts within a housing for urging the gimbal and probe against the surface. The second portion contains a potentiometer connected by another shaft to the first portion to measure the position of the first portion with respect to the second so that the second portion can be moved to place and maintain the shafts at the midpoint of their travel. Then, as irregularities in the surface are encountered, the first portion can respond by moving closer to or farther from the second portion.
Remote Neural Pendants In A Welding-Control System
NASA Technical Reports Server (NTRS)
Venable, Richard A.; Bucher, Joseph H.
1995-01-01
Neural network integrated circuits enhance functionalities of both remote terminals (called "pendants") and communication links, without necessitating installation of additional wires in links. Makes possible to incorporate many features into pendant, including real-time display of critical welding parameters and other process information, capability for communication between technician at pendant and host computer or technician elsewhere in system, and switches and potentiometers through which technician at pendant exerts remote control over such critical aspects of welding process as current, voltage, rate of travel, flow of gas, starting, and stopping. Other potential manufacturing applications include control of spray coating and of curing of composite materials. Potential nonmanufacturing uses include remote control of heating, air conditioning, and lighting in electrically noisy and otherwise hostile environments.
Solid state switch panel. [determination of optimum transducer type for required switches
NASA Technical Reports Server (NTRS)
Beenfeldt, E.
1973-01-01
An intensive study of various forms of transducers was conducted with application towards hermetically sealing the transducer and all electronics. The results of the study indicated that the Hall effect devices and a LED/phototransistor combination were the most practical for this type of application. Therefore, hardware was developed utilizing a magnet/Hall effect transducer for single action switches and LED/phototransistor transducers for rotary multiposition or potentiometer applications. All electronics could be housed in a hermetically sealed compartment. A number of switches were built and models were hermetically sealed to prove the feasibility of this type of fabrication. One of each type of switch was subjected to temperature cycling, vibration, and EMI tests. The results of these tests are presented.
Minichan, R.L.
1993-10-05
An end effector is described for use in probing a surface with a robotic arm. The end effector has a first portion that carries a gimbal with a probe, the gimbal holding the probe normal to the surface, and a second portion with a set of three shafts within a housing for urging the gimbal and probe against the surface. The second portion contains a potentiometer connected by another shaft to the first portion to measure the position of the first portion with respect to the second so that the second portion can be moved to place and maintain the shafts at the midpoint of their travel. Then, as irregularities in the surface are encountered, the first portion can respond by moving closer to or farther from the second portion. 7 figures.
Real time control for NASA robotic gripper
NASA Technical Reports Server (NTRS)
Salter, Carole A.; Baras, John S.
1990-01-01
The ability to easily manipulate objects in a zero gravity environment will pay a key role in future space activities. Emphasis will be placed on robotic manipulation. This will serve to increase astronaut safety and utility in addition to several other benefits. The aim is to develop control laws for the zero gravity robotic end effectors. A hybrid force/position controller will be used. Sensory data available to the controller are obtained from an array of strain gauges and a linear potentiometer. Applying well known optimal control theoretical principles, the control which minimizes the transition time between positions is obtained. A robust force control scheme is developed which allows the desired holding force to be achieved smoothly without oscillation. In addition, an algorithm is found to determine contact force and contact location.
Development of a time-variable nuclear pulser for half life measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahn, Guilherme S.; Domienikan, Claudio; Carvalhaes, Roberto P. M.
2013-05-06
In this work a time-variable pulser system with an exponentially-decaying pulse frequency is presented, which was developed using the low-cost, open-source Arduino microcontroler plataform. In this system, the microcontroller produces a TTL signal in the selected rate and a pulse shaper board adjusts it to be entered in an amplifier as a conventional pulser signal; both the decay constant and the initial pulse rate can be adjusted using a user-friendly control software, and the pulse amplitude can be adjusted using a potentiometer in the pulse shaper board. The pulser was tested using several combinations of initial pulse rate and decaymore » constant, and the results show that the system is stable and reliable, and is suitable to be used in half-life measurements.« less
Design of pneumatic proportional flow valve type 5/3
NASA Astrophysics Data System (ADS)
Laski, P. A.; Pietrala, D. S.; Zwierzchowski, J.; Czarnogorski, K.
2017-08-01
In this paper the 5/3-way pneumatic, proportional flow valve was designed and made. Stepper linear actuator was used to move the spool. The valve is controlled by the controlled based on a AVR microcontroller. Virtual model of the valve was created in CAD. The real element was made based on a standard 5/3-way manually actuated valve with hand lever, which was dismounted and replaced by linear stepper motor. All the elements was mounted in a specially made housing. The controller consists of microcontroller Atmega16, integrated circuit L293D, display, two potentiometers, three LEDs and six buttons. Series of research was also conducted. Simulation research were performed using CFD by the Flow Simulation addition to SolidWorks. During the experiments the valve characteristics of flow and pressure was determined.
Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 1995
Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.
1996-01-01
A map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in southern Maryland during September 1995 was prepared from water-level measurements in 42 wells. The potentiometric surface was nearly 120 feet above sea level near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel County, and 55 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometic surface declined to the south and southeast toward large well fields in the Annapolis and Waldorf areas and at the Chalk Point powerplant. Ground-water levels reached nearly 30 feet below sea level in the Annapolis area, 113 feet below sea level southwest of Waldorf, and more than 30 feet below sea level at the Chalk Point powerplant.
NASA Astrophysics Data System (ADS)
Gomes Leal-Junior, Arnaldo; Frizera-Neto, Anselmo; José Pontes, Maria; Rodrigues Botelho, Thomaz
2017-12-01
Polymer optical fiber (POF) curvature sensors present some advantages over conventional techniques for angle measurements, such as their light weight, compactness and immunity to electromagnetic fields. However, high hysteresis can occur in POF curvature sensors due to the polymer viscoelastic response. In order to overcome this limitation, this paper shows how the hysteresis sensor can be compensated by a calibration equation relating the measured output signal to the sensor’s angular velocity. The proposed method is validated using an exoskeleton with an active joint on the knee for flexion and extension rehabilitation exercises. The results show a decrease in sensor hysteresis and a decrease by more than two times in the error between the POF sensor and the potentiometer, which is employed for the angle measurement of the exoskeleton knee joint.
Kinematics of the six-degree-of-freedom force-reflecting Kraft Master
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1991-01-01
Presented here are kinematic equations for a six degree of freedom force-reflecting hand controller. The forward kinematics solution is developed and shown in simplified form. The Jacobian matrix, which uses terms from the forward kinematics solution, is derived. Both of these kinematic solutions require joint angle inputs. A calibration method is presented to determine the hand controller joint angles given the respective potentiometer readings. The kinematic relationship describing the mechanical coupling between the hand and controller shoulder and elbow joints is given. These kinematic equations may be used in an algorithm to control the hand controller as a telerobotic system component. The purpose of the hand controller is two-fold: operator commands to the telerobotic system are entered using the hand controller, and contact forces and moments from the task are reflected to the operator via the hand controller.
High Detent Torque Rotary Actuator Development
NASA Astrophysics Data System (ADS)
Santos, I.; Sainz, I.; Allegranza, C.
2015-09-01
In the frame of an ESA ARTES 5 Contract, SENER has performed the design, manufacturing and testing at component and mechanism levels of a High Detent Torque Rotary Actuator (DTA in short), i.e. with high capability to hold a payload when unpowered.Two configurations were developed to allow the use on specific application flight opportunity; both are identical in terms of architecture, lubrication, structural and thermal design. The exception is the angular position sensor type: the DTA 100 with contactless sensors and the DTA 120 with potentiometers.The DTA is a fully european technology. This paper provides a synthesis of the obtained parameters in front of the requirements, the evolution from the initial concept to the final configuration and the results of the extensive test campaign (DTA 120). Lessons learned and the readiness for use at upper level are also highlighted.
NASA Astrophysics Data System (ADS)
Afandi, M. I.; Adinanta, H.; Setiono, A.; Qomaruddin; Widiyatmoko, B.
2018-03-01
There are many ways to measure landslide displacement using sensors such as multi-turn potentiometer, fiber optic strain sensor, GPS, geodetic measurement, ground penetrating radar, etc. The proposed way is to use an optical encoder that produces pulse signal with high stability of measurement resolution despite voltage source instability. The landslide measurement using extensometer based on optical encoder has the ability of high resolution for wide range measurement and for a long period of time. The type of incremental optical encoder provides information about the pulse and direction of a rotating shaft by producing quadrature square wave cycle per increment of shaft movement. The result of measurement using 2,000 pulses per resolution of optical encoder has been obtained. Resolution of extensometer is 36 μm with speed limit of about 3.6 cm/s. System test in hazard landslide area has been carried out with good reliability for small landslide displacement monitoring.
Motor power factor controller with a reduced voltage starter
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1981-01-01
A power factor type motor controller is disclosed in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. This continuation-impart of a pending patent application (Serial No. 199, 765: Three Phase Factor Controller) provides a means for modifying the operation of the system for a motor start-up interval of 5 to 30 second. Using a ramp generators, an initial ramp-like signal replaces a constant power factor signal supplied by a potentiometer. The ramp-like signal is applied to a 15 terminal where it is summed with an operating power factor signal from phase detectors in order to obtain a control signal for ultimately controlling SCR devices. The SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone.
Angular Positioning Sensor for Space Mechanisms
NASA Astrophysics Data System (ADS)
Steiner, Nicolas; Chapuis, Dominique
2013-09-01
Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda
2017-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.
Longwall Guidance and Control Development
NASA Technical Reports Server (NTRS)
1982-01-01
The longwall guidance and control (G&C) system was evaluated to determine which systems and subsystems lent themselves to automatic control in the mining of coal. The upper coal/shale interface was identified as the reference for a vertical G&C system, with two sensors (the natural backgound and the sensitized pick) being used to locate and track this boundary. In order to insure a relatively smooth recession surface (roof and floor of the excavated seam), a last and present cut measuring instrument (acoustic sensor) was used. Potentiometers were used to measure elevations of the shearer arms. The intergration of these components comprised the vertical control system (pitch control). Yaw and roll control were incorporated into a face alignment system which was designed to keep the coal face normal to its external boundaries. Numerous tests, in the laboratory and in the field, have confirmed the feasibility of automatic horizon control, as well as determining the face alignment.
The INCAS Project: An Innovative Contact-Less Angular Sensor
NASA Astrophysics Data System (ADS)
Ghislanzoni, L.; Di Cintio, A.; Solimando, M.; Parzianello, G.
2013-09-01
Angular Positions sensors are widely used in all spacecrafts, including re-entry vehicles and launchers, where mechanisms and pointing-scanning devices are required. The main applications are on mechanisms for TeleMeasure (TM) related to the release and deployment of devices, or on rotary mechanisms such as Solar Array Drive Mechanism (SADM) and Antenna Pointing Mechanism (APM). Longer lifetime (up to 7- 10 years) is becoming a new driver for the coming missions and contact technology sensors often incur in limitations due to the wear of the contacting parts [1].A Self-Compensating Absolute Angular Encoder was developed and tested in the frame of an ESA's ARTES 5.2 project, named INCAS (INnovative Contact-less Angular Sensor). More in particular, the INCAS sensor addresses a market need for contactless angular sensors aimed at replacing the more conventional rotary potentiometers, while featuring the same level of accuracy performances and extending the expected lifetime.
A novel cluster-tube self-adaptive robot hand.
Fu, Hong; Yang, Haokun; Song, Weishu; Zhang, Wenzeng
2017-01-01
This paper proposes a novel cluster-tube self-adaptive robot hand (CTSA Hand). The CTSA Hand consists of a base, a motor, a transmission mechanism, multiple elastic tendons, and a group of sliding-tube assemblies. Each sliding-tube assembly is composed of a sliding tube, a guide rod, two springs and a hinge. When the hand grasping an object, the object pushes some sliding tubes to different positions according to the surface shape of the object, the motor pulls the tendons tight to cluster tubes. The CTSA Hand can realize self-adaptive grasping of objects of different sizes and shapes. The CTSA Hand can grasp multiple objects simultaneously because the grasping of the hand acts as many grippers in different directions and heights. The grasping forces of the hand are adjusted by a closed-loop control system with potentiometer. Experimental results show that the CTSA Hand has the features of highly self-adaption and large grasping forces when grasping various objects.
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda
2016-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prochazka, R.; Frydrych, J.; Pechousek, J.
2010-07-13
This work is focused on a development of a compact fast scintillation detector suitable for Moessbauer spectroscopy (low energy X-ray/{gamma}-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000more » ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.« less
Measurement of Flexed Posture for Flexible Mono-Tread Mobile Track
NASA Astrophysics Data System (ADS)
Kinugasa, Tetsuya; Akagi, Tetsuya; Ishii, Kuniaki; Haji, Takafumi; Yoshida, Koji; Amano, Hisanori; Hayashi, Ryota; Tokuda, Kenichi; Iribe, Masatsugu; Osuka, Koichi
We have proposed Flexible Mono-tread mobile Track (FMT) as a mobile mechanism on rough terrain for rescue activity, environmental investigation and planetary explorer, etc. Generally speaking, one has to teleoperate robots under invisible condition. In order to operate the robots skillfully, it is necessary to detect not only condition around the robots and its position but also posture of the robots at any time. Since flexed posture of FMT decides turning radius and direction, it is important to know its posture. FMT has vertebral structure composed of vertebrae as rigid body and intervertebral disks made by flexible devices such as rubber cylinder and spring. Since the intervertebral disks flex in three dimension, traditional sensors such as potentiometers, rotary encoders and range finders can hardly use for measurement of its deformation. The purpose of the paper, therefore, is to measure flexed posture of FMT using a novel flexible displacement sensor. We prove that the flexed posture of FMT with five intervertebral disks can be detected through experiment.
Design and implementation of an audio indicator
NASA Astrophysics Data System (ADS)
Zheng, Shiyong; Li, Zhao; Li, Biqing
2017-04-01
This page proposed an audio indicator which designed by using C9014, LED by operational amplifier level indicator, the decimal count/distributor of CD4017. The experimental can control audibly neon and holiday lights through the signal. Input audio signal after C9014 composed of operational amplifier for power amplifier, the adjust potentiometer extraction amplification signal input voltage CD4017 distributors make its drive to count, then connect the LED display running situation of the circuit. This simple audio indicator just use only U1 and can produce two colors LED with the audio signal tandem come pursuit of the running effect, from LED display the running of the situation takes can understand the general audio signal. The variation in the audio and the frequency of the signal and the corresponding level size. In this light can achieve jump to change, slowly, atlas, lighting four forms, used in home, hotel, discos, theater, advertising and other fields, and a wide range of USES, rU1h life in a modern society.
Study of Wearable Knee Assistive Instruments for Walk Rehabilitation
NASA Astrophysics Data System (ADS)
Zhu, Yong; Nakamura, Masahiro; Ito, Noritaka; Fujimoto, Hiroshi; Horikuchi, Kenichi; Wakabayashi, Shojiro; Takahashi, Rei; Terada, Hidetsugu; Haro, Hirotaka
A wearable Knee Assistive Instrument for the walk rehabilitation was newly developed. Especially, this system aimed at supporting the rehabilitation for the post-TKA (Total Knee Arthroplasty) which is a popular surgery for aging people. This system consisted of an assisting mechanism for the knee joint, a hip joint support system and a foot pressure sensor system. The driving system of this robot consisted of a CPU board which generated the walking pattern, a Li-ion battery, DC motors with motor drivers, contact sensors to detect the state of foot and potentiometers to detect the hip joint angle. The control method was proposed to reproduce complex motion of knee joint as much as possible, and to increase hip or knee flexion angle. Especially, this method used the timing that heel left from the floor. This method included that the lower limb was raised to prevent a subject's fall. Also, the prototype of knee assisting system was tested. It was confirmed that the assisting system is useful.
Design and development of an upper extremity motion capture system for a rehabilitation robot.
Nanda, Pooja; Smith, Alan; Gebregiorgis, Adey; Brown, Edward E
2009-01-01
Human robot interaction is a new and rapidly growing field and its application in the realm of rehabilitation and physical care is a major focus area of research worldwide. This paper discusses the development and implementation of a wireless motion capture system for the human arm which can be used for physical therapy or real-time control of a robotic arm, among many other potential applications. The system is comprised of a mechanical brace with rotary potentiometers inserted at the different joints to capture position data. It also contains surface electrodes which acquire electromyographic signals through the CleveMed BioRadio device. The brace interfaces with a software subsystem which displays real time data signals. The software includes a 3D arm model which imitates the actual movement of a subject's arm under testing. This project began as part of the Rochester Institute of Technology's Undergraduate Multidisciplinary Senior Design curriculum and has been integrated into the overall research objectives of the Biomechatronic Learning Laboratory.
Design and construction of the artificial patient module for testing bioimpedance measuring devices
NASA Astrophysics Data System (ADS)
Młyńczak, Marcel; Pariaszewska, Katarzyna; Niewiadomski, Wiktor; Cybulski, Gerard
2013-10-01
The purpose of this study was to describe the design of the electronic module for testing bioimpedance measuring devices, for example impedance cardiographs or impedance pneumographs. Artificial Patient was conceived as an electronic equivalent of the impedance of skin-electrode interface and the impedance between electrodes - measured one. Different approaches in imitating a resistance of skin and an impedance of electrode-skin connection were presented. The module was adapted for frequently applied tetrapolar electrode configuration. Therefore the design do not enclose the elements simulating impedance between skin and receiver electrodes due to negligible effect of this impedance on the current flow through the receiver. The Artificial Patient enables testing either application generators, or receiver parts, particularly the level of noise and distortions of the signal. Use of digitally controlled potentiometer allows simulating different tissue resistances changes such as constant values, very-low-frequency and low-frequency changes corresponding to those caused by breathing or heart activity. Also it allows distorting signals in order to test algorithms of artifacts attenuation.
High temperature strain gage technology for gas turbine engines
NASA Technical Reports Server (NTRS)
Fichtel, Edward J.; Mcdaniel, Amos D.
1994-01-01
This report summarizes the results of a six month study that addressed specific issues to transfer the Pd-13Cr static strain sensor to a gas turbine engine environment. The application issues that were addressed include: (1) evaluation of a miniature, variable potentiometer for use as the ballast resistor, in conjunction with a conventional strain gage signal conditioning unit; (2) evaluation of a metal sheathed, platinum conductor leadwire assembly for use with the three-wire sensor; and (3) subjecting the sensor to dynamic strain cyclic testing to determine fatigue characteristics. Results indicate a useful static strain gage system at all temperature levels up to 1350 F. The fatigue characteristics also appear to be very promising, indicating a potential use in dynamic strain measurement applications. The procedure, set-up, and data for all tests are presented in this report. This report also discusses the specific strain gage installation technique for the Pd-13Cr gage because of its potential impact on the quality of the output data.
NASA Astrophysics Data System (ADS)
Weingart, Robert
This thesis is about the validation of a computational fluid dynamics simulation of a ground vehicle by means of a low-budget coast-down test. The vehicle is built to the standards of the 2014 Formula SAE rules. It is equipped with large wings in the front and rear of the car; the vertical loads on the tires are measured by specifically calibrated shock potentiometers. The coast-down test was performed on a runway of a local airport and is used to determine vehicle specific coefficients such as drag, downforce, aerodynamic balance, and rolling resistance for different aerodynamic setups. The test results are then compared to the respective simulated results. The drag deviates about 5% from the simulated to the measured results. The downforce numbers show a deviation up to 18% respectively. Moreover, a sensitivity analysis of inlet velocities, ride heights, and pitch angles was performed with the help of the computational simulation.
NASA Astrophysics Data System (ADS)
Nurbuwat, Adzin Kondo; Eryandi, Kholid Yusuf; Estriyanto, Yuyun; Widiastuti, Indah; Pambudi, Nugroho Agung
2018-02-01
The objective of this study is to measure the time performance of a self-cancelling turn signal mechanism based on the In this study the performance of self-cancelling turn signal based on ATMega328P microcontroller is measured at low speed and high speed treatment on motorcycles commonly used in Indonesia. Time performance measurements were made by comparing the self-cancelling turn signal based on ATMega328P microcontroller with standard motor turn time. Measurements of time at low speed treatment were performed at a speed range of 15 km / h, 20 km / h, 25 km / h on the U-turn test trajectory. The angle of the turning angle of the potentiometer is determined at 3°. The limit of steering wheel turning angle at the potentiometer is set at 3°. For high-speed treatment is 30 km / h, 40 km / h, 50km / h, and 60 km / h, on the L-turn test track with a tilt angle (roll angle) read by the L3G4200D gyroscope sensor. Each speed test is repeated 3 replications. Standard time is a reference for self-cancelling turn signal performance. The standard time obtained is 15.68 s, 11.96 s, 9.34 s at low speed and 4.63 s, 4.06 s, 3.61 s, 3.13 s at high speed. The time test of self-cancelling turn signal shows 16.10 s, 12.42 s, 10.24 s at the low speed and 5.18, 4.51, 3.73, 3.21 at the high speed. At a speed of 15 km / h occurs the instability of motion turns motorcycle so that testing is more difficult. Small time deviations indicate the tool works well. The largest time deviation value is 0.9 seconds at low speed and 0.55 seconds at high speed. The conclusion at low velocity of the highest deviation value occurred at the speed of 25 km / h test due to the movement of slope with inclination has started to happen which resulted in slow reading of steering movement. At higher speeds the time slows down due to rapid sensor readings on the tilt when turning fast at ever higher speeds. The timing performance of self-cancelling turn signal decreases as the motorcycle turning characteristics move from the turn using the steering angle to using a tilt angle based on speed, or vice versa.
NASA Technical Reports Server (NTRS)
Davis, Kirsch; Bankieris, Derek
2016-01-01
As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome will convert existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate and to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code. Conversion of C++ codes to ROS will enable existing code to be compatible with ROS, and will be controlled using existing PS3 controller. Furthermore, my job description is to design ROS messages and script programs which will enable assets to participate in the ROS ecosystem. In addition, an open source software (IDE) Arduino board will be integrated in the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module digital clock that will run off 22 satellites to show accurate real time using a GPS signal and internal patch antenna to communicate with satellites.
Single-phase frequency converter
NASA Astrophysics Data System (ADS)
Baciu, I.; Cunţan, C. D.
2017-01-01
The paper presents a continuous voltage inverter - AC (12V / 230V) made with IGBT and two-stage voltage transformer. The sequence control transistors is achieved using a ring counter whose clock signal is obtained with a monostable circuit LM 555. The frequency of the clock signal can be adjustment with a potentiometer that modifies the charging current of the capacitor which causes constant monostable circuit time. Command sequence consists of 8 intervals of which 6 are assigned to command four transistors and two for the period break at the beginning and end of the sequence control. To obtain an alternation consisting of two different voltage level, two transistors will be comanded, connected to different windings of the transformer and the one connected to the winding providing lower voltage must be comanded twice. The output of the numerator goes through an inverter type MOS and a current amplifier with bipolar transistor.To achieve galvanic separation, an optocoupler will be used for each IGBT transistor, while protection is achieved with resistance and diode circuit. At the end there is connected an LC filter for smoothing voltage variations.
Oculomotor function during space flight and susceptibility to space motion sickness
NASA Technical Reports Server (NTRS)
Thornton, William E.; Uri, John J.
1991-01-01
Horizontal vestibulo-ocular reflex (VOR) and saccadic eye movements (SEM) were studied in 18 subjects before and during five Space Shuttle missions to evaluate the effects of weightlessness and correlations between results and susceptibility to and actual presence of space motion sickness (SMS). Active sinusoidal head oscillation was the stimulus for VOR tests with vision (VVOR), with eyes shaded (VOR-ES), and VOR suppression (VOR-S). Eye movements were recorded by electrooculography and head position by a potentiometer. No pathological nystagmus or other abnormal eye movements were seen. No significant in-flight changes were seen in the gain, phase shift or waveform of VVOR, VOR-ES or VOR-S. Statistically significant increases in saccadic latency and decreases in saccadic velocity were seen, with no change in saccadic accuracy. Preflight differences between SMS susceptible and nonsusceptible subjects were noted only in VOR-S, with less complete suppression in susceptible subjects, a finding also seen in flight. During flight, VVOR gain was significantly increased in three nonaffected subjects. Saccades of SMS-affected subjects showed increased latency and velocity and decreased accuracy compared to saccades of unaffected subjects.
Patients with migraine correctly estimate the visual verticality.
Crevits, Luc; Vanacker, Leen; Verraes, Anouk
2012-05-01
We wanted to study otolith function by measuring the static subjective visual vertical (SVV) in migraine patients and in controls with and without kinetosis (motion sickness). Forty-seven patients with moderately severe migraine and 96 healthy controls were enrolled. Using a questionnaire, persons with kinetosis were identified. The SVV test was performed in a totally dark room. Subjects wore a stiffneck to stabilize the head in an erect position. They were required to adjust an infrared line to the gravitational vertical with a hand-held infrared remote controlled potentiometer. The deviation of SVV in the group of migraine patients was not significantly different from that of controls, regardless of whether an aura was associated. SVV was not significantly influenced by the presence of dizziness/non specific vertigo or kinetosis. Patients with moderately severe migraine under prophylactic medication correctly estimate the visual verticality in the headache-free period. It is suggested that a deviation of SVV in a headache-free migraine patient may not be attributed to his migraine disorder as such regardless whether kinetosis is associated. Copyright © 2011 Elsevier B.V. All rights reserved.
Chen, Shih-Ching; Hsieh, Tsung-Hsun; Fan, Wen-Jia; Lai, Chien-Hung; Chen, Chun-Lung; Wei, Wei-Feng; Peng, Chih-Wei
2015-06-01
Recent advances in microelectronics and wireless transmission technology have led to the development of various implantable sensors for real-time monitoring of bladder conditions. Although various sensing approaches for monitoring bladder conditions were reported, most such sensors have remained at the laboratory stage due to the existence of vital drawbacks. In the present study, we explored a new concept for monitoring the bladder capacity on the basis of potentiometric principles. A prototype of a potentiometer module was designed and fabricated and integrated with a commercial wireless transmission module and power unit. A series of in vitro pig bladder experiments was conducted to determine the best design parameters for implementing the prototype potentiometric device and to prove its feasibility. We successfully implemented the potentiometric module in a pig bladder model in vitro, and the error of the accuracy of bladder volume detection was <±3%. Although the proposed potentiometric device was built using a commercial wireless module, the design principles and animal experience gathered from this research can serve as a basis for developing new implantable bladder sensors in the future.
Strain Gage Loads Calibration Testing of the Active Aeroelastic Wing F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lokos, William A.; Olney, Candida D.; Chen, Tony; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.; Bessette, Denis (Technical Monitor)
2002-01-01
This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections measured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface. A series of 72 load cases has been performed, including single-point, double-point, and distributed load cases. Applied loads have reached 70 percent of the flight limit load. Maximum wingtip deflection has reached nearly 16 in.
Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Benolken, Martha S.
1991-01-01
Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.
Fluoride content in table salt distributed in Mexico City, Mexico.
Hernández-Guerrero, Juan Carlos; de la Fuente-Hernández, Javier; Jiménez-Farfán, Maria Dolores; Ledesma-Montes, Constantino; Castañeda-Castaneira, Enrique; Molina-Frechero, Nelly; Jacinto-Alemán, Luís Fernando; Juárez-Lopez, Lilia Adriana; Moreno-Altamirano, Alejandra
2008-01-01
The aim of this study was to analyze table salt available in Mexico City's market to identify the fluoride concentrations and to compare these with the Mexican regulations. We analyzed 44 different brands of table salt. All samples were purchased at random in different stores, supermarkets, and groceries from Mexico City's metropolitan area and analyzed in triplicate in three different laboratories (nine determinations per sample) with an Orion 720 A potentiometer and an Orion 9609 BN ion-specific electrode. Fluoride concentration in the samples varied from 0 ppm to 485 ppm. It was found that fluoride concentration varied widely among the analyzed brands. Also, we found that fluoride concentration in 92 percent of the analyzed samples did not match with that printed on the label. Only 6.8 percent of the analyzed samples contained fluoride concentrations that meet Mexican and WHO regulations. The broad variation in the analyzed samples suggests that Mexican Public Health authorities must implement more stringent regulation guidelines and procedures for controlling the distribution of salt and its fluoride concentration for human consumption.
Permanent magnet DC motor control by using arduino and motor drive module BTS7960
NASA Astrophysics Data System (ADS)
Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.
2018-05-01
This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.
Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors
NASA Technical Reports Server (NTRS)
McWhorter, Bruce B.; Ewing, Mark E.; McCool, Alex (Technical Monitor)
2001-01-01
Real-time char line recession measurements were made on propellant inhibitors of the Space Shuttle Reusable Solid Rocket Motor (RSRM). The RSRM FSM-8 static test motor propellant inhibitors (composed of a rubber insulation material) were successfully instrumented with eroding potentiometers and thermocouples. The data was used to establish inhibitor recession versus time relationships. Normally, pre-fire and post-fire insulation thickness measurements establish the thermal performance of an ablating insulation material. However, post-fire inhibitor decomposition and recession measurements are complicated by the fact that most of the inhibitor is back during motor operation. It is therefore a difficult task to evaluate the thermal protection offered by the inhibitor material. Real-time measurements would help this task. The instrumentation program for this static test motor marks the first time that real-time inhibitors. This report presents that data for the center and aft field joint forward facing inhibitors. The data was primarily used to measure char line recession of the forward face of the inhibitors which provides inhibitor thickness reduction versus time data. The data was also used to estimate the inhibitor height versus time relationship during motor operation.
Risk Mitigation Testing with the BepiColombo MPO SADA
NASA Astrophysics Data System (ADS)
Zemann, J.; Heinrich, B.; Skulicz, A.; Madsen, M.; Weisenstein, W.; Modugno, F.; Althaus, F.; Panhofer, T.; Osterseher, G.
2013-09-01
A Solar Array (SA) Drive Assembly (SADA) for the BepiColombo mission is being developed and qualified at RUAG Space Zürich (RSSZ). The system is consisting of the Solar Array Drive Mechanism (SADM) and the Solar Array Drive Electronics (SADE) which is subcontracted to RUAG Space Austria (RSA).This paper deals with the risk mitigation activities and the lesson learnt from this development. In specific following topics substantiated by bread board (BB) test results will be addressed in detail:Slipring Bread Board Test: Verification of lifetime and electrical performance of carbon brush technology Potentiometer BB Tests: Focus on lifetime verification (> 650000 revolution) and accuracy requirement SADM EM BB Test: Subcomponent (front-bearing and gearbox) characterization; complete test campaign equivalent to QM test.EM SADM/ SADE Combined Test: Verification of combined performance (accuracy, torque margin) and micro-vibration testing of SADA systemSADE Bread Board Test: Parameter optimization; Test campaign equivalent to QM testThe main improvements identified in frame of BB testing and already implemented in the SADM EM/QM and SADE EQM are:• Improved preload device for gearbox• Improved motor ball-bearing assembly• Position sensor improvements• Calibration process for potentiometer• SADE motor controller optimization toachieve required running smoothness• Overall improvement of test equipment.
Detection of endoscopic looping during colonoscopy procedure by using embedded bending sensors
Bruce, Michael; Choi, JungHun
2018-01-01
Background Looping of the colonoscope shaft during procedure is one of the most common obstacles encountered by colonoscopists. It occurs in 91% of cases with the N-sigmoid loop being the most common, occurring in 79% of cases. Purpose Herein, a novel system is developed that will give a complete three-dimensional (3D) vector image of the shaft as it passes through the colon, to aid the colonoscopist in detecting loops before they form. Patients and methods A series of connected links spans the middle 50% of the shaft, where loops are likely to form. Two potentiometers are attached at each joint to measure angular deflection in two directions to allow for 3D positioning. This 3D positioning is converted into a 3D vector image using computer software. MATLAB software has been used to display the image on a computer monitor. For the different configuration of the colon model, the system determined the looping status. Results Different configurations (N loop, reverse gamma loop, and reverse splenic flexure) of the loops were well defined using 3D vector image. Conclusion The novel sensory system can accurately define the various configuration of the colon during the colonoscopy procedure. PMID:29849469
Low-Cost Servomotor Driver for PFM Control
Aragon-Jurado, David
2017-01-01
Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM. PMID:29301221
Low-Cost Servomotor Driver for PFM Control.
Aragon-Jurado, David; Morgado-Estevez, Arturo; Perez-Peña, Fernando
2017-12-31
Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM.
Involuntary human hand movements due to FM radio waves in a moving van.
Huttunen, P; Savinainen, A; Hänninen, Osmo; Myllylä, R
2011-06-01
Finland TRACT Involuntary movements of hands in a moving van on a public road were studied to clarify the possible role of frequency modulated radio waves on driving. The signals were measured in a direct 2 km test segment of an international road during repeated drives to both directions. Test subjects (n=4) had an ability to sense radio frequency field intensity variations of the environment. They were sitting in a minivan with arm movement detectors in their hands. A potentiometer was used to register the hand movements to a computer which simultaneously collected data on the amplitude of the RF signal of the local FM tower 30 km distance at a frequency of about 100 MHz. Involuntary hand movements of the test subjects correlated with electromagnetic field, i.e. FM radio wave intensity measured. They reacted also on the place of a geomagnetic anomaly crossing the road, which was found on the basis of these recordings and confirmed by the public geological maps of the area.In conclusion, RF irradiation seems to affect the human hand reflexes of sensitive persons in a moving van along a normal public road which may have significance in traffic safety.
Frequency stabilization of quantum cascade laser for spectroscopic CO2 isotope analysis
NASA Astrophysics Data System (ADS)
Han, Luo; Xia, Hua; Pang, Tao; Zhang, Zhirong; Wu, Bian; Liu, Shuo; Sun, Pengshuai; Cui, Xiaojuan; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong
2018-06-01
Using off-axis integrated cavity output spectroscopy, named OA-ICOS, the absorption spectrum of CO2 at 4.32 μm is recorded by using a quantum cascade laser (QCL). The concentration of the three isotopologues 16O12C16O, 16O13C16O and 16O12C18O is detected simultaneously. The isotope abundance ratio of 13C and 18O in CO2 gas can be obtained, which is most useful for ecological research. Since the ambient temperature has a serious influence on the output wavelength of the laser, even small temperature variations seriously affect the stability and sensitivity of the system. In this paper, a wavelength locking technique for QCL is proposed. The output of a digital potentiometer integrated in the laser current driver control is modified by software, resulting in a correction of the driving current of the laser and thus of its wavelength. This method strongly reduces the influence of external factors on the wavelength drift of lasers and thus substantially improves the stability and performance of OA-ICOS as is demonstrated with long-time measurements on CO2 in laboratory air.
An 8-DOF dual-arm system for advanced teleoperation performance experiments
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Szakaly, Zoltan F.
1992-01-01
This paper describes the electro-mechanical and control features of an 8-DOF manipulator manufactured by AAI Corporation and installed at the Jet Propulsion Lab. (JPL) in a dual-arm setting. The 8-DOF arm incorporates a variety of features not found in other lab or industrial manipulators. Some of the unique features are: 8-DOF revolute configuration with no lateral offsets at joint axes; 1 to 5 payload to weight ratio with 20 kg (44 lb) payload at a 1.75 m (68.5 in.) reach; joint position measurement with dual relative encoders and potentiometer; infinite roll of joint 8 with electrical and fiber optic slip rings; internal fiber optic link of 'smart' end effectors; four-axis wrist; graphite epoxy links; high link and joint stiffness; use of an upgraded JPL Universal Motor Controller (UMC) capable of driving up to 16 joints. The 8-DOF arm is equipped with a 'smart' end effector which incorporates a 6-DOF forcemoment sensor at the end effector base and grasp force sensors at the base of the parallel jaws. The 8-DOF arm is interfaced to a 6 DOF force reflecting hand controller. The same system is duplicated for and installed at NASA-Langley.
Fluoride content in bottled waters, juices and carbonated soft drinks in Mexico City, Mexico.
Jimenez-Farfan, M D; Hernandez-Guerrero, J C; Loyola-Rodriguez, J P; Ledesma-Montes, C
2004-07-01
The objective of this study was to analyse 283 samples of soft drinks available in the metropolitan market of Mexico City, Mexico: 105 juices, 101 nectars, 57 carbonated drinks and 20 bottled waters. Samples of the beverages were analysed using an Orion 720A potentiometer and an Orion 9609BN F ion-specific electrode. Fluoride concentration in the above-mentioned products ranged from 0.07 to 1.42 p.p.m. It was found that fluoride concentrations varied according to the brand, flavour and presentation of the product. The highest mean concentration of fluoride was found in the juices and cola drinks (0.67 +/- 0.38 and 0.49 +/- 0.41 p.p.m., respectively). The mean fluoride concentration for carbonated drinks was 0.43 +/- 0.36 p.p.m. Bottled waters had a fluoride concentration of 0.21 +/- 0.08 p.p.m. The findings suggest that fluoride ingested through bottled drinks represents an important part of the total fluoride ingested by the population. In view of the wide variation of fluoride concentration in the tested products, it is necessary to implement regulatory guidelines for controlling its concentration in order to prevent dental fluorosis.
Sheep fed with banana leaf hay reduce ruminal protozoa population.
Freitas, Cláudio Eduardo Silva; Duarte, Eduardo Robson; Alves, Dorismar David; Martinele, Isabel; D'Agosto, Marta; Cedrola, Franciane; de Moura Freitas, Angélica Alves; Dos Santos Soares, Franklin Delano; Beltran, Makenzi
2017-04-01
A ciliate protozoa suppression can reduce methane production increasing the energy efficiency utilization by ruminants. The physicochemical characteristics of rumen fluid and the profile of the rumen protozoa populations were evaluated for sheep fed banana leaf hay in replacement of the Cynodon dactylon cv. vaqueiro hay. A total of 30 male sheep were raised in intensive system during 15 days of adaptation and 63 days of experimental period. The animals were distributed in a completely randomized design that included six replicates of five treatments with replacement levels (0, 25, 50, 75, and 100%) of the grass vaquero for the banana leaf hay. Samples of fluid were collected directly from the rumen with sterile catheters. Color, odor, viscosity, and the methylene blue reduction potential (MBRP) were evaluated and pH estimated using a digital potentiometer. After decimal dilutions, counts of genus protozoa were performed in Sedgewick Rafter chambers. The averages of pH, MBRP, color, odor, and viscosity were not influenced by the inclusion of the banana leaf hay. However, the total number of protozoa and Entodinium spp. population significantly decreased at 75 and 100% inclusions of banana leaf hay as roughage.
Rocking the boat: does perfect rowing crew synchronization reduce detrimental boat movements?
Cuijpers, L S; Passos, P J M; Murgia, A; Hoogerheide, A; Lemmink, K A P M; de Poel, H J
2017-12-01
In crew rowing, crew members need to mutually synchronize their movements to achieve optimal crew performance. Intuitively, poor crew coordination is often deemed to involve additional boat movements such as surge velocity fluctuations, heave, pitch, and roll, which would imply lower efficiency (eg, due to increased hydrodynamic drag). The aim of this study was to investigate this alleged relation between crew coordination and boat movements at different stroke rates. Fifteen crews of two rowers rowed in a double scull (ie, a two-person boat) at 18, 22, 26, 30, and 34 strokes per minute. Oar angles (using potentiometers) and movements of the boat (using a three-axial accelerometer-gyroscope sensor) were measured (200 Hz). Results indicated that crew synchronization became more consistent with stroke rate, while surge, heave, and pitch fluctuations increased. Further, within each stroke rate condition, better crew synchronization was related to less roll of the boat, but increased fluctuations regarding surge, heave, and pitch. Together this demonstrates that while better crew synchronization relates to enhanced lateral stability of the boat, it inevitably involves more detrimental boat movements and hence involves lower biomechanical efficiency. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Inertial Sensor Error Reduction through Calibration and Sensor Fusion.
Lambrecht, Stefan; Nogueira, Samuel L; Bortole, Magdo; Siqueira, Adriano A G; Terra, Marco H; Rocon, Eduardo; Pons, José L
2016-02-17
This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.
Studies of the vestibulo-ocular reflex on STS 4, 5 and 6
NASA Technical Reports Server (NTRS)
Thornton, William E.; Pool, Sam L.; Moore, Thomas P.; Uri, John J.
1988-01-01
The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results.
Complete low-cost implementation of a teleoperated control system for a humanoid robot.
Cela, Andrés; Yebes, J Javier; Arroyo, Roberto; Bergasa, Luis M; Barea, Rafael; López, Elena
2013-01-24
Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot's back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.
Electrical Connector Mechanical Seating Sensor
NASA Technical Reports Server (NTRS)
Arens, Ellen; Captain, Janine; Youngquist, Robert
2011-01-01
A sensor provides a measurement of the degree of seating of an electrical connector. This sensor provides a number of discrete distances that a plug is inserted into a socket or receptacle. The number of measurements is equal to the number of pins available in the connector for sensing. On at least two occasions, the Shuttle Program has suffered serious time delays and incurred excessive costs simply because a plug was not seated well within a receptacle. Two methods were designed to address this problem: (1) the resistive pin technique and (2) the discrete length pins technique. In the resistive pin approach, a standard pin in a male connector is replaced with a pin that has a uniform resistivity along its length. This provides a variable resistance on that pin that is dependent on how far the pin is inserted into a socket. This is essentially a linear potentiometer. The discrete approach uses a pin (or a few pins) in the connector as a displacement indicator by truncating the pin length so it sits shorter in the connector than the other pins. A loss of signal on this pin would indicate a discrete amount of displacement of the connector. This approach would only give discrete values of connector displacement, and at least one pin would be needed for each displacement value that would be of interest.
Prause, Nicole; Heiman, Julia
2010-02-01
Sexual desire variation traditionally has been treated as due to variance in affective response to sexual stimulation, but differences in attention to the stimuli may better account for differences in sexual desire. Determine whether sexual desire varies due to attention biases towards sexual stimuli. Sexual arousal was quantified by physiological (labia minus temperature) and experienced (continuously adjusting a potentiometer) indicators. Twenty-two women who varied in their level of sexual desire attended one laboratory session during which they viewed a neutral nature film, a sexual film, and a sexual film with distractors while their labial temperature and self-reported sexual arousal were recorded. Participants reported and displayed lower sexual arousal during the sexual stimulus with distractors as compared to the sexual film without distractors. While all women reported lower sexual arousal to the sexual film with distractors, women with relatively lower sexual desire also reported lower sexual arousal to the sexual film with no distractors than women with higher sexual desire. Physiologically, women with lower sexual desire exhibited lower labial temperature. Since the predicted lower self-reported and physiological sexual arousal to the sexual stimulus with distractors for the women with lower sexual desire did not emerge, this study does not support that sexual desire levels vary due to differential attention to sexual stimuli.
Complete Low-Cost Implementation of a Teleoperated Control System for a Humanoid Robot
Cela, Andrés; Yebes, J. Javier; Arroyo, Roberto; Bergasa, Luis M.; Barea, Rafael; López, Elena
2013-01-01
Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot's back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system. PMID:23348029
Performance of a 512 x 512 Gated CMOS Imager with a 250 ps Exposure Time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teruya, A T; Moody, J D; Hsing, W W
2012-10-01
We describe the performance of a 512x512 gated CMOS read out integrated circuit (ROIC) with a 250 ps exposure time. A low-skew, H-tree trigger distribution system is used to locally generate individual pixel gates in each 8x8 neighborhood of the ROIC. The temporal width of the gate is voltage controlled and user selectable via a precision potentiometer. The gating implementation was first validated in optical tests of a 64x64 pixel prototype ROIC developed as a proof-of-concept during the early phases of the development program. The layout of the H-Tree addresses each quadrant of the ROIC independently and admits operation ofmore » the ROIC in two modes. If “common mode” triggering is used, the camera provides a single 512x512 image. If independent triggers are used, the camera can provide up to four 256x256 images with a frame separation set by the trigger intervals. The ROIC design includes small (sub-pixel) optical photodiode structures to allow test and characterization of the ROIC using optical sources prior to bump bonding. Reported test results were obtained using short pulse, second harmonic Ti:Sapphire laser systems operating at λ~ 400 nm at sub-ps pulse widths.« less
Liu, Yang; Gao, Binghong; Li, Jiru; Ma, Zuchang; Sun, Yining
2018-06-07
The aim of this study was to investigate whether changes on foot-stretcher height were associated with characteristics of better rowing performance. Ten male rowers performed a 200 m rowing trial at their racing rate at each of three foot-stretcher heights. A single scull was equipped with an accelerometer to collect boat acceleration, an impeller with embedded magnets to collect boat speed, specially designed gate sensors to collect gate force and angle, and a compact string potentiometer to collect leg drive length. All sensor signals were sampled at 50 Hz. A one-way repeated measures ANOVA showed that raising foot-stretcher position had a significant reduction on total gate angle and leg drive length. However, a raised foot-stretcher position had a deeper negative peak of boat acceleration at the catch, a lower boat fluctuation, a faster leg drive speed, a larger gate force for the port and starboard side separately. This could be attributed to the optimisation of the magnitude and direction of the foot force with a raised foot-stretcher position. Although there was a significant negative influence of a raised foot-stretcher position on two kinematic variables, biomechanical evidence suggested that a raised foot-stretcher position could contribute to the improvement of rowing performance.
Non-censored rib fracture data during frontal PMHS sled tests.
Kemper, Andrew R; Beeman, Stephanie M; Porta, David J; Duma, Stefan M
2016-09-01
The purpose of this study was to obtain non-censored rib fracture data due to three-point belt loading during dynamic frontal post-mortem human surrogate (PMHS) sled tests. The PMHS responses were then compared to matched tests performed using the Hybrid-III 50(th) percentile male ATD. Matched dynamic frontal sled tests were performed on two male PMHSs, which were approximately 50(th) percentile height and weight, and the Hybrid-III 50(th) percentile male ATD. The sled pulse was designed to match the vehicle acceleration of a standard sedan during a FMVSS-208 40 kph test. Each subject was restrained with a 4 kN load limiting, driver-side, three-point seatbelt. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour, anterior-posterior sternum deflection, and maximum anterior-posterior chest deflection for all test subjects. The internal sternum deflection of the ATD was quantified with the sternum potentiometer. For the PMHS tests, a total of 23 single-axis strain gages were attached to the bony structures of the thorax, including the ribs, sternum, and clavicle. In order to create a non-censored data set, the time history of each strain gage was analyzed to determine the timing of each rib fracture and corresponding timing of each AIS level (AIS = 1, 2, 3, etc.) with respect to chest deflection. Peak sternum deflection for PMHS 1 and PMHS 2 were 48.7 mm (19.0%) and 36.7 mm (12.2%), respectively. The peak sternum deflection for the ATD was 20.8 mm when measured by the chest potentiometer and 34.4 mm (12.0%) when measured by the chestband. Although the measured ATD sternum deflections were found to be well below the current thoracic injury criterion (63 mm) specified for the ATD in FMVSS-208, both PMHSs sustained AIS 3+ thoracic injuries. For all subjects, the maximum chest deflection measured by the chestband occurred to the right of the sternum and was found to be 83.0 mm (36.0%) for PMHS 1, 60.6 mm (23.9%) for PMHS 2, and 56.3 mm (20.0%) for the ATD. The non-censored rib fracture data in the current study (n = 2 PMHS) in conjunction with the non-censored rib fracture data from two previous table-top studies (n = 4 PMHS) show that AIS 3+ injury timing occurs prior to peak sternum compression, prior to peak maximum chest compression, and at lower compressions than might be suggested by current PMHS thoracic injury criteria developed using censored rib fracture data. In addition, the maximum chest deflection results showed a more reasonable correlation between deflection, rib fracture timing, and injury severity than sternum deflection. Overall, these data provide compelling empirical evidence that suggests a more conservative thoracic injury criterion could potentially be developed based on non-censored rib fracture data with additional testing performed over a wider range of subjects and loading conditions.
Sophocleous, M.; Perry, C.A.
1984-01-01
To quantify and model the natural groundwater-recharge process, two sites in south-central Kansas, U.S.A., were instrumented with various modern sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a unified regime. Data from the various sensors were collected using microloggers in combination with magnetic-cassette tape, graphical and digital recorders, analog paper-tape recorders, and direct observations to evaluate and automate data collection and processing. Atmospheric sensors included an anemometer, a tipping-bucket raingage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron moisture probe operated by an observer. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicated that certain types of equipment such as pressure transducers are very sensitive to environmental conditions. Extraordinary steps had to be taken to protect some of the equipment, whereas other equipment seemed to be reliable under all conditions. Based on such experiences, a number of suggestions aimed at improving such investigations are outlined. ?? 1984.
Fiber Laser methane sensor with the function of self-diagnose
NASA Astrophysics Data System (ADS)
Li, Yan-fang; Wei, Yu-bin; Shang, Ying; Wang, Chang; Liu, Tong-yu
2012-02-01
Using the technology of tunable diode laser absorption spectroscopy and the technology of micro-electronics, a fiber laser methane sensor based on the microprocessor C8051F410 is given. In this paper, we use the DFB Laser as the light source of the sensor. By tuning temperature and driver current of the DFB laser, we can scan the laser over the methane absorption line, Based on the Beer-Lambert law, through detect the variation of the light power before and after the absorption we realize the methane detection. It makes the real-time and online detection of methane concentration to be true, and it has the advantages just as high accuracy, immunity to other gases , long calibration cycle and so on. The sensor has the function of adaptive gain and self-diagnose. By introducing digital potentiometers, the gain of the photoelectric conversion operational amplifier can be controlled by the microprocessor according to the light power. When the gain and the conversion voltage achieve the set value, then we can consider the sensor in a fault status, and then the software will alarm us to check the status of the probe. So we improved the dependence and the stability of the measured results. At last we give some analysis on the sensor according the field application and according the present working, we have a look of our next work in the distance.
Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and Inflatable Sleeves.
Ohta, Preston; Valle, Luis; King, Jonathan; Low, Kevin; Yi, Jaehyun; Atkeson, Christopher G; Park, Yong-Lae
2018-04-01
As robots begin to interact with humans and operate in human environments, safety becomes a major concern. Conventional robots, although reliable and consistent, can cause injury to anyone within its range of motion. Soft robotics, wherein systems are made to be soft and mechanically compliant, are thus a promising alternative due to their lightweight nature and ability to cushion impacts, but current designs often sacrifice accuracy and usefulness for safety. We, therefore, have developed a bioinspired robotic arm combining elements of rigid and soft robotics such that it exhibits the positive qualities of both, namely compliance and accuracy, while maintaining a low weight. This article describes the design of a robotic arm-wrist-hand system with seven degrees of freedom (DOFs). The shoulder and elbow each has two DOFs for two perpendicular rotational motions on each joint, and the hand has two DOFs for wrist rotations and one DOF for a grasp motion. The arm is pneumatically powered using custom-built McKibben type pneumatic artificial muscles, which are inflated and deflated using binary and proportional valves. The wrist and hand motions are actuated through servomotors. In addition to the actuators, the arm is equipped with a potentiometer in each joint for detecting joint angle changes. Simulation and experimental results for closed-loop position control are also presented in the article.
Analog simulation of a hybrid gasoline-electric vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, D.B.
1982-03-01
Hybrid vehicles using both internal combustion engines and electric motors represent one way to reduce fuel consumption. Our demonstration project envisioned more than halving the fuel consumption of a passenger vehicle by reducing greatly the capacity of its engine and adding regenerative braking and an all-electric range. We also envisaged maintaining the same performance as current passenger vehicles. A 0-6 000 rpm gasoline-driven internal combustion engine, two 0-7 800 rpm electric motors, a 0-7 800 rpm flywheel, and lead-acid batteries are the major components assembled using a mechnical epicyclic gear box. An EAI 681 analog computer allowed us to examinemore » quickly the effects of engine capacity, flywheel size, battery voltage, gear ratios, and mode of operation. An external potentiometer control on the computer allowed the operator to drive the vehicle through any acceleration cycle on level ground. We have shown that a 1.3 litre gasoline engine, two 13 kW separately excited direct current electric motors, a 38 kg flywheel, and a 48-volt battery pack will provide the same maximum performance as a conventional 4.1 litre internal combustion engine with automatic transmission at vehicle speeds below 60 km/h, and lower but satisfactory highway performance up to a top speed of 130 km/h. The transmission has undergone laboratory tests; it is to be road-tested in the first half of 1982.« less
Radiation detection and wireless networked early warning
NASA Astrophysics Data System (ADS)
Burns, David A.; Litz, Marc S.; Carroll, James J.; Katsis, Dimosthenis
2012-06-01
We have designed a compact, wireless, GPS-enabled array of inexpensive radiation sensors based on scintillation counting. Each sensor has a scintillator, photomultiplier tube, and pulse-counting circuit that includes a comparator, digital potentiometer and microcontroller. This design provides a high level of sensitivity and reliability. A 0.2 m2 PV panel powers each sensor providing a maintenance-free 24/7 energy source. The sensor can be mounted within a roadway light-post and monitor radiological activity along transport routes. Each sensor wirelessly transmits real-time data (as counts per second) up to 2 miles with a XBee radio module, and the data is received by a XBee receive-module on a computer. Data collection software logs the information from all sensors and provides real-time identification of radiation events. Measurements performed to-date demonstrate the ability of a sensor to detect a 20 μCi source at 3.5 meters when packaged with a PVT (plastic) scintillator, and 7 meters for a sensor with a CsI crystal (more expensive but ~5 times more sensitive). It is calculated that the sensor-architecture can detect sources moving as fast as 130 km/h based on the current data rate and statistical bounds of 3-sigma threshold detection. The sensor array is suitable for identifying and tracking a radiation threat from a dirty bomb along roadways.
Effect of roof strength in injury mitigation during pole impact.
Friedman, Keith; Hutchinson, John; Mihora, Dennis; Kumar, Sri; Frieder, Russell; Sances, Anthony
2007-01-01
Motor vehicle accidents involving pole impacts often result in serious head and neck injuries to occupants. Pole impacts are typically associated with rollover and side collisions. During such events, the roof structure is often deformed into the occupant survival space. The existence of a strengthened roof structure would reduce roof deformation and accordingly provide better protection to occupants. The present study examines the effect of reinforced (strengthened) roofs using experimental crash study and computer model simulation. The experimental study includes the production cab structure of a pickup truck. The cab structure was loaded using an actual telephone pole under controlled laboratory conditions. The cab structure was subjected to two separate load conditions at the A-pillar and door frame. The contact force and deformation were measured using a force gauge and potentiometer, respectively. A computer finite element model was created to simulate the experimental studies. The results of finite element model matched well with experimental data during two different load conditions. The validated finite element model was then used to simulate a reinforced roof structure. The reinforced roof significantly reduced the structural deformations compared to those observed in the production roof. The peak deformation was reduced by approximately 75% and peak velocity was reduced by approximately 50%. Such a reduction in the deformation of the roof structure helps to maintain a safe occupant survival space.
Decontamination of laboratory microbiological waste by steam sterilization.
Rutala, W A; Stiegel, M M; Sarubbi, F A
1982-01-01
A steam sterilizer (autoclave) was tested to determine the operating parameters that affected sterilization of microbiological waste. Tests involved standardized loads (5, 10 ad 15 lb [ca. 2.27, 4.54, and 6.80 kg, respectively]) contaminated petri plates in autoclave bags placed in polypropylene or stainless steel containers. Thermal and biological data were obtained by using a digital potentiometer and a biological indicator containing spores of Bacillus stearothermophilus, respectively. The transfer of heat was more efficient when smaller loads of microbiological waste were tested and stainless steel rather than polypropylene containers were used. A single bag with the sides rolled down to expose the top layer of petri plates allowed heat to pass better than did a single bag with the top constricted by a twist-tie. The presence of water in the autoclave bag did not significantly improve heat-up time in stainless steel or polypropylene containers. The results of biological tests substantiated the temperature data. When 10 or 15 lb of microbiological waste was exposed to various test conditions, the only condition that ensured the destruction of B. stearothermophilus involved the use of a stainless steel container (with or without water) for 90 min. Autoclaving for 45 min resulted in the destruction of bacteria included in 10 lb (136 +/- 3 plates) or 15 lb (205 +/- 6 plates) of microbiological waste when stainless steel containers with or without water or polypropylene containers with water used, whereas 60 min was required to kill all bacteria if polypropylene containers without water were used. PMID:7103486
Dynamic elasticity measurement for prosthetic socket design.
Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin
2017-07-01
The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.
NASA Astrophysics Data System (ADS)
Ahmadian, Radin
2010-09-01
This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 Ω potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.
Development and Test of Robotically Assisted Extravehicular Activity Gloves
NASA Technical Reports Server (NTRS)
Rogers, Jonathan M.; Peters, Benjamin J.; Laske, Evan A.; McBryan, Emily R.
2017-01-01
Over the past two years, the High Performance EVA Glove (HPEG) project under NASA's Space Technology Mission Directorate (STMD) funded an effort to develop an electromechanically-assisted space suit glove. The project was a collaboration between the Johnson Space Center's Software, Robotics, and Simulation Division and the Crew and Thermal Systems division. The project sought to combine finger actuator technology developed for Robonaut 2 with the softgoods from the ILC Phase VI EVA glove. The Space Suit RoboGlove (SSRG) uses a system of three linear actuators to pull synthetic tendons attached to the glove's fingers to augment flexion of the user's fingers. To detect the user's inputs, the system utilizes a combination of string potentiometers along the back of the fingers and force sensitive resistors integrated into the fingertips of the glove cover layer. This paper discusses the development process from initial concepts through two major phases of prototypes, and the results of initial human testing. Initial work on the project focused on creating a functioning proof of concept, designing the softgoods integration, and demonstrating augmented grip strength with the actuators. The second year of the project focused on upgrading the actuators, sensors, and software with the overall goal of creating a system that moves with the user's fingers in order to reduce fatigue associated with the operation of a pressurized glove system. This paper also discusses considerations for a flight system based on this prototype development and address where further work is required to mature the technology.
A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable
Jeong, Useok; Cho, Kyu-Jin
2016-01-01
Bend sensors have been developed based on conductive ink, optical fiber, and electronic textiles. Each type has advantages and disadvantages in terms of performance, ease of use, and cost. This study proposes a new and low-cost bend sensor that can measure a wide range of accumulated bend angles with large curvatures. This bend sensor utilizes a Bowden-cable, which consists of a coil sheath and an inner wire. Displacement changes of the Bowden-cable’s inner wire, when the shape of the sheath changes, have been considered to be a position error in previous studies. However, this study takes advantage of this position error to detect the bend angle of the sheath. The bend angle of the sensor can be calculated from the displacement measurement of the sensing wire using a Hall-effect sensor or a potentiometer. Simulations and experiments have shown that the accumulated bend angle of the sensor is linearly related to the sensor signal, with an R-square value up to 0.9969 and a root mean square error of 2% of the full sensing range. The proposed sensor is not affected by a bend curvature of up to 80.0 m−1, unlike previous bend sensors. The proposed sensor is expected to be useful for various applications, including motion capture devices, wearable robots, surgical devices, or generally any device that requires an affordable and low-cost bend sensor. PMID:27347959
NASA Tech Briefs, February 2003
NASA Technical Reports Server (NTRS)
2003-01-01
opics covered include: Integrated Electrode Arrays for Neuro-Prosthetic Implants; Eroding Potentiometers; Common/Dependent-Pressure-Vessel Nickel-Hydrogen Batteries; 120-GHz HEMT Oscillator With Surface-Wave-Assisted Antenna; 80-GHz MMIC HEMT Voltage-Controlled Oscillator; High-Energy-Density Capacitors; Microscale Thermal-Transpiration Gas Pump; Instrument for Measuring Temperature of Water; Improved Measurement of Coherence in Presence of Instrument Noise; Compact Instruments Measure Helium-Leak Rates; Irreversible Entropy Production in Two-Phase Mixing Layers; Subsonic and Supersonic Effects in Bose-Einstein Condensate; Nanolaminate Mirrors With "Piston" Figure-Control Actuators; Mixed Conducting Electrodes for Better AMTEC Cells; Process for Encapsulating Protein Crystals; Lightweight, Self-Deployable Wheels; Grease-Resistant O Rings for Joints in Solid Rocket Motors; LabVIEW Serial Driver Software for an Electronic Load; Software Computes Tape-Casting Parameters; Software for Tracking Costs of Mars Projects; Software for Replicating Data Between X.500 and LDAP Directories; The Technical Work Plan Tracking Tool; Improved Multiple-DOF SAW Piezoelectric Motors; Propulsion Flight-Test Fixture; Mechanical Amplifier for a Piezoelectric Transducer; Swell Sleeves for Testing Explosive Devices; Linear Back-Drive Differentials; Miniature Inchworm Actuators Fabricated by Use of LIGA; Using ERF Devices to Control Deployments of Space Structures; High-Temperature Switched-Reluctance Electric Motor; System for Centering a Turbofan in a Nacelle During Tests; Fabricating Composite-Material Structures Containing SMA Ribbons; Optimal Feedback Control of Thermal Networks; Artifacts for Calibration of Submicron Width Measurements; Navigating a Mobile Robot Across Terrain Using Fuzzy Logic; Designing Facilities for Collaborative Operations; and Quantitating Iron in Serum Ferritin by Use of ICP-MS.
An upper-limb power-assist exoskeleton using proportional myoelectric control.
Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang
2014-04-10
We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury.
Kim, Tae Yong; Hong, Sung A; Yang, Sung
2015-03-17
In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE) that was coated with a protective layer of graphene oxide (GO). This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN)63- as calculated from the cathodic peaks of the SSRE was 6.48 × 10-6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD) card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99.
Clark, H F; Kaminski, F; Karzon, D T
1970-05-01
Establishment of a near-linear temperature gradient in an incubator has been accomplished by the application of heat to one terminus of a conducting body, normally a metal bar, and the removal of heat from the other terminus of the conducting body. Such incubators have been complex and unwieldy because of the need for mechanical refrigeration. We have described a simplified temperature gradient incubator which uses thermoelectric module cooling coupled with electric heating. Along the gradient, 20 stations in two parallel rows of 10, each accommodating a 30-ml plastic cell culture flask, were continually monitored by an electronic thermometer, and the temperatures were recorded. By manipulation of two simple potentiometer controls, any temperature gradient between 0 and 50 C could be obtained. Minor deviations which occurred between theoretically perfect and obtained temperature gradients were reproducible and readily measured. The gradient incubator was particularly applicable to (i) simultaneously studying a given biological activity over the entire temperature range supporting the growth of a given cell, virus, or microorganism, or (ii) precisely defining the upper or lower temperature limits of a biological system by 10-point determinations. Preliminary experiments have demonstrated the usefulness of the apparatus in characterizing the temperature limits for growth in vitro of cells of reptilian cell lines. The gradient incubator was also successfully utilized for the characterization of the effect of temperature on the efficiency of plating of amphibian viruses and possible temperature variants of those viruses.
Antenna Pointing Mechanisms for Solar Orbiter High and Medium Gain Antennas
NASA Astrophysics Data System (ADS)
Vazquez, Jorge; Pinto, Inaki; Gabiola, Iker; Ibargoyen, I.; Martin, Fernando
2015-09-01
The ESA Solar Orbiter is an interdisciplinary mission to the Sun. It consists of a single spacecraft which will orbit the Sun in a moderately elliptical orbit, using a suite of advanced Remote-Sensing and In-Situ instruments to perform a detailed observation of the Sun and surrounding space. Sener is contractor for the delivery of the Antennas subsystems.The pointing mechanism from HGAMA is a dual-axes gimbal providing azimuth and elevation steering capability. The azimuth axis is driven by the GHM geared to a rotating bracket which supports the elevation actuator and is linked to the HGAMA boom. Both are based on stepper motors with planetary reducers geared to the corresponding output brackets. An integrated X- band dual axes Rotary Joint Assembly (HGA-RJA) routes the RF energy through the APM in both TX and RX directions. The MGAMA APM is a single-axis gimbal providing elevation steering capability, with one built-in actuator and has been design to share many of the components with the elevation axis from HGAMA APM, including a single axis Rotary Joint Assembly (MGA-RJA).Based on BEPI-Colombo heritage, some aspects of the design have been developed specifically for the SolO mission and are presented in this paper.- High temperature ranges in the APM.- Dedicated output shaft support with dedicated flexible coupling.- High accuracy required, with a potentiometer as coarse sensor and inductosyn for fine positioning.- Elevation twist capsule concept based on spiral configuration.- High solar radiation and contamination requirements.
Recent enhancements to and applications of the SmartBrick structural health monitoring platform
NASA Astrophysics Data System (ADS)
Gunasekaran, A.; Cross, S.; Patel, N.; Sedigh, S.
2012-04-01
The SmartBrick network is an autonomous and wireless solution for structural health monitoring of civil infrastructures. The base station is currently in its third generation and has been laboratory- and field-tested in the United States and Italy. The second generation of the sensor nodes has been laboratory-tested as of publication. In this paper, we present recent enhancements made to hardware and software of the SmartBrick platform. Salient improvements described include the development of a new base station with fully-integrated long-range GSM (cellular) and short-range ZigBee communication. The major software improvement described in this paper is migration to the ZigBee PRO stack, which was carried out in the interest of interoperability. To broaden the application of the platform to critical environments that require survivability and fault tolerance, we have striven to achieve compliance with military standards in the areas of hardware, software, and communication. We describe these efforts and present a survey of the military standards investigated. Also described is instrumentation of a three-span experimental bridge in Washington County, Missouri; with the SmartBrick platform. The sensors, whose output is conditioned and multiplexed; include strain gauges, thermocouples, push potentiometers, and three-axis inclinometers. Data collected is stored on site and reported over the cellular network. Real-time alerts are generated if any monitored parameter falls outside its acceptable range. Redundant sensing and communication provide reliability and facilitate corroboration of the data collected. A web interface is used to issue remote configuration commands and to facilitate access to and visualization of the data collected.
A comparison of peak power in the shoulder press and shoulder throw.
Dalziel, W M; Neal, R J; Watts, M C
2002-09-01
The ability to generate peak power is central for performance in many sports. Currently two distinct resistance training methods are used to develop peak power, the heavy weight/slow velocity and light weight/fast velocity regimes. When using the light weight/fast velocity power training method it was proposed that peak power would be greater in a shoulder throw exercise compared with a normal shoulder press. Nine males performed three lifts in the shoulder press and shoulder throw at 30% and 40% of their one repetition maximum (1RM). These lifts were performed identically, except for the release of the bar in the throw condition. A potentiometer attached to the bar measured displacement and duration of the lifts. The time of bar release in the shoulder throw was determined with a pressure switch. ANOVA was used to examine statistically significant differences where the level of acceptance was set at p < 0.05. Peak power was found to be significantly greater in the shoulder throw at 30% of 1 RM condition [F, (1, 23) = 2.325 p < 0.051 and at 40% of 1 RM [F, (1, 23) = 2.905 p < 0.05] compared to values recorded for the respective shoulder presses. Peak power was also greater in the 30% of 1 RM shoulder throw (510 +/- 103W) than in the 40% of 1 RM shoulder press (471 +/- 96W). Peak power was produced significantly later in the shoulder throw versus the shoulder press. This differing power reflected a greater bar velocity of the shoulder throw at both assigned weights compared with the shoulder press.
The impact of diurnal sleep on the consolidation of a complex gross motor adaptation task
Hoedlmoser, Kerstin; Birklbauer, Juergen; Schabus, Manuel; Eibenberger, Patrick; Rigler, Sandra; Mueller, Erich
2015-01-01
Diurnal sleep effects on consolidation of a complex, ecological valid gross motor adaptation task were examined using a bicycle with an inverse steering device. We tested 24 male subjects aged between 20 and 29 years using a between-subjects design. Participants were trained to adapt to the inverse steering bicycle during 45 min. Performance was tested before (TEST1) and after (TEST2) training, as well as after a 2 h retention interval (TEST3). During retention, participants either slept or remained awake. To assess gross motor performance, subjects had to ride the inverse steering bicycle 3 × 30 m straight-line and 3 × 30 m through a slalom. Beyond riding time, we sophisticatedly measured performance accuracy (standard deviation of steering angle) in both conditions using a rotatory potentiometer. A significant decrease of accuracy during straight-line riding after nap and wakefulness was shown. Accuracy during slalom riding remained stable after wakefulness but was reduced after sleep. We found that the duration of rapid eye movement sleep as well as sleep spindle activity are negatively related with gross motor performance changes over sleep. Together these findings suggest that the consolidation of adaptation to a new steering device does not benefit from a 2 h midday nap. We speculate that in case of strongly overlearned motor patterns such as normal cycling, diurnal sleep spindles and rapid eye movement sleep might even help to protect everyday needed skills, and to rapidly forget newly acquired, interfering and irrelevant material. PMID:25256866
Circuit design for the retina-like image sensor based on space-variant lens array
NASA Astrophysics Data System (ADS)
Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan
2013-12-01
Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.
Piezoresistive pressure sensor array for robotic skin
NASA Astrophysics Data System (ADS)
Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.
2016-05-01
Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.
Mengel, M K; Stiefenhofer, A E; Jyväsjärvi, E; Kniffki, K D
1993-11-01
Cold stimuli of varying intensities were randomly applied to upper middle incisors of 12 healthy young subjects for a mean duration of 2 min by individually adapted thermodes the temperatures of which ranged from +30 degrees C to -30 degrees C. The subjects were asked to rate the magnitude of their pain sensations during application of the stimuli by means of a linear potentiometer according to a category scale. After each stimulus, they were asked to describe the quality of their pain sensations. Cold stimulation of the teeth evoked pain sensations were reproducible that in subsequent trials and could be graded according to stimulation intensity. Below certain individually different threshold thermode temperatures the onset of a stimulus was followed, after a short latency (1.6 +/- 1 sec), by a sharp and shooting pain sensation which immediately decreased after reaching its maximum value while the stimulus was still present. The mean maxima of the pain intensities were correlated to the thermode temperature. In general, this first pain component was followed by a second one (latency: 29.9 +/- 6.3 sec) with a lower threshold temperature, less of an increase in rate and lower magnitude. This was described as a dull, burning pain which was difficult to localize. The human pain ratings are compared to recordings of intradental nerve fibres in the cat and, under the assumption that the response behaviour of human pulpal nerve fibres is comparable to that of the cat, we hypothesize that the first pain component is evoked by intradental A delta fibres exhibiting their typical phasic response behaviour and firing during the initial steep temperature decrease. After some seconds, intradental temperature reached values sufficient to evoke C-fibre activity associated with the second pain component.
The impact of diurnal sleep on the consolidation of a complex gross motor adaptation task.
Hoedlmoser, Kerstin; Birklbauer, Juergen; Schabus, Manuel; Eibenberger, Patrick; Rigler, Sandra; Mueller, Erich
2015-02-01
Diurnal sleep effects on consolidation of a complex, ecological valid gross motor adaptation task were examined using a bicycle with an inverse steering device. We tested 24 male subjects aged between 20 and 29 years using a between-subjects design. Participants were trained to adapt to the inverse steering bicycle during 45 min. Performance was tested before (TEST1) and after (TEST2) training, as well as after a 2 h retention interval (TEST3). During retention, participants either slept or remained awake. To assess gross motor performance, subjects had to ride the inverse steering bicycle 3 × 30 m straight-line and 3 × 30 m through a slalom. Beyond riding time, we sophisticatedly measured performance accuracy (standard deviation of steering angle) in both conditions using a rotatory potentiometer. A significant decrease of accuracy during straight-line riding after nap and wakefulness was shown. Accuracy during slalom riding remained stable after wakefulness but was reduced after sleep. We found that the duration of rapid eye movement sleep as well as sleep spindle activity are negatively related with gross motor performance changes over sleep. Together these findings suggest that the consolidation of adaptation to a new steering device does not benefit from a 2 h midday nap. We speculate that in case of strongly overlearned motor patterns such as normal cycling, diurnal sleep spindles and rapid eye movement sleep might even help to protect everyday needed skills, and to rapidly forget newly acquired, interfering and irrelevant material. © 2014 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.
Cenizo, E; García-Pareja, S; Galán, P; Bodineau, C; Caudepón, F; Casado, F J
2011-05-01
Asymmetric collimators are currently available in most of linear accelerators. They involve a lot of clinical improvements, such as the monoisocentric beam split technique that is more and more used in many external radiotherapy treatments. The tolerance established for each independent jaw positioning is 1 mm. Within this tolerance, a gap or overlap of the collimators up to 2 mm can occur in the half beams matching region, causing dose heterogeneities up to 40%. In order to solve this dosimetric problem, we propose an accurate jaw calibration method based on the Monte Carlo modeling of linac photon beams. Simulating different jaw misalignments, the dose distribution occurring in the matching region for each particular configuration is precisely known, so we can relate the misalignment of the jaws with the maximum heterogeneity produced. From experimental measurements using film dosimetry, and taking into account Monte Carlo results, we obtain the actual misalignment of each jaw. By direct inspection of the readings of the potentiometers that control the position of the jaws, high precision correction can be performed, adjusting the obtained misalignments. In the linac studied, the dose heterogeneity in the junction performed with X jaws (those farther from the source), and 6 MV photon beam was initially over 12%, although each jaw was within the tolerance in position. After jaw calibration, the heterogeneity was reduced to below 3%. With this method, we are able to reduce the positioning accuracy to 0.2 mm. Consequently, the dose distribution in the junction of abutted fields is highly smoothed, achieving the maximum dose heterogeneity to be less than 3%.
Grases, Felix; Prieto, Rafel M; Fernández-Cabot, Rafel A; Costa-Bauzá, Antonia; Sánchez, Ana M; Prodanov, Marin
2015-09-09
Diverse enzymatic and non-enzymatic antioxidants provide protection against reactive oxygen species in humans and other organisms. The nonenzymatic antioxidants include low molecular mass molecules such as plant-derived phenols. This study identified the major phenolic compounds of a grape seed extract by HPLC and analyzed the effect of consumption of biscuits enriched with this extract on the urinary oxidative status of healthy subjects by measurement of urine redox potential. The major phenolic compounds were characterized in a red grape seed extract separated by HPLC with detection by a photodiode array (PDA), fluorescence (FL) and quadrupole mass spectrometer (MS). A nutritional study in a healthy volunteers group was done. Each volunteer ate eight traditional biscuits with no red grape seed extract supplementation. The second day each volunteer ate eight traditional biscuits supplemented with 0.6% (wt/wt) of grape seed extract. An overnight urine sample was obtained for each treatment. The redox potential was measured at 25 °C using a potentiometer in each urine sample. Epicatechin, catechin, procyanidin dimers B1 to B4, and the procyanidin trimer C2 were the major phenolic components in the extract. Epicatechin gallate and procyanidin dimers B1-3-G and B2-3'-G were the major galloylated flavan-3-ols. The forty-six healthy volunteers each shown a reduction of the urine redox potential after the treatment by traditional biscuits supplemented with the grape seed extract. This simple dietary intervention significantly reduced (33%) the urine redox potential, reflecting an overall increase in antioxidant status. Incorporation of plant-derived phenols in the diet may increase anti-oxidative status.
Repeatability of a dynamic rollover test system.
Seppi, Jeremy; Toczyski, Jacek; Crandall, Jeff R; Kerrigan, Jason
2016-08-17
The goal of this study was to characterize the rollover crash and to evaluate the repeatability of the Dynamic Rollover Test System (DRoTS) in terms of initial roof-to-ground contact conditions, vehicle kinematics, road reaction forces, and vehicle deformation. Four rollover crash tests were performed on 2 pairs of replicate vehicles (2 sedan tests and 2 compact multipurpose van [MPV] tests), instrumented with a custom inertial measurement unit to measure vehicle and global kinematics and string potentiometers to measure pillar deformation time histories. The road was instrumented with load cells to measure reaction loads and an optical encoder to measure road velocity. Laser scans of pre- and posttest vehicles were taken to provide detailed deformation maps. Initial conditions were found to be repeatable, with the largest difference seen in drop height of 20 mm; roll rate, roll angle, pitch angle, road velocity, drop velocity, mass, and moment of inertia were all 7% different or less. Vehicle kinematics (roll rate, road speed, roll and pitch angle, global Z' acceleration, and global Z' velocity) were similar throughout the impact; however, differences were seen in the sedan tests because of a vehicle fixation problem and differences were seen in the MPV tests due to an increase in reaction forces during leading side impact likely caused by disparities in roll angle (3° difference) and mass properties (2.2% in moment of inertia [MOI], 53.5 mm difference in center of gravity [CG] location). Despite those issues, kinetic and deformation measures showed a high degree of repeatability, which is necessary for assessing injury risk in rollover because roof strength positively correlates with injury risk (Brumbelow 2009). Improvements of the test equipment and matching mass properties will ensure highly repeatable initial conditions, vehicle kinematics, kinetics, and deformations.
Full-Field Accommodation in Rhesus Monkeys Measured Using Infrared Photorefraction
He, Lin; Wendt, Mark
2012-01-01
Purpose. Full-field photorefraction was measured during accommodation in anesthetized monkeys to better understand the monkey as a model of human accommodation and how accommodation affects off-axis refraction. Methods. A photorefraction camera was rotated on a 30-cm-long rod in a horizontal arc, with the eye at the center of curvature of the arc so that the measurement distance remained constant. The resistance of a potentiometer attached to the rotation center of the rod changed proportionally with the rotation angle. Photorefraction and rotation angle were simultaneously measured at 30 Hz. Trial-lens calibrations were performed on-axis and across the full field in each eye. Full-field refraction measurements were compared using on-axis and full-field calibrations. In five iridectomized monkeys (mean age in years ± SD: 12.8 ± 0.9), full-field refraction was measured before and during carbachol iontophoresis stimulated accommodation, a total of seven times (with one repeat each in two monkeys). Results. Measurements over approximately 20 seconds had <0.1 D of variance and an angular resolution of 0.1°, from at least −30° to 30°. Photorefraction calibrations performed over the full field had a maximum variation in the calibration slopes within one eye of 90%. Applying full-field calibrations versus on-axis calibrations resulted in a decrease in the maximum SDs of the calculated refractions from 1.99 to 0.89 D for relative peripheral refractive error and from 4.68 to 1.99 D for relative accommodation. Conclusions. By applying full-field calibrations, relative accommodation in pharmacologically stimulated monkeys was found to be similar to that reported with voluntary accommodation in humans. PMID:22125278
Kinetic and kinematic differences between squats performed with and without elastic bands.
Israetel, Michael A; McBride, Jeffrey M; Nuzzo, James L; Skinner, Jared W; Dayne, Andrea M
2010-01-01
The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p < or = 0.05). However, the Wht condition resulted in significantly higher forces during the last 5% of the eccentric phase and the first 5% of the concentric phase in comparison to the Band condition. The Band condition resulted in significantly higher power and velocity values during the first portion of the eccentric phase and the latter portion of the concentric phase. Vastus lateralis muscle activity during the Band condition was significantly greater during the first portion of the eccentric phase and latter portion of the concentric phase as well. This investigation indicates that squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.
[TOXIC RISK ASSESSMENT OF FLUORIDE PRESENCE IN BOTTLED WATER CONSUMPTION IN THE CANARY ISLANDS].
Jáudenes Marrero, Juan Ramón; Hardisson de la Torre, Arturo; Gutiérrez Fernández, Angel José; Rubio Armendáriz, Carmen; Revert Gironés, Consuelo
2015-11-01
fluorine, as an hormetin, is necessary in the organism to avoid caries; but large amounts can produce toxic side effects such as dental fluorosis or skeletal fluorosis. Thus, it is important not to exceed chronically the RDIs (Recommended Daily Intakes) per each age and sex range. It is assumed that the main fluoride source is water. to establish fluoride concentrations at certain bottled water brands being consumed in the Canary Islands for renovating the outdated data, and to evaluate the subsequent toxic risk. 25 samples have been used from 7 different registered and commercialized brands, being analyzed by a potentiometer with a fluoride ion selective electrode. all analyzed water brands satisfied quality criteria according to the Spanish law, no one could be considered "fluorinated water" and all of them could be used to prepare baby food. Moreover, according to the recommended daily water intake by the EFSA per each age range, no water analyzed brand could exceed the RDI for no one over 4 years old. the bottled waters that are produced in the Canary Islands have similar fluoride concentrations than those that are produced in the Peninsula (all of them have a data range between 0.24 and 0.62 mg/L). The individuals who have more water restrictions are those under 1 year old; but in any case, while the child is growing up, the levels of fluoride consumption can be higher (until 19 years old) and therefore the water brands variety that can be drunk, without exceeding the RDI, is also higher. In some places in the Canary Islands, it would be advisable to consume bottled water in place of tap water. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Analysis of motion during the breast clamping phase of mammography
McEntee, Mark F; Mercer, Claire; Kelly, Judith; Millington, Sara; Hogg, Peter
2016-01-01
Objective: To measure paddle motion during the clamping phase of a breast phantom for a range of machine/paddle combinations. Methods: A deformable breast phantom was used to simulate a female breast. 12 mammography machines from three manufacturers with 22 flexible and 20 fixed paddles were evaluated. Vertical motion at the paddle was measured using two calibrated linear potentiometers. For each paddle, the motion in millimetres was recorded every 0.5 s for 40 s, while the phantom was compressed with 80 N. Independent t-tests were used to determine differences in paddle motion between flexible and fixed, small and large, GE Senographe Essential (General Electric Medical Systems, Milwaukee, WI) and Hologic Selenia Dimensions paddles (Hologic, Bedford, MA). Paddle tilt in the medial–lateral plane for each machine/paddle combination was calculated. Results: All machine/paddle combinations demonstrate highest levels of motion during the first 10 s of the clamping phase. The least motion is 0.17 ± 0.05 mm/10 s (n = 20) and the most motion is 0.51 ± 0.15 mm/10 s (n = 80). There is a statistical difference in paddle motion between fixed and flexible (p < 0.001), GE Senographe Essential and Hologic Selenia Dimensions paddles (p < 0.001). Paddle tilt in the medial–lateral plane is independent of time and varied from 0.04 ° to 0.69 °. Conclusion: All machine/paddle combinations exhibited motion and tilting, and the extent varied with machine and paddle sizes and types. Advances in knowledge: This research suggests that image blurring will likely be clinically insignificant 4 s or more after the clamping phase commences. PMID:26739577
Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A
2017-09-01
Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.
Tian, Jun-ru; Mokuno, Eriko; Demer, Joseph L.
2007-01-01
The linear vestibulo-ocular reflex (LVOR) to surge (fore-aft) translation has complex kinematics varying with target eccentricity and distance. To determine normal responses and aging changes, 9 younger [age, 28 ± 2 (SE) yr] and 11 older subjects (age, 69 ± 2 yr) underwent 0.5g whole body surge transients while wearing binocular scleral search coils. Linear chair position and head acceleration were measured with a potentiometer and accelerometer. Subjects viewed centered and 10° horizontally and vertically eccentric targets 50, 25, or 15 cm distant before unpredictable onset of randomly directed surge in darkness (LVOR) and light (V-LVOR). Response directions were kinematically appropriate to eccentricity in all subjects, but there were significantly more measurable LVOR and V-LVOR responses (63–79%) in younger than older subjects (38–44%, P < 0.01). Minimal LVOR latency averaged 48 ± 4 ms for younger and significantly longer at 70 ± 6 ms for older subjects. In the interval 200–300 ms after surge onset, horizontal LVOR gain (relative to ideal velocity) of younger subjects averaged over all target distances was 0.55 ± 0.04 and was significantly reduced in older subjects to 0.33 ± 0.04. Horizontal V-LVOR gain was 0.58 ± 0.04 in younger and significantly lower at 0.35 ± 0.06 in older subjects. Vertical gains did not differ significantly between groups. Target visibility had no effect in either group during the initial 200 ms. The LVOR and V-LVOR were augmented by saccades in younger more than older subjects. Aging thus decreases LVOR velocity gain, response rate, and saccade augmentation, but prolongs latency. PMID:16551841
Study of a Solar Sensor for use in Space Vehicle Orientation Control Systems
NASA Technical Reports Server (NTRS)
Spencer, Paul R.
1961-01-01
The solar sensor described herein may be used for a variety of space operations requiring solar orientation. The use of silicon solar cells as the sensing elements provides the sensor with sufficient capability to withstand the hazards of a space environment. A method of arranging the cells in a sensor consists simply of mounting them at a large angle to the base. The use of an opaque shield placed between the cells and perpendicular to the base enhances the small-angle sensitivity while adding slightly to the bulk of the sensor. The difference in illumination of these cells as the result of an oblique incidence of the light rays from the reference source causes an electrical error signal which, when used in a battery-bridge circuit, requires a minimum of electrical processing for use in a space-vehicle orientation control system. An error which could occur after prolonged operation of the sensor is that resulting from asymmetrical aging of opposite cells. This could be periodically corrected with a balance potentiometer. A more routine error in the sensor is that produced by reflected earth radiation. This error may be eliminated over a large portion of the operation time by restricting the field of view and, consequently, the capture capability. A more sophisticated method of eliminating this error is to use separate sensors, for capture and fine pointing, along with a switching device. An experimental model has been constructed and tested to yield an output sensitivity of 1.2 millivolts per second of arc with a load resistance of 1,000 ohms and a reference light source of approximately 1,200 foot-candles delivered at the sensor.
Measurement of LHCD antenna position in Aditya tokamak
NASA Astrophysics Data System (ADS)
Ambulkar, K. K.; Sharma, P. K.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Kulkarni, S. V.
2010-02-01
To drive plasma current non-inductively in ADITYA tokamak, 120 kW pulsed Lower Hybrid Current Drive (LHCD) system at 3.7 GHz has been designed, fabricated and installed on ADITYA tokamak. In this system, the antenna consists of a grill structure, having two rows, each row comprising of four sub-waveguides. The coupling of LHCD power to the plasma strongly depends on the plasma density near the mouth of grill antenna. Thus the grill antenna has to be precisely positioned for efficient coupling. The movement of mechanical bellow, which contracts or expands up to 50mm, governs the movement of antenna. In order to monitor the position of the antenna precisely, the reference position of the antenna with respect to the machine/plasma position has to be accurately determined. Further a mechanical system or an electronic system to measure the relative movement of the antenna with respect to the reference position is also desired. Also due to poor accessibility inside the ADITYA machine, it is impossible to measure physically the reference position of the grill antenna with respect to machine wall, taken as reference position and hence an alternative method has to be adopted to establish these measurements reliably. In this paper we report the design and development of a mechanism, using which the antenna position measurements are made. It also describes a unique method employing which the measurements of the reference position of the antenna with respect to the inner edge of the tokamak wall is carried out, which otherwise was impossible due to poor accessibility and physical constraints. The position of the antenna is monitored using an electronic scale, which is developed and installed on the bellow. Once the reference position is derived, the linear potentiometer, attached to the bellow, measures the linear distance using position transmitter. The accuracy of measurement obtained in our setup is within +/- 0.5 % and the linearity, along with repeatability is excellent.
Measuring and computing natural ground-water recharge at sites in south-central Kansas
Sophocleous, M.A.; Perry, C.A.
1987-01-01
To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a shallower depth to the water table. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. (Author 's abstract)
The weight and angle of depression detection and control system of a large portal crane
NASA Astrophysics Data System (ADS)
Shi, Lian-Wen; Xie, Hongxia; Wang, Meijing; Guan, Yankui; Leng, Gengxin
2008-12-01
In order to prevent overturning accidents, the lifted weight and the angle of depression should be detected when a large portal crane is working in a shipyard. However, the locations of the weight sensor and the angle of depression detection part are far away from the central control room. The long signal transmitting distance is so long that it results in a lot of interferences, even the breaking down of the system. In order to solve the above mentioned problems, a high precision analog signal amplifier and a voltage / current (V / I) transforming circuit is set at the place of the sensor to detect the weight. After the sensor signals have been amplified, they will be transformed into 4 to 20 mA current signals for transmission. Thus the interferences in the long transmitting process can be overcome. A WXJ-3 potentiometer is applied to detect the angle of depression. This device has the advantages of a high accuracy of repeated positions, a good stability and a strong anti-fatigue property. After processed by the current-strengthened circuit, the transmitted signals representing voltage value can have the characteristics of transmitting currents because of the large current value. Then the anti-jamming capability is stronger. Send the weight and the angle of depression detection signals to A/D converter, then the signals turn into digital representation and are sent to the control system composed of a PLC. The PLC calculates the current rated lifting weight depending on the different angles of depression, and when the weight is greater than the rated one, the PLC sends control signals to stop the lifting; hence the crane can only put down the weights. So the safety of the large portal crane is effectively guaranteed. At present ,the system has been applied to the 70-ton large portal cranes of the Tianjin Xingang Shipyard with a safe operation of 10 years.
NASA Astrophysics Data System (ADS)
Weninger, Thomas; Kreiselmeier, Janis; Chandrasekhar, Parvathy; Jülich, Stefan; Schwärzel, Kai; Schwen, Andreas
2016-04-01
Estimation and modeling of soil water movement and the hydrologic balance of soils requires sound knowledge about hydraulic soil properties (HSP). The soil water characteristics, the hydraulic conductivity function and the pore size distribution (PSD) are commonly used instruments for the mathematical representation of HSP. Recent research highlighted the temporal variability of these functions caused by meteorological or land-use influences. State of the art modeling software for the continuous simulation of soil water movement uses a stationary approach for the HSP which means that their time dependent alterations and the subsequent effects on soil water balance is not considered. Mathematical approaches to describe the evolution of PSD are nevertheless known, but there is a lack of sound data basis for parameter estimation. Based on extensive field and laboratory measurements at 5 locations along a climatic gradient across Austria and Germany, this study will quantify short-term changes in HSP, detect driving forces and introduce a method to predict the effects of soil and land management actions on the soil water balance. Amongst several soil properties, field-saturated and unsaturated hydraulic conductivities will be determined using a hood infiltration experiments in the field as well as by evaporation and dewpoint potentiometer method in the lab. All measurements will be carried out multiple times over a span of 2 years which will allow a detailed monitoring of changes in HSP. Experimental sites where we expect significant inter-seasonal changes will be equipped with sensors for soil moisture and matric potential. The choice of experimental field sites follows the intention to involve especially the effects of tillage operations, different cultivation strategies, microclimatically effective structures and land-use changes. The international project enables the coverage of a broad range of soil types as well as climate conditions and hence will have broad applicability of the implemented model modifications.
NASA Astrophysics Data System (ADS)
Hughes, P. N.
2015-12-01
A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.
SOLARTRAK. Solar Array Tracking Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manish, A.B.; Dudley, J.
1995-06-01
SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board`s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maish, Alexander
1995-06-22
SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less
The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.
NASA Astrophysics Data System (ADS)
Roll, R.
2015-10-01
The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.
Do dissociated or associated phoria predict the comfortable prism?
Otto, Joanna M. N.; Kromeier, Miriam; Bach, Michael
2008-01-01
Background Dissociated and associated phoria are measures of latent strabismus under artificial viewing conditions. We examined to what extent dissociated and associated phoria predict the “comfortable prism”, i.e. the prism that appears most comfortable under natural viewing conditions. Methods For associated phoria, a configuration resembling the Mallett test was employed: both eyes were presented with a fixation cross, surrounded by fusionable objects. Nonius lines served as monocular markers. For dissociated phoria, the left eye was presented with all the Mallett elements, while only a white spot was presented to the right eye. To determine the comfortable prism, all the Mallett elements, including the Nonius lines, were shown to both eyes. In each of the three tests, the observer had to adjust a pair of counterrotating prisms. To avoid any (possibly prejudiced) influence of the experimenter, the prismatic power was recorded with a potentiometer. Twenty non-strabismic subjects with a visual acuity of ≥1.0 in each eye were examined. Results The range of the intertrial mean was for dissociated phoria from +9.3 eso to −5.9 cm/m exo, for associated phoria from +11.2 eso to −3.3 cm/m exo, and for the comfortable prism from +4.8 eso to −4.1 cm/m exo (cm/m = prism dioptre). In most observers, the phoria parameters differed greatly from the comfortable prism. On average, the phoria values were shifted about 2 cm/m towards the eso direction in relation to the comfortable prism (associated phoria not less than dissociated phoria). Conclusions The deviation of both, dissociated and associated phoria, from the comfortable prism suggests that the abnormal viewing conditions under which the phoria parameters are determined induce artefacts. Accordingly, the findings cast doubt on current textbook recommendations to use dissociated or associated phoria as a basis for therapeutic prisms. Rather, patients should be allowed to determine their comfortable prism under natural viewing conditions. PMID:18379816
NASA Astrophysics Data System (ADS)
Power, O.; Solve, S.; Chayramy, R.; Stock, M.
2010-01-01
As a part of the ongoing BIPM key comparisons BIPM.EM-K11.a and b, a comparison of the 1.018 V and 10 V voltage reference standards of the BIPM and of the National Standards Authority of Ireland-National Metrology Laboratory (NSAI-NML), Dublin, Ireland, was carried out from March to April 2010. Two BIPM Zener diode-based travelling standards were transported by freight to NSAI-NML. At NSAI-NML, the reference standard for DC voltage is maintained at the 10 V level by means of a group of characterized Zener diode-based electronic voltage standards. The output EMF of each travelling standard, at the 10 V output terminals, was measured by direct comparison with the group standard. Measurements of the output EMF of the travelling standards at the 1.018 V output terminals were made using a potentiometer, standardized against the local 10 V reference standard. At the BIPM, the travelling standards were calibrated at both voltages before and after the measurements at NSAI-NML, using the BIPM Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages on internal temperature and ambient pressure. The comparison results show that the voltage standards maintained by NSAI-NML and the BIPM were equivalent, within their stated expanded uncertainties, on the mean date of the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Ballardini, Giulia; Carlini, Giorgio; Giannoni, Psiche; Scheidt, Robert A; Nisky, Ilana; Casadio, Maura
2018-01-01
Many neurological diseases impair the motor and somatosensory systems. While several different technologies are used in clinical practice to assess and improve motor functions, somatosensation is evaluated subjectively with qualitative clinical scales. Treatment of somatosensory deficits has received limited attention. To bridge the gap between the assessment and training of motor vs. somatosensory abilities, we designed, developed, and tested a novel, low-cost, two-component (bimanual) mechatronic system targeting tactile somatosensation: the Tactile-STAR -a tactile stimulator and recorder. The stimulator is an actuated pantograph structure driven by two servomotors, with an end-effector covered by a rubber material that can apply two different types of skin stimulation: brush and stretch. The stimulator has a modular design, and can be used to test the tactile perception in different parts of the body such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that can measure hand motion using two potentiometers. The recorder can serve multiple purposes: participants can move its handle to match the direction and amplitude of the tactile stimulator, or they can use it as a master manipulator to control the tactile stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-brush stimulation. We verified that the system enables the mapping of tactile perception on the hand in both populations. We also tested the extent to which 30 min of training in healthy individuals led to an improvement of tactile perception. The results provide a first demonstration of the ability of this new system to characterize tactile perception in healthy individuals, as well as a quantification of the magnitude and pattern of tactile impairment in a small cohort of stroke survivors. The finding that short-term training with Tactile-STAR can improve the acuity of tactile perception in healthy individuals suggests that Tactile-STAR may have utility as a therapeutic intervention for somatosensory deficits.
A PC-based shutter glasses controller for visual stimulation using multithreading in LabWindows/CVI.
Gramatikov, Ivan; Simons, Kurt; Guyton, David; Gramatikov, Boris
2017-05-01
Amblyopia, commonly known as "lazy eye," is poor vision in an eye from prolonged neurologic suppression. It is a major public health problem, afflicting up to 3.6% of children, and will lead to lifelong visual impairment if not identified and treated in early childhood. Traditional treatment methods, such as occluding or penalizing the good eye with eye patches or blurring eye drops, do not always yield satisfactory results. Newer methods have emerged, based on liquid crystal shutter glasses that intermittently occlude the better eye, or alternately occlude the two eyes, thus stimulating vision in the "lazy" eye. As yet there is no technology that allows easy and efficient optimization of the shuttering characteristics for a given individual. The purpose of this study was to develop an inexpensive, computer-based system to perform liquid crystal shuttering in laboratory and clinical settings to help "wake up" the suppressed eye in amblyopic patients, and to help optimize the individual shuttering parameters such as wave shape, level of transparency/opacity, frequency, and duty cycle of the shuttering. We developed a liquid crystal glasses controller connected by USB cable to a PC computer. It generates the voltage waveforms going to the glasses, and has potentiometer knobs for interactive adjustments by the patient. In order to achieve good timing performance in this bidirectional system, we used multithreading programming techniques with data protection, implemented in LabWindows/CVI. The hardware and software developed were assessed experimentally. We achieved an accuracy of ±1Hz for the frequency, and ±2% for the duty cycle of the occlusion pulses. We consider these values to be satisfactory for the purpose of optimizing the visual stimulation by means of shutter glasses. The system can be used for individual optimization of shuttering attributes by clinicians, for training sessions in clinical settings, or even at home, aimed at stimulating vision in the "lazy" eye. Multithreading offers significant benefits for data acquisition and instrument control, making it possible to implement time-efficient algorithms in inexpensive yet versatile medical instrumentation with only minimum requirements on the hardware. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ries, Thomas C.
1995-05-01
Two new movable beam intensity profile monitors have been installed into the TRIUMF Parity Experiment 497 Beamlines. Each unit serves two functions. Firstly, the beam median position, in a plane normal to the beam, is detected by split plate Secondary Emission Monitors. This information is used to lock the beam into the position of the movable monitor to within a few μm's via high band width ferrite core steering magnets operating in tandem in a closed loop servo feedback control system. Secondly, the beam profile and intensity is detected via a multi-wire secondary emission non-movable monitor, where the data provides high precision values regarding centroidal positions and profiles. The centroid position of the beam is statistically determined to an accuracy of ±10 μm from a data record length of 1 second. The design of each device adheres to strict standards of mechanically rigid construction. The split plate SEM accuracy and repeatability is better than 15 μm with an absolute resolution limit of 0.4 μm. Maximum travel is 2 inches in the vertical plane. Since the device is mechanically modular and both degrees of freedom are combined into a single mechanical unit, fast and easy handling is possible for maintenance in radioactive areas. The actuators are dc servo motors with tachometers driven by linear servo power amplifiers. These amplifiers are used in lieu of pulse width modulated amps to eliminate noise produced by the switching circuits. Position sensing is done by variable reluctance type absolute rotary encoders providing 16 bit resolution over the full range of travel. Positioning is done manually using a self centring potentiometer on the control panel that provides a ± velocity command signal to the power amplifiers. This configuration ensures good controllability over a very large range of positioning speeds hence making 0.4 μm incremental positioning possible, as well as, fast relocations over large relative distances. The precision movement and jitter was measured in the laboratory. Examples will be given of the monitor use with beam.
NASA Astrophysics Data System (ADS)
Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe
2012-04-01
We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.
You, Sung H; Granata, Kevin P; Bunker, Linda K
2004-08-01
Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was not increased by an application of CAP. Active ankle stiffness was significantly different between the high and low proprioceptive acuity groups and was not affected by an application of CAP. Significant group (normal versus CAI) x CAP interactions were observed for mediolateral center-of-pressure displacement with a main effect of group on neutral joint position sense. Application of CAP increased proprioceptive acuity and demonstrated trends toward increased active stiffness in the ankle, hence improved postural stability. The effects tend to be limited to individuals with low proprioceptive acuity.
Study of a High Voltage Ion Engine Power Supply
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.; King, Roger J.; Mayer, Eric
1996-01-01
A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested without failure. The finished converter has been packaged suitable for use as a laboratory prototype for further testing. The finished converter is readily transportable. An article on design issues for high voltage converters for ion engines is included as an attachement.
WE-AB-207A-11: Respiratory Motion Guided 4DCBCT - A Step Towards Controlling 4DCBCT Image Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Brien, R; Keall, P; Stankovic, U
Purpose: We have developed a method, called respiratory motion guided 4DCBCT (RMG-4DCBCT), in which the gantry speed and projection frequency are varied in response to the patient’s real-time respiratory signal to eliminate streaking artifacts and to suppress duplicate projections in 4DCBCT images. In 2015, we realized RMG-4DCBCT on an Elekta Synergy linear accelerator with a mechanical relay to suppress projections and a potentiometer to adjust the gantry speed in response to the patient’s real-time respiratory signal. The aim of this study was to analyse the image quality to determine what can and cannot be controlled. Methods: Using RMG-4DCBCT, we acquiredmore » 40 (RMG-4DCBCT-40) and 60 (RMG-4DCBCT-60) equally spaced projections per respiratory phase of the CIRS dynamic thorax phantom with breathing periods from 2s to 8s and two breathing traces from lung cancer patients. The contrast to noise ratio (CNR) and edge response width (ERW) were used to compare image quality between RMG-4DCBCT and conventional 4DCBCT. Results: Regardless of the breathing period, for RMG-4DCBCT, the CNR is approximately 7 and 9 with RMG-4DCBCT-40 and RMG-4DCBCT-60 respectively. Conventional 4DCBCT has a CNR dropping from 20 down to 6 as the breathing period drops from 2s to 8s. With RMG-4DCBCT, the ERW, in the direction of phantom motion, ranges from 2.1mm to 2.5mm as the breathing period drops from 2s to 8s which compares to a higher range of 2.0mm to 2.5mm with conventional 4DCBCT. Images with similar quality to conventional 4DCBCT can be acquired with RMG-4DCBCT-40 which has a 70% reduction in imaging dose. Conclusion: The image contrast can be controlled with RMG-4DCBCT regardless of the patients breathing rate. However, although the image sharpness is better with RMG-4DCBCT, image sharpness has a small dependence on the breathing period; the accuracy of registration and segmentation will therefore vary with the patient’s breathing period. This project was supported by a National Health and Medical Research Council (NHMRC) project grant 1034060 and Cancer Australia grant number 1084566.« less
Development of a universal control unit for functional electrical stimulation (FES).
Brandell, B R
1982-12-01
In collaboration with the College of Engineering the author has developed a laboratory, or clinic, based, battery operated "universal" control system, designed to improve disabled gait in upper motor neuron disabilities, especially stroke, hemiplegia, and cerebral palsy, by applying several channels of FES (Functional Electrical Stimulation) to the lower limb muscles while the patient is walking. The timing of the FES pulses, which can be applied to as many as six of the patient's muscles, is determined by potentiometer controlled one-shot timers, which are triggered by any of three switches in the sole of either shoe. Combinations of inverters, flip flops, AND gates and OR gates in the externally connected logic circuits determine the sequence of delays and pulses applied to the patient's muscles. This paper describes and diagrams some of the logic circuits and as an example of the possible application of the concept of a "universal" control unit reports the modifications of gait induced in a hemiplegic, four year post-stroke, patient. The characteristics of this patient's gait with FES in comparison to its characteristics without FES are demonstrated with motion picture frames, EMG recordings and graphic tracings of her right knee and ankle joint positions. They include more symmetrical timing of her right and left stance and swing phases, increased dorsiflexion of her right ankle in the swing phase, followed by a more distinct heel strike, and improved flexion--extension sequences of the knee and ankle joints and an increased heel rise in the stance phase. The author concludes that the gait characteristics of some hemiplegic patients will improve as they become adapted over a period of weeks or months to a control logic, which lessens their functional limitations by the use of a properly timed and amplified sequence of FES pulses. He suggests that the FES control requirements for individual patients should be determined experimentally with a control system "universally" adaptable to a wide range of disabilities, and that these control parameters could then determine the design of portable units, which may be used on a long term basis. These units would include only the operational options needed to duplicate the gait corrections found to be practicable for each individual patient, by the testing procedure, through a universal logic unit as described in this paper.
De la Fuente, Carlos; Carreño, Gabriel; Soto, Miguel; Marambio, Hugo; Henríquez, Hugo
2017-06-01
The purpose of this study was to describe the angle of clinical failure during cyclical mobilization exercises in the Achilles tendon of human cadaveric specimens that were repaired using the Dresden technique and FiberWire ® No. 2. The secondary aim was to identify the secure limit of mobilization, the type of failure, and the type of apposition. The lower limbs of eight males (mean age: 60.3 ± 6.3 years) were repaired with the Dresden technique following complete, percutaneous mid-substance Achilles tendon rupture. A basal tension of 10 N at 30° of plantarflexion was placed on each specimen. The angle of the ankle during clinical failure (tendon ends separation >5 mm) was then tested via cyclical exercises (i.e. 100 cycles between 30° and 15° of plantarflexion; 100 cycles between 15° of plantarflexion and 0°; 100 cycles between 0° and 15° of dorsiflexion; and 100 cycles between 15° of dorsiflexion and full dorsiflexion). Clinical failure was determined using the Laplacian edge detection filter, and the angle of clinical failure was obtained using a rotatory potentiometer aligned in relation to the intermalleolar axis of each foot specimen. The type of failure (knot, tendon, or suture) and apposition (termino-terminal or non-termino-terminal) were determined. Descriptive statistics were used to obtain the mean; standard deviation; 95 % confidence interval; 1st, 25th, 50th, 75th, and 100th percentiles; and the standard error of the mean for angle data. Proportions were used to describe the type of failure and apposition. The main results were a mean angle of clinical failure equal to 12.5° of plantarflexion, a limit of mobilization equal to 14.0° of plantarflexion, tendon failure type, and non-termino-terminal apposition in all specimens. While the mean angle of clinical failure in human cadaveric models was 12.5° of plantarflexion, after 14.0° of plantarflexion, the percutaneous Dresden technique was found insecure for cyclical mobilization exercises, with a 5 % range of error. These findings are clinically relevant as they provide mechanical limits for diminishing the risk of Achilles lengthening during immediate rehabilitation.
The design of the Comet streamliner: An electric land speed record motorcycle
NASA Astrophysics Data System (ADS)
McMillan, Ethan Alexander
The development of the land speed record electric motorcycle streamliner, the Comet, is discussed herein. Its design process includes a detailed literary review of past and current motorcycle streamliners in an effort to highlight the main components of such a vehicle's design, while providing baseline data for performance comparisons. A new approach to balancing a streamliner at low speeds is also addressed, a system henceforth referred to as landing gear, which has proven an effective means for allowing the driver to control the low speed instabilities of the vehicle with relative ease compared to tradition designs. This is accompanied by a dynamic stability analysis conducted on a test chassis that was developed for the primary purpose of understanding the handling dynamics of streamliners, while also providing a test bed for the implementation of the landing gear system and a means to familiarize the driver to the operation and handling of such a vehicle. Data gathered through the use of GPS based velocity tracking, accelerometers, and a linear potentiometer provided a means to validate a dynamic stability analysis of the weave and wobble modes of the vehicle through linearization of a streamliner model developed in the BikeSIM software suite. Results indicate agreement between the experimental data and the simulation, indicating that the conventional recumbent design of a streamliner chassis is in fact highly stable throughout the performance envelope beyond extremely low speeds. A computational fluid dynamics study was also performed, utilized in the development of the body of the Comet to which a series of tests were conducted in order to develop a shape that was both practical to transport and highly efficient. By creating a hybrid airfoil from a NACA 0018 and NACA 66-018, a drag coefficient of 0.1 and frontal area of 0.44 m2 has been found for the final design. Utilizing a performance model based on the proposed vehicle's motor, its rolling resistance, and the body's aerodynamic drag, the top speed is predicted at 226 mph. Further design considerations are also addressed, including the development of the component level layout of the motorcycle, weighing factors such as safety and ease of fabrication with that of performance and accessibility. At the time of composition, the Comet had started the fabrication process, and it is the intent of the author that the finished product competes in the 2016 Bonneville Motorcycle Speed Trials to set the first world record for a single track electric motorcycle streamliner.
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad
2017-05-01
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per turn). The developed system is a more compact new resonance frequency control system. In addition, a frequency measuring part is included and it can measure the real-time resonance frequency from the magnetron. We have succeeded in the stable provisioning of RF power by recording the results of a 0.01% frequency deviation in the AFC during an RF test. Accordingly, in this paper, the detailed design, fabrication, and a high power test of the AFC system for the X-band linac are presented.
NASA Technical Reports Server (NTRS)
Florance, Jennifer P.; Burner, Alpheus W.; Fleming, Gary A.; Martin, Christopher A.
2003-01-01
An overview of the contributions of the NASA Langley Research Center (LaRC) to the DARPA/AFRL/NASA/ Northrop Grumman Corporation (NGC) Smart Wing program is presented. The overall objective of the Smart Wing program was to develop smart** technologies and demonstrate near-flight-scale actuation systems to improve the aerodynamic performance of military aircraft. NASA LaRC s roles were to provide technical guidance, wind-tunnel testing time and support, and Computational Fluid Dynamics (CFD) analyses. The program was divided into two phases, with each phase having two wind-tunnel entries in the Langley Transonic Dynamics Tunnel (TDT). This paper focuses on the fourth and final wind-tunnel test: Phase 2, Test 2. During this test, a model based on the NGC Unmanned Combat Air Vehicle (UCAV) concept was tested at Mach numbers up to 0.8 and dynamic pressures up to 150 psf to determine the aerodynamic performance benefits that could be achieved using hingeless, smoothly-contoured control surfaces actuated with smart materials technologies. The UCAV-based model was a 30% geometric scale, full-span, sting-mounted model with the smart control surfaces on the starboard wing and conventional, hinged control surfaces on the port wing. Two LaRC-developed instrumentation systems were used during the test to externally measure the shapes of the smart control surface and quantify the effects of aerodynamic loading on the deflections: Videogrammetric Model Deformation (VMD) and Projection Moire Interferometry (PMI). VMD is an optical technique that uses single-camera photogrammetric tracking of discrete targets to determine deflections at specific points. PMI provides spatially continuous measurements of model deformation by computationally analyzing images of a grid projected onto the model surface. Both the VMD and PMI measurements served well to validate the use of on-board (internal) rotary potentiometers to measure the smart control surface deflection angles. Prior to the final entry, NASA LaRC also performed three-dimensional unstructured Navier Stokes CFD analyses in an attempt to predict the potential aerodynamic impact of the smart control surface on overall model forces and moments. Eight different control surface shapes were selected for study at Mach = 0.6, Reynolds number = 3.25 x 10(exp 6), and + 2 deg., 3 deg., 8 deg., and 10 deg.model angles-of-attack. For the baseline, undeflected control surface geometry, the CFD predictions and wind-tunnel results matched well. The agreement was not as good for the more complex aero-loaded control surface shapes, though, because of the inability to accurately predict those shapes. Despite these results, the NASA CFD study served as an important step in studying advanced control effectors.
Damgaard, Rasmus; Rasmussen, Mats; Buus, Peter; Mulhall, Brian; Guazzo, Dana Morton
2013-01-01
In Part 1 of this three-part research series, a leak test performed using high-voltage leak detection (HVLD) technology, also referred to as an electrical conductivity and capacitance leak test, was developed and validated for container-closure integrity verification of a small-volume laminate plastic bag containing an aqueous solution for injection. The sterile parenteral product is the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®, by Novo Nordisk A/S, Bagsværd, Denmark). The aseptically filled and sealed package is designed to preserve product sterility through expiry. Method development and validation work incorporated positive control packages with a single hole laser-drilled through the laminate film of each bag. A unique HVLD method characterized by specific high-voltage and potentiometer set points was established for testing bags positioned in each of three possible orientations as they are conveyed through the instrument's test zone in each of two possible directions-resulting in a total of six different test method options. Validation study results successfully demonstrated the ability of all six methods to accurately and reliably detect those packages with laser-drilled holes from 2.5-11.2 μm in nominal diameter. Part 2 of this series will further explore HVLD test results as a function of package seal and product storage variables. The final Part 3 will report the impact of HVLD exposure on product physico-chemical stability. In this Part 1 of a three-part research series, a leak test method based on electrical conductivity and capacitance, called high voltage leak detection (HVLD), was used to find leaks in small plastic bags filled with an insulin pharmaceutical solution for human injection by Novo Nordisk A/S (Bagsværd, Denmark). To perform the test, the package is electrically grounded while being conveyed past an electrode linked to a high-voltage, low-amperage transformer. The instrument measures the current that passes from the transformer to the electrode, through the packaged product and along the package walls, to the ground. Plastic packages without defect are relatively nonconductive and yield a low voltage reading; a leaking package with electrically conductive solution located in or near the leak triggers a spike in voltage reading. Test methods were optimized and validated, enabling the detection of leaking packages with holes as small as 2.5 μm in diameter. Part 2 of this series will further explore HVLD test results as a function of package seal and product storage variables. The final Part 3 will report the impact of HVLD exposure on product stability.
NASA Astrophysics Data System (ADS)
O'Brien, Ricky T.; Stankovic, Uros; Sonke, Jan-Jakob; Keall, Paul J.
2017-06-01
Four dimensional cone beam computed tomography (4DCBCT) uses a constant gantry speed and imaging frequency that are independent of the patient’s breathing rate. Using a technique called respiratory motion guided 4DCBCT (RMG-4DCBCT), we have previously demonstrated that by varying the gantry speed and imaging frequency, in response to changes in the patient’s real-time respiratory signal, the imaging dose can be reduced by 50-70%. RMG-4DCBCT optimally computes a patient specific gantry trajectory to eliminate streaking artefacts and projection clustering that is inherent in 4DCBCT imaging. The gantry trajectory is continuously updated as projection data is acquired and the patient’s breathing changes. The aim of this study was to realise RMG-4DCBCT for the first time on a linear accelerator. To change the gantry speed in real-time a potentiometer under microcontroller control was used to adjust the current supplied to an Elekta Synergy’s gantry motor. A real-time feedback loop was developed on the microcontroller to modulate the gantry speed and projection acquisition in response to the real-time respiratory signal so that either 40, RMG-4DCBCT40, or 60, RMG-4DCBCT60, uniformly spaced projections were acquired in 10 phase bins. Images of the CIRS dynamic Thorax phantom were acquired with sinusoidal breathing periods ranging from 2 s to 8 s together with two breathing traces from lung cancer patients. Image quality was assessed using the contrast to noise ratio (CNR) and edge response width (ERW). For the average patient, with a 3.8 s breathing period, the imaging time and image dose were reduced by 37% and 70% respectively. Across all respiratory rates, RMG-4DCBCT40 had a CNR in the range of 6.5 to 7.5, and RMG-4DCBCT60 had a CNR between 8.7 and 9.7, indicating that RMG-4DCBCT allows consistent and controllable CNR. In comparison, the CNR for conventional 4DCBCT drops from 20.4 to 6.2 as the breathing rate increases from 2 s to 8 s. With RMG-4DCBCT, the ERW in the direction of motion of the imaging insert decreases from 2.1 mm to 1.1 mm as the breathing rate increases from 2 s to 8 s while for conventional 4DCBCT the ERW increases from 1.9 mm to 2.5 mm. Image quality can be controlled during 4DCBCT acquisition by varying the gantry speed and the projection acquisition in response to the patient’s real-time respiratory signal. However, although the image sharpness, i.e. ERW, is improved with RMG-4DCBCT, the ERW depends on the patient’s breathing rate and breathing regularity.
NASA Technical Reports Server (NTRS)
Davis, Kirsch; Bankieris, Derek
2016-01-01
As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome converted existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code when the internship started, but that has changed throughout my internship. Conversion of C++ codes to ROS enabled existing code to be compatible with ROS, and is now controlled using an existing PS3 controller. Furthermore, my job description was to design ROS messages and script programs that enabled assets to participate in the ROS ecosystem by subscribing and publishing messages. Software programming source code is written in directories using C++. Testing of software assets included compiling code within the Linux environment using a terminal. The terminal ran the code from a directory. Several problems occurred while compiling code and the code would not compile. So modifying code to where C++ can read the source code were made. Once the code was compiled and ran, the code was uploaded to Hexapod and then controlled by a PS3 controller. The project outcome has the Hexapod fully functional and compatible with ROS and operates using the PlayStation 3 controller. In addition, an open source software (IDE) Arduino board will be integrated into the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module, digital clock that will run off 22 satellites to show accurate real time using a GPS signal and an internal patch antenna to communicate with satellites. In addition, this internship experience has led me to pursue myself to learn coding more efficiently and effectively to write, subscribe and publish my own source code in different programming languages. With some familiarity with software programming, it will enhance my skills in the electrical engineering field. In contrast, my experience here at JSC with the Simulation and Graphics Branch (ER7) has led me to take my coding skill to be more proficient to increase my knowledge in software programming, and also enhancing my skills in ROS. This knowledge will be taken back to my university to implement coding in a school project that will use source coding and ROS to work on the PR2 robot which is controlled by ROS software. My skills learned here will be used to integrate messages to subscribe and publish ROS messages to a PR2 robot. The PR2 robot will be controlled by an existing PS3 controller by changing C++ coding to subscribe and publish messages to ROS. Overall the skills that were obtained here will not be lost, but increased.
Exercises in Practical Physics
NASA Astrophysics Data System (ADS)
Schuster, Arthur; Lees, Charles H.
2015-10-01
Preface; Preface to the fifth edition; Part I. Preliminary: 1. Treatment of observations; 2. Measurement of length; 3. Measurement of intervals of time; 4. Calibration of a spirit level; 5. Calibration of a graduated tube; Part II. General Physics: 6. The balance; 7. Accurate weighing with the balance; 8. Density of a solid; 9. Density of a liquid; 10. Moments of inertia; 11. Gravitational acceleration by reversible pendulum; 12. Young's modulus by the bending of beams; 13. Modulus of rigidity; 14. Viscosity; 15. Surface tension; Part III. Heat: 16. Coefficient of expansion of a solid; 17. Thermal expansion of a liquid; 18. Coefficient of increase of pressure of a gas with temperature; 19. Coefficient of expansion of a gas as constant pressure; 20. Effect of pressure on the boiling point of a liquid; 21. Laws of cooling; 22. Cooling correction in calorimetry; 23. Specific heat of quartz; 24. Latent heat of water; 25. Latent heat of steam; 26. Heat of solution of a salt; 27. The mechanical equivalent of heat; Part IV. Sound: 28. Frequency of a tuning fork by the syren; 29. The velocity of sound in air and other bodies by Kundt's method; 30. Study of vibrations of tuning forks by means of Lissajous' figures; Part V. Light: 31. Angles by the optical method; 32. The sextant; 33. Curvatures and powers of lenses; 34. Index of refraction by total reflection; 35. Resolving power of a lens; 36. The prism spectroscope; 37. Reduction of spectroscopic measurements to an absolute scale; 38. The spectrometer; 39. Refractive index and dispersion of a solid by the spectrometer; 40. Refractive index and dispersion of a liquid. Specific refractive powers; 41. Photometry; 42. Interference of light. The biprism; 43. Newton's rings; 44. Wave length of light by the diffraction grating; 45. Rotation of plane by polarisation; 46. Saccharimetry; Part VI. Magnetism and Electricity: 47. Horizontal components of magnetic fields; 48. Magnetic dip; 49. Magnetisation curves; 50. The water voltameter; 51. The copper voltameter; 52. Adjustment and standardisation of galvanometers; 53. The Post Office resistance bridge; 54. High resistances; 55. Low resistances; 56. The resistance of a galvanometer; 57. The resistance of a cell; 58. Comparison of resistance standards; 59. Change of resistance with temperature; 60. The resistance of electrolytes; 61. Construction of a standard cell; 62. Electromotive forces; 63. The potentiometer method of measuring currents; 64. Thermo-electric circuits; 65. The mechanical equivalent of heat by the electric method; 66. Induction of electric currents; 67. Standardisation of a ballistic galvanometer; 68. The self-inductance of a coil; 69. Comparison of self and mutual inductances; 70. Leakage and absorption in condensers; 71. Comparison of condensers; 72. The capacitance of a condenser; 73. High resistance by condenser; 74. The characteristic curves of a triode tube; 75. The quadrant electrometer; 76. Ionisation currents by electrometer; Appendix. Details of dimensions of apparatus; Index.
NASA Astrophysics Data System (ADS)
Guzmán, G.; Gómez, J. A.; Giráldez, J. V.
2010-05-01
Water soil erosion is one of the major concerns in agricultural areas in Southern Spain, and the use of cover crops has been recommended as an alternative to tillage to prevent, or mitigate, soil erosion. This change of soil management implies a progressive modification of soil chemical, biological and physical properties which to date, have been documented by a limited number of studies. In this communication we describe a methodology based on the modification of the water retention curves of intact cores, present the results obtained in two olive orchards in Southern Spain, and compare them with several chemical and physical properties measured simultaneously in the orchards. The experimental areas were located in Benacazón and Pedrera, Seville province in Southern Spain, and at each location two experimental plots were established. One of the plots was under traditional tillage management and the other under cover crop soil management. The slope at the plots was 12 and 4% respectively. Soil samples were taken at both plots differentiating between the inter tree areas and the under the olive canopy areas, between two different depths: 0-10 cm and 10-20 cm. These resulted in eight different sampling areas (2x2x2). Samples were taken three year after establishing the experiments. Water retention curves of soils were obtained as the average of replications per and using the Eijkelkamp Sand and Sand/Kaolin suction tables (0-500 hPa) and a Decagon's WP4-T dewpoint potentiometer (0-300•106 hPa). The latest was used to determine the residual water content. Experimental water retention curves were to two different models: van Genuchten (1980) and Kosugi (1994). Once modeling was done, the slope value of the curves at the inflexion point, proposed by Dexter (2004a, b, c) to estimate physical quality of soils, was calculated. This study presents and discusses the advantages and problems of the different approaches for determining the water retention curves, the potential of these curves to evaluate physical modifications of the soils, and compares them with the other soil properties measured at the experiments. References: Dexter, A. R. 2004. a.- Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120 (2004) 201-214. Dexter, A. R. 2004. b.- Soil physical quality. Part II. Friability, tillage, tilth and hardsetting. Geoderma 120 (2004) 215-225. Dexter, A. R. 2004. c.- Soil physical quality. Part III: Unsaturated hydraulic conductivity and general conclusions about S-theory. Geoderma 120 (2004) 227-239. Kosugi, K. 1994. Three-parameter lognormal distribution model for soil water retention. Water Resour. Re. 30: 891-901. van Genutchen, M.Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, v.44, p.892-898,1980.
AXAF SIM focus mechanism study
NASA Technical Reports Server (NTRS)
Tananbaum, H. D.; Whitbeck, E.
1994-01-01
The design requirements and initial design concept for the AXAF-I Science Instrument Module (SIM) were reviewed at Ball on September 29, 1993. The concept design SIM focus mechanism utilizes a planetary gearset, with redundant motors, to drive a large ring (called 'main housing bearing') via a spur gearset. This large drive ring actuates three tangent bar links (called 'push rods'), which in turn actuate three levers (called 'pin levers'). Each of the three pin levers rotates an 'eccentric pin,' which in turn moves the base of a bipod flexure in both the radial (normal to optical axis) and axial (focus along optical axis) directions. Three bipod flexures are employed, equally spaced at 120 degrees apart, the base of each being translated in the two directions as described above. A focus adjustment is made by rotating the drive ring, which drives the push rods and therefore the pin levers, which in turn rotate the eccentric pins, finally imparting the two motions to the base of each of the bipod flexures. The axial translation (focus adjustment) of the focused structure is the sum of the direct axial motion plus axial motion which comes from uniformly squeezing the three bipod bases radially inward. SAO documented the following concerns regarding the focus mechanism in memo WAP-FY94-001, dated October 7, 1993: (1) The focus adjustment depends, in large part, on the structural properties (stiffnesses and end fixities) of the bipod flexures, push rods, pin levers and eccentric pins. If these properties are not matched very well, then lateral translations as well as unwanted rotations of the focussed structure will accompany focus motion. In addition, the stackup of linkage tolerances and any nonuniform wear in the linkages will result in the same unwanted motions. Thermal gradients will also affect these motions. At the review Ball did not present supporting analyses to support their choice of this design concept. (2) The proposed 'primary' method of measuring focus is by counting motor steps. The 'backup' method is by a pot mounted on the drive ring. Neither method provides for a direct measurement of the quantity desired (focus position). This is of concern because of the long and indirect relationship between focus and the sensed quantity (drive ring rotation). There are three sinusoidal relationships and structural stiffness in the path, and the resulting calibration is likely to be highly nonlinear. These methods would require an accurate ground calibration. (3) Ground calibration (and verification) of focus vs. drive position must be done in 1-g on the ground. This calibration will be complicated by both the structural characteristics of the bipods and the fact that the CG of the translating portion of the SIM is not on the optical axis (thereby causing unwated rotations and changing the focus position vs. motor step and pot readout relationships). The SIM translating weight could be offloaded, but the calibration then becomes sensitive to any errors in offloading (both magnitude and direction). There are concerns as to whether a calibration to the required accuracy can be accomplished on the ground. (4) The choice of a potentiometer as the focus position sensor is questionable in terms of reliability for a five year mission. The results of SAO's study of items 1, 2 and 3 described above are presented in this report.
Single molecule junction conductance and binding geometry
NASA Astrophysics Data System (ADS)
Kamenetska, Maria
This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the case of pyridine-linked molecules, conductance can be reliably switched between two distinct conductance states using sub-nanometer mechanical manipulation. Using a methyl sulfide linker attached to an oligoene backbone, we are able to create a 3-nm-long molecular potentiometer, whose resistance can be tuned exponentially with Angstom-scale modulations in metal-molecule configuration. These experiments points to a new paradigm for attaining reproducible electrical characteristics of metal-organic devices which involves controlling linker-metal chemistry rather than fabricating identically structured metal-molecule interfaces. By choosing a linker group which is either insensitive to or responds reproducibly to changes in metal-molecule configuration, one can design single molecule devices with functionality more complex than a simple resistor. These ambient temperature experiments were combined with UHV conductance measurements performed in a commercial STM on amine-terminated benzene derivatives which conduct through a non-resonant tunneling mechanism, at temperatures varying from 5 to 300 Kelvin. Our results indicate that while amine-gold binding remains selective irrespective of environment, conductance is not temperature independent, in contrast to what is expected for a tunneling mechanism. Furthermore, using temperature-dependent measurements in ambient conditions we find that HOMO-conducting amines and LUMO-conducting pyridines show opposite dependence of conductance on temperature. These results indicate that energy-level alignment between the molecule and the electrodes changes as a result of varying electrode structure at different temperatures. We find that temperature can serve as a knob with which to tune transport properties of single molecule-metal junctions.
NASA Technical Reports Server (NTRS)
1961-01-01
This photo shows the X-15 flight simulator located at the NASA Flight Research Center, Edwards, California, in the 1960s. One of the major advances in aircraft development, pilot training, mission planning, and research flight activities in the 1950s and 1960s was the use of simulators. For the X-15, a computer was programmed with the flight characteristics of the aircraft. Before actually flying a mission, a research pilot could discover many potential problems with the aircraft or the mission while still on the ground by 'flying' the simulator. The problem could then be analyzed by engineers and a solution found. This did much to improve safety. The X-15 simulator was very limited compared to those available in the 21st century. The video display was simple, while the computer was analog rather than digital (although it became hybrid in 1964 with the addition of a digital computer for the X-15A-2; this generated the nonlinear aerodynamic coefficients for the modified No. 2 aircraft). The nonlinear aerodynamic function generators used in the X-15 simulator had hundreds of fuses, amplifiers, and potentiometers without any surge protection. After the simulator was started on a Monday morning, it would be noon before it had warmed up and stabilized. The electronics for the X-15 simulator took up many large consoles. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
BOOK REVIEW: The Current Comparator
NASA Astrophysics Data System (ADS)
Petersons, Oskars
1989-01-01
This 120-page book is a concise, yet comprehensive, clearly-written and well-illustrated monograph that covers the subject matter from basic principles through design, construction and calibration details to the principal applications. The book will be useful, as a primer, to the uninitiated and, as a reference book to the practitioner involved with transformer-type ratio devices. The length of the book and the style of presentation will not overburden any informed reader. The described techniques and the cited references are primarily from the work at the National Research Council, Canada (NRC). Any omissions, however, are not serious with respect to coverage of the subject matter, since most of the development work has been done at NRC. The role of transformers and transformer-like devices for establishing accurate voltage and current ratios has been recognized for over half a century. Transformer techniques were much explored and developed in the fifties and sixties for accuracy levels suitable for standards laboratories. Three-winding voltage transformers were developed for scaling of impedances in connection with the calculable Thompson Lampard capacitor; three-winding current transformers or current comparators were initially explored for the calibration of current transformers and later for specialized impedance measurements. Extensive development of the current comparator and its applications has been and is still being conducted at the NRC by a team that was started and, until his retirement, led by N L Kusters. The team is now led by W J M Moore. He and P N Miljanic, the authors of this book, have had the principal roles in the development of the current comparator. It is fortunate for the field of metrology that considerabe resources and a talented group of researchers were available to do this development along with mechanisms that were available to transfer this technology to a private sector instrument manufacturer and, thus, disseminate it world wide. One would hardly find a standards laboratory today without an instrument employing a current comparator. The NRC program, now nearing the end of its third decade, has resulted in a large number of papers in technical journals. The fact that the results of the current-comparator program are now documented in a well-written book is a most welcome development. The material in the book is well organized and divided into seven chapters. Chapter 1 deals very briefly with the historical aspects of the development, including related work in other organizations. Chapter 2 is the longest, occupying one third of the book. It presents the background theory; the definitions and origins of the errors; and the related concepts and devices including two-stage current transformers, electronic methods for improving the performance of current transformers, and null detectors. The idea of the current comparator is developed starting from Ampere's law; and then progressing to the practical realization of measuring the line integral of the magnetic field surrounding an electric current. Such an approach, as opposed to the more common methods of analyzing transformers, has a tutorial value in explaining how the current balance is achieved. Such analysis is intuitive for air-core sensing coils with infinitesimal cross-sections and uniform winding densities. The intuitive understanding, however, becomes less obvious when high-permeability magnetic cores are used. The subject of errors is discussed thoroughly. For errors of magnetic origin, ample experimental data are provided to support the hypothesis for the cause of such errors. The cause is discussed in a macroscopic sense (non-uniform effective permeability along the torus) without going into design and processing details which could be responsible for the non-uniformities. For capacitive errors, equations have been developed to compute them from geometrical considerations. Techniques are presented to reduce both types of errors shielding techniques for magnetic errors and magnetic-shield excitation for capacitive errors. The magnetic-shield-excitation technique leads naturally to two-stage transformer approaches, described in a small subchapter. Sensitivity of current comparators is discussed in terms of available signal levels for given excitations and current-comparator characteristics. The discussion, however, does not cover more basic limitations, such as inherent noise. A subchapter is devoted to electronically-aided current transformers. Although electronically-aided transformers are not in a strict sense current comparators, many of the design considerations and error sources are the same. Seven different circuits are presented with a brief qualitative discussion. The third chapter, covering design and construction, will be exceptionally valuable for someone needing basic information on how to construct a current comparator quickly. Indeed, all the necessary design, construction, and testing steps are presented in a well-illustrated 15-page chapter. The tests for shielding effectiveness discussed in this chapter and the knowledge of interwinding capacitances calculable from the equations in the previous chapter should enable one also to predict the limits of errors without an exhaustive and complete calibration. Chapter 4 is devoted to current-transformer calibration—the original objective for the current-comparator development work. The principal tool for this is the compensated current comparator, in effect a two-stage transformer operated in the current-comparator mode. The compensated current comparator is not only accurate but is also an extremely versatile device and, hence, deserves the attention that it receives in this book. Considerable space is devoted to the calibration of current comparators themselves using other current comparators in ratio-buildup (bootstrap) techniques. This information is more than most of the users will want since the pre-eminent feature of a current comparator is that errors can be made inherently negligible with proper construction techniques. Proper functioning can be verified by spot checks on a few ratios, and by indirect means. Complete calibration is useful, however, to verify the original design. A number of circuits incorporating compensated current comparators for current-transformer calibration are presented. Such circuits cover the calibration of current transformers normally encountered in electric-power transmission and distribution, from several amperes to several thousand amperes; cascaded circuits for very large currents up to 60,000 A; and special cases involving less-than-unity ratio (step-up) current transformers. Peripheral equipment such as ratio-sets and burdens are also discussed. This entire chapter is of great practical interest since much of the world's current-transformer calibration is performed using equipment described therein. The next two chapters, 5 and 6, deal with current-comparator applications in impedance-bridge circuits. High-voltage applications (described in Chapter 5) have been of great practical importance and indeed are the techniques of choice for a number of measurements. High-voltage bridge circuits are described for capacitance, inductance, voltage transformer ratio, and low-power-factor power measurements. Without going into much detail, the book mentions the particular characteristics required of current comparators in high-voltage bridge applications. Other components making up the bridge circuits are also described, as well as the calibration technique for the bridge. Limited in application but important in basic metrology is one particular low-voltage bridge, described in Chapter 6, for realization of ac power in terms of more basic SI units. Applications to ac resistance measurements and to realization of transconductance amplifiers are also included. Chapter 7, consisting of only eight pages, is devoted to direct-current comparators, although specific topics applicable to dc use are covered in earlier chapters. In relation to the number of dc vs ac instruments in use, the length of this chapter presents something of an imbalance. Nevertheless, in the limited number of pages, the authors have covered the principal direct-current comparator applications—the ratio device (dc comparator), the resistance bridge, and the potentiometer. More specialized instruments such as the differential voltmeter and the digital-to-analog converter are also mentioned. The unique feature of the dc comparator is the modulator-type balance detector. It is covered in Chapter 3 with current-comparator construction details. In conclusion, the technical depth and style of discussion, the material covered, the size of the volume, and the ample references suggest that the authors should satisfy most of the audience interested in current comparators. A possible exception might be those interested in extremely high accuracies (errors in the 10-8 to 10-9 range). The authors have selected the overall approach of presentation that is predominantly pragmatic rather than analytical. Metrologists unfamiliar with current comparators should be able, after a day's reading, to embark upon the construction of their own devices or upon the application of current comparators to their own measurement needs. The serious practioner will find the book valuable for the complete coverage of the subject and the bibliography. Also, most practitioners should find in the book a number of useful design, construction, or application tricks for their own use. At the present time, development activity on transformer-type ratio devices, including the current comparator, has subsided in comparison with the peak level of the sixties. For many applications, however, these devices remain the most accurate and sometimes the only viable instruments for scaling current and voltage. The applications include factory test systems and instruments for absolute electrical measurements. This situation is likely to continue for at least one more generation of metrologists. Thus, not only present but also future generations of metrologists will benefit from the book by not having to spend countless hours in "reinventing the wheel" or in searching scattered journal literature. One only wishes that other specialized fields of metrology could benefit from similar endeavors.