Morel, Jean-Pierre; Marmier, Nicolas; Hurel, Charlotte; Morel-Desrosiers, Nicole
2009-10-01
The enthalpy changes associated with the protonation and deprotonation of an alumina surface have been determined on the basis of microcalorimetry experiments and acid-base potentiometric titrations at 25 degrees C. It has been shown that the results may vary significantly according to the experimental procedure. In order to do so, the potentiometric and microcalorimetric titrations have been carried out first from an acidic pH to basic pH and second from a pH near the pH(zpc) of alumina to acidic or basic pH. It has been demonstrated that the pK(a) values deduced from the potentiometric titrations are the same whatever the experimental protocol whereas the only way to obtain meaningful enthalpies of proton exchange is to carry out microcalorimetric titrations by starting around the point of zero charge.
Vahl, Katja; Kahlert, Heike; von Mühlen, Lisandro; Albrecht, Anja; Meyer, Gabriele; Behnert, Jürgen
2013-07-15
A FIA system using a pH-sensitive detector based on a graphite/quinhydrone/silicone composite electrode was applied to determine sequentially the titratable acidity and the pH of wine, as well as the sum of calcium and magnesium ions. For all measurements the same FIA configuration was used employing different carrier solutions. The results for the determination of acidity and pH are in good agreement with those obtained by classical potentiometric titrations and by pH measurements using a conventional glass electrode. The standard deviation was less than 1.5% for both kinds of measurements and the sample volume was 150 μL. The method allows about 40 determinations of titratable acidity per hour and 30 pH measurements per hour. The titration method can be adjusted to the legal requirements in USA and Europe. Copyright © 2013 Elsevier B.V. All rights reserved.
Bourikas, Kyriakos; Kordulis, Christos; Lycourghiotis, Alexis
2005-06-01
A new methodology is presented, called differential potentiometric titration (DPT), which allows the determination of the point of zero charge (pzc) of metal (hydr)oxides using only one potentiometric curve. By performing extensive simulations of potentiometric titrations for various model (hydr)oxides, we found that an inflection point in a H+(cons,surf) versus pH potentiometric curve (H+(cons,surf): hydrogen ions consumed on the surface of the (hydr)oxide) and a peak in the corresponding differential curve, dH+(cons,surf)/dpH versus pH, appear at a pH equal to the pzc assumed for a model (hydr)oxide. This distinguishable peak appears at the same position irrespective of the surface ionization and the interfacial model adopted as well as the assumed ionic strength. It was found that the aforementioned peak also appears in the high-resolution differential potentiometric curves experimentally determined for four oxides (SiO2, TiO2, gamma-Al2O3, and MgO) that are widely used in various environmental and other technological applications. The application of DPT to the above-mentioned oxides provided practically the same pzc values as the corresponding ones achieved by using four different techniques as well as the corresponding isoelectric point (iep) values determined by microelectrophoresis. Differences between the pzc and iep values determined using various techniques in the case of MgO were attributed to the increasing dissolution of this oxide as pH decreases and the adsorption of cations (Mg2+, Na+) on the MgO/electrolytic solution interface.
2007-03-14
1770. 9. Graham T. T. Gibson, Mark F. Mohamed, Alexei A. Neverov and R. S. Brown*, “ Potentiometric titration of metal ions in ethanol.” Inorganic...81, 495-504. 2 . Graham T. T. Gibson, Mark F. Mohamed, Alexei A. Neverov and R. S. Brown*, “ Potentiometric titration of metal ions in ethanol...necessary to understand the determination of pH in these anhydrous solvents, and then to undertake detailed studies of titration of metal
Hostnik, Gregor; Vlachy, Vojko; Bondarev, Dmitrij; Jiří, Vohlídal; Cerar, Janez
2012-09-01
The title polymer, PTAA, practically free of ester groups was obtained by oxidative polymerization of methyl thiophen-3-ylacetate and subsequent basic hydrolysis of primary polymer. Poly(thiophen-3-ylacetic acid) has been thoroughly characterized by NMR, IR, Raman, and UV/Vis spectroscopy. The polyacid behavior during neutralization titrations with lithium and sodium hydroxides, carried out under nitrogen atmosphere, has been studied by conductometry and potentiometry. Henderson-Hasselbach plots of potentiometric titration curves show a break point at pH around 6, where the curve slope drops from 1.8 (at lower pH) to a value from 1.05 to 1.3 (at higher pH values). The UV/Vis spectra monitored during back titration show: (i) monotonous decrease of both λmax and εmax as pH decreases, (ii) the presence of the isosbestic point at 401 nm that can be ascribed to conformational transition of PTAA chains, and (iii) absence of the isosbestic point at 392 nm reported previously by other authors.
Price, Randi; Wan, Ping
2010-01-01
A potentiometric titration for determining the quaternary ammonium compounds (QAC) commonly found in antimicrobial products was validated by a single laboratory. Traditionally, QACs were determined by using a biphasic (chloroform and water) manual titration procedure. Because of safety considerations regarding chloroform, as well as the subjectivity of color indicator-based manual titration determinations, an automatic potentiometric titration procedure was tested with quaternary nitrogen product formulations. By using the Metrohm Titrando system coupled with an ionic surfactant electrode and an Ag/AgCl reference electrode, titrations were performed with various QAC-containing formulation products/matrixes; a standard sodium lauryl sulfate solution was used as the titrant. Results for the products tested are sufficiently reproducible and accurate for the purpose of regulatory product enforcement. The robustness of the method was measured by varying pH levels, as well as by comparing buffered versus unbuffered titration systems. A quantitation range of 1-1000 ppm quaternary nitrogen was established. Eight commercially available antimicrobial products covering a variety of matrixes were assayed; the results obtained were comparable to those obtained by the manual titration method. Recoveries of 94 to 104% were obtained for spiked samples.
NASA Astrophysics Data System (ADS)
Harrold, Zoë R.; Gorman-Lewis, Drew
2013-05-01
Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.
Quintar, S E; Santagata, J P; Cortinez, V A
2005-10-15
A chemically modified electrode (CME) was prepared and studied as a potentiometric sensor for the end-point detection in the automatic titration of vanadium(V) with EDTA. The CME was constructed with a paste prepared by mixing spectral-grade graphite powder, Nujol oil and N-2-naphthoyl-N-p-tolylhydroxamic acid (NTHA). Buffer systems, pH effects and the concentration range were studied. Interference ions were separated by applying a liquid-liquid extraction procedure. The CME did not require any special conditioning before using. The electrode was constructed with very inexpensive materials and was easily made. It could be continuously used, at least two months without removing the paste. Automatic potentiometric titration curves were obtained for V(V) within 5 x 10(-5) to 2 x 10(-3)M with acceptable accuracy and precision. The developed method was applied to V(V) determination in alloys for hip prosthesis.
ERIC Educational Resources Information Center
Volmer, Dietrich A.; Curbani, Luana; Parker, Timothy A.; Garcia, Jennifer; Schultz, Linda D.; Borges, Endler Marcel
2017-01-01
This experiment describes a simple protocol for teaching acid-base titrations using potentiometry, conductivity, and/or photometry to determine end points without an added indicator. The chosen example examines the titratable acidity of a red wine with NaOH. Wines contain anthocyanins, the colors of which change with pH. Importantly, at the…
Taskiran, Derya Topkaya; Urut, Gulsiye Ozturk; Ayata, Sevda; Alp, Serap
2017-03-01
4-(4'-acetyloxy-3'-methoxybenzylidene)-5-oxazolone fluorescent molecules bearing four different aryl groups attached to the 2-position of 5-oxazolone ring have been investigated by spectrophotometric and potentiometric techniques in solution media. The acidity constants (pKa) of the fluorescent molecules were precisely determined in acetone, acetonitrile, dimethylformamide and in 1:1 mixture of toluene-isopropanol. The studied derivatives were titrated with tetrabutylammonium hydroxide and non-aqueous perchloric acid by scanning the basic and acidic region of the pH scale. A computerizable derivative method was used in order to descript precisely the end point and pKa values. The molecules investigated performed well-shaped and stoichiometric potentiometric titration curves.
Sakurada, Osamu; Kato, Yasutake; Kito, Noriyoshi; Kameyama, Keiichi; Hattori, Toshiaki; Hashiba, Minoru
2004-02-01
Zirconium oxy-salts were hydrolyzed to form positively charged polymer or cluster species in acidic solutions. The zirconium hydrolyzed polymer was found to react with a negatively charged polyelectrolyte, such as poly(vinyl sulfate), and to form a stoichiometric polyion complex. Thus, colloidal titration with poly(vinyl sulfate) was applied to measure the zirconium concentration in an acidic solution by using a Toluidine Blue selective plasticized poly(vinyl chloride) membrane electrode as a potentiometric end-point detecting device. The determination could be performed with 1% of the relative standard deviation. The colloidal titration stoichiometry at pH < or = 2 was one mol of zirconium per equivalent mol of poly(vinyl sulfate).
Ke, Jing; Dou, Hanfei; Zhang, Ximin; Uhagaze, Dushimabararezi Serge; Ding, Xiali; Dong, Yuming
2016-12-01
As a mono-sodium salt form of alendronic acid, alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups. The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and pH value based on acid-base potentiometric titration reaction. The distribution curves of alendronate sodium were drawn according to the determined pKa values. There were 4 dissociation constants (pKa 1 =2.43, pKa 2 =7.55, pKa 3 =10.80, pKa 4 =11.99, respectively) of alendronate sodium, and 12 existing forms, of which 4 could be ignored, existing in different pH environments.
Ito, Sana; Morita, Masaki
2016-01-01
Quantitative analysis of nitrilotriacetate (NTA) in detergents by titration with Cu 2+ solution using a copper ion selective electrode was achieved. This method tolerates a wide range of pH and ingredients in detergents. In addition to NTA, other chelating agents, having relatively lower stability constants toward Cu 2+ , were also qualified with sufficient accuracy by this analytical method for model detergent formulations. The titration process was automated by automatic titrating systems available commercially.
Zinc(II) complexation by some biologically relevant pH buffers.
Wyrzykowski, D; Tesmar, A; Jacewicz, D; Pranczk, J; Chmurzyński, L
2014-12-01
The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2-(N-morpholino)ethanesulfonic acid (Mes), piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional-independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed. Copyright © 2014 John Wiley & Sons, Ltd.
Complexation Key to a pH Locked Redox Reaction
ERIC Educational Resources Information Center
Rizvi, Masood Ahmad; Dangat, Yuvraj; Shams, Tahir; Khan, Khaliquz Zaman
2016-01-01
An unfavorable pH can block a feasible electron transfer for a pH dependent redox reaction. In this experiment, a series of potentiometric titrations demonstrate the sequential loss in feasibility of iron(II) dichromate redox reaction over a pH range of 0-4. The pH at which this reaction failed to occur was termed as a pH locked reaction. The…
The Thermodynamics of the Carbonate System in Seawater,
1979-03-08
ionization of water at various water by potentiometric titration . Deep-Sea Res. 17, temperatures from molal volume data. J. Soln. Chem. 737-750. 1... titration alkalinity, AT, givcn by not available at low salinities and molal volume cal- A, = [HCO/] + 2[CO2-] + [B(OH-] culations (MILLERO et al...used to characterize obtained by a computer titration improves, pH the parameters of the carbonate system in seawater. measurements should be made. This
ERIC Educational Resources Information Center
Grabowski, Lauren E.; Goode, Scott R.
2017-01-01
Potentiometric titrations are widely taught in first-year undergraduate courses to connect electrochemistry, stoichiometry, and equilibria and to reinforce acid-base titrations. Students perform a potentiometric titration that is then analyzed to determine analyte concentrations and the solubility product constant of the solid species.
Application of cause-and-effect analysis to potentiometric titration.
Kufelnicki, A; Lis, S; Meinrath, G
2005-08-01
A first attempt has been made to interpret physicochemical data from potentiometric titration analysis in accordance with the complete measurement-uncertainty budget approach (bottom-up) of ISO and Eurachem. A cause-and-effect diagram is established and discussed. Titration data for arsenazo III are used as a basis for this discussion. The commercial software Superquad is used and applied within a computer-intensive resampling framework. The cause-and-effect diagram is applied to evaluation of seven protonation constants of arsenazo III in the pH range 2-10.7. The data interpretation is based on empirical probability distributions and their analysis by second-order correct confidence estimates. The evaluated data are applied in the calculation of a speciation diagram including uncertainty estimates using the probabilistic speciation software Ljungskile.
Potentiometric sensors for the selective determination of sulbutiamine.
Ahmed, M A; Elbeshlawy, M M
1999-11-01
Five novel polyvinyl chloride (PVC) matrix membrane sensors for the selective determination of sulbutiamine (SBA) cation are described. These sensors are based on molybdate, tetraphenylborate, reineckate, phosphotun gestate and phosphomolybdate, as possible ion-pairing agents. These sensors display rapid near-Nernstian stable response over a relatively wide concentration range 1x10(-2)-1x10(-6) M of sulbutiamine, with calibration slopes 28 32.6 mV decade(-1) over a reasonable pH range 2-6. The proposed sensors proved to have a good selectivity for SBA over some inorganic and organic cations. The five potentiometric sensors were applied successfully in the determination of SBA in a pharmaceutical preparation (arcalion-200) using both direct potentiometry and potentiometric titration. Direct potentiometric determination of microgram quantities of SBA gave average recoveries of 99.4 and 99.3 with mean standard deviation of 0.7 and 0.3 for pure SBA and arcalion-200 formulation respectively. Potentiometric titration of milligram quantities of SBA gave average recoveries of 99.3 and 98.7% with mean standard deviation of 0.7 and 1.2 for pure SBA and arcalion-200 formulation, respectively.
Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...
Biosorption of metal ions from aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiaping; Yiacoumi, Sotira
1997-01-01
Copper biosorption from aqueous solutions by calcium alginate is reported in this paper. The experimental section includes potentiometric titrations of biosorbents, batch equilibrium and kinetic studies of copper biosorption, as well as fixed-bed biosorption experiments. The potentiometric titration results show that the surface charge increases with decreasing pH. The biosorption of copper strongly depends on solution pH; the metal ion binding increases from 0 to 90 percent in pH ranging from 1.5 to 5.0. In addition, a decrease in ionic strength results in an increase of copper ion removal. Kinetic studies indicate that mass transfer plays an important role inmore » the biosorption rate. Furthermore, a fixed-bed biosorption experiment shows that calcium alginate has a significant capacity for copper ion removal. The two-pK Basic Stem model successfully represents the surface charge and equilibrium biosorption experimental data. The calculation results demonstrate that the copper removal may result from the binding of free copper and its hydroxide with surface functional groups of the biosorbents.« less
Fernandes, Christiane; Oliveira Moreira, Rafaela; Lube, Leonardo M; Horn, Adolfo; Szpoganicz, Bruno; Sherrod, Stacy; Russell, David H
2010-06-07
We report herein the characterization by electrospray ionization (ESI) mass spectrometry (MS), matrix assisted laser desorption ionization (MALDI-MS) and potentiometric titration of three iron(III) compounds: [Fe(III)(HPClNOL)Cl2]·NO3 (1), [Cl(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)Cl]·Cl2·H2O (2) and [(SO4)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(SO4)]·6H2O (3), where HPClNOL= 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol). Despite the fact that the compounds have distinct structures in solid state and non-buffered solution, all compounds present similar ESI and MALDI mass spectra in a buffered medium (pH 7.0). At this pH, the species [(PClNOL)Fe(III)-(μ-O)-Fe(III)(PClNOL)](2+) (m/z 354) was observed for all the compounds under investigation. Potentiometric titration confirms a similar behavior for all compounds, indicating that the dihydroxo form [(OH)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(OH)](2+) is the major species at pH 7.0, for all the compounds. The products of the interaction between compounds (1), (2) and (3) and dAMP (2'-deoxyadenosine-5'-monophosphate) in a buffered medium (pH 7.0) were identified by MALDI-MS/MS. The fragmentation data obtained by MS/MS allow one to identify the nature of the interaction between the iron(III) compounds and dAMP, revealing the direct interaction between the iron center and phosphate groups.
NASA Astrophysics Data System (ADS)
Tulenin, S. S.; Bakhteev, S. A.; Yusupov, R. A.; Maskaeva, L. N.; Markov, V. F.
2013-10-01
Boundary conditions and ranges of the formation of indium(III) sulfide and selenide upon precipitation by thiocarbamide and selenocarbamide are determined. Potentiometric titration of indium chloride (InCl3) in the concentration range of 0.0001 to 0.100 mol/L by a solution of sodium hydroxide is performed. It is found that the following pH ranges are optimal for In2S3 and In2Se3 film precipitation: from 3.0 to 4.5 and from 9.0 to 14.0. Indium selenide layers 100 to 300 nm thick are prepared on vitroceramic by hydrochemcial precipitation.
The Potentiometric Titration of Filtrates from the Bachmann Process
1942-06-23
SCIENTIFIC RESEARCH AND DEVELOP11ENT The Potentiometric Titration of Filtrates from the Bachmann Process (OD-12) by F. C. Whitmore OSRD No. 654... Potentiometric Titration of Synthetic Mixtures. A? Nitric Acid-Acetic Acid. A sample of 60 ml. glacial acetic acid war diluted to 200 ml. with distilled...i4flinflr?fj3 TADLE 1 CO) |S?lDBnTl» POTENTIOMETRIC TITRATION OF SYNTHETIC t’.IXTURES WITH CONCENTRATED AJKDNIUM HYDROXIDE A; unonium HNO-j- AcOfi Ky
Effect of surface site interactions on potentiometric titration of hematite (α-Fe2O3) crystal faces.
Chatman, Shawn; Zarzycki, P; Preočanin, T; Rosso, K M
2013-02-01
Time dependent potentiometric pH titrations were used to study the effect of atomic scale surface structure on the protonation behavior of the structurally well-defined hematite/electrolyte interfaces. Our recently proposed thermodynamic model [1,25] was applied to measured acidimetric and alkalimetric titration hysteresis loops, collected from highly organized (001), (012), and (113) crystal face terminations using pH equilibration times ranging from 15 to 30 min. Hysteresis loop areas indicate that (001) faces equilibrate faster than the (012) and (113) faces, consistent with the different expected ensembles of singly-, doubly-, and triply-coordinated surface sites on each face. Strongly non-linear hysteretic pH-potential relationships were found, with slopes exceeding Nernstian, collectively indicating that protonation and deprotonation is much more complex than embodied in present day surface complexation models. The asymmetrical shape of the acidimetric and alkalimetric titration branches were used to illustrate a proposed steric "leaky screen" repulsion/trapping interaction mechanism that stems from high affinity singly-coordinated sites electrostatically and sterically screening lower affinity doubly- and triply-coordinated sites. Our data indicate that site interaction is the dominant phenomenon defining surface potential accumulation behavior on single crystal faces of metal oxide minerals. Copyright © 2012 Elsevier Inc. All rights reserved.
Castro, Felipe D; Sedman, Jacqueline; Ismail, Ashraf A; Asadishad, Bahareh; Tufenkji, Nathalie
2010-06-01
The effects of dissolved oxygen tension during bacterial growth and acclimation on the cell surface properties and biochemical composition of the bacterial pathogens Escherichia coli O157:H7 and Yersinia enterocolitica are characterized. Three experimental techniques are used in an effort to understand the influence of bacterial growth and acclimation conditions on cell surface charge and the composition of the bacterial cell: (i) electrophoretic mobility measurements; (ii) potentiometric titration; and (iii) ATR-FTIR spectroscopy. Potentiometric titration data analyzed using chemical speciation software are related to measured electrophoretic mobilities at the pH of interest. Titration of bacterial cells is used to identify the major proton-active functional groups and the overall concentration of these cell surface ligands at the cell membrane. Analysis of titration data shows notable differences between strains and conditions, confirming the appropriateness of this tool for an overall charge characterization. ATR-FTIR spectroscopy of whole cells is used to further characterize the bacterial biochemical composition and macromolecular structures that might be involved in the development of the net surficial charge of the organisms examined. The evaluation of the integrated intensities of HPO(2)(-) and carbohydrate absorption bands in the IR spectra reveals clear differences between growth protocols. Taken together, the three techniques seem to indicate that the dissolved oxygen tension during cell growth or acclimation can noticeably influence the expression of cell surface molecules and the measurable cell surface charge, though in a strain-dependent fashion.
Mussel-inspired histidine-based transient network metal coordination hydrogels
Fullenkamp, Dominic E.; He, Lihong; Barrett, Devin G.; Burghardt, Wesley R.; Messersmith, Phillip B.
2013-01-01
Transient network hydrogels cross-linked through histidine-divalent cation coordination bonds were studied by conventional rheologic methods using histidine-modified star poly(ethylene glycol) (PEG) polymers. These materials were inspired by the mussel, which is thought to use histidine-metal coordination bonds to impart self-healing properties in the mussel byssal thread. Hydrogel viscoelastic mechanical properties were studied as a function of metal, pH, concentration, and ionic strength. The equilibrium metal-binding constants were determined by dilute solution potentiometric titration of monofunctional histidine-modified methoxy-PEG and were found to be consistent with binding constants of small molecule analogs previously studied. pH-dependent speciation curves were then calculated using the equilibrium constants determined by potentiometric titration, providing insight into the pH dependence of histidine-metal ion coordination and guiding the design of metal coordination hydrogels. Gel relaxation dynamics were found to be uncorrelated with the equilibrium constants measured, but were correlated to the expected coordination bond dissociation rate constants. PMID:23441102
Potentiometric/turbidometric titration of antiperspirant actives.
Johnston, Clifford T; Hem, Stanley L; Guenin, Eric; Mattai, Jairajh; Afflito, John
2003-01-01
A titration procedure that simultaneously monitors the pH and turbidity of an antiperspirant solution during neutralization with sodium hydroxide was developed to characterize antiperspirant actives. Aluminum chloride, aluminum chlorohydrate (ACH), and aluminum zirconium glycine complex (AZG) gave distinctive pH/turbidity profiles. The activated forms of aluminum chlorohydrate (ACH') and aluminum zirconium glycine complex (AZG') produced more turbidity than the non-activated forms. On an equimolar basis, AZG' produced more turbidity than any of the antiperspirant actives tested.
Calorimetry of heterogeneous systems: H+ binding to TiO2 in NaCl
Mehr, S.R.; Eatough, D.J.; Hansen, L.D.; Lewis, E.A.; Davis, J.A.
1989-01-01
A simultaneous calorimetric and potentiometric technique has been developed for measuring the thermodynamics of proton binding to mineral oxides in the presence of a supporting electrolyte. Modifications made to a commercial titration calorimeter to add a combination pH electrode and maintain an inert atmosphere in the calorimeter reaction vessel are described. A procedure to calibrate potentiometric measurements in heterogeneous systems to correct for the suspension effect on pH is given. The enthalpy change for proton dissociation from TiO2 in aqueous suspension as a function of pH is reported for 0.01, 0.1, and 0.5 M NaCl. The enthalpy change for proton dissociation is endothermic, ranging from 10.5 ?? 3.8 to 45.0 ?? 3.8 kJ mol-1 over the pH range from 4 to 10. ?? 1989.
Masadome, Takashi; Imato, Toshihiko
2003-07-04
A plasticized poly (vinyl chloride) (PVC) membrane electrode sensitive to stearyltrimethylammonium (STA) ion is applied to the determination of cationic polyelectrolytes such as poly (diallyldimethylammonium chloride) (Cat-floc) by potentiometric titration, using a potassium poly (vinyl sulfate) (PVSK) solution as a titrant. The end-point of the titration is detected as the potential change of the plasticized PVC membrane electrode caused by decrease in the concentration of STA ion added to the sample solution as a marker ion due to the ion association reaction between the STA ion and PVSK. The effects of the concentration of STA ion, coexisting electrolytes in the sample solution and pH of the sample on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of cationic polyelectrolyte and the end-point volume of the titrant exists in the concentration range from 2x10(-5) to 4x10(-4) N for Cat-floc, glycol chitosan, and methylglycol chitosan.
Homemade Equipment for the Teaching of Electrochemistry at Advanced Level. Part II.
ERIC Educational Resources Information Center
Chan, K. M.
1985-01-01
Provides a detailed description for the construction of equipment needed to investigate acid/base equilibria through the measurement of pH and potentiometric titrations. Suggested experiments and calibration techniques are explained. This information helps to solve the problems of inadequate, expensive equipment required for A-level chemistry…
An Ion-Selective Electrode for the Determination of Phencyclidine (PCP).
1980-08-06
as an indicator_ ectrode in potentiometric titration of PCPA at concentrations DD 1473 EDITION or I Nov soIS OSSOOL TC SEPURqITY CLAWSFICATION Of...and ISE detection limits determined as described previous (25). The PCP electrode was used as the indicator electrode in potentiometric titrations of...was standardized by potentiometric titration with a dodecyltrimethyl- ammonium bromide (DoTAB) solution using a DoTA+ ISE (25) as the indicator
Comparison of methods for accurate end-point detection of potentiometric titrations
NASA Astrophysics Data System (ADS)
Villela, R. L. A.; Borges, P. P.; Vyskočil, L.
2015-01-01
Detection of the end point in potentiometric titrations has wide application on experiments that demand very low measurement uncertainties mainly for certifying reference materials. Simulations of experimental coulometric titration data and consequential error analysis of the end-point values were conducted using a programming code. These simulations revealed that the Levenberg-Marquardt method is in general more accurate than the traditional second derivative technique used currently as end-point detection for potentiometric titrations. Performance of the methods will be compared and presented in this paper.
Signal processing with a summing operational amplifier in multicomponent potentiometric titrations.
Parczewski, A
1987-06-01
It has been proved that application of two indicator electrodes connected to the ordinary titration apparatus through an auxiliary electronic device (a summing operational amplifier) significantly extends the scope of multicomponent potentiometric titrations in which the analytes are determined simultaneously from a single titration curve. For each analyte there is a corresponding potential jump on the titration curve. By application of the proposed auxiliary device, the sum of the electrode potentials is measured. The device also enables the relative sizes of the potential jumps at the end-points on the titration curve to be varied. The advantages of the proposed signal processing are exemplified by complexometric potentiometric titrations of Fe(III) and Cu(II) in mixtures, with a platinum electrode and a copper ion-selective electrode as the indicator electrodes.
Labeling Cells with Silver/Dendrimer Nanocomposites
2005-01-01
used in further studies without additional purification. Potentiometric titrations were performed manually, under nitrogen atmosphere, at room...transmits light between 465 and 485 nm. Results and Discussion Figure IA presents potentiometric titration curves of Ag+-PAMAM_E5.NH 2 systems mixed at 15:1... Potentiometric titration curves of PAMAM_E5.NH 2 (circles) Ag+-PAMAME5.NH 2 30:1 (squares) and Ag+-PAMAME5.NH2 45:1 systems (triangles). B - UV-vis spectra of UV
Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.
Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R
2016-08-24
Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.
Estimation of uncertainty in pKa values determined by potentiometric titration.
Koort, Eve; Herodes, Koit; Pihl, Viljar; Leito, Ivo
2004-06-01
A procedure is presented for estimation of uncertainty in measurement of the pK(a) of a weak acid by potentiometric titration. The procedure is based on the ISO GUM. The core of the procedure is a mathematical model that involves 40 input parameters. A novel approach is used for taking into account the purity of the acid, the impurities are not treated as inert compounds only, their possible acidic dissociation is also taken into account. Application to an example of practical pK(a) determination is presented. Altogether 67 different sources of uncertainty are identified and quantified within the example. The relative importance of different uncertainty sources is discussed. The most important source of uncertainty (with the experimental set-up of the example) is the uncertainty of pH measurement followed by the accuracy of the burette and the uncertainty of weighing. The procedure gives uncertainty separately for each point of the titration curve. The uncertainty depends on the amount of titrant added, being lowest in the central part of the titration curve. The possibilities of reducing the uncertainty and interpreting the drift of the pK(a) values obtained from the same curve are discussed.
Potentiometric titration of metal ions in ethanol.
Gibson, Graham T T; Mohamed, Mark F; Neverov, Alexei A; Brown, R S
2006-09-18
The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented.
Going Beyond, Going Further: Knives, Forks, and Beer Cans as Potentiometric Sensors.
ERIC Educational Resources Information Center
Selig, Walter S.
1985-01-01
Background information, materials needed, and procedures used are provided for potentiometric fluoride, halide, orthophosphate, and sulfate titrations. Typical results obtained are also provided for each type of titration. (JN)
Thermodynamics of complexation in an aqueous solution of Tb(III) nitrate at 298 K
NASA Astrophysics Data System (ADS)
Lobacheva, O. L.; Berlinskii, I. V.; Dzhevaga, N. V.
2017-01-01
The pH of the formation of hydroxo complexes and hydrates in an aqueous solution of terbium Tb(III) is determined using combined means of potentiometric and conductometric titration. The stability constants of the hydroxo complexes, the products of hydroxide solubility, and the Gibbs energy of terbium hydroxo complex formation are calculated.
On-Board Monitoring of Engine Oil
2011-04-01
Viscosity of Transparent and Opaque Liquids at 40°C Infracal Soot Meter Karl Fischer Titration ASTM D 664 Standard Test Method for Acid Number of... methods involve potentiometric and colorimetric titrations, respectively. For both tests, a titration solvent is prepared and added to the oil. The...ASTM D 2896 and ASTM D 4739 [17]. Both methods involve potentiometric titrations. ASTM D 2896 uses a stronger acid and more polar solvent than ASTM D
Cedergren, A
1974-06-01
A rapid and sensitive method using true potentiometric end-point detection has been developed and compared with the conventional amperometric method for Karl Fischer determination of water. The effect of the sulphur dioxide concentration on the shape of the titration curve is shown. By using kinetic data it was possible to calculate the course of titrations and make comparisons with those found experimentally. The results prove that the main reaction is the slow step, both in the amperometric and the potentiometric method. Results obtained in the standardization of the Karl Fischer reagent showed that the potentiometric method, including titration to a preselected potential, gave a standard deviation of 0.001(1) mg of water per ml, the amperometric method using extrapolation 0.002(4) mg of water per ml and the amperometric titration to a pre-selected diffusion current 0.004(7) mg of water per ml. Theories and results dealing with dilution effects are presented. The time of analysis was 1-1.5 min for the potentiometric and 4-5 min for the amperometric method using extrapolation.
Synthesis and characterization of an N-(2-hydroxyethyl)-ethylenediaminetriacetic acid resin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Yuet Fan
1977-10-01
A chelating ion-exchange resin with N-(2-hydroxyethyl)ethylene-diaminetriacetic acid (HEDTA) used as the ligand chemically bonded to XAD-4 by an ester linkage, HEDTA-4, was synthesized. It is stable under normal experimental conditions with the liquid chromatograph. The structure of the resin was confirmed by an infrared spectrum, and by potentiometric titrations. The capacity of the resin was also obtained by potentiometric titration and by a nitrogen analysis. The resin was used to pack a column of 5 mm internal diameter and 5 cm long. The effect of pH on the retention of different metal ions on the resin was studied. It wasmore » found that the resin was most selective for chromium(III), copper(II), lead(II), mercury(II), uranium(VI), zirconium(IV) and zinc(II) at a pH of less than 3. Furthermore, the resin proves to be functioning with a chelating mechanism rather than ion-exchange, and it can concentrate trace metal ions in the presence of a large excess of calcium and magnesium. This makes the resin potentially useful for purifying and analyzing drinking water.« less
Makowska, Joanna; Bagiñska, Katarzyna; Makowski, Mariusz; Jagielska, Anna; Liwo, Adam; Kasprzykowski, Franciszek; Chmurzyñski, Lech; Scheraga, Harold A
2006-03-09
We compared the ability of two theoretical methods of pH-dependent conformational calculations to reproduce experimental potentiometric titration curves of two models of peptides: Ac-K5-NHMe in 95% methanol (MeOH)/5% water mixture and Ac-XX(A)7OO-NH2 (XAO) (where X is diaminobutyric acid, A is alanine, and O is ornithine) in water, methanol (MeOH), and dimethyl sulfoxide (DMSO), respectively. The titration curve of the former was taken from the literature, and the curve of the latter was determined in this work. The first theoretical method involves a conformational search using the electrostatically driven Monte Carlo (EDMC) method with a low-cost energy function (ECEPP/3 plus the SRFOPT surface-solvation model, assumming that all titratable groups are uncharged) and subsequent reevaluation of the free energy at a given pH with the Poisson-Boltzmann equation, considering variable protonation states. In the second procedure, molecular dynamics (MD) simulations are run with the AMBER force field and the generalized Born model of electrostatic solvation, and the protonation states are sampled during constant-pH MD runs. In all three solvents, the first pKa of XAO is strongly downshifted compared to the value for the reference compounds (ethylamine and propylamine, respectively); the water and methanol curves have one, and the DMSO curve has two jumps characteristic of remarkable differences in the dissociation constants of acidic groups. The predicted titration curves of Ac-K5-NHMe are in good agreement with the experimental ones; better agreement is achieved with the MD-based method. The titration curves of XAO in methanol and DMSO, calculated using the MD-based approach, trace the shape of the experimental curves, reproducing the pH jump, while those calculated with the EDMC-based approach and the titration curve in water calculated using the MD-based approach have smooth shapes characteristic of the titration of weak multifunctional acids with small differences between the dissociation constants. Nevertheless, quantitative agreement between theoretically predicted and experimental titration curves is not achieved in all three solvents even with the MD-based approach, which is manifested by a smaller pH range of the calculated titration curves with respect to the experimental curves. The poorer agreement obtained for water than for the nonaqueous solvents suggests a significant role of specific solvation in water, which cannot be accounted for by the mean-field solvation models.
Computer Series, 62: Bits and Pieces, 25.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1985-01-01
Describes: (1) a FORTH-language, computer-controlled potentiometric titration; (2) coulometric titrations using computer-interfaced potentiometric endpoint detection; (3) interfacing a scanning infrared spectrophotometer to a microcomputer; (4) demonstrations of signal-to-noise enhancement (digital filtering); (5) and an inexpensive Apple…
NASA Astrophysics Data System (ADS)
Maskaeva, L. N.; Fedorova, E. A.; Yusupov, R. A.; Markov, V. F.
2018-05-01
The potentiometric titration of tin chloride SnCl2 is performed in the concentration range of 0.00009-1.1 mol/L with a solution of sodium hydroxide NaOH. According to potentiometric titration data based on modeling equilibria in the SnCl2-H2O-NaOH system, basic equations are generated for the main processes, and instability constants are calculated for the resulting hydroxo complexes and equilibrium constants of low-soluble tin(II) compounds. The data will be of interest for specialists in the field of theory of solutions.
de Aquino, Emerson Vidal; Rohwedder, Jarbas José Rodrigues; Pasquini, Celio
2006-11-01
Monosegmented flow analysis (MSFA) has been used as a flow-batch system to produce a simple, robust, and mechanized titrator that enables true titrations to be performed without the use of standards. This paper also introduces the use of coulometry with monosegmented titration by proposing a versatile flow cell. Coulometric generation of the titrand is attractive for titrations performed in monosegmented systems, because the reagent can be added without increasing the volume of sample injected. Also, biamperomeric and potentiometric detection of titration end-points can increase the versatility of the monosegmented titrator. The cell integrates coulometric generation of the titrand with detection of end-point by potentiometry or biamperometry. The resulting titrator is a flow-batch system in which the liquid monosegment, constrained by the interfaces of the gaseous carrier stream, plays the role of a sample of known volume to be titrated. The system has been used for determination of ascorbic acid, by coulometric generation of I2 with biamperometric detection, and for determination of Fe(II), by coulometric generation of Ce(IV) with potentiometric detection of the end-point, both in feed supplements.
Liu, Yanju; Naidu, Ravendra; Ming, Hui
2013-03-15
The surface electrochemical properties of red mud (bauxite residue) from different alumina refineries in Australia and China were studied by electrophoresis and measuring surface charge density obtained from acid/base potentiometric titrations. The electrophoretic properties were measured from zeta potentials obtained in the presence of 0.01 and 0.001 M KNO(3) over a wide pH range (3.5-10) by titration. The isoelectric point (IEP) values were found to vary from 6.35 to 8.70 for the red mud samples. Further investigation into the surface charge density of one sample (RRM) by acid/base potentiometric titration showed similar results for pH(PZC) with pH(IEP) obtained from electrokinetic measurements. The pH(IEP) determined from zeta potential measurements can be used as a characteristic property of red mud. The minerals contained in red mud contributed to the different values of pH(IEP) of samples obtained from different refineries. Different relationships of pH(IEP) with Al/Fe and Al/Si ratios (molar basis) were also found for different red mud samples. Copyright © 2012 Elsevier Inc. All rights reserved.
Potentiometric titration and equivalent weight of humic acid
Pommer, A.M.; Breger, I.A.
1960-01-01
The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.
Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level.
Sahoo, P; Ananthanarayanan, R; Malathi, N; Rajiniganth, M P; Murali, N; Swaminathan, P
2010-06-11
A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 microg L(-1) levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L(-1) levels, with modification in methodology for accurate detection of end point even at 10.0 microg L(-1) levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 microg L(-1) O(2). Finally, several water samples containing dissolved oxygen from mg L(-1) to microg L(-1) levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 microg L(-1) O(2) level is 0.14 (n=5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 microg L(-1) levels. Copyright 2010 Elsevier B.V. All rights reserved.
Duval, Jérôme F L; Slaveykova, Vera I; Hosse, Monika; Buffle, Jacques; Wilkinson, Kevin J
2006-10-01
The electrostatic, hydrodynamic and conformational properties of aqueous solutions of succinoglycan have been analyzed by fluorescence correlation spectroscopy (FCS), proton titration, and capillary electrophoresis (CE) over a large range of pH values and electrolyte (NaCl) concentrations. Using the theoretical formalism developed previously for the electrokinetic properties of soft, permeable particles, a quantitative analysis for the electro-hydrodynamics of succinoglycan is performed by taking into account, in a self-consistent manner, the measured values of the diffusion coefficients, electric charge densities, and electrophoretic mobilities. For that purpose, two limiting conformations for the polysaccharide in solution are tested, i.e. succinoglycan behaves as (i) a spherical, random coil polymer or (ii) a rodlike particle with charged lateral chains. The results show that satisfactory modeling of the titration data for ionic strengths larger than 50 mM can be accomplished using both geometries over the entire range of pH values. Electrophoretic mobilities measured for sufficiently large pH values (pH > 5-6) are in line with predictions based on either model. The best manner to discriminate between these two conceptual models is briefly discussed. For low pH values (pH < 5), both models indicate aggregation, resulting in an increase of the hydrodynamic permeability and a decrease of the diffusion coefficient.
NASA Astrophysics Data System (ADS)
Maksimova, Yu. G.; Maryakhina, N. N.; Tolpeshta, I. I.; Sokolova, T. A.
2010-10-01
The acid-base buffer capacity before and after the treatment with the Mehra-Jackson and Tamm reagents was assessed by continuous potentiometric titration for the main genetic horizons of two profiles of podzolic soils in the Central Forest State Reserve. The total buffer capacity was calculated in the pH range from the initial titration point (ITP) to 3 for the acid titration and from the ITP to 10 for the base titration, as well as the buffer capacities in the pH intervals of 0.25. It was found that both treatments abruptly decreased the base buffer capacity, which reached 70-90% in the E horizons. The high direct linear correlation of the difference between the total base buffer capacities before and after each treatment with the content of Fe in the Tamm extract was revealed. From the results obtained, a conclusion was drawn that finely dispersed Fe hydroxides were the main solid-phase constituents ensuring the base buffer capacity, and the deprotonation of hydroxyl groups on the surface of Fe hydroxides was the essential buffer reaction during the base titration.
Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J
2014-12-16
In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands.
Studies of cellulose surfaces by titration and ESCA
NASA Astrophysics Data System (ADS)
Stenius, Per; Laine, Janne
1994-01-01
The surface properties of unbleached kraft pulp fibers of varying lignin content prepared by digestion with different amounts of excess alkali have been investigated using polyelectrolyte titration, potentiometric titration and ESCA. The surfaces contain two different acidic groups that dissociate completely above pH 7.5, one with pK ≈ 3.6 and one with pK ≈ 5.7. The amount of the latter group correlates directly with the amount of lignin in the pulp. The ESCA analysis indicates that the relative amount of carboxylic groups and alkyl carbon in the surface decreases as the lignin content decreases and also that material with high alkyl carbon content is enriched in the outermost surface of the cellulose. Thus, a combination of ESCA analysis and high-precision titrations is able to yield a very detailed picture of the effect of digestion conditions on surface properties of cellulose fibers of direct relevance to paper properties.
NASA Astrophysics Data System (ADS)
Gololobova, E. G.; Gorichev, I. G.; Lainer, Yu. A.; Skvortsova, I. V.
2011-05-01
A procedure was proposed for the calculation of the acid-base equilibrium constants at an alumina/electrolyte interface from experimental data on the adsorption of singly charged ions (Na+, Cl-) at various pH values. The calculated constants (p K {1/0}= 4.1, p K {2/0}= 11.9, p K {3/0}= 8.3, and p K {4/0}= 7.7) are shown to agree with the values obtained from an experimental pH dependence of the electrokinetic potential and the results of potentiometric titration of Al2O3 suspensions.
van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I
2002-09-01
An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.
Calorimetry Studies of Ammonia, Nitric Acid, and Ammonium Nitrate
1979-10-01
50 microns of Hg. Glass ampules containing NH4NO3were filled in the dry box and then flame-sealed under a nitrogen atmosphere. A Karl - Fischer titration...was standardized by potentiometric titration against standard 1 N HCI, For calorimetric measurements, samples were transferred by syringe into weighed... potentiometric titration against standard 1 N NaOH, was 99.6 + 0.2 wt% HNO3. As a measure of tte extent of reaction with the wall oTthe3* calorimeter, HNO3
Chen, Yadan; Wang, Tao; Helmy, Roy; Zhou, George X; LoBrutto, Rosario
2002-07-01
A potentiometric titration method for methyl magnesium chloride and other Grignard reagents based on the reaction with 2-butanol in THF has been developed and validated. The method employs a commercially available platinum electrode, using an electrolyte compatible with non-aqueous solvents. Well-defined titration curves were obtained, along with excellent method precision. The endpoint was precisely determined based on the first derivative of the titration curve. Different solvents such as THF, diethyl ether and methylene chloride provided similar results with regard to sharpness of the endpoint and method precision. The method was applied to a wide array of Grignard reagents including methyl magnesium bromide, ethyl magnesium chloride, propyl magnesium chloride, vinyl magnesium chloride, phenyl magnesium chloride, and benzyl magnesium chloride with similar precision and accuracy. Application of in-line FTIR was demonstrated for in situ monitoring of the titration reaction, allowing characterization of the reaction species. An authentic spectrum of the MeMgCl-THF complex was obtained using spectral subtraction and the vibrational absorbance bands were identified. FTIR also provided an alternative for detecting the titration endpoint, and the titration results so obtained, provided a cross-validation of the accuracy of the potentiometric titration.
A novel approach for high precision rapid potentiometric titrations: application to hydrazine assay.
Sahoo, P; Malathi, N; Ananthanarayanan, R; Praveen, K; Murali, N
2011-11-01
We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ~2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO(3) in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors. © 2011 American Institute of Physics
A novel approach for high precision rapid potentiometric titrations: Application to hydrazine assay
NASA Astrophysics Data System (ADS)
Sahoo, P.; Malathi, N.; Ananthanarayanan, R.; Praveen, K.; Murali, N.
2011-11-01
We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ˜2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO3 in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors.
Number of independent parameters in the potentiometric titration of humic substances.
Lenoir, Thomas; Manceau, Alain
2010-03-16
With the advent of high-precision automatic titrators operating in pH stat mode, measuring the mass balance of protons in solid-solution mixtures against the pH of natural and synthetic polyelectrolytes is now routine. However, titration curves of complex molecules typically lack obvious inflection points, which complicates their analysis despite the high-precision measurements. The calculation of site densities and median proton affinity constants (pK) from such data can lead to considerable covariance between fit parameters. Knowing the number of independent parameters that can be freely varied during the least-squares minimization of a model fit to titration data is necessary to improve the model's applicability. This number was calculated for natural organic matter by applying principal component analysis (PCA) to a reference data set of 47 independent titration curves from fulvic and humic acids measured at I = 0.1 M. The complete data set was reconstructed statistically from pH 3.5 to 9.8 with only six parameters, compared to seven or eight generally adjusted with common semi-empirical speciation models for organic matter, and explains correlations that occur with the higher number of parameters. Existing proton-binding models are not necessarily overparametrized, but instead titration data lack the sensitivity needed to quantify the full set of binding properties of humic materials. Model-independent conditional pK values can be obtained directly from the derivative of titration data, and this approach is the most conservative. The apparent proton-binding constants of the 23 fulvic acids (FA) and 24 humic acids (HA) derived from a high-quality polynomial parametrization of the data set are pK(H,COOH)(FA) = 4.18 +/- 0.21, pK(H,Ph-OH)(FA) = 9.29 +/- 0.33, pK(H,COOH)(HA) = 4.49 +/- 0.18, and pK(H,Ph-OH)(HA) = 9.29 +/- 0.38. Their values at other ionic strengths are more reliably calculated with the empirical Davies equation than any existing model fit.
Hsieh, Yi-Ling; Ilevbare, Grace A; Van Eerdenbrugh, Bernard; Box, Karl J; Sanchez-Felix, Manuel Vincente; Taylor, Lynne S
2012-10-01
To examine the precipitation and supersaturation behavior of ten weak bases in terms of the relationship between pH-concentration-time profiles and the solid state properties of the precipitated material. Initially the compound was dissolved at low pH, followed by titration with base to induce precipitation. Upon precipitation, small aliquots of acid or base were added to induce slight subsaturation and supersaturation respectively and the resultant pH gradient was determined. The concentration of the unionized species was calculated as a function of time and pH using mass and charge balance equations. Two patterns of behavior were observed in terms of the extent and duration of supersaturation arising following an increase in pH and this behavior could be rationalized based on the crystallization tendency of the compound. For compounds that did not readily crystallize, an amorphous precipitate was formed and a prolonged duration of supersaturation was observed. For compounds that precipitated to crystalline forms, the observed supersaturation was short-lived. This study showed that supersaturation behavior has significant correlation with the solid-state properties of the precipitate and that pH-metric titration methods can be utilized to evaluate the supersaturation behavior.
Tôrres, Adamastor Rodrigues; Lyra, Wellington da Silva; de Andrade, Stéfani Iury Evangelista; Andrade, Renato Allan Navarro; da Silva, Edvan Cirino; Araújo, Mário César Ugulino; Gaião, Edvaldo da Nóbrega
2011-05-15
This work proposes the use of digital image-based method for determination of total acidity in red wines by means of acid-base titration without using an external indicator or any pre-treatment of the sample. Digital images present the colour of the emergent radiation which is complementary to the radiation absorbed by anthocyanines present in wines. Anthocyanines change colour depending on the pH of the medium, and from the variation of colour in the images obtained during titration, the end point can be localized with accuracy and precision. RGB-based values were employed to build titration curves, and end points were localized by second derivative curves. The official method recommends potentiometric titration with a NaOH standard solution, and sample dilution until the pH reaches 8.2-8.4. In order to illustrate the feasibility of the proposed method, titrations of ten red wines were carried out. Results were compared with the reference method, and no statistically significant difference was observed between the results by applying the paired t-test at the 95% confidence level. The proposed method yielded more precise results than the official method. This is due to the trivariate nature of the measurements (RGB), associated with digital images. Copyright © 2011 Elsevier B.V. All rights reserved.
Kahle, Claudia; Holzgrabe, Ulrike
2004-10-01
Cyclodextrins are well known for their ability to separate enantiomers of drugs, natural products, and other chiral substances using HPLC, GC, or CE. The resolution of the enantiomers is due to the formation of diastereomeric complexes between the cyclodextrin and the pairs of enantiomers. The aim of this study was to determine the binding constants of the complexes between alpha- and beta-cyclodextrin and the enantiomers of a series of aliphatic and aromatic amino acids, and dipeptides, using a potentiometric titration method. The results of this method are compared to other methods, and correlated to findings in cyclodextrin-modified capillary electrophoresis and possible complex structures. Potentiometric titration was found to be an appropriate tool to determine the binding constants of cyclodextrin inclusion complexes.
Meloun, Milan; Nečasová, Veronika; Javůrek, Milan; Pekárek, Tomáš
2016-02-20
Potentiometric and spectrophotometric pH-titration of the multiprotic cytostatics bosutinib for dissociation constants determination were compared. Bosutinib treats patients with positive chronic myeloid leukemia. Bosutinib exhibits four protonatable sites in a pH range from 2 to 11, where two pK are well separated (ΔpK>3), while the other two are near dissociation constants. In the neutral medium, bosutinib occurs in the slightly water soluble form LH that can be protonated to the soluble cation LH4(3+). The molecule LH can be dissociated to still difficultly soluble anion L(-). The set of spectra upon pH from 2 to 11 in the 239.3-375.0nm was divided into two absorption bands: the first one from 239.3 to 290.5nm and the second from 312.3 to 375.0nm, which differ in sensitivity of chromophores to a pH change. Estimates of pK of the entire set of spectra were compared with those of both absorption bands. Due to limited solubility of bosutinib the protonation in a mixed aqueous-methanolic medium was studied. In low methanol content of 3-6% three dissociation constants can be reliably determined with SPECFIT/32 and SQUAD(84) and after extrapolation to zero content of methanol they lead to pKc1=3.43(12), pKc2=4.54(10), pKc3=7.56(07) and pKc4=11.04(05) at 25°C and pKc1=3.44(06), pKc2=5.03(08) pKc3=7.33(05) and pKc4=10.92(06) at 37°C. With an increasing content of methanol in solvent the dissociation of bosutinib is suppressed and the percentage of LH3(2+) decreases and LH prevails. From the potentiometric pH-titration at 25°C the concentration dissociation constants were estimated with ESAB pKc1=3.51(02), pKc2=4.37(02), pKc3=7.97(02) and pKc4=11.05(03) and with HYPERQUAD: pKc1=3.29(12), pKc2=4.24(10), pKc3=7.95(07) and pKc4=11.29(05). Copyright © 2015 Elsevier B.V. All rights reserved.
Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.
Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui
2005-06-01
A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.
Leone, Laura; Ferri, Diego; Manfredi, Carla; Persson, Per; Shchukarev, Andrei; Sjöberg, Staffan; Loring, John
2007-09-15
In this study, macroscopic and spectroscopic data were combined to develop a surface complexation model that describes the acid-base properties of Bacillus subtilis. The bacteria were freeze-dried and then resuspended in 0.1 M NaCl ionic medium. Macroscopic measurements included potentiometric acid-base titrations and electrophoretic mobility measurements. In addition, ATR-FTIR spectra of wet pastes from suspensions of Bacillus subtilis at different pH values were collected. The least-squares program MAGPIE was used to generate a surface complexation model that takes into account the presence of three acid-base sites on the surface: tripple bond COOH, tripple bond NH+, and tripple bond PO-, which were identified previously by XPS measurements. Both potentiometric titration data and ATR-FTIR spectra were used quantitatively, and electrostatic effects at the charged bacterial surface were accounted for using the constant capacitance model. The model was calculated using two different approaches: in the first one XPS data were used to constrain the ratio of the total concentrations of all three surface sites. The capacitance of the double layer, the total buffer capacity, and the deprotonation constants of the tripple bond NH+, tripple bond POH, and tripple bond COOH species were determined in the fit. A second approach is presented in which the ratio determined by XPS of the total concentrations of tripple bond NH+ to tripple bond PO- sites is relaxed. The total concentration of tripple bond PO- sites was determined in the fit, while the deprotonation constant for tripple bond POH was manually varied until the minimization led to a model which predicted an isoelectric point that resulted in consistency with electrophoretic mobility data. The model explains well the buffering capacity of Bacillus subtilis suspensions in a wide pH range (between pH=3 and pH=9) which is of considerable environmental interest. In particular, a similar quantitative use of the IR data opens up possibilities to model other bacterial surfaces at the laboratory scale and help estimate the buffering capacity of carboxylate-containing compounds in natural samples.
A new method for determining the acid number of biodiesel based on coulometric titration.
Barbieri Gonzaga, Fabiano; Pereira Sobral, Sidney
2012-08-15
A new method is proposed for determining the acid number (AN) of biodiesel using coulometric titration with potentiometric detection, basically employing a potentiostat/galvanostat and an electrochemical cell containing a platinum electrode, a silver electrode, and a combination pH electrode. The method involves a sequential application of a constant current between the platinum (cathode) and silver (anode) electrodes, followed by measuring the potential of the combination pH electrode, using an isopropanol/water mixture as solvent and LiCl as the supporting electrolyte. A preliminary evaluation of the new method, using acetic acid for doping a biodiesel sample, showed an average recovery of 100.1%. Compared to a volumetric titration-based method for determining the AN of several biodiesel samples (ranging from about 0.18 to 0.95 mg g(-1)), the new method produced statistically similar results with better repeatability. Compared to other works reported in the literature, the new method presented an average repeatability up to 3.2 times better and employed a sample size up to 20 times smaller. Copyright © 2012 Elsevier B.V. All rights reserved.
Wright, John J; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M
2016-09-01
EPR-based potentiometric titrations are a well-established method for determining the reduction potentials of cofactors in large and complex proteins with at least one EPR-active state. However, such titrations require large amounts of protein. Here, we report a new method that requires an order of magnitude less protein than previously described methods, and that provides EPR samples suitable for measurements at both X- and Q-band microwave frequencies. We demonstrate our method by determining the reduction potential of the terminal [4Fe-4S] cluster (N2) in the intramolecular electron-transfer relay in mammalian respiratory complex I. The value determined by our method, E m7 =-158mV, is precise, reproducible, and consistent with previously reported values. Our small-volume potentiometric titration method will facilitate detailed investigations of EPR-active centres in non-abundant and refractory proteins that can only be prepared in small quantities. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
van Staden, J Koos F; Mashamba, M Mulalo G; Stefan, R Raluca I
2002-12-06
A potentiometric SI titration system for the determination of total acidity in soft drinks is proposed. The concept is based on the aspiration of the acid soft drink sample between two base zones into a holding coil with the volume of the first base zone twice to that of the second one and channelled by flow reversal through a reaction coil to a potentiometric sensor. A solution of 0.1 mol l(-1) sodium chloride is used as ionic strength adjustment buffer in the carrier stream. The system has been applied to the analysis of some South African soft drinks having a total acidity level of about 0.2-0.3% (w/v). The method has a sample frequency of 45 samples per h with a linear range of 0.1 and 0.6% (w/v). It is easy to use, fully computerised, and gives the results that are comparable to both automated batch titration and manual titration.
Aluminum(III) speciation with acetate and oxalate. A potentiometric and sup 27 Al NMR study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, F.; Rouiller, J.; Genevrier, F.
1991-09-01
Aluminum (III) hydrolysis and precipitation in the presence of acetic acid and oxalic acid have been studied by combining potentiometric titration and liquid-state {sup 27}Al NMR. The main aluminum species have thus been identified and quantified: unreacted hydrolyzed, complexed monomers, and the Al{sub 13} tridecamer. A solid species appeared when precipitation occurred and was quantified by difference with the other species. The quantitative evolution of these species was followed for pH values up to 5. Acetate forms weak complexes with aluminum. The precipitated phase was hypothesized to be aggregated Al{sub 13}. Oxalate forms strong multiligand complexes to form Al{sub 13}more » requires higher hydroxyl content. High oxalate contents (L/M > 1) inhibit tridecamer formation and precipitation occurs only at high pH values. With oxalate the precipitated phase seems to be devoid of Al{sub 13} and of a more condensed nature than it is with acetate.« less
Gonzalez-Raymat, Hansell; Anagnostopoulos, Vasileios; Denham, Miles; Cai, Yong; Katsenovich, Yelena P
2018-04-15
The present study explores a novel application of Huma-K, a commercially available, unrefined humic substance, as a promising low-cost source of organic matter for in situ remediation of contaminated acidic groundwater plumes. This can be achieved by creating a humic-rich coating on the surface of minerals which can enhance the sorption of contaminants from groundwater. Huma-K was characterized by means of scanning electron microscopy equipped with energy dispersive spectroscopy, Fourier-transform infrared analysis, and potentiometric titrations. Batch experiments were performed to investigate the sorption-desorption behavior of Huma-K and to evaluate what conditions (pH, contact time, and initial Huma-K concentration) affect these processes upon injection into aquifer sediments. As evidenced by potentiometric titrations, Huma-K possesses functional groups that have an acidic nature, with pK values in the range of 4-6 (carboxylic) and 9-10 (phenolic). Sorption, homogeneous precipitation, and surface-induced precipitation seem to be favored in the presence of sediment at pH 4, where there is less deprotonation of acidic functional groups. As the pH is increased, functional groups become negatively charged, leading to electrostatic repulsion and dissolution of Huma-K from sediment. Kinetic experiments indicate that Huma-K sorption is a slow-rate process, most likely governed by film diffusion. The enhanced sorption of Huma-K in acidic conditions suggests that it may be used to create a subsurface treatment zone in acidic aquifers for the sequestration of contaminants such as uranium. The treatment zone will persist as long as the pH does not increase sufficiently to cause soil-bound Huma-K to be released, remobilizing aqueous contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.
Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma
2015-01-01
A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.
Lauw, Y; Leermakers, F A M; Cohen Stuart, M A; Pinheiro, J P; Custers, J P A; van den Broeke, L J P; Keurentjes, J T F
2006-12-19
We perform differential potentiometric titration measurements for the binding of Ca2+ ions to micelles composed of the carboxylic acid end-standing Pluronic P85 block copolymer (i.e., CAE-85 (COOH-(EO)26-(PO)39-(EO)26-COOH)). Two different ion-selective electrodes (ISEs) are used to detect the free calcium concentration; the first ISE is an indicator electrode, and the second is a reference electrode. The titration is done by adding the block copolymers to a known solution of Ca2+ at neutral pH and high enough temperature (above the critical micellization temperature CMT) and various amount of added monovalent salt. By measuring the difference in the electromotive force between the two ISEs, the amount of Ca2+ that is bound by the micelles is calculated. This is then used to determine the binding constant of Ca2+ with the micelles, which is a missing parameter needed to perform molecular realistic self-consistent-field (SCF) calculations. It turns out that the micelles from block copolymer CAE-85 bind Ca2+ ions both electrostatically and specifically. The specific binding between Ca2+ and carboxylic groups in the corona of the micelles is modeled through the reaction equilibrium -COOCa+ <==> -COO- + Ca2+ with pKCa = 1.7 +/- 0.06.
Ding, Jiawang; Qin, Wei
2013-09-15
A simple, general and label-free potentiometric method to measure nuclease activities and oxidative DNA damage in a homogeneous solution using a polycation-sensitive membrane electrode is reported. Protamine, a linear polyionic species, is used as an indicator to report the cleavage of DNA by nucleases such as restriction and nonspecific nucleases, and the damage of DNA induced by hydroxyl radicals. Measurements can be done with a titration mode or a direct detection mode. For the potentiometric titration mode, the enzymatic cleavage dramatically affects the electrostatical interaction between DNA and protamine and thus shifts the response curve for the potentiometric titration of the DNA with protamine. Under the optimized conditions, the enzyme activities can be sensed potentiometrically with detection limits of 2.7×10(-4)U/µL for S1 nuclease, and of 3.9×10(-4)U/µL for DNase I. For the direct detection mode, a biocomplex between protamine and DNA is used as a substrate. The nuclease of interest cleaves the DNA from the protamine/DNA complex into smaller fragments, so that free protamine is generated and can be detected potentiometrically via the polycation-sensitive membrane electrode. Using a direct measurement, the nuclease activities could be rapidly detected with detection limits of 3.2×10(-4)U/µL for S1 nuclease, and of 4.5×10(-4)U/µL for DNase I. Moreover, the proposed potentiometric assays demonstrate the potential applications in the detection of hydroxyl radicals. It is anticipated that the present potentiometric strategy will provide a promising platform for high-throughput screening of nucleases, reactive oxygen species and the drugs with potential inhibition abilities. Copyright © 2013 Elsevier B.V. All rights reserved.
Simulating equilibrium processes in the Ga(NO3)3-H2O-NaOH system
NASA Astrophysics Data System (ADS)
Fedorova, E. A.; Bakhteev, S. A.; Maskaeva, L. N.; Yusupov, R. A.; Markov, V. F.
2016-06-01
Equilibrium processes in the Ga(NO3)3-H2O-NaOH system are simulated with allowance for the formation of precipitates of various compositions using experimental data from potentiometric titration and theoretical studies. The values of the instability constants are calculated along with the stoichiometric compositions of the resulting compounds. It is found that pH ranges of 1.0 to 4.3 and 12.0 to 14.0 are best for the deposition of gallium chalcogenide films.
Pinzauti, S; Papeschi, G; La Porta, E
1983-01-01
A rugged, low resistance silver-silver sulphide solid-state electrode for determining pharmaceuticals as authentic samples or in dosage forms by potentiometric titration is described. Sodium tetraphenylborate, mercury(II) acetate and silver nitrate (0.01) M were employed as titrants in the analysis of cationic surfactants (cetylpyridinium chloride, benzethonium chloride, benzalkonium chloride and chlorhexidine salts), antithyroid drugs (methimazole and propylthiouracil) or sodium halides respectively.
Analysis of Aircraft Fuels and Related Materials
1982-09-01
content by the Karl Fischer method . Each 2040 solvent sample represented a different step in a clean-up procedure conducted by Aero Propulsion...izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm. It has a re- peatability of 0.1 ppm... Method 163-80, which util- izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm and has a
da Costa César, Isabela; Nogueira, Fernando Henrique Andrade; Pianetti, Gérson Antônio
2008-09-10
This paper describes the development and evaluation of a HPLC, UV spectrophotometry and potentiometric titration methods to quantify lumefantrine in raw materials and tablets. HPLC analyses were carried out using a Symmetry C(18) column and a mobile phase composed of methanol and 0.05% trifluoroacetic acid (80:20), with a flow rate of 1.0ml/min and UV detection at 335nm. For the spectrophotometric analyses, methanol was used as solvent and the wavelength of 335nm was selected for the detection. Non-aqueous titration of lumefantrine was carried out using perchloric acid as titrant and glacial acetic acid/acetic anhydride as solvent. The end point was potentiometrically determined. The three evaluated methods showed to be adequate to quantify lumefantrine in raw materials, while HPLC and UV methods presented the most reliable results for the analyses of tablets.
Bratskaya, S; Golikov, A; Lutsenko, T; Nesterova, O; Dudarchik, V
2008-09-01
Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.
Fang, Linchuan; Huang, Qiaoyun; Wei, Xing; Liang, Wei; Rong, Xinming; Chen, Wenli; Cai, Peng
2010-08-01
Equilibrium adsorption experiments, isothermal titration calorimetry and potentiometric titration techniques were employed to investigate the adsorption of Cu(II) by extracellular polymeric substances (EPS) extracted from Pseudomonas putida X4, minerals (montmorillonite and goethite) and their composites. Compared with predicted values of Cu(II) adsorption on composites, the measured values of Cu(II) on EPS-montmorillonite composite increased, however, those on EPS-goethite composite decreased. Potentiometric titration results also showed that more surface sites were observed on EPS-montmorillonite composite and less reactive sites were found on EPS-goethite composite. The adsorption of Cu(II) on EPS molecules and their composites with minerals was an endothermic reaction, while that on minerals was exothermic. The positive values of enthalpy change (Delta H) and entropy change (DeltaS) for Cu(II) adsorption on EPS and mineral-EPS composites indicated that Cu(II) mainly interacts with carboxyl and phosphoryl groups as inner-sphere complexes on EPS molecules and their composites with minerals. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia
2016-07-01
Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.
Kapetas, Leon; Ngwenya, Bryne T; Macdonald, Alan M; Elphick, Stephen C
2011-07-15
Several recent studies have made use of continuous acid-base titration data to describe the surface chemistry of bacterial cells as a basis for accurately modelling metal adsorption to bacteria and other biomaterials of potential industrial importance. These studies do not share a common protocol; rather they titrate in different pH ranges and they use different stability criteria to define equilibration time during titration. In the present study we investigate the kinetics of bacterial titrations and test the effect they have on the derivation of functional group concentrations and acidity constants. We titrated suspensions of Pantoea agglomerans by varying the equilibration time between successive titrant additions until stability of 0.1 or 0.001 mV s(-1) was attained. We show that under longer equilibration times, titration results are less reproducible and suspensions exhibit marginally higher buffering. Fluorescence images suggest that cell lysis is not responsible for these effects. Rather, high DOC values and titration reversibility hysterisis after long equilibration times suggest that variability in buffering is due to the presence of bacterial exudates, as demonstrated by titrating supernatants separated from suspensions of different equilibration times. It is recommended that an optimal equilibration time is always determined with variable stability control and preliminary reversibility titration experiments. Copyright © 2011 Elsevier Inc. All rights reserved.
Potentiometric determination of saccharin in dietary products using mercurous nitrate as titrant.
Fo, O F; Moraes, A J; Dos Santos, G
1993-05-01
A rapid, precise and low cost method for saccharin determination in dietary products is proposed. Saccharin in several samples is potentiometrically titrated with mercurous nitrate solution using a silver wire coated with a metallic mercury film as the working electrode, and the end point was found using a Gran's plot. The detection limit of sodium saccharin was 0.5 mg/ml and the best pH range was from 2.0 to 3.5. Sucrose, glucose, aspartame, sodium cyclamate, sorbitol, fructose, benzoic acid, salicylic acid and lactose do not interfere even in significant amounts. The interference due to the presence of chloride and/or phosphate ions can be eliminated by previous solvent extraction of this sweetener. Recovery of saccharin from various dietary products gave from 95.2 to 103.2% of the label claim.
Mihajlović, Lj V; Mihajlović, R P; Antonijević, M M; Vukanović, B V
2004-11-15
The possibility of applying natural monocrystaline pyrite as a sensor for the potentiometric titration of weak acids in N,N-dimethylformamide, methylpyrrolidone and pyridine was investigated. The potential of this electrode in N,N-dimethylformamide, methylpyrrolidone and pyridine exhibits a sub-Nernst dependence. In N,N-dimethylformamide the slope (mV/pH) is 39.0 and in methylpyrrolidone it is 45.0. The potential jumps at the titration end-point obtained in the titration of weak acids are higher than those obtained by the application of a glass electrode as the indicator electrode The potential in the course of the titration and at the titration end-point (TEP) are rapidly established. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agents for these titrations. The results obtained in the determination of the investigated weak acids deviate by 0.1-0.35% with respect to those obtained by using a glass electrode as the indicator electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatman, Shawn ME; Zarzycki, Piotr P.; Preocanin, Tajana
Time dependent potentiometric pH titrations were used to study the effect of atomic scale surface structure on the protonation behavior of the structurally well defined hematite/aqueous electrolyte interfaces. Our recently proposed thermodynamic model [1,23] was applied to measured acidimetric and alkalimetric titration hysteresis loops, collected from highly organized (001), (012), and (113) crystal face terminations using pH equilibration times ranging from 15 to 30 mins. Hysteresis loop areas indicate that (001) faces equilibrate faster than the (012) and (113) faces, consistent with the different expected ensembles of singly, doubly, and triply coordinated surface sites on each face. Strongly non-linear hystereticmore » pH-potential relationships were found, with slopes exceeding Nernstian, collectively indicating that protonation and deprotonation is much more complex than embodied in present day surface complexation models. The asymmetrical shape of the acidimetric and alkalimetric titration branches were used to illustrate a proposed steric "leaky screen" repulsion/trapping interaction mechanism that stems from high affinity singly-coordinated sites electrostatically and sterically screening lower affinity doubly and triply coordinated sites. Our data indicate that site interaction is the dominant phenomenon defining surface potential accumulation behavior on single crystal faces of metal oxide minerals.« less
Calcium ion binding to a soil fulvic acid using a donnan potential model
Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.
1999-01-01
Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.
Mihajlović, Ljiljana; Nikolić-Mandić, Snezana; Vukanović, Branislav; Mihajlović, Randel
2009-03-01
Natural monocrystalline pyrite as a new indicator electrode for the potentiometric titration of weak acids in acetonitrile, propionitrile and benzonitrile was studied. The investigated electrode showed a linear dynamic response for p-toluenesulfonic acid concentrations in the range from 0.1 to 0.001 M, with a Nernstian slope of 74 mV per decade. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agent for this titration. The response time was less than (11 s) and the lifetime of the electrode is long. The advantages of the electrode are log-term stability, fast response, and reproducibility, while the sensor is easy to prepare and of low cost.
Determination of arsenate and organic arsenic via potentiometric titration of its heteropoly anions.
Metelka, R; Slavíková, S; Vytras, K
2002-08-16
Determination of arsenate based on its conversion to molybdoarsenate heteropoly anions followed by potentiometric titration is described. The titration is realized on the ion-pairing principle using cetylpyridinium chloride (or an analogous titrant containing a lipophilic cation), and is monitored by a carbon paste electrode, although other liquid-polymeric membrane-based electrodes can also be used. Calibration plots of the titrant end-point consumption versus concentration of arsenic were constructed and used to evaluate the content of arsenic in aqueous samples. The method could be applied in the analyses of samples with quite low arsenic content (amounts approximately 10 mug As in 50 cm(3) could be titrated). Organic arsenic was determined analogously after the Schöniger combustion of the sample and conversion of its arsenic to arsenate.
DNA before Watson & Crick-The Pioneering Studies of J. M. Gulland and D. O. Jordan at Nottingham
NASA Astrophysics Data System (ADS)
Booth, Harold; Hey, Michael J.
1996-10-01
A description placed in a historical context, of the physico-chemical investigations of DNA carried out in the period 1940-1950 by a group at University College, Nottingham led by J.M.Gulland and D.O.Jordan. The isolation of a pure sample of DNA from calf thymus was followed by its analysis by potentiometric titrations and by measurements at variable pH of viscosity and streaming birefringence. Unlike the phosphoric acid groups, the primary amino and enolic hydroxyl groups could only be titrated after prior treatment with strong acid or strong base. The conclusion of Gulland and Jordan, that extremes of pH caused liberation of amino and enolic hydoxyl groups by disruption of hydrogen bonds between neighbouring polynucleotide chains, proved to be of considerable importance. The article includes life histories of Gulland and Jordan, and reference to Linus Pauling's remarkable foresight during his Sir Jesse Boot Foundation Lecture delivered at Nottingham in 1948.
Silva Ferreira, A C; Oliveira, Carla; Hogg, T; Guedes de Pinho, P
2003-07-30
Oxidative degradation of white wines can be described sensorially as developing from a loss at positive aroma characteristics, through the development of negative aromas to a linel stage of chromatic alterations. This work attempts to relate the oxidation "status" evaluate by potentiometric titrations, with sensorial degradation and the levels of substances responsible for "off-flavors", such as methional and phenylacetaldehyde. The potentiometric titration employed measures the most powerful antioxidants of white wines (e.g., those which more rapidly consume oxygen). Considering that aromatic precedes chromatic degradation, resistance to oxidation (ROX) constitutes a useful indicator of resistance to oxidation. Sensorial degradation (ID), potentiometric measures, and volatiles were determined both in samples submitted to a "forced aging" protocol and normal aged white wines. High correlation values were observed between ROX and the ID, in both sets (r > 0.87). ID is better explained by ROX values than by the indicated wine age or by the "degree of browning" (Abs = 420 nm). It was also observed that in samples with ROX values higher than 10, the concentration of methional and phenylacetaldehyde were above their respective odor threshold. Finally, it was observed that there is a relationship between oxygen consumption and the respective ROX. Although these results seem very promising, they needed to be further complemented in order to estimate the shelf life of a white wine using potentiometric titrations.
Nakatani, Kiyoharu; Yamashita, Jun; Sekine, Tomomi; Toriumi, Minoru; Itani, Toshiro
2003-05-01
The dissociation of t-butyl methacrylate-methacrylic acid copolymers in dimethyl sulfoxide was analyzed by a nonaqueous potentiometric titration technique. The negative logarithm of the dissociation constant of the monomer unit of a methacrylic acid (MAA) monotonously increased with the increasing degree of dissociation corresponding to the titrant/MAA amount ratio, and was highly influenced by the copolymerization ratio. The results are discussed in terms of the suppression of the dissociation of MAA by a neighboring charged methacrylate anion unit.
Cristiano, Bárbara F G; Delgado, José Ubiratan; da Silva, José Wanderley S; de Barros, Pedro D; de Araújo, Radier M S; Dias, Fábio C; Lopes, Ricardo T
2012-09-01
The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.
Symmetry Properties of Potentiometric Titration Curves.
ERIC Educational Resources Information Center
Macca, Carlo; Bombi, G. Giorgio
1983-01-01
Demonstrates how the symmetry properties of titration curves can be efficiently and rigorously treated by means of a simple method, assisted by the use of logarithmic diagrams. Discusses the symmetry properties of several typical titration curves, comparing the graphical approach and an explicit mathematical treatment. (Author/JM)
Ràfols, Clara; Bosch, Elisabeth; Barbas, Rafael; Prohens, Rafel
2016-07-01
A study about the suitability of the chelation reaction of Ca(2+)with ethylenediaminetetraacetic acid (EDTA) as a validation standard for Isothermal Titration Calorimeter measurements has been performed exploring the common experimental variables (buffer, pH, ionic strength and temperature). Results obtained in a variety of experimental conditions have been amended according to the side reactions involved in the main process and to the experimental ionic strength and, finally, validated by contrast with the potentiometric reference values. It is demonstrated that the chelation reaction performed in acetate buffer 0.1M and 25°C shows accurate and precise results and it is robust enough to be adopted as a standard calibration process. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Mei-Rong; Ding, Yong-Bo; Li, Xin-Gui
2014-03-10
A potentiometric Pb(II)-selective sensor was fabricated by a combinatorial screening of electrically conducting polysulfoaminoanthraquinone (PSA) nanoparticles as a solid ionophore, ion exchangers (oleic acid (OA) and NaTPB), plasticizers in a polyvinyl chloride (PVC) matrix, membrane thickness, inner filling ion species, and concentration. The membrane sensor with the composition of PSA/PVC/DOP (dioctyl phthalate)/OA (1.0:33:61:5.0) exhibited the best performance, including a slope of 29.3 mV decade(-1) in the concentration range 10(-6.3)-10(-1.6) M, detection limit of 1.6 × 10(-7) M, response time of 16 s, lifetime of five months, and good response reversibility. The proposed sensor has demonstrated good selectivity for Pb(II) over other monovalent, divalent and trivalent interfering ions, and could be used in a pH range of 3.62-5.22. The Pb(II) sensor has been successfully applied for the determination of Pb(II) concentration in real-world samples and also as an indicator electrode for potentiometric titration of lead ions.
Photometric method for determination of acidity constants through integral spectra analysis
NASA Astrophysics Data System (ADS)
Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich
2015-04-01
An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature.
Ferguson, Stephen A; Wang, Xuewei; Meyerhoff, Mark E
2016-08-07
Polymeric quaternary ammonium salts (polyquaterniums) have found increasing use in industrial and cosmetic applications in recent years. More specifically, polyquaternium-10 (PQ-10) is routinely used in cosmetic applications as a conditioner in personal care product formulations. Herein, we demonstrate the use of potentiometric polyion-sensitive polymeric membrane-based electrodes to quantify PQ-10 levels. Mixtures containing both PQ-10 and sodium lauryl sulfate (SLS) are used as model samples to illustrate this new method. SLS is often present in cosmetic samples that contain PQ-10 (e.g., shampoos, etc.) and this surfactant species interferes with the polyion sensor detection chemistry. However, it is shown here that SLS can be readily separated from the PQ-10/SLS mixture by use of an anion-exchange resin and that the PQ-10 can then be titrated with dextran sulphate (DS). This titration is monitored by potentiometric polyanion sensors to provide equivalence points that are directly proportional to PQ-10 concentrations.
The mechanism of nickel ferrite formation by glow discharge effect
NASA Astrophysics Data System (ADS)
Frolova, L. A.
2018-04-01
The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.
Kholeif, S A
2001-06-01
A new method that belongs to the differential category for determining the end points from potentiometric titration curves is presented. It uses a preprocess to find first derivative values by fitting four data points in and around the region of inflection to a non-linear function, and then locate the end point, usually as a maximum or minimum, using an inverse parabolic interpolation procedure that has an analytical solution. The behavior and accuracy of the sigmoid and cumulative non-linear functions used are investigated against three factors. A statistical evaluation of the new method using linear least-squares method validation and multifactor data analysis are covered. The new method is generally applied to symmetrical and unsymmetrical potentiometric titration curves, and the end point is calculated using numerical procedures only. It outperforms the "parent" regular differential method in almost all factors levels and gives accurate results comparable to the true or estimated true end points. Calculated end points from selected experimental titration curves compatible with the equivalence point category of methods, such as Gran or Fortuin, are also compared with the new method.
Kiba, N; Takeuchi, T
1973-09-01
A new twin-cell thermometric titrator has been devised and used for thermometric titration of solutions of sodium molybdate, sodium tungstate, sodium orthovanadate, ammonium metavanadate, and potassium chromate with perchloric acid. The thermometric titration curves were compared with corresponding pH-titration curves for elucidation of the reactions occurring in the titrations. Thermometric titrimetric methods have been developed for the determination of tungsten, vanadium and chromium.
Granholm, Kim; Sokalski, Tomasz; Lewenstam, Andrzej; Ivaska, Ari
2015-08-12
A new method to convert the potential of an ion-selective electrode to concentration or activity in potentiometric titration is proposed. The advantage of this method is that the electrode standard potential and the slope of the calibration curve do not have to be known. Instead two activities on the titration curve have to be estimated e.g. the starting activity before the titration begins and the activity at the end of the titration in the presence of large excess of titrant. This new method is beneficial when the analyte is in a complexed matrix or in a harsh environment which affects the properties of the electrode and the traditional calibration procedure with standard solutions cannot be used. The new method was implemented both in a method of linearization based on the Grans's plot and in determination of the stability constant of a complex and the concentration of the complexing ligand in the sample. The new method gave accurate results when using titrations data from experiments with samples of known composition and with real industrial harsh black liquor sample. A complexometric titration model was also developed. Copyright © 2015 Elsevier B.V. All rights reserved.
Muller, François L L; Bleie, Bjørn
2008-07-07
This paper examines the performance of a previously reported, closed cell, potentiometric titration technique [J.M. Hernández-Ayón, S.L. Belli, A. Zirino, Anal. Chim. Acta 394 (1999) 101] for the simultaneous determination of pH, total inorganic carbon (TCO2), total alkalinity (TA), and organic alkalinity (OA) in coastal seawater samples. A novel interpretation of the titration data, as recently proposed by Hernández-Ayón et al. [J.M. Hernández-Ayón, A. Zirino, A.G. Dickson, T. Camiro-Vagas, E. Valenzuela-Espinoza, Limnol. Oceanogr.: Methods 5 (2007) 225] who applied it to waters of unusually high organic matter content, was applied here to fjord surface waters collected over the duration of a phytoplankton bloom. The parameters pH and TCO2--combined with knowledge of boric, phosphate and silicate species concentrations--allowed calculation of all inorganic species that contributed to TA. This inorganic alkalinity term was then subtracted from TA to produce an estimation of OA. Although the OA values obtained were very small (2-22+/-3 micromol L(-1)), they showed a reproducible trend over time in two simultaneous experiments. The organic acids that may have contributed to OA were characterised in back titrations of acidified and CO2-stripped samples with CO2-free NaOH. Two classes of organic titratable species, with pK(a) values around 4.0+/-0.2 and 9.1+/-0.2 were detected. The first occurred in concentrations that co-varied linearly (r2=0.75) with protein-like fluorescence, indicating a marine biological source, but were only weakly correlated (r2=0.46) to OA. By contrast, Class 2 organic species were not significantly correlated to any fluorescence component of either marine or terrestrial origin but were linearly correlated to OA (r2=0.69). These new results reveal that the method proposed by Hernández-Ayón et al. [J.M. Hernández-Ayón, A. Zirino, A.G. Dickson, T. Camiro-Vagas, E. Valenzuela-Espinoza, Limnol. Oceanogr.: Methods 5 (2007) 225] for estimating OA can provide a powerful and hitherto unused tool for analysing DOM dynamics and sources in most coastal environments, i.e. as a complement to the more widely used optical tools.
Measurements and theoretical interpretation of points of zero charge/potential of BSA protein.
Salis, Andrea; Boström, Mathias; Medda, Luca; Cugia, Francesca; Barse, Brajesh; Parsons, Drew F; Ninham, Barry W; Monduzzi, Maura
2011-09-20
The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hückel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential). © 2011 American Chemical Society
Semi-automated potentiometric titration method for uranium characterization.
Cristiano, B F G; Delgado, J U; da Silva, J W S; de Barros, P D; de Araújo, R M S; Lopes, R T
2012-07-01
The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.
Uranium extraction by complexation with siderophores
NASA Astrophysics Data System (ADS)
Bahamonde Castro, Cristina
One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.
NASA Astrophysics Data System (ADS)
Ostolska, Iwona; Wiśniewska, Małgorzata
2014-08-01
Polyamino acids are a group of synthesized polymers obtained by polymerization of a given kind of amino acid monomer. Because of high biodegradability of this class of polymers, they can be used as flocculation or stabilization agents in the environmental aspects. Therefore determination of their influence on the stability of the aqueous suspension of metal oxides is important. An influence of different functional groups of polyamino acids, their molecular weight and concentration on the adsorption at the chromium (III) oxide (Cr2O3)-aqueous solution interface was determined. Experiments were carried out for four values of solution pH varying from 3 to 10 (3, 4, 7.6 and 10, respectively). Two polymers were used: anionic polyaspartic acid (ASP) of 6800 and 27,000 as well as polylysine (LYS) of 4900 and 33,000 molecular weights. Changes of surface charge density of colloidal Cr2O3 in the presence and in the absence of macromolecular substances were determined using potentiometric titration. In these studies the influence of the concentration and molecular weight of the ionic polymers on the pHpzc value was determined. Additionally, due to the lack of appropriate literature data, potentiometric titration of the selected polymers was performed to determine pKa values.
NASA Astrophysics Data System (ADS)
Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah
2014-04-01
The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10-6-1.0 × 10-2 M and pH range from 1-2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 +/- 0.24 mV/dec, 7.9 × 10-7 M, and 20 s, respectively. The direct determination of 4-39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out.
Rodomonte, Andrea Luca; Montinaro, Annalisa; Bartolomei, Monica
2006-09-11
A measurement result cannot be properly interpreted if not accompanied by its uncertainty. Several methods to estimate uncertainty have been developed. From those methods three in particular were chosen in this work to estimate the uncertainty of the Eu. Ph. chloroquine phosphate assay, a potentiometric titration commonly used in medicinal control laboratories. The famous error-budget approach (also called bottom-up or step-by-step) described by the ISO Guide to the expression of Uncertainty in Measurement (GUM) was the first method chosen. It is based on the combination of uncertainty contributions that have to be directly derived from the measurement process. The second method employed was the Analytical Method Committee top-down which estimates uncertainty through reproducibility obtained during inter-laboratory studies. Data for its application were collected in a proficiency testing study carried out by over 50 laboratories throughout Europe. The last method chosen was the one proposed by Barwick and Ellison. It uses a combination of precision, trueness and ruggedness data to estimate uncertainty. These data were collected from a validation process specifically designed for uncertainty estimation. All the three approaches presented a distinctive set of advantages and drawbacks in their implementation. An expanded uncertainty of about 1% was assessed for the assay investigated.
Abulkibash, Abdalla M; Sultan, Salah M; Al-Olyan, Abeer M; Al-Ghannam, Sheikha M
2003-10-17
A simple and rapid differential electrolytic potentiometric titration method for the determination of ciprofloxacin was developed. The work is based on the fast complexation reaction between iron(III) and ciprofloxacin in a ratio of 1:3, respectively, in sulfuric acid media of 0.09 mol dm(-3). Among the electrodes tested silver amalgam electrodes were found to be a suitable indicating system. By applying a current density of 0.5 muA cm(-2) to these electrodes and using iron(III) solution of 0.097 mol dm(-3) as a titrant, normal titration curves were obtained. The method was successfully applied for the determination of ciprofloxacin in drug formulations as low as 4.0 ppm.
Kálmán, Ferenc K.; Woods, Mark; Caravan, Peter; Jurek, Paul; Spiller, Marga; Tircsó, Gyula; Király, Róbert; Brücher, Ernő; Sherry, A. Dean
2008-01-01
The pH sensitive contrast agent, GdDOTA-4AmP (Gd1) has been successfully used to map tissue pH by MRI. Further studies now demonstrate that two distinct chemical forms of the complex can be prepared depending upon the pH at which Gd3+ is mixed with ligand 1. The desired pH sensitive form of this complex, referred to here as a Type II complex, is obtained as the exclusive product only when the complexation reaction is performed above pH 8. At lower pH values, a second complex is formed that, by analogy with an intermediate formed during preparation of GdDOTA, we tentatively assign this to a Type I complex where the Gd3+ is coordinated only by the appended side-chain arms of 1. The proportion of Type I complex formed is largely determined by the pH of the complexation reaction. The magnitude of pH dependent change in relaxivity of Gd1 was found to be less than earlier reported (S. Zhang, K. Wu, and A. D. Sherry, Angew. Chem., Int. Ed., 1999, 38, 3192), likely due to contamination of the earlier sample by an unknown amount of Type I complex. Examination of the NMRD and relaxivity temperature profiles, coupled with information from potentiometric titrations, shows that the amphoteric character of the phosphonate side-chains enables rapid prototropic exchange between the single bound water of the complex with those of the bulk water thereby giving Gd1 a unique pH dependent relaxivity that is quite useful for pH mapping of tissues by MRI. PMID:17539632
Mashhadizadeh, Mohammad Hossein; Ramezani, Soleyman; Rofouei, Mohammad Kazem
2015-02-01
In this approach, a new chemically modified carbon paste electrode was assembled for potentiometric assay of mercury(II) ion in the aqueous environments. Hereby, MWCNTs were used in the carbon paste composition to meliorate the electrical conductivity and sensitivity of the carbon paste owing to its exceptional physicochemical characteristics. Likewise, participation of the BEPT as a super-selective ionophore in the carbon paste composition boosted significantly the selectivity of the modified electrode towards Hg(II) ions over a wide concentration range of 4.0 × 10(-9)-2.2 × 10(-3) mol L(-1) with a lower detection limit of 3.1 × 10(-9) mol L(-1). Besides, Nernstian slope of the proposed sensor was 28.9(± 0.4)mV/decade over a pH range of 3.0-5.2 with potentiometric short response time of 10s. In the interim, by storing in the dark and cool dry place during non-usage period, the electrode can be used for at least 30 days without any momentous divergence of the potentiometric response. Eventually, to judge about its practical efficiency, the arranged sensor was utilized successfully as an indicator electrode for potentiometric titration of mercury(II) with standard solution of EDTA. As well, the quantitative analysis of mercury(II) ions in some aqueous samples with sensible accuracy and precision was satisfactorily performed. Copyright © 2014 Elsevier B.V. All rights reserved.
Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor
2009-06-01
Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.
Acid-base titrations for polyacids: Significance of the pK sub a and parameters in the Kern equation
NASA Technical Reports Server (NTRS)
Meites, L.
1978-01-01
A new method is suggested for calculating the dissociation constants of polyvalent acids, especially polymeric acids. In qualitative form the most significant characteristics of the titration curves are demonstrated and identified which are obtained when titrating the solutions of such acids with a standard base potentiometrically.
The Reduction of Sulfuryl Chloride at Teflon-Bonded Carbon Cathodes
1980-07-01
titrated mulating cathodes, along with their BET surface potentiometrically with standardized silver nitrate areas. Shawinigan black possesses the...assembly steps when individually dissolved can be titrated through were accomplished in the glove box. iodimetry or iodometry, respectively (7). If
Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions
NASA Astrophysics Data System (ADS)
Heidmann, Ilona; Christl, Iso; Kretzschmar, Ruben
2005-04-01
The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L -1 kaolinite and 0.03 g L -1 fulvic acid in 0.01 M NaNO 3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu 2+ and Pb 2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu 2+ ion activity (10 -12 to 10 -5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.
Interplay of charge distribution and conformation in peptides: comparison of theory and experiment.
Makowska, Joanna; Bagińska, Katarzyna; Kasprzykowski, F; Vila, Jorge A; Jagielska, Anna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A
2005-01-01
We assessed the correlation between charge distribution and conformation of flexible peptides by comparing the theoretically calculated potentiometric-titration curves of two model peptides, Ac-Lys5-NHMe (a model of poly-L-lysine) and Ac-Lys-Ala11-Lys-Gly2-Tyr-NH2 (P1) in water and methanol, with the experimental curves. The calculation procedure consisted of three steps: (i) global conformational search of the peptide under study using the electrostatically driven Monte Carlo (EDMC) method with the empirical conformational energy program for peptides (ECEPP)/3 force field plus the surface-hydration (SRFOPT) or the generalized Born surface area (GBSA) solvation model as well as a molecular dynamics method with the assisted model building and energy refinement (AMBER)99/GBSA force field; (ii) reevaluation of the energy in the pH range considered by using the modified Poisson-Boltzmann approach and taking into account all possible protonation microstates of each conformation, and (iii) calculation of the average degree of protonation of the peptide at a given pH value by Boltzmann averaging over conformations. For Ac-Lys5-NHMe, the computed titration curve agrees qualitatively with the experimental curve of poly-L-lysine in 95% methanol. The experimental titration curves of peptide P1 in water and methanol indicate a remarkable downshift of the first pK(a) value compared to the values for reference compounds (n-butylamine and phenol, respectively), suggesting the presence of a hydrogen bond between the tyrosine hydroxyl oxygen and the H(epsilon) proton of a protonated lysine side chain. The theoretical titration curves agree well with the experimental curves, if conformations with such hydrogen bonds constitute a significant part of the ensemble; otherwise, the theory predicts too small a downward pH shift. Copyright 2005 Wiley Periodicals, Inc
Temperature effect on the acid-base behaviour of Na-montmorillonite.
Duc, Myriam; Carteret, Cédric; Thomas, Fabien; Gaboriaud, Fabien
2008-11-15
We report a study of the acid-base properties of Na-montmorillonite suspensions at temperatures from 25 degrees C to 80 degrees C, by continuous and batch potentiometric methods, combined with analysis of the dissolved and readsorbed species. The batch titration curves reveal that the dissolution processes of Na-montmorillonite and silica-rich secondary phases are increasingly predominant, respectively at acid and basic pH, and according to the temperature. The continuous titration curves are less affected by these side reactions. In the absence of a common intersection point, the thermodynamic analysis of the curves was based on the shift of the PZNPC with the ionic strength. This shift was not significantly altered by the temperature, by comparison with the dissociation product of water in the same conditions. Therefore we concluded that protonation-deprotonation of the dissociable sites at the edges of the clay platelets is not significantly temperature dependent.
End-point detection in potentiometric titration by continuous wavelet transform.
Jakubowska, Małgorzata; Baś, Bogusław; Kubiak, Władysław W
2009-10-15
The aim of this work was construction of the new wavelet function and verification that a continuous wavelet transform with a specially defined dedicated mother wavelet is a useful tool for precise detection of end-point in a potentiometric titration. The proposed algorithm does not require any initial information about the nature or the type of analyte and/or the shape of the titration curve. The signal imperfection, as well as random noise or spikes has no influence on the operation of the procedure. The optimization of the new algorithm was done using simulated curves and next experimental data were considered. In the case of well-shaped and noise-free titration data, the proposed method gives the same accuracy and precision as commonly used algorithms. But, in the case of noisy or badly shaped curves, the presented approach works good (relative error mainly below 2% and coefficients of variability below 5%) while traditional procedures fail. Therefore, the proposed algorithm may be useful in interpretation of the experimental data and also in automation of the typical titration analysis, specially in the case when random noise interfere with analytical signal.
Zarzycki, Piotr; Rosso, Kevin M
2009-06-16
Replica kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface nonuniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton-binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation does not necessarily need to be invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic nonuniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed, and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2016-05-01
The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.
Jones, Kayleigh E; Batchler, Kathleen L; Zalouk, Célia; Valentine, Ann M
2017-02-06
The siderophore desferrioxamine B (DFOB) binds Ti(IV) tightly and precludes its hydrolytic precipitation under biologically and environmentally relevant conditions. This interaction of DFOB with Ti(IV) is investigated by using spectro-potentiometric and spectro-photometric titrations, mass spectrometry, isothermal titration calorimetry (ITC), and computational modeling. The data from pH 2-10 suggest two one-proton equilibria among three species, with one species predominating below pH 3.5, a second from pH 3.5 to 8, and a third above pH 8. The latter species is prone to slow hydrolytic precipitation. Electrospray mass spectrometry allowed the detection of [Ti(IV) (HDFOB)] 2+ and [Ti(DFOB)] + ; these species were assigned as the pH < 3.5 and the 3.5 < pH < 8 species, respectively. The stability constant for Ti(IV)-DFOB was determined by using UV/vis-monitored competition with ethylenediaminetetraacetic acid (EDTA). Taking into consideration the available binding constant of Ti(IV) and EDTA, the data reveal values of log β 111 = 41.7, log β 110 = 38.1, and log β 11-1 = 30.1. The former value was supported by ITC, with the transfer of Ti(IV) from EDTA to DFOB determined to be both enthalpically and entropically favorable. Computational methods yielded a model of Ti-DFOB. The physiological and environmental implications of this tight interaction and the potential role of DFOB in solubilizing Ti(IV) are discussed.
Maslarska, Vania; Tencheva, Jasmina; Budevsky, Omortag
2003-01-01
Based on precise analysis of the acid-base equilibrium, a new approach in the treatment of experimental data from a potentiometric titration is proposed. A new general formula giving explicitly the relation V=f([H(+)]) is derived, valid for every acid-base titration, which includes mono- and polyfunctional protolytes and their mixtures. The present study is the first practical application of this formula for the simplest case, the analysis of one monofunctional protolyte. The collected mV data during the titration are converted into pH-values by means of an auto pH-calibration procedure, thus avoiding preliminary preparation of the measuring system. The mentioned pH-calibration method is applicable also in water-organic mixtures and allows the quantitative determination of sparingly soluble substances (particularly pharmaceuticals). The treatment of the data is performed by means of ready-to-use software products, which makes the proposed approach accessible for a wide range of applications.
Photometric method for determination of acidity constants through integral spectra analysis.
Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich
2015-04-15
An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature. Copyright © 2015 Elsevier B.V. All rights reserved.
Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah
2014-01-01
The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10−6–1.0 × 10−2 M and pH range from 1–2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 ± 0.24 mV/dec, 7.9 × 10−7 M, and 20 s, respectively. The direct determination of 4–39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out. PMID:24722576
Open-Source Low-Cost Wireless Potentiometric Instrument for pH Determination Experiments
ERIC Educational Resources Information Center
Jin, Hao; Qin, Yiheng; Pan, Si; Alam, Arif U.; Dong, Shurong; Ghosh, Raja; Deen, M. Jamal
2018-01-01
pH determination is an essential experiment in many chemistry laboratories. It requires a potentiometric instrument with extremely low input bias current to accurately measure the voltage between a pH sensing electrode and a reference electrode. In this technology report, we propose an open-source potentiometric instrument for pH determination…
Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions.
Vithanage, Meththika; Rajapaksha, Anushka Upamali; Ahmad, Mahtab; Uchimiya, Minori; Dou, Xiaomin; Alessi, Daniel S; Ok, Yong Sik
2015-03-15
Limited mechanistic knowledge is available on the interaction of biochar with trace elements (Sb and As) that exist predominantly as oxoanions. Soybean stover biochars were produced at 300 °C (SBC300) and 700 °C (SBC700), and characterized by BET, Boehm titration, FT-IR, NMR and Raman spectroscopy. Bound protons were quantified by potentiometric titration, and two acidic sites were used to model biochar by the surface complexation modeling based on Boehm titration and NMR observations. The zero point of charge was observed at pH 7.20 and 7.75 for SBC300 and SBC700, respectively. Neither antimonate (Sb(V)) nor antimonite (Sb(III)) showed ionic strength dependency (0.1, 0.01 and 0.001 M NaNO3), indicating inner sphere complexation. Greater adsorption of Sb(III) and Sb(V) was observed for SBC300 having higher -OH content than SBC700. Sb(III) removal (85%) was greater than Sb(V) removal (68%). Maximum adsorption density for Sb(III) was calculated as 1.88 × 10(-6) mol m(-2). The Triple Layer Model (TLM) successfully described surface complexation of Sb onto soybean stover-derived biochar at pH 4-9, and suggested the formation of monodentate mononuclear and binuclear complexes. Spectroscopic investigations by Raman, FT-IR and XPS further confirmed strong chemisorptive binding of Sb to biochar surfaces. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yoshimura, Etsuro; Kohdr, Hicham; Mori, Satoshi; Hider, Robert C
2011-08-01
The phytosiderophores, mugineic acid (MA) and epi-hydroxymugineic acid (HMA), together with a related compound, nicotianamine (NA), were investigated for their ability to bind Al(III). Potentiometric titration analysis demonstrated that MA and HMA bind Al(III), in contrast to NA which does not under normal physiological conditions. With MA and HMA, in addition to the Al complex (AlL), the protonated (AlLH) and deprotonated (AlLH(-1)) complexes were identified from an analysis of titration curves, where L denotes the phytosiderophore form in which all the carboxylate functions are ionized. The equilibrium formation constants of the Al(III) phytosiderophore complexes are much smaller than those of the corresponding Fe(III) complexes. The higher selectivity of phytosiderophores for Fe(III) over Al(III) facilitates Fe(III) acquisition in alkaline conditions where free Al(III) levels are higher than free Fe(III) levels.
Zafar, Shaista; Akhtar, Shamim; Tariq, Talat; Mushtaq, Noushin; Akram, Arfa; Ahmed, Ahsaan; Arif, Muhammad; Naeem, Sabahat; Anwar, Sana
2014-07-01
Dissociation constant (pKa) of ten novel phenacyl derivatives of piperidine were determined by potentiometric titration method in aqueous medium at room temperature (25 ±0.5°C). The sample solutions were prepared in deionized water with ionic strength 0.01M and titrated with 0.1M NaOH solution. In addition, ΔG values were also calculated. Different prediction software programs were used to calculate pKa values too and compared to the experimentally observed pKa values. The experimental and theoretical values were found in close agreement. The results obtained in this research would help to predict the good absorption of the studied compounds and can be selected as lead molecules for the synthesis of CNS active agents because of their lipophilic nature especially compound VII.
Reduction and determination of dixanthogens.
Prasad, M S
1971-06-01
A convenient method for the reduction and determination of dixaathogen has been developed. It is based on the quantitative reaction of dixanthogen with zinc amalgam to form xanthate; the latter can be determined by iodine titration, potentiometric titration with silver nitrate or by spectrophotometry at 310 mmu. Dixanthogen can be determined in mixtures containing xanthate, by titration of aliquots with and without reduction. Higher dixanthogens can also be determined, and flotation liquors analysed.
Jain, Ajay K.; Gupta, Vinod K.; Raisoni, Jitendra R.
2004-01-01
Membranes of 4-tert-butylcalix(8)arene-octaacetic acid octaethyl ester (I) as an electroactive material, sodium tetraphenyl borate (NaTPB) as an anion excluder, and tri-n-butyl phosphate (TBP) as a solvent mediator in poly(vinyl chloride) (PVC) matrix have been tried for a strontium-selective sensor. The best performance was exhibited by the membrane having a composition 5:100:150:2 (I: PVC: TBP: NaTPB (w/w)). This sensor exhibits a good potentiometric response to Sr2+ over a wide concentration range (3.2 × 10 –5 –1.0 × 10 –1 M) with a Nernstian slope (30 mV/ decade). The response time of the sensor is 10 s and it has been used for a period of four months without any drift in potentials. The selectivity coefficient values are in the order of 0.01 for mono-, bi-, and trivalent cations which indicate a good selectivity for Sr2+ over a large number of cations. The useful pH range for the sensor was found to be 3-10 and it works well in mixtures with non-aqueous content up to 25 % (v/v). The sensor has been used as an indicator electrode in the potentiometric titration of Sr2+ against EDTA.
Abdul Kamal Nazer, Meeran Mohideen; Hameed, Abdul Rahman Shahul; Riyazuddin, Patel
2004-01-01
A simple and rapid potentiometric method for the estimation of ascorbic acid in pharmaceutical dosage forms has been developed. The method is based on treating ascorbic acid with iodine and titration of the iodide produced equivalent to ascorbic acid with silver nitrate using Copper Based Mercury Film Electrode (CBMFE) as an indicator electrode. Interference study was carried to check possible interference of usual excipients and other vitamins. The precision and accuracy of the method was assessed by the application of lack-of-fit test and other statistical methods. The results of the proposed method and British Pharmacopoeia method were compared using F and t-statistical tests of significance.
Avdeef, A; Berger, C M; Brownell, C
2000-01-01
The objective of this study was to compare the results of a normal saturation shake-flask method to a new potentiometric acid-base titration method for determining the intrinsic solubility and the solubility-pH profiles of ionizable molecules, and to report the solubility constants determined by the latter technique. The solubility-pH profiles of twelve generic drugs (atenolol, diclofenac.Na, famotidine, flurbiprofen, furosemide, hydrochlorothiazide, ibuprofen, ketoprofen, labetolol.HCl, naproxen, phenytoin, and propranolol.HCl), with solubilities spanning over six orders of magnitude, were determined both by the new pH-metric method and by a traditional approach (24 hr shaking of saturated solutions, followed by filtration, then HPLC assaying with UV detection). The 212 separate saturation shake-flask solubility measurements and those derived from 65 potentiometric titrations agreed well. The analysis produced the correlation equation: log(1/S)titration = -0.063(+/- 0.032) + 1.025(+/- 0.011) log(1/S)shake-flask, s = 0.20, r2 = 0.978. The potentiometrically-derived intrinsic solubilities of the drugs were: atenolol 13.5 mg/mL, diclofenac.Na 0.82 microg/mL, famotidine 1.1 mg/ mL, flurbiprofen 10.6 microg/mL, furosemide 5.9 microg/mL, hydrochlorothiazide 0.70 mg/mL, ibuprofen 49 microg/mL, ketoprofen 118 microg/mL, labetolol.HCl 128 microg/mL, naproxen 14 microg/mL, phenytoin 19 microg/mL, and propranolol.HCl 70 microg/mL. The new potentiometric method was shown to be reliable for determining the solubility-pH profiles of uncharged ionizable drug substances. Its speed compared to conventional equilibrium measurements, its sound theoretical basis, its ability to generate the full solubility-pH profile from a single titration, and its dynamic range (currently estimated to be seven orders of magnitude) make the new pH-metric method an attractive addition to traditional approaches used by preformulation and development scientists. It may be useful even to discovery scientists in critical decision situations (such as calibrating computational prediction methods).
Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals
NASA Astrophysics Data System (ADS)
Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.
2018-01-01
Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.
NASA Astrophysics Data System (ADS)
Pokrovsky, Oleg S.; Schott, Jacques
2000-10-01
Surfaces of natural and synthetic forsterite (Fo 91 and Fo 100) in aqueous solutions at 25°C were investigated using surface titrations in batch and limited residence time reactors, column filtration experiments, electrokinetic measurements (streaming potential and electrophoresis techniques), Diffuse Reflectance Infrared Spectroscopy (DRIFT), and X-ray Photoelectron Spectroscopy (XPS). At pH < 9, a Mg-depleted, Si-rich layer (<20 Å thick) is formed on the forsterite surface due to a Mg 2+ ↔ H + exchange reaction. Electrokinetic measurements yield a pH IEP value of 4.5 corresponding to the dominance of SiO 2 in the surface layer at pH < 9. In contrast, surface titrations of fresh powders give an apparent pH PZC of about 10 with the development of a large positive charge (up to 10 -4 mol/m 2 or 10 C/m 2) in the acid pH region. This may be explained by penetration of H + into the first unit cells of forsterite surface. The surface charge of acid-reacted forsterite is one or two orders of magnitude lower than that of unreacted forsterite with an apparent pH PZC at around 6.5 and a pH IEP value of 2.1 which is close to that for amorphous silica and reflects the formation of a silica-rich layer on the surface. XPS analyses indicate the penetration of hydrogen into the surface and the polymerization of silica tetrahedra in this leached layer. At pH > 10, a Si-deficient, Mg-rich surface layer is formed as shown by XPS analyses and the preferential Si release from the surface during column filtration experiments.
Mesoporous Carbons With Self-Assembled High-Activity Surfaces (PREPRINT)
2006-07-07
temperature-programmed desorption, and potentiometric titrations . Journal of Colloid and Interface Science 2001; 240: 252–258. [40] Rotkin SV, Gogotsi Y...selected carbon samples were treated with nitric acid and the total acid site density determined by base titration [32-34 Boehm 1994; Boehm 2002; 32...washed thoroughly using distilled/deionized water, and dried in the oven. For the titration , 50 mg of HNO3-treated carbon powder was added to 20 ml
High-Molecular Compounds (Selected Articles).
1987-10-15
us ions The method of potentiometric titration in dimethylformamide was used to study the structure of macro molecular chain of copolymers based on...macromolecular chain we used the method of potential metric titration . The objects of the study uere alpha chloroacrylic acid (KO)K) in monomer...homopolymer, and copolymer (with methylmethacrylate) form 131. I e d* r. I%0 I 0 12 # z Curves of potential metric titration of solutions of copolymers of KjAK
The Velocity of Sound in Sea Water at Zero Depth
1952-06-11
the Woods Hole Oceanographic Institution. Toward the end of this investigation a potentiometric titration with the Beckman automatic titratcr and a...Interferon eter as soon as received, and at Intervals throughout the investigation. Ch!orlnitie3 were determined by the Mohr method of AgNOi titration ...chlorinity of each of the solutions was actually determined by Mohr titration in the sar.? manner as the chiorinities of the original samples. The
Process for Assessing the Stability of HAN (Hydroxylammonium Nitrate)-Based Liquid Propellants
1989-02-09
Scholz, Guidelines by Messrs. Riedel - de Haen for Titration according to the Karl Fischer Method ), 3. Auflage/3rd Edition 1982 /22/ JANDER; G. and... Potentiometric determination of the equivalence point is the most suitable method /15/. Time is saved by using automatically recording titration 33...propellant. The water content of liquid propellants on the basis of HAN according to Fig. 6 can be determined directly by Karl Fischer titration. This
Makowska, Joanna; Bagiñska, Katarzyna; Makowski, Mariusz; Jagielska, Anna; Liwo, Adam; Kasprzykowski, Franciszek; Chmurzyñski, Lech; Scheraga, Harold A.
2008-01-01
We compared the ability of two theoretical methods of pH-dependent conformational calculations to reproduce experimental potentiometric-titration curves of two models of peptides: Ac-K5-NHMe in 95% methanol (MeOH)/5% water mixture and Ac-XX(A)7OO-NH2 (XAO) (where X is diaminobutyric acid, A is alanine, and O is ornithine) in water, methanol (MeOH) and dimethylsulfoxide (DMSO), respectively. The titration curve of the former was taken from the literature, and the curve of the latter was determined in this work. The first theoretical method involves a conformational search using the Electrostatically Driven Monte Carlo (EDMC) method with a low-cost energy function (ECEPP/3 plus the SRFOPT surface-solvation model, assumming that all titratable groups are uncharged) and subsequent reevaluation of the free energy at a given pH with the Poisson-Boltzmann equation, considering variable protonation states. In the second procedure, MD simulations are run with the AMBER force field and the Generalized-Born model of electrostatic solvation, and the protonation states are sampled during constant-pH MD runs. In all three solvents, the first pKa of XAO is strongly downshifted compared to the value for the reference compounds (ethyl amine and propyl amine, respectively); the water and methanol curves have one, and the DMSO curve has two jumps characteristic of remarkable differences in the dissociation constants of acidic groups. The predicted titration curves of Ac-K5-NHMe are in good agreement with the experimental ones; better agreement is achieved with the MD-based method. The titration curves of XAO in methanol and DMSO, calculated using the MD-based approach, trace the shape of the experimental curves, reproducing the pH jump, while those calculated with the EDMC-based approach, and the titration curve in water calculated using the MD-based approach, have smooth shapes characteristic of the titration of weak multifunctional acids with small differences between the dissociation constants. Nevertheless, quantitative agreement between theoretically predicted and experimental titration curves is not achieved in all three solvents even with the MD-based approach which is manifested by a smaller pH range of the calculated titration curves with respect to the experimental curves. The poorer agreement obtained for water than for the non-aqueous solvents suggests a significant role of specific solvation in water, which cannot be accounted for by the mean-field solvation models. PMID:16509748
Kenney, Janice P L; Fein, Jeremy B
2011-05-15
In this study, we used potentiometric titrations and Cd adsorption experiments to determine the binding capacities of two acidophilic (A. cryptum and A. acidophilum) and two alkaliphilic (B. pseudofirmus and B. circulans) bacterial species in order to determine if any consistent trends could be observed relating bacterial growth environment to proton and Cd binding properties and to compare those binding behaviors to those of neutrophilic bacteria. All of the bacterial species studied exhibited significant proton buffering over the pH range in this study, with the alkaliphiles exhibiting significantly higher acidity constants than the acidophiles as well as the neutrophilic bacterial consortia. The calculated average site concentrations for each of the bacteria in this study are within 2σ experimental error of each other, with the exception of A. cryptum, which has a significantly higher Site 2 concentration than the other species. Despite differing acidity constants between the acidophiles and alkaliphiles, all bacteria except A. cryptum exhibited remarkably similar Cd adsorption behavior to each other, and the observed extent of adsorption was also similar to that predicted from a generalized model derived using neutrophilic bacterial consortia. This study demonstrates that bacteria that grow under extreme conditions exhibit similar proton and metal adsorption behavior to that of previously studied neutrophilic species and that a single set of proton and metal binding constants can be used to model the behavior of bacterial adsorption under a wide range of environmental conditions.
Mousseau, F; Vitorazi, L; Herrmann, L; Mornet, S; Berret, J-F
2016-08-01
The electrostatic charge density of particles is of paramount importance for the control of the dispersion stability. Conventional methods use potentiometric, conductometric or turbidity titration but require large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase separation. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio X, and the peak position XMax is linked to the particle charge density according to σ∼D0XMax where D0 is the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide particles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-objects. Copyright © 2016 Elsevier Inc. All rights reserved.
Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies
NASA Astrophysics Data System (ADS)
Athar, Makshoof; Farooq, Umar; Aslam, Muhammad; Salman, M.
2013-09-01
The present study provides information about the binding of Pb(II) ions on an eco-friendly and easily available biodegradable biomass Trifolium resupinatum. The powdered biomass was characterized by FTIR, potentiometric titration and surface area analyses. The FTIR spectrum showed the presence of hydroxyl, carbonyl and amino functional groups and Pb(II) ions bound with the oxygen- and nitrogen-containing sites (hydroxyl and amino groups). The acidic groups were also confirmed by titrations. Effects of various environmental parameters (time, pH and concentration) have been studied. The biosorption process achieved equilibrium in a very short period of time (25 min). Non-linear approach for Langmuir and Freundlich models was used to study equilibrium process and root mean-square error was used as an indicator to decide the fitness of the mathematical model. The biosorption process was found to follow pseudo-second-order kinetics and was very fast. Thus, the biomass can be cost-effectively used for the binding of Pb(II) ions from aqueous solutions.
Molecular Weight Measurement of Biobased Furan Polyamides via Non-Aqueous Potentiometric Titration
2013-06-01
electromagnetic fields, all titrations were completed in a chemical hood, which acted as a Faraday cage (a shield used to blocks external static and...while using DMF as a solvent. Additionally, no Faraday cage was used in the experimental setup, so the titrations were conducted inside the chemical...monomer was becoming more soluble in glacial acetic acid and the amount of chlorobenzene had less of an effect on the solution properties (i.e
NASA Astrophysics Data System (ADS)
Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.
2012-05-01
The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.
The Reduction of Sulfuryl Chloride at Teflon-Bonded Carbon Cathodes.
1981-01-01
100C. The cathode was then extracted with a total volume of 100 cc of water and aliquots of the extract titrated potentiometrically with a standardized...S02C12 In an alkaline aqueous solution, S02 or Cl2 when individually dissolved, can be titrated through iodimetry or iodometry, respectively.8 If both
Computer controlled titration with piston burette or peristaltic pump - a comparison.
Hoffmann, W
1996-09-01
The advantages and problems of the use of piston burettes and peristaltic pumps for dosage of titrant solutions in automatic titrations are shown. For comparison, only the dosing devices were exchanged and all other components and conditions remained unchanged. The results of continuous acid base titration show good agreement and comparable reproducibility. Potentiometric sensors (glass electrodes) with different equilibration behaviour influence the results. The capability of such electrodes was tested. Conductometric measurements allow a much faster detection because there is no equilibration of electrodes. Piston burettes should be used for titration with very high precision, titration with organic solvents and slow titrations. Peristaltic pumps seem to be more suitable for continuous titrations and long time operation without service.
Frag, Eman Y Z; Mohamed, Gehad G; El-Dien, F A Nour; Mohamed, Marwa E
2011-01-21
This paper describes the development of screen-printed (SPE) and carbon paste (CPE) sensors for the rapid and sensitive quantification of naphazoline hydrochloride (NPZ) in pharmaceutical formulations. This work compares the electroactivity of conventional carbon paste and screen-printed carbon paste electrodes towards potentiometric titration of NPZ. The repeatability and accuracy of measurements performed in the analysis of these pharmaceutical matrices using new screen printed sensors were evaluated. The influence of the electrode composition, conditioning time of the electrode and pH of the test solution, on the electrode performance were investigated. The drug electrode showed Nernstain responses in the concentration range from 1 × 10(-6) to 1 × 10(-2) mol L(-1) with slopes of 57.5 ± 1.3 and 55.9 ± 1.6 mV per decade for SPE and CPE, respectively, and was found to be very precise and usable within the pH range 3-8. These sensors exhibited a fast response time (about 3 s for both SPE and CPE, respectively), a low detection limit (3.5 × 10(-6) and 1.5 × 10(-6) M for SPE and CPE, respectively), a long lifetime (3 and 2 months for SPE and CPE, respectively) and good stability. The selectivity of the electrode toward a large number of inorganic cations, sugars and amino acids was tested. It was applied to potentiometric determination of NPZ in pure state and pharmaceutical preparation under batch conditions. The percentage recovery values for the assay of NPZ in tablets (relative standard deviations ≤0.3% for n = 4) were compared well with those obtained by the official method.
ERIC Educational Resources Information Center
Wolf, Walter A., Ed.
1977-01-01
Presents classroom and laboratory teaching and demonstration ideas, including a demonstration of optical rotation, automatic potentiometric titration, preparation of radioactive lead, and an organic lab practical in library resources. (SL)
ERIC Educational Resources Information Center
Wolf, Walter A., Ed.
1978-01-01
Presents four simple laboratory procedures for: preparation of organometallic compounds, a realistic qualitative organic analysis project, a computer program to plot potentiometric titration curves, and preparation of stereoscopic transparencies. (SL)
ERIC Educational Resources Information Center
Pinkney, J. N.; And Others
1976-01-01
Describes eleven laboratory experiments, including the catalytic effect of copper in zinc-acid reaction; a study of the rate of polymerization of some aldehydes; and a demonstration automatic potentiometric titrator. (MLH)
Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.
Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K
2013-05-17
Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.
Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids.
Pankratova, Nadezda; Cuartero, Maria; Jowett, Laura A; Howe, Ethan N W; Gale, Philip A; Bakker, Eric; Crespo, Gastón A
2018-01-15
Fluorinated tripodal compounds were recently reported to be efficient transmembrane transporters for a series of inorganic anions. In particular, this class of receptors has been shown to be suitable for the effective complexation of chloride, nitrate, bicarbonate and sulfate anions via hydrogen bonding. The potentiometric properties of urea and thiourea-based fluorinated tripodal receptors are explored here for the first time, in light of the need for reliable sensors for chloride monitoring in undiluted biological fluids. The ion selective electrode (ISE) membranes with tren-based tris-urea bis(CF 3 ) tripodal compound (ionophore I) were found to exhibit the best selectivity for chloride over major lipophilic anions such as salicylate ( [Formula: see text] ) and thiocyanate ( [Formula: see text] ). Ionophore I-based ISEs were successfully applied for chloride determination in undiluted human serum as well as artificial serum sample, the slope of the linear calibration at the relevant background of interfering ions being close to Nernstian (49.8±1.7mV). The results of potentiometric measurements were confirmed by argentometric titration. Moreover, the ionophore I-based ISE membrane was shown to exhibit a very good long-term stability of potentiometric performance over the period of 10 weeks. Nuclear magnetic resonance (NMR) titrations, potentiometric sandwich membrane experiments and density functional theory (DFT) computational studies were performed to determine the binding constants and suggest 1:1 complexation stoichiometry for the ionophore I with chloride as well as salicylate. Copyright © 2017 Elsevier B.V. All rights reserved.
Balázs, Nándor; Sipos, Pál
2007-01-15
The degree of deacetylation (DDA) of chitosan determines the biopolymer's physico-chemical properties and technological applications. pH-Potentiometric titration seems to offer a simple and convenient means of determining DDA. However, to obtain accurate pH-potentiometric DDA values, several factors have to be taken into consideration. We found that the moisture content of the air-dry chitosan samples can be as high as 15%, and a reasonable fraction of this humidity cannot be removed by ordinary drying. Corrections have to be made for the ash content, as in some samples it can be as high as 1% by weight. The method of equivalence point determination was also found to cause systematic variations in the results and in some samples extra acid as high as 1 mol% of the free amino content was also identified. To compensate for the latter effect, the second equivalence point of the titration has to be determined separately and the analytical concentration of the acid be corrected for it. All the corrections listed here are necessary to obtain DDA values that are in reasonable agreement with those obtained from (1)H NMR and IR spectroscopic measurements. The need for these corrections severely limits the usefulness of pH-metry for determining accurate DDA values and thus potentiometry is hardly able to compete with other standard spectroscopic procedures, that is, (1)H NMR spectroscopy.
ERIC Educational Resources Information Center
Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin
2011-01-01
A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2014-11-01
The effects of solution pH and the content of cationic groups in polyacrylamide (PAM) macromolecules on the stability mechanism of aqueous alumina suspension were investigated. The following experimental techniques were applied: spectrophotometry, potentiometric titration, microelectrophoresis, viscosimetry and turbidimetry. They enable determination of polymer adsorbed amount, surface charge density and zeta potential of solid particles in the presence and absence of PAM, as well as thickness of polymer adsorption layer, size of macromolecules in the solution and stability of the Al2O3-polymer systems, respectively. The obtained results indicate that adsorption of PAM increases with the increasing pH, whereas the thickness of polymeric adsorption layer decreases. Additionally, the greater the number of cationic groups in the PAM chains is, the higher adsorption was found. The polymer presence influences on the alumina suspension stability. At pH 3 and 6 the slight deterioration of stability conditions of solid particle covered with polyacrylamide was observed. At pH 9 the systems containing polymer are unstable, similarly to the suspension without PAM, but the mechanism of their destabilization is different.
Comparison of the acid-base properties of ribose and 2'-deoxyribose nucleotides.
Mucha, Ariel; Knobloch, Bernd; Jezowska-Bojczuk, Małgorzata; Kozłowski, Henryk; Sigel, Roland K O
2008-01-01
The extent to which the replacement of a ribose unit by a 2'-deoxyribose unit influences the acid-base properties of nucleotides has not hitherto been determined in detail. In this study, by potentiometric pH titrations in aqueous solution, we have measured the acidity constants of the 5'-di- and 5'-triphosphates of 2'-deoxyguanosine [i.e., of H(2)(dGDP)(-) and H(2)(dGTP)(2-)] as well as of the 5'-mono-, 5'-di-, and 5'-triphosphates of 2'-deoxyadenosine [i.e., of H(2)(dAMP)(+/-), H(2)(dADP)(-), and H(2)(dATP)(2-)]. These 12 acidity constants (of the 56 that are listed) are compared with those of the corresponding ribose derivatives (published data) measured under the same experimental conditions. The results show that all protonation sites in the 2'-deoxynucleotides are more basic than those in their ribose counterparts. The influence of the 2'-OH group is dependent on the number of 5'-phosphate groups as well as on the nature of the purine nucleobase. The basicity of N7 in guanine nucleotides is most significantly enhanced (by about 0.2 pK units), while the effect on the phosphate groups and the N1H or N1H(+) sites is less pronounced but clearly present. In addition, (1)H NMR chemical shift change studies in dependence on pD in D(2)O have been carried out for the dAMP, dADP, and dATP systems, which confirmed the results from the potentiometric pH titrations and showed the nucleotides to be in their anti conformations. Overall, our results are not only of relevance for metal ion binding to nucleotides or nucleic acids, but also constitute an exact basis for the calculation, determination, and understanding of perturbed pK(a) values in DNAzymes and ribozymes, as needed for the delineation of acid-base mechanisms in catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, E.; Alleman, T. L.; McCormick, R. L.
Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products duemore » to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.« less
Semi-empirical proton binding constants for natural organic matter
NASA Astrophysics Data System (ADS)
Matynia, Anthony; Lenoir, Thomas; Causse, Benjamin; Spadini, Lorenzo; Jacquet, Thierry; Manceau, Alain
2010-03-01
Average proton binding constants ( KH,i) for structure models of humic (HA) and fulvic (FA) acids were estimated semi-empirically by breaking down the macromolecules into reactive structural units (RSUs), and calculating KH,i values of the RSUs using linear free energy relationships (LFER) of Hammett. Predicted log KH,COOH and log KH,Ph-OH are 3.73 ± 0.13 and 9.83 ± 0.23 for HA, and 3.80 ± 0.20 and 9.87 ± 0.31 for FA. The predicted constants for phenolic-type sites (Ph-OH) are generally higher than those derived from potentiometric titrations, but the difference may not be significant in view of the considerable uncertainty of the acidity constants determined from acid-base measurements at high pH. The predicted constants for carboxylic-type sites agree well with titration data analyzed with Model VI (4.10 ± 0.16 for HA, 3.20 ± 0.13 for FA; Tipping, 1998), the Impermeable Sphere model (3.50-4.50 for HA; Avena et al., 1999), and the Stockholm Humic Model (4.10 ± 0.20 for HA, 3.50 ± 0.40 for FA; Gustafsson, 2001), but differ by about one log unit from those obtained by Milne et al. (2001) with the NICA-Donnan model (3.09 ± 0.51 for HA, 2.65 ± 0.43 for FA), and used to derive recommended generic values. To clarify this ambiguity, 10 high-quality titration data from Milne et al. (2001) were re-analyzed with the new predicted equilibrium constants. The data are described equally well with the previous and new sets of values ( R2 ⩾ 0.98), not necessarily because the NICA-Donnan model is overparametrized, but because titration lacks the sensitivity needed to quantify the full binding properties of humic substances. Correlations between NICA-Donnan parameters are discussed, but general progress is impeded by the unknown number of independent parameters that can be varied during regression of a model fit to titration data. The high consistency between predicted and experimental KH,COOH values, excluding those of Milne et al. (2001), gives faith in the proposed semi-empirical structural approach, and its usefulness to assess the plausibility of proton stability constants derived from simulations of titration data.
NASA Astrophysics Data System (ADS)
Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques
2014-08-01
The formation constants of magnesium bicarbonate and carbonate ion pairs have been experimentally determined in dilute hydrothermal solutions to 150 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using two pH indicators, 2-naphthol and 4-nitrophenol, at 25 and 80-150 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for MgHCO3+(aq) (KMgHCO3+) and MgCO3(aq) (KMgCO3) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The formation constants of MgHCO3+(aq) and MgCO3(aq) ion pairs increased significantly with increasing temperature, with values of logKMgHCO3+ = 1.14 and 1.75 and of logKMgCO3 = 2.86 and 3.48 at 10 °C and 100 °C, respectively. These ion pairs are important aqueous species under neutral to alkaline conditions in moderately dilute to concentrated Mg-containing solutions, with MgCO3(aq) predominating over CO32-(aq) in solutions at pH >8. The predominance of magnesium carbonate over carbonate is dependent on the concentration of dissolved magnesium and the ratio of magnesium over carbonate. With increasing temperature and at alkaline pH, brucite solubility further reduced the magnesium concentration to levels below 1 mmol kg-1, thus limiting availability of Mg2+(aq) for magnesite precipitation.
Hilp, M; Senjuk, S
2001-06-01
USP 1995 (The United States Pharmacopeia, 23rd Edit., (1995), potassium iodide p. 1265, sodium iodide p. 1424), PH. EUR. 1997 (European Pharmacopoeia, third ed., Council of Europe, Strasbourg, (1997), potassium iodide p. 1367, sodium iodide p. 1493) and JAP 1996 (The Japanes Pharmacopoeia, 13th ed. (1996), potassium iodide p. 578, sodium iodide p. 630) determine iodide with the ICl-method (J. Am. Chem. Soc. 25 (1903) 756-761; Z. Anorg. Chem. 36 (1903) 76-83; Fresenius Z. Anal. Chem. 106 (1936) 12-23; Arzneibuch-Kommentar, Wissenschaftliche Erläuterungen zum Europäischen Arzneibuch, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, Govi-Verlag - Pharmazeutischer Verlag GmbH, Eschborn, 12th suppl. (1999), K10 p. 2), using chloroform, which is toxic and hazardous to environment. Without the application of chlorinated hydrocarbons USP 2000 (The United State Pharmacopeia, 24th ed. (2000), potassium iodide p. 1368, sodium iodide p. 1535) and Brit 1999 (British Pharmacopoeia London, (1999), Appendix VIII C, p. A162) titrate iodide with the redox indicator amaranth. A titration with potentiometric indication giving two end-points at the step of I(2) and [ICl(2)](-) is described. Due to the high concentration of hydrochloric acid required for the ICl-method, the determination with DBH (1,3-dibromo-5,5-dimethylhydantoin; 1,3-dibromo-5,5-dimethyl-2,4-imidazolidinedione) can be recommended and is performed easily. Similarly, the iodide content of gallamine triethiodide may be analyzed with DBH by application of a visual two-phase titration in water and ethyl acetate or with potentiometric indication in a mixture of 2-propanol and water. During the removal of the excess of DBH 4-bromo-triethylgallamine (2,2',2"-[1-bromo-benzene-2,3,4-triyltris(oxy)]N,N,N-triethylethanium) is formed.
Duc, Myriam; Gaboriaud, Fabien; Thomas, Fabien
2005-09-01
The effects of experimental procedures on the acid-base consumption titration curves of montmorillonite suspension were studied using continuous potentiometric titration. For that purpose, the hysteresis amplitudes between the acid and base branches were found to be useful to systematically evaluate the impacts of storage conditions (wet or dried), the atmosphere in titration reactor, the solid-liquid ratio, the time interval between successive increments, and the ionic strength. In the case of storage conditions, the increase of the hysteresis was significantly higher for longer storage of clay in suspension and drying procedures compared to "fresh" clay suspension. The titration carried out under air demonstrated carbonate contamination that could only be cancelled by performing experiments under inert gas. Interestingly, the increase of the time intervals between successive increments of titrant strongly emphasized the amplitude of hysteresis, which could be correlated with the slow kinetic process specifically observed for acid addition in acid media. Thus, such kinetic behavior is probably associated with dissolution processes of clay particles. However, the resulting curves recorded at different ionic strengths under optimized conditions did not show the common intersection point required to define point of zero charge. Nevertheless, the ionic strength dependence of the point of zero net proton charge suggested that the point of zero charge of sodic montmorillonite could be estimated as lower than 5.
Lebedev, A V; Ivanova, M V; Timoshin, A A; Ruuge, E K
2008-01-01
Ca2+-induced increase in the rate of pyrocatechol and dopamine oxidation by dioxygen and Ca2+-dependent acid-base properties of the catechols were studied by potentiometric titration, UV/Vis-spectrophotometry, EPR-spectroscopy, and by measurement of oxygen consumption. The effect of Ca2+ on the chain reactions of oxidation can be explained by additional deprotonation (decrease in pKai) of the catechols that accelerates one electron transport to dioxygen and formation of calcium semiquinonate, undergoing further oxidation. The described Ca2+-dependent redox-conversion of ortho-phenols proposes that an additional function of calcium in the cell can be its involvement in free radical oxidoreductive reactions at pH > pKai.
Adsorption of natural dissolved organic matter at the oxide/water interface
Davis, James A.
1982-01-01
Natural organic matter is readily adsorbed by alumina and kaolinite in the pH range of natural waters. Adsorption occurs by complex formation between surface hydroxyls and the acidic functional groups of the organic matter. Oxides with relatively acidic surface hydroxyls, e.g. silica, do not react strongly with the organic matter. Under conditions typical for natural waters, almost complete surface coverage by adsorbed organic matter may be expected for alumina, hydrous iron oxides and the edge sites of aluminosilicates. Potentiometric titration and electrophoresis indicate that most of the acidic functional groups of the adsorbed organic matter are neutralized by protons from solution. The organic coating is expected to have a great influence on subsequent adsorption of inorganic cations and anions.
Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A.
2017-01-01
This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade-1 in the concentration range of 1×10-7–1×10-2 and 6.2×10-7–1×10-2 mol L-1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0–8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10-7 and 6.2×10-7 mol L-1), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug. PMID:28979305
Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A
2017-01-01
This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade -1 in the concentration range of 1×10 -7 -1×10 -2 and 6.2×10 -7 -1×10 -2 mol L -1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0-8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10 -7 and 6.2×10 -7 mol L -1 ), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug.
Frag, Eman Y Z; Mohamed, Gehad G; Khalil, Mohamed M; Hwehy, Mohammad M A
2011-01-01
This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10(-7) to 10(-2) mol L(-1). The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade(-1) for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0-6.0 and 2.0-7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method.
Frag, Eman Y. Z.; Mohamed, Gehad G.; Khalil, Mohamed M.; Hwehy, Mohammad M. A.
2011-01-01
This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10−7 to 10−2 mol L−1. The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade−1 for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0–6.0 and 2.0–7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method. PMID:22013443
Tesmar, Aleksandra; Wyrzykowski, Dariusz; Muñoz, Eva; Pilarski, Bogusław; Pranczk, Joanna; Jacewicz, Dagmara; Chmurzyński, Lech
2017-04-01
The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co 2 + and Ni 2 + ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L -1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co 2 + and Ni 2 + complexes and their thermodynamic stabilities are discussed. Copyright © 2016 John Wiley & Sons, Ltd.
A potentiometric titration method for the crystallization of drug-like organic molecules.
Du-Cuny, Lei; Huwyler, Jörg; Fischer, Holger; Kansy, Manfred
2007-09-05
It is generally accepted, that crystalline solids representing a low energy polymorph should be selected for development of oral dosage forms. As a consequence, efficient and robust procedures are needed at an early stage during drug discovery to prepare crystals from drug-like organic molecules. In contrast to the use of supersaturated solutions, we present a potentiometric crystallization procedure where saturated solutions are prepared in a controlled manner by pH-titration. Crystallization is carried out under defined conditions using the sample concentration and experimental pK(a) values as input parameters. Crystals of high quality were obtained for 11 drugs selected to demonstrate the efficiency and applicability of the new method. Technical improvements are suggested to overcome practical limitations and to enhance the possibility of obtaining crystals from molecules in their uncharged form.
Processes for Assessing the Thermal Stability of Han-Based Liquid Propellants. Revision
1990-07-01
indicators is not adequate, and potentiometric determination cr’ the equivalence point is the most suitable method (Kraft and Fischer 1972). The use of...be determined by Karl Fischer titration. This method requires a special titration apparatus because the Titroprozessor 636 is not suited for this type... methods obtained from the literature (Kraft and Fischer 1972), and, where necessary, the manufacturer has modified evaluation methods (Firmenschrift
Naja, Ghinwa; Mustin, Christian; Volesky, Bohumil; Berthelin, Jacques
2006-01-01
An interactive metal-based potentiometric titration method has been developed using an ion selective electrode for studying the sorption of metal cations. The accuracy of this technique was verified by analyzing the metal sorption mechanism for the biomass of Rhizopus arrhizus fungus and diatomite, two dissimilar materials (organic and mineral, strong sorbent and weak sorbent) of a different order of cation exchange capacity. The problem of the initial electrochemical potential was addressed identifying the usefulness of a Na-sulfonic resin as a strong chelating agent applied before the beginning of sorption titration experiments so that the titration curves and the sorption uptake could be quantitatively compared. The resin stabilized the initial electrochemical potential to -405+/-5 mV corresponding to 2 micro gl(-1) of lead concentration in solution. The amounts of lead sorbed by R. arrhizus biomass and diatomite were 0.9 mmol g(-1) (C(e)=5.16 x 10(-2)mM) and 0.052 mmol g(-1) (C(e)=5.97 x 10(-2) mM), respectively. Lead sorption by the fungal biomass was pinpointed to at least two types of chemical active sites. The first type was distinguished by high reactivity and a low number of sites whereas the other was characterized by their higher number and lower reactivity.
NASA Astrophysics Data System (ADS)
Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.
2016-05-01
The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa < 6. The methodology showed good reproducibility and stability with standard deviations below 5%. The nature of the groups was independent of small variations in experimental conditions, i.e. the mass of carbon dots titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.
Microtitration of various anions with quaternary ammonium halides using solid-state electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selig, W.
1980-01-01
Many solid-state electrodes were found to respond as endpoint detectors in the potentiometric titration of large inorganic and organic anions with quaternary ammonium halides. The best response was obtained with the iodide and cyanide electrodes although practically any electrode can function as endpoint sensor. The titrants were hexadecylpyridinium chloride and hexadecyltrimethylammonium chloride; hexadecyltrimethylammonium bromide and Hyamine 1622 may also be used. Some inorganic anions thus titratable are perrhenate, persulfate, ferricyanide, hexafluorophosphate, and hexachloroplatinate. Examples of organic anions titratable are nitroform, tetraphenylborate, cyanotriphenylborate, picrate, long-chain sulfates and sulfonates, and some soaps. The reverse titration of quaternary ammonium halides vs dodecylsulfate ismore » also feasible. Some titrations are feasible in a partially nonaqueous medium.« less
Controlled clustering of carboxylated SPIONs through polyethylenimine
NASA Astrophysics Data System (ADS)
Nesztor, Dániel; Bali, Krisztina; Tóth, Ildikó Y.; Szekeres, Márta; Tombácz, Etelka
2015-04-01
Clusters of magnetite nanoparticles (MNPs) were synthesized using poly(acrylic acid-co-maleic acid) coated MNPs (PAM@MNP) and branched polyethylenimine (PEI). Materials were characterized by potentiometric titration, zeta potential and dynamic light scattering (DLS) measurements. PEI and PAM@MNP are oppositely charged as characterized by zeta potential measurements (+8, -34 mV respectively) and titration (10.30 mmol -NH3+/g PEI; 0.175 mmol -COO-/g PAM@MNP) at pH 6.5±0.2; therefore magnetic clusters are formed by electrostatic adhesion. Two different preparation methods and the effect of PEI and electrolyte (NaCl) concentration on the cluster formation was studied. Choosing an optimal concentration of PEI (charge ratio of PEI to PAM@MNP: 0.17) and electrolyte (10 mM), a concentrated (10 g MNP/L) product containing PEI-PAM@MNP nanoclusters with size of 165±10 nm was prepared. Its specific absorption rate (SAR) measured in AC magnetic field (110 kHz, 25 mT) is 12 W/g Fe. The clustered product is expected to have enhanced contrast efficiency in MRI.
Raashid, Syed; Chat, Oyais Ahmad; Rizvi, Masood A; Bhat, Mohsin Ahmad; Khan, Badruddin
2012-11-15
A pseudo-indicator electrode based potentiometric method for estimation of non-redox metal ions is presented. In the proposed method, nature and concentration specific impact of analyte over the redox potential of ideally polarisable Pt/pregenerated-redox-couple interface forms the basis of quantification. Utility of the method in estimation of six non-redox metal ions viz. Zn(2+), Cu(2+), Ni(2+), Cd(2+), Pb(2+), Al(3+) in the concentration range of 10(-1)-10(-3) moldm(-3), individually and as binary mixtures is also presented. Three types of potentiometric behaviours, which we ascribe to the nature specific thermodynamic and kinetic aspects of metal-EDTA binding, were observed. While Cu(2+), Ni(2+), Pb(2+) and Al(3+) were found to bind EDTA efficiently, without exchanging Fe(3+); Zn(2+) and Cd(2+) were observed to replace Fe(3+) from EDTA. In contrast, Ca(2+) and Mg(2+) were found to show no binding affinity to EDTA in the pH range employed in the present work. The proposed method was also used to explore the reversibility and the Nernestian behaviour of ferricyanide/ferrocyanide redox couple through spectroelectrochemical titration of Zn(2+) with ferrocyanide. The presented method is presaged to be a reliable and low cost future replacement for costly and delicate ion selective electrodes (ISE) in the estimation of non-redox species like Zn(2+), Cu(2+), etc. Copyright © 2012 Elsevier B.V. All rights reserved.
Singhal, Divya; Singh, Ashok Kumar; Upadhyay, Anjali
2014-12-01
New PVC-membrane electrodes were prepared by using 2-((thiazol-2-ylimino)methyl)phenol (L1) and 2-((thiazol-2-ylamino)methyl)phenol (L2) and explored as Co(II) selective electrodes. The effect of various plasticizers and anion excluder was studied in detail and improved performance was observed. It was found that the electrode based on L1 shows better response characteristics in comparison to L2. Optimum performance was observed for the membrane electrode having a composition of L1:NaTPB:DBP:PVC≡2:8:78:62 (w/w, mg). The performance of PME based on L1 was compared with that of CGE. The electrodes exhibit Nernstian slope for Co(II) ions with a limit of detection of 6.91×10(-7) mol L(-1) for PME and 7.94×10(-8) mol L(-1) for CGE. The response time for PME and CGE was found to be 15s and 12 s respectively. The potentiometric responses are independent in the pH range 3.0-9.0 for CGE. The CGE could be used for a period of 90 days. The CGE was used as an indicator electrode in potentiometric titration of EDTA with Co(2+) ion. Further the selectivity of the L1 and L2 was also confirmed by the UV-vis and colorimetric studies and found that L1 is more selective for Co(II) ion. Copyright © 2014 Elsevier B.V. All rights reserved.
Studies on potassium chlorate as a primary oxidimetric reagent.
Murty, C R; Rao, G G
1972-01-01
Conditions have been established for the use of potassium chlorate as a primary oxidizing agent in the direct titration of vanadium(III), tin(II) and titanium(III) with visual or potentiometric end-points.
Weinreich, Wenke; Acker, Jörg; Gräber, Iris
2007-03-30
In the photovoltaic industry the etching of silicon in HF/HNO(3) solutions is a decisive process for cleaning wafer surfaces or to produce certain surface morphologies like polishing or texturization. With regard to cost efficiency, a maximal utilisation of etch baths in combination with highest quality and accuracy is strived. To provide an etch bath control realised by a replenishment with concentrated acids the main constituents of these HF/HNO(3) etch solutions including the reaction product H(2)SiF(6) have to be analysed. Two new methods for the determination of the total fluoride content in an acidic etch solution based on the precipitation titration with La(NO(3))(3) are presented within this paper. The first method bases on the proper choice of the reaction conditions, since free fluoride ions have to be liberated from HF and H(2)SiF(6) at the same time to be detected by a fluoride ion-selective electrode (F-ISE). Therefore, the sample is adjusted to a pH of 8 for total cleavage of the SiF(6)(2-) anion and titrated in absence of buffers. In a second method, the titration with La(NO(3))(3) is followed by a change of the pH-value using a HF resistant glass-electrode. Both methods provide consistent values, whereas the analysis is fast and accurate, and thus, applicable for industrial process control.
Sudhiranjan Singh, M; Homendra, Naorem; Lonibala, R K
2012-12-01
Coordinating properties of uridine 5'-monophosphate (UMP) towards trivalent La, Pr, Nd, Sm, Eu and Gd ions in presence of cationic and anionic micelles have been investigated by potentiometric pH-titration and spectroscopic methods. Stability constants of the 2:1 complexes have been determined and the change in free energy, enthalpy and entropy associated with the complexation are also calculated. Nd(III) complexes isolated from aqueous and aqueous-micellar media do not show any significant structural difference. Formation of Ln(III) complexes in all cases completes below pH 7.5 showing that UMP best interacts with Ln(3+) ions at the physiological pH range 7.3-7.5. The nucleobase is not involved in the complexation and the metal ion coordination of UMP is through the phosphate moiety only. Coordinating tendency of UMP with lanthanides, Nd(III) ion in particular, at different pH is also discussed. Luminescent properties of Eu(III) complex and its decay lifetime are also presented. This information may prove helpful regarding the use of lanthanides as biological probes for calcium/magnesium ions.
Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring.
Bandodkar, Amay J; Hung, Vinci W S; Jia, Wenzhao; Valdés-Ramírez, Gabriela; Windmiller, Joshua R; Martinez, Alexandra G; Ramírez, Julian; Chan, Garrett; Kerman, Kagan; Wang, Joseph
2013-01-07
This article presents the fabrication and characterization of novel tattoo-based solid-contact ion-selective electrodes (ISEs) for non-invasive potentiometric monitoring of epidermal pH levels. The new fabrication approach combines commercially available temporary transfer tattoo paper with conventional screen printing and solid-contact polymer ISE methodologies. The resulting tattoo-based potentiometric sensors exhibit rapid and sensitive response to a wide range of pH changes with no carry-over effects. Furthermore, the tattoo ISE sensors endure repetitive mechanical deformation, which is a key requirement of wearable and epidermal sensors. The flexible and conformal nature of the tattoo sensors enable them to be mounted on nearly any exposed skin surface for real-time pH monitoring of the human perspiration, as illustrated from the response during a strenuous physical activity. The resulting tattoo-based ISE sensors offer considerable promise as wearable potentiometric sensors suitable for diverse applications.
NASA Astrophysics Data System (ADS)
Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques
2013-11-01
Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.
Report of the Fifth Biennial Conference on Chemical Education: Content.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1979
1979-01-01
Two papers are reported on, one dealing with a course on inorganic reaction mechanisms for college seniors, and the other on the set-up necessary to provide students with an automatic potentiometric titration facility. (BB)
Sak-Bosnar, M; Kovar, K
2005-10-01
This paper describes the use of potentiometric titration to determine the relevant acid-base properties of 5-hydroxypyrazine-2-carboxylic acid (5OH-PYCA), an important intermediate in the production of tuberculostatics. The data obtained were used for calculation of the dissociation constants of 5OH-PYCA. It was found that 5OH-PYCA dissociates in two steps, with the corresponding dissociation constants pK (a1)=3.42 and pK (a2)=7.96, designating 5OH-PYCA as a medium weak acid (1st step). The distribution diagram of dissociated species and the buffer-strength diagram of 5OH-PYCA provide useful information about its behaviour at different pH. The ionic equilibria data obtained can be used for selection of the optimum pH for biotransformation of pyrazine-2-carboxylic acid (PYCA) and for prediction of pH changes during the biotransformation. These data can also be used for selection of the optimum pH for precipitating 5OH-PYCA in downstream processing. All computations have been optimized by mathematical modelling using Solver.
Marolt, Gregor; Pihlar, Boris
2015-01-01
Determination of correct amount (concentration) of phytic acid is of vital importance when dealing with protonation and/or metal complexation equilibria. A novel approach for precise and reliable assay of phytic acid, based on the difference between end points by potentiometric titration, has been presented. Twelve phytic acid protons are classified into three groups of acidity, which enables detection of 2 to 3 distinct equivalent points (EPs) depending on experimental conditions, e.g. counter-ion concentration. Using the differences between individual EPs enables correct phytate determination as well as identification of potential contamination and/or determination of initial protonation degree. Impact of uncertainty of phytate amount on the calculation of protonation constants has been evaluated using computer simulation program (Hyperquad2013). With the analysis of titration curves different binding sites on phytate ligand have been proposed for complexation of Ca2+ and Fe3+ ions.
Hoffmann, S K; Goslar, J; Bregier-Jarzebowska, R; Gasowska, A; Zalewska, A; Lomozik, L
2017-12-01
The mode of interaction and thermodynamic stability of complexes formed in binary and ternary Cu(II)/ATP/triamines systems were studied using potentiometric and spectroscopic (NMR, EPR, UV-Vis) methods. It was found that in binary metal-free systems ATP/H x PA species are formed (PA: Spd=spermidine or 3,3-tri=1,7-diamino-4-azaheptane) where the phosphate groups from nucleotides are preferred negative centers and protonated amine groups of amines are positive centers of reaction. In the ternary systems Cu/ATP/H x (PA) as well as Cu/(ATP)(PA) species are formed. The type of the formed Cu(II) complexes depends on pH of the solution. For a low pH value the complexation appears between Cu(II) and ATP molecules via oxygen atoms of phosphate groups. For a very high pH value, where ATP is hydrolyzed, the Cu(II) ions are bound to the nitrogen atoms of polyamine molecules. We did not detect any direct coordination of the N7 nitrogen atom of adenosine to Cu(II) ions. It means that the CuN7 interaction is an indirect type and can be due to noncovalent interplay including water molecule. EPR studies were performed at glassy state (77K) after a fast freezing both for binary and ternary systems. The glassy state EPR spectra do not reflect species identified in titration studies indicating significant effect of rapid temperature decrease on equilibrium of Cu(II) complexes. We propose the molecular structure of all the studied complexes at the glassy state deduced from EPR and optical spectroscopy results. Copyright © 2017 Elsevier Inc. All rights reserved.
Infrared Spectroscopic Evidence of Surface Speciation of Amino Acids on Titanium Dioxide
NASA Astrophysics Data System (ADS)
Jonsson, C. M.; Jonsson, C. L.; Parikh, S. J.; Sverjensky, D. A.; Cleaves, H. J.; Hazen, R. M.
2008-12-01
Interactions that occur at the interface between molecules and mineral surfaces in the presence of water are integral to many chemical and physical processes, including the behavior of pollutants in the environment, metal implants in the human body, and perhaps the origin of life. During the emergence of life, mineral surfaces may have played a role in the selection of amino acids, leading to the formation of proteins that are essential building blocks of life. To investigate this hypothesis, we are studying two amino acids, glutamic (Glu) and aspartic (Asp) acid, and their adsorption to the rutile form of titanium dioxide as a function of pH and surface coverage in electrolyte solutions. The objective is to get a fundamental understanding of the speciation and coordination chemistry of these amino acids at the rutile surface. We used attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy to investigate the adsorption of Glu on rutile, and a previously published ATR-FTIR study [1] of Asp and Glu adsorption on an amorphous titanium dioxide film was used as a guide to peak assignment and interpretation of our FTIR spectra. Binding of Glu to both surfaces occurs primarily through one or both of the carboxyl groups, implying that at least two types of surface complexes are formed in a proportion presumably dependent on surface coverage and pH. The interpretation of our results suggests that Glu binds to rutile in a mixed chelating-monodentate fashion involving both carboxyl groups (Glu lying down at the surface), and in a chelating fashion involving only the gamma carboxyl group (Glu standing up at the surface). FTIR results also show that the intensity of the amine peak increases with sorption, which is possibly a consequence of the amine group being brought closer to the surface but not binding directly to it. Glu adsorption on rutile is favored at low pH, based on results from batch adsorption experiments. We have commenced a systematic investigation of Glu and Asp interactions with the rutile surface using potentiometric titrations, adsorption experiments and FTIR spectroscopy. The spectroscopic evidence integrated with quantitative adsorption data and potentiometric titration data are used to describe the adsorption with surface complexation models. [1] Roddick-Lanzilotta A.D. and McQuillan A.J. (2000) J. Colloid & Interface Sci. 227, 48-54.
Computer Series, 29: Bits and Pieces, 10.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1982-01-01
Describes computer programs (available from authors) including molecular input to computer, programs for quantum chemistry, library orientation to technical literature, plotting potentiometric titration data, simulating oscilloscope curves, organic qualitative analysis with dynamic graphics, extended Huckel calculations, and calculator programs…
Comparative study of procedures for the analysis of chloride in hardened concrete.
DOT National Transportation Integrated Search
1976-01-01
In the widely used potentiometric titration procedure for the analysis of chloride in powdered hardened concrete samples, difficulties have often been encountered when determining the endpoint. These difficulties have been eliminated through the use ...
Methylation of hemoglobin to enhance flocculant performance
USDA-ARS?s Scientific Manuscript database
An inexpensive bioflocculant, bovine hemoglobin (Hb), has been covalently modified through methylation of the side chain carboxyl groups of aspartic and glutamic acid residues to improve its flocculation activity. Potentiometric titration of the recovered products showed approximately 28% degree of ...
ERIC Educational Resources Information Center
Byrum, David L., Ed.
1984-01-01
Presents three ideas to help hold costs down in purchasing and using science equipment. These include (1) use of pencils and other graphite rods as sensors in potentiometric titrations, (2) rubber bulb modification for pipetting, and (3) a heater for a glassware bath. (JM)
Best Technical Approach for the Petroleum Quality Analysis (PQA) System
1994-08-01
two test methods for determination of water content in a fuel. The Karl Fischer titration method (ASTM D 1744) measures for total water, both...difficult to automate. ASTM D 664, "Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration," is simple to automate...release. distribution unlimnied 13. ABSTRACT (Maximum 2C3 words) Recent U.S. militar-y operations have identified a need for improved methods of fuel and
The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium
NASA Astrophysics Data System (ADS)
Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.
2013-06-01
The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering capacity to previously studied non-halophilic bacteria. The titration data were used to determine the number of types, concentrations, and associated deprotonation constants of functional groups on the bacterial surface; the neptunium adsorption measurements were used to constrain binding constant values for the important neptunium (V)-bacterial surface species. Together, these results can be incorporated into geochemical speciation models to aid in the prediction of neptunium (V) mobility in complex bacteria-bearing geochemical systems.
Formation and characterization of chitosan-protein particles with fractal whey protein aggregates.
Ahmed, Khouloud Fekih; Aschi, Adel; Nicolai, Taco
2018-05-15
Hybrid protein-polysaccharide particles were formed by complexation of fractal whey protein aggregates and the cationic polysaccharide chitosan. The fractal aggregates were preformed by heating native whey protein isolate at pH 7 and subsequently mixed with chitosan at pH 3 where these proteins and polysaccharides don't interact with each other. Stable dispersions of protein-polysaccharide particles were formed spontaneously when the pH was gradually increased between 4.1 and 6.8, whereas in the absence of chitosan the fractal aggregates precipitated between pH 4.1 and 5.4. Potentiometric titration of the mixtures showed that deprotonation of both components was affected by complexation. With increasing pH, the size of the complexes increased sharply between pH 4.1. and pH 4.5, remained constant up to pH 5.6 and then increased again. A minimum amount of chitosan was needed to form stable complexes at pH 5.0 and the size of the complexes decreased with increasing chitosan concentration. Light scattering showed that the complexes were stable to dilution and had a self similar structure with a fractal dimensions close to two. The effect of changing the pH on the size and stability of the complexes was investigated. Suspensions of complexes of preformed whey protein aggregates and chitosan are more stable up to high pH (6.8) than complexes between native WPI and chitosan as reported in the literature. Copyright © 2018. Published by Elsevier B.V.
Völgyi, Gergely; Béni, Szabolcs; Takács-Novák, Krisztina; Görög, Sándor
2010-01-05
A potentiometric titration study of organic base hydrohalides and quaternary ammonium salts using perchloric acid as the titrant and a mixture of acetic anhydride and acetic acid as the solvent was carried out and the titration mixture was analysed by NMR in order to clarify the chemistry of the reactions involved. It was found that in contrast to the general belief the formation of acetyl halides and titratable free acetate ion does not take place prior to the titration but NMR spectra proved the formation of acetyl halides in the course of the titration. This observation and the fact that the shape of the titration curves depends on the nature of the hydrohaloic acid bound to the base or of the anion in the quaternary ammonium salts led to the conclusion that the titrating agent is acetyl perchlorate formed in situ during the titration. Equations of the reactions involved in the titration process are shown in the paper.
Potentiometric assessment of iron release during ferritin reduction by exogenous agents.
Vladimirova, Lilia S; Kochev, Valery K
2010-09-01
This work studied the possibilities for quantitative determination of iron mobilization in connection with ferritin reduction by ascorbic acid (vitamin C) and sodium dithionite in vitro. The iron storage protein was incubated with an excess of reductant in aerobic conditions in the absence of complexing agents in the medium. The release of Fe(2+) was let to go to completion, and the overall content of Fe(2+) in the solution was evaluated with the aid of potentiometric titration using Ce(4+) as an oxidizing titrant. Results suggest a moderate iron efflux under the influence of the chosen reducing agents. Although such a reduction of the protein mineral core by dihydroxyfumarate contributes greatly to the iron mobilization, ferritin behavior with vitamin C and dithionite seems to be different. Although redox properties of dihydroxyfumarate are determined by hydroxyl groups similar to those of ascorbic acid, the two compounds differ significantly in structure, and this could be the basis for an explanation of the specificities in their interaction with ferritin. As revealed by the study, potentiometric titration promises to be a reliable tool for evaluation of the amount of Fe(2+) present in the solution as a result of the reduction of the ferritin's mineral core. 2010 Elsevier Inc. All rights reserved.
Mohamed, Gehad G; El-Shahat, M F; Al-Sabagh, A M; Migahed, M A; Ali, Tamer Awad
2011-04-07
A screen-printed electrode (SPE) was fabricated for the determination of 1-(ethoxycarbonyl)pentadecyltrimethylammonium bromide (Septonex) based on the use of Septonex-tetraphenylborate as the electroactive substance, and o-nitrophenyloctylether (o-NPOE) as the plasticizing agent. The electrode passes a near-Nernstian cationic slope of 59.33 ± 0.85 mV from activity between pH values of 2 to 9 with a lower detection limit of 9×10(-7) M and response time of about 5 s and exhibits an adequate shelf-life of 6 months. The method was applied for the determination of Septonex in pharmaceutical preparations. A percentage recovery of 99.88% was obtained with RSD=1.24%. The electrode was successfully applied in the determination of Septonex in laboratory-prepared samples by direct potentiometric, calibration curve and standard addition methods. Potentiometric titration of Septonex with sodium tetraphenylborate and phosphotungstic acid as a titrant was monitored with the modified screen-printed electrode as an end-point indicator electrode. Selectivity coefficients for Septonex relative to a number of potential interfering substances were determined. The sensor was highly selective for Septonex over a large number of compounds. Selectivity coefficient data for some common ions show negligible interference; however, cetyltrimethylammonium bromide and iodide ions interfere significantly. The analytical usefulness of the proposed electrode was evaluated by its application in the determination of Septonex in laboratory-prepared pharmaceutical samples with satisfactory results. The results obtained with the fabricated sensor are comparable with those obtained by the British Pharmacopeia method. © The Royal Society of Chemistry 2011
Potentiometric pH Measurements of Acidity Are Approximations, Some More Useful than Others
ERIC Educational Resources Information Center
de Levie, Robert
2010-01-01
A recent article by McCarty and Vitz "demonstrating that it is not true that pH = -log[H+]" is examined critically. Then, the focus shifts to underlying problems with the IUPAC definition of pH. It is shown how the potentiometric method can provide "estimates" of both the IUPAC-defined hydrogen activity "and" the hydrogen ion concentration, using…
NASA Astrophysics Data System (ADS)
Nowicki, Waldemar; Gąsowska, Anna; Kirszensztejn, Piotr
2016-05-01
UV-vis spectroscopy measurements confirmed the reaction in heterogeneous system between Pt(II) ions and ethylenediamine type ligand, n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, immobilized at the silica surface. The formation of complexes is a consequence of interaction between the amine groups from the ligand grafted onto SiO2 and ions of platinum. A potentiometric titration technique was to determine the stability constants of complexes of Pt(II) with immobilized insoluble ligand (SG-L), on the silica gel. The results show the formation of three surface complexes of the same type (PtHSG-L, Pt(HSG-L)2, PtSG-L) with SG-L ligand, in a wide range of pH for different Debye length. The concentration distribution of the complexes in a heterogeneous system is evaluated.
Spectrophotometric Calibration of pH Electrodes in Seawater Using Purified m-Cresol Purple
2012-01-01
This work examines the use of purified meta-cresol purple (mCP) for direct spectrophotometric calibration of glass pH electrodes in seawater. The procedures used in this investigation allow for simple, inexpensive electrode calibrations over salinities of 20–40 and temperatures of 278.15–308.15 K without preparation of synthetic Tris seawater buffers. The optimal pH range is ∼7.0–8.1. Spectrophotometric calibrations enable straightforward, quantitative distinctions between Nernstian and non-Nernstian electrode behavior. For the electrodes examined in this study, both types of behavior were observed. Furthermore, calibrations performed in natural seawater allow direct determination of the influence of salinity on electrode performance. The procedures developed in this study account for salinity-induced variations in liquid junction potentials that, if not taken into account, would create pH inconsistencies of 0.028 over a 10-unit change in salinity. Spectrophotometric calibration can also be used to expeditiously determine the intercept potential (i.e., the potential corresponding to pH 0) of an electrode that has reliably demonstrated Nernstian behavior. Titrations to ascertain Nernstian behavior and salinity effects can be undertaken relatively infrequently (∼weekly to monthly). One-point determinations of intercept potential should be undertaken frequently (∼daily) to monitor for stable electrode behavior and ensure accurate potentiometric pH determinations. PMID:22463815
Potentiometric and electrokinetic signatures of iron(II) interactions with (α,γ)-Fe2O3.
Toczydłowska, Diana; Kędra-Królik, Karolina; Nejbert, Krzysztof; Preočanin, Tajana; Rosso, Kevin M; Zarzycki, Piotr
2015-10-21
The electrochemical signatures of Fe(II) interactions with iron(III) oxides are poorly understood, despite their importance in controlling the amount of mobilized iron. Here, we report the potentiometric titration of α,γ-Fe2O3 oxides exposed to Fe(II) ions. We monitored in situ surface and ζ potentials, the ratio of mobilized ferric to ferrous, and the periodically analyzed nanoparticle crystal structure using X-ray diffraction. Electrokinetic potential reveals weak but still noticeable specific sorption of Fe(II) to the oxide surface under acidic conditions, and pronounced adsorption under alkaline conditions that results in a surface potential reversal. By monitoring the aqueous iron(II/III) fraction, we found that the addition of Fe(II) ions produces platinum electrode response consistent with the iron solubility-activity curve. Although, XRD analysis showed no evidence of γ-Fe2O3 transformations along the titration pathway despite iron cycling between aqueous and solid reservoirs, the magnetite formation cannot be ruled out.
Black, Stuart; Ferrell, Jack R
2017-02-07
Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. Specifically, carbonyls cause an increase in viscosity (often referred to as 'aging') during storage of bio-oils. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Additionally, carbonyls are also responsible for coke formation in bio-oil upgrading processes. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. While traditional carbonyl oximation methods occur at room temperature, the Faix method presented here occurs at an elevated temperature of 80 °C.
Ozone-induced changes in natural organic matter (NOM) structure
Westerhoff, P.; Debroux, J.; Aiken, G.; Amy, G.
1999-01-01
Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US fiver systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US river systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.
Kosmulski, Marek; Maczka, Edward; Jartych, Elzbieta; Rosenholm, Jarl B
2003-03-19
Aging of synthetic goethite at 140 degrees C overnight leads to a composite material in which hematite is detectable by Mössbauer spectroscopy, but X-ray diffraction does not reveal any hematite peaks. The pristine point of zero charge (PZC) of synthetic goethite was found at pH 9.4 as the common intersection point of potentiometric titration curves at different ionic strengths and the isoelectric point (IEP). For the goethite-hematite composite, the common intersection point (pH 9.4), and the IEP (pH 8.8) do not match. The electrokinetic potential of goethite at ionic strengths up to 1 mol dm(-3) was determined. Unlike metal oxides, for which the electrokinetic potential is reversed to positive over the entire pH range at sufficiently high ionic strength, the IEP of goethite is rather insensitive to the ionic strength. A literature survey of published PZC/IEP values of iron oxides and hydroxides indicated that the average PZC/IEP does not depend on the degree of hydration (oxide or hydroxide). Our material showed a higher PZC and IEP than most published results. The present results confirm the allegation that electroacoustic measurements produce a higher IEP than the average IEP obtained by means of classical electrokinetic methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Stuart; Ferrell, Jack R.
Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here in this study, we present a modification of the traditional carbonyl oximation procedures that results inmore » less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. Some compounds such as carbohydrates are not measured by the traditional method (modified Nicolaides method), resulting in low estimations of the carbonyl content. Furthermore, we have shown that reaction completion for the traditional method can take up to 300 hours. The new method presented here (the modified Faix method) reduces the reaction time to 2 hours, uses triethanolamine (TEA) in the place of pyridine, and requires a smaller sample size for the analysis. Carbonyl contents determined using this new method are consistently higher than when using the traditional titration methods.« less
Black, Stuart; Ferrell, Jack R.
2016-01-06
Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here in this study, we present a modification of the traditional carbonyl oximation procedures that results inmore » less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. Some compounds such as carbohydrates are not measured by the traditional method (modified Nicolaides method), resulting in low estimations of the carbonyl content. Furthermore, we have shown that reaction completion for the traditional method can take up to 300 hours. The new method presented here (the modified Faix method) reduces the reaction time to 2 hours, uses triethanolamine (TEA) in the place of pyridine, and requires a smaller sample size for the analysis. Carbonyl contents determined using this new method are consistently higher than when using the traditional titration methods.« less
A method for determining the composition of methanol-trimethyl borate mixtures
NASA Technical Reports Server (NTRS)
Kaye, Samuel; Sordyl, Frank
1955-01-01
A study of mixtures of pure methanol and trimethyl borate showed that the composition can be accurately obtained by a simple density determination. The refractive-index determination gives the composition with much less accuracy. The potentiometric titration of boric acid is also discussed.
The Analysis of Seawater: A Laboratory-Centered Learning Project in General Chemistry.
ERIC Educational Resources Information Center
Selco, Jodye I.; Roberts, Julian L., Jr.; Wacks, Daniel B.
2003-01-01
Describes a sea-water analysis project that introduces qualitative and quantitative analysis methods and laboratory methods such as gravimetric analysis, potentiometric titration, ion-selective electrodes, and the use of calibration curves. Uses a problem-based cooperative teaching approach. (Contains 24 references.) (YDS)
Development of Hybrid pH sensor for long-term seawater pH monitoring.
NASA Astrophysics Data System (ADS)
Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.
2016-02-01
We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the sensor can measure accurately the value of pH over a long period of time with low power consumption.
Oliveira, Cristiane Patrícia de; Soares, Nilda de Fátima Ferreira; Fontes, Edimar Aparecida Filomeno; Oliveira, Taíla Veloso de; Filho, Antônio Manoel Maradini
2012-12-01
Blue polydiacetylene vesicles were studied with regard to their behaviour under variations in storage temperature, heating, potentiometric titration and in the presence of chemical components of milk, to evaluate their application as a sensor in the food industry. Vesicles were prepared using 10,12-pentacosadienoic acid (PCDA)/1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). Their changes were monitored using UV-Vis absorption. Temperatures not exceeding 25°C did not cause colour change in PCDA/DMPC vesicles for a period of up to 60days of storage. Heating for 10min at 60 and 90°C, exposure to pH higher than 9.0 and the simulant solutions of the whey proteins, β-lactoglobulin and α-lactalbumin, promoted colour change from blue to red for the vesicles studied. The effects of routine factors on the characteristics and stability of polydiacetylene vesicles is important in defining the parameters related to their application as a sensor for the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Khristova, R.; Vanmen, M.
1986-01-01
Based on considerations of principles and experimental data, the interference of sulfate ions in poteniometric titration of EDTA with FeCl3 was confirmed. The method of back complexometric titration of molybdenum of Nonova and Gasheva was improved by replacing hydrazine sulfate with hydrazine hydrochloride for reduction of Mo(VI) to Mo(V). The method can be used for one to tenths of mg of molybdenum with 0.04 mg standard deviation. The specific method of determination of molybdenum in molybdenite concentrates is presented.
Determination of Chlorinity of Water without the Use of Chromate Indicator
Hong, Tae-Kee; Kim, Myung-Hoon; Czae, Myung-Zoon
2010-01-01
A new method for determining chlorinity of water was developed in order to improve the old method by alleviating the environmental problems associated with the toxic chromate. The method utilizes a mediator, a weak acid that can form an insoluble salt with the titrant. The mediator triggers a sudden change in pH at an equivalence point in a titration. Thus, the equivalence point can be determined either potentiometrically (using a pH meter) or simply with an acid-base indicator. Three nontoxic mediators (phosphate, EDTA, and sulfite) were tested, and optimal conditions for the sharpest pH changes were sought. A combination of phosphate (a mediator) and phenolphthalein (an indicator) was found to be the most successful. The choices of the initial pH and the concentration of the mediator are critical in this approach. The optimum concentration of the mediator is ca. 1~2 mM, and the optimum value of the initial pH is ca. 9 for phosphate/phenolphthalein system. The method was applied to a sample of sea water, and the results are compared with those from the conventional Mohr-Knudsen method. The new method yielded chlorinity of a sample of sea water of (17.58 ± 0.22) g/kg, which is about 2.5% higher than the value (17.12 ± 0.22) g/kg from the old method. PMID:21461358
Adekola, F; Fédoroff, M; Geckeis, H; Kupcik, T; Lefèvre, G; Lützenkirchen, J; Plaschke, M; Preocanin, T; Rabung, T; Schild, D
2011-02-01
Two different gibbsites, one commercial and one synthesized according to a frequently applied recipe, were studied in an interlaboratory attempt to gain insight into the origin of widely differing reports on gibbsite acid-base surface properties. In addition to a thorough characterization of the two solids, several methods relevant to the interfacial charging were applied to the two samples: potentiometric titrations to obtain the "apparent" proton related surface charge density, zeta-potential measurements characterizing the potential at the plane of shear, and Attenuated Total Reflection Infrared Spectroscopy (ATR-IR) to obtain information on the variation of counter-ion adsorption with pH (using nitrate as a probe). Values of the IEP at 9-10 and 11.2-11.3 were found for the commercial and synthesized sample, respectively. The experimental observations revealed huge differences in the charging behavior between the two samples. Such differences also appeared in the titration kinetics. A detailed literature review revealed similar disparity with no apparent systematic trend. While previously the waiting time between additions had been advocated to explain such differences among synthesized samples, our results do not support such a conclusion. Instead, we find that the amount of titrant added in each aliquot appears to have a significant influence on the titration curves. While we can relate a number of observations to others, a number of open questions and contradictions remain. We suggest various processes, which can explain the observed behavior. Copyright © 2010 Elsevier Inc. All rights reserved.
Samardžić, Mirela; Galović, Olivera; Hajduković, Mateja; Sak-Bosnar, Milan
2017-01-01
A new high-sensitivity potentiometric sensor for anionic surfactants was fabricated using the dimethyldioctadecylammonium-tetraphenylborate (DDA-TPB) ion associate as an ionophore that was incorporated into a liquid PVC membrane. Carbon powder was used for immobilization of the ionophore in the membrane, thus significantly reducing its ohmic resistance and reducing its signal drift. The sensor exhibits a sub-Nernstian response for both dodecylbenzenesulfonate (DBS) and dodecyl sulfate (DS) in H 2 O (55.3 and 58.5mV/decade of activity, respectively) in a range between 3.2×10 -7 and 4.6×10 -3 M for DS and 2.5×10 -7 and 1.2×10 -3 M for DBS. The sensor also exhibited a sub-Nernstian response for DS and DBS in 10mM Na 2 SO 4 (55.4 and 57.7mV/decade of activity, respectively) between 2.5×10 -7 and 4.6×10 -3 M for DS and 1.5×10 -7 and 8.8×10 -4 M for DBS. The detection limits for DS and DBS in H 2 O were 2.5×10 -7 and 2.0×10 -7 M and in 10mM Na 2 SO 4 the detection limits were 2.5×10 -7 and 1.2×10 -7 M, respectively. The response time of the sensor was less than 5s for changes at higher concentration levels (above 1×10 -4 M) in both water and 10mM Na 2 SO 4. At lower concentrations (below 1×10 -5 M) the response times were 8 and 6s in water and 10mM Na 2 SO 4 , respectively. The signal drift of the sensor was 1.2mV/hour. The new carbon-based sensor exhibited excellent selectivity performance for DS over almost all of the anions commonly present in commercial formulations and it was successfully employed as an end-point detector in potentiometric titrations of anionic surfactants in a pH range from 3 to 12. Three-component mixtures containing sodium alkanesulfonate (C 10 , C 12 and C 14 ) were successfully differentially titrated. Copyright © 2016 Elsevier B.V. All rights reserved.
Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study
USDA-ARS?s Scientific Manuscript database
We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...
Sahani, Manoj Kumar; Singh, A K; Jain, A K; Upadhyay, Anjali; Kumar, Amit; Singh, Udai P; Narang, Shikha
2015-02-20
Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.1(4,7).1(10,13)]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd(2+) ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58×10(-9) mol L(-1), Nernstian slope of 29.6 mV decade(-1) of activity. The sensor was found to be independent of pH in the range 2.5-8.5. The sensor showed a fast response time of 10s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd(2+) ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd(2+) ion with EDTA. Copyright © 2014. Published by Elsevier B.V.
Tonkin, J.W.; Balistrieri, L.S.; Murray, J.W.
2004-01-01
Manganese oxides are important scavengers of trace metals and other contaminants in the environment. The inclusion of Mn oxides in predictive models, however, has been difficult due to the lack of a comprehensive set of sorption reactions consistent with a given surface complexation model (SCM), and the discrepancies between published sorption data and predictions using the available models. The authors have compiled a set of surface complexation reactions for synthetic hydrous Mn oxide (HMO) using a two surface site model and the diffuse double layer SCM which complements databases developed for hydrous Fe (III) oxide, goethite and crystalline Al oxide. This compilation encompasses a range of data observed in the literature for the complex HMO surface and provides an error envelope for predictions not well defined by fitting parameters for single or limited data sets. Data describing surface characteristics and cation sorption were compiled from the literature for the synthetic HMO phases birnessite, vernadite and ??-MnO2. A specific surface area of 746 m2g-1 and a surface site density of 2.1 mmol g-1 were determined from crystallographic data and considered fixed parameters in the model. Potentiometric titration data sets were adjusted to a pH1EP value of 2.2. Two site types (???XOH and ???YOH) were used. The fraction of total sites attributed to ???XOH (??) and pKa2 were optimized for each of 7 published potentiometric titration data sets using the computer program FITEQL3.2. pKa2 values of 2.35??0.077 (???XOH) and 6.06??0.040 (???YOH) were determined at the 95% confidence level. The calculated average ?? value was 0.64, with high and low values ranging from 1.0 to 0.24, respectively. pKa2 and ?? values and published cation sorption data were used subsequently to determine equilibrium surface complexation constants for Ba2+, Ca2+, Cd 2+, Co2+, Cu2+, Mg2+, Mn 2+, Ni2+, Pb2+, Sr2+ and Zn 2+. In addition, average model parameters were used to predict additional sorption data for which complementary titration data were not available. The two-site model accounts for variability in the titration data and most metal sorption data are fit well using the pKa2 and ?? values reported above. A linear free energy relationship (LFER) appears to exist for some of the metals; however, redox and cation exchange reactions may limit the prediction of surface complexation constants for additional metals using the LFER. ?? 2003 Elsevier Ltd. All rights reserved.
Iron (III) hydrolysis and solubility at 25 degrees C.
Stefánsson, Andri
2007-09-01
UV-vis spectrophotometric measurements, potentiometric titrations, and solubility measurements were performed to evaluate the hydrolysis constants for aqueous Fe(III) and the solubility of 2-line ferrihydrite over a wide concentration range (0-3 M NaClO4 and p[H+] 1.54-11.23). From these measurements, Fe3+ was found to hydrolyze to form FeOH2+, Fe2(OH)24+, Fe(OH)2+, Fe(OH)3(0), and Fe(OH)4-. The hydrolysis and solubility constants of these species were determined together with their dependence on ionic strength. The iron (III) hydrolysis constants at infinity dilution were (logbeta(1,1) to logbeta(1,4) and logbeta(2,2))-2.19 +/- 0.02, -5.76 +/- 0.06, -14.30 +/- 0.32, -21.71 +/- 0.24, and -2.92 +/- 0.02, respectively. The solubility product for 2-line ferrihydrite was (logK(s,0)) +3.50 +/- 0.20. The results have been compared with literature values.
NASA Astrophysics Data System (ADS)
Ghasemi, Fatemeh; Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Refahi, Masoud; García-Granda, Santiago; Mendoza-Meroño, Rafael
2017-03-01
Reaction between N,N-dimethylebiguanidine, Met = Metformin, and 4-hydroxy-2,6-pyridinedicarboxylic acid, HO-dipicH2, results in the formation of a novel proton transfer compound, [MetH2][HO-dipicH]2·H2O, 1. The characterization was performed using FTIR, UV-Vis, 1H and 13C NMR spectroscopy and X-ray crystallography. The crystal system is triclinic with space group P 1 bar and two molecules per unit cell. The protonation constants of O-dipic and Met, in all of probability protonated forms, and the equilibrium constants for the O-dipic-Met proton transfer system were investigated by the potentiometric pH titration method using the Hyperquad2008 program. The stoichiometry of the proton transfer species in solution were in agreement with the solid state result.
Nural, Yahya; Döndaş, H. Ali; Sarı, Hayati; Atabey, Hasan; Belveren, Samet; Gemili, Müge
2014-01-01
The acid dissociation constants of potential bioactive fused ring thiohydantoin-pyrrolidine compounds were determined by potentiometric titration in 20% (v/v) ethanol-water mixed at 25 ± 0.1°C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Proton affinities of potential donor atoms of the ligands were calculated by AM1 and PM3 semiempiric methods. We found, potentiometrically, three different acid dissociation constants for 1a–f. We suggest that these acid dissociation constants are related to the carboxyl, enol, and amino groups. PMID:24799905
Calixarene-based potentiometric ion-selective electrodes for silver.
O'Connor, K M; Svehla, G; Harris, S J; McKervey, M A
1992-11-01
Four lipophilic sulphur and/or nitrogen containing calixarene derivatives have been tested as ionophores in Ag(I)-selective poly (vinyl chloride) membrane electrodes. All gave acceptable linear responses with one giving a response of 50 mV/dec in the Ag(I) ion activity range 10(-4)-10(-1)M and high selectivity towards other transition metals and sodium and potassium ions. This ionophore was also tested as a membrane coated glassy-carbon electrode where the sensitivity and selectivity of the conventional membrane electrode was found to be repeated. The latter electrode was then used in potentiometric titrations of halide ions with silver nitrate.
Crea, Francesco; Cucinotta, Daniela; De Stefano, Concetta; Milea, Demetrio; Sammartano, Silvio; Vianelli, Giuseppina
2012-11-20
The total solubility of three penicillin derivatives was determined, in pure water and NaCl aqueous solutions at different salt concentrations (from ∼0.15 to 1.0 mol L(-1) for ampicillin and amoxicillin, and from ∼0.05 to 2.0 mol L(-1) for (+)6-aminopenicillanic acid), using the shake-flask method for generating the saturated solutions, followed by potentiometric analysis. The knowledge of the pH of solubilization and of the protonation constants determined in the same experimental conditions, allowed us to calculate, by means of the mass balance equations, the solubility of the neutral species at different ionic strength values, to model its dependence on the salt concentration and to determine the corresponding values at infinite dilution. The salting parameter and the activity coefficients of the neutral species were calculated by the Setschenow equation. The protonation constants of ampicillin and amoxicillin, determined at different temperatures (from T=288.15 to 318.15K), from potentiometric and spectrophotometric measurements, were used to calculate, by means of the Van't Hoff equation, the temperature coefficients at different ionic strength values and the corresponding protonation entropies. The protonation enthalpies of the (+)6-aminopenicillanic acid were determined by isoperibol calorimetric titrations at T=298.15K and up to I=2.0 mol L(-1). The dependence of the protonation constants on ionic strength was modeled by means of the Debye-Hückel and SIT (Specific ion Interaction Theory) approaches, and the specific interaction parameters of the ionic species were determined. The hydrolysis of the β-lactam ring was studied by spectrophotometric and H NMR investigations as a function of pH, ionic strength and time. Potentiometric measurements carried out on the hydrolyzed (+)6-aminopenicillanic acid allowed us to highlight that the opened and the closed β-lactam forms of the (+)6-aminopenicillanic acid have quite different acid-base properties. An analysis of literature solubility, protonation constants, enthalpies and activity coefficients is reported too. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Shu-Cui; Wang, Zhi-Gang; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia
2015-02-01
The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation-deprotonation behavior was determined by continuous acid-base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m2/g and large numbers of surface hydroxyl functional groups (i.e. tbnd Si-OH, tbnd Fe-OH, and tbnd Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K1, log K2) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation-deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.
Determination of Carbonyl Functional Groups in Bio-oils by Potentiometric Titration: The Faix Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Stuart; Ferrell, Jack R.
We know that carbonyl compounds, present in bio-oils, are responsible for bio-oil property changes upon storage and during upgrading. Specifically, carbonyls cause an increase in viscosity (often referred to as 'aging') during storage of bio-oils. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. In addition, carbonyls are also responsible for coke formation in bio-oil upgrading processes. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation havemore » long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. And while traditional carbonyl oximation methods occur at room temperature, the Faix method presented here occurs at an elevated temperature of 80 degrees C.« less
Zarzycki, Piotr; Thomas, Fabien
2006-10-15
The parallel shape of the potentiometric titration curves for montmorillonite suspension is explained using the surface complexation model and taking into account the surface heterogeneity. The homogeneous models give accurate predictions only if they assume unphysically large values of the equilibrium constants for the exchange process occurring on the basal plane. However, the assumption that the basal plane is energetically heterogeneous allows to fit the experimental data (reported by Avena and De Pauli [M. Avena, C.P. De Pauli, J. Colloid Interface Sci. 202 (1998) 195-204]) for reasonable values of exchange equilibrium constant equal to 1.26 (suggested by Fletcher and Sposito [P. Fletcher, G. Sposito, Clay Miner. 24 (1989) 375-391]). Moreover, we observed the typical behavior of point of zero net proton charge (pznpc) as a function of logarithm of the electrolyte concentration (log[C]). We showed that the slope of the linear dependence, pznpc=f(log[C]), is proportional to the number of isomorphic substitutions in the crystal phase, which was also observed in the experimental studies.
Determination of Carbonyl Functional Groups in Bio-oils by Potentiometric Titration: The Faix Method
Black, Stuart; Ferrell, Jack R.
2017-02-07
We know that carbonyl compounds, present in bio-oils, are responsible for bio-oil property changes upon storage and during upgrading. Specifically, carbonyls cause an increase in viscosity (often referred to as 'aging') during storage of bio-oils. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. In addition, carbonyls are also responsible for coke formation in bio-oil upgrading processes. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation havemore » long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. And while traditional carbonyl oximation methods occur at room temperature, the Faix method presented here occurs at an elevated temperature of 80 degrees C.« less
Masadome, Takashi; Yamagishi, Yuichi; Takano, Masaki; Hattori, Toshiaki
2008-03-01
A potentiometric titration method using a cationic surfactant as an indicator cation and a plasticized poly(vinyl chloride) membrane electrode sensitive to the cationic surfactant is proposed for the determination of polyhexamethylene biguanide hydrochloride (PHMB-HCl), which is a cationic polyelectrolyte. A sample solution of PHMB-HCl containing an indicator cation (hexadecyltrimethylammonium ion, HTA) was titrated with a standard solution of an anionic polyelectrolyte, potassium poly(vinyl sulfate) (PVSK). The end-point was detected as a sharp potential change due to an abrupt decrease in the concentration of the indicator cation, HTA, which is caused by its association with PVSK. The effects of the concentrations of HTA ion and coexisting electrolytes in the sample solution on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant exists in the concentration range from 2.0 x 10(-5) to 4.0 x 10(-4) M in the case that the concentration of HTA is 1.0 x 10(-5) M, and that from 1.0 x 10(-6) to 1.2 x 10(-5) M in the case that the concentration of HTA is 5.0 x 10(-6) M, respectively. The proposed method was applied to the determination of PHMB-HCl in some contact-lens detergents.
Fang, Linchuan; Cai, Peng; Li, Pengxiang; Wu, Huayong; Liang, Wei; Rong, Xingmin; Chen, Wenli; Huang, Qiaoyun
2010-09-15
In order to have a better understanding of the interactions of heavy metals with bacteria and minerals in soil and associated environments, isothermal titration calorimetry (ITC), potentiometric titration and equilibrium sorption experiments were conducted to investigate the adsorption behavior of Cu(II) by Bacillus thuringiensis, Pseudomonas putida and their composites with minerals. The interaction of montmorillonite with bacteria increased the reactive sites and resulted in greater adsorption for Cu(II) on their composites, while decreased adsorption sites and capacities for Cu(II) were observed on goethite-bacteria composites. A gram-positive bacterium B. thuringiensis played a more important role than a gram-negative bacterium P. putida in determining the properties of the bacteria-minerals interfaces. The enthalpy changes (DeltaH(ads)) from endothermic (6.14 kJ mol(-1)) to slightly exothermic (-0.78 kJ mol(-1)) suggested that Cu(II) is complexed with the anionic oxygen ligands on the surface of bacteria-mineral composites. Large entropies (32.96-58.89 J mol(-1) K(-1)) of Cu(II) adsorption onto bacteria-mineral composites demonstrated the formation of inner-sphere complexes in the presence of bacteria. The thermodynamic data implied that Cu(II) mainly bound to the carboxyl and phosphoryl groups as inner-sphere complexes on bacteria and mineral-bacteria composites. Copyright 2010 Elsevier B.V. All rights reserved.
Dipicolinate Complexes of Gallium(III) and Lanthanum(III).
Weekes, David M; Ramogida, Caterina F; Jaraquemada-Peláez, Maria de Guadalupe; Patrick, Brian O; Apte, Chirag; Kostelnik, Thomas I; Cawthray, Jacqueline F; Murphy, Lisa; Orvig, Chris
2016-12-19
Three dipicolinic acid amine-derived compounds functionalized with a carboxylate (H 3 dpaa), phosphonate (H 4 dppa), and bisphosphonate (H 7 dpbpa), as well as their nonfunctionalized analogue (H 2 dpa), were successfully synthesized and characterized. The 1:1 lanthanum(III) complexes of H 2 dpa, H 3 dpaa, and H 4 dppa, the 1:2 lanthanum(III) complex of H 2 dpa, and the 1:1 gallium(III) complex of H 3 dpaa were characterized, including via X-ray crystallography for [La 4 (dppa) 4 (H 2 O) 2 ] and [Ga(dpaa)(H 2 O)]. H 2 dpa, H 3 dpaa, and H 4 dppa were evaluated for their thermodynamic stability with lanthanum(III) via potentiometric and either UV-vis spectrophotometric (H 3 dpaa) or NMR spectrometric (H 2 dpa and H 4 dppa) titrations, which showed that the carboxylate (H 3 dpaa) and phosphonate (H 4 dppa) containing ligands enhanced the lanthanum(III) complex stability by 3-4 orders of magnitude relative to the unfunctionalized ligand (comparing log β ML and pM values) at physiological pH. In addition, potentiometric titrations with H 3 dpaa and gallium(III) were performed, which gave significantly (8 orders of magnitude) higher thermodynamic stability constants than with lanthanum(III). This was predicted to be a consequence of better size matching between the dipicolinate cavity and gallium(III), which was also evident in the aforementioned crystal structures. Because of a potential link between lanthanum(III) and osteoporosis, the ligands were tested for their bone-directing properties via a hydroxyapatite (HAP) binding assay, which showed that either a phosphonate or bisphosphonate moiety was necessary in order to elicit a chemical binding interaction with HAP. The oral activity of the ligands and their metal complexes was also assessed by experimentally measuring log P o/w values using the shake-flask method, and these were compared to a currently prescribed osteoporosis drug (alendronate). Because of the potential therapeutic applications of the radionuclides 67/68 Ga, radiolabeling studies were performed with 67 Ga and H 3 dpaa. Quantitative radiolabeling was achieved at pH 6.5 in 10 min at room temperature with concentrations as low as 10 -5 M, and human serum stability studies were undertaken.
Chango, Gabriela; Palacio, Edwin; Cerdà, Víctor
2018-08-15
A simple potentiometric chip-based multipumping flow system (MPFS) has been developed for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples. The proposed system was developed by using a poly(methyl methacrylate) chip microfluidic-conductor using the advantages of flow techniques with potentiometric detection. For this purpose, an automatic system has been designed and built by optimizing the variables involved in the process, such as: pH, ionic strength, stirring and sample volume. This system was applied successfully to water samples getting a versatile system with an analysis frequency of 12 samples per hour. Good correlation between chloride and fluoride concentration measured with ISE and ionic chromatography technique suggests satisfactory reliability of the system. Copyright © 2018 Elsevier B.V. All rights reserved.
Vajgand, V J; Gaál, F F
1967-03-01
A new method of determination of tertiary amines and salts of organic adds in acetic acid solution, to which about 2 % of water and 8% acetic anhydride are added, is described. After the equivalence point, the excess of perchloric acid catalyses the exothermic reaction of water with acetic anhydride. The end-point is determined from the graph of temperature against volume of added titrant. If a slightly soluble compound is produced during the titration, the precision of the new method is superior to that of the potentiometric method.
Thermometric titrations of amines with nitrosyl perchlorate in acetonitrile solvent.
Gündüz, T; Kiliç, E; Cakirer, O
1996-05-01
Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.
NASA Astrophysics Data System (ADS)
Nakano, Yoshiyuki; Fujiki, Tetsuichi; Kimoto, Katsunori; Miwa, Tetsuya
2017-04-01
Ocean acidification has many far reaching impacts on plankton community in the ocean. There is great need of quality instrumentation to assess and monitor the changing seawater pH. To meet the need, we have developed the in situ high accurate pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring to participate the Wendy Schmidt Ocean health XPRIZE. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS is correcting the value of the potentiometric pH (measuring frequently) by the value of the spectrophotometric pH (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the HpHS can measure accurately the value of pH over a long period of time with low power consumption. In order to understand the seasonal and inter-annual variabilities of biogeochemical cycles and ecosystems, ship-based studies have been carried out since 1997 at time-series station K2 (47oN, 160oE) in the subarctic western North Pacific, which is a region with progression of ocean acidification. However, the ship-based studies of the open ocean have been limited in their ability to conduct high-frequency observations for understanding the biogeochemical cycles and ecosystems. To overcome the problem, we developed a hybrid profiling buoy system. The HpHS was attached to a remote automatic water sampler (200m) in the buoy system in July 2015. We recovered the buoy system in June 2016 and succeeded in observing seawater pH every four hours for a year. Here, we show an overview of the diurnal and seasonal variations of pH for a year at station K2. In addition, we examine a relationship between the pH variations and marine calcifiers recovered by the sediment trap during the same period.
Xue, Yongjie; Hou, Haobo; Zhu, Shujing
2009-02-15
Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.
Barringer, J.L.; Johnsson, P.A.
1996-01-01
Titrations for alkalinity and acidity using the technique described by Gran (1952, Determination of the equivalence point in potentiometric titrations, Part II: The Analyst, v. 77, p. 661-671) have been employed in the analysis of low-pH natural waters. This report includes a synopsis of the theory and calculations associated with Gran's technique and presents a simple and inexpensive method for performing alkalinity and acidity determinations. However, potential sources of error introduced by the chemical character of some waters may limit the utility of Gran's technique. Therefore, the cost- and time-efficient method for performing alkalinity and acidity determinations described in this report is useful for exploring the suitability of Gran's technique in studies of water chemistry.
Hureau, Christelle; Charlet, Laurent; Dorlet, Pierre; Gonnet, Florence; Spadini, Lorenzo; Anxolabéhère-Mallart, Elodie; Girerd, Jean-Jacques
2006-09-01
The GGGTH sequence has been proposed to be the minimal sequence involved in the binding of a fifth Cu(II) ion in addition to the octarepeat region of the prion protein (PrP) which binds four Cu(II) ions. Coordination of Cu(II) by the N- and C-protected Ac-GGGTH-NH(2) pentapeptide (P(5)) was investigated by using potentiometric titration, electrospray ionization mass spectrometry, UV-vis spectroscopy, electron paramagnetic resonance (EPR) spectroscopy and cyclic voltammetry experiments. Four different Cu(II) complexes were identified and characterized as a function of pH. The Cu(II) binding mode switches from NO(3) to N(4) for pH values ranging from 6.0 to 10.0. Quasi-reversible reduction of the [Cu(II)(P(5))H(-2)] complex formed at pH 6.7 occurs at E (1/2)=0.04 V versus Ag/AgCl, whereas reversible oxidation of the [Cu(II)(P(5))H(-3)](-) complex formed at pH 10.0 occurs at E (1/2)=0.66 V versus Ag/AgCl. Comparison of our EPR data with those of the rSHaPrP(90-231) (Burns et al. in Biochemistry 42:6794-6803, 2003) strongly suggests an N(3)O binding mode at physiological pH for the fifth Cu(II) site in the protein.
Scherrer, Robert A; Donovan, Stephen F
2009-04-01
The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log P(I) values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log P(I) through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log P(N - I))). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pK(a)'' values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log P(I) and log D. In contrast to the common assumption that diff (log P(N - I)) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log P(I) is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log P(I). On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log D(N) and log D(I). This work also brings attention to the fascinating world of nature's highly stabilized ion pairs.
2009-01-01
The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log PI values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log PI through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log PN − I)). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pKa′′ values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log PI and log D. In contrast to the common assumption that diff (log PN − I) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log PI is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log PI. On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log DN and log DI. This work also brings attention to the fascinating world of nature’s highly stabilized ion pairs. PMID:19265385
A New, Directly Computer-Controlled pH Stat.
1982-03-08
Currently, potentiometric reaction-rate methods of analysis find a wide range of analytical application and a number of such procedeires and corresponding...oxidase glucose + 0 2 - gluconic acid + H20 2 Glucose concentrations are determined by potentiometrically measuring the rate at which gluconic acid is...of lKIlz. Electrodes and Reaction Vessel. Changes in pl! are measured * potentiometrically with a combination Ag/AgCl ceramic junction electrode (No
Surface properties, solubility and dissolution kinetics of bamboo phytoliths
NASA Astrophysics Data System (ADS)
Fraysse, Fabrice; Pokrovsky, Oleg S.; Schott, Jacques; Meunier, Jean-Dominique
2006-04-01
Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of "soil" phytoliths ( pKsp0=2.74 at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction (ΔHr25-80°C=10.85kJ/mol) is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pH IEP = 1.2 ± 0.1 and 2.5 ± 0.2 for "soil" (native) and "heated" (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-p K surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ⩽ pH ⩽ 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation: R=k1·{>SiOH2+}n+k2·{>SiOH0}+k3·{>SiO-}m, where {> i} stands for the concentration of the surface species present at the SiO 2-H 2O interface, ki are the rate constants of the three parallel reactions and n and m represent the order of the proton- and hydroxy-promoted reactions, respectively. It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ˜ 3. This can explain their good preservation in the acidic soil horizons of Réunion Island. In terms of silicon biogeochemical cycle, phytoliths represent a large buffering reservoir, which can play an important role in the regulation of silica fluxes in terrestrial aquatic environments.
Paper-based potentiometric pH sensor using carbon electrode drawn by pencil
NASA Astrophysics Data System (ADS)
Kawahara, Ryotaro; Sahatiya, Parikshit; Badhulika, Sushmee; Uno, Shigeyasu
2018-04-01
A flexible and disposable paper-based pH sensor fabricated with a pencil-drawn working electrode and a Ag/AgCl paste reference electrode is demonstrated for the first time to show pH response by the potentiometric principle. The sensor substrate is made of chromatography paper with a wax-printed hydrophobic area, and various types of carbon pencils are tested as working electrodes. The pH sensitivities of the electrodes drawn by carbon pencils with different hardnesses range from 16.5 to 26.9 mV/pH. The proposed sensor is expected to be more robust against shape change in electrodes on a flexible substrate than other types of chemiresistive/amperometric pH sensors.
Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo
2007-09-01
The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.
Sanan, Reshu; Mahajan, Rakesh Kumar
2013-03-15
With an aim to characterize the micellar aggregates of imidazolium based ionic liquids, a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate (C12MeIm(+)DS(-)) has been developed. The electrode exhibited a linear response for the concentration range of 7.9×10(-5)-9.8×10(-3) M with a super-Nernstian slope of 92.94 mV/decade, a response time of 5 s and critical micellar concentration (cmc) of 10.09 mM for C12MeImBr. The performance of the electrode in investigating the cmc of C12MeImBr in the presence of two drugs [promazine hydrochloride (PMZ) and promethazine hydrochloride (PMT)] and three triblock copolymers (P123, L64 and F68) has been found to be satisfactory on comparison with conductivity measurements. Various micellar parameters have been evaluated for the binary mixtures of C12MeImBr with drugs and triblock copolymers using Clint's, Rubingh's, and Motomura's approach. Thus the electrode offers a simple, straightforward and relatively fast technique for the characterization of micellar aggregates of C12MeImBr, complementing existing conventional techniques. Further, the analytical importance of proposed C12MeIm(+)-ISE as end point indicator in potentiometric titrations and for direct determination of cationic surfactants [cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), benzalkonium chloride (BC)] in some commercial products was judged by comparing statistically with classical two-phase titration methods. Copyright © 2013 Elsevier Inc. All rights reserved.
Huang, Kaixuan; Xu, Yong; Lu, Wen; Yu, Shiyuan
2017-12-01
The thermodynamic dissociation constants of xylonic acid and gluconic acid were studied via potentiometric methods, and the results were verified using lactic acid, which has a known pKa value, as a model compound. Solutions of xylonic acid and gluconic acid were titrated with a standard solution of sodium hydroxide. The determined pKa data were processed via the method of derivative plots using computer software, and the accuracy was validated using the Gran method. The dissociation constants associated with the carboxylic acid group of xylonic and gluconic acids were determined to be pKa 1 = 3.56 ± 0.07 and pKa 1 = 3.74 ± 0.06, respectively. Further, the experimental data showed that the second deprotonation constants associated with a hydroxyl group of each of the two acids were pKa 2 = 8.58 ± 0.12 and pKa 2 = 7.06 ± 0.08, respectively. The deprotonation behavior of polyhydroxy carboxylic acids was altered using various ratios with Cu(II) to form complexes in solution, and this led to proposing a hypothesis for further study.
Korichi, Smain; Bensmaili, Aicha
2009-09-30
This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2)-BET specific surface area, SSA(BET) (thus, total edge site concentrations). The specific surface area should be at least 80-100m(2)/g for smectite clays in order to reach convergence during the modeling. The range of 10-20% SSA(BET) was used to estimate the values of edge site surfaces that led to the convergence during modeling. An agreement between the experimental data and model predictions is found reasonable when 15% SSA(BET) was used as edge site surface. However, the predicted U (VI) adsorption underestimated and overestimated the experimental observations at the 10 and 20% of the measured SSA(BET), respectively. The dependence of uranium sorption modeling results on specific surface area and edge site surface is useful to describe and predict U (VI) retardation as a function of chemical conditions in the field-scale reactive transport simulations. Therefore this approach can be used in the environmental quality assessment.
Catalytic thermometric titrations in non-aqueous solvents by coulometrically generated titrant.
Vajgand, V J; Gaál, F F; Brusin, S S
1970-05-01
Catalytic thermometric titrations have been developed for tertiary amines and salts of organic acids in acetic and propionic anhydride with titrant coulometrically generated at a mercury and/or platinum anode, hydroquinone being added to the solution titrated if the platinum anode is used. The results obtained are compared with those obtained by coulometric titration with the end-point detected either photometrically or potentiometrically. On a élaboré des titrages thermométriques catalytiques pour les amines tertiaires et les sels d'acides organiques en anhydrides aétique et propionique avec l'agent de titrage engendré coulométriquement sur une anode de mercure et/ou platine, de l'hydroquinone étant ajoutée à la solution titrée si l'on emploie l'anode de platine. Les résultats obtenus sont comparés avec ceux obtenus par titrage coulométrique avec le point de fin de réaction détecté soit photométriquement soit potentioétriquement.
Spectroscopic study on variations in illite surface properties after acid-base titration.
Liu, Wen-xin; Coveney, R M; Tang, Hong-xiao
2003-07-01
FT-IR, Raman microscopy, XRD, 29Si and 27Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid-base potentiometric titration. The characteristic XRD lines indicated the presence of surface Al-Si complexes, preferable to Al(OH)3 precipitates. In the microscopic Raman spectra, the vibration peaks of Si-O and Al-O bonds diminished as a result of treatment with acid, then increased after hydroxide back titration. The varied ratio of signal intensity between (IV)Al and (VI)Al species in 27Al MAS NMR spectra, together with the stable BET surface area after acidimetric titration, suggested that edge faces and basal planes in the layer structure of illite participated in dissolution of structural components. The combined spectroscopic evidence demonstrated that the reactions between illite surfaces and acid-leaching silicic acid and aluminum ions should be considered in the model description of surface acid-base properties of the aqueous illite.
Determination of stability constants of aminoglycoside antibiotics with their metal complexes
NASA Astrophysics Data System (ADS)
Tiwow, Vanny M. A.
2014-03-01
One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.
A Ho(III) potentiometric polymeric membrane sensor based on a new four dentate neutral ion carrier.
Zamani, Hassan Ali; Zanganeh-Asadabadi, Abbas; Rohani, Mitra; Zabihi, Mohammad Saleh; Fadaee, Javad; Ganjali, Mohammad Reza; Faridbod, Farnoush; Meghdadi, Soraia
2013-03-01
In this research, we report a new Ho(3+)-PVC membrane electrode based on N-(4,5-dimethyl-2-(picolinamido)phenyl)picolinamide (H(2)Me(2)bpb) as a suitable ion carrier. Poly vinylchloride (PVC)-based membrane composed of H(2)Me(2)bpb with oleic acid (OA) as anionic additives, and o-nitrophenyloctyl ether (NPOE) as plasticized solvent mediator. The sensor exhibits a Nernstian slope of 20.1 ± 0.2 mV decade(-1) over the concentration range of 1.0 × 10(-6) to 1.0 × 1(-2) mol L(-1), and a detection limit of 5.0 × 10(-7) mol L(-1) of Ho(3+) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 3.5-9.4. It has a very short response time, in the whole concentration range (<10s), and can be used for at least eight weeks. The proposed electrode shows a good selectivity towards Ho(3+) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. To assess its analytical applicability the proposed Ho(3+) sensor was successfully applied as an indicator electrode in the titration of Ho(3+) ion solutions in certified reference materials, alloy samples and for the determination of the fluoride ion in two mouthwash preparations. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan
2017-09-01
In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5 × 10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98 × 10-7 M to 1.0 × 10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.
Samarium (III) Selective Membrane Sensor Based on Tin (IV) Boratophosphate
Mittal, Susheel K.; Sharma, Harish Kumar; Kumar, Ashok S. K.
2004-01-01
A number of Sm (III) selective membranes of varying compositions using tin (IV) boratophosphate as electroactive material were prepared. Polyvinyl chloride, polystyrene and epoxy resin were used as binding materials. Membrane having composition of 40% exchanger and 60% epoxy resin exhibited best performance. This membrane worked well over a wide concentration range of 1×10-5M to 1×10-1 M of samarium ions with a Super-Nernstian slope of 40 mV/decade. It has a fast response time of less than 10 seconds and can be used for at least six months without any considerable divergence in potentials. The proposed sensor revealed good selectivities with respect to alkali, alkaline earth, some transition and rare earth metal ions and can be used in the pH range of 4.0-10.0. It was used as an indicator electrode in the potentiometric titration of Sm (III) ions against EDTA. Effect of internal solution was studied and the electrode was successfully used in non-aqueous media, too.
Porous structure and surface chemistry of phosphoric acid activated carbon from corncob
NASA Astrophysics Data System (ADS)
Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.
2012-11-01
Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Zarghampour, Fereshteh; Moghimi, Abolghasem; García-Granda, Santiago; Mendoza-Meroño, Rafael
2015-06-01
Reaction between 2,2‧-dipyridylamine (DPA) and 2,6-pyridine dicarboxylic acid (dipicolinic acid, dipicH2), in water results in the formation of a proton transfer or charge transfer (CT) complex, (DPAH)+(dipicH)-·H2O, 1. The characterization was performed using 1H NMR and FTIR spectroscopy, elemental analysis and X-ray crystallography. The crystal system is triclinic with space group P1. The structural investigations exhibit that the hydrogen bonds and π-π stacking interactions stabilize the crystal structure of proton transfer complex. The protonation constants of 2,6-pyridine dicarboxylic acid, 2,2‧-dipyridylamine and the equilibrium constants for dipic-DPA (1:1) proton transfer system were calculated by potentiometric pH titration method using Hyperquad2008 program. The stoichiometries of the proton transfer species in solution was in agreement with the solid state result.
Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.
Shiklomanov, Alexey N; Levia, Delphis F
2014-10-01
Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stoichiometry of mercury-thiol complexes on bacterial cell envelopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang
We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells wasmore » determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.« less
Khan, Asif Ali; Habiba, Umme; Khan, Anish
2009-01-01
Poly-o-anisidine Sn(IV) arsenophosphate is a newly synthesized nanocomposite material and has been characterized on the basis of its chemical composition, ion exchange capacity, TGA-DTA, FTIR, X-RAY, SEM, and TEM studies. On the basis of distribution studies, the exchanger was found to be highly selective for lead that is an environmental pollutant. For the detection of lead in water a heterogeneous precipitate based ion-selective membrane electrode was developed by means of this composite cation exchanger as electroactive material. The membrane electrode is mechanically stable, with a quick response time, and can be operated over a wide pH range. The selectivity coefficients were determined by mixed solution method and revealed that the electrode is sensitive for Pb(II) in presence of interfering cations. The practical utility of this membrane electrode has been established by employing it as an indicator electrode in the potentiometric titration of Pb(II). PMID:20140082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Troy A
2011-08-01
This dissertation explores lanthanide speciation in liquid solution systems related to separation schemes involving the acidic ligands: bis(2-ethylhexyl) phosphoric acid (HDEHP), lactate, and 8-hydroxyquinoline. Equilibrium speciation of neodymium (Nd 3+), sodium (Na+), HDEHP, water, and lactate in the TALSPEAK liquid-liquid extraction system was explored under varied Nd 3+ loading of HDEHP in the organic phase and through extraction from aqueous HCl and lactate media. System speciation was probed through vapor pressure osmometry, visible and Fourier Transform Infrared (FTIR) spectroscopy, 22Na and 13C labeled lactate radiotracer distribution measurements, Karl Fischer titrations, and equilibrium pH measurements. Distribution of Nd 3+, Na +,more » lactate, and equilibrium pH were modeled using the SXLSQI software to obtain logKNd and logKNa extraction constants under selected conditions. Results showed that high Nd 3+ loading of the HDEHP led to Nd 3+ speciation that departs from the ion exchange mechanism and includes formation of highly aggregated, polynuclear [NdLactate(DEHP) 2] x; (with x > 1). By substituting lanthanum (La 3+) for Nd 3+ in this system, NMR scoping experiments using 23Na, 31P nuclei and 13C labeled lactate were performed. Results indicated that this technique is sensitive to changes in system speciation, and that further experiments are warranted. In a homogeneous system representing the TALSPEAK aqueous phase, Lactate protonation behavior at various temperatures was characterized using a combination of potentiometric titration and modeling with the Hyperquad computer program. The temperature dependent deprotonation behavior of lactate showed little change with temperature at 2.0 M NaCl ionic strength. Cloud point extraction is a non-traditional separation technique that starts with a homogeneous phase that becomes heterogeneous by the micellization of surfactants through the increase of temperature. To better understand the behavior of europium (Eu 3+) and 8-hydroxyquinoline under cloud point extraction conditions, potentiometric and spectrophotometric titrations coupled with modeling with Hyperquad and SQUAD computer programs were performed to assess europium (Eu 3+) and 8-hydroxyquinoline speciation. Experiments in both water and a 1wt% Triton X-114/water mixed solvent were compared to understand the effect of Triton X-114 on the system speciation. Results indicated that increased solvation of 8-hydroxyquinoline by the mixed solvent lead to more stable complexes involving 8-hydroxyquinoline than in water, whereas competition between hydroxide and Triton X-114 for Eu 3+ led to lower stability hydrolysis complexes in the mixed solvent than in water. Lanthanide speciation is challenging due to the trivalent oxidation state that leads to multiple ligand complexes, including some mixed complexes. The complexity of the system demands well-designed and precise experiments that capture the nuances of the chemistry. This work increased the understanding of lanthanide speciation in the explored systems, but more work is required to produce a comprehensive understanding of the speciation involved.« less
Merroun, Mohamed L; Nedelkova, Marta; Ojeda, Jesus J; Reitz, Thomas; Fernández, Margarita López; Arias, José M; Romero-González, María; Selenska-Pobell, Sonja
2011-12-15
This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase. Copyright © 2011 Elsevier B.V. All rights reserved.
Vukosav, Petra; Mlakar, Marina; Tomišić, Vladislav
2012-10-01
A detailed study of iron (III)-citrate speciation in aqueous solution (θ=25°C, I(c)=0.7 mol L(-1)) was carried out by voltammetric and UV-vis spectrophotometric measurements and the obtained data were used for reconciled characterization of iron (III)-citrate complexes. Four different redox processes were registered in the voltammograms: at 0.1 V (pH=5.5) which corresponded to the reduction of iron(III)-monocitrate species (Fe:cit=1:1), at about -0.1 V (pH=5.5) that was related to the reduction of FeL(2)(5-), FeL(2)H(4-) and FeL(2)H(2)(3-) complexes, at -0.28 V (pH=5.5) which corresponded to the reduction of polynuclear iron(III)-citrate complex(es), and at -0.4V (pH=7.5) which was probably a consequence of Fe(cit)(2)(OH)(x) species reduction. Reversible redox process at -0.1 V allowed for the determination of iron(III)-citrate species and their stability constants by analyzing E(p) vs. pH and E(p) vs. [L(4-)] dependence. The UV-vis spectra recorded at varied pH revealed four different spectrally active species: FeLH (logβ=25.69), FeL(2)H(2)(3-) (log β=48.06), FeL(2)H(4-) (log β=44.60), and FeL(2)(5-) (log β=38.85). The stability constants obtained by spectrophotometry were in agreement with those determined electrochemically. The UV-vis spectra recorded at various citrate concentrations (pH=2.0) supported the results of spectrophotometric-potentiometric titration. Copyright © 2012 Elsevier B.V. All rights reserved.
Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite
NASA Astrophysics Data System (ADS)
Wang, Ning; Du, Huihui; Huang, Qiaoyun; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Chen, Wenli
2016-10-01
Surface complexation modeling (SCM) has emerged as a powerful tool for simulating heavy metal adsorption processes on the surface of soil solid components under different geochemical conditions. The component additivity (CA) approach is one of the strategies that have been widely used in multicomponent systems. In this study, potentiometric titration, isothermal adsorption, zeta potential measurement, and extended X-ray absorption fine-structure (EXAFS) spectra analysis were conducted to investigate Cd adsorption on 2 : 1 clay mineral montmorillonite, on Gram-positive bacteria Bacillus subtilis, and their mineral-organic composite. We developed constant capacitance models of Cd adsorption on montmorillonite, bacterial cells, and mineral-organic composite. The adsorption behavior of Cd on the surface of the composite was well explained by CA-SCM. Some deviations were observed from the model simulations at pH < 5, where the values predicted by the model were lower than the experimental results. The Cd complexes of X2Cd, SOCd+, R-COOCd+, and R-POCd+ were the predominant species on the composite surface over the pH range of 3 to 8. The distribution ratio of the adsorbed Cd between montmorillonite and bacterial fractions in the composite as predicted by CA-SCM closely coincided with the estimated value of EXAFS at pH 6. The model could be useful for the prediction of heavy metal distribution at the interface of multicomponents and their risk evaluation in soils and associated environments.
Calculating the Ionization Constant of Functional Groups of Carboxyl Ion Exchangers
NASA Astrophysics Data System (ADS)
Meychik, N. R.; Stepanov, S. I.; Nikolaeva, Yu. I.
2018-02-01
The potentiometric titration of a weakly basic carboxyl cation exchanger, obtained via alkaline hydrolysis of an acrylonitrile copolymer with divinyl benzene (degree of crosslinking, 12%) in a wide range of variation in a solution of pH (2-12) and NaCl (concentration 0.01, 0.1, 0.5, 1 M), is considered. The maximum ion-exchange capacity of the ion exchanger for Na+ is determined (10.10 ± 0.088 mmol/g of the dry mass) and found to be independent of the solution's ionic strength. It is established that in the investigated range of NaCl concentrations and pH, the acid-base balance is adequately described by Gregor's equation. The parameters of this equation are calculated as a function of the NaCl concentration: p K a = 8.13 ± 0.04, n = 1.50 ± 0.02 for 0.01 M; p K a = 6.56 ± 0.04, n = 2.60 ± 0.07 for 0.1 M; and p K a = 5.66 ± 0.6, n = 2.62 ± 0.06 for 0.5 and 1 M. It is shown that to describe the acid-base balance correctly within the proposed model we must estimate the adequacy of the experimental and calculated values of the ion exchanger's capacity at each pH value according to the calculated parameters of Gregor's equation.
A potentiometric enzyme electrode for the direct measurement of organophosphate (OP)
nerve agents was developed. The basic element of this enzyme electrode was a pH electrode
modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking
OPH ...
Microscale pH Titrations Using an Automatic Pipet.
ERIC Educational Resources Information Center
Flint, Edward B.; Kortz, Carrie L.; Taylor, Max A.
2002-01-01
Presents a microscale pH titration technique that utilizes an automatic pipet. A small aliquot (1-5 mL) of the analyte solution is titrated with repeated additions of titrant, and the pH is determined after each delivery. The equivalence point is determined graphically by either the second derivative method or a Gran plot. The pipet can be…
Acid-base properties of the surface of the α-Al2O3 suspension
NASA Astrophysics Data System (ADS)
Ryazanov, M. A.; Dudkin, B. N.
2009-12-01
The distribution of the acid-base centers on the surface of α-Al2O3 suspension particles was studied by potentiometric titration, and the corresponding p K spectra were constructed. It was inferred that the double electric layer created by the supporting electrolyte substantially affected the screening of the acid-base centers on the particle surface of the suspension.
Graphene oxide for acid catalyzed-reactions: Effect of drying process
NASA Astrophysics Data System (ADS)
Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.
2017-03-01
Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.
Ding, Jiawang; Chen, Yan; Wang, Xuewei; Qin, Wei
2012-02-21
A potentiometric label-free and substrate-free (LFSF) aptasensing strategy which eliminates the labeling, separation, and immobilization steps is described in this paper. An aptamer binds specifically to a target molecule via reaction incubation, which could induce a change in the aptamer conformation from a random coil-like configuration to a rigid folded structure. Such a target binding-induced aptamer conformational change effectively prevents the aptamer from electrostatically interacting with the protamine binding domain. This could either shift the response curve for the potentiometric titration of the aptamer with protamine as monitored by a conventional polycation-sensitive membrane electrode or change the current-dependent potential detected by a protamine-conditioned polycation-sensitive electrode with the pulsed current-driven ion fluxes of protamine across the polymeric membrane. Using adenosine triphosphate (ATP) as a model analyte, the proposed concept offers potentiometric detection of ATP down to the submicromolar concentration range and has been applied to the determination of ATP in HeLa cells. In contrast to the current LFSF aptasensors based on optical detection, the proposed strategy allows the LFSF biosensing of aptamer/target binding events in a homogeneous solution via electrochemical transduction. It is anticipated that the proposed strategy will lay a foundation for development of potentiometric sensors for LFSF aptasensing of a variety of analytes where target binding-induced conformational changes such as the formation of folded structures and the opening of DNA hairpin loops are involved.
Simple Potentiometric Determination of Reducing Sugars
ERIC Educational Resources Information Center
Moresco, Henry; Sanson, Pedro; Seoane, Gustavo
2008-01-01
In this article a potentiometric method for reducing sugar quantification is described. Copper(II) ion reacts with the reducing sugar (glucose, fructose, and others), and the excess is quantified using a copper wire indicator electrode. In order to accelerate the kinetics of the reaction, working conditions such as pH and temperature must be…
Wang, Jian; Evangelou, Bill P.; Nielsen, Mark T.
1992-01-01
Surface chemical characteristics of root cell walls extracted from two tobacco genotypes exhibiting differential tolerance to Mn toxicity were studied using potentiometric pH titration and Fourier transform infrared spectroscopy. The Mn-sensitive genotype KY 14 showed a stronger interaction of its cell wall surface with metal ions than did the Mn-tolerant genotype Tobacco Introduction (T.I.) 1112. This observation may be attributed to the relatively higher ratio of COO− to COOH in KY 14 cell walls than that found in the cell walls of T.I. 1112 in the pH range of 4 to 10. For both genotypes, the strength of binding between metal ions and cell wall surface was in the order of Cu > Ca > Mn > Mg > Na. However, a slightly higher preference of Ca over Mn was observed with the T.I. 1112 cell wall. This may explain the high accumulation of Mn in the leaves of Mn-tolerant genotype T.I. 1112 rather than the high accumulation of Mn in roots, as occurred in Mn-sensitive KY 14. It is concluded that surface chemical characteristics of cell walls may play an important role in plant metal ion uptake and tolerance. PMID:16652989
Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose
2014-01-01
When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079
Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D.
2014-01-01
Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517
Donaldson, Melissa A; Bish, David L; Raff, Jonathan D
2014-12-30
Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.
NASA Astrophysics Data System (ADS)
Solovskii, M. V.; Tarabukina, E. B.; Amirova, A. I.; Zakharova, N. V.; Smirnova, M. Yu.; Gavrilova, I. I.
2014-03-01
The complexation of aminoglycoside antibiotics neomycin, gentamicin, kanamycin, and amikacin in the form of free bases with carboxyl- and sulfo-containing copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide (HPMA) in water and water-salt solutions is studied by means of viscometry, equilibrium dialysis, potentiometric titration, and molecular hydrodynamics. Factors influencing the stability of formed copolymer-antibiotic complexes and determinations of their toxicity are established.
A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M
2013-01-01
Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarzycki, Piotr P.; Rosso, Kevin M.
Replica Kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface non-uniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation do not necessarily need to bemore » invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic non-uniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.« less
PVC Membrane Sensors for Potentiometric Determination of Acebutolol
Mostafa, Gamal Abdel-Hafiz; Hefnawy, Mohamed Mahmoud; Al-Majed, Abdulrahman
2007-01-01
The construction and general performance characteristics of two novel potentiometric membrane sensors responsive to the acebutolol are described. The sensors are based on the use of ion-association complexes of acebutolol (AC) with tetraphenylborate(TPB) (I) and phosphomolybdate(PM) (II) as exchange sites in a PVC matrix. The sensors show a fast, stable and near- Nernstian for the mono charge cation of AC over the concentration range 1×10-3 - ∼10-6 M at 25 °C over the pH range 2.0 - 6.0 with cationic slope of 51.5 ± 0.5 and 53.0 ± 0.5 per concentration decade for AC-I and AC-II sensors respectively. The lower detection limit is 6×10-6 M and 4×0-6 M with the response time 20-30 s in the same order of both sensors. Selectivity coefficients of AC related to a number of interfering cation and some organic compounds were investigated. There are negligible interferences are caused by most of the investigated species. The direct determination of 3 - 370 μg/ml of AC shows an average recovery of 99.4 and 99.5% and a mean relative standard deviation of 1.5% at 100.0 μg/ml for sensor I and II respectively. The results obtained by determination of AC in tablets using the proposed sensors which comparable favorably with those obtained by the British pharmacopoeia method. In the present investigation the electrodes have been utilized as end point indicator for some precipitation titration reactions. PMID:28903293
Mizani, F; Salmanzadeh Ardabili, S; Ganjaliab, M R; Faridbod, F; Payehghadr, M; Azmoodeh, M
2015-04-01
(Z)-2-(2-methyl benzylidene)-1-(2,4-dinitrophenyl) hydrazine (L) was used as an active component of PVC membrane electrode (PME), coated graphite electrode (CGE) and coated silver wire electrode (CWE) for sensing Al(3+) ion. The electrodes exhibited linear Nernstian responses to Al(3+) ion in the concentration range of 1.0×10(-6) to 1.0×10(-1)M (for PME, LOD=8.8×10(-7)M), 5.5×10(-7) to 2.0×10(-1)M (for CWE, LOD=3.3×10(-7)M) and 1.5×10(-7) to 1.0×10(-1)M (for CGE, LOD=9.2×10(-8)M). The best performances were observed with the membranes having the composition of L:PVC:NPOE:NaTPB in the ratio of 5:35:57:3 (w/w; mg). The electrodes have a response time of 6s and an applicable pH range of 3.5-9.1. The sensors have a lifetime of about 15weeks and exhibited excellent selectivity over a number of mono-, bi-, and tri-valent cations including alkali, alkaline earth metal, heavy and transition metal ions. Analytical utility of the proposed sensor has been further tested by using it as an indicator electrode in the potentiometric titration of Al(3+) with EDTA. The electrode was also successfully applied for the determination of Al(3+) ion in real and pharmaceutical samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Hefnawy, Mohammed M; Homoda, Atef M; Abounassif, Mohammed A; Alanazi, Amer M; Al-Majed, Abdulrahaman; Mostafa, Gamal A
2014-01-01
The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 × 10(-2) - 4.0 × 10(-6), 1 × 10(-2) - 5.0 × 10(-6), 1 × 10(-2) - 5.0 × 10(-6) M), with detection limits of 3 × 10(-6), 4 × 10(-6) and 4.0 × 10(-6) M for sensor 1, 2 and 3, respectively over a pH range of 6.0 - 9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 μg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6% and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2 and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.
Kragic, Rastislav; Kostic, Mirjana
2018-01-01
In this paper, we present the construction of a reliable and inexpensive pH stat device, by using open-source “OpenPhControl” software, inexpensive hardware (a peristaltic and a syringe pump, Arduino, a step motor…), readily available laboratory devices: a pH meter, a computer, a webcam, and some 3D printed parts. We provide a methodology for the design, development and test results of each part of the device, as well as of the entire system. In addition to dosing reagents by means of a low-cost peristaltic pump, we also present carefully controlled dosing of reagents by an open-source syringe pump. The upgrading of the basic open-source syringe pump is given in terms of pump control and application of a larger syringe. In addition to the basic functions of pH stat, i.e. pH value measurement and maintenance, an improvement allowing the device to be used for potentiometric titration has been made as well. We have demonstrated the device’s utility when applied for cellulose fibers oxidation with 2,2,6,6-tetramethylpiperidine-1-oxyl radical, i.e. for TEMPO-mediated oxidation. In support of this, we present the results obtained for the oxidation kinetics, the consumption of added reagent and experimental repeatability. Considering that the open-source scientific tools are available to everyone, and that researchers can construct and adjust the device according to their needs, as well as, that the total cost of the open-source pH stat device, excluding the existing laboratory equipment (pH meter, computer and glossary) was less than 150 EUR, we believe that, at a small fraction of the cost of available commercial offers, our open-source pH stat can significantly improve experimental work where the use of pH stat is necessary. PMID:29509793
Milanovic, Jovana Z; Milanovic, Predrag; Kragic, Rastislav; Kostic, Mirjana
2018-01-01
In this paper, we present the construction of a reliable and inexpensive pH stat device, by using open-source "OpenPhControl" software, inexpensive hardware (a peristaltic and a syringe pump, Arduino, a step motor…), readily available laboratory devices: a pH meter, a computer, a webcam, and some 3D printed parts. We provide a methodology for the design, development and test results of each part of the device, as well as of the entire system. In addition to dosing reagents by means of a low-cost peristaltic pump, we also present carefully controlled dosing of reagents by an open-source syringe pump. The upgrading of the basic open-source syringe pump is given in terms of pump control and application of a larger syringe. In addition to the basic functions of pH stat, i.e. pH value measurement and maintenance, an improvement allowing the device to be used for potentiometric titration has been made as well. We have demonstrated the device's utility when applied for cellulose fibers oxidation with 2,2,6,6-tetramethylpiperidine-1-oxyl radical, i.e. for TEMPO-mediated oxidation. In support of this, we present the results obtained for the oxidation kinetics, the consumption of added reagent and experimental repeatability. Considering that the open-source scientific tools are available to everyone, and that researchers can construct and adjust the device according to their needs, as well as, that the total cost of the open-source pH stat device, excluding the existing laboratory equipment (pH meter, computer and glossary) was less than 150 EUR, we believe that, at a small fraction of the cost of available commercial offers, our open-source pH stat can significantly improve experimental work where the use of pH stat is necessary.
Gallium(III) complexes of DOTA and DOTA-monoamide: kinetic and thermodynamic studies.
Kubícek, Vojtech; Havlícková, Jana; Kotek, Jan; Tircsó, Gyula; Hermann, Petr; Tóth, Eva; Lukes, Ivan
2010-12-06
Given the practical advantages of the (68)Ga isotope in positron emission tomography applications, gallium complexes are gaining increasing importance in biomedical imaging. However, the strong tendency of Ga(3+) to hydrolyze and the slow formation and very high stability of macrocyclic complexes altogether render Ga(3+) coordination chemistry difficult and explain why stability and kinetic data on Ga(3+) complexes are rather scarce. Here we report solution and solid-state studies of Ga(3+) complexes formed with the macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, (DOTA)(4-), and its mono(n-butylamide) derivative, (DO3AM(Bu))(3-). Thermodynamic stability constants, log K(GaDOTA) = 26.05 and log K(GaDO3AM(Bu)) = 24.64, were determined by out-of-cell pH-potentiometric titrations. Due to the very slow formation and dissociation of the complexes, equilibration times of up to ∼4 weeks were necessary. The kinetics of complex dissociation were followed by (71)Ga NMR under both acidic and alkaline conditions. The GaDOTA complex is significantly more inert (τ(1/2) ∼12.2 d at pH = 0 and τ(1/2) ∼6.2 h at pH = 10) than the GaDO3AM(Bu) analogue (τ(1/2) ∼2.7 d at pH = 0 and τ(1/2) ∼0.7 h at pH = 10). Nevertheless, the kinetic inertness of both chelates is extremely high and approves the application of Ga(3+) complexes of such DOTA-like ligands in molecular imaging. The solid-state structure of the GaDOTA complex, crystallized from a strongly acidic solution (pH < 1), evidenced a diprotonated form with protons localized on the free carboxylate pendants.
NASA Astrophysics Data System (ADS)
Tang, Cuihua; Zhu, Jianxi; Li, Zhaohui; Zhu, Runliang; Zhou, Qing; Wei, Jingming; He, Hongping; Tao, Qi
2015-11-01
Silica minerals are widely used in environmental remediation for their prevalence in soil and sediment. Two common SiO2 polymorphs, α-quartz and α-cristobalite, were investigated for the removal of a typical cationic dye, methylene blue (MB), from aqueous solutions. Their adsorption behaviors were studied in batch experiments as a function of specific surface area (SSA), pH, and temperature. The surface site density of α-quartz (10.6 sites/nm2) was higher than that of α-cristobalite (6.2 sites/nm2) with the Gran plot method, and the adsorption maxima of MB on the two were 0.84 mg/m2 and 0.49 mg/m2, respectively, at 303 K and pH 8. The potentiometric titration showed the capacity of proton-donating by α-quartz was stronger than that by α-cristobalite. A drastic increase of adsorption amount on α-quartz at pH < 3 was caused by its greater quantity of isolated silanols. The negative ΔG and positive ΔH values suggested adsorption of MB on both minerals was spontaneous and endothermic. At three different temperatures (288 K, 298 K, and 303 K), the adsorption capacities of two polymorphs increased with increasing temperature. The surface heterogeneity of α-quartz and α-cristobalite corresponds to their different adsorption behavior, and our work also provides some referential significance in evaluating the overall quality of soils and sediments.
NASA Astrophysics Data System (ADS)
Shekhovtsova, N. S.; Maltseva, E. V.; Glyzina, T. S.; Ovchinnikova, I. S.
2015-11-01
The aim of the research work is to quantify interaction between phenanthrene with modified humic acids in aquatic environment. The changes in the structure and properties of humic acids after modifications were studied with 1H NMR spectroscopy and potentiometric titration methods. Our research demonstrates that the application of thiourea as a modified agent increases the binding capacity of humic acids towards phenanthrene.
Vannecke, T P W; Lampens, D R A; Ekama, G A; Volcke, E I P
2015-01-01
Simple titration methods certainly deserve consideration for on-site routine monitoring of volatile fatty acid (VFA) concentration and alkalinity during anaerobic digestion (AD), because of their simplicity, speed and cost-effectiveness. In this study, the 5 and 8 pH point titration methods for measuring the VFA concentration and carbonate system alkalinity (H2CO3*-alkalinity) were assessed and compared. For this purpose, synthetic solutions with known H2CO3*-alkalinity and VFA concentration as well as samples from anaerobic digesters treating three different kind of solid wastes were analysed. The results of these two related titration methods were verified with photometric and high-pressure liquid chromatography measurements. It was shown that photometric measurements lead to overestimations of the VFA concentration in the case of coloured samples. In contrast, the 5 pH point titration method provides an accurate estimation of the VFA concentration, clearly corresponding with the true value. Concerning the H2CO3*-alkalinity, the most accurate and precise estimations, showing very similar results for repeated measurements, were obtained using the 8 pH point titration. Overall, it was concluded that the 5 pH point titration method is the preferred method for the practical monitoring of AD of solid wastes due to its robustness, cost efficiency and user-friendliness.
Wong, Brian A; Friedle, Simone; Lippard, Stephen J
2009-05-27
The mechanism by which dipicolylamine (DPA) chelate-appended fluorophores respond to zinc was investigated by the synthesis and study of five new analogues of the 2',7'-dichlorofluorescein-based Zn(2+) sensor Zinpyr-1 (ZP1). With the use of absorption and emission spectroscopy in combination with potentiometric titrations, a detailed molecular picture has emerged of the Zn(2+) and H(+) binding properties of the ZP1 family of sensors. The two separate N(3)O donor atom sets on ZP1 converge to form binding pockets in which all four heteroatoms participate in coordination to either Zn(2+) or protons. The position of the pyridyl group nitrogen atom, 2-pyridyl or 4-pyridyl, has a large impact on the fluorescence response of the dyes to protons despite relatively small changes in pK(a) values. The fluorescence quenching effects of such multifunctional electron-donating units are often taken as a whole. Despite the structural complexity of ZP1, however, we provide evidence that the pyridyl arms of the DPA appendages participate in the quenching process, in addition to the contribution from the tertiary nitrogen amine atom. Potentiometric titrations reveal ZP1 dissociation constants (K(d)) for Zn(2+) of 0.04 pM and 1.2 nM for binding to the first and second binding pockets of the ligand, respectively, the second of which correlates with the value observed by fluorescence titration. This result demonstrates that both binding pockets of this symmetric, ditopic sensor need to be occupied in order for full fluorescence turn-on to be achieved. These results have significant implications for the design and implementation of fluorescent sensors for studies of mobile zinc ions in biology.
Dittrich, Maria; Sibler, Sabine
2005-06-15
In order to clarify the role of picocyanobacteria in aquatic biogeochemical processes (e.g., calcite precipitation), cell surface properties need to be investigated. An experimental study of the cell surface characteristics of two Synechococcus-type unicellular autotrophic picocyanobacterial strains was carried out. One strain was isolated from Lake Plon and contained phycocyanin, the other strain came from Lago Maggiore and was rich in phycoerythrin. Potentiometric titrations were conducted to determine the different types of sites present on the bacteria cell walls. Infrared spectroscopy allowed characterization of the various functional groups (RNH(2), RCOOH, ROH, RPO(2)) and investigations of zeta potential provided insight into the isoelectrical points of the strains. Titrations reveal three distinct sites on the bacterial surfaces of phycocyanin- and phycoerythrin-rich strains with pK values of 4.8+/-0.3/5.0+/-0.2, 6.6+/-0.2/6.7+/-0.4, and 8.8+/-0.1/8.7+/-0.2, corresponding to carboxyl, phosphate, and amine groups with surface densities of 2.6+/-0.4/7.4+/-1.6 x 10(-4), 1.9+/-0.5/4.4+/-0.8 x 10(-4), and 2.5+/-0.4/4.8+/-0.7 x 10(-4) mol/g of dry bacteria. The deprotonation constants are similar to those of bacterial strains and site densities are also within an order of magnitude of other strains. The phycoerythrin-rich strain had a higher number of binding sites than the phycocyanin-rich strain. The results showed that picocyanobacteria may adsorb either calcium cations or carbonate anions and therefore strongly influence the biogeochemical cycling of calcite in pelagic systems.
Ott, A.N.
1986-01-01
Determination of acidity provides a value that denotes the quantitative capacity of the sample water to neutralize a strong base to a particular pH. However, much additional information can be obtained from this determination if a titration curve is constructed from recorded data of titrant increments and their corresponding pH values. The curve can be used to identify buffer capabilities, the acidity with respect to any pH value within the curve limit, and, in the case of acid mine drainage from north-central Pennsylvania, the identification and estimation of the concentration of dissolved ferrous iron, ferric iron, and aluminum. Through use of titration curves, a relationship was observed for the acid mine drainage between: (1) the titratable acidity (as milligrams per liter calcium carbonate) to pH 4.0 and the concentration of dissolved ferric iron; and (2) the titratable acidity (as milligrams per liter calcium carbonate) from pH 4.0 to 5.0 and the concentration of dissolved aluminum. The presence of dissolved ferrous iron can be detected by the buffering effect exhibited in the area between pH 5.5 to 7.5. The concentration of ferrous iron is estimated by difference between the concentrations of ferric iron in an oxidized and unoxidized sample. Interferences in any of the titrations from manganese, magnesium, and aluminate, appear to be negligible within the pH range of interest.
Humic acid protein complexation
NASA Astrophysics Data System (ADS)
Tan, W. F.; Koopal, L. K.; Weng, L. P.; van Riemsdijk, W. H.; Norde, W.
2008-04-01
Interactions of purified Aldrich humic acid (PAHA) with lysozyme (LSZ) are investigated. In solution LSZ is moderately positively and PAHA negatively charged at the investigated pH values. The proton binding of PAHA and of LSZ is determined by potentiometric proton titrations at various KCl concentrations. It is also measured for two mixtures of PAHA-LSZ and compared with theoretically calculated proton binding assuming no mutual interaction. The charge adaptation due to PAHA-LSZ interaction is relatively small and only significant at low and high pH. Next to the proton binding, the mass ratio PAHA/LSZ at the iso-electric point (IEP) of the complex at given solution conditions is measured together with the pH using the Mütek particle charge detector. From the pH changes the charge adaptation due to the interaction can be found. Also these measurements show that the net charge adaptation is weak for PAHA-LSZ complexes at their IEP. PAHA/LSZ mass ratios in the complexes at the IEP are measured at pH 5 and 7. At pH 5 and 50 mmol/L KCl the charge of the complex is compensated for 30-40% by K +; at pH 7, where LSZ has a rather low positive charge, this is 45-55%. At pH 5 and 5 mmol/L KCl the PAHA/LSZ mass ratio at the IEP of the complex depends on the order of addition. When LSZ is added to PAHA about 25% K + is included in the complex, but no K + is incorporated when PAHA is added to LSZ. The flocculation behavior of the complexes is also different. After LSZ addition to PAHA slow precipitation occurs (6-24 h) in the IEP, but after addition of PAHA to LSZ no precipitation can be seen after 12 h. Clearly, PAHA/LSZ complexation and the colloidal stability of PAHA-LSZ aggregates depend on the order of addition. Some implications of the observed behavior are discussed.
Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces.
Feng, Tao; Hoagland, David A; Russell, Thomas P
2014-02-04
The efficient segregation of water-soluble, acid-functionalized, single-walled carbon nanotubes (SWCNTs) at the oil/water interface was induced by dissolving low-molecular-weight amine-terminated polystyrene (PS-NH2) in the oil phase. Salt-bridge interactions between carboxylic acid groups of SWCNTs and amine groups of PS drove the assembly of SWCNTs at the interface, monitored by pendant drop tensiometry and laser scanning confocal microscopy. The impact of PS end-group functionality, PS and SWCNT concentrations, and the degree of SWCNT acid modification on the interfacial activity was assessed, and a sharp drop in interfacial tension was observed above a critical SWCNT concentration. Interfacial tensions were low enough to support stable oil/water emulsions. Further experiments, including potentiometric titrations and the replacement of SWCNTs by other carboxyl-containing species, demonstrated that the interfacial tension drop reflects the loss of SWCNT charge as the pH falls near/below the intrinsic carboxyl dissociation constant; species lacking multivalent carboxylic acid groups are inactive. The trapped SWCNTs appear to be neither ordered nor oriented.
Silver(I) ion-selective membrane based on Schiff base-p-tert-butylcalix[4]arene.
Mahajan, R K; Kumar, M; Sharma, V; Kaur, I
2001-04-01
A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.
Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater.
Gonzalez, Mário H; Araújo, Geórgia C L; Pelizaro, Claudia B; Menezes, Eveline A; Lemos, Sherlan G; de Sousa, Gilberto Batista; Nogueira, Ana Rita A
2008-11-30
A high cost-effective treatment of sulphochromic waste is proposed employing a raw coconut coir as biosorbent for Cr(VI) removal. The ideal pH and sorption kinetic, sorption capacities, and sorption sites were the studied biosorbent parameters. After testing five different isotherm models with standard solutions, Redlich-Peterson and Toth best fitted the experimental data, obtaining a theoretical Cr(VI) sorption capacity (SC) of 6.3 mg g(-1). Acid-base potentiometric titration indicated around of 73% of sorption sites were from phenolic compounds, probably lignin. Differences between sorption sites in the coconut coir before and after Cr adsorption identified from Fourier transform infrared spectra suggested a modification of sorption sites after sulphochromic waste treatment, indicating that the sorption mechanism involves organic matter oxidation and chromium uptake. For sulphocromic waste treatment, the SC was improved to 26.8+/-0.2 mg g(-1), and no adsorbed Cr(VI) was reduced, remaining only Cr(III) in the final solution. The adsorbed material was calcinated to obtain Cr(2)O(3,) with a reduction of more than 60% of the original mass.
Redox and Chemical Activities of the Hemes in the Sulfur Oxidation Pathway Enzyme SoxAX*
Bradley, Justin M.; Marritt, Sophie J.; Kihlken, Margaret A.; Haynes, Kate; Hemmings, Andrew M.; Berks, Ben C.; Cheesman, Myles R.; Butt, Julea N.
2012-01-01
SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys−, and active site His/CysS−-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS−) ligand to the active site heme. This provides the first evidence for the dissociation of CysS− that has been proposed as a key event in SoxAX catalysis. PMID:23060437
Pal, Rama; Tewari, Saumyata; Rai, Jai P N
2009-10-01
The dead Kluyveromyces marxianus biomass, a fermentation industry waste, was used to explore its sorption potential for lead, mercury, arsenic, cobalt, and cadmium as a function of pH, biosorbent dosage, contact time, agitation speed, and initial metal concentration. The equilibrium data fitted the Langmuir model better for cobalt and cadmium, but Freundlich isotherm for all metals tested. At equilibrium, the maximum uptake capacity (Qmax) was highest for lead followed by mercury, arsenic, cobalt, and cadmium. The RL values ranged between 0-1, indicating favorable sorption of all test metals by the biosorbent. The maximum Kf value of Pb showed its efficient removal from the solution. However, multi-metal analysis depicted that sorption of all metals decreased except Pb. The potentiometric titration of biosorbent revealed the presence of functional groups viz. amines, carboxylic acids, phosphates, and sulfhydryl group involved in heavy metal sorption. The extent of contribution of functional groups and lipids to biosorption was in the order: carboxylic>lipids>amines>phosphates. Blocking of sulfhydryl group did not have any significant effect on metal sorption.
Khemiss, Mehdi; Ben Khelifa, Mohamed; Ben Saad, Helmi
2017-12-01
The aim of the present comparative study was to compare some salivary characteristics between exclusive waterpipe smokers (EWPS) and non-smokers. 72 males (36 EWPS) were recruited. The volume of stimulated saliva was determined and divided by the duration of saliva collection. The pH was measured directly using a pH meter. The buffering capacity was determined using a quantitative method which involved the addition of 10 µl HCl. Up to a total of 160 µL was titrated up to obtain a pH titration curve. At 50 µL of titrated HCl, buffering capacity was ranked into three categories: high, medium and low. EWPS and non-smoker groups had similar flow rates (1.81 ± 0.79 and 1.78 ± 1.14 mL min-1) and similar baseline pH (6.60 ± 0.37 and 6.76 ± 0.39). Statistically significant differences in the two groups' pH were observed from 30 to 160 µL of titrated up HCl. At 50 µL of titrated up HCl, the EWPS group compared to the non-smoker group had a significantly higher pH (4.79 ± 0.72 vs. 5.32 ± 0.79). To conclude, waterpipe tobacco smoking alters the buffering capacity but does not alter either salivary flow rates or the baseline pH and consistency.
NASA Astrophysics Data System (ADS)
Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios
2016-12-01
Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.
Brix, Kevin V; Wood, Chris M; Grosell, Martin
2013-01-01
In this study, Na(+) uptake and acid-base balance in the euryhaline pupfish Cyprinodon variegatus variegatus were characterized when fish were exposed to pH 4.5 freshwater (7mM Na(+)). Similar to the related cyprinodont, Fundulus heteroclitus, Na(+) uptake was significantly inhibited when exposed to low pH water. However, it initially appeared that C. v. variegatus increased apparent net acid excretion at low pH relative to circumneutral pH. This result is opposite to previous observations for F. heteroclitus under similar conditions where fish were observed to switch from apparent net H(+) excretion at circumneutral pH to apparent net H(+) uptake at low pH. Further investigation revealed disparate observations between these studies were the result of using double endpoint titrations to measure titratable alkalinity fluxes in the current study, while the earlier study utilized single endpoint titrations to measure these fluxes (i.e.,. Cyprinodon acid-base transport is qualitatively similar to Fundulus when characterized using single endpoint titrations). This led to a comparative investigation of these two methods. We hypothesized that either the single endpoint methodology was being influenced by a change in the buffer capacity of the water (e.g., mucus being released by the fish) at low pH, or the double endpoint methodology was not properly accounting for ammonia flux by the fish. A series of follow-up experiments indicated that buffer capacity of the water did not change significantly, that excretion of protein (a surrogate for mucus) was actually reduced at low pH, and that the double endpoint methodology does not properly account for NH(3) excretion by fish under low pH conditions. As a result, it overestimates net H(+) excretion during low pH exposure. After applying the maximum possible correction for this error (i.e., assuming that all ammonia is excreted as NH(3)), the double endpoint methodology indicates that net H(+) transport was reduced to effectively zero in both species at pH 4.5. However, significant differences between the double endpoint (no net H(+) transport at low pH) and single endpoint titrations (net H(+) uptake at low pH) remain to be explained. Copyright © 2012 Elsevier Inc. All rights reserved.
Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent
NASA Astrophysics Data System (ADS)
Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.
2013-07-01
The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.
Determination of MIL-H-6083 Hydraulic Fluid In-Service Use Limits for Self-Propelled Artillery
1991-09-01
determined using the American Society for Testing and Materials (ASTM) D1744 Karl Fischer Reagent method . The specification limit is 0.05% (500 pans per...cazefully controlled. TOTAL ACID NUMBER The acid number was determined by the ASTM D664 potentiometric titration test method . Unfortunately, data were...fluid condition t results with AOAP tent date was found. The Navy Patch Kit method for particle contamination meamrement was evaluated as a possible
Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.
Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar
2018-01-05
A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaboriaud, Fabien; Ehrhardt, Jean-Jacques
2003-03-01
The surface charge of colloidal particles is usually determined by potentiometric titration. These acid-base titrations make it possible to measure the pH of point-of-zero charge (pzc) for oxide minerals. This macroscopic property is the most important parameter used in surface complexation modeling to reproduce experimental data. The pzc values of goethite reported in the literature vary between 7.0 and 9.5. Carbonate adsorption and/or surface morphology are thought to account for this wide range. We demonstrate a procedure for the removal of the carbonate ions that initially adsorb on goethite and strongly affect the titration curves and pzc determination. We also investigated the crystal-face-specific reactivity of two morphologically different goethites. The z-profiles obtained from atomic force microscopy (AFM) images showed that the goethite with the smallest specific surface area ( S = 49 m 2/g, denoted G49) exhibits 70% of the (001) face, whereas this value is only 30% for the goethite with largest specific surface area ( S = 95 m 2/g, denoted G95). This morphologic difference results in slightly different pzc values: 9.0 for G49 goethite and 9.1 for G95 geothite. These experimental pzc values have been correlated with multisite complexation calculations using both the full-site and the 1-pK approaches. We used the full-site approach to consider all of the configurations of hydrogen bond interactions with surface site. The resulting mean charges gave estimated pzc values of 8.9 and 9.2 for the (001) and (101) faces, respectively. Considering these theoretical pzc values for individual faces and the face distributions obtained from AFM analysis, the calculated pzc values are in full agreement with the experimental pzc values. However, this morphologic difference is more expressed in surface charge values than in the pzc values. Indeed, the surface charge of G49 goethite is much higher than that of G95 goethite, and the 1-pK calculations make it possible to fit the titration data satisfactorily.
Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.
Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo
2001-07-15
The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.
Complexation of copper by aquatic humic substances from different environments
McKnight, Diane M.; Feder, Gerald L.; Thurman, E. Michael; Wershaw, Robert L.
1983-01-01
The copper-complexing properties of aquatic humic substances isolated from eighteen different environments were characterized by potentiometric titration, using a cupric ion selective electrode. Potentiometric data were analyzed using FITEQL, a computer program for the determination of chemical equilibrium constants from experimental data. All the aquatic humic substances could be modelled as having two types of Cu(II)-binding sites: one with K equal to about 106 and a concentration of 1.0 ± 0.4 × 10−6 M(mg C)−1 and another with K equal to about 108 and a concentration of 2.6 ± 1.6 × 10−7 M(mg C)−1.A method is described for estimating the Cu(II)-binding sites associated with dissolved humic substances in natural water based on a measurement of dissolved organic carbon, which may be helpful in evaluating chemical processes controlling speciation of Cu and bioavailability of Cu to aquatic organisms.
A study of Lux-Flood acid-base reactions in KBr melts at 800°C
NASA Astrophysics Data System (ADS)
Rebrova, T. P.; Cherginets, V. L.; Ponomarenko, T. V.
2009-11-01
The dissociation of CO{3/2-} (p K = 2.4 ± 0.2) and precipitation of MgO (p L MgO = 10.66 ± 0.1) in a KBr melt at 800°C were studied potentiometrically with the use of a Pt(O2)|ZrO2|(Y2O3) membrane oxygen electrode. The direct calibration of the electrochemical circuit allowed only the equilibrium concentration of O2- (of strong bases) to be determined in the melt. The total concentration of oxygen-containing impurities, including CO{3/2-} and CO{4/2-} weak bases, can be found by the potentiometric titration of a sample of KBr by adding MgCl2 (Mg2+), a strong Lux-Flood acid, which causes the decomposition of these oxygen-containing anions. This reaction can also be used to remove oxo anions from alkali metal halide melts.
Khemiss, Mehdi; Ben Khelifa, Mohamed; Ben Saad, Helmi
2017-01-01
ABSTRACT The aim of the present comparative study was to compare some salivary characteristics between exclusive waterpipe smokers (EWPS) and non-smokers. 72 males (36 EWPS) were recruited. The volume of stimulated saliva was determined and divided by the duration of saliva collection. The pH was measured directly using a pH meter. The buffering capacity was determined using a quantitative method which involved the addition of 10 µl HCl. Up to a total of 160 µL was titrated up to obtain a pH titration curve. At 50 µL of titrated HCl, buffering capacity was ranked into three categories: high, medium and low. EWPS and non-smoker groups had similar flow rates (1.81 ± 0.79 and 1.78 ± 1.14 mL min-1) and similar baseline pH (6.60 ± 0.37 and 6.76 ± 0.39). Statistically significant differences in the two groups’ pH were observed from 30 to 160 µL of titrated up HCl. At 50 µL of titrated up HCl, the EWPS group compared to the non-smoker group had a significantly higher pH (4.79 ± 0.72 vs. 5.32 ± 0.79). To conclude, waterpipe tobacco smoking alters the buffering capacity but does not alter either salivary flow rates or the baseline pH and consistency. PMID:28266252
Review on State-of-the-art in Polymer Based pH Sensors
Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian
2007-01-01
This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277
Automated potentiometric electrolyte analysis system. [for use in weightlessness
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility is demonstrated of utilizing chemical sensing electrode technology as the basis for an automatically-controlled system for blood gas and electrolyte analyses under weightlessness conditions. The specific measurements required were pH, pCO2, sodium, chloride, potassium ions, and ionized calcium. The general electrode theory, and ion activity measurements are described along with the fluid transport package, electronics unit, and controller for the automated potentiometric analysis system.
Real-time monitoring of ischemia inside stomach.
Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep
2013-02-15
The low pH in the gastric juice of the stomach makes it difficult to fabricate stable and functional all-solid-state pH ISE sensors to sense ischemia, mainly because of anion interference and adhesion problem between the ISE membrane and the electrode surface. In this work, the adhesion of ISE membrane on solid surface at low pH was improved by modifying the surface with a conductive substrate containing hydrophilic and hydrophobic groups. This creates a stable and robust candidate for low pH applications. Moreover, anion interference problem at low pH was solved by integration of all-solid-state ISE and internal reference electrodes on an array. So, the same tendencies of anion interferences for all-solid-state ISE and all-solid-state reference electrodes cancel each other in differential potentiometric detection. The developed sensor presents a novel all-solid-state potentiometric, miniaturized and mass producible pH ISE sensor for detecting ischemia on the stomach tissue on an array designed for endoscopic applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Investigation of Zn2+ and Cd2+ Adsorption Performanceby Different Weathering Basalts
NASA Astrophysics Data System (ADS)
Xue, Q.; Shuo, Q.; Chen, H.
2016-12-01
Geological barriers play an important role in preventing pollution of groundwater. Basalts are common geological media; however, there have not been any studies that report the effect of basalt type on the metal ion adsorption performance. In this study, we explored the metal ion (Zn2+ and Cd2+) adsorption ability of two kinds of weathering basalts: the origin weathering basalt (WB) and the eluvial deposit (ED), both of which were derived from same basaltic formation. Characteristics of the sediments were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Barrett-Joyner-Halenda (BJH) measurement and the rapid potentiometric titration (RPT) method. Batch experiments were performed to evaluate the Zn2+ and Cd2+ adsorption performance of WB and ED and how adsorption was affected by contact time, initial metal ion concentration, pH and ionic strength. Despite WB and ED having similar chemical compositions, WB exhibited better adsorption than ED likely due to the fact that WB was rougher and had more small-sized spherical structures and stronger electrostatic forces. The adsorption process fit the Freundlich isotherm model well. The adsorption efficiency decreased with a decrease of pH (from 4 to 2) and with increasing ionic strength. These results suggest that a geological barrier composed of WB media might be able to effectively sequester metallic contaminants to prevent them from reaching groundwater.
Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.
Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B
2005-06-01
This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.
Sun, Yubing; Chen, Changlun; Tan, Xiaoli; Shao, Dadong; Li, Jiaxing; Zhao, Guixia; Yang, Shubin; Wang, Qi; Wang, Xiangke
2012-11-21
Mesoporous Al(2)O(3) was intercalated into an expanded graphite (EG) interlayer to prepare mesoporous Al(2)O(3)/EG composites. The basal spacing of mesoporous Al(2)O(3)/EG composites was enlarged as compared to raw graphite from the X-ray diffraction analysis. The massive surface functional groups and wedge-shaped pores were observed in terms of potentiometric acid-base titration analysis and scanning electron microscope, respectively. The pH-dependent adsorption of Eu(III) on mesoporous Al(2)O(3)/EG composites was evidently independent of ionic strength. The maximum adsorption capacity of Eu(III) on mesoporous Al(2)O(3)/EG composites at pH 6.0 and T = 293 K was calculated to be 5.14 mg g(-1). Desorption kinetics and cyclic operation results showed that mesoporous Al(2)O(3)/EG composites presented high hydrothermal stability in aqueous solution. The thermodynamic parameters suggested that Eu(III) adsorption on mesoporous Al(2)O(3)/EG composites is an endothermic and a spontaneous process. The decrease of Eu-O bond distance with the increasing pH demonstrated that the adsorption mechanism between Eu(III) and mesoporous Al(2)O(3)/EG composites would shift from outer-sphere surface complexation to inner-sphere surface complexation in terms of extended X-ray absorption fine structure spectroscopy analysis.
Yunta, Felipe; García-Marco, Sonia; Lucena, Juan J; Gómez-Gallego, Mar; Alcázar, Roberto; Sierra, Miguel A
2003-08-25
Iron chelates such as ethylenediamine-N,N'-bis(2-hydroxyphenyl)acetic acid (EDDHA) and their analogues are the most efficient soil fertilizers to treat iron chlorosis in plants growing in calcareous soils. EDDHA, EDDH4MA (ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenyl)acetic acid), and EDDCHA (ethylenediamine-N,N'-bis(2-hydroxy-5-carboxyphenyl)acetic acid) are allowed by the European directive, but also EDDHSA (ethylenediamine-N,N'-bis(2-hydroxy-5-sulfonylphenyl)acetic acid) and EDDH5MA (ethylenediamine-N,N'-bis(2-hydroxy-5-methylphenyl)acetic acid) are present in several commercial iron chelates. In this study, these chelating agents as well as p,p-EDDHA (ethylenediamine-N,N'-bis(4-hydroxyphenyl)acetic acid) and EDDMtxA (ethylenediamine-N,N'-bis(2-metoxyphenyl)acetic acid) have been obtained following a new synthetic pathway. Their chemical behavior has been studied to predict the effect of the substituents in the benzene ring on their efficacy as iron fertilizers for soils above pH 7. The purity of the chelating agents has been determined using a novel methodology through spectrophotometric titration at 480 nm with Fe(3+) as titrant to evaluate the inorganic impurities. The protonation constants were determined by both spectrophotometric and potentiometric methods, and Ca(2+) and Mg(2+) stability constants were determined from potentiometric titrations. To establish the Fe(3+) and Cu(2+) stability constants, a new spectrophotometric method has been developed, and the results were compared with those reported in the literature for EDDHA and EDDHMA and their meso- and rac-isomers. pM values have been also determined to provide a comparable basis to establish the relative chelating ability of these ligands. The purity obtained for the ligands is higher than 87% in all cases and is comparable with that obtained by (1)H NMR. No significant differences have been found among ligands when their protonation and stability constants were compared. As expected, no Fe(3+) complexation was observed for p,p-EDDHA and EDDMtxA. The presence of sulfonium groups in EDDHSA produces an increase in acidity that affects their protonation and stability constants, although the pFe values suggest that EDDHSA could be also effective to correct iron chlorosis in plants.
Spadini, Lorenzo; Schindler, Paul W; Charlet, Laurent; Manceau, Alain; Vala Ragnarsdottir, K
2003-10-01
The surface properties of ferrihydrite were studied by combining wet chemical data, Cd(K) EXAFS data, and a surface structure and protonation model of the ferrihydrite surface. Acid-base titration experiments and Cd(II)-ferrihydrite sorption experiments were performed within 3<-log[H(+)]<10.5 and 0.5<[Cd(t)]<12 mM in 0.3 M NaClO(4) at 25 degrees C, where [Cd(t)] refers to total Cd concentration. Measurements at -5.5
Adsorption interactions of humic acids with biocides
NASA Astrophysics Data System (ADS)
Mal'Tseva, E. V.; Ivanov, A. A.; Yudina, N. V.
2009-11-01
The chemical composition of humic acids from brown coal (Aldrich) was determined by element analysis, 13C NMR spectroscopy, and potentiometric titration. The adsorption ability of humic acids with different biocides (cyproconasol, propiconasol, tebuconasol, irgarol 1051, and DCOIT) was studied. The adsorption ability of a mixture of biocides in aqueous solutions was higher than that of the individual components. The limiting concentration of humic acids at which adsorption of biocides was maximum was determined. Adsorption constants were calculated by the Freundlich equation for each biocide in aqueous solution.
Zagórska, Agnieszka; Czopek, Anna; Pawłowski, Maciej; Dybała, Małgorzata; Siwek, Agata; Nowak, Gabriel
2012-11-01
Affinities of arylpiperazinylalkyl derivatives of imidazo[2,1-f]purine-2,4-dione and imidazolidine-2,4-dione for serotonin transporter and their acid-base properties were evaluated. The dissociation constant (pK(a)) of compounds 1-22 were determinated by potentiometric titration and calculated using pKalc 3.1 module of the Pallas system. The data from experimental methods and computational calculations were compared and suitable conclusions were reached.
1981-11-01
and the cyclohexane over molecular sieves, -79- pm NO pAalB hION fl i4a and then measuring the ppm of water in the cyclohexane using the Karl Fischer ... potentiometric titration using a method outlined by Bell [J. Polymer Sci. 8, 417-36 (1970)]. The procedure for epoxy groups involves the re- action with...with time, earliest stages of coating delamination, and secondary processes that occur was obtained by time lapse photography. Electrical methods are
Kellermeier, Matthias; Cölfen, Helmut; Gebauer, Denis
2013-01-01
Despite the importance of crystallization for various areas of research, our understanding of the early stages of the mineral precipitation from solution and of the actual mechanism of nucleation is still rather limited. Indeed, detailed insights into the processes underlying nucleation may enable a systematic development of novel strategies for controlling mineralization, which is highly relevant for fields ranging from materials chemistry to medicine. In this work, we describe experimental aspects of a quantitative assay, which relies on pH titrations combined with in situ metal ion potentiometry and conductivity measurements. The assay has originally been designed to study the crystallization of calcium carbonate, one of the most abundant biominerals. However, the developed procedures can also be readily applied to any compound containing cations for which ion-selective electrodes are available. Besides the possibility to quantitatively assess ion association prior to nucleation and to directly determine thermodynamic solubility products of precipitated phases, the main advantage of the crystallization assay is the unambiguous identification of the different stages of precipitation (i.e., prenucleation, nucleation, and early postnucleation) and the characterization of the multiple effects of additives. Furthermore, the experiments permit targeted access to distinct precursor species and intermediate stages, which thus can be analyzed by additional methods such as cryo-electron microscopy or analytical ultracentrifugation (AUC). Regarding ion association in solution, AUC detects entities significantly larger than simple ion pairs, so-called prenucleation clusters. Sedimentation coefficient values and distributions obtained for the calcium carbonate system are discussed in light of recent insights into the structural nature of prenucleation clusters. © 2013 Elsevier Inc. All rights reserved.
Abbaspour, A; Tashkhourian, J; Ahmadpour, S; Mirahmadi, E; Sharghi, H; Khalifeh, R; Shahriyari, M R
2014-01-01
A poly (vinyl chloride) (PVC) matrix membrane ion-selective electrode for silver (I) ion is fabricated based on modified polypyrrole - multiwalled carbon nanotubes composite with new lariat ether. This sensor has a Nernstian slope of 59.4±0.5mV/decade over a wide linear concentration range of 1.0×10(-7) to 1.0×10(-1)molL(-1) for silver (I) ion. It has a short response time of about 8.0s and can be used for at least 50days. The detection limit is 9.3×10(-8)molL(-1) for silver (I) ion, and the electrode was applicable in the wide pH range of 1.6 -7.7. The electrode shows good selectivity for silver ion against many cations such as Hg (II), which usually imposes serious interference in the determination of silver ion concentration. The use of multiwalled carbon nanotubes (MWCNTs) in a polymer matrix improves the linear range and sensitivity of the electrode. In addition by coating the solid contact with a layer of the polypyrrole (Ppy) before coating the membrane on it, not only did it reduce the drift in potential, but a shorter response time was also resulted. The proposed electrode was used as an indicator electrode for potentiometric titration of silver ions with chloride anions and in the titration of mixed halides. This electrode was successfully applied for the determination of silver ions in silver sulphadiazine as a burning cream. © 2013.
Dolomite surface speciation and reactivity in aquatic systems
NASA Astrophysics Data System (ADS)
Pokrovsky, Oleg S.; Schott, Jacques; Thomas, Fabien
1999-10-01
The surface charge of dolomite (CaMg(CO3)2) was measured as a function of pH (6.5-11.5), pCO2 (10-3.5, 0.01, and 0.96 atm) and ionic strength (0.01, 0.1, and 0.5 M NaCl) using potentiometric titrations in a limited residence time reactor. Dolomite zeta potential (ζ) was determined using streaming potential and electrophoresis techniques at pH 2 to 12 in solutions having ionic strengths from 0.001 to 0.1 M NaCl as a function of aqueous Ca2+, Mg2+, and CO32- concentrations. The point of zero charge (PZC) and isoelectric point (IEP) of dolomite are the same (pH ∼8 at pCO2 ∼10-3.5 atm) and very close to those of calcite and magnesite. On the basis of these results, a surface complexation model (SCM) is proposed that postulates the presence of three distinct primary hydration sites: >CO3H°, >CaOH°, and >MgOH°. The intrinsic stability constants of dolomite surface reactions were determined by fitting the pH dependence of the surface charge and taking into account the isoelectric points and ζ-potential values for a wide range of solution compositions. In most natural aquatic environments, dolomite surface speciation can be modeled using the following species: >CO3-, >CO3Me+, >MeOH2+, >MeHCO3o, and >MeCO3-, where Me = Ca, Mg. The speciation model presented in this study allows description of metal and ligand adsorption onto dolomite surface and provides new insights on the mechanisms that control dolomite dissolution/crystallization in aqueous solutions. In particular, it is shown that dolomite dissolution is controlled by the protonation of >CO3H° surface complexes at pH < 6 and by hydrolysis of >MeOH2+ groups at higher pH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xingliang; Zhang, Zhicheng; Endrizzi, Francesco
2015-06-01
The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An 3+) from trivalent lanthanides (Ln 3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na +, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found tomore » exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln 3+ and An 3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln 3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the oxygen of a carboxylate group. These data, in conjunction with the thermodynamic parameters of Ln 3+/An 3+ complexes with HEDTA at different temperatures, will help to predict the speciation and temperature-dependent behavior of Ln 3+/An 3+ in the modified TALSPEAK process.« less
Surface acid-base properties and hydration/dehydration mechanisms of aluminum (hydr)oxides.
Yang, Xiaofang; Sun, Zhongxi; Wang, Dongsheng; Forsling, Willis
2007-04-15
In this paper, surface physiochemical properties of three typical aluminas, gamma-Al(OH)3, gamma-Al2O3, and alpha-Al2O3, were investigated by means of XRD, SEM, TEM, BET surface area, TG/DTA, and potentiometric titration techniques. Based on the titration data, surface protonation and deprotonation constants were determined using the constant capacitance model (CCM). The emphasis of this research was laid on the comparison of the crystal structure, surface hydration/dehydration and acid-base properties of these three typical alumina minerals. The calculation results revealed that the surface acidity of the aluminas is in the order of alpha-Al2O3>gamma-Al(OH)3>gamma-Al2O3 after being hydrated for 1 h. The correlation between the hydration/dehydration mechanisms of alumina and its acid/base properties is discussed.
Dargó, Gergő; Bölcskei, Adrienn; Grün, Alajos; Béni, Szabolcs; Szántó, Zoltán; Lopata, Antal; Keglevich, György; Balogh, György T
2017-09-05
Determination of the proton dissociation constants of several arylphosphonic acid derivatives was carried out to investigate the accuracy of the Hammett equations available for this family of compounds. For the measurement of the pK a values modern, accurate methods, such as the differential potentiometric titration and NMR-pH titration were used. We found our results significantly different from the pK a values reported before (pK a1 : MAE = 0.16 pK a2 : MAE=0.59). Based on our recently measured pK a values, refined Hammett equations were determined that might be used for predicting highly accurate ionization constants of newly synthesized compounds (pK a1 =1.70-0.894σ, pK a2 =6.92-0.934σ). Copyright © 2017 Elsevier B.V. All rights reserved.
New insights into the early stages of silica-controlled barium carbonate crystallisation
NASA Astrophysics Data System (ADS)
Eiblmeier, Josef; Schürmann, Ulrich; Kienle, Lorenz; Gebauer, Denis; Kunz, Werner; Kellermeier, Matthias
2014-11-01
Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures resembling those typically displayed by biogenic minerals. These so-called biomorphs were shown to be composed of uniform elongated carbonate nanoparticles that are arranged according to a specific order over mesoscopic scales. In the present study, we have investigated the circumstances leading to the continuous formation and stabilisation of such well-defined nanometric building units in these inorganic systems. For this purpose, in situ potentiometric titration measurements were carried out in order to monitor and quantify the influence of silica on both the nucleation and early growth stages of barium carbonate crystallisation in alkaline media at constant pH. Complementarily, the nature and composition of particles occurring at different times in samples under various conditions were characterised ex situ by means of high-resolution electron microscopy and elemental analysis. The collected data clearly evidence that added silica affects carbonate crystallisation from the very beginning (i.e. already prior to, during, and shortly after nucleation), eventually arresting growth on the nanoscale by cementation of BaCO3 particles within a siliceous matrix. Our findings thus shed light on the fundamental processes driving bottom-up self-organisation in silica-carbonate materials and, for the first time, provide direct experimental proof that silicate species are responsible for the miniaturisation of carbonate crystals during growth of biomorphs, hence confirming previously discussed theoretical models for their formation mechanism.Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures resembling those typically displayed by biogenic minerals. These so-called biomorphs were shown to be composed of uniform elongated carbonate nanoparticles that are arranged according to a specific order over mesoscopic scales. In the present study, we have investigated the circumstances leading to the continuous formation and stabilisation of such well-defined nanometric building units in these inorganic systems. For this purpose, in situ potentiometric titration measurements were carried out in order to monitor and quantify the influence of silica on both the nucleation and early growth stages of barium carbonate crystallisation in alkaline media at constant pH. Complementarily, the nature and composition of particles occurring at different times in samples under various conditions were characterised ex situ by means of high-resolution electron microscopy and elemental analysis. The collected data clearly evidence that added silica affects carbonate crystallisation from the very beginning (i.e. already prior to, during, and shortly after nucleation), eventually arresting growth on the nanoscale by cementation of BaCO3 particles within a siliceous matrix. Our findings thus shed light on the fundamental processes driving bottom-up self-organisation in silica-carbonate materials and, for the first time, provide direct experimental proof that silicate species are responsible for the miniaturisation of carbonate crystals during growth of biomorphs, hence confirming previously discussed theoretical models for their formation mechanism. Electronic supplementary information (ESI) available: Additional titration data (Fig. S1 and S2) and further results from TEM-EDX analyses (Fig. S3-S8). See DOI: 10.1039/c4nr05436a
ERIC Educational Resources Information Center
Smith, Garon C.; Hossain, Md Mainul; MacCarthy, Patrick
2014-01-01
3-D topographic surfaces ("topos") can be generated to visualize how pH behaves during titration and dilution procedures. The surfaces are constructed by plotting computed pH values above a composition grid with volume of base added in one direction and overall system dilution on the other. What emerge are surface features that…
Cravotta, Charles A.; Parkhurst, David L.; Means, Brent P; McKenzie, Bob; Morris, Harry; Arthur, Bill
2010-01-01
Treatment with caustic chemicals typically is used to increase pH and decrease concentrations of dissolved aluminum, iron, and/or manganese in largevolume, metal-laden discharges from active coal mines. Generally, aluminum and iron can be removed effectively at near-neutral pH (6 to 8), whereas active manganese removal requires treatment to alkaline pH (~10). The treatment cost depends on the specific chemical used (NaOH, CaO, Ca(OH)2, Na2CO3, or NH3) and increases with the quantities of chemical added and sludge produced. The pH and metals concentrations do not change linearly with the amount of chemical added. Consequently, the amount of caustic chemical needed to achieve a target pH and the corresponding effluent composition and sludge volume can not be accurately determined without empirical titration data or the application of geochemical models to simulate the titration of the discharge water with caustic chemical(s). The AMDTreat computer program (http://amd.osmre.gov/ ) is widely used to compute costs for treatment of coal-mine drainage. Although AMDTreat can use results of empirical titration with industrial grade caustic chemicals to compute chemical costs for treatment of net-acidic or net-alkaline mine drainage, such data are rarely available. To improve the capability of AMDTreat to estimate (1) the quantity and cost of caustic chemicals to attain a target pH, (2) the concentrations of dissolved metals in treated effluent, and (3) the volume of sludge produced by the treatment, a titration simulation is being developed using the geochemical program PHREEQC (wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/) that will be coupled as a module to AMDTreat. The simulated titration results can be compared with or used in place of empirical titration data to estimate chemical quantities and costs. This paper describes the development, evaluation, and potential utilization of the PHREEQC titration module for AMDTreat.
Field measurement of alkalinity and pH
Barnes, Ivan
1964-01-01
The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.
Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo
2008-01-01
To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25–40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme. PMID:18421167
Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo
2008-05-01
To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5-8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25-40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme.
Alizadeh, Taher; Atayi, Khalil
2018-02-01
Herein, a new recipe is introduced for the preparation of hydrogen phosphate ion-imprinted polymer nanoparticles (nano-IIP) in acetonitrile/water (63.5:36.5) using phosphoric acid as the template. The nano-IIP obtained was used as the recognition element of a carbon paste potentiometric sensor. The IIP electrode showed a Nernstian response to hydrogen phosphate anion; whereas, the non-imprinted polymer (NIP)-based electrode had no considerable sensitivity to the anion. The presence of both methacrylic acid and vinyl pyridine in the IIP structure, as well as optimization of the functional monomers-template proportion, was found to be important to observe the sensing capability of the IIP electrode. The nano-IIP electrode showed a dynamic linear range of 1 × 10 -5 -1 × 10 -1 mol L-1, Nernstian slope of 30.6 ± (0.5) mV decade -1 , response time of 25 seconds, and detection limit of 4.0 × 10 -6 mol L -1 . The utility of the electrodes was checked by potentiometric titration of hydrogen phosphate with La 3+ solution. Copyright © 2017 John Wiley & Sons, Ltd.
Biosorption of Microelements by Spirulina: Towards Technology of Mineral Feed Supplements
Chojnacka, Katarzyna
2014-01-01
Surface characterization and metal ion adsorption properties of Spirulina sp. and Spirulina maxima were verified by various instrumental techniques. FTIR spectroscopy and potentiometric titration were used for qualitative and quantitative determination of metal ion-binding groups. Comparative FTIR spectra of natural and Cu(II)-treated biomass proved involvement of both phosphoryl and sulfone groups in metal ions sorption. The potentiometric titration data analysis provided the best fit with the model assuming the presence of three types of surface functional groups and the carboxyl group as the major binding site. The mechanism of metal ions biosorption was investigated by comparing the results from multielemental analyses by ICP-OES and SEM-EDX. Biosorption of Cu(II), Mn(II), Zn(II), and Co(II) ions by lyophilized Spirulina sp. was performed to determine the metal affinity relationships for single- and multicomponent systems. Obtained results showed the replacement of naturally bound ions: Na(I), K(I), or Ca(II) with sorbed metal ions in a descending order of Mn(II) > Cu(II) > Zn(II) > Co(II) for single- and Cu(II) > Mn(II) > Co(II) > Zn(II) for multicomponent systems, respectively. Surface elemental composition of natural and metal-loaded material was determined both by ICP-OES and SEM-EDX analysis, showing relatively high value of correlation coefficient between the concentration of Na(I) ions in algal biomass. PMID:25386594
On the acid-base properties of humic acid in soil.
Cooke, James D; Hamilton-Taylor, John; Tipping, Edward
2007-01-15
Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.
Titratable acidity of beverages influences salivary pH recovery.
Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido
2015-01-01
A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.
NASA Astrophysics Data System (ADS)
Sharma, S. S.; Kadia, M. V.
2014-12-01
The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (Δ G, Δ H, and Δ S) are also evaluated. Negative Δ G and Δ H values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the "gadolinium break." Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.
Song, Weihong; Wu, Chunhui; Yin, Hongzong; Liu, Xiaoyan; Sa, Panpan; Hu, Jinyang
2008-01-01
A novel approach to prepare homogeneous PbS nanoparticles by phase-transfer method was developed. The preparatory conditions were studied in detail, and the nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. Then a novel lead ion-selective electrode of polyvinyl chloride (PVC) membrane based on these lead sulfide nanoparticles was prepared, and the optimum ratio of components in the membrane was determined. The results indicated that the sensor exhibited a wide concentration range of 1.0×10−5 to 1.0×10−2 mol.L−1. The response time of the electrode was about 10 s, and the optimal pH in which the electrode could be used was from 3.0 to 7.0. Selectivity coefficients indicated that the electrode was selective to the primary ion over the interfering ion. The electrode can be used for at least 3 months without any divergence in potential. It was successfully applied to directly determine lead ions in solution and used as an indicator electrode in potentiometric titration of lead ions with EDTA. PMID:19112518
NASA Astrophysics Data System (ADS)
Wcisło, Anna; Niedziałkowski, Paweł; Wnuk, Elżbieta; Zarzeczańska, Dorota; Ossowski, Tadeusz
2013-05-01
A series of novel 1-amino and 1,4-diamino-9,10-anthraquinones, substituted with different alkyl groups, were synthesized as the result of alkylation with amino substituents. All the obtained aminoanthraquinone derivatives were characterized by NMR, IR spectroscopy and mass spectrometry. The spectroscopic properties of these compounds were determined by using UV-Vis spectroscopy in acetonitrile, and in the mixture of acetonitrile and methanol at different pH ranges. The effects of various substituents present in the newly developed anthraquinone derivatives and their ability to form hydrogen bonds between the carbonyl oxygen atom of anthraquinone moiety and nitrogen atom of N-H group in 1-aminoanthraquinone (1-AAQ) and 1,4-diaminoanthraquinone (1,4-DAAQ) were studied. Additionally, the effects of hydrogen bond formation between O-H group in hydroxyethylamino substituent and the carbonyl oxygen atom of anthraquinone were investigated. The spectroscopic behavior of the studied derivatives strongly depended on the solvent-solute interactions and the nature of solvent. The values of pKa for the new anthraquinones were determined by the combined potentiometric and spectrophotometric titration methods.
NASA Astrophysics Data System (ADS)
Caldarola, Dario; Mitev, Dimitar P.; Marlin, Lucile; Nesterenko, Ekaterina P.; Paull, Brett; Onida, Barbara; Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado; Nesterenko, Pavel N.
2014-01-01
A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (dp = 37-63 μm, average pore size 6 nm, specific surface area 425 m2 g-1) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid-base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 104, 4.9 × 105 and 2.6 × 104 for Zn(II), Pb(II) and Cd(II), respectively.
Shalviri, Alireza; Chan, Ho Ka; Raval, Gaurav; Abdekhodaie, Mohammad J; Liu, Qiang; Heerklotz, Heiko; Wu, Xiao Yu
2013-01-01
This work focused on the design of new pH-responsive nanoparticles for controlled delivery of anticancer drug doxorubicin (Dox). Nanoparticles of poly(methacrylic acid)-polysorbate 80-grafted starch (PMAA-PS 80-g-St) were synthesized by using a one-pot method that enabled simultaneous grafting of PMAA and PS 80 onto starch and nanoparticle formation in an aqueous medium. The particles were characterized by FTIR, (1)H NMR, TEM, DLS, and potentiometric titration. Dox loading and in vitro release from the nanoparticles were investigated. The FTIR and (1)H NMR confirmed the chemical composition of the graft terpolymer. The nanoparticles were relatively spherical with narrow size distribution and porous morphology. They exhibited pH-dependent swelling in a physiological pH range. The particle size and magnitude of phase transition were dependent on polymer composition and formulation parameters such as concentrations of surfactant and cross-linking agent and total monomer concentration. The nanoparticles with optimized compositions showed high loading capacity for Dox and sustained Dox release. The results suggest that the new pH-responsive terpolymer nanoparticles are useful in controlled drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.
Wcisło, Anna; Niedziałkowski, Paweł; Wnuk, Elżbieta; Zarzeczańska, Dorota; Ossowski, Tadeusz
2013-05-01
A series of novel 1-amino and 1,4-diamino-9,10-anthraquinones, substituted with different alkyl groups, were synthesized as the result of alkylation with amino substituents. All the obtained aminoanthraquinone derivatives were characterized by NMR, IR spectroscopy and mass spectrometry. The spectroscopic properties of these compounds were determined by using UV-Vis spectroscopy in acetonitrile, and in the mixture of acetonitrile and methanol at different pH ranges. The effects of various substituents present in the newly developed anthraquinone derivatives and their ability to form hydrogen bonds between the carbonyl oxygen atom of anthraquinone moiety and nitrogen atom of N-H group in 1-aminoanthraquinone (1-AAQ) and 1,4-diaminoanthraquinone (1,4-DAAQ) were studied. Additionally, the effects of hydrogen bond formation between O-H group in hydroxyethylamino substituent and the carbonyl oxygen atom of anthraquinone were investigated. The spectroscopic behavior of the studied derivatives strongly depended on the solvent-solute interactions and the nature of solvent. The values of pKa for the new anthraquinones were determined by the combined potentiometric and spectrophotometric titration methods. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, B.; Boyanov, M.; Bunker, B. A.
2010-08-01
Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior frommore » approximately pH 3-9 that requires the presence of four distinct sites, with pK{sub a} values of 3.3 {+-} 0.2, 4.8 {+-} 0.2, 6.7 {+-} 0.4, and 9.4 {+-} 0.5, and site concentrations of 8.9({+-}2.6) x 10{sup -5}, 1.3({+-}0.2) x 10{sup -4}, 5.9({+-}3.3) x 10{sup -5}, and 1.1({+-}0.6) x 10{sup -4} moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.« less
Duc, M; Adekola, F; Lefèvre, G; Fédoroff, M
2006-11-01
The effect of acid-base titration protocol and speed on pH measurement and surface charge calculation was studied on suspensions of gamma-alumina, hematite, goethite, and silica, whose size and porosity have been well characterized. The titration protocol has an important effect on surface charge calculation as well as on acid-base constants obtained by fitting of the titration curves. Variations of pH versus time after addition of acid or base to the suspension were interpreted as diffusion processes. Resulting apparent diffusion coefficients depend on the nature of the oxide and on its porosity.
Modern Directions for Potentiometric Sensors
Bakker, Eric; Chumbimuni-Torres, Karin
2009-01-01
This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473
Bell, Christopher G; Seelanan, Parinya; O'Hare, Danny
2017-10-23
Electochemical generator-collector systems, where one electrode is used to generate a reagent, have a potentially large field of application in sensing and measurement. We present a new theoretical description for coplanar microelectrode disc-disc systems where the collector is passive (such as a potentiometric sensor) and the generator is operating at constant flux. This solution is then used to develop a leading order solution for such a system where the reagent reacts reversibly in solution, such as in acid-base titration, where a hydrogen ion flux is generated by electrolysis of water. The principal novel result of the theory is that such devices are constrained by a maximum reagent flux. The hydrogen ion concentration at the collector will only reflect the buffer capacity of the bulk solution if this constraint is met. Both mathematical solutions are evaluated with several microfabricated devices and reasonable agreement with theory is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adib, F.; Bagreev, A.; Bandosz, T.J.
The H{sub 2}S breakthrough capacity was measured on two series of activated carbons of a coconut shell and a bituminous coal origins. To broaden the spectrum of surface features the samples were oxidized using nitric acid or ammonium persulfate under conditions chosen to preserve their pore structures. Then the carbons were characterized using Boehm titration, potentiometric titration, thermal analysis, temperature programmed desorption, sorption of nitrogen, and sorption of water. It was found that the choice of unimpregnated carbon for application as H{sub 2}S adsorbent should be made based on parameters of its acidity such as number of acidic groups, pHmore » of surface, amount of surface groups oxygen, or weight loss associated to decomposition of surface oxygen species. The results obtained from the analyses of six unimpregnated carbon samples suggest that there are certain threshold values of these quantities which, when exceeded, have a dramatic effect on the H{sub 2}S breakthrough capacity.« less
Comparison of VFA titration procedures used for monitoring the biogas process.
Lützhøft, Hans-Christian Holten; Boe, Kanokwan; Fang, Cheng; Angelidaki, Irini
2014-05-01
Titrimetric determination of volatile fatty acids (VFAs) contents is a common way to monitor a biogas process. However, digested manure from co-digestion biogas plants has a complex matrix with high concentrations of interfering components, resulting in varying results when using different titration procedures. Currently, no standardized procedure is used and it is therefore difficult to compare the performance among plants. The aim of this study was to evaluate four titration procedures (for determination of VFA-levels of digested manure samples) and compare results with gas chromatographic (GC) analysis. Two of the procedures are commonly used in biogas plants and two are discussed in literature. The results showed that the optimal titration results were obtained when 40 mL of four times diluted digested manure was gently stirred (200 rpm). Results from samples with different VFA concentrations (1-11 g/L) showed linear correlation between titration results and GC measurements. However, determination of VFA by titration generally overestimated the VFA contents compared with GC measurements when samples had low VFA concentrations, i.e. around 1 g/L. The accuracy of titration increased when samples had high VFA concentrations, i.e. around 5 g/L. It was further found that the studied ionisable interfering components had lowest effect on titration when the sample had high VFA concentration. In contrast, bicarbonate, phosphate and lactate had significant effect on titration accuracy at low VFA concentration. An extended 5-point titration procedure with pH correction was best to handle interferences from bicarbonate, phosphate and lactate at low VFA concentrations. Contrary, the simplest titration procedure with only two pH end-points showed the highest accuracy among all titration procedures at high VFA concentrations. All in all, if the composition of the digested manure sample is not known, the procedure with only two pH end-points should be the procedure of choice, due to its simplicity and accuracy. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rakhshaee, Roohan
2015-11-01
Fe0 nano particles (FNPs) were connected to the cell wall of the dead and living Azolla filicoloides as an aquatic fern, individually. FNPs mean size was decreased due to the stabilization, especially using the living one. It was compared the results of X-ray photoelectron spectroscopy (XPS), saturation magnetization (Ms), zeta potential (ZP) and thermal analysis (DSC and TGA) of the dead and living Azolla connected to FNPs, and also the findings of potentiometric titration (PT) of the cell wall's pectin of the dead and living Azolla. It was confirmed (by XRD and XPS) that Fe0 nano particles when were connected to the living Azolla did not produce Fe3O4 due to oxidation unlike the bare FNPs and the connected form to the dead Azolla, by reason of the more stabilization (more surface protection) of nano iron particles after connecting to the living Azolla. To adsorb methylene blue by these agents at the optimum pre-treatment pH 10 and adsorption pH 8, the parameters of equilibrium sorption, rate constant of second-order sorption and activation energy were obtained as: living Azolla-FNPs > dead Azolla-FNPs > FNPs > dead Azolla, while, their thermodynamic parameters (ΔG°, ΔH° and ΔS°) had the reverse arrangement. It was also studied the various factors rule such as photoperiod and the presence of heavy metals on the living Azolla growth coupled with FNPs and its MB removal ability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, C.-M.S.; Lukens, W.W.; Poineau, F.
2009-05-18
Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the X-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry and the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but it may be augmented bymore » some products of the reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex ([Tc{sup II}(NO)(AHA){sub 2}H{sub 2}O]{sup +}, 1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent: potentiometric-spectrophotometric titration studies indicate a single species from pH 4 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The potential formation of 1 during reprocessing may strongly impact the fate of technetium in the nuclear fuel cycle.« less
Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.
Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene
2015-10-01
Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). Copyright © 2015 Elsevier Inc. All rights reserved.
Zhou, Ying-Hua; Chen, Li-Qing; Tao, Jun; Shen, Jun-Li; Gong, Dao-Yu; Yun, Rui-Rui; Cheng, Yong
2016-10-01
To construct the model of metallohydrolase, two inclusion complexes [MLCl 2 (β-CD)] (1, M=Zn(II); 2, M=Cu(II); L=N,N'-bis(2-pyridylmethyl)amantadine; β-CD=β-cyclodextrin) were synthesized by mixing β-CDs with the pre-synthesized complexes G1, [ZnLCl 2 ] and G2, [CuLCl 2 ]. Structures of G1, G2, 1 and 2 were characterized by X-ray crystallography, respectively. In solution, two chloride anions of G1 and G2 underwent ligand exchange with solvent molecules according to ESI-MS analysis. The chemical equilibrium constants were determined by potentiometric pH titration. The kinetics of bis(4-nitrophenyl) phosphate (BNPP) hydrolysis catalyzed by G1, G2, 1 and 2 were examined at pHs ranging from 7.50 to 10.50 at 308±0.1K. The pH profile of rate constant of BNPP hydrolysis catalyzed by 1 exhibited an exponential increase with the second-order rate constant of 2.68×10 -3 M -1 s -1 assigned to the di-hydroxo species, which was approximately an order of magnitude higher than those of reported mono-Zn(II)-hydroxo species. The high reactivity was presumably hydroxyl-rich microenvironment provided by β-CDs, which might effect in stabilizing either the labile zinc-hydroxo species or the catalytic transition state. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Dandan; Ye, Yuxuan; Liu, Hui; Ma, Hongrui; Zhang, Weiming
2018-02-01
Various organic compounds extensively used in the leather industry could influence the performance of alkaline precipitation with Cr(III). This study focused on two typical Cr(III)-bearing complexes (Cr(III)-collagen and Cr(III)-citrate) ubiquitous in tannery effluent yet with distinct treatment efficiencies, as Cr(III) was much more difficult to remove in the Cr(III)-citrate solution. Comprehensive analytical methods were employed to explore the intrinsic mechanism. It was found that a lower removal efficiency towards Cr(III) was significantly associated with higher oligomers. The molecular size of the Cr(III)-citrate complex continued to increase with rising pH, making it larger overall than Cr(III)-collagen species. The growing oligomer moiety of dissolved Cr(III)-complex species could persist in the stronger basic pH range, leading to the large amount of residual Cr(III) in the Cr(III)-citrate system. Combining this result with potentiometric titration and X-ray photoelectron spectroscopy data, it was believed that the polymeric species other than monomers facilitated resisting the attack from hydroxide ions, and the postulated Cr(III)-citrate species towards higher oligomers were discovered. Beyond that, both charge neutralization and sweeping effects were presented among the gradually emerging flocs in the Cr(III)-collagen system together with the electric double layer compression effect derived from salinity, thus resulting in a larger floc size and higher Cr(III) removal efficiency in saline solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shaibani, Parmiss Mojir; Etayash, Hashem; Naicker, Selvaraj; Kaur, Kamaljit; Thundat, Thomas
2017-01-27
We report a simple, fast, and cost-effective approach that measures cancer cell metabolism and their response to anticancer drugs in real time. Using a Light Addressable Potentiometric Sensor integrated with pH sensitive hydrogel nanofibers (NF-LAPS), we detect localized changes in pH of the media as cancer cells consume glucose and release lactate. NF-LAPS shows a sensitivity response of 74 mV/pH for cancer cells. Cancer cells (MDA MB231) showed a response of ∼0.4 unit change in pH compared to virtually no change observed for normal cells (MCF10A). We also observed a drop in pH for the multidrug-resistant cancer cells (MDA-MB-435MDR) in the presence of doxorubicin. However, inhibition of the metabolic enzymes such as hexokinase and lactate dehydrogenase-A suggested an improvement in the efficacy of doxorubicin by decreasing the level of acidification. This approach, based on extracellular acidification, enhances our understanding of cancer cell metabolic modes and their response to chemotherapies, which will help in the development of better treatments, including choice of drugs and dosages.
A comparison of sports and energy drinks--Physiochemical properties and enamel dissolution.
Jain, Poonam; Hall-May, Emily; Golabek, Kristi; Agustin, Ma Zenia
2012-01-01
The consumption of sports and energy drinks by children and adolescents has increased at an alarming rate in recent years. It is essential for dental professionals to be informed about the physiochemical properties of these drinks and their effects on enamel. The present study measured the fluoride levels, pH, and titratable acidity of multiple popular, commercially available brands of sports and energy drinks. Enamel dissolution was measured as weight loss using an in vitro multiple exposure model consisting of repeated short exposures to these drinks, alternating with exposure to artificial saliva. The relationship between enamel dissolution and fluoride levels, pH, and titratable acidity was also examined. There was a statistically significant difference between the fluoride levels (p = 0.034) and pH (p = 0.04) of the sports and energy drinks studied. The titratable acidity of energy drinks (11.78) was found to be significantly higher than that of sports drinks (3.58) (p < 0.001). Five of the energy drinks (Red Bull Sugar Free, Monster Assault, Von Dutch, Rockstar, and 5-Hour Energy) were found to have the highest titratable acidity values among the brands studied. Enamel weight loss after exposure to energy drinks was significantly higher than it was after exposure to sports drinks. The effect of titratable acidity on enamel weight loss was found to vary inversely with the pH of the drinks. The findings indicated that energy drinks have significantly higher titratable acidity and enamel dissolution associated with them than sports drinks. Enamel weight loss after exposure to energy drinks was more than two times higher than it was after exposure to sports drinks. Titratable acidity is a significant predictor of enamel dissolution, and its effect on enamel weight loss varies inversely with the pH of the drink. The data from the current study can be used to educate patients about the differences between sports and energy drinks and the effects of these drinks on tooth enamel.
Ardeshiri, Moslem; Jalali, Fahimeh
2016-06-01
In order to develop a fast and simple procedure for methadone analysis in biological fluids, a graphite paste electrode (GPE) was modified with the ion-pair of methadone-phosphotungstic acid, and multiwalled carbon nanotubes (MWCNTs). Optimized composition of the electrode with respect to graphite powder:paraffin oil:MWCNTs:ion pair, was 58:30:8:4 (w/w%). The electrode showed a near-Nernstian slope of 58.9 ± 0.3 mV/decade for methadone in a wide linear range of 1.0 × 10(-8)-4.6 × 10(-3)M, with a detection limit of 1.0 × 10(-8)M. The electrode response was independent of pH in the range of 5-11, with a fast response time (~4s) at 25 °C. The sensor showed high selectivity and was successfully applied to the determination of sub-micromolar concentrations of methadone in human blood serum and urine samples, with recoveries in the range of 95-99.8%. The average recovery of methadone from tablets (5 mg/tablet) by using the proposed method was 98%. The life time of the modified electrode was more than 5 months, due to the characteristic of GPE which can be cut off and fresh electrode surface be available. A titration procedure was performed for methadone analysis by using phosphotungstic acid, as titrating agent, which showed an accurate end point and 1:1 stoichiometry for the ion-pair formed (methadone:phosphotungstic acid). The simple and rapid procedure as well as excellent detection limit and selectivity are some of the advantages of the proposed sensor for methadone. Copyright © 2016 Elsevier B.V. All rights reserved.
Cardiano, Paola; Giacobello, Fausta; Giuffrè, Ottavia; Sammartano, Silvio
2017-11-01
In this paper a thermodynamic and spectroscopic study on the interaction between Al 3+ and glycine (Gly), l-cysteine (Cys), tranexamic acid (Tranex) is reported. Speciation models have been obtained by processing potentiometric titration data to determine stability constants of the species formed in aqueous solution at T=298.15K, 0.15≤I/molL -1 ≤1 in NaCl. Thermodynamic formation parameters have been obtained from calorimetric titration data, at T=298.15K, I=0.15molL -1 using NaCl as ionic medium. Al 3+ -Cys system was also investigated by spectrophotometric and 1 H NMR measurements. 1 H NMR experiments were performed on Al 3+ -Tranex system as well. Different speciation models have been observed for the three systems. The results showed the formation of MLH, ML and M 2 L 2 (OH) 2 species for Gly, ML, M 2 L and MLOH for Cys, MLH and MLOH for Tranex. The formed species are quite stable, i.e. for ML, logβ=7.18, 11.91 for Gly and Cys, respectively, at I=0.15molL -1 and T=298.15K. For all the systems the dependence of formation constants on ionic strength over the range 0.1-1molL -1 is reported. The sequestering ability of the ligands under study was also evaluated by pL 0.5 empiric parameter. For Gly, Cys and Tranex, pL 0.5 =2.51, 3.74, 3.91 respectively, at pH=5, I=0.15molL -1 and T=298.15K. Copyright © 2017 Elsevier B.V. All rights reserved.
Rey-Castro, Carlos; Lodeiro, Pablo; Herrero, Roberto; Sastre de Vicente, Manuel E
2003-11-15
Brown seaweeds are interesting materials to be used as biosorbents for heavy metals due to their high binding ability and low cost. The study of the passive biosorption of protons on this kind of materials and its dependency on pH, ionic strength, and medium composition is essential for the practical application of brown algae in wastewater treatment. This work reports the results of the study of the proton binding equilibria of dead biomass from the seaweeds Sargassum muticum, Cystoseira baccata, and Saccorhiza polyschides by potentiometric titration with a glass electrode in the pH range between 2 and 8. Two different salts, NaCl and KNO3, in concentrations ranging from 0.05 to 2 mol x L(-1), were used as background electrolytes. The influence of the ionic strength was accounted for by means of the Donnan model in combination with the master curve approach. Different empirical expressions to describe the swelling behavior of the biosorbent were tested. On the basis of the intrinsic affinity distribution analysis a unimodal Langmuir-Freundlich isotherm was selected to describe the proton binding properties. The results show very little influence of the type of salt. The ionic strength dependency of the proton binding is very similar for the three species, and average empirical expressions of the Donnan volume are proposed. The maximum proton binding capacities obtained ranged between 2.4 and 2.9 mol x kg(-1), with average intrinsic proton affinity constants between 3.1 and 3.3, and heterogeneity parameters of ca. 0.5 for S. muticum and C. baccata, and slightly higher (ca. 0.7) for S. polyschides. The combined Langmuir-Freundlich equation and Donnan model allowed a good description of the experimental charge vs pH curves obtained.
Application of the Nernst-Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata.
Costa, Joana F de Sá S; Vilar, Vítor J P; Botelho, Cidália M S; da Silva, Eduardo A B; Boaventura, Rui A R
2010-07-01
Ca-loaded Pelvetia canaliculata biomass was used to remove Pb(2+) in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g(-1)) and hydroxyl (0.8 mmol g(-1)), with an affinity constant distribution for hydrogen ions well described by a Quasi-Gaussian distribution. Equilibrium adsorption (pH 3 and 5) and desorption (eluents: HNO(3) and CaCl(2)) experiments were performed, showing that the biosorption mechanism was attributed to ion exchange among calcium, lead and hydrogen ions with stoichiometry 1:1 (Ca:Pb) and 1:2 (Ca:H and Pb:H). The uptake capacity of lead ions decreased with pH, suggesting that there is a competition between H(+) and Pb(2+) for the same binding sites. A mass action law for the ternary mixture was able to predict the equilibrium data, with the selectivity constants alpha(Ca)(H)=9+/-1 and alpha(Ca)(Pb)=44+/-5, revealing a higher affinity of the biomass towards lead ions. Adsorption (initial solution pH 4.5 and 2.5) and desorption (0.3M HNO(3)) kinetics were performed in batch and continuous systems. A mass transfer model using the Nernst-Planck approximation for the ionic flux of each counter-ion was used for the prediction of the ions profiles in batch systems and packed bed columns. The intraparticle effective diffusion constants were determined as 3.73x10(-7)cm(2)s(-1) for H(+), 7.56x10(-8)cm(2)s(-1) for Pb(2+) and 6.37x10(-8)cm(2)s(-1) for Ca(2+). Copyright 2010 Elsevier Ltd. All rights reserved.
Acidic beverages increase the risk of in vitro tooth erosion.
Ehlen, Leslie A; Marshall, Teresa A; Qian, Fang; Wefel, James S; Warren, John J
2008-05-01
Acidic beverages are thought to increase the potential for dental erosion. We report pH and titratable acidities (ie, quantity of base required to bring a solution to neutral pH) of beverages popular in the United States and lesion depths in enamel and root surfaces after beverage exposure, and we describe associations among pH, titratable acidity, and both enamel and root erosive lesion depths. The pH of 100% juices, regular sodas, diet sodas, and sports drinks upon opening and the titratable acidity both upon opening and after 60 minutes of stirring were measured. Enamel and root surfaces of healthy permanent molars and premolars were exposed to individual beverages (4 enamel and 4 root surfaces per beverage) for 25 hours, and erosion was measured. Statistical analyses included 2-sample t tests, analyses of variance with post hoc Tukey studentized range test; and Spearman rank correlation coefficients. All beverages were acidic; the titratable acidity of energy drinks was greater than that of regular and diet sodas that were greater than that of 100% juices and sports drinks (P < .05). Enamel lesion depths after beverage exposures were greatest for Gatorade, followed by those for Red Bull and Coke that were greater than those for Diet Coke and 100% apple juice (P < .05). Root lesion depths were greatest for Gatorade, followed by Red Bull, Coke, 100% apple juice, and Diet Coke (P < .05). Lesion depths were not associated with pH or titratable acidity. Beverages popular in the United States can produce dental erosion.
Colloidal approach to dispersion and enhanced deaggregation of aqueous ferrite suspensions
NASA Astrophysics Data System (ADS)
Mandanas, Michael Patrick M.
The role of solution and surface chemistry on deaggregation of calcined ferrites during attrition (stirred-media) milling of aqueous suspensions were investigated. Suspensions of commercially calcined Fe2O 3 powder (d50 ˜ 5.0 mum) were milled at different solid loadings and suspension pH. The drift of suspension pH, from pH 2.5 to pH 7.0, during solid loading experiments accounted for the observed reagglomeration with milling time. The observed deaggregation rates during pH stat milling, in the acidic region, can be related to (i) elevated solubility and (ii) enhanced dispersion via surface charge. Proton adsorption density during pH stat milling at different pH values is also comparable to existing potentiometric titration plots and can be related to deaggregation rates. A passivation-dispersion approach for dispersing manganese zinc ferrite (MnxZn(1 - x)Fe2O4) powder is presented. Addition of oxalic acid can help control dissolution reactions from particle surfaces and is subsequently dispersed with polyethyleneimine (PEI). Fully dissociated oxalic acid (pK1 = 1.2, pK2 = 4.3) solutions reacted with MnxZn(1 - x)Fe 2O4 leads to the formation of a uniform negative charge on the particle surface, resulting from the sparingly soluble salt formed on the surface. The resulting rheological data for passivation/dispersion of relatively high solid MnxZn(1 - x)Fe2O 4 suspensions (˜80 w/o, (˜40 v/o)) demonstrate improved colloid stability with improved rheological properties. Using the passivation dispersion scheme developed, deaggregation of commercially calcined MnxZn(1 - x)Fe2O4 powders during attrition milling was investigated. Reagglomeration is apparent when using a typical treatment, 2 w/w of a sulfonated based naphthalene condensate, during deaggregation of the calcined MnxZn(1 - x)Fe 2O4. However, is not observed for select oxalate/PEI treatments. The determined ideal treatment is 2 w/w oxalate and 3 w/w PEI based on the particle size and rheological characteristics of the suspensions during milling. (Abstract shortened by UMI.)
pH Static Titration: A Quasistatic Approach
ERIC Educational Resources Information Center
Michalowski, Tadeusz; Toporek, Marcin; Rymanowski, Maciej
2007-01-01
The pH-static titration is applicable to those systems where at least two types of reactions occur in comparable intensities. The commonalities in titrimetric procedure realized according to pH-static titration, irrespective of the kind of chemical processes occurring are discussed.
NASA Astrophysics Data System (ADS)
Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.
2008-03-01
Significant efforts have been made to elucidate the chemical properties of bacterial surfaces for the purposes of refining surface complexation models that can account for their metal sorptive behavior under diverse conditions. However, the influence of culturing conditions on surface chemical parameters that are modeled from the potentiometric titration of bacterial surfaces has received little regard. While culture age and metabolic pathway have been considered as factors potentially influencing cell surface reactivity, statistical treatments have been incomplete and variability has remained unconfirmed. In this study, we employ potentiometric titrations to evaluate variations in bacterial surface ligand distributions using live cells of the sheathless cyanobacterium Anabaena sp. strain PCC 7120, grown under a variety of batch culture conditions. We evaluate the ability for a single set of modeled parameters, describing acid-base surface properties averaged over all culture conditions tested, to accurately account for the ligand distributions modeled for each individual culture condition. In addition to considering growth phase, we assess the role of the various assimilatory nitrogen metabolisms available to this organism as potential determinants of surface reactivity. We observe statistically significant variability in site distribution between the majority of conditions assessed. By employing post hoc Tukey-Kramer analysis for all possible pair-wise condition comparisons, we conclude that the average parameters are inadequate for the accurate chemical description of this cyanobacterial surface. It was determined that for this Gram-negative bacterium in batch culture, ligand distributions were influenced to a greater extent by nitrogen assimilation pathway than by growth phase.
Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures
Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus
2012-01-01
In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217
A survey of the carbonate system in the Levantine Mediterranean Sub-basin
NASA Astrophysics Data System (ADS)
El Rahman Hassoun, Abed; Gemayel, Elissar; Abboud-Abi Saab, Marie
2016-04-01
The carbonate system is very important since it regulates the pH of the seawater and controls the circulation of CO2 between the various natural reservoirs. Recently, several oceanographic cruises have been carried out to assess this system in the Mediterranean Sea. However, the measurements undertaken to quantify the carbonate system parameters in the Levantine Sub-basin remain scarce and occasional. In our study, we are compiling the occasional data taken near Lebanon and surveying the carbonate system in the Lebanese seawaters for the first time by fixing two stations off the Lebanese coast to study the monthly and annual variations of this system through the water column. The dominant processes changing the carbonate chemistry of a seawater can be described by considering changes in the total alkalinity (AT) and the total dissolved inorganic carbon (CT). To measure these parameters, the collected seawater samples are titrated via potentiometric acid titration using a closed cell (DOE, 1994). Further, the temperature and the salinity are measured in situ. Dissolved oxygen concentrations are measured using a Winkler iodometric titration. Nutrients (phosphates, nitrates, nitrites), chlorophyll a and phytoplankton populations are also studied. The compilation of the carbonate system data taken from the cruises conducted near Cyprus (MedSeA 2013, Meteor 84-3, BOUM, Meteor 51-2) indicate that the AT and CT averages are equal to 2617 ±15 and 2298 ± 9 μmol kg-1 respectively, showing high AT and CT concentrations compared to those measured in other Mediterranean sub-basins. Our survey will provide a brand new dataset that will be useful to better comprehend the carbonate system in the Mediterranean Sea in general and the actual situation of the water masses formation in the Levantine Sub-basin after the Eastern Mediterranean Transient (EMT) in particular. Moreover, this work will permit us to estimate the air-sea fluxes and to estimate the anthropogenic CO2 concentrations and the acidification rate in the Lebanese seawaters for the first time. Keywords: Total alkalinity, total dissolved inorganic carbon, carbonate system, Lebanon, Levantine Sub-basin, Mediterranean Sea.
Craig, Laura; Stillings, Lisa; Decker, David L.
2017-01-01
Adsorption using activated alumina is a simple method for removing fluoride from drinking water, but to be cost effective the adsorption capacity must be high and effective long-term. The intent of this study was to assess changes in its adsorption capacity under varied conditions. This was determined by evaluating the physico-chemical properties, surface charge, and fluoride (F−) adsorption capacity and rate of activated alumina under conditions such as hydration period, particle size, and slow vs. fast titrations. X-ray diffraction and scanning electron microscopy analyses show that the mineralogy of activated alumina transformed to boehmite, then bayerite with hydration period and a corresponding reduction in adsorption capacity was expected; while surface area analyses show no notable changes with hydration period or particle size. The pH dependent surface charge was three times higher using slow potentiometric titrations as compared to fast titrations (due largely to diffusion into pore space), with the surface acidity generally unaffected by hydration period. Results from batch adsorption experiments similarly show no change in fluoride adsorption capacity with hydration period. There was also no notable difference in fluoride adsorption capacity between the particle size ranges of 0.5–1.0 mm and 0.125–0.250 mm, or with hydration period. However, adsorption rate increased dramatically with the finer particle sizes: at an initial F− concentration of 0.53 mmol L−1 (10 mg L−1), 90% was adsorbed in the 0.125–0.250 mm range after 1 h, while the 0.5–1.0 mm range required 24 h to achieve 90% adsorption. Also, the pseudo-second-order adsorption rate constants for the finer vs. larger particle sizes were 3.7 and 0.5 g per mmol F− per min respectively (24 h); and the initial intraparticle diffusion rate of the former was 2.6 times faster than the latter. The results show that adsorption capacity of activated alumina remains consistent and high under the conditions evaluated in this study, but in order to increase adsorption rate, a relatively fine particle size is recommended.
Acidic beverages increase the risk of in vitro tooth erosion
Ehlen, Leslie A.; Marshall, Teresa A.; Qian, Fang; Wefel, James S.; Warren, John J.
2008-01-01
Acidic beverages are thought to increase the potential for dental erosion. We report pH and titratable acidities (i.e., quantity of base required to bring a solution to neutral pH) of beverages popular in the United States and lesion depths in enamel and root surfaces following beverage exposure, and we describe associations among pH, titratable acidity and both enamel and root erosive lesion depths. The pH of 100% juices, regular sodas, diet sodas and sports drinks upon opening, and the titratable acidity both upon opening and after 60 minutes of stirring were measured. Enamel and root surfaces of healthy permanent molars and premolars were exposed to individual beverages (4 enamel and 4 root surfaces per beverage) for 25 hours and erosion was measured. Statistical analyses included two-sample t-tests, analyses of variance with post hoc Tukey’s studentized range test; and Spearman rank correlation coefficients. All beverages were acidic; the titratable acidity of energy drinks was greater than regular sodas and diet sodas which were greater than 100% juices and sports drinks (P<0.05). Enamel lesion depths following beverage exposures were greatest for Gatorade® followed by Red Bull® and Coke® which were greater than Diet Coke® and 100% apple juice (P <0.05). Root lesion depths were greatest for Gatorade® followed by Red Bull®, Coke®, 100% apple juice and Diet Coke® (P<0.05). Lesion depths were not associated with pH or titratable acidity. Beverages popular in the United States can produce dental erosion. PMID:19083423
Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.
Guinovart, Tomàs; Parrilla, Marc; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J
2013-09-21
A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.
Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.
Donnini, Serena; Ullmann, R Thomas; Groenhof, Gerrit; Grubmüller, Helmut
2016-03-08
In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying markedly enhanced simulation and sampling efficiency.
NASA Astrophysics Data System (ADS)
Pham Thi, L.; Usacheva, T. R.; Tukumova, N. V.; Koryshev, N. E.; Khrenova, T. M.; Sharnin, V. A.
2016-10-01
The stability constants of monoligand complexes of copper(II) ions with glycyl-glycyl-glycine zwitterions (triglycine, HL±) and triglycinate ions (L-) in a water-ethanol solvent with 0.0, 0.1, 0.3, and 0.5 mole fractions of ethanol at an ionic strength of 0.1 created by sodium perchlorate and temperature T = 298.15 K are determined by means of potentiometric titration. It is found that an increase of ethanol content improves the stability of the investigated complexes, due mainly to the resolvation of ligands.
Solubility of metal oxides in molten equimolar KBr-NaBr mixture at 973 K
NASA Astrophysics Data System (ADS)
Cherginets, V. L.; Rebrova, T. P.; Naumenko, V. A.
2014-09-01
Solubility products (p K s,MO, molality) are measured by potentiometric titration with a Pt(O2)|ZrO2(Y2O3) oxygen electrode in the molten KBr-NaBr equimolar mixture at 973 K for the following oxides: CaO (5.00 ± 0.3), MnO (7.85 ± 0.3), NiO (9.72 ± 0.04), PbO (5.20 ± 0.3), and SrO (3.81 ± 0.3). The correlation between p K s,MeO and the polarization of the corresponding cations by Goldschmidt is obtained.
Izquierdo, A; Bosch, E; Beltran, J L
1984-06-01
Dissociation constants (pK(a1) and pK(a2) in water-ethanol medium for 3-styryl-2-mercaptopropenoic and 3-(1-naphthyl)-2-mercaptopropenoic acid have been determined potentiometrically, and pK(a2) for both in aqueous medium, spectrophotometrically. Neutralization enthalpies in water-ethanol medium have been determined by thermometric titration. The reactions with metal ions have been studied, and the main reactions are described. The most sensitive reactions are with titanium(IV) (pD = 7.00) and nickel(II) (pD = 6.50).
Gezici, Orhan; Kara, Hüseyin
2011-09-15
The stationary phase characteristics of the material obtained through immobilization of humic acid (HA) to aminopropyl silica (APS) via amide-bond formation were investigated. The material was characterized in terms of elemental analysis, FTIR, thermogravimetric analyses, pH point of zero charge measurements, potentiometric titrations, and contact angle measurements. Amount of HA bonded to APS was determined from the elemental analysis results, and found as 170 mgHA/gAPS. Stability of the material was studied in aqueous media at different pH values, and amount of HA released at pH=8 did not exceed 2% of the total immobilized HA. Stationary phase characteristics of the well-characterized material were investigated in an HPLC system by using some low-molecular weight polar compounds (i.e. some nucleosides and nucleobases) as test solutes. Effect of some experimental variables such as column conditioning, composition of mobile phase, and temperature on the chromatographic behavior of the studied compounds was studied. Role of ammonium solutions at different pH values on retentive properties of the species was also studied. Retention factors (k') versus volume percentage of organic modifier exhibited a U-curve, which was evaluated as an indication for RPLC/HILIC mixed-mode behavior of the stationary phase. Orthogonality between RPLC and HILIC modes was analyzed through geometric approach, and found as 48.5%. Base-line separation for the studied groups of compounds was achieved under each studied mode, and some differentiations were observed in elution order of the compounds depending on the HPLC mode applied. Chromatograms recorded under RPLC and HILIC modes were compared with those recorded on APS under similar conditions, and thus the influence/importance of HA immobilization process was evaluated in detail. In light of the obtained results, immobilized HA is represented as a useful stationary phase for HPLC separations. Copyright © 2011 Elsevier B.V. All rights reserved.
Charging Properties of Cassiterite (alpha-SnO2) surfaces in NaCl and RbCl Ionic Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas
2009-01-01
The acid-base properties of cassiterite (alpha-SnO2) surfaces at 10-50 degrees C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 degrees C, respectively. This is contrary to the situation on the isostructural alpha-TiO2 (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb+ is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH(-0.40)) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range.« less
Modeling the acid-base surface chemistry of montmorillonite.
Bourg, Ian C; Sposito, Garrison; Bourg, Alain C M
2007-08-15
Proton uptake on montmorillonite edge surfaces can control pore water pH, solute adsorption, dissolution kinetics and clay colloid behavior in engineered clay barriers and natural weathering environments. Knowledge of proton uptake reactions, however, is currently limited by strong discrepancies between reported montmorillonite titration data sets and by conflicting estimates of edge structure, reactivity and electrostatics. In the present study, we show that the apparent discrepancy between titration data sets results in large part from the widespread use of an erroneous assumption of zero specific net proton surface charge at the onset of titration. Using a novel simulation scheme involving a surface chemistry model to simulate both pretreatment and titration, we find that montmorillonite edge surface chemistry models that account for the "spillover" of electrostatic potential from basal onto edge surfaces and for the stabilization of deprotonated Al-Si bridging sites through bond-length relaxation at the edge surface can reproduce key features of the best available experimental titration data (the influence of pretreatment conditions on experimental results, the absence of a point of zero salt effect, buffer capacity in the acidic pH range). However, no combination of current models of edge surface structure, reactivity and electrostatics can quantitatively predict, without fitted parameters, the experimental titration data over the entire range of pH (4.5 to 9) and ionic strength (0.001 to 0.5 mol dm(-3)) covered by available data.
Sahani, Manoj Kumar; Singh, A K; Jain, A K
2015-05-01
The two ionophores N'(N',N‴E,N',N‴E)-N',N‴-((((oxybis(ethane-2,1-diyl))bis(oxy)) bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I1) and (N',N‴E,N',N‴E)-N',N‴-(((propane-1,3-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I2) were synthesised and investigated as neutral carrier in the fabrication of Mn(2+) ion selective sensor. Several membranes were prepared by incorporating different plasticizers and anionic excluders and their effect on potentiometric response was studied. The best analytical performance was obtained with the electrode having a membrane of composition of I2: PVC: o-NPOE: NaTPB in the ratio of 6:34:58:2 (w/w, mg). Comparative studies of coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) based on I2 reveal the superiority of CPGE. The CPGE exhibits wide working concentration range of 1.23×10(-8)-1.0×10(-1) mol L(-1) and a detection limit down to 4.78×10(-9) mol L(-1) with a Nernstian slope of 29.5±0.4 mV decade(-1) of activity. The sensor performs satisfactorily over a wide pH range (3.5-9.0) and exhibited a quick response time (9s). The sensor can work satisfactorily in water-acetonitrile and water-methanol mixtures. It can tolerate 30% acetonitrile and 20% methanol content in the mixtures. The sensor could be used for a period of four months without any significant divergence in performance. The sensor reflects its utility in the quantification of Mn(2+) ion in real samples and has been successfully employed as an indicator electrode in the potentiometric titration of Mn(2+) ion with ethylenediaminetetraacetic acid (EDTA). Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Mora K.; Machesky, Michael L.; Wesolowski, David J
2005-01-01
The adsorption of Nd{sup 3+} onto rutile surfaces was examined by potentiometric titration from 25 to 250 C, in 0.03 and 0.30m NaCl background electrolyte. Experimental results show that Nd{sup 3+} sorbs strongly, even at low temperature, with adsorption commencing below the pHznpc of rutile. In addition, there is a systematic increase in Nd{sup 3+} adsorption with increasing temperature. The experimental results were rationalized and described using surface oxygen proton affinities computed from the MUlti SIte Complexation or MUSIC model, coupled with a Stern-based three-layer description of the oxide/water interface. Moreover, molecular-scale information was incorporated successfully into the surface complexationmore » model, providing a unique geometry for the adsorption of Nd{sup 3+} on rutile. The primary mode of Nd{sup 3+} adsorption was assumed to be the tetradentate configuration found for Y{sup 3+} adsorption on the rutile (110) surface from previously described in situ X-ray standing wave experiments, wherein the sorbing cations bond directly with two adjacent ''terminal'' and two adjacent ''bridging'' surface oxygen atoms. Similarly, the adsorption of Na{sup +} counterions was also assumed to be tetradentate, as supported by MD simulations of Na{sup +} interactions with the rutile (110) surface, and by analogous X-ray standing wave results for Rb{sup +} adsorption on rutile. Fitting parameters for Nd{sup 3+} adsorption included binding constants for the tetradentate adsorption complex and capacitance values for the inner-sphere binding plane. In addition, hydrolysis of the tetradentate adsorption complex was permitted and resulted in significantly improved model fits at higher temperature and pH values. The modeling results indicate that the Stern-based MUSIC surface-complexation model adequately accommodates molecular-scale information to uniquely rationalize and describe multivalent ion adsorption systematically into the hydrothermal regime.« less
Hattori, Toshiaki; Nakata, Yasuko; Kato, Ryo
2003-11-01
The biguanide concentration of polyhexamethylene biguanide hydrochloride (PHMB-HCl) was measured by non-aqueous titration with HClO4, argentometric titration, the Kjeldhal method, and colloidal titration. The summation value of non-aqueous titration and argentometric titration corresponded to two titrable nitrogens in five nitrogens per one unit of PHMB-HCl, and consisted with the result of the Kjeldhal method to the five nitrogens. The colloidal titration of PHMB-HCl at pH 2.05 was equal to that with the two nitrogens. The relative standard deviations of non-aqueous titration, argentometric titration, the Kjeldhal method, and colloidal titration were 0.50% for 8 runs, 0.13% for 7 runs, 3.61% for 6 runs, and 0.69% for 6 runs, respectively.
NASA Astrophysics Data System (ADS)
Liu, Yuxia; Alessi, D. S.; Owttrim, G. W.; Kenney, J. P. L.; Zhou, Qixing; Lalonde, S. V.; Konhauser, K. O.
2016-08-01
The distribution of many trace metals in the oceans is controlled by biological uptake. Recently, Liu et al. (2015) demonstrated the propensity for a marine cyanobacterium to adsorb cadmium from seawater, suggesting that cell surface reactivity might also play an important role in the cycling of metals in the oceans. However, it remains unclear how variations in cyanobacterial growth rates and nutrient supply might affect the chemical properties of their cellular surfaces. In this study we used potentiometric titrations and Fourier Transform Infrared (FT-IR) spectrometry to profile the key metabolic changes and surface chemical responses of a Synechococcus strain, PCC 7002, during different growth regimes. This included testing various nitrogen (N) to phosphorous (P) ratios (both nitrogen and phosphorous dependent), nitrogen sources (nitrate, ammonium and urea) and growth stages (exponential, stationary, and death phase). FT-IR spectroscopy showed that varying the growth substrates on which Synechococcus cells were cultured resulted in differences in either the type or abundance of cellular exudates produced or a change in the cell wall components. Potentiometric titration data were modeled using three distinct proton binding sites, with resulting pKa values for cells of the various growth conditions in the ranges of 4.96-5.51 (pKa1), 6.67-7.42 (pKa2) and 8.13-9.95 (pKa3). According to previous spectroscopic studies, these pKa ranges are consistent with carboxyl, phosphoryl, and amine groups, respectively. Comparisons between the titration data (for the cell surface) and FT-IR spectra (for the average cellular changes) generally indicate (1) that the nitrogen source is a greater determinant of ligand concentration than growth phase, and (2) that phosphorus limitation has a greater impact on Synechococcus cellular and extracellular properties than does nitrogen limitation. Taken together, these techniques indicate that nutritional quality during cell growth can noticeably influence the expression of cell surface ligands and their measurable densities. Given that cell surface charge ultimately affects metal adsorption, our results suggest that the cycling of metals by Synechococcus cells in the oceans may vary regionally.
Characterization of brines and evaporites of Lake Katwe, Uganda
NASA Astrophysics Data System (ADS)
Kasedde, Hillary; Kirabira, John Baptist; Bäbler, Matthäus U.; Tilliander, Anders; Jonsson, Stefan
2014-03-01
Lake Katwe brines and evaporites were investigated to determine their chemical, mineralogical and morphological composition. 30 brine samples and 3 solid salt samples (evaporites) were collected from different locations of the lake deposit. Several analytical techniques were used to determine the chemical composition of the samples including Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), ion chromatography, and potentiometric titration. The mineralogical composition and morphology of the evaporites was determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Physical parameters of the lake brines such as density, electrical conductivity, pH, and salinity were also studied. The results show that the lake brines are highly alkaline and rich in Na+, Cl-, CO32-, SO42-, and HCO3- with lesser amounts of K+, Mg2+, Ca2+, Br-, and F- ions. The brines show an intermediate transition between Na-Cl and Na-HCO3 water types. Among the trace metals, the lake brines were found to be enriched in B, I, Sr, Fe, Mo, Ba, and Mn. The solid salts are composed of halite mixed with other salts such as hanksite, burkeite and trona. It was also observed that the composition of the salts varies considerably even within the same grades.
NASA Astrophysics Data System (ADS)
Wichmann, Kathrin A.; Söhnel, Tilo; Cooper, Garth J. S.
2012-03-01
N1,N10-diacetyltriethylenetetramine (DAT) is a recently-discovered major in vivo metabolite of triethylenetetramine (TETA), a highly-selective CuII chelator currently under clinical development as a novel first-in-class therapeutic for the cardiovascular, renal and retinal complications of diabetes mellitus. Characterisation of DAT is an integral aspect of the pharmacological work-up required to support this clinical development programme and, to our knowledge, no previous synthesis for it has been published. Here we report the synthesis of DAT dihydrochloride (DAT·2 HCl); its crystal structure as determined by X-ray single-crystal (XRD) and powder diffraction (XRPD); and protonation constants and species distribution in aqueous solution, which represents the different protonation states of DAT at different pH values. The crystal structure of DAT·2 HCl reveals 3D-assemblies of alternating 2D-layers comprising di-protonated DAT strands and anionic species, which form an extensive hydrogen-bond network between amine groups, acetyl groups, and chloride anions. Potentiometric titrations show that HDAT+ is the physiologically relevant state of DAT in solution. These findings contribute to the understanding of TETA's pharmacology and to its development for the experimental therapeutics of the diabetic complications.
Overview of As(V) adsorption on Zr-functionalized activated carbon for aqueous streams remediation.
Velazquez-Jimenez, Litza Halla; Arcibar-Orozco, Javier Antonio; Rangel-Mendez, Jose Rene
2018-04-15
The present work introduces a simple methodology of carbon modification with zirconium, using an organic complexing ligand, as efficient media for selective As(V) removal. It is hypothesized that the incorporation of Zr-nanoparticles improves the attraction of anionic species such as arsenates (HAsO 4 2- /H 2 AsO 4 - ) making the material highly selective. The effects of pH (3-11) and temperature (15, 25 and 35 °C) were studied. Furthermore, potentiometric titrations, the effect of competing anions, thermodynamics, and adsorption kinetics were evaluated in order to clarify the rate-controlling process and the adsorption mechanism for arsenic removal. Results demonstrated that OH and COOH groups play an important role during the arsenic adsorption process; a small amount of Zr(IV) species (0.77%) increased the adsorption capacity of activated carbon in about a 43%. Thermodynamic analysis showed the spontaneous exothermic nature of the adsorption process was favored at lower temperatures. The presence of anions, such as chloride, sulfate, carbonate, nitrate and phosphate, did not affect the adsorption capacity, while kinetic studies demonstrated that the arsenic adsorption process in Zr-modified activated carbon is not exclusively controlled by intraparticle diffusion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shokrollahi, A; Abbaspour, A; Ghaedi, M; Haghighi, A Naghashian; Kianfar, A H; Ranjbar, M
2011-03-15
In this article a new coated platinum Cu(2+) ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L(1)) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10(-7)-1.0 × 10(-1) mol L(-1)) and a low detection limit of 9.8 × 10(-8) mol L(-1)of Cu(NO(3))(2). It has a Nernstian response with slope of 29.54 ± 1.62 mV decade(-1) and it is applicable in the pH range of 4.0-6.0 without any divergence in potential. The coated electrode has a short response time of approximately 9s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu(2+) ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu(2+) ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu(2+) ion with EDTA. Copyright © 2010 Elsevier B.V. All rights reserved.
Shamsipur, Mojtaba; Kazemi, Sayed Yahya; Sharghi, Hashem
2007-01-01
A novel PVC membrane sensor for the Sr2+ ion based on 1,10-diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dione has been prepared. The sensor possesses a Nernstian slope of 30.0 ± 0.6 mV decade-1 over a wide linear concentration range of 1.6 × 10-6-3.0 ×10-3 M with a detection limit of 6.3 ×10-7 M. It has a fast response time of <15 s and can be used for at least two months without any considerable divergence in potential. The potentiometric response is independent of the pH of test solution in the pH range 4.3-9.4. The proposed electrode shows good selectivities over a variety of alkali, alkaline earth, and transition metal ions.
Denadai, Angelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S; Sinisterra, Rubén D
2012-01-01
Organic-inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr(3+) and Cr(2)O(7) (2-) ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer-Emmett-Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toczydlowska, Diana; Kedra-Krolik, Karolina; Nejbert, Krzysztof
The role of surface electrostatics on the reductive dissolution of iron (III) oxides is poorly understood, despite its importance in controlling the amount of mobilized iron. We report the potentiometric titration of the a; y -Fe2O3 oxides exposed to reductants and complexing ligands (Fe(II), ascorbate, oxalate, malonate). We monitored in situ surface and potentials, the ratio of mobilized ferric to ferrous ions, and periodically analyzed nanoparticle crystal structure using X-ray diffraction. We found that addition of Fe2+ ions produces a response consistent with the iron solubilityactivity curve, whereas the presence of ascorbate significantly decreases the amount of mobilized Fe(III) duemore » to reduction to Fe(II). In addition, XRD analysis proved that y-Fe2O3 particles remain structurally unchanged along the titration pathway despite iron cycling between aqueous and solid reservoirs. Our studies, suggest that the surface redoxactivity of iron oxides is primarily governed by the balance between Fe(III) and Fe(II) ions in aqueous phase, which may be easily altered by complexing and reducing agents.« less
Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo
2015-02-04
This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.
Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo
2015-01-01
This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795
NASA Astrophysics Data System (ADS)
Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.
2007-12-01
This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C Kantar; H Demiray; N Dogan
2011-12-31
Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groupsmore » with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantar, C.; Dodge, C.; Demiray, H.
2011-01-26
Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groupsmore » with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.« less
NASA Astrophysics Data System (ADS)
Shim, J.; Kang, D.; Jin, Y.; Obzhirov, A.
2008-12-01
Surface pH, total alkalinity, temperature and salinity were measured at the Sea of Okhotsk and the East Sea (along a track from Vladivostok to the northeastern slope of Sakhalin Island through Soya Strait: 42°N, 132°E - 55°N, 145°E) in October 2007. Continuous pH measurements were conducted using an underway potentiometric pH system modified from Tishchenko et al. (2002) and discrete total alkalinity measurements were made by direct titration with hydrochloric acid. Warm saline surface waters were observed in the East Sea (from Vladivostok to Soya Strait), and relatively cold less-saline waters were observed in the Sea of Okhotsk (at the eastern slopes of Sakhalin Island). In the East Sea and the Sea of Okhotsk, surface pH ranged from 8.063 to 8.158 and 8.047 to 8.226, and total alkalinity normalized to salinity 35 ranged from 2323 to 2344 μmol kg-1 and 2367 to 2422 μmol kg-1, respectively. Due to the freshwater input from rivers and geochemical activity in the water column and sediment, the Sea of Okhotsk generally showed much wider ranges of water properties and richer in carbonate parameters than those of the East Sea. Particularly, water properties changed dramatically at the eastern slopes of Sakhalin Island; surface salinity decreased southward by about 0.5-1 psu and pH and normalized total alkalinity increased southward by about 0.05-0.1 and 20-50 μmol kg-1, respectively. Thus, pCO2 concentration calculated from pH and total alkalinity, ranged from 350-375 μatm in the north to 280-300 μatm in the south of the Okhotsk Sea. The high pH and normalized total alkalinity, and low pCO2 and salinity in the south might be the result of surface water mixing with fresh water discharge from rivers and/or the results of massive primary production along the eastern coast of Sakhalin Island. In the most study area, surface pCO2 ranged from 280 to 370 μatm and was undersaturated relative to atmosphere. Therefore, the Sea of Okhotsk and the East Sea acted as effective CO2 sinks during the study period
Methods to Select Chemicals for In Situ Biodegradation of Fuel Hydrocarbons
1990-07-01
nutrients at a variety of C:N:P ratios have been added to bioreclamation sites, often with equivocal results ( Atlas , 1981; Bossert and Bartha , 1984...pH in the range of 5 to 9. Since desirable pH for microbial growth is near 7 ( Atlas , 1981), it is not possible to decrease significantly the pH of...34Potentiometric Study on the Formation of Perboric Acids," Acta Chemica Scandinavica, Vol. 10, pp. 756-760, 1956. Atlas , R.M. Microbial Degradation
Brauner, C J; Weber, R E
1998-09-01
H+ titrations were conducted on the separated haemoglobin components of eel Anguilla anguilla in both the oxygenated and deoxygenated states. In anodic haemoglobin, the addition of GTP, and to a lesser extent C1-, increased the magnitude of the Haldane effect and shifted its maximum value into the in vivo pH range. Of the 22 histidine residues in the anodic component, only approximately seven were titratable, presumably the beta-chain residues at positions 41, 97, 109 and 146 (helical positions C7, FG4, G11 and HC3, respectively). In cathodic haemoglobin, a small negative Haldane effect was observed at pH values between 6.8 and 8.5 which disappeared in the presence of GTP (molar ratio 3:1 GTP:haemoglobin tetramer). GTP had virtually no effect on the buffer value at fixed oxygenation status, and the lowest buffer value was observed at in vivo pH values. No titratable histidine residues were observed in the cathodic component, indicating that all 14 histidines in this component are buried. We conclude that the anodic component, which constitutes two-thirds of the haemoglobin in the eel, plays the predominant role in CO2 transport and pH homeostasis in vivo.
Topcu, Cihan
2016-12-01
A novel polyvinyl chloride membrane chlorate (ClO 3 - ) selective electrode based on modified smectite was developed for the direct determination of chlorate ions and the potentiometric performance characteristics of its were examined. The best selectivity and sensitivity for chlorate ions were obtained for the electrode membrane containing ionophore/polyvinylchloride/o-nitrophenyloctylether in composition of 12/28/60 (w/w%). The proposed electrode showed a Nernstian response toward chlorate ions at pH=7 in the concentration range of 1×10 -7 -1×10 -1 M and the limit of detection was calculated as 9×10 -8 M from the constructed response plot. The linear slope of the electrode was -61±1mVdecade -1 for chlorate activity in the mentioned linear working range. The selectivity coefficients were calculated according to both the matched potential method and the separate solution method. The calculated selectivity coefficients showed that the electrode performed excellent selectivity for chlorate ions. The potentiometric response of electrode toward chlorate ions was found to be highly reproducible. The electrode potential was stable between pH=4-10 and it had a dynamic response time of <5s. The potentiometric behavior of the electrode in partial non-aqueous medium was also investigated and the obtained results (up to 5% (v/v) alcohol) were satisfactory. The proposed electrode was used during 15 weeks without any significant change in its potential response. Additionally, the electrode was very useful in water analysis studies such as dam water, river water, tap water, and swimming pool water where the direct determination of chlorate ions was required. Copyright © 2016 Elsevier B.V. All rights reserved.
Ferguson, Stephen A; Meyerhoff, Mark E
2017-10-27
The detection of four different polyquaterniums (PQs) using a fully reversible potentiometric polyion sensor in three different detection modes is described. The polyion sensing "pulstrodes" serve as the detector for direct dose-response experiments, beaker titrations, and in a flow-injection analysis (FIA) system. Direct polycation response toward PQ-2, PQ-6, PQ-10, and poly(2-methacryloxyethyltrimethylammonium) chloride (PMETAC) yields characteristic information about each PQ species (e.g., relative charge densities, etc.) via syringe pump addition of each PQ species to a background electrolyte solution. Quantitative titrations are performed using a syringe pump to deliver heparin as the polyanion titrant to quantify all four PQs at μg/mL levels. Both the direct and indirect methods incorporate the use of a three-electrode system including counter, double junction reference, and working electrodes. The working electrode possesses a plasticized poly(vinyl chloride) (PVC) membrane containing the neutral lipophilic salt of dinonylnaphthalenesulfonate (DNNS - ) tridodecylmethylammonium (TDMA + ). Further, the titration method is shown to be useful to quantify PQ-6 levels in recreational swimming pool water collected in Ann Arbor, MI. Finally, a FIA system equipped with a pulstrode detector is used to demonstrate the ability to potentially quantify PQ levels via a more streamlined and semiautomated testing platform.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Ostolska, Iwona; Szewczuk-Karpisz, Katarzyna; Chibowski, Stanisław; Terpiłowski, Konrad; Gun'ko, Vladimir Moiseevich; Zarko, Vladimir Iljich
2015-01-01
A new adsorbent consisting of fumed, mixed alumina, silica, and titania in various proportions (AST 50) was investigated. The studied material was prepared by chemical vapor deposition method. The diameter of AST 50 primary particles was equal to about 51 nm which denotes that it can be classified as a nanomaterial. In the presented paper, the adsorption properties of polyvinyl alcohol on the ternary oxide were investigated. The polymer macromolecules were characterized by two different molecular weights and degree of hydrolysis. The polymer adsorption reaches the maximum at pH 3 and decreases with the solution pH rise. The reduction of the adsorbed PVA macromolecules is related to the electrostatic repulsion forces occurring in the studied system. The AST 50 point of zero charge (pHpzc) obtained from the potentiometric titration is equal to 4.7. Due to the nonionic character of the analyzed macromolecular compound, the polymer attendance has an insignificant effect on the AST 50 surface charge density. In the case of the adsorbent particles zeta potential, the obtained dependencies are different in the absence and presence of PVA. The shift of the slipping plane and displacement of the counter-ions from Stern layer by the adsorbed polymer chains have the greatest effect on the ζ potential value. The stability measurements indicate that the AST 50 suspensions in the presence of the background electrolyte at pH 3 and 6 are unstable. In turn, in an alkaline medium the mixed oxide suspensions exhibit the highest durability, which is a result of a large number of the negative charges on the AST 50 surface. The addition of PVA 100 significantly improves the suspension stability at pH 3 and 6; at higher pH value, the polymer presence does not influence the system durability. It is related to the steric and electrosteric stabilization of the colloidal particles by the adsorbed polyvinyl alcohol macromolecules.
Potential of capillary zone electrophoresis for estimation of humate acid-base properties.
Vanifatova, Natalia G; Zavarzina, Anna G; Spivakov, Boris Ya
2008-03-07
Capillary zone electrophoresis (CZE) has been applied for fractionation and characterization of soil-derived humic acids (HAs). Humic acids from soddy-podzolic (HA(s)) and chernozem (HA(ch)) soils were studied as well as hydrophobic high-molecular-weight (HMW) and hydrophilic low-molecular-weight (LMW) HA(s) fractions obtained by salting-out with ammonium sulfate at a saturation of 0-40% and >70%, respectively. The possibility of CZE partial fractionation of HAs has been demonstrated. The shape of "humic hump" was shown to depend on the pH of running electrolyte. Almost the whole peak overlapping occurred if alkaline solutions were used for fractionation, but the peak resolution was improved at pH 5-7. Under appropriate fractionation conditions (pH 7), at least three humic acid subfractions with different electrophoretic mobilities were distinguished in the electropherograms of initial HA and HA(s) fractions. Such a high peak resolution has never been achieved for humic acids before. The presence of three subfractions in the HA is in agreement with gel-filtration analysis and was confirmed by comparison of the electrophoretic behavior of HA(s) with those of its HMW (hydrophobic) and the LMW (hydrophilic) fractions. The potentiometric titration of HA and its fractions was performed and the pK(a) of the functional groups were calculated. An attempt was made for the first time to relate the variation of electrophoretic mobility values with acid-base properties of humic acids. It was shown that changes in the humate charge resulting from the variation of the ionization degree of its functional groups as a function of pH can be estimated on the basis of electrophoretic mobility values. Potential of CZE in estimation of HA isoelectric point was demonstrated. The pH value corresponding to the lowest absolute electrophoretic mobility value of about 20 x 10(-5) cm(2) V(-1) s(-1) can be used for approximate estimation of HA isoelectric point. The data were discussed and agreement with the random coil structural model has been shown.
Noronha, Bárbara V; Bindewald, Eduardo H; de Oliveira, Michelle C; Papi, Maurício A P; Bergamini, Márcio F; Marcolino, Luiz H
2014-10-01
The present work reports for the first time the use of polypyrrole (PPy) doped film for development of a potentiometric disposable sensor for determination of pantoprazole (PTZ), a drug used for ulcer treatment. Selective potentiometric response has been found by using a membrane of PPy doped with PTZ anions prepared under galvanostatic conditions at graphite pencil electrode (GPEM/PPy-PTZ) surface. Potentiometric response has been influenced for conditions adopted in polymerization and measurement step. After optimization of experimental (e.g. pH and time of conditioning) and instrumental parameters (e.g. current density and electrical charge) a linear analytical curve from 1.0 × 10(-5) to 1.1 × 10(-2) mol L(-1) with a slope of calibration of the 57.6 mV dec(-1) and limit of detection (LOD) of 6.9 × 10(-6) mol L(-1) was obtained. The determination of the PTZ content in pharmaceutical samples using the proposed methodology and official method recommended by Brazilian Pharmacopeia are in agreement at the 95% confidence level and within an acceptable range of error. Copyright © 2014 Elsevier B.V. All rights reserved.
Foulon, C; Duhal, N; Lacroix-Callens, B; Vaccher, C; Bonte, J P; Goossens, J F
2007-07-01
Acidity constants of benzoxa-, benzothia- and benzoselena-zolinone derivatives were determined by capillary electrophoresis, potentiometry and spectrophotometry experiments. These three analytical techniques gave pK(a) results that were in good agreement. A convenient, accurate and precise method for the determination of pK(a) was developed to measure changes in acidity constants induced by heteroatom or 6-benzoyl substituted derivatives. pK(a) values were determined simultaneously for two compounds characterized by different electrophoretic mobility (micro(e)) and pK(a) value and in the presence of an analogous neutral marker.
Copper speciation and binding by organic matter in copper-contaminated streamwater
Breault, R.F.; Colman, J.A.; Aiken, G.R.; McKnight, D.
1996-01-01
Fulvic acid binding sites (1.3-70 ??M) and EDTA (0.0017-0.18 ??M) accounted for organically bound Cu in seven stream samples measured by potentiometric titration. Cu was 84-99% organically bound in filtrates with 200 nM total Cu. Binding of Cu by EDTA was limited by competition from other trace metals. Water hardness was inversely related to properties of dissolved organic carbon (DOC) that enhance fulvic acid binding: DOC concentration, percentage of DOC that is fulvic acid, and binding sites per fulvic acid carbon. Dissolved trace metals, stabilized by organic binding, occurred at increased concentration in soft water as compared to hard water.
NASA Astrophysics Data System (ADS)
Vanchikova, E. V.; Shamrikova, E. V.; Bespyatykh, N. V.; Kyz"yurova, E. V.; Kondratenok, B. M.
2015-02-01
Metrological characteristics—precision, trueness, and accuracy—of the results of measurements of the exchangeable acidity and its components by the potentiometric titration method were studied on the basis of multiple analyses of the soil samples with the examination of statistical data for the outliers and their correspondence to the normal distribution. Measurement errors were estimated. The applied method was certified by the Metrological Center of the Uralian Branch of the Russian Academy of Sciences (certificate no. 88-17641-094-2013) and included in the Federal Information Fund on Assurance of Measurements (FR 1.31.2013.16382).
Dissolution mechanism of aluminum hydroxides in acid media
NASA Astrophysics Data System (ADS)
Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.
2008-08-01
The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.
Broncová, Gabriela; Shishkanova, Tatiana V.; Krondak, Martin; Volf, Radko; Král, Vladimír
2008-01-01
This report presents an optimization of potentiometric measurements with citrate-selective electropolymerized poly(neutral red) electrodes. The optimal background electrolyte for these measurements is a TRIS buffer with nitrate at pH 8.5. The electrodes described here exhibit stable and reproducible near-Nernstian response to citrates with a low detection limit of 6 × 10-6 M. Electrodes polymerized from sulfuric acid and acetonitrile are compared in detail. Simple and sensitive method for quantification of citrate in real-life samples by potentiometry with poly(neutral red) electrodes are presented. Data from potentiometric measurements of citrate are compared with capillary electrophoresis. PMID:27879724
Surface complexation modeling of zinc sorption onto ferrihydrite.
Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L
2004-02-01
A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength dependence of sorption. The results of this research and previous work with Pb(II) indicate that the existing thermodynamic framework for the modified TLM is able to reproduce the metal sorption data only over a limited range of conditions. For this reason, much work still needs to be done in fine-tuning the thermodynamic framework and databases for the TLM.
Chen, Wei; Shen, Jana K.
2014-01-01
Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416
Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment
ERIC Educational Resources Information Center
Waller, Francis J.; And Others
1977-01-01
The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; Luo, Wensui; Brooks, Scott C
We conducted batch and recirculating column titration tests with contaminated acidic sediments with controlled CO2 in the headspace, and extended the geochemical model by Gu et al. (2003, GCA) to better understand and quantify the reactions governing trace metal fate in the subsurface. The sediment titration curve showed slow pH increase due to strong buffering by Al precipitation and CO2 uptake. Assuming precipitation of basaluminite at low saturation index (SI=-4), and decreasing cation exchange selectivity coefficient (kNa\\Al=0.3), the predictions are close to the observed pH and Al; and the model explains 1) the observed Ca, Mg, and Mn concentration decreasemore » by cation exchange with sorbed Al, and 2) the decrease of U by surface complexation with Fe hydroxides at low pH, and precipitation as liebigite (Ca2UO2(CO3)3:10H2O) at pH>5.5. Without further adjustment geochemical parameters, the model describes reasonably well previous sediment and column titration tests without CO2 in the headspace, as well as the new large column test. The apparent inhibition of U and Ni decrease in the large column can be explained by formation of aqueous carbonate complexes and/or competition with carbonate for surface sites. These results indicated that ignoring labile solid phase Al would underestimate base requirement in titration of acidic aquifers.« less
Fermentation of aqueous plant seed extracts by lactic acid bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schafner, D.W.; Beuchat, R.L.
1986-05-01
The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterialmore » populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.« less
Protofit: A program for determining surface protonation constants from titration data
NASA Astrophysics Data System (ADS)
Turner, Benjamin F.; Fein, Jeremy B.
2006-11-01
Determining the surface protonation behavior of natural adsorbents is essential to understand how they interact with their environments. ProtoFit is a tool for analysis of acid-base titration data and optimization of surface protonation models. The program offers a number of useful features including: (1) enables visualization of adsorbent buffering behavior; (2) uses an optimization approach independent of starting titration conditions or initial surface charge; (3) does not require an initial surface charge to be defined or to be treated as an optimizable parameter; (4) includes an error analysis intrinsically as part of the computational methods; and (5) generates simulated titration curves for comparison with observation. ProtoFit will typically be run through ProtoFit-GUI, a graphical user interface providing user-friendly control of model optimization, simulation, and data visualization. ProtoFit calculates an adsorbent proton buffering value as a function of pH from raw titration data (including pH and volume of acid or base added). The data is reduced to a form where the protons required to change the pH of the solution are subtracted out, leaving protons exchanged between solution and surface per unit mass of adsorbent as a function of pH. The buffering intensity function Qads* is calculated as the instantaneous slope of this reduced titration curve. Parameters for a surface complexation model are obtained by minimizing the sum of squares between the modeled (i.e. simulated) buffering intensity curve and the experimental data. The variance in the slope estimate, intrinsically produced as part of the Qads* calculation, can be used to weight the sum of squares calculation between the measured buffering intensity and a simulated curve. Effects of analytical error on data visualization and model optimization are discussed. Examples are provided of using ProtoFit for data visualization, model optimization, and model evaluation.
Ramsay, G; Ionescu, R; Eftink, M R
1995-08-01
In a previous paper (Ramsay and Eftink, Biophys. J. 66:516-523) we reported the development of a modified spectrophotometer that can make nearly simultaneous circular dichroism (CD) and fluorescence measurements. This arrangement allows multiple data sets to be collected during a single experiment, resulting in a saving of time and material, and improved correlation between the different types of measurements. The usefulness of the instrument was shown by thermal melting experiments on several different protein systems. This CD/fluorometer spectrophotometer has been further modified by interfacing with a syringe pump and a pH meter. This arrangement allows ligand, pH, and chemical denaturation titration experiments to be performed while monitoring changes in the sample's CD, absorbance, fluorescence, and light scattering properties. Our data acquisition program also has an ability to check whether the signals have approached equilibrium before the data is recorded. For performing pH titrations we have developed a procedure which uses the signal from a pH meter in a feedback circuit in order to collect data at evenly spaced pH intervals. We demonstrate the use of this instrument with studies of the unfolding of sperm whale apomyoglobin, as induced by acid pH and by the addition of guanidine-HCI.
Ramsay, G; Ionescu, R; Eftink, M R
1995-01-01
In a previous paper (Ramsay and Eftink, Biophys. J. 66:516-523) we reported the development of a modified spectrophotometer that can make nearly simultaneous circular dichroism (CD) and fluorescence measurements. This arrangement allows multiple data sets to be collected during a single experiment, resulting in a saving of time and material, and improved correlation between the different types of measurements. The usefulness of the instrument was shown by thermal melting experiments on several different protein systems. This CD/fluorometer spectrophotometer has been further modified by interfacing with a syringe pump and a pH meter. This arrangement allows ligand, pH, and chemical denaturation titration experiments to be performed while monitoring changes in the sample's CD, absorbance, fluorescence, and light scattering properties. Our data acquisition program also has an ability to check whether the signals have approached equilibrium before the data is recorded. For performing pH titrations we have developed a procedure which uses the signal from a pH meter in a feedback circuit in order to collect data at evenly spaced pH intervals. We demonstrate the use of this instrument with studies of the unfolding of sperm whale apomyoglobin, as induced by acid pH and by the addition of guanidine-HCI. Images FIGURE 2 PMID:8527683
Callicott, R H; Carr, P W
1976-07-01
Total serum calcium and magnesium may be determined in one thermometric titration, with disodium ethylenediaminetetraacetate as the titrant. A 1-ml serum sample is diluted with 1 ml of tris(hydroxymethyl)aminomethane buffer (pH 8) and titrated at a constant rate with a motorized syringe buret. Results by the thermometric method compared well with those by atomic absorption spectroscopy.
NASA Astrophysics Data System (ADS)
MacLeod, C. D.; Doyle, H. L.; Currie, K. I.
2015-02-01
This article describes a potentiometric ocean acidification simulation system which automatically regulates pH through the injection of 100% CO2 gas into temperature-controlled seawater. The system is ideally suited to long-term experimental studies of the effect of acidification on biological processes involving small-bodied (10-20 mm) calcifying or non-calcifying organisms. Using hobbyist-grade equipment, the system was constructed for approximately USD 1200 per treatment unit (tank, pH regulation apparatus, chiller, pump/filter unit). An overall tolerance of ±0.05 pHT units (SD) was achieved over 90 days in two acidified treatments (7.60 and 7.40) at 12 °C using glass electrodes calibrated with synthetic seawater buffers, thereby preventing liquid junction error. The performance of the system was validated through the independent calculation of pHT (12 °C) using dissolved inorganic carbon and total alkalinity data taken from discrete acidified seawater samples. The system was used to compare the shell growth of the marine gastropod Zeacumantus subcarinatus infected with the trematode parasite Maritrema novaezealandensis with that of uninfected snails at pH levels of 7.4, 7.6, and 8.1.
Capita, Rosa; Llorente-Marigómez, Sandra; Prieto, Miguel; Alonso-Calleja, Carlos
2006-05-01
Microbial counts, pH, and titratable acidity were determined in 102 Spanish dry fermented sausages (chorizo and salchichón) made with ostrich, deer, or pork meat. Average microbial counts (log CFU per gram) varied from 5.46 +/- 0.24 to 8.25 +/- 0.80 (total viable counts), from 4.79 +/- 0.36 to 7.99 +/- 0.20 (psychrotrophs), from 0.00 +/- 0.00 to 0.99 +/- 1.10 (undetectable values were assumed to be zero) (Enterobacteriaceae), from 0.00 +/- 0.00 to 4.27 +/- 1.47 (enterococci), from 5.15 +/- 1.15 to 8.46 +/- 0.49 (lactic acid bacteria), from 3.08 +/- 0.44 to 6.59 +/- 1.76 (Micrococcaceae), from 2.27 +/- 1.53 to 5.11 +/- 1.81 (molds and yeasts), from 0.00 +/- 0.00 to 2.25 +/- 0.81 (pseudomonads), and from 0.00 +/- 0.00 to 2.78 +/- 0.46 (Brochothrix thermosphacta). Average pH and titratable acidity varied from 5.07 +/- 0.25 to 5.63 +/- 0.51 (pH units) and from 0.30 +/- 0.01 to 0.86 +/- 0.19 (% lactic acid). Both type of sausage (P < 0.05) and species of meat (P < 0.001) influenced microbial counts. Salchich6n samples showed lower average values than chorizo samples for most microbial groups (significant for Enterobacteriaceae, lactic acid bacteria, and B. thermosphacta) and titratable acidity. Sausages made from pork showed the highest microbial loads for total viable counts, psychrotrophs, Enterobacteriaceae, enterococci, lactic acid bacteria, and yeasts and molds. Higher counts were observed only for pseudomonads in ostrich sausages. B. thermosphacta levels were similar for all species of meat. The highest average pH value was observed in sausages made from ostrich meat, and the lowest titratable acidity level was found in pork sausages.
Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions
NASA Astrophysics Data System (ADS)
Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen
2017-04-01
New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.
Ismaiel, Ahmed Abu; Aroua, Mohamed Kheireddine; Yusoff, Rozita
2014-01-01
In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10−9 to 1.0 × 10−2 M, with a detection limit of 1 × 10−10 M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (∼5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3–9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species. PMID:25051034
Measuring the isoelectric point of the edges of clay mineral particles: the case of montmorillonite.
Pecini, Eliana M; Avena, Marcelo J
2013-12-03
The isoelectric point (IEP) of the edge surface of a montmorillonite sample was determined by using electrophoretic mobility measurements. This parameter, which is fundamental for the understanding of the charging behavior of clay mineral surfaces, was never measured so far because of the presence of permanent negative charges within the montmorillonite structure, charges that mask the electrokinetic behavior of the edges. The strategy was to block or neutralize the structural charges with two different cations, methylene blue (MB(+)) and tetraethylenepentaminecopper(II) ([Cu(tetren)](2+)), so that the charging behavior of the particles becomes that of the edge surfaces. Adsorption isotherms of MB(+) and [Cu(tetren)](2+) at different ionic strengths (NaCl) were performed to establish the uptakes that neutralize the cation exchange capacity (CEC, 0.96 meq g(-1)) of the sample. At high adsorptive concentrations, there was a superequivalent adsorption of MB(+) (adsorption exceeding the CEC) and an equivalent adsorption of [Cu(tetren)](2+) (adsorption reaching the CEC). In both cases, structural charges were neutralized at uptakes very close to the CEC. Zeta potential (ζ) vs pH data at different ionic strengths of montmorillonite with adsorbed MB(+) allowed to estimate an upper limit of the edge's IEP, 5.3 ± 0.2. The same kind of data obtained with adsorbed [Cu(tetren)](2+) provided a lower limit of the IEP, 4.0 ± 0.2. These values are in agreement with previously informed IEP and point of zero charge of pyrophyllite, which is structurally analogous to montmorillonite but carries no permanent charges. The importance of knowing the IEP of the edge surface of clay minerals is discussed. This value characterizes the intrinsic reactivity of edges, that is, the protonating capacity of edge groups in absence of any electric field generated by structural charges. It also allows us to correct relative edge charge vs pH curves obtained by potentiometric titrations and to obtain the true edge charge vs pH curves at different electrolyte concentrations.
Bai, Erdeni; Rosell, Federico I.; Lige, Bao; Mauk, Marcia R.; Lelj-Garolla, Barbara; Moore, Geoffrey R.; Mauk, A. Grant
2006-01-01
The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (KA) of 10(±7)×106, 5.7(±3)×106, 2.0(±2)×106 and 2.0(±3)×104 M−1 for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(±2)×106, 3.2(±2)×104, 1.76(±1)×105 and 1.5(±2)×103 M−1 respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 °C). The stability of metal ion binding to the sensory site follows the Irving–Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents. PMID:16928194
Linear Titration Curves of Acids and Bases.
Joseph, N R
1959-05-29
The Henderson-Hasselbalch equation, by a simple transformation, becomes pH - pK = pA - pB, where pA and pB are the negative logarithms of acid and base concentrations. Sigmoid titration curves then reduce to straight lines; titration curves of polyelectrolytes, to families of straight lines. The method is applied to the titration of the dipeptide glycyl aminotricarballylic acid, with four titrable groups. Results are expressed as Cartesian and d'Ocagne nomograms. The latter is of a general form applicable to polyelectrolytes of any degree of complexity.
Study of the mechanisms of cadmium biosorption by dealginated seaweed waste.
Romero-Gonzalez, M E; Williams, C J; Gardiner, P H
2001-07-15
The ability of dealginated seaweed waste, a waste material derived from the commercial processing of seaweed for alginate production, to remove cadmium from solution was determined. Cadmium sorption was found to be rapid (91% removal within 5 min), achieving a residual concentration of 0.8 mg L-1 after 1-h contact time from an initial solution concentration of 10 mg L-1. The binding of cadmium by dealginate was found to be pH dependent, optimal sorption occurring at around pH 6-8. The mechanism of cadmium ion binding by dealginate was investigated by a number of techniques. Potentiometric titration of the dealginate revealed two distinct pKa values, the first having a value similar to carboxyl groups and the second comparable with that of saturated thiols and amines. Esterification of the dealginate resulted in the subsequent reduction in cadmium sorption (95% to 17%), indicating that carboxyl groups are largely responsible for sorption. Evidence from FT-IR spectra confirmed the presence of carboxyl groups in untreated dealginate, while the number of carboxyl groups was markedly reduced in the esterified sample. Furthermore, the FT-IR spectrum for dealginate was found to be similar to that previously reported for mannuronic acid-rich calcium alginate. Determination of a molar ratio in the displacement of calcium by cadmium on dealginate further supported the presence of an ion-exchange relationship. The ion-exchange constant was calculated to be 0.329 x 10(-6). The speciation of cadmium in solution both before and after sorption was determined by an ion-selective electrode (ISE) technique. The findings of this study suggest that the sorption of cadmium by dealginate is mainly due to an ion-exchange mechanism.
Migliolo, Ludovico; Silva, Osmar N.; Silva, Paula A.; Costa, Maysa P.; Costa, Carolina R.; Nolasco, Diego O.; Barbosa, João A. R. G.; Silva, Maria R. R.; Bemquerer, Marcelo P.; Lima, Lidia M. P.; Romanos, Maria T. V.; Freitas, Sonia M.; Magalhães, Beatriz S.; Franco, Octavio L.
2012-01-01
Recently, defense peptides that are able to act against several targets have been characterized. The present work focuses on structural and functional evaluation of the peptide analogue Pa-MAP, previously isolated as an antifreeze peptide from Pleuronectes americanus. Pa-MAP showed activities against different targets such as tumoral cells in culture (CACO-2, MCF-7 and HCT-116), bacteria (Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25923), viruses (HSV-1 and HSV-2) and fungi (Candida parapsilosis ATCC 22019, Trichophyton mentagrophytes (28d&E) and T. rubrum (327)). This peptide did not show toxicity against mammalian cells such as erythrocytes, Vero and RAW 264.7 cells. Molecular mechanism of action was related to hydrophobic residues, since only the terminal amino group is charged at pH 7 as confirmed by potentiometric titration. In order to shed some light on its structure-function relations, in vitro and in silico assays were carried out using circular dichroism and molecular dynamics. Furthermore, Pa-MAP showed partial unfolding of the peptide changes in a wide pH (3 to 11) and temperature (25 to 95°C) ranges, although it might not reach complete unfolding at 95°C, suggesting a high conformational stability. This peptide also showed a conformational transition with a partial α-helical fold in water and a full α-helical core in SDS and TFE environments. These results were corroborated by spectral data measured at 222 nm and by 50 ns dynamic simulation. In conclusion, data reported here show that Pa-MAP is a potential candidate for drug design against pathogenic microorganisms due to its structural stability and wide activity against a range of targets. PMID:23056574
Dima, Jimena Bernadette; Sequeiros, Cynthia; Zaritzky, Noemi E
2015-12-01
Chitosan particles (CH) were obtained from seafood processing wastes (shrimp shells) and physicochemically characterized; deacetylation degree of CH was measured by Infrared Spectroscopy (FTIR) and potentiometric titration; polymer molecular weight was determined by intrinsic viscosity measurements. Reticulated micro/nanoparticles of chitosan (MCH) with an average diameter close to 100nm were synthesized by ionic gelation of chitosan using tripolyphosphate (TPP), and characterized by SEM, size distribution and Zeta-potential. Detoxification capacities of CH and MCH were tested analyzing the removal of hexavalent chromium Cr(VI) from contaminated water, at different initial chromium concentrations. The effect of pH on adsorption capacity of CH and MCH was experimentally determined and analyzed considering the Cr(VI) stable complexes (anions) formed, the presence of protonated groups in chitosan particles and the addition of the reticulating agent (TPP). Chitosan crosslinking was necessary to adsorb Cr(VI) at pH<2 due to the instability of CH particles in acid media. Langmuir isotherm described better than Freundlich and Temkin equations the equilibrium adsorption data. Pseudo-second order rate provided the best fitting to the kinetic data in comparison to pseudo-first order and Elovich equations. Chemical analysis to determine the oxidation state of the adsorbed Cr, showed that Cr(VI) was adsorbed on CH particles without further reduction; in contrast Cr(VI) removed from the solution was reduced and bound to the MCH as Cr(III). The reduction of toxic Cr(VI) to the less or nontoxic Cr(III) by the reticulated chitosan micro/nanoparticles can be considered a very efficient detoxification technique for the treatment of Cr(VI) contaminated water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Denadai, Ângelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S
2012-01-01
Summary Organic–inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr3+ and Cr2O7 2− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn. PMID:23209524
Effect of aluminum, zinc, copper, and lead on the acid-base properties of water extracts from soils
NASA Astrophysics Data System (ADS)
Motuzova, G. V.; Makarychev, I. P.; Petrov, M. I.
2013-01-01
The potentiometric titration of water extracts from the upper horizons of taiga-zone soils by salt solutions of heavy metals (Pb, Cu, and Zn) showed that their addition is an additional source of the extract acidity because of the involvement of the metal ions in complexation with water-soluble organic substances (WSOSs). At the addition of 0.01 M water solutions of Al(NO3)3 to water extracts from soils, Al3+ ions are also involved in complexes with WSOSs, which is accompanied by stronger acidification of the extracts from the upper horizon of soddy soils (with a near-neutral reaction) than from the litter of bog-podzolic soil (with a strongly acid reaction). The effect of the Al3+ hydrolysis on the acidity of the extracts is insignificantly low in both cases. A quantitative relationship was revealed between the release of protons and the ratio of free Cu2+ ions to those complexed with WSOSs at the titration of water extracts from soils by a solution of copper salt.
Kröner, Frieder; Hubbuch, Jürgen
2013-04-12
pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Charging Properties of Cassiterite (alpha-SnO2) Surfaces in NaCl and RbCl Ionic Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas
2009-01-01
The acid-base properties of cassiterite ({alpha}-SnO{sub 2}) surfaces at 10-50 C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH{sub 2} group is more acidic than the bridging Sn{sub 2}OH group, with protonation constants (log K{sub H}) of 3.60 and 5.13 at 25 C, respectively. This is contrary to the situation on the isostructural {alpha}-TiO{sub 2} (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na{sup +} and Rb{sup +}, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na{sup +} between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb{sup +} is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na{sup +}/Rb{sup +} was formulated. According to the SCM, the deprotonated terminal group (SnOH{sup -0.40}) and the protonated bridging group (Sn{sub 2}OH{sup +0.36}) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range.« less
NASA Astrophysics Data System (ADS)
Bajul, Audrey; Gerbaud, Vincent; Teychene, Sébastien; Devatine, Audrey; Bajul, Gilles
2017-08-01
Instability in bottled wines refer to tartaric salts crystallization such as potassium bitartrate (KHT). It is not desirable as consumers see the settled salts as an evidence of a poor quality control. In some cases, it causes excessive gushing in sparkling wine. We investigate the effect of two oenological carboxymethylcellulose (CMC) for KHT inhibition in a model solution of white wine by studying the impact of some properties of CMC such as the degree of polymerization, the degree of substitution, and the apparent dissociation constant determined by potentiometric titration. Polyelectrolyte adsorption is used for determining the surface and total charge and for providing information about the availability of CMC charged groups for interacting with KHT crystal faces. The inhibitory efficiency of CMC on model solution is evaluated by measuring the induction time with the help of conductimetric methods. Crystals growth with and without CMC are studied by observation with MEB and by thermal analysis using DSC. The results confirm the effectiveness of CMC as an inhibitor of KHT crystallization in a model solution. The main hypothesis of the mechanism lies in the interaction of dissociated anionic carboxymethyl groups along the cellulose backbone with positively charged layers on KHT faces like the {0 1 0} face. Key factors such as pH, CMC chain length and total charge are discusses.
Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects
NASA Astrophysics Data System (ADS)
Levia, D. F., Jr.; Shiklomanov, A.
2014-12-01
The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Habibi-Khorassani, Sayyed Mostafa; Shahraki, Mehdi; Shokrollahi, Ardeshir; Moghimi, Abolghasem; Tamandani, Halimeh Kord; Gavahi, Sara
2015-11-01
The hydrogen-bonded complex, [(OPDH)+(dipicH)-.H2O], between o-phenylenediamine (OPD) and 2,6-pyridinedicarboxylic acid (dipicH2) has been characterized in water by the 1H, 13C NMR and IR spectroscopies. The crystal structure showed that the edge to face C-H⋯π and C-O⋯π stacking interactions between the dipicH2 and OPD rings play an extra significant role in the formation of the hydrogen-bonded complex and supported the H-bonding interactions. The proton transfer also investigated theoretically in gas phase and thermodynamic parameters such as ΔH‡, ΔG‡, ΔS‡ were calculated for this process. Moreover, intramolecular hydrogen-bonding interaction has been recognized by calculating the electron density ρ(r) and Laplacian ∇2ρ(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method and also the interaction between electron acceptor (σ*) of OH with the lone pair of the nitrogen atom as an electron donor using Natural Bond Orbital (NBO) analysis. In addition, the protonation constants of dipicH2 and OPD and the equilibrium constants for the dipic-OPD (1:1) proton transfer system were obtained by the potentiometric pH titration method using the Hyperquad 2008 program. The stoichiometry of the proton transfer species in the solution confirmed the solid state result.
Łodyga-Chruscińska, Elżbieta; Pilo, Maria; Zucca, Antonio; Garribba, Eugenio; Klewicka, Elżbieta; Rowińska-Żyrek, Magdalena; Symonowicz, Marzena; Chrusciński, Longin; Cheshchevik, Vitalij T
2018-03-01
Fisetin (3,3',4',7-tetrahydroxyflavone) metal chelates are of interest as this plant polyphenol has revealed broad prospects for its use as natural medicine in the treatment of various diseases. Metal interactions may change or enhance fisetin biological properties so understanding fisetin metal chelation is important for its application not only in medicine but also as a food additive in nutritional supplements. This work was aimed to determine and characterize copper complexes formed in different pH range at applying various metal/ligand ratios. Fisetin and Cu(II)-fisetin complexes were characterized by potentiometric titrations, UV-Vis (Ultraviolet-visible spectroscopy), EPR, ESI-MS, FTIR and cyclic voltammetry. Their effects on DNA were investigated by using circular dichroism, spectrofluorimetry and gel electrophoresis methods. The copper complex with the ratio of Cu(II)/fisetin 1/2 exhibited significant DNA cleavage activity, followed by complete degradation of DNA. The influence of copper(II) ions on antioxidant activity of fisetin in vitro has been studied using DPPH, ABTS and mitochondrial assays. The results have pointed out that fisetin or copper complexes can behave both as antioxidants or pro-oxidants. Antimicrobial activity of the compounds has been investigated towards several bacteria and fungi. The copper complex of Cu(II)/fisetin 1/2 ratio showed higher antagonistic activity against bacteria comparing to the ligand and it revealed a promising antifungal activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle
2015-04-21
The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed.
Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle
2015-01-01
The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed. PMID:25906472
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, A.D.; Sposito, G.
Elemental composition data were obtained for bulk precipitation and throughfall samples and for aqueous extracts of leaves of three woody plant species common in the subalpine Sierras Nevada range, California: chinquapin (Chrysolepis sempervirens Hjelmqvist), western white pine (Pinus monticola Dougl.), and willow (Salix orestera Schneider). The acid-base equilibria of the extracts were characterized by potentiometric titration and proton formation functions were computed. The latter then were modeled assuming four classes of quasiparticle acidic functional groups, yielding negative logarithms of conditional protonation constants in the range 4.8 to 5.0, 6.1 to 6.6, 7.4 to 7.7, and 9.1 to 9.4. The relativemore » concentration of a given acidic functional group class varied markedly among the three woody species, but the conditional protonation constants were very similar. The model parameters, along with dissolved organic C concentration and pH values, were used to estimate net anion deficits in throughfall samples collected from the same sites as the leaf samples. On average, the calculated charge concentration of free organic anions in the western white pine extract matched the throughfall anion deficit, whereas the deficits in the chinquapin and willow throughfall samples were not accounted for by free anion concentrations. Metal complexation and in situ, species-dependent leaf surfaces processes may account for these latter differences.« less
Anirudhan, T S; Divya, L; Ramachandran, M
2008-09-15
A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R(2)=0.99; chi(2)=1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%.
Sohbatzadeh, Hozhabr; Keshtkar, Ali Reza; Safdari, Jaber; Fatemi, Faezeh
2016-08-01
In this work, Pseudomonas putida cells immobilized into chitosan beads (PICB) were synthesized to investigate the impact of microorganism entrapment on biosorption capacity of prepared biosorbent for U(VI) biosorption from aqueous solutions. Response Surface Methodology (RSM) based on Central Composite Design (CCD) was utilized to evaluate the performance of the PICB in comparison with chitosan beads (CB) under batch mode. Performing experiments under optimal condition sets viz. pH 5, initial U(VI) concentration 500mg/L, biosorbent dosage 0.4g/L and 20wt.% bacterial cells showed that the observed biosorption capacity enhanced by 1.27 times from 398mg/g (CB) to 504mg/g (PICB) that confirmed the effectiveness of cells immobilization process. FTIR and potentiometric titration were then utilized to characterize the prepared biosorbents. While the dominant functional group in the binding process was NH3(+) (4.78meq/g) in the CB, the functional groups of NH3(+), NH2, OH, COOH (6.00meq/g) were responsible for the PICB. The equilibrium and kinetic studies revealed that the Langmuir isotherm model and the pseudo-second-order kinetic model were in better fitness with the CB and PICB experimental data. In conclusion, the present study indicated that the PICB could be a suitable biosorbent for uranium (VI) biosorption from aqueous solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
A highly stable gadolinium complex with a fast, associative mechanism of water exchange.
Thompson, Marlon K; Botta, Mauro; Nicolle, Gaëlle; Helm, Lothar; Aime, Silvio; Merbach, André E; Raymond, Kenneth N
2003-11-26
The stability and water exchange dynamics of gadolinium (GdIII) complexes are critical characteristics that determine their effectiveness as contrast agents for magnetic resonance imaging (MRI). A new heteropodal GdIII chelate, [Gd-TREN-bis(6-Me-HOPO)-(TAM-TRI)(H2O)2] (Gd-2), is presented which is based on a hydroxypyridinate (HOPO)-terephthalamide (TAM) ligand design. Thermodynamic equilibrium constants for the acid-base properties and the GdIII complexation strength of TREN-bis(6-Me-HOPO)-(TAM-TRI) (2) were measured by potentiometric and spectrophotometric titration techniques, respectively. The pGd of 2 is 20.6 (pH 7.4, 25 degrees C, I = 0.1 M), indicating that Gd-2 is of more than sufficient thermodynamic stability for in vivo MRI applications. The water exchange rate of Gd-2 (kex = 5.3(+/-0.6) x 107 s-1) was determined by variable temperature 17O NMR and is in the fast exchange regime - ideal for MRI. Variable pressure 17O NMR was used to determine the volume of activation (DeltaV) of Gd-2. DeltaV for Gd-2 is -5 cm3 mol-1, indicative of an interchange associative (Ia) water exchange mechanism. The results reported herein are important as they provide insight into the factors influencing high stability and fast water exchange in the HOPO series of complexes, potentially future clinical contrast agents.
Smith, Douglas D.; Hiller, John M.
1998-01-01
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.D.; Hiller, J.M.
1998-02-24
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changesmore » in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.« less
Smith, D.D.; Hiller, J.M.
1998-02-24
The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.
An Improved MUSIC Model for Gibbsite Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.
2004-06-01
Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area wasmore » available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.« less
Acid-Base Titration Curves of Soils from a Low-Centered Polygon, Barrow, Alaska, 2013
Jianqiu Zheng; David Graham
2017-12-05
This dataset provides pH titration data of soils from a low-centered polygon center. The soil core was collected in 2013 from a low-centered polygon center from the NGEE-Arctic Intensive Study Site 1, Barrow, Alaska.
Shamrikova, E V; Ryazanov, M A; Vanchikova, E V
2006-11-01
Using the potentiometric titration and pK spectroscopy method, acid-base properties of water-soluble organic matter of forest soils have been studied. Five acidic classes composed of different substances with pK(a) values around 3.6; 4.8; 6.7; 8.7 and 9.7 have been identified. Testing the properties of soluble soil fraction, it is to be taken into account that when it is isolated from non-soluble soil matter, some water-soluble substances remain in soil and do not pass into the solution. Most firmly adsorbed in soil are water-soluble components with pK(a) 9.6-9.8.
Study of the acid-base properties of mineral soil horizons using pK spectroscopy
NASA Astrophysics Data System (ADS)
Shamrikova, E. V.; Vanchikova, E. V.; Ryazanov, M. A.
2007-11-01
The presence of groups 4 and 5 participating in acid-base equilibria was revealed in samples from mineral horizons of the gley-podzolic soil of the Komi Republic using pK spectroscopy (the mathematical processing of potentiometric titration curves for plotting the distribution of acid groups according to their pK values). The specific quantity of acid-base sites in soil samples was calculated. The contribution of organic and mineral soil components to the groups of acid-base sites was estimated. The pK values of groups determining the potential, exchangeable, and unexchangeable acidities were found. The heterogeneity of acid components determining different types of soil acidity was revealed.
Graber, Zachary T; Kooijman, Edgar E
2013-01-01
Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.
Bispo, Jose Ailton Conceicao; Landini, Gustavo Fraga; Santos, Jose Luis Rocha; Norberto, Douglas Ricardo; Bonafe, Carlos Francisco Sampaio
2005-08-01
The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1/2) changed from -65.3 to +146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins.
Galfi, Istvan; Virtanen, Jorma; Gasik, Michael M.
2017-01-01
A new, faster and more reliable analytical methodology for S(IV) species analysis at low pH solutions by bichromatometry is proposed. For decades the state of the art methodology has been iodometry that is still well justified method for neutral solutions, thus at low pH media possess various side reactions increasing inaccuracy. In contrast, the new methodology has no side reactions at low pH media, requires only one titration step and provides a clear color change if S(IV) species are present in the solution. The method is validated using model solutions with known concentrations and applied to analyses of gaseous SO2 from purged solution in low pH media samples. The results indicate that bichromatometry can accurately analyze SO2 from liquid samples having pH even below 0 relevant to metallurgical industrial processes. PMID:29145479
NASA Astrophysics Data System (ADS)
Suwanti, D.; Utami, R.; Kawiji; Praseptiangga, D.; Khasanah, L. U.
2018-01-01
Papaya is one of the export commodities that contain high vitamin C but having short shelf-life. One method that use to extend the shelf-life and maintain the quality of papaya is packaging. The aim of this study was to investigate the effect of the packaging methods (paper, active paper and edible coating) on the characteristics of papaya MJ9 (weight loss, firmness, total soluble solid (TSS), Total Titratable Acid (TTA), pH, vitamin C and total mold and yeast). The packaging methods were control (F1), wrapping paper (F2), wrapping active paper (F3), combination of edible coating and wrapping paper (F4), and combination of edible coating and wrapping active paper (F5). The result showed that paper packaging, edible coating and active paper packaging significantly affected the weight loss, firmness, total soluble solid, total titratable acids, pH, vitamin C, and total mold and yeast of papaya. The weight loss, total soluble solid and pH of packaged papaya was lower than that of control sample, however, the value of firmness and total titratable acid was higher than that of the control sample. Packaging can inhibit the increase of weight loss, total soluble solids and pH, and the decrease of firmness, total titratable acid, vitamin C and total mold and yeast. Based on the papaya characteristics, the selected packaging method was the combination of edible coating and wrapping active paper.
The determination of ultrafiltrable calcium and magnesium in serum.
Danielson, B G; Pallin, E; Sohtell, M
1982-01-01
Ultrafiltrate of human serum was investigated in order to evaluate the serum content of calcium and magnesium. The acid and base concentrations and pH of the serum was altered through titration with HCl- or NaOH-solutions. The Pco2 was varied in the titrated serum using different carbon dioxide tensions. This was performed when serum was filtered in a recycling system. It is shown that the analysis of calcium and magnesium have to be done under anaerobic conditions or at standardized pH and Pco2 situations, as the concentrations vary with both pH and Pco2. The concentration ratio between ultrafiltrate and serum for calcium and magnesium was found to be 0.56 and 0.74 respectively at pH=7.41 and Pco2=40 mmHg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topping, R.J.; Stone, M.P.; Brush, C.K.
The {sup 1}H NMR spectrum of the tetradeoxynucleotide d(TpCpGpA) was examined as a function of temperature, pH, and concentration. At pH 7 and above the solution conformation for this oligodeoxynucleotide appears to be a mixture of random coil and Watson-Crick duplex. At 25{degree}C, a pH titration of d(TpCpGaA) shown that distinct conformational changes occur as the pH is lowered below 7.0. These conformational changes are reversible upon readjusting the pH to neutrality, indicating the presence of a pH-dependent set of conformational equilibria. At 25{degree}C, the various conformational state in the mixture are in rapid exchange on the NMR time scale.more » Examination of the titration curve shown the presence of distinct conformational states at pH greater than 7, and between pH 4 and pH 5. When the pH titration is repeated at 5{degree}C, the conformational equilibria are in slow exchange on the NMR time scale; distinct signals from each conformational state are observable. The stable conformational state present between pH 4 and pH 5 represents an ordered conformation of d(TpCpGpA) which dissociates to a less ordered structure upon raising the temperature. The ordered conformation differs from the Watson-Crick helix, as is shown from nuclear Overhauser enhancement experiments, as well as chemical shift data. These results indicate that their ordered conformation is similar to the conformation of d(TpCpGpA) observed between pH 4 and pH 5. In the present case it is likely that stabilization of an ordered duplex conformation for d(TpCpGpA) is achieved by protonation of cytosine. A possible model which could explain the data involves formation of Hoogsteen C{sup +}:G base pairs.« less
Acid Rain Analysis by Standard Addition Titration.
ERIC Educational Resources Information Center
Ophardt, Charles E.
1985-01-01
The standard addition titration is a precise and rapid method for the determination of the acidity in rain or snow samples. The method requires use of a standard buret, a pH meter, and Gran's plot to determine the equivalence point. Experimental procedures used and typical results obtained are presented. (JN)
Near-infrared noninvasive spectroscopic determination of pH
Alam, Mary K.; Robinson, Mark R.
1998-08-11
Methods and apparatus for, preferably, determining noninvasively and in vitro pH in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 1000 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of pH. The determination of pH is made by using measured intensities at wavelengths that exhibit change in absorbance due to histidine titration. Histidine absorbance changes are due to titration by hydrogen ions. The determination of the unknown pH values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. The determined pH values are within the physiological ranges observed in blood containing tissue. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.
Chelating effect of citric acid is negligible for development of enamel erosions.
Azadi-Schossig, Parastu; Becker, Klaus; Attin, Thomas
2016-09-01
Citric acid (CA) is a component in beverages responsible for dental erosion. The aim of this study was to examine the influence of CA with different pH, titratable acid and buffer capacity (ß), and the impact of the chelating effect of CA on development of enamel erosions. In a superfusion model, hydroxy apatite (HAp) dissolution of bovine enamel was measured in four experiments (EXP 1-4) with 27 experimental groups (n = 8 per group). The samples were superfused with different CA variations and respective controls. EXP-1: Dilution series of HCl (pH 2.15-3.02). EXP-2: Dilution series of natural CA (56-1.75 mmol l(-1); pH 2.15-3.02). EXP-3: CA solutions (56 and 14 mmol l(-1), ß: 39.7 and 10.2 mmol l(-1) pH(-1), respectively) with different titratable acidity at equal pH values. EXP-4: CA concentrations (56-1.75 mmol l(-1)) neutralized to pH 7. CA led to higher HAp-dissolution than HCl. With higher pH, the difference in HAp-dissolution rate between the two acids became increasingly smaller. At equal pH, HAp-dissolution was higher for the CA with the higher amount of titratable acid. However, no clear correlation between erosion and titratable acid or ß could be found. Only minimal amounts of HAp were dissolved by neutralized CA compared to CA with natural pH. Under the chosen conditions chelating effects of CA do not have a relevant influence of HAp-dissolution of enamel. Moreover, amount of HAp-dissolution by CA is not attributed to a single factor alone. The interplay between the different parameters of CA seems to be responsible for its erosive potential. The erosive potential of solutions containing citric acid with unknown concentrations could not be predicted using a single parameter alone, and should at best determined in experimental set-ups.
Bose, Purnandhu; Ravikumar, I; Ghosh, Pradyut
2011-11-07
Tris(2-aminoethyl)amine (tren) based pentafluorophenyl-substituted tripodal L, tris[[(2,3,4,5,6-pentafluorobenzyl)amino]ethyl]amine receptor is synthesized in good yield and characterized by single crystal X-ray diffraction analysis. Detailed structural aspects of binding of different anionic guests toward L in its triprotonated form are examined thoroughly. Crystallographic results show binding of fluoride in the C(3v)-symmetric cavity of [H(3)L](3+) where spherical anion fluoride is in tricoordinated geometry via (N-H)(+)···F interaction in the complex [H(3)L(F)]·[F](2)·2H(2)O, (3). In the case of complexes [H(3)L(OTs)]·[OTs](2), (4) and [H(3)L(OTs)]·[NO(3)]·[OTs], (5), tetrahedral p-toluenesulphonate ion is engulfed in the cavity of [H(3)L](3+) via (N-H)(+)···O interactions. Interestingly, complex [(H(3)L)(2)(SiF(6))]·[BF(4)](4)·CH(3)OH·H(2)O, (6) shows encapsulation of octahedral hexafluorosilicate in the dimeric capsular assembly of two [H(3)L](3+) units, via a number of (N-H)(+)···F interactions. The kinetic parameters of L upon binding with different anions are evaluated using a potentiometric study in solution state. The potentiometric titration experiments in a polar protic methanol/water (1:1 v/v) binary solvent system show high affinity of the receptor toward more basic fluoride and acetate anions, with a lesser affinity for other inorganic anions (e.g., chloride, bromide, nitrate, sulfate, dihydrogenphosphate, and p-toluenesulphonate). © 2011 American Chemical Society
A selective potentiometric copper (II) ion sensor based on the functionalized ZnO nanorods.
Khun, K; Ibupoto, Z H; Liu, X; Nur, O; Willander, M; Danielsson, B
2014-09-01
In this work, ZnO nanorods were hydrothermally grown on the gold-coated glass substrate and characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques. The ZnO nanorods were functionalized by two different approaches and performance of the sensor electrode was monitored. Fourier transform infrared spectroscopy (FTIR) was carried out for the confirmation of interaction between the ionophore molecules and ZnO nanorods. In addition to this, the surface of the electrode was characterized by X-ray photoelectron spectroscopy (XPS) showing the chemical and electronic state of the ionophore and ZnO nanorod components. The ionophore solution was prepared in the stabilizer, poly vinyl chloride (PVC) and additives, and then functionalized on the ZnO nanorods that have shown the Nernstian response with the slope of 31 mV/decade. However, the Cu2+ ion sensor was fabricated only by immobilizing the selective copper ion ionophore membrane without the use of PVC, plasticizers, additives and stabilizers and the sensor electrode showed a linear potentiometric response with a slope of 56.4 mV/decade within a large dynamic concentration range (from 1.0 x 10(-6) to 1.0 x 10(-1) M) of copper (II) nitrate solutions. The sensor showed excellent repeatability and reproducibility with response time of less than 10 s. The negligible response to potentially interfering metal ions such as calcium (Ca2+), magnesium (Mg2+), potassium (K+), iron (Fe3+), zinc (Zn2+), and sodium (Na+) allows this sensor to be used in biological studies. It may also be used as an indicator electrode in the potentiometric titration.
Humic substance charge determination by titration with a flexible cationic polyelectrolyte
NASA Astrophysics Data System (ADS)
Tan, Wen-Feng; Norde, Willem; Koopal, Luuk K.
2011-10-01
The anionic charge of humic substances (HS) plays a major role in the interaction of HS with other components. Therefore, the potential of the polyelectrolyte titration technique to obtain the charge density of HS in simple 1-1 electrolyte solutions has been investigated. Titrations are carried out with an automatic titrator combined with the "Mütek particle charge detector" which allows determination of the Mütek potential and the pH as a function of the added amount of titrant which is a solution of poly-diallyldimethylammonium chloride (polyDADMAC), a cationic strong polyelectrolyte. When the Mütek potential reverses its sign the iso-electric point (IEP) of the polyDADMAC-HS complex is reached. The polyDADMAC/HS mass ratio at the IEP gives information on the HS charge density and from the pH changes in solution an estimate of the charge regulation in the HS-polyDADMAC complex can be obtained. In general, for polyDADMAC-HS complexes an increase in the dissociation of the acid groups of HS is found (charge regulation). The charge regulation decreases with increasing concentration of 1-1 background electrolyte. Cation incorporation can be neglected at 1-1 electrolyte concentrations ⩽ 1 mmol L -1 and a 1-1 stoichiometry exists between the polyDADMAC and HS charge. However, at these low salt concentrations the charge regulation is substantial. A detailed analysis of purified Aldrich humic acid (PAHA) at pH 5 and a range of KCl concentrations reveals that the anionic charge of PAHA in the complex increases at 5 mmol L -1 KCl by 30% and at 150 mmol L -1 KCl by 12%. On the other hand, increasing amounts of K + become incorporated in the complex: at 5 mmol L -1 KCl 5% and at 150 mmol L -1 KCl 24% of the PAHA charge is balanced by K +. By comparing at pH 5 the mass ratios polyDADMAC/PAHA in the complex at the IEP with the theoretical mass ratios of polyDADMAC/PAHA required to neutralize PAHA in the absence of charge regulation and K + incorporation, it is found that at 50 mmol L -1 KCl the extra negative charge due to the interaction between polyDADMAC and PAHA is just compensated by K + incorporation in the complex. Therefore, a pseudo 1-1 stoichiometry exists at about 50 mmol L -1 1-1 electrolyte concentration and only at this salt concentration polyDADMAC titrations and conventional proton titrations give identical results. Most likely this is also true for other HA samples and other pH values. For FA further study is required to reveal the conditions for which polyDADMAC and proton titrations give identical results.
NASA Astrophysics Data System (ADS)
Vilhena, Felipe S.; Felcman, Judith; Szpoganicz, Bruno; Miranda, Fabio S.
2017-01-01
A large number of copper (II) complexes have been used as mimetic models for metalloproteins and metalloenzymes. Due to the lack of structural information about copper (II) complexes in aqueous solution, the coordination environment of this metal is not well established. In this work, pKa values of the complexes in the Cu:GlyGly, Cu:Met and Cu:GlyGly:Met systems were calculated by potentiometric titration at 25 °C and ionic strength of 0.1 mol L-1. The coordination modes of the ligands were explored for the main hydrolytic species throught RI-PBE/def2-SVP/COSMO level. In the Cu:GlyGly system, DFT results indicated that the NamineNpept coordination of dipeptide is 2.1 kcal mol-1 more stable than the tridentate NamineNpeptOcarboxy coordination moiety. The deprotonation of the peptide nitrogen is 13.7 kcal mol-1 more favorable than the hydrolysis of the water molecule coordinated to the metal. In the Cu:GlyGly:Met system, the sulfur atom does not belong to the copper (II) coordination sphere. Once the copper ion is incorporated into peptides, another ligand as methionine could bind to this system and carry an antioxidant site to different brain regions.
Bernier, Nicolas; Costa, Judite; Delgado, Rita; Félix, Vítor; Royal, Guy; Tripier, Raphaël
2011-05-07
The synthesis of the cross-bridged cyclen CRpy(2) {4,10-bis((pyridin-2-yl)methyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane}, a constrained analogue of the previously described trans-methylpyridine cyclen Cpy(2) is reported. The additional ethylene bridge confers to CRpy(2) proton-sponge type behaviour which was explored by NMR and potentiometric studies. Transition metal complexes have been synthesized (by complexation of both ligands with Co(2+), Cu(2+) and Zn(2+)) and characterized in solution and in the solid state. The single crystal X-ray structures of [CoCpy(2)](2+), [CuCpy(2)](2+) and [ZnCpy(2)](2+) complexes were determined. Stability constants of the complexes, including those of the cross-bridged derivative, were determined using potentiometric titration data and the kinetic inertness of the [CuCRpy(2)](2+) complex in an acidic medium (half-life values) was evaluated by spectrophotometry. The pre-organized structure of the cross-bridged ligand imposes an additional strain for the complexation leading to complexes with smaller thermodynamic stability in comparison with the related non-bridged ligand. The electrochemical study involving cyclic voltammetry underlines the importance of the ethylene cross-bridge on the redox properties of the transition metal complexes.
Grafting of activated carbon cloths for selective adsorption
NASA Astrophysics Data System (ADS)
Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.
2016-05-01
Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.
NASA Astrophysics Data System (ADS)
Rafiee, Ezzat; Mirnezami, Fakhrosadat
2017-02-01
By combining phosphotungstic acid (PW) and SO3H- functioned zwitterion, heteropoly anion-based Brønsted acidic ionic liquids (HPA-ILs) were successfully obtained. Scanning electron microscopy and energy dispersive X-ray spectroscopy were provided the morphology and composition of the prepared material. Catalytic performance and reusability of the catalysts were evaluated through an esterification reaction between oleic acid and methanol for production of biodiesel. Relationship between catalytic activities and acidity of the catalysts have been discussed by potentiometric titration. The results showed that HPA-ILs had good activity and reusability. HPA-ILs dissolved in the reaction mixture during the reaction process and could be precipitated and separated from products at lower temperature.
Solid State Sensor for Simultaneous Measurement of Total Alkalinity and pH of Seawater.
Briggs, Ellen M; Sandoval, Sergio; Erten, Ahmet; Takeshita, Yuichiro; Kummel, Andrew C; Martz, Todd R
2017-09-22
A novel design is demonstrated for a solid state, reagent-less sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (A T ) using ion sensitive field effect transistor (ISFET) technology to provide a simplified means of characterization of the aqueous carbon dioxide system through measurement of two "master variables": pH and A T . ISFET-based pH sensors that achieve 0.001 precision are widely used in various oceanographic applications. A modified ISFET is demonstrated to perform a nanoliter-scale acid-base titration of A T in under 40 s. This method of measuring A T , a Coulometric Diffusion Titration, involves electrolytic generation of titrant, H + , through the electrolysis of water on the surface of the chip via a microfabricated electrode eliminating the requirement of external reagents. Characterization has been performed in seawater as well as titrating individual components (i.e., OH - , HCO 3 - , CO 3 2- , B(OH) 4 - , PO 4 3- ) of seawater A T . The seawater measurements are consistent with the design in reaching the benchmark goal of 0.5% precision in A T over the range of seawater A T of ∼2200-2500 μmol kg -1 which demonstrates great potential for autonomous sensing.
An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc
NASA Technical Reports Server (NTRS)
Reid, M. A.
1978-01-01
A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9-8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.
An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc
NASA Technical Reports Server (NTRS)
Reid, M. A.
1978-01-01
A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9 - 8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.
Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH.
Rangel-Mendez, J R; Streat, M
2002-03-01
The surface of activated carbon cloth (ACC), based on polyacrylonitrile fibre as a precursor, was oxidised using nitric acid, ozone and electrochemical oxidation to enhance cadmium ion exchange capacity. Modified adsorbents were physically and chemically characterised by pH titration, direct titration, X-ray photoelectron spectroscopy, elemental analysis, surface area and porosimetry, and scanning electron microscopy. BET surface area decreased after oxidation, however, the total ion exchange capacity increased by a factor of approximately 3.5 compared to the commercial as-received ACC. A very significant increase in cadmium uptake, by a factor of 13, was observed for the electrochemically oxidised ACC. Equilibrium sorption isotherms were determined at pH 4, 5 and 6 and these showed that cadmium uptake increased with increasing pH. There was clear evidence of physical damage to ozone-oxidised fibre, however, acid and electrochemically oxidised samples were completely stable.
Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review.
Vidojkovic, Sonja M; Rakin, Marko P
2017-07-01
Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe 3 O 4 ) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pH iep ) and point of zero charge (pH pzc ) values has been obtained. All obtained results showed that the surface of magnetite particles is negatively charged in typical high temperature thermal power plant water, which indicates the low probability of aggregation and deposition on plant metal surfaces. The results also gave strong evidence on decline of pH iep and pH pzc with temperature in the same manner as neutral pH of water. The thermodynamic parameters of magnetite surface protonation reactions were in good agreement with each other and obtained using one site/two pK and mainly one site/one pK model. All collected data provided evidences for interaction between particles, probability of deposition and eventual attachment to the steel surface at various pH and temperatures and can serve as a foundation for future surface studies aimed at optimizing plant performances and reducing of magnetite deposition. In future works it would be indispensable to provide the surface experimental data for extended temperature ranges, typical solution chemistries and metal surfaces of power plant structural components and thus obtain entire set of results useful in modeling the surface behavior and control of deposition process in power reactors and thermal plant circuits. Moreover, the acquired results will be applicable and greatly valuable to all other types of power plants, industrial facilities and technological processes using the high temperature water medium. Copyright © 2016 Elsevier B.V. All rights reserved.
[Intragastric utilization of antacids following meals in relation to stomach emptying].
Lux, G; Hartog, C; Ruppin, H; Lederer, P; Schmitt, W
1983-03-01
Gastric acid secretion and gastric emptying rate was measured using double marker method and continuous titration of a liquid peptone test meal. Titration rate was significantly reduced by 30 ml of an aluminiumhydroxide- and magnesiumhydroxide containing antacid compound (Maalox). Acidity of gastric contents was reduced over a period of 48.4 +/- 9.1 min (mean +/- SD; endpoint of titration pH 5.5) and 77.6 +/- 2.0 min (pH 3.5) (p less than 0.05). The histamine H2-receptor blocker Ranitidine (0.25 mg/kg b.w.) and the antimuscarinic agent Pirenzepine reduced titrable gastric acid secretion in a similar range, as far as the observation period of 90 min is concerned. Biosorbin MCT, a formula diet, stimulated gastric acid secretion half the amount of gastric acid secretion stimulated by the peptone meal. Gastric emptying rate was significantly reduced by formula diet, but not by either of the other compounds.
Injection moulded microneedle sensor for real-time wireless pH monitoring.
Mirza, Khalid B; Zuliani, Claudio; Hou, Benjamin; Ng, Fu Siong; Peters, Nicholas S; Toumazou, Christofer
2017-07-01
This paper describes the development of an array of individually addressable pH sensitive microneedles using injection moulding and their integration within a portable device for real-time wireless recording of pH distributions in biological samples. The fabricated microneedles are subjected to gold patterning followed by electrodeposition of iridium oxide to sensitize them to 0.07 units of pH change. Miniaturised electronics suitable for the sensors readout, analog-to-digital conversion and wireless transmission of the potentiometric data are embodied within the device, enabling it to measure real-time pH of soft biological samples such as muscles. In this paper, real-time recording of the cardiac pH distribution, during ischemia followed by reperfusion cycles in cardiac muscles of male Wistar rats has been demonstrated by using the microneedle array.
Kimoto, Hideshi; Nozaki, Ken; Kudo, Setsuko; Kato, Ken; Negishi, Akira; Kayanne, Hajime
2002-03-01
A fully automated, continuous-flow-through type analyzer was developed to observe rapid changes in the concentration of total inorganic carbon (CT) in coastal zones. Seawater and an H3PO4 solution were fed into the analyzer's mixing coil by two high-precision valveless piston pumps. The CO2 was stripped from the seawater and moved into a carrier gas, using a newly developed continuous-flow-through CO2 extractor. A mass flow controller was used to assure a precise flow rate of the carrier gas. The CO2 concentration was then determined with a nondispersive infrared gas analyzer. This analyzer achieved a time-resolution of as good as 1 min. In field experiments on a shallow reef flat of Shiraho (Ishigaki Island, Southwest Japan), the analyzer detected short-term, yet extreme, variations in CT which manual sampling missed. Analytical values obtained by the analyzer on the boat were compared with those determined by potentiometric titration with a closed cell in a laboratory: CT(flow-through) = 0.980 x CT(titration) + 38.8 with r2 = 0.995 (n = 34; September 1998).
Development of new composite biosorbents from olive pomace wastes
NASA Astrophysics Data System (ADS)
Pagnanelli, Francesca; Viggi, Carolina Cruz; Toro, Luigi
2010-06-01
In this study olive pomace was used as a source of binding substances for the development of composite biosorbents to be used in heavy metal removal from aqueous solutions. The aim was to obtain biosorbent material with an increased concentration of binding sites. The effects of two different extraction procedures (one using only methanol and the other one hexane followed by methanol) on the binding properties of olive pomace were tested by potentiometric titrations and batch biosorption tests for copper and cadmium removal. Titration modelling evidenced that both kinds of extractions generated a solid with a reduced amount of protonatable sites. Biosorption tests were organized according to full factorial designs. Analysis of variance denoted that both kinds of extractions determined a statistically significant negative effect on metal biosorption. In the case of cadmium extractions also determined a significant decrease of selectivity with respect to olive pomace. When the acid-base and binding properties of the substances extracted were determined, they were adsorbed onto a synthetic resin (octadecylsilane) and calcium alginate beads. In this way two kinds of composite biosorbents have been obtained both having an increased concentration of binding substances with respect to native olive pomace, also working more efficiently in metal removal.
Titration of a Solid Acid Monitored by X-Ray Diffraction
ERIC Educational Resources Information Center
Dungey, Keenan E.; Epstein, Paul
2007-01-01
An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…
Code of Federal Regulations, 2010 CFR
2010-04-01
.../m), calculated on a dry basis. (2) The sulfated ash content is not more than 0.3 percent, m/m... action to final action. (3) Sulfated ash content, section 31.014, “Ash of Sugars and Sirups,” Final Action, Sulfated Ash, 14th Ed. (1984), p. 575. (4) pH, section 14.022, “pH of Flour, Potentiometric...
Code of Federal Regulations, 2011 CFR
2011-04-01
.../m), calculated on a dry basis. (2) The sulfated ash content is not more than 0.3 percent, m/m... action to final action. (3) Sulfated ash content, section 31.014, “Ash of Sugars and Sirups,” Final Action, Sulfated Ash, 14th Ed. (1984), p. 575. (4) pH, section 14.022, “pH of Flour, Potentiometric...
Heinrich, Hannah T M; Bremer, Phil J; Daughney, Christopher J; McQuillan, A James
2007-02-27
Acid-base functional groups at the surface of Anoxybacillus flavithermus (AF) were assigned from the modeling of batch titration data of bacterial suspensions and compared with those determined from in situ infrared spectroscopic titration analysis. The computer program FITMOD was used to generate a two-site Donnan model (site 1: pKa = 3.26, wet concn = 2.46 x 10(-4) mol g(-1); site 2: pKa = 6.12, wet concn = 6.55 x 10(-5) mol g(-1)), which was able to describe data for whole exponential phase cells from both batch acid-base titrations at 0.01 M ionic strength and electrophoretic mobility measurements over a range of different pH values and ionic strengths. In agreement with information on the composition of bacterial cell walls and a considerable body of modeling literature, site 1 of the model was assigned to carboxyl groups, and site 2 was assigned to amino groups. pH difference IR spectra acquired by in situ attenuated total reflection infrared (ATR-IR) spectroscopy confirmed the presence of carboxyl groups. The spectra appear to show a carboxyl pKa in the 3.3-4.0 range. Further peaks were assigned to phosphodiester groups, which deprotonated at slightly lower pH. The presence of amino groups could not be confirmed or discounted by IR spectroscopy, but a positively charged group corresponding to site 2 was implicated by electrophoretic mobility data. Carboxyl group speciation over a pH range of 2.3-10.3 at two different ionic strengths was further compared to modeling predictions. While model predictions were strongly influenced by the ionic strength change, pH difference IR data showed no significant change. This meant that modeling predictions agreed reasonably well with the IR data for 0.5 M ionic strength but not for 0.01 M ionic strength.
Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species.
Murphy, V; Hughes, H; McLoughlin, P
2009-07-15
Various chemical treatments have been applied to six brown, red and green seaweed species with a view to enhancing their metal removal for Cu(II), Cr(III) and Cr(VI). Treatment with acetone resulted in the greatest enhancement for both cationic and anionic species with relatively low mass losses (15-35%), indicating its low risk to biomass operational stability. Cation binding was increased by 69%, while the total Cr removal was augmented by 15%. Cr(VI) binding was shown to be an adsorption-coupled reduction, whereby Cr(VI) was bound to the biomass surface at pH 2 and subsequently reduced to Cr(III). Acetone treatment also resulted in biomasses that were capable of converting up to 83% of Cr(VI) in solution to Cr(III). Blocking of carboxyl and amino functionalities had significant negative effects both on total Cr removal as well as percentage conversion of Cr(VI) to Cr(III). Results therefore indicated the significant role played by these moieties in metal binding to these seaweeds. Potentiometric titrations displayed agreement between the degree of esterification and the decrease in Cu(II) removal for Ulva spp. and Polysiphonia lanosa. FTIR analysis identified changes in biomass functionality and availability after chemical modification, the results of which were in agreement with metal removal studies. In conclusion, these biosorbents represent suitable candidates to replace conventional removal technologies for metal bearing wastewaters, in particular for the detoxification of hazardous Cr(VI) waste streams.
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Abdul Razak, Ibrahim; Refahi, Masoud; Moghimi, Abolghasem; Rosli, Mohd Mustaqim
2015-09-01
The complex [DAPH][H3O][Cu(dipic)2]·3H2O, (1) (dipicH2 = 2,6-pyridinedicarboxylic acid and DAP = 2,3-diaminophenazine) was prepared from the reaction of Cu(NO3)2·2H2O with mixture of o-phenylenediamine (OPD) and 2,6-pyridinedicarboxylic acid in water. The complex was characterized by FTIR, elemental analysis, UV-Vis and the single-crystal X-ray diffraction. The crystal system is monoclinic with the space group P21/c. This complex is stabilized in the solid state by an extensive network of hydrogen bonds between crystallized water, anionic and cationic fragments, which form a three-dimensional network. Furthermore, hydrogen bonds, π⋯π and Csbnd O⋯π stacking interactions seem to be effective in stabilizing the crystal structures. The protonation constants of dipic (L) and DAP (Q), the equilibrium constants for the dipic-DAP proton transfer system and the stoichiometry and stability constants of binary complexes including each of ligands (dipic, DAP) in presence Cu2+ ion, ternary complexes including, both of ligands (dipic-DAP) in presence of metal ion were calculated in aqueous solutions by potentiometric pH titration method using the Hyperquad2008 program. The stoichiometry of the most complexes species in solution was found to be very similar to the solid-state of cited metal ion complex.
Adsorption characteristics of hexavalent chromium on HCB/TiO2
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhang, Yonggang
2014-10-01
Sol-gel method was adopted to prepare HCB/TiO2 and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO2 was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pHpzc) characteristics of the surface of HCB/TiO2 which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25-45 °C, so Cr(VI) adsorption by HCB/TiO2 is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g-1 in an acidic medium, of which the value is worth comparable with other low-cost adsorbents.
Copper removal by algal biomass: biosorbents characterization and equilibrium modelling.
Vilar, Vítor J P; Botelho, Cidália M S; Pinheiro, José P S; Domingos, Rute F; Boaventura, Rui A R
2009-04-30
The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g(-1)) and proton binding parameters (pK(H)=5.0, 5.3 and 4.4; m(H)=0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK(M) (3.2; 3.6 and 3.3), n(M) (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.
For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles McCormick; Roger Hester
Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge densitymore » terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.« less
Net alkalinity and net acidity 2: Practical considerations
Kirby, C.S.; Cravotta, C.A.
2005-01-01
The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the Hot Acidities were comparable for fresh and most aged samples. A meaningful "net" acidity can be determined from a measured Hot Acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. The use of net alkalinity = (Alkalinitymeasured - Hot Aciditymeasured) to design mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions. ?? 2005 Elsevier Ltd. All rights reserved.
Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.
Fernandez, Roberto M; Vieira, Renata F F; Nakaie, Clóvis R; Lamy, M Teresa; Ito, Amando S
2005-01-01
Tryptophantime-resolved fluorescence was used to monitor acid-base titration properties of alpha-melanocyte stimulating hormone (alpha-MSH) and the biologically more potent analog [Nle4, D-Phe7]alpha -MSH (NDP-MSH), labeled or not with the paramagnetic amino acid probe 2,2,6,6-tetramthylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Global analysis of fluorescence decay profiles measured in the pH range between 2.0 and 11.0 showed that, for each peptide, the data could be well fitted to three lifetimes whose values remained constant. The less populated short lifetime component changed little with pH and was ascribed to Trp g+ chi1 rotamer, in which electron transfer deactivation predominates over fluorescence. The long and intermediate lifetime preexponential factors interconverted along that pH interval and the result was interpreted as due to interconversion between Trp g- and trans chi1 rotamers, driven by conformational changes promoted by modifications in the ionization state of side-chain residues. The differences in the extent of interconversion in alpha-MSH and NDP-MSH are indicative of structural differences between the peptides, while titration curves suggest structural similarities between each peptide and its Toac-labeled species, in aqueous solution. Though less sensitive than fluorescence, the Toac electron spin resonance (ESR) isotropic hyperfine splitting parameter can also monitor the titration of side-chain residues located relatively far from the probe. Copyright (c) 2005 Wiley Periodicals, Inc.
Kamel, Ayman H
2015-11-01
A new potentiometric transducer for selective recognition of azide is characterized and developed. The PVC plasticized based sensor incorporates Mn(II) [2-formylquinoline thiosemicarbazone] complex in the presence of tri dodecyl methyl ammonium chloride (TDMAC) as a lipophilic cationic additive. The sensor displayed a near-Nernstian response for azide over 1.0×10(-2)-1.0×10(-5) mol L(-1), with an anionic slope of -55.8±0.6 mV decade(-1) and lower limit of detection 0.34 µg mL(-1). The sensor was pH independent in the range 5.5-9 and presented good selectivity features towards several inorganic anions, and it is easily used in a flow injection system and compared with a tubular detector. The intrinsic characteristics of the detector in a low dispersion manifold were determined and compared with data obtained under a hydrodynamic mode of operation. This simple and inexpensive automation, with a good potentiometric detector, enabled the analysis of ~33 samples h(-1) without requiring pre-treatment procedures. The proposed method is also applied to the analysis of trace levels of azide in primer mixtures. Significantly improved accuracy, precision, response time, stability and selectivity were offered by these simple and cost-effective potentiometric sensor compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to determine azide ions. Copyright © 2015 Elsevier B.V. All rights reserved.
Data on the chemical properties of commercial fish sauce products.
Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki
2017-12-01
This data article reports on the chemical properties of commercial fish sauce products associated with the fish sauce taste and flavor. All products were analyzed in triplicate. Dried solid content was analyzed by moisture analyzer. Fish sauce salinity was determined by a salt meter. pH was measured using a pH meter. The acidity was determined using a titration assay. Amino nitrogen and total nitrogen were evaluated using a titration assay and Combustion-type nitrogen analyzer, respectively. The analyzed products originated from Japan, Thailand, Vietnam, China, the Philippines, and Italy. Data on the chemical properties of the products are provided in table format in the current article.
De Luca, Michele; Ioele, Giuseppina; Mas, Sílvia; Tauler, Romà; Ragno, Gaetano
2012-11-21
Amiloride photostability at different pH values was studied in depth by applying Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to the UV spectrophotometric data from drug solutions exposed to stressing irradiation. Resolution of all degradation photoproducts was possible by simultaneous spectrophotometric analysis of kinetic photodegradation and acid-base titration experiments. Amiloride photodegradation showed to be strongly dependent on pH. Two hard modelling constraints were sequentially used in MCR-ALS for the unambiguous resolution of all the species involved in the photodegradation process. An amiloride acid-base system was defined by using the equilibrium constraint, and the photodegradation pathway was modelled taking into account the kinetic constraint. The simultaneous analysis of photodegradation and titration experiments revealed the presence of eight different species, which were differently distributed according to pH and time. Concentration profiles of all the species as well as their pure spectra were resolved and kinetic rate constants were estimated. The values of rate constants changed with pH and under alkaline conditions the degradation pathway and photoproducts also changed. These results were compared to those obtained by LC-MS analysis from drug photodegradation experiments. MS analysis allowed the identification of up to five species and showed the simultaneous presence of more than one acid-base equilibrium.
Cravotta, Charles A.; Means, Brent P; Arthur, Willam; McKenzie, Robert M; Parkhurst, David L.
2015-01-01
Alkaline chemicals are commonly added to discharges from coal mines to increase pH and decrease concentrations of acidity and dissolved aluminum, iron, manganese, and associated metals. The annual cost of chemical treatment depends on the type and quantities of chemicals added and sludge produced. The AMDTreat computer program, initially developed in 2003, is widely used to compute such costs on the basis of the user-specified flow rate and water quality data for the untreated AMD. Although AMDTreat can use results of empirical titration of net-acidic or net-alkaline effluent with caustic chemicals to accurately estimate costs for treatment, such empirical data are rarely available. A titration simulation module using the geochemical program PHREEQC has been incorporated with AMDTreat 5.0+ to improve the capability of AMDTreat to estimate: (1) the quantity and cost of caustic chemicals to attain a target pH, (2) the chemical composition of the treated effluent, and (3) the volume of sludge produced by the treatment. The simulated titration results for selected caustic chemicals (NaOH, CaO, Ca(OH)2, Na2CO3, or NH3) without aeration or with pre-aeration can be compared with or used in place of empirical titration data to estimate chemical quantities, treated effluent composition, sludge volume (precipitated metals plus unreacted chemical), and associated treatment costs. This paper describes the development, evaluation, and potential utilization of the PHREEQC titration module with the new AMDTreat 5.0+ computer program available at http://www.amd.osmre.gov/.
Anirudhan, T S; Divya, L; Suchithra, P S
2009-01-01
This study investigated the feasibility of using a new adsorbent prepared from coconut coir pith, CP (a coir industry-based lignocellulosic residue), for the removal of uranium [U(VI)] from aqueous solutions. The adsorbent (PGCP-COOH) having a carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto CP using potassium peroxydisulphate-sodium thiosulphite as a redox initiator and in the presence of N,N'-methylenebisacrylamide as a crosslinking agent. IR spectroscopy results confirm the graft copolymer formation and carboxylate functionalization. XRD studies confirm the decrease of crystallinity in PGCP-COOH compared to CP, and it favors the protrusion of the functional group into the aqueous medium. The thermal stability of the samples was studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was determined using potentiometric titration. The ability of PGCP-COOH to remove U(VI) from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed at the pH range 4.0-6.0. Maximum removal of 99.2% was observed for an initial concentration of 25mg/L at pH 6.0 and an adsorbent dose of 2g/L. Equilibrium was achieved in approximately 3h. The experimental kinetic data were analyzed using a first-order kinetic model. The temperature dependence indicates an endothermic process. U(VI) adsorption was found to decrease with an increase in ionic strength due to the formation of outer-sphere surface complexes on PGCP-COOH. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as DeltaG(0), DeltaH(0) and DeltaS(0) were derived to predict the nature of adsorption. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC-50, with carboxylate functionality for comparison. Utility of the adsorbent was tested by removing U(VI) from simulated nuclear industry wastewater. Adsorbed U(VI) ions were desorbed effectively (about 96.2+/-3.3%) by 0.1M HCl. The adsorbent was suitable for repeated use (more than four cycles) without any noticeable loss of capacity.
Tautomeric and Microscopic Protonation Equilibria of Anthranilic Acid and Its Derivatives.
Zapała, Lidia; Woźnicka, Elżbieta; Kalembkiewicz, Jan
2014-01-01
The acid-base chemistry of three zwitterionic compounds, namely anthranilic (2-aminobenzoic acid), N -methylanthranilic and N -phenylanthranilic acid has been characterized in terms of the macroconstants K a1 , K a2 , the isoelectric point p H I , the tautomerization constant K z and microconstants k 11 , k 12 , k 21 , k 22 . The potentiometric titration method was used to determine the macrodissociation constants. Due to the very poor water solubility of N -phenylanthranilic acid the dissociation constants p K a1 and p K a2 were determined in MDM-water mixtures [MDM is a co-solvent mixture, consisting of equal volumes of methanol (MeOH), dioxane and acetonitrile (MeCN)]. The Yasuda-Shedlovsky extrapolation procedure has been used to obtain the values of p K a1 and p K a2 in aqueous solutions. The p K a1 and p K a2 values obtained by this method are 2.86 ± 0.01 and 4.69 ± 0.03, respectively. The tautomerization constant K z describing the equilibrium between unionized form ⇌ zwitterionic form was evaluated by the K z method based on UV-VIS spectrometry. The method uses spectral differences between the zwitterionic form (found at isoelectric pH in aqueous solution) and the unionized form (formed in an organic solvent of low dielectric constant). The highest value of the K z constant has been observed in the case of N -methylantranilic acid (log 10 K z = 1.31 ± 0.04). The values of log 10 K z for anthranilic and N -phenylanthranilic acids are similar and have values of 0.93 ± 0.03 and 0.90 ± 0.05, respectively. The results indicate that the tested compounds, in aqueous solution around the isoelectric point pH I , occur mainly in the zwitterionic form. Moreover, the influence of the type of substituent and pH of the aqueous phase on the equilibrium were analyzed with regard to the formation and the coexistence of different forms of the acids in the examined systems.
Charging properties of cassiterite (alfa-SnO2) surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, L.
The acid-base properties of cassiterite (alfa-SnO2) surfaces at 10 50 C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH-range 4.0 to 4.5 at all conditions and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical Molecular Dynamics (MD) simulations, was analyzed in detail and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 C, respectively. This is contrary to the situation on the isostructural alfa-TiO2 (rutile), apparently due to the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, while adsorbed rubidium ions form comparable amounts of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on surface charge density (pH), while the distribution of adsorbed Rb+ is almost independent of pH. A Surface Complexation Model (SCM) capable of accurately describing both the measured surface charge and the MD predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH-0.40) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH-range (2.7 10), illustrating the ability of positively and negatively charged surface groups to coexist. Complexation of the medium cations increases significantly with increasing negative surface charge and at pH 10 roughly 40 percent of the terminal sites are predicted to form cation complexes, while anion complexation is minor throughout the studied pH-range.« less
Hafez, M A; Khalifa, M E
1997-05-01
A rapid and simple general complexometric method was presented for the determination of lead, cadmium and thallium or mercury or arsenic(V) in laboratory synthesized mixtures similar to those of some ores, minerals and alloys of such metals. The precision and accuracy attainable in successive titrations of Pb(2+), Cd(2+) and Tl(3+) or Hg(2+) or AsO(3-)(4) (As(5+)) with 0.05 and/or 0.01 mol 1(-1) solutions of disodium ethylenediaminetetraacetate (Na(2)EDTA) and standard Pb(NO(3))(2) of the same concentration using Bromo-Cresol Orange (BCO) as a new metallochromic indicator with visual endpoint indication were studied. For the analysis of a three component mixtures of the aforementioned ions, Tl(3+) was at first directly titrated with Na(2)EDTA at pH 0.5-1 (HNO(3)) using BCO as indicator. At the thallium endpoint an excess of Na(2)EDTA was added and the pH was adjusted at pH approximately 4.8 using hexamine-HNO(3) buffer (solution A). The excess EDTA was back-titrated with standard solution of Pb(NO(3))(2). 1,10-Phenanthroline (1,10-phen) was added to release the EDTA combined with Cd(2+), while thiosemicarbazide (TSC) was used to liberate the EDTA from the mercury-EDTA chelate. To determine AsO(3-)(4) ion in such type of mixtures the pH of (solution A) was raised to a value of 10 using ammonia buffer. Excess standard Mg(2+) solution was added and the formed precipitate of MgNH(4)AsO(4) was separated, dissolved and its magnesium content equivalent to AsO(3-)(4) was determined complexometrically using Eriochrome Black-T (EBT) indicator. The interference caused by different anions, cations and organic acids was investigated. A comparison of the indicators BCO and Xylenol Orange (XO) for successive titration of the studied metal ions was carried out. The proposed successive titration method was applied successfully to some real samples of ores, minerals and alloys of the studied metal ions and the results were satisfactory and agreed with those obtained by AAS.
NASA Astrophysics Data System (ADS)
Bieringer, R.; Abetz, V.; Müller, A. H. E.
ABC triblock copolymers of the type poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(tert-butyl methacrylate) (AiST) were synthesized and hydrolyzed to yield poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(methacrylic acid) (AiSA) triblock copolyampholytes. Due to a complex solubility behavior the solution properties of these materials had to be investigated in THF/water solvent mixtures. Potentiometric titrations of AiSA triblock copolyampholytes showed two inflection points with the A block being deprotonated prior to the Ai hydrochloride block thus forming a polyzwitterion at the isoelectric point (iep). The aggregation behavior was studied by dynamic light scattering (DLS) and freeze-fracture/transmission electron microscopy (TEM). Large vesicular structures with almost pH-independent radii were observed.
NASA Technical Reports Server (NTRS)
Sugg, E.; Mason, J. G.
1983-01-01
Work has revealed that diamine derivatives of diphenylmethane (IV), diphenyl ether (V), benzophenone (IV), fluorene (VII), and fluorenone (VIII) polymerizations with pyromellitic dianhydride in DMA were dependent on the basicity of the amine compound. The correlation between the basicity of the amine and its reactivity with phthalic anhydride was determined. Basicity measurements were made by potentiometric titration of each amine in an acetonitrile-water solvent system, from which the pKa of the amine could be determined. Reactivity was defined in terms of the second order rate constant derived form spectrophotometric examination of the reaction between each amine and phthalic anhydride in DMA. This reaction was expected to proceed in either one (for a monoamine) or two (for a diamine) stages.
The potential effects of pH and buffering capacity on dental erosion.
Owens, Barry M
2007-01-01
Soft drink pH (initial pH) has been shown to be a causative factor--but not necessarily the primary initiating factor--of dental erosion. The titratable acidity or buffering capacity has been acknowledged as playing a significant role in the etiology of these lesions. This in vitro study sought to evaluate five different soft drinks (Coca-Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, Starbucks Frappucino coffee drink) and tap water (control) in terms of initial pH and buffering capacity. Initial pH was measured in triplicate for the six beverages. The buffering capacity of each beverage was assessed by measuring the weight (in grams) of 0.10 M sodium hydroxide necessary for titration to pH levels of 5.0, 6.0, 7.0, and 8.3. Coca-Cola Classic produced the lowest mean pH, while Starbucks Frappucino produced the highest pH of any of the drinks except for tap water. Based on statistical analysis using ANOVA and Fisher's post hoc tests at a P < 0.05 level of significance, Red Bull had the highest mean buffering capacity (indicating the strongest potential for erosion of enamel), followed by Gatorade, Coca-Cola Classic, Diet Coke, and Starbucks Frappucino.
NASA Astrophysics Data System (ADS)
Nakhleh, Mary B.; Krajcik, Joseph S.
We investigated how different levels of information presented by various technologies affected secondary students' understanding of acid, base, and pH concepts. Secondary students who were selected for the study had just completed their study of acid-base chemistry. No attempt was made to provide further instruction. We analyzed changes in the understanding of individual students by constructing concept maps from the propositions that the students used in interviews conducted before and after a series of acid-base titrations. After the initial interview, students were divided into three groups. Within each group, students individually performed the same set of titrations using different technologies: chemical indicators, pH meters, and microcomputer-based laboratories (MBL). After the titrations were completed, all students were interviewed again. We found that students using MBL exhibited a larger positive shift in their concept map scores, which indicates a greater differentiation and integration of their knowledge of acids and bases. The chemical indicator students exhibited a more moderate positive shift in their concept map scores, and the pH meter students exhibited a smaller positive shift. We also found that the MBL students constructed more inappropriate links in their concept maps than the chemical indicator or pH meter students. However, we speculate that this increased number of inappropriate links indicates a high level of involvement with the technology. We therefore argue that the level of information offered by the technology affected students' understanding of the chemical concepts.Received: 24 February 1993; Revised: 21 February 1994;
NASA Astrophysics Data System (ADS)
Jacobsen, Jerrold J.; Houston Jetzer, Kelly; Patani, Néha; Zimmerman, John; Zweerink, Gerald
1995-07-01
Significant attention is paid to the proper technique for reading a meniscus. Video shows meniscus-viewing techniques for colorless and dark liquids and the consequences of not reading a meniscus at eye level. Lessons are provided on approaching the end point, focusing on end point colors produced via different commonly used indicators. The concept of a titration curve is illustrated by means of a pH meter. Carefully recorded images of the entire range of meniscus values in a buret, pipet, and graduated cylinder are included so that you can show your students, in lecture or pre-lab discussion, any meniscus and discuss how to read the buret properly. These buret meniscus values are very carefully recorded at the rate of one video frame per hundredth of a milliliter, so that an image showing any given meniscus value can be obtained. These images can be easily incorporated into a computer-based multimedia environment for testing or meniscus-reading exercises. Two of the authors have used this technique and found the exercise to be very well received by their students. Video on side two shows nearly 100 "bloopers", demonstrating both the right way and wrong ways to do tasks associated with titration. This material can be used in a variety of situations: to show students the correct way to do something; to test students by asking them "What is this person doing wrong?"; or to develop multimedia, computer-based lessons. The contents of Titration Techniques are listed below: Side 1 Titration: what it is. A simple titration; Acid-base titration animation; A brief redox titration; Redox titration animation; A complete acid-base titration. Titration techniques. Hand technique variations; Stopcock; Using a buret to measure liquid volumes; Wait before reading meniscus; Dirty and clean burets; Read meniscus at eye level (see Fig. 1); Meniscus viewing techniques--light colored liquids; Meniscus viewing techniques--dark liquids; Using a magnetic stirrer; Rough titration; Significant figures; Approaching the end point; End point colors; Titration with a pH meter; Titration curves; Colors of indicators. Meniscus values. Buret meniscus values; Pipet meniscus values; Graduated cylinder meniscus values. Side 2"Bloopers". Introducing the people; Titration animation; Inspecting the buret; Rinsing the buret with water; Preparing a solid sample; Obtaining a liquid sample; Delivering a liquid sample with a Mohr pipet; Pipetting a liquid sample with a Mohr pipet; Rinsing the Mohr pipet with sample; Using the Mohr pipet to transfer sample; Delivering a liquid sample with a volumetric pipet; Pipetting a liquid sample with a volumetric pipet; Rinsing the volumetric pipet with sample; Using the volumetric pipet to transfer sample; Obtaining the titrant; Rinsing the buret with titrant; Filling the buret with titrant; Adding the indicator; The initial reading; Beginning the titration; Delivering titrant; The final reading. Figure 3. Near the end point a single drop of titrant can cause a lasting color change.
NASA Astrophysics Data System (ADS)
Abolmaali, Samira Sadat; Tamaddon, Ali Mohammad; Dinarvand, Rasoul
2013-12-01
Soft polymeric nanomaterials were synthesized by the template-assisted method involving self-association of methoxy polyethylene glycol- g-branched polyethyleneimine (mPEG- g-branched PEI) ionomer by transition metal ions such as Zn2+ followed by chemical cross-linking of the polyamine core by dithiopropionic acid. The formation of donor-acceptor complexes of Zn2+ and PEI ionomer was characterized by FT-IR spectroscopy and potentiometric titration. Turbidimetry was performed to study the solution property of the complexes which depended on pH, relative weight fraction of mPEG, and the molar ratio of Zn2+. The cross-linking reaction was studied by TNBS assay, 1H-NMR, and size exclusion chromatography. Upon removal of Zn2+ from cl-mPEG- g-branched PEI/Zn2+ at pH 3 by dialysis, the resulting cross-linked self-assembly represented a uniform, stable, and less positively charged hydrogel-like nanosphere with an intensity-averaged size ranging from 150 to 250 nm as determined by a Zetasizer. Atomic forced microscopy imaging was performed in intermittent contact mode in air that revealed discrete and oval-to-spherically shaped particles with average sizes ranging from 40 to 50 nm depending on the degree of cross-linking. This functional nanocarrier is expected to exhibit some key features such as active encapsulation of negatively charged hydrophilic agents in the swollen core of polyamine network and a hydrophilic mPEG shell which provides an increased solubility and passive targeting of active pharmaceutical agents to impaired tissues. The nano-hydrogels especially at 12 % degrees of cross-link demonstrated excellent biocompatibility determined by different experiments such as albumin aggregation, erythrocyte aggregation, hemolysis, and MTT cytotoxicity assay. Moreover, biodegradability of the cross-links as shown by the Ellman assay can offer a time-dependent degradation and redox-stimulated release of active agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, R.J.; Benson, L.V.; Yee, A.W.
1979-09-30
The objective of the program is to establish a basis for the prediction of radionuclide sorption in geologic environments. In FY 79, experimental and theoretical efforts were concentrated on a study of the sorption of cesium on the solid substrates Min-u-sil (quartz) and Belle Fourche clay (montmorillonite). Cesium sorption isotherms were obtained for the two substrates at 26/sup 0/C as a function of initial Cs concentration in solution (10/sup -3/M to 10/sup -9/M), pH (5 to 10) and supporting electrolyte concentration (0.002M, 0.01M, 0.1M, and 1M) NaCl and a simulated basalt groundwater in batch-type experiments using crushed material. Characterization ofmore » the solid phases included measurements of chemical compositions, particle sizes, surface areas, and cation-exchange capacities. In addition, potentiometric acid/base titrations of the solid phases were conducted in order to determine the acid dissociation and electrolyte exchange constants of the surfaces. Preliminary analysis of the sorption data indicate that while the clay data could be explained by simple mass-action expressions, the quartz data could not. Theoretical efforts were aimed at developing and testing an electrolyte binding electrical double-layer model to predict sorption isotherms. A computerized version of the model, MINEQL, which simultaneously considers surface and solution chemical equilibria, was brought to operational status. Input parameters required by MINEQL were determined and sorption isotherms for Cs on the Belle Fourche clay were calculated over the same range of parameters as the experimental measurements. Comparisons showed that the model was able to simulate the isotherms quite well except at the lowest pH values for the 0.002M and 0.01M NaCl solutions.« less
Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius
2018-04-06
Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Barros, T C; Cuccovia, I M; Farah, J P S; Masini, J C; Chaimovich, H; Politi, M J
2006-01-07
The study of highly conjugated, carbonyl-containing molecules such as 1,4,5,8-naphthalene tetracarboxylic dianhydride, III, is of interest since reactivity differences and transmission of electronic effects through the conjugated framework can be evidenced. The kinetics of hydrolysis of III in aqueous solution were determined from 5 M acid to pH 10. In basic solution hydrolysis of III yields, sequentially, 1,4,5,8-naphthalene diacid monoanhydride, II, and 1,4,5,8-naphthalene tetracarboxylic acid, I. The second order rate constant for alkaline hydrolysis is 200 fold higher for the first ring opening. The water-catalyzed hydrolysis of III yields a pH-dependent mixture of ionic forms of I and II. The rate constant for water-catalyzed hydrolysis of III is 25 fold higher than that for II. In concentrated acid the rates for reaching equilibrium (I, II and III) increase and III is the major product. The pK(a)s of I (3.24, 5.13 and 6.25) and II (3.05, 5.90) were determined by potentiometric, fluorescence and UV spectroscopy titrations and by quantitative fit of the kinetic and equilibrium data. The apparent, pH-dependent, equilibrium constants, K(EqII), for anhydride formation between I and II were obtained from the UV spectra. The quantitative fit of kinetic and equilibrium data are consistent with the assumption that anhydride formation only proceeds with the fully protonated species for both I and II and permitted the estimation of the equilibrium constants for anhydride formation, K(EqII). The value of K(EqII) (I <==> II) between pH 1 and 6 was ca. 5. Geometry optimization calculations in the gas phase of the reactions of III in alkaline, neutral and acid conditions, at the DFT level of theory, gave electronic distributions that were qualitatively consistent with the experimental results.
Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study.
Jayaraj, D; Ganesan, S
2015-01-01
The diagnostic utility of saliva is currently being explored in various branches of dentistry, remarkably in the field of caries research. This study was aimed to determine if assessment of salivary pH and buffering capacity would serve as reliable tools in risk prediction of early childhood caries (ECC). Paraffin-stimulated salivary samples were collected from 50 children with ECC (group I) and 50 caries free children (group II). Salivary pH and buffering capacity (by titration with 0.1 N hydrochloric acid) were assessed using a handheld digital pH meter in both groups. The data obtained were subjected to statistical analysis. Statistically, no significant difference was observed between both the groups for all salivary parameters assessed, except for the buffering capacity level at 150 μl titration of 0.1 N hydrochloric acid (p = 0.73; significant at 1% level). Salivary pH and buffering capacity may not serve as reliable markers for risk prediction of ECC. How to cite this article: Jayaraj D, Ganesan S. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study. Int J Clin Pediatr Dent 2015;8(3):167-171.
Goldstein, Rebecca; Cheng, Jiongjia; Stec, Boguslaw; Roberts, Mary F.
2012-01-01
Staphylococcus aureus secretes a phosphatidylinositol-specific phospholipase C (PIPLC) as a virulence factor that is unusual in exhibiting higher activity at acidic pH values than other enzymes in this class. We have determined the crystal structure of this enzyme at pH 4.6 and pH 7.5. Under slightly basic conditions, the S. aureus PI-PLC structure closely follows the conformation of other bacterial PI-PLCs. However, when crystallized under acidic conditions, a large section of mobile loop at the αβ-barrel rim in the vicinity of the active site shows ~10 Å shift. This loop displacement at acidic pH is the result of a titratable intramolecular π-cation interaction between His258 and Phe249. This was verified by a structure of the mutant protein H258Y crystallized at pH 4.6, which does not exhibit the large loop shift. The intramolecular π-cation interaction for S. aureus PI-PLC provides an explanation for the activity of the enzyme at acid pH and also suggests how phosphatidylcholine, as a competitor for Phe249, may kinetically activate this enzyme. PMID:22390775
Elmosallamy, Mohamed A F; Amin, Alaa S
2014-01-01
New, simple and convenient potentiometric and spectrophotometric methods are described for the determination of dextromethorphan hydrobromide (DXM) in pharmaceutical preparations. The potentiometric technique is based on developing a potentiometric sensor incorporating the dextromethorphan tetrakis(p-chlorophenyl)borate ion-pair complex as an electroactive species in a plasticized PVC matrix membrane with o-nitophenyl octyl ether or dioctyl phthalate. The sensor shows a rapid near Nernstian response of over 1 × 10(-5) - 1 × 10(-2) mol L(-1) dextromethorphan in the pH range of 3.0 - 9.0. The detection limit is 2 × 10(-6) mol L(-1) DXM and the response time is instantaneous (2 s). The proposed spectrophotometric technique involves the reaction of DXM with eriochrom black T (EBT) to form an ion-associate complex. Solvent extraction is used to improve the selectivity of the method. The optimal extraction and reaction conditions have been studied, and the analytical characteristics of the method have been obtained. Linearity is obeyed in the range of 7.37 - 73.7 × 10(-5) mol L(-1) DXM, and the detection limit of the method is 1.29 × 10(-5) mol L(-1). The relative standard deviation (RSD) and relative error for six replicate measurements of 3.685 × 10(-4) mol L(-1) are 0.672 and 0.855%, respectively. The interference effect of some excepients has also been tested. The drug contents in pharmaceutical preparations were successfully determined by the proposed methods by applying the standard-addition technique.
Jakhar, Seema; Pundir, C S
2018-02-15
The nanoparticles (NPs) aggregates of commercial urease from jack beans (Canavalia ensiformis) were prepared by desolvation and glutaraldehyde crosslinking and functionalized by cysteamine dihydrochloride. These enzyme nanoparticles (ENPs) were characterized by transmission electron microscopy (TEM), UV and Fourier transform infrared (FTIR) spectroscopy. The TEM images of urease NPs showed their size in the range, 18-100nm with an average of 51.2nm. The ENPs were more active and stable with a longer shelf life than native enzyme molecules. The ENPs were immobilized onto chitosan (CHIT) activated nitrocellulose (NC) membrane via glutaraldehyde coupling with 32.22% retention of initial activity of free ureaseNPs with a conjugation yield of 1.63mg/cm 2 . This NC membrane was mounted at the lower/sensitive end of the ammonium ion selective electrode (AISE) with O-ring and then electrode was connected to a digital pH meter to construct a potentiometric urea biosensor. The biosensor exhibited optimum response within 10s at pH 5.5and 40°C. The biosensor was employed for measurement of potentiometric determination of urea in sera of apparently healthy and persons suffering from kidney disorders. The biosensor displayed a low detection limit of 1µM/L with a wide working range of 2-80µM/L (0.002-0.08mM) and sensitivity of 23mV/decade. The analytical recovery of added urea in serum was 106.33%. The within and between-batch coefficient of variations (CVs) of present biosensor were 0.18% and 0.32% respectively. There was a good correlation (r = 0.99) between sera urea values obtained by reference method (Enzymic colorimetric kit method) and the present biosensor. The biosensor had negligible interference from Na + ,K + ,NH +4 and Ca 2+ but Mg 2+ ,Cu 2+ and ascorbic acid but had slight interference, which was overcome by specific ion selective electrode. The ENPs bound NC membrane was used maximally 8-9 times per day over a period of 180 days, when stored in 0.01M sodium acetate buffer pH 5.5 at 4°C. Copyright © 2017 Elsevier B.V. All rights reserved.
In vitro enamel erosion associated with commercially available original and sour candies
Wagoner, Stephanie N.; Marshall, Teresa A.; Qian, Fang; Wefel, James S.
2009-01-01
Background Exposure to acidic foods and beverages is thought to increase risk of dental erosion. We hypothesized that the erosion potential of sour candies was greater than the erosion potentials of original candies. Methods The pH and titratable acidity of candies dissolved in artificial saliva or water were measured. Lesion depths of enamel surfaces exposed to candy slurries for 25 hours were measured. Statistics included two sample t-tests and Wilcoxon rank-sum tests to identify differences between original and sour candies and correlations to identify relationships between lesion depths, pH and titratable acidity. Results Lesion depths were generally higher following exposure to sour candies compared to original candies, and for candies dissolved in water compared to artificial saliva. Lesion depths were negatively associated with initial slurry pH and positively associated with titratable acidity. Conclusions Both original and sour candies are potentially erosive, with sour candies being of greater concern. Although saliva might protect against the erosive effects of original candies, saliva is much less likely to protect against the erosive effects of sour candies. Clinical Implications Individuals at risk for candy-associated erosion, particularly those with high intakes, pocketing behaviors or decreased salivary flow, should be provided preventive guidance regarding candy habits. PMID:19571054
Food acid content and erosive potential of sugar-free confections.
Shen, P; Walker, G D; Yuan, Y; Reynolds, C; Stacey, M A; Reynolds, E C
2017-06-01
Dental erosion is an increasingly prevalent problem associated with frequent consumption of acidic foods and beverages. The aim of this study was to measure the food acid content and the erosive potential of a variety of sugar-free confections. Thirty sugar-free confections were selected and extracts analysed to determine pH, titratable acidity, chemical composition and apparent degree of saturation with respect to apatite. The effect of the sugar-free confections in artificial saliva on human enamel was determined in an in vitro dental erosion assay using change in surface microhardness. The change in surface microhardness was used to categorize the confections as high, moderate or low erosive potential. Seventeen of the 30 sugar-free confections were found to contain high concentrations of food acids, exhibit low pH and high titratable acidity and have high erosive potential. Significant correlations were found between the dental erosive potential (change in enamel surface microhardness) and pH and titratable acidity of the confections. Ten of these high erosive potential confections displayed dental messages on the packaging suggesting they were safe for teeth. Many sugar-free confections, even some with 'Toothfriendly' messages on the product label, contain high contents of food acids and have erosive potential. © 2017 Australian Dental Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Parker, Jack C.; Brooks, Scott C
This study investigated sorption of uranium and technetium onto aluminum and iron hydroxides during titration of a contaminated groundwater using both Na hydroxide and carbonate as titrants. The contaminated groundwater has a low pH of 3.8 and high concentrations of NO3-, SO42-, Al, Ca, Mg, Mn, trace metals such as Ni and Co, and radionuclides such as U and Tc. During titration, most Al and Fe were precipitated out at pH above ~4.5. U as well as Tc was found to be removed from aqueous phase at pH below ~5.5, but to some extent released at higher pH values. Anmore » earlier geochemical equilibrium reaction path model that considered aqueous complexation and precipitation/dissolution reactions predicted mineral precipitation and adequately described concentration variations of Al, Fe and some other metal cations, but failed to predict sulfate, U and Tc concentrations during titration. Previous studies have shown that Fe- and Al-oxyhydroxides strongly sorb dissolved sulfate, U and Tc species. Therefore, an anion exchange model was developed for the sorption of sulfate, U and Tc onto Al and Fe hydroxides. With the additional consideration of the anion exchange reactions, concentration profiles of sulfate, U and Tc were more accurately predicted. Results of this study indicate that consideration of complex reactions such as sorption/desorption on mixed mineral phases, in addition to hydrolysis and precipitation, could improve the prediction of various contaminants during pre- and post-groundwater treatment practices.« less
Comparison of the erosive potential of gastric juice and a carbonated drink in vitro.
Bartlett, D W; Coward, P Y
2001-11-01
The aim of this study was to compare the erosive effect of gastric juice and a carbonated drink on enamel and dentine by measuring release of calcium from 30 hemisectioned teeth in vitro. In addition, the titrable acidity (mL of 0.05 M sodium hydroxide required to neutralize) and pH of the fluids was estimated. The mean pH of the seven gastric acid samples was 2.92 (range 1.2-6.78) and mean titratable acidity 0.68 mL (range 0.03-1.64). Both the pH and the titratable acidity of the gastric juice varied between patients all of whom suffered from symptoms of reflux disease. The carbonated drink had a pH of 2.45 and a titratable acidity of 0.29 mL. The median amount of calcium released by the gastric acids from enamel was 69.6 microg L-1 (interquartile range 5.4-144) and 62.4 microg L-1 (2.2-125.3) from dentine. The carbonated drink released 18.7 microg L-1 (13.4-23.4) and 18.6 microg L-1 (11.9-35.3), respectively. The differences in calcium release by gastric juice and the carbonated drink were statistically significant for both enamel (P < 0.005) and dentine (P < 0.01). It is concluded that gastric juice has a greater potential, per unit time, for erosion than a carbonated drink.
Sun, Alexander; Venkatesh, A G; Hall, Drew A
2016-10-01
This paper describes the design and characterization of a reconfigurable, multi-technique electrochemical biosensor designed for direct integration into smartphone and wearable technologies to enable remote and accurate personal health monitoring. By repurposing components from one mode to the next, the biosensor's potentiostat is able reconfigure itself into three different measurements modes to perform amperometric, potentiometric, and impedance spectroscopic tests all with minimal redundant devices. A [Formula: see text] PCB prototype of the module was developed with discrete components and tested using Google's Project Ara modular smartphone. The amperometric mode has a ±1 nA to [Formula: see text] measurement range. When used to detect pH, the potentiometric mode achieves a resolution of < 0.08 pH units. In impedance measurement mode, the device can measure 50 Ω-10 [Formula: see text] and has been shown to have of phase error. This prototype was used to perform several point-of-care health tracking assays suitable for use with mobile devices: 1) Blood glucose tests were conducted and shown to cover the diagnostic range for Diabetic patients ( ∼ 200 mg/dL). 2) Lactoferrin, a biomarker for urinary tract infections, was detected with a limit of detection of approximately 1 ng/mL. 3) pH tests of sweat were conducted to track dehydration during exercise. 4) EIS was used to determine the concentration of NeutrAvidin via a label-free assay.