Science.gov

Sample records for potentiometric sensor based

  1. Simple sensor for potentiometric titrations

    SciTech Connect

    Selig, W.

    1982-01-01

    A sensor for potentiometric titrations was prepared by coating a spectroscopic graphite rod with a solution of poly(vinyl chloride) and dioctylphthalate in tetrahydrofuran. The reference was an Ag/AgCl single-junction electrode. The sensor was used in the following potentiometric titrations: (1) precipitation titrations, (2) acid-base titrations, (3) compleximetric titrations, and (4) redox titrations. A survey of its use in such titrations is presented. Preparation of the coated-graphite sensor is simple and rapid. Moreover, it is quite inexpensive. A limitation is its applicability in aqueous media only, because organic solvents will dissolve the membrane. 5 figures, 4 tables.

  2. Functionalized β-cyclodextrin based potentiometric sensor for naproxen determination.

    PubMed

    Lenik, Joanna; Łyszczek, Renata

    2016-04-01

    Potentiometric sensors based on neutral β-cyclodextrins: (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin and anionic β-cyclodextrin: (2-hydroxy-3-N,N,N-trimethylamino)propyl-β-cyclodextrin chloride for naproxen are described. Inclusion complexes of naproxen with the above-mentioned cyclodextrins were studied using IR spectroscopy. The electrode surface was made from PVC membranes doped with the appropriate β-cyclodextrin as ionophores and quaternary ammonium chlorides as positive charge additives that were dispersed in plasticizers. The optimum membrane contains heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin, o-nitrophenyloctyl ether and tetraoctyl ammonium chloride as a lipophilic salt. The electrode is characterized by a Nernstian response slope of -59.0 ± 0.5 mV decade(-1) over the linear range of 5.0 × 10(-5)-1.0 × 10(-2) mol L(-1) and the detection limit 1.0 × 10(-5) mol L(-1), as well as the response time 10s. It can be used in the pH range 6.2-8.5 for 10 months without any considerable deterioration. Incorporation of β-cyclodextrins improved the electrode selectivity towards naproxen ions from several inorganic and organic interferents and some common drug excipients due to concovalent interactions (host molecule-guest molecule). The notable advantages of the naproxen-selective electrode include its high sensitivity, high selectivity, cost-effectiveness as well as accurate and comfortable application in drug analysis and milk samples. PMID:26838835

  3. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed.

  4. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    PubMed Central

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  5. Micromechanical potentiometric sensors

    SciTech Connect

    Thundat, T.G.

    2000-01-25

    A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 {mu}m long, approximately 1 to 50 {mu}m wide, and approximately 0.3 to 3.0 {mu}m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

  6. Micromechanical potentiometric sensors

    DOEpatents

    Thundat, Thomas G.

    2000-01-01

    A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

  7. A biomimetic potentiometric sensor based on molecularly imprinted polymer for the determination of memantine in tablets.

    PubMed

    Arvand, Majid; Samie, Hedyeh Asadi

    2013-06-01

    Memantine hydrochloride is one of the first novel class medications for treatment of Alzheimer's disease. In this work, a biomimetic potentiometric sensor, based on a non-covalent imprinted polymer, was fabricated for the recognition and determination of memantine in pure drug and tablet pharmaceutical form. The molecularly imprinted polymer was synthesized by precipitation polymerization, using memantine hydrochloride as a template molecule, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking agent. The sensor was developed by dispersing the memantine imprinted polymer particles in dibutyl sebacate plasticizer and embedding in poly(vinyl chloride) matrix. The wide linear range (10(-5) -10(-1)  M), with a near Nernstian response of 57.4 mV/decade, a limit of detection 6.0 × 10(-6)  M, fast response time (~15 s) and a satisfactory long-term stability (4 months) are characterizations of the proposed sensor. The sensor showed a high selectivity and a sensitive response to the template in aqueous system. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode. It was used as indicator electrode in potentiometric determination of memantine in pharmaceutical formulations.

  8. Potentiometric titrations using pencil and graphite sensors

    SciTech Connect

    Selig, W.S.

    1984-01-01

    The cost of various commercial indicating electrodes ranges from about $40 for pH electrodes to as much as $355 for a potassium ion-selective electrode. This cost can be reduced to less than $1.50, and in some cases to mere pennies by making sensors from graphite rods and pencils for use in potentiometric titrations. The same sensor can be used for many types of these titrations (acid/base, compleximetric, precipitation, and redox). 8 references, 2 tables.

  9. Novel potentiometric sensor for monitoring beryllium based on naphto-9-crown-3.

    PubMed

    Ganjali, Mohammad Reza; Daftari, Azadeh; Faal-Rastegar, Majid; Moghimi, Abolghasem

    2003-03-01

    A novel poly(vinyl chloride) (PVC) membrane electrode based on naphto-9-crown-3 was prepared and tested for the selective detection of beryllium ions. A suitable lipophilicity of the carrier and appropriate coordination ability were found to be essential for designing an electrode with good response characteristics. A PVC membrane with 9% naphtho-9-crown-3 carrier, 58% o-NPOE plasticizer, 3% tetraphenylborate anionic excluder and 30% poly(vinyl chloride) satisfied these requirements. The proposed sensor displayed a linear response to beryllium over a wide concentration range of 1.0 x 10(-1)-8.0 x 10(-6) M with a Nernstian slope of 29.5 mV per decade. The electrode showed very short response time (<15 s) and could be used in the pH range 3.5-9.0. The selectivity coefficient for alkali, alkaline earth, transition and heavy metal ions was smaller than 4.0 x 10(-4). The sensor was successfully used as an indicator electrode in the potentiometric titration of Be2+ with EDTA. The proposed Be(II) sensor was also used for the determination of Be2+ ions in binary mixtures.

  10. Potentiometric sensors based on fluorous membranes doped with highly selective ionophores for carbonate.

    PubMed

    Chen, Li D; Mandal, Debaprasad; Pozzi, Gianluca; Gladysz, John A; Bühlmann, Philippe

    2011-12-28

    Manganese(III) complexes of three fluorophilic salen derivatives were used to prepare ion-selective electrodes (ISEs) with ionophore-doped fluorous sensing membranes. Because of their extremely low polarity and polarizability, fluorous media are not only chemically very inert but also solvate potentially interfering ions poorly, resulting in a much improved discrimination of such ions. Indeed, the new ISEs exhibited selectivities for CO(3)(2-) that exceed those of previously reported ISEs based on nonfluorous membranes by several orders of magnitude. In particular, the interference from chloride and salicylate was reduced by 2 and 6 orders of magnitude, respectively. To achieve this, the selectivities of these ISEs were fine-tuned by addition of noncoordinating hydrophobic ions (i.e., ionic sites) into the sensing membranes. Stability constants of the anion-ionophore complexes were determined from the dependence of the potentiometric selectivities on the charge sign of the ionic sites and the molar ratio of ionic sites and the ionophore. For this purpose, a previously introduced fluorophilic tetraphenylborate and a novel fluorophilic cation with a bis(triphenylphosphoranylidene)ammonium group, (R(f6)(CH(2))(3))(3)PN(+)P(R(f6)(CH(2))(3))(3), were utilized (where R(f6) is C(6)F(13)). The optimum CO(3)(2-) selectivities were found for sensing membranes composed of anionic sites and ionophore in a 1:4 molar ratio, which results in the formation of 2:1 complexes with CO(3)(2-) with stability constants up to 4.1 × 10(15). As predicted by established theory, the site-to-ionophore ratios that provide optimum potentiometric selectivity depend on the stoichiometries of the complexes of both the primary and the interfering ions. However, the ionophores used in this study give examples of charges and stoichiometries previously neither explicitly predicted by theory nor shown by experiment. The exceptional selectivity of fluorous membranes doped with these carbonate ionophores

  11. Dysprosium selective potentiometric membrane sensor.

    PubMed

    Zamani, Hassan Ali; Faridbod, Farnoush; Ganjali, Mohammad Reza

    2013-03-01

    A novel Dy(III) ion-selective PVC membrane sensor was made using a new synthesized organic compound, 3,4-diamino-N'-((pyridin-2-yl)methylene)benzohydrazide (L) as an excellent sensing element. The electrode showed a Nernstian slope of 19.8 ± 0.6 mV per decade in a wide concentration range of 1.0 × 10(-6)-1.0 × 10(-2) mol L(-1), a detection limit of 5.5 × 10(-7) mol L(-1), a short conditioning time, a fast response time (<10s), and high selectivity towards Dy(III) ion in contrast to other cations. The proposed sensor was successfully used as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor was also applied to the F(-) ion indirect determination of some mouth washing solutions and to the Dy(3+) determination in binary mixtures.

  12. Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising*

    PubMed Central

    Liu, Qing-jun; Ye, Wei-wei; Yu, Hui; Hu, Ning; Du, Li-ping; Wang, Ping

    2010-01-01

    Neurochip based on light-addressable potentiometric sensor (LAPS), whose sensing elements are excitable cells, can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed. Here we report a kind of neurochip with rat pheochromocytoma (PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform. Cells were cultured on LAPS for several days to form networks, and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space. The signal was decomposed into various scales, and coefficients were processed based on the properties of each layer. At last, signal was reconstructed based on the new coefficients. The results show that after de-noising, baseline drift is removed and signal-to-noise ratio is increased. It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform, taking advantage of its time-frequency localization analysis to reduce noise. PMID:20443210

  13. Zn(II) complex-based potentiometric sensors for selective determination of nitrate anion.

    PubMed

    Mahajan, Rakesh Kumar; Kaur, Ravneet; Miyake, Hiroyuki; Tsukube, Hiroshi

    2007-02-12

    Polymeric membranes containing new Zn(II) complexes as anion carriers were prepared for determination of nitrate anion present in water samples. Two Zn(II) complexes coordinated by neutral tetradentate ligands, N,N'-ethylene-bis(N-methyl-(S)-alanine methylamide) and N,N'-ethylene-bis(N-methyl-(S)-alanine dimethylamide), worked well as anion-selective carriers, while common phthalocyanine Zn(II) complex rarely responded to any anions. The combination of these new Zn(II) complexes with dioctylsebacate as a plasticizer particularly offered high sensing selectivity for nitrate anion. They exhibited near-Nernstian slopes in the wide linear concentration range of 5.0 x 10(-5) to 1.0 x 10(-1) M, and operated well in the wide pH range from 4 to 11 with the response time of less than 25s. The potentiometric selectivity coefficients were evaluated using the fixed interference method, indicating that the two Zn(II) complexes exhibited better selectivity for nitrate anion with respect to a wide variety of inorganic anions. Although chloride anion worked as an interfering species at a concentration higher than 1.0 x 10(-3) M, the new Zn(II) complex-based sensors were applicable in determination of the nitrate anion after adding silver sulfate to remove the chloride anion.

  14. Potentiometric determination of pantoprazole using an ion-selective sensor based on polypyrrole doped films.

    PubMed

    Noronha, Bárbara V; Bindewald, Eduardo H; de Oliveira, Michelle C; Papi, Maurício A P; Bergamini, Márcio F; Marcolino-Jr, Luiz H

    2014-10-01

    The present work reports for the first time the use of polypyrrole (PPy) doped film for development of a potentiometric disposable sensor for determination of pantoprazole (PTZ), a drug used for ulcer treatment. Selective potentiometric response has been found by using a membrane of PPy doped with PTZ anions prepared under galvanostatic conditions at graphite pencil electrode (GPEM/PPy-PTZ) surface. Potentiometric response has been influenced for conditions adopted in polymerization and measurement step. After optimization of experimental (e.g. pH and time of conditioning) and instrumental parameters (e.g. current density and electrical charge) a linear analytical curve from 1.0 × 10(-5) to 1.1 × 10(-2) mol L(-1) with a slope of calibration of the 57.6 mV dec(-1) and limit of detection (LOD) of 6.9 × 10(-6) mol L(-1) was obtained. The determination of the PTZ content in pharmaceutical samples using the proposed methodology and official method recommended by Brazilian Pharmacopeia are in agreement at the 95% confidence level and within an acceptable range of error. PMID:25175244

  15. Potentiometric determination of pantoprazole using an ion-selective sensor based on polypyrrole doped films.

    PubMed

    Noronha, Bárbara V; Bindewald, Eduardo H; de Oliveira, Michelle C; Papi, Maurício A P; Bergamini, Márcio F; Marcolino-Jr, Luiz H

    2014-10-01

    The present work reports for the first time the use of polypyrrole (PPy) doped film for development of a potentiometric disposable sensor for determination of pantoprazole (PTZ), a drug used for ulcer treatment. Selective potentiometric response has been found by using a membrane of PPy doped with PTZ anions prepared under galvanostatic conditions at graphite pencil electrode (GPEM/PPy-PTZ) surface. Potentiometric response has been influenced for conditions adopted in polymerization and measurement step. After optimization of experimental (e.g. pH and time of conditioning) and instrumental parameters (e.g. current density and electrical charge) a linear analytical curve from 1.0 × 10(-5) to 1.1 × 10(-2) mol L(-1) with a slope of calibration of the 57.6 mV dec(-1) and limit of detection (LOD) of 6.9 × 10(-6) mol L(-1) was obtained. The determination of the PTZ content in pharmaceutical samples using the proposed methodology and official method recommended by Brazilian Pharmacopeia are in agreement at the 95% confidence level and within an acceptable range of error.

  16. Potentiometric Sensors Based on Surface Molecular Imprinting: Detection of Cancer Biomarkers and Viruses

    SciTech Connect

    Wang, Y.; Zhang, Z; Jain, V; Yi, J; Mueller, S; Sokolov, J; Liu, Z; Levon, K; Rigas, B; Rafailovich, M

    2010-01-01

    The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for this kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.

  17. Modern Directions for Potentiometric Sensors

    PubMed Central

    Bakker, Eric; Chumbimuni-Torres, Karin

    2009-01-01

    This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473

  18. Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix.

    PubMed

    Gupta, Vinod K; Jain, Ajay K; Maheshwari, Gaurav

    2007-06-15

    Al(3+) selective sensor has been fabricated from poly(vinyl chloride) (PVC) matrix membranes containing neutral carrier morin as ionophore. Best performance was exhibited by the membrane having composition as morin:PVC:sodium tetraphenyl borate:tri-n-butylphosphate in the ratio 5:150:5:150 (w/w, mg). This membrane worked well over a wide activity range of 5.0x10(-7) to 1.0x10(-1)M of Al(3+) with a Nernstian slope of 19.7+/-0.1mV/decade of Al(3+) activity and a limit of detection 3.2x10(-7)M. The response time of the sensor is approximately 5s and membrane could be used over a period of 2 months with good reproducibility. The proposed sensor works well over a pH range (3.5-5.0) and demonstrates good discriminating power over a number of mono-, di- and trivalent cations. The sensor can also be used in partially non-aqueous media having up to 20% (v/v) methanol, ethanol or acetone content with no significant change in the value of slope or working activity range. The sensor has also been used in the potentiometric titration of Al(3+) with EDTA and for its determination in zinc plating mud and red mud.

  19. Manganese(III) porphyrin-based potentiometric sensors for diclofenac assay in pharmaceutical preparations.

    PubMed

    Vlascici, Dana; Pruneanu, Stela; Olenic, Liliana; Pogacean, Florina; Ostafe, Vasile; Chiriac, Vlad; Pica, Elena Maria; Bolundut, Liviu Calin; Nica, Luminita; Fagadar-Cosma, Eugenia

    2010-01-01

    Two manganese(III) porphyrins: manganese(III) tetraphenylporphyrin chloride and manganese(III)-tetrakis(3-hydroxyphenyl)porphyrin chloride were tested as ionophores for the construction of new diclofenac-selective electrodes. The electroactive material was incorporated either in PVC or a sol-gel matrix. The effect of different plasticizers and additives (anionic and cationic) on the potentiometric response was studied. The best results were obtained for the PVC membrane plasticized with dioctylphtalate and having sodium tetraphenylborate as a lipophilic anionic additive incorporated. The sensor response was linear in the concentration range 3 × 10(-6) - 1 × 10(-2) M with a slope of -59.7 mV/dec diclofenac, a detection limit of 1.5 × 10(-6) M and very good selectivity coefficients. It was used for the determination of diclofenac in pharmaceutical preparations, by direct potentiometry. The results were compared with those obtained by the HPLC reference method and a good agreement was found between the two methods.

  20. New potentiometric sensors based on selective recognition sites for determination of ephedrine in some pharmaceuticals and biological fluids.

    PubMed

    Hassan, Saad S M; Kamel, Ayman H; Abd El-Naby, Heba

    2013-01-15

    New cost-effective potentiometric membrane sensors with cylindrical configuration responsive to ephedrine are described. The sensors setup is, based on the use of triacetyl-β-cyclodextrin [(triacetyl-β-CD)] as a neutral ionophore embedded in a plasticized poly (vinyl chloride) (PVC) matrix (sensor I) and carboxylated poly(vinyl chloride) [(PVC-COOH)] as a simultaneous plastic matrix and ion exchanger (sensor II). Both sensors showed significant enhancement of response towards ephedrinium cation (EPD(+)) over a concentration range of 3.0 × 10(-5)-8.0 × 10(-3) mol L(-1) at pH 4-9 and 3-8 with low detection limits of 5.7 × 10(-6) and 6.2 × 10(-6) mol L(-1) for sensors (I) and (II), respectively. The sensors displayed near-Nernstian cationic slope of 57.0 and 55.6 mV decade(-1) for EPD(+) and the effects of lipophilic salts and various foreign common ions were examined. The sensors were also satisfactorily used as tubular detectors in a double channel flow injection system. The intrinsic characteristics of the detectors in a low dispersion manifold under hydrodynamic mode of operation were determined and compared with data obtained under batch mode of operation. Validation of the method revealed good performance characteristics including long life span, good selectivity for EPD(+) over a wide variety of other organic compounds, long term stability, high reproducibility, fast response, low detection limit, wide measurement range, acceptable accuracy and precision. Applications of the sensors to the determination of EPD(+) in pharmaceutical formulations and spiked biological fluid samples were carried out and compared with standard techniques. Notably, the sensors introduced offer several advantages over many of those previously described that are amenable to quality control/quality assurance assessment of the homogeneity, stability and purity of ephedrine drug tablets.

  1. Miniaturized ionophore-based potentiometric sensors for the flow-injection determination of metformin in pharmaceutical formulations and biological fluids.

    PubMed

    Khaled, Elmorsy; Kamel, Manal S; Hassan, Hassan N; Abd El-Alim, Sameh H; Aboul-Enein, Hassan Y

    2012-12-01

    Miniaturized potentiometric sensors based on β-cyclodextrins (β-CDs) are described for determination of metformin (Mf) in pharmaceutical preparations and biological fluids. Electrode matrix compositions are optimized on the basis of the nature and content of sensing ionophore, ionic sites and plasticizers. Coated wire electrodes (CWEs) modified with heptakis(2,3,6-tri-O-methyl)-β-CD, sodium tetrakis(4-fluorophenyl)borate (NaTFPB) and 2-fluorophenyl 2-nitrophenyl ether (f-NPE), work satisfactorily in the concentration range from 10(-6) to 10(-1) mol L(-1) with Nernstian compliance (55.7 ± 0.4 mV per decade activity) and a detection limit of 8 × 10(-7) mol L(-1). Incorporation of β-CD as a molecular recognition element improved the electrode sensitivity and selectivity due to encapsulation of Mf into the β-CD cavity (host-guest interaction). The developed electrodes have been successfully applied for the potentiometric determination of Mf under batch and flow injection analysis (FIA). FIA allows analysis of 90 samples per h offering the advantages of simplicity, accuracy and automation feasibility. The dissolution profile for metformin pharmaceutical samples (Cidophage®) was monitored using the proposed electrode in comparison with the official spectrophotometric methods. Characterization of the formed Mf-β-CD inclusion complexes is discussed in detail.

  2. Potentiometric sensors for the selective determination of sulbutiamine.

    PubMed

    Ahmed, M A; Elbeshlawy, M M

    1999-11-01

    Five novel polyvinyl chloride (PVC) matrix membrane sensors for the selective determination of sulbutiamine (SBA) cation are described. These sensors are based on molybdate, tetraphenylborate, reineckate, phosphotun gestate and phosphomolybdate, as possible ion-pairing agents. These sensors display rapid near-Nernstian stable response over a relatively wide concentration range 1x10(-2)-1x10(-6) M of sulbutiamine, with calibration slopes 28 32.6 mV decade(-1) over a reasonable pH range 2-6. The proposed sensors proved to have a good selectivity for SBA over some inorganic and organic cations. The five potentiometric sensors were applied successfully in the determination of SBA in a pharmaceutical preparation (arcalion-200) using both direct potentiometry and potentiometric titration. Direct potentiometric determination of microgram quantities of SBA gave average recoveries of 99.4 and 99.3 with mean standard deviation of 0.7 and 0.3 for pure SBA and arcalion-200 formulation respectively. Potentiometric titration of milligram quantities of SBA gave average recoveries of 99.3 and 98.7% with mean standard deviation of 0.7 and 1.2 for pure SBA and arcalion-200 formulation, respectively. PMID:10703998

  3. A new potentiometric SO2 sensor based on Li3PO4 electrolyte film and its response characteristics

    NASA Astrophysics Data System (ADS)

    Wang, H.; Liu, Z.; Chen, D.; Jiang, Z.

    2015-07-01

    A potentiometric SO2 gas sensor based on Li3PO4 solid electrolyte has been developed using Au as the reference electrode and Li2SO4/V2O5 as the sensing electrode. The Li3PO4 film was deposited on Al2O3 substrate by resistance heating evaporation. Two Au films with designed patterns were formed on the Li3PO4 film by micro-fabrication technologies. The sensing electrode covers one electrode partly using thick-film technology. The electromotive force values between the sensing electrode and the reference electrode were measured and various characteristics were studied including sensitivity, response characteristics, and stability and selectivity. According to the results, we conclude that an optimal working temperature of the SO2 sensor is 500 °C, the measurement range is 0-100 ppm, the sensitivity is about 32.47 mV/dec, the response and the recovery time is about 5 min and 10 min, respectively. And the stability and the selectivity of the sensor are good, making it have potential in SO2 measurement of living environment.

  4. Ionophore-Based Potentiometric Sensors for the Flow-Injection Determination of Promethazine Hydrochloride in Pharmaceutical Formulations and Human Urine

    PubMed Central

    Hassan, Ahmed Khudhair; Saad, Bahruddin; Ghani, Sulaiman Ab; Adnan, Rohana; Rahim, Afidah Abdul; Ahmad, Norariza; Mokhtar, Marina; Ameen, Suham Tawfiq; Al-Araji, Suad Mustafa

    2011-01-01

    Plasticised poly(vinyl chloride)-based membranes containing the ionophores (α-, β- and γ-cyclodextrins (CD), dibenzo-18-crown-6 (DB18C6) and dibenzo-30-crown-10 (DB30C10) were evaluated for their potentiometric response towards promethazine (PM) in a flow injection analysis (FIA) set-up. Good responses were obtained when β- and γ-CDs, and DB30C10 were used. The performance characteristics were further improved when tetrakis(4-chlorophenyl) borate (KTPB) was added to the membrane. The sensor based on β-CD, bis(2-ethylhexyl) adipate (BEHA) and KTPB exhibited the best performance among the eighteen sensor compositions that were tested. The response was linear from 1 × 10−5 to 1 × 10−2 M, slope was 61.3 mV decade−1, the pH independent region ranged from 4.5 to 7.0, a limit of detection of 5.3 × 10−6 M was possible and a lifetime of more than a month was observed when used in the FIA system. Other plasticisers such as dioctyl phenylphosphonate and tributyl phosphate do not show significant improvements in the quality of the sensors. The promising sensors were further tested for the effects of foreign ions (Li+, Na+, K+, Mg2+, Ca2+, Co2+, Cu2+, Cr3+, Fe3+, glucose, fructose). FIA conditions (e.g., effects of flow rate, injection volume, pH of the carrier stream) were also studied when the best sensor was used (based on β-CD). The sensor was applied to the determination of PM in four pharmaceutical preparations and human urine that were spiked with different levels of PM. Good agreement between the sensor and the manufacturer’s claimed values (for pharmaceutical preparations) was obtained, while mean recoveries of 98.6% were obtained for spiked urine samples. The molecular recognition features of the sensors as revealed by molecular modelling were rationalised by the nature of the interactions and complexation energies between the host and guest molecules. PMID:22346617

  5. Influences of Probe’s Morphology for Metal Ion Detection Based on Light-Addressable Potentiometric Sensors

    PubMed Central

    Shao, Chen; Zhou, Shuang; Yin, Xuebo; Gu, Yajun; Jia, Yunfang

    2016-01-01

    The sensing mechanism of binding Hg2+ into thymine-thymine (T-T) mismatched base pairs was introduced into a light-addressable potentiometric sensor (LAPS) with anti-Hg2+ aptamer as the sensing units. Three kinds of T-rich single-strand DNA (ssDNA) chains with different spacer lengths, from 0 to 12 –CH2 groups, were designed to investigate surface charge and morphological effects on the LAPS’ output. First, by comparing the responding of LAPS modified with three kinds of ssDNA, it was found that the best performance for Hg2+ sensing was exhibited by the probe without –CH2 groups. The detection limit of Hg2+ ion was 1 ppt under the optimal condition. Second, the cooperative effects of surface charge and morphology on the output were observed by the controlled experiments. The two effects were the negative charge balanced by metal cations and the morphological changing caused by the formation of T-Hg2+-T structure. In conclusion, not only the influences of the aptamer probe’s morphology and surface charge was investigated on the platform of LAPS, but also sensing Hg2+ ions was achieved for the first time by the presented aptamer LAPS. PMID:27187412

  6. New thiocyanate potentiometric sensors based on sulfadimidine metal complexes: experimental and theoretical studies.

    PubMed

    Shehab, Ola R; Mansour, Ahmed M

    2014-07-15

    Three sulfadimidine metal complexes (M=Fe(III), Cu(II), and Ag(I)) were prepared, characterized, and examined as neutral carriers for the determination of SCN(-) using modified carbon paste electrode. These sensors were successfully applied in the pure samples, and biological fluids. The electrode mechanism was investigated by UV-vis and FT IR. The experimental studies were complemented by quantum chemical calculations at DFT/B3LYP level of theory. The best performance was observed for Cu(II) electrode (C) containing 7.0% complex, 53.0% o-nitrophenyloctyl ether, 37.0% graphite and 3.0% cetylpyridinium chloride, and also for Fe(III)-electrode (A) having 6.0% complex, 52.0% o-nitro phenyloctyl ether, 40.5% graphite and 2.5% cetylpyridinium chloride.

  7. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz

    2008-01-01

    Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed.

  8. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  9. Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor.

    PubMed

    Gu, Yajun; Ju, Cheng; Li, Yanjun; Shang, Zhiqun; Wu, Yudong; Jia, Yunfang; Niu, Yuanjie

    2015-04-15

    Circulating tumor cells (CTCs) are a group of rare cancer cells that have detached from a primary tumor and circulate in the bloodstream. Herein, light addressable potentiometric sensor (LAPS) was exploited in the label-free detection of CTCs in the prostate cancer. To this end, the mouse anti-human epithelial cell adhesion molecule (anti-EpCAM) monoclonal antibody was selected as the probe to capture CTCs according to our western blot experiments, and therefore the anti-EpCAM was immobilized on the surface of carboxylated graphene oxide (GO-COOH) modified LAPS. Spiking experiments confirmed that LAPS' voltage decreased with the increasing of CTCs' concentration both in phosphate buffer (PBS) and blood, and as few as 10 CTCs in 1ml of blood could be detected, illustrating the high sensitivity of the proposed strategy. The analysis of healthy blood samples revealed no change in electrical signal, confirming the specificity of the system. Ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and immunofluorescent assay (IFA) were conducted to characterize GO-COOH, testify its existence on LAPS and validate CTCs' capturing by anti-EpCAM grafted on GO-COOH modified substrates. It is indicated that LAPS could be a potential platform for CTCs detection and may provide a powerful tool for downstream analysis.

  10. Potentiometric sensor for the high throughput determination of tetramisole hydrochloride.

    PubMed

    Gupta, Vinod Kumar; Singh, Ashok Kumar; Gupta, Barkha

    2007-08-01

    The electrochemical response characteristics of poly(vinyl)chloride (PVC) based membrane sensors for determination of tetramisole hydrochloride (TmCl) is described. The membranes of these electrodes consist of tetramisole-tetraphenyl borate (Tm-TPB), chlorophenyl borate (Tm-ClPB), and phosphotungstate (Tm(3)-PT) ion associations dispersed in a PVC matrix with dibutylpthalate as a plasticizer. The electrodes were fully characterized in terms of composition, life span, usable pH range, and working concentration range and ionic strength. The electrodes showed Nernstian response over the concentration ranges of 7.4 x 10(-7) to 1.0 x 10(-2) M, 1.7 x 10(-6) to 1.0 x 10(-2) M, and 5.6 x 10(-6) to 1.0 x 10(-2) M TmCl, respectively, and were applied to the potentiometric determination of tetramisole ion in pure solutions and pharmaceutical preparations. The potentiometric determination was also used in the determination of tetramisole in pharmaceutical preparations in four batches of different expiration dates. The electrodes exhibited good selectivity for TmCl with respect to a large number of excipients such as inorganic cations, organic cations, amino acids, and sugars. The solubility product of the ion-pair and the formation constant of the precipitation reaction leading to the ion-pair formation were determined conductometrically. The new potentiometric method offers the advantages of high-throughput determination, simplicity, accuracy, automation feasibility, and applicability to turbid and colored sample solutions. PMID:17979641

  11. Data acquisition system for ion-selective potentiometric sensors

    NASA Astrophysics Data System (ADS)

    Filipkowski, Andrzej; Ogrodzki, Jan; Opalski, Leszek J.; Rybaniec, Radoslaw; Wieczorek, Piotr Z.

    2009-06-01

    The paper presents an idea and directives on construction of a measurement system for estimation of ions' concentration in water. System presented in paper has been fully designed and manufactured in Warsaw University of Technology in Institute of Electronic Systems. The measurement system works with cheap ion-selective potentiometric sensors. System allows for potentiometric, transient response and voltamperometric measurements. Data fusion method has been implemented in the system to increase the estimation's accuracy. Presented solution contains of many modern electronic elements like 32bit ARM microcontroller, precise operational amplifiers and some hydraulics subsystems essential for chemical measurements.

  12. Direct potentiometric determination of starch using a platinum redox sensor.

    PubMed

    Sakač, Nikola; Sak-Bosnar, Milan; Horvat, Marija

    2013-05-01

    Here, we describe the development of a platinum redox sensor for the direct potentiometric quantification of starch in solution. The sensor measures the decrease in free triiodide ion after it complexes with starch to form a starch-triiodide complex. This decrease was, therefore, correlated with starch concentration, and the composition and stability of the potassium triiodide solution were optimised. The starch-triiodide complex was characterized potentiometrically at variable starch and triiodide concentrations. We also propose a response mechanism for the platinum redox sensor towards starch and an appropriate theoretical model. The optimised method exhibited satisfactory accuracy and precision and was in good agreement with a standard spectrophotometric method. The sensor was tested over a range of 0.4-9 mg starch, with recoveries ranging from 97.8% to 103.4% and a detection limit of 0.01 mg starch.

  13. Improving the limits of detection in potentiometric sensors

    NASA Astrophysics Data System (ADS)

    van der Bent, J. F.; Puik, E. C. N.; Tong, H. D.; van Rijn, C. J. M.

    2015-12-01

    Potentiometric sensors will generally suffer from unwanted responses as a result to changing temperatures by generating an electromotive force. Typically, this voltage drift has a non-linear character and therefore it is difficult to compensate using linear algorithms implemented in the analogue domain. A solution is proposed to improve the sensor characteristics by combining the digitized output of two CO2 rubidium silver iodide sensors with a specially designed digital algorithm to improve the limits of detection (LOD). Experiments show that this method has the capability to improve the LOD of the sensor with a factor 4.5x during temperature variations of 22 °C over a measurement period of 22 h. It enables potentiometric sensors to be used in low power wireless sensor networks for long term air quality control. Furthermore, the influence of depletion of the rubidium silver iodide electrolyte layer can be effectively compensated by determining the decay of the active layer according to the Nernst equation. Knowing the function of depletion over time helps to correct the sensor output and thereby improves the accuracy of the sensor.

  14. A mercury(II) selective sensor based on N,N'-bis(salicylaldehyde)-phenylenediamine as neutral carrier for potentiometric analysis in water samples.

    PubMed

    Abu-Shawish, Hazem M

    2009-08-15

    Mercuric ions in water samples were determined by a new modified carbon paste electrode based on N,N'-bis(salicylaldehyde)-phenylenediamine (salophen) as a chemical modifier. The construction, performance, and applications of mercury carbon paste electrode are described. The electrode displays a linear log[Hg(2+)] versus EMF response over a wide concentration range of 3.2 x 10(-7) to 3.2 x 10(-4) with Nernstian slope of 58.8+/-0.3 mV/decade with limit of detection 1.5 x 10(-7) over the pH range 3.8-7.8; the presence of the complex Hg(OH)(+) ion explains the slope of the response curve. The proposed sensor shows a reasonable discrimination ability towards Hg(II) in comparison to some alkali, alkaline earth transition and heavy metal ions. The modified electrode was applied as indicator electrode in potentiometric titration and successfully used to determine mercury(II) in water samples with satisfactory results.

  15. Potentiometric determination of trace amounts of aluminium utilizing polyvinyl chloride membrane and coated platinum sensors based on E-N'-(2-hydroxy-3-methoxybenzylidene) benzohydrazide.

    PubMed

    Tajik, Somayeh; Taher, Mohammad Ali; Sheikhshoaie, Iran

    2013-01-01

    This paper describes the construction and performance characteristics of novel polyvinyl chloride membrane (PME) and coated platinum (CPtE) aluminium (Al) ion selective electrodes based on E-N'-(2-hydroxy-3-methoxybenzylidene) benzohydrazide. The electrodes exhibited linear responses with near Nernstian slopes of 19.9 +/- 0.3 (PME) and 20.1 +/- 0.4 (CPtE) mV/decade of activity within the Al3+ ion concentration range of 3.0 x 10(-7) to 1.0 x 10(-2) M for the PME and 1.0 x 10(-7)-1.0 x 10(-2) M for the CPtE. These sensors were applicable in a pH range of 3.0 to 7.0. The LODs of the PME and CPtE were 1.7 x 10(-7) and 5.6 x 10(-8) M, respectively. They had a response time of less than 10 s and could be used practically for a period of at least 2 months without measurable divergence in results. The isothermal temperature coefficient of the PME was 1.12 x 10(-3) V/degrees C, and it can tolerate partially nonaqueous media up to 25%. The electrodes showed excellent selectivity towards Al3+ ions in the presence of a wide range of alkali, alkaline earth, and transition metals ions. They were successfully applied for the direct determination of Al3+ ions in tap water, aqueduct water, mineral water, and Al-Mg syrup and as indicator electrodes in potentiometric titration of Al ions with EDTA.

  16. Potentiometric determination of trace amounts of aluminium utilizing polyvinyl chloride membrane and coated platinum sensors based on E-N'-(2-hydroxy-3-methoxybenzylidene) benzohydrazide.

    PubMed

    Tajik, Somayeh; Taher, Mohammad Ali; Sheikhshoaie, Iran

    2013-01-01

    This paper describes the construction and performance characteristics of novel polyvinyl chloride membrane (PME) and coated platinum (CPtE) aluminium (Al) ion selective electrodes based on E-N'-(2-hydroxy-3-methoxybenzylidene) benzohydrazide. The electrodes exhibited linear responses with near Nernstian slopes of 19.9 +/- 0.3 (PME) and 20.1 +/- 0.4 (CPtE) mV/decade of activity within the Al3+ ion concentration range of 3.0 x 10(-7) to 1.0 x 10(-2) M for the PME and 1.0 x 10(-7)-1.0 x 10(-2) M for the CPtE. These sensors were applicable in a pH range of 3.0 to 7.0. The LODs of the PME and CPtE were 1.7 x 10(-7) and 5.6 x 10(-8) M, respectively. They had a response time of less than 10 s and could be used practically for a period of at least 2 months without measurable divergence in results. The isothermal temperature coefficient of the PME was 1.12 x 10(-3) V/degrees C, and it can tolerate partially nonaqueous media up to 25%. The electrodes showed excellent selectivity towards Al3+ ions in the presence of a wide range of alkali, alkaline earth, and transition metals ions. They were successfully applied for the direct determination of Al3+ ions in tap water, aqueduct water, mineral water, and Al-Mg syrup and as indicator electrodes in potentiometric titration of Al ions with EDTA. PMID:23513978

  17. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring.

    PubMed

    Bandodkar, Amay J; Molinnus, Denise; Mirza, Omar; Guinovart, Tomás; Windmiller, Joshua R; Valdés-Ramírez, Gabriela; Andrade, Francisco J; Schöning, Michael J; Wang, Joseph

    2014-04-15

    This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains.

  18. Potentiometric sensor fabrication having 2D sarcosine memories and analytical features.

    PubMed

    Özkütük, Ebru Birlik; Diltemiz, Sibel Emir; Avcı, Şeyma; Uğurağ, Deniz; Aykanat, Rabia Berna; Ersöz, Arzu; Say, Rıdvan

    2016-12-01

    In this study, a simple, rapid and sensitive method based on novel molecular imprinted polymeric sensor has been developed and validated for the determination of prostate cancer metabolite biomarker. The molecularly imprinted polymer (MIP) has been synthesized by emulsion polymerization, using sarcosine as template molecule, methacryloylamido histidine (MAH) as functional monomer and ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The performance of the developed sarcosine sensor has been evaluated, and the results have indicated that a sensitive potentiometric sensor has been fabricated. The sarcosine sensor has showed high-selectivity, shorter response time (<2min), wider linear range (10(-2)-10(-6)mM), lower detection limit (1.35×10(-7)mM), and satisfactory long-term stability (>5.5months). PMID:27612708

  19. Potentiometric membrane sensor for the selective determination of pethidine in pharmaceutical preparations and biological fluids.

    PubMed

    Shalaby, Abdalla; El-Tohamy, Maha; El-Maamly, Magda; Aboul-Enein, Hassan Y

    2007-10-01

    The construction and general performance characteristics of a novel potentiometric PVC membrane sensor based on pethidine-phosphomolybdate as electroactive material for the determination of pethidine are described. This sensor exhibits fast, stable and near-Nernstain response 55.24 +/- 0.1, over the concentration range 1.10(-2)-1.10(-5)M for pethidine-phosphomolybdate over pH 2-7. No interferences are caused by many organic, inorganic cations, alkaloids and amino acids. The sensor proved useful for determining pethidine in pure forms, pharmaceutical injections and monitoring the content uniformity assay of ampoules. The designed sensor also show good accuracy for the determination of pethidine in biological fluids.

  20. Potentiometric NO2 Sensors Based on Thin Stabilized Zirconia Electrolytes and Asymmetric (La0.8Sr0.2)0.95MnO3 Electrodes

    PubMed Central

    Zou, Jie; Zheng, Yangong; Li, Junliang; Zhan, Zhongliang; Jian, Jiawen

    2015-01-01

    Here we report on a new architecture for potentiometric NO2 sensors that features thin 8YSZ electrolytes sandwiched between two porous (La0.8Sr0.2)0.95MnO3 (LSM95) layers—one thick and the other thin—fabricated by the tape casting and co-firing techniques. Measurements of their sensing characteristics show that reducing the porosity of the supporting LSM95 reference electrodes can increase the response voltages. In the meanwhile, thin LSM95 layers perform better than Pt as the sensing electrode since the former can provide higher response voltages and better linear relationship between the sensitivities and the NO2 concentrations over 40–1000 ppm. The best linear coefficient can be as high as 0.99 with a sensitivity value of 52 mV/decade as obtained at 500 °C. Analysis of the sensing mechanism suggests that the gas phase reactions within the porous LSM95 layers are critically important in determining the response voltages. PMID:26205270

  1. Design and construction of new potentiometric sensors for determination of Al3+ ion based on (Z)-2-(2-methyl benzylidene)-1-(2,4-dinitrophenyl) hydrazine.

    PubMed

    Mizani, F; Salmanzadeh Ardabili, S; Ganjaliab, M R; Faridbod, F; Payehghadr, M; Azmoodeh, M

    2015-04-01

    (Z)-2-(2-methyl benzylidene)-1-(2,4-dinitrophenyl) hydrazine (L) was used as an active component of PVC membrane electrode (PME), coated graphite electrode (CGE) and coated silver wire electrode (CWE) for sensing Al(3+) ion. The electrodes exhibited linear Nernstian responses to Al(3+) ion in the concentration range of 1.0×10(-6) to 1.0×10(-1)M (for PME, LOD=8.8×10(-7)M), 5.5×10(-7) to 2.0×10(-1)M (for CWE, LOD=3.3×10(-7)M) and 1.5×10(-7) to 1.0×10(-1)M (for CGE, LOD=9.2×10(-8)M). The best performances were observed with the membranes having the composition of L:PVC:NPOE:NaTPB in the ratio of 5:35:57:3 (w/w; mg). The electrodes have a response time of 6s and an applicable pH range of 3.5-9.1. The sensors have a lifetime of about 15weeks and exhibited excellent selectivity over a number of mono-, bi-, and tri-valent cations including alkali, alkaline earth metal, heavy and transition metal ions. Analytical utility of the proposed sensor has been further tested by using it as an indicator electrode in the potentiometric titration of Al(3+) with EDTA. The electrode was also successfully applied for the determination of Al(3+) ion in real and pharmaceutical samples.

  2. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker.

    PubMed

    Liang, Jintao; Guan, Mingyuan; Huang, Guoyin; Qiu, Hengming; Chen, Zhengcheng; Li, Guiyin; Huang, Yong

    2016-06-01

    A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V)=0.00714ChIgG (μg/mL)-0.0147 with a correlation coefficient of 0.9968 over a range 0-150 μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications.

  3. Design and fabrication of molecularly imprinted polymer-based potentiometric sensor from the surface modified multiwalled carbon nanotube for the determination of lindane (γ-hexachlorocyclohexane), an organochlorine pesticide.

    PubMed

    Anirudhan, Thayyath S; Alexander, Sheeba

    2015-02-15

    A novel potentiometric sensor with high selectivity in addition to sensitivity was developed for the determination of lindane, γ-hexachlorocyclohexane (γ-HCCH), based on the modification of γ-HCCH imprinted polymer film onto the surface of Cu electrode. A multiwalled carbon nanotube (MWCNT) was grafted using glycidyl methacrylate (GMA). The reaction of MWCNT with GMA produces MWCNT-g-GMA and the epoxide ring present in the GMA upon reaction with allylamine produces the vinylated MWCNT (MWCNT-CH = CH2). MWCNT based imprinted polymer (MWCNT-MIP) was synthesized by means of methacrylic acid (MAA) as the monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker, α,α'-azobisisobutyronitrile (AIBN) as the initiator and γ-HCCH, an organochlorine pesticide molecule, as the template. The optimizations of operational parameters were also done. Organized material was characterized by means of FTIR, XRD, Raman spectra and TEM analyses. The sensor responds to γ-HCCH in the range 1 × 10(-10)-1 × 10(-3)M and the detection limit was found to be 1.0 × 10(-10)M.

  4. Application of a potentiometric sensor array as a technique in sensory analysis.

    PubMed

    Hruskar, M; Major, N; Krpan, M

    2010-04-15

    This paper reports on the application of a potentiometric sensor array used for monitoring changes in probiotic fermented milk during storage, classification of probiotic fermented milk according to flavor and to accurately predict the results from a human sensory panel. For that purpose the potentiometric electronic tongue consisting of seven sensors and an Ag/AgCl reference electrode was used. The samples of plain, strawberry, apple-pear and forest-fruit probiotic fermented milk were stored during 20 days on two different temperatures and monitored by the electronic tongue and the human sensory panel. Various pattern recognition techniques are adapted including multivariate data processing based on principal components analysis (PCA) for monitoring changes occurring in probiotic fermented milk, artificial neural networks (ANN) for the classification of probiotic fermented milk during storage, partial least square regression (PLS) and artificial neural networks (ANN) to estimate and predict the sensory panel evaluation results. The highest correct classification percentage (97%) was obtained for plain probiotic fermented milk and the lowest (87%) for apple-pear flavored probiotic fermented milk. The highest correlation between the sensor array and the human sensory panel was obtained for the forest-fruit flavored probiotic fermented milk both by using artificial neural networks (0.998) and partial least square regression (0.992). Results from these analyses demonstrate that the electronic tongue can be used to monitor changes in probiotic fermented milk during storage, to classify probiotic fermented milk according to flavor and to predict the sensory characteristics and their relationship to the quality of the probiotic fermented milk measured by consumer.

  5. Design and characterization of novel all-solid-state potentiometric sensor array dedicated to physiological measurements.

    PubMed

    Toczyłowska-Mamińska, Renata; Kloch, Monika; Zawistowska-Deniziak, Anna; Bala, Agnieszka

    2016-10-01

    A novel construction of all-solid-state potentiometric sensor array designed for physiological measurements has been presented. The planar construction and elimination of liquid phase creates broad opportunities for the modifications in the sensing part of the sensor. The designed construction is based on all-solid-state ion-selective electrodes integrated with the ionic-liquid based reference electrode. Work parameters of the sensor arrays were characterized. It has been shown that presented sensor design indicates high sensitivity (55.2±1mV/dec, 56.3±2mV/dec, 58.4±1mV/dec and 53.5±1mV/pH for sodium-, potassium-, chloride- and pH-selective electrodes, respectively in 10(-5)-10(-1.5)M range of primary ions), low response time (t95 did not exceed 10s), high potential stability (potential drift in 28-h measurement was ca. ±2mV) and potential repeatability ca. ±1mV. The system was successfully applied to the simultaneous determination of K(+), Cl(-), Na(+) and pH in the model physiological solution and for the ion flux studies in human colon epithelium Caco-2 cell line as well.

  6. Design and characterization of novel all-solid-state potentiometric sensor array dedicated to physiological measurements.

    PubMed

    Toczyłowska-Mamińska, Renata; Kloch, Monika; Zawistowska-Deniziak, Anna; Bala, Agnieszka

    2016-10-01

    A novel construction of all-solid-state potentiometric sensor array designed for physiological measurements has been presented. The planar construction and elimination of liquid phase creates broad opportunities for the modifications in the sensing part of the sensor. The designed construction is based on all-solid-state ion-selective electrodes integrated with the ionic-liquid based reference electrode. Work parameters of the sensor arrays were characterized. It has been shown that presented sensor design indicates high sensitivity (55.2±1mV/dec, 56.3±2mV/dec, 58.4±1mV/dec and 53.5±1mV/pH for sodium-, potassium-, chloride- and pH-selective electrodes, respectively in 10(-5)-10(-1.5)M range of primary ions), low response time (t95 did not exceed 10s), high potential stability (potential drift in 28-h measurement was ca. ±2mV) and potential repeatability ca. ±1mV. The system was successfully applied to the simultaneous determination of K(+), Cl(-), Na(+) and pH in the model physiological solution and for the ion flux studies in human colon epithelium Caco-2 cell line as well. PMID:27474272

  7. Effect of electrode microstructure on the sensitivity and response time of potentiometric NOx sensors based on stabilized-zirconia and La5/3Sr1/3NiO4-YSZ sensing electrode

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Xia, Feng; Xiao, Jianzhong

    2014-05-01

    The microstructure of a potentiometric NOx sensor's electrodes considerably affects the sensor performance. In the present paper, nanometric La5/3Sr1/3NiO4 and different YSZ concentrations (5 wt%, 10 wt% and 20 wt%) composite powders were synthesized with microwave-assisted complex-gel auto-combustion method for fabricating NOx sensor electrodes. The sensor electrodes were sintered at 1000 °C, 1100 °C and 1200 °C respectively to obtain a variety of electrode morphology. The electrode porosity decreased with the increased YSZ addition. The sintering temperatures have effect on the porosity and distribution. All the sensors could produce a steady-state response voltage at the lower temperatures. Sensor fabricated with 10 wt% YSZ additional composites and sintered at 1000 °C exhibited the biggest response to NO at 400 °C.

  8. Potentiometric Acid-Base Titrations with Activated Graphite Electrodes

    NASA Astrophysics Data System (ADS)

    Riyazuddin, P.; Devika, D.

    1997-10-01

    Dry cell graphite (DCG) electrodes activated with potassium permanganate are employed as potentiometric indicator electrodes for acid-base titrations. Special attention is given to an indicator probe comprising activated DCG-non-activiated DCG electrode couple. This combination also proves suitable for the titration of strong or weak acids.

  9. Textile-based sampling for potentiometric determination of ions.

    PubMed

    Lisak, Grzegorz; Arnebrant, Thomas; Ruzgas, Tautgirdas; Bobacka, Johan

    2015-06-01

    Potentiometric sensing utilizing textile-based micro-volume sampling was applied and evaluated for the determination of clinically (Na(+), K(+), Cl(-)) and environmentally (Cd(2+), Pb(2+) and pH) relevant analytes. In this technological design, calibration solutions and samples were absorbed into textiles while the potentiometric cells (ion-selective electrodes and reference electrode) were pressed against the textile. Once the liquid, by wicking action, reached the place where the potentiometric cell was pressed onto the textile, hence closing the electric circuit, the potentiometric response was obtained. Cotton, polyamide, polyester and their blends with elastane were applied for micro-volume sampling. The textiles were found to influence the determination of pH in environmental samples with pH close to neutral and Pb(2+) at low analyte concentrations. On the other hand, textile-based micro-volume sampling was successfully applied in measurements of Na(+) using solid-contact sodium-selective electrodes utilizing all the investigated textiles for sampling. It was found that in order to extend the application of textile-based sampling toward environmental analysis of ions it will be necessary to tailor the physio-chemical properties of the textile materials. In general, textile-based sampling opens new possibilities for direct chemical analysis of small-volume samples and provide a simple and low-cost method to screen various textiles for their effects on samples to identify which textiles are the most suitable for on-body sensing.

  10. Graphene oxide modified light addressable potentiometric sensor and its application for ssDNA monitoring.

    PubMed

    Jia, Yunfang; Yin, Xue-Bo; Zhang, Jia; Zhou, Shuang; Song, Meng; Xing, Ke-Li

    2012-12-21

    A light addressable potentiometric sensor (LAPS) is a kind of silicon based semiconductor sensor, and surface modification is a fundamental problem for its application in biological fields. Graphene oxide (GO) based biochemically activated LAPS were proposed, called GO-LAPS. The GO-LAPS were applied to monitoring single strand DNA (ssDNA) probe immobilization and its hybridization with complementary ssDNA molecules of different chain lengths (30, 21 and 14 base pairs, respectively). It was discovered that the curves of LAPS' currents versus analyte concentrations for ssDNA probe binding and the target ssDNA hybridization were different. Explanations were proposed based on the semiconductor's surface-electric-field-effect and the electrical properties of ssDNA molecule. Moreover, comparisons between GO-LAPS and LAPS without GO modification were carried out. Enhanced response currents of GO-LAPS were reported experimentally and analyzed theoretically based on X-ray photoelectron spectroscopy (XPS) of GO-LAPS. The limitation of target ssDNA monitoring was 1 pM to 10 nM, which suggested that this LAPS based platform could be developed as a sensitive means for short chain ssDNA detection.

  11. Development of novel potentiometric sensors for determination of tartrazine dye concentration in foodstuff products.

    PubMed

    Abu Shawish, Hazem M; Ghalwa, Nasser Abu; Saadeh, Salman M; El Harazeen, Heba

    2013-05-01

    Tartrazine dye Na(3)TZ in foodstuff products was determined by a new modified carbon paste electrode, encoded sensor A, and a coated silver wire electrode, encoded sensor B, based on tartrazine TZ- cetryltrimethyl ammoniumbromide CTAB as a chemical modifier TZ-CTA. The electrodes exhibit the following characteristics listed respectively: a Nernstian slope of 17.9±0.5 and 19.4±0.2 mV/decade for tartrazine ion over a wide concentration range from 4.3×10(-7) to 1.0×10(-2) and 1.1×10(-7) to 1.0×10(-2) M. The lower detection limits: 3.2×10(-7) and 5.5×10(-8) M. Short response time (5-8 s) over the pH range 3.8-7.7 and 4.2-8.1. The proposed sensors display significantly high selectivity for TZ ion over a wide variety of sugars, some anions, common organic, inorganic compounds and additives. The developed electrodes were applied to the potentiometric determination of tartrazine ion in different kinds of foodstuffs: solid jelly (strawberry and custard) powder samples and soft drink (orange) samples with satisfactory results.

  12. Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts

    SciTech Connect

    Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

    2012-07-01

    A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.

  13. Potentiometric sensors for the determination of trifluoperazine hydrochloride in pharmaceutical preparations.

    PubMed

    Hassan, Ahmed K; Ameen, Suhaam T; Saad, Bahruddin; Al-Aragi, Suad M

    2009-11-01

    Trifluoperazine is widely used in the treatment of psychotic patients for its neuroleptic and antidepressive action. In this study, the construction, evaluation and application of new potentiometric sensors for trifluoperazine hydrochloride (TFPH) are described. The sensing membranes incorporated either ion-pair complexes of the trifluoperazine cation and phosphotungstic acid (PTA) or phosphomolybdic acid (PMA) or sodium tetraphenyl borate (NaTPB) as electroactive materials in poly(vinyl chloride) matrix membrane. The plasticizers used were di-n-butyl phthalate (DBPH) and tri-n-butyl phosphate (TBP). After a series of experiments, the best electrodes were based on PTA or PMA as electroactive materials and DBPH as plasticizer. A linear concentration range between 1 x 10(-5)-1 x 10(-2) M with a near Nernstian slope of 28.43 and 32.11 mV decade(-1), respectively, was obtained. The electrodes were characterized in terms of the composition, usable pH range, life span and response time. The selectivity coefficient values were calculated for different inorganic cations and sugars. Validation of the method shows the suitability of the electrodes for the determination of TFPH in pharmaceutical formulations.

  14. Current-biased potentiometric NOx sensor for vehicle emissions

    DOEpatents

    Martin, Louis Peter; Pham, Ai Quoc

    2006-12-26

    A nitrogen oxide sensor system for measuring the amount of nitrogen oxide in a gas. A first electrode is exposed to the gas. An electrolyte is positioned in contact with the first electrode. A second electrode is positioned in contact with the electrolyte. A means for applying a fixed current between the first electrode and the second electrode and monitoring the voltage required to maintain the fixed current provides a measurement of the amount of nitrogen oxide in the gas.

  15. Two Analyte Calibration From The Transient Response Of Potentiometric Sensors Employed With The SIA Technique

    SciTech Connect

    Cartas, Raul; Mimendia, Aitor; Valle, Manel del; Legin, Andrey

    2009-05-23

    Calibration models for multi-analyte electronic tongues have been commonly built using a set of sensors, at least one per analyte under study. Complex signals recorded with these systems are formed by the sensors' responses to the analytes of interest plus interferents, from which a multivariate response model is then developed. This work describes a data treatment method for the simultaneous quantification of two species in solution employing the signal from a single sensor. The approach used here takes advantage of the complex information recorded with one electrode's transient after insertion of sample for building the calibration models for both analytes. The departure information from the electrode was firstly processed by discrete wavelet for transforming the signals to extract useful information and reduce its length, and then by artificial neural networks for fitting a model. Two different potentiometric sensors were used as study case for simultaneously corroborating the effectiveness of the approach.

  16. Simultaneous determination of fermented milk aroma compounds by a potentiometric sensor array.

    PubMed

    Hruskar, Mirjana; Major, Nikola; Krpan, Marina; Vahcić, Nada

    2010-09-15

    The paper reports on the application of an electronic tongue for simultaneous determination of ethanol, acetaldehyde, diacetyl, lactic acid, acetic acid and citric acid content in probiotic fermented milk. The alphaAstree electronic tongue by Alpha M.O.S. was employed. The sensor array comprised of seven non-specific, cross-sensitive sensors developed especially for food analysis coupled with a reference Ag/AgCl electrode. Samples of plain, strawberry, apple-pear and forest-fruit flavored probiotic fermented milk were analyzed both by standard methods and by the potentiometric sensor array. The results obtained by these methods were used for the development of neural network models for rapid estimation of aroma compounds content in probiotic fermented milk. The highest correlation (0.967) and lowest standard deviation of error for the training (0.585), selection (0.503) and testing (0.571) subset was obtained for the estimation of ethanol content. The lowest correlation (0.669) was obtained for the estimation of acetaldehyde content. The model exhibited poor performance in average error and standard deviations of errors in all subsets which could be explained by low sensitivity of the sensor array to the compound. The obtained results indicate that the potentiometric electronic tongue coupled with artificial neural networks can be applied as a rapid method for the determination of aroma compounds in probiotic fermented milk.

  17. High-temperature potentiometric oxygen sensor with internal reference

    DOEpatents

    Routbort, Jules L.; Singh, Dileep; Dutta, Prabir K.; Ramasamy, Ramamoorthy; Spirig, John V.; Akbar, Sheikh

    2011-11-15

    A compact oxygen sensor is provided, comprising a mixture of metal and metal oxide an enclosure containing said mixture, said enclosure capable of isolating said mixture from an environment external of said enclosure, and a first wire having a first end residing within the enclosure and having a second end exposed to the environment. Also provided is a method for the fabrication of an oxygen sensor, the method comprising confining a metal-metal oxide solid mixture to a container which consists of a single material permeable to oxygen ions, supplying an electrical conductor having a first end and a second end, whereby the first end resides inside the container as a reference (PO.sub.2).sup.ref, and the second end resides outside the container in the atmosphere where oxygen partial pressure (PO.sub.2).sup.ext is to be measured, and sealing the container with additional single material such that grain boundary sliding occurs between grains of the single material and grains of the additional single material.

  18. Determination of vanadium(V) by direct automatic potentiometric titration with EDTA using a chemically modified electrode as a potentiometric sensor.

    PubMed

    Quintar, S E; Santagata, J P; Cortinez, V A

    2005-10-15

    A chemically modified electrode (CME) was prepared and studied as a potentiometric sensor for the end-point detection in the automatic titration of vanadium(V) with EDTA. The CME was constructed with a paste prepared by mixing spectral-grade graphite powder, Nujol oil and N-2-naphthoyl-N-p-tolylhydroxamic acid (NTHA). Buffer systems, pH effects and the concentration range were studied. Interference ions were separated by applying a liquid-liquid extraction procedure. The CME did not require any special conditioning before using. The electrode was constructed with very inexpensive materials and was easily made. It could be continuously used, at least two months without removing the paste. Automatic potentiometric titration curves were obtained for V(V) within 5 x 10(-5) to 2 x 10(-3)M with acceptable accuracy and precision. The developed method was applied to V(V) determination in alloys for hip prosthesis. PMID:18970248

  19. Novel PVC-membrane potentiometric sensors based on a recently synthesized sulfur-containing macrocyclic diamide for Cd2+ ion. Application to flow-injection potentiometry.

    PubMed

    Shamsipur, Mojtaba; Dezaki, Abbas Shirmardi; Akhond, Morteza; Sharghi, Hashem; Paziraee, Zahra; Alizadeh, Kamal

    2009-12-30

    A new sulfur-containing macrocyclic diamide, 1,15-diaza-3,4,12,13-dibenzo-5,11-dithia-8-oxa-1,15-(2,6-pyrido)cyclooctadecan-2,14-dione, L, was synthesized, characterized and used as an active component for fabrication of PVC-based polymeric membrane (PME), coated graphite (CGE) and coated silver wire electrodes (CWE) for sensing Cd(2+) ion. The electrodes exhibited linear Nernstian responses to Cd(2+) ion in the concentration range of 3.3 x 10(-6) to 3.3 x 10(-1)M (for PME, LOD=1.2 x 10(-6)M), 2.0 x 10(-7) to 3.3 x 10(-1)M (for CWE, LOD=1.3 x 10(-7)M) and 1.6 x 10(-8) to 1.3 x 10(-1)M (for CGE, LOD=1.0 x 10(-8)M). The CGE was used as a proper detection system in flow-injection potentiometry (FIP) with a linear Nernstian range of 3.2 x 10(-8) to 1.4 x 10(-1)M (LOD=1.3 x 10(-8)M). The optimum pH range was 3.5-7.6. The electrodes revealed fairly good discriminating ability towards Cd(2+) in comparison with a large number of alkali, alkaline earth, transition and heavy metal ions. The electrodes found to be chemically inert, showing a fast response time of <5s, and could be used practically over a period of about 2-3 months. The practical utility of the proposed system has also been reported.

  20. Selectivity characteristics of potentiometric carbon dioxide sensors with various gas membrane materials

    SciTech Connect

    Kobos, R.K.; Parks, S.J.; Meyerhoff, M.E.

    1982-10-01

    The selectivity characteristics of potentiometric carbon dioxide sensors with regard to various organic and inorganic acid interferences have been systematically examined. When used in conjunction with a standard silicone rubber CO/sub 2/ permeable membrane, the sensor displays surprisingly large response to several organic acids having low volatility, e.g., benzoic, cinnamic, and salicylic acids. If the outer membrane is changed to a microporous Teflon material, the response to these substances is diminished, but poor selectivity over volatile organics and acidic gases results. The use of a new homogeneous Teflon-like membrane meterial is shown to offer dramatic improvement in selectivity for CO/sub 2/ over all of the compounds tested. The mechanistic reasons for this enhanced selectivity are discussed as are alternate methods for reducing organic acid interferences when using more conventional membrane materials. 4 figures, 1 table.

  1. Dynamic response characteristics of the potentiometric carbon dioxide sensor for the determination of aspartame.

    PubMed

    Nikolelis, D P; Krull, U J

    1990-07-01

    The dynamic response characteristics of a carbon dioxide gas sensor were studied to determine the potential for application of the device to the kinetic assay of substrate(s) under pseudo first-order kinetics. The dependence of the time constant on the concentration of carbon dioxide was determined by using convolution mathematics to analyse potentiometric changes caused by abrupt alterations of gas concentration. The operational conditions of the CO2 sensor were optimised for the development of enzyme electrodes, so that the mass-transport phenomena occurring during the course of the enzymic reactions were enhanced. As a result, the kinetic analysis of substrate(s) was performed more rapidly (2-6 min), with greater sensitivity and with an improved detection limit (10-5 M). A kinetic reaction-rate method for the determination of aspartame in dietary foodstuffs is proposed as a rapid and inexpensive alternative to a classical high-performance liquid chromatographic method.

  2. Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors

    PubMed Central

    Wang, Wei-Song; Huang, Hong-Yi; Chen, Shu-Chun; Ho, Kuo-Chuan; Lin, Chia-Yu; Chou, Tse-Chuan; Hu, Chih-Hsien; Wang, Wen-Fong; Wu, Cheng-Feng; Luo, Ching-Hsing

    2011-01-01

    A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC), a microcontroller unit (MCU), a graphical user interface (GUI), and a radio frequency (RF) transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA) to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA). The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR) greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment), a small size of 5.6 cm × 8.7 cm, high portability, and high integration. PMID:22164093

  3. Potentiometric bioimaging with a large-scale integration (LSI)-based electrochemical device for detection of enzyme activity.

    PubMed

    Kanno, Yusuke; Ino, Kosuke; Sakamoto, Chika; Inoue, Kumi Y; Matsudaira, Masahki; Suda, Atsushi; Kunikata, Ryota; Ishikawa, Tomohiro; Abe, Hiroya; Shiku, Hitoshi; Matsue, Tomokazu

    2016-03-15

    This paper describes potentiometric bioimaging for enzyme activity using a large-scale integration (LSI)-based electrochemical device with 400 sensors. Potentiometric detection is useful for bioimaging because redox species are not consumed or produced during the detection process; therefore, there is no effect on cell activity and the detectable signal is sustained. In this study, the potentiometer mode of the LSI-based device was applied for the detection of glucose oxidase (GOx) and alkaline phosphatase (ALP) activity. The enzyme activities were quantitatively detected within the concentration ranges of 25-250 μg/mL and 0.10-5.0 ng/mL. In addition, GOx activity in hydrogels and the ALP activity of embryoid bodies (EBs) from embryonic stem (ES) cells were successfully imaged based on detection of the open circuit potentials of individual sensors in real time. To the best of our knowledge, this is the first report of potentiometric imaging using LSI-based electrochemical arrays to detect enzyme activity in ES cells. The LSI-based device is thus demonstrated to be a promising tool for bioimaging of enzyme activity.

  4. Microdroplet-Based Potentiometric Redox Measurements on Gold Nanoporous Electrodes.

    PubMed

    Freeman, Christopher J; Farghaly, Ahmed A; Choudhary, Hajira; Chavis, Amy E; Brady, Kyle T; Reiner, Joseph E; Collinson, Maryanne M

    2016-04-01

    Potentiometric redox measurements were made in subnanoliter droplets of solutions using an optically transparent nanoporous gold electrode strategically mounted on the stage of an inverted microscope. Nanoporous gold was prepared via dealloying gold leaf with concentrated nitric acid and was chemisorbed to a standard microscope coverslip with (3-mercaptopropyl)trimethoxysilane. The gold surface was further modified with 1-hexanethiol to optimize hydrophobicity of the surface to allow for redox measurements to be made in nanoscopic volumes. Time traces of the open-circuit potential (OCP) were used to construct Nernst plots to evaluate the applicability of the droplet-based potentiometric redox measurement system. Two poised one-electron transfer systems (potassium ferricyanide/ferrocyanide and ferrous/ferric ammonium sulfate) yielded Nernstian slopes of -58.5 and -60.3 mV, respectively, with regression coefficients greater than 0.99. The y-intercepts of the two agreed well to the formal potential of the two standard oxidation-reduction potential (ORP) calibrants, ZoBell's and Light's solution. The benzoquinone and hydroquinone redox couple was examined as a representative two-electron redox system; a Nernst slope of -30.8 mV was obtained. Additionally, two unpoised systems (potassium ferricyanide and ascorbic acid) were studied to evaluate the system under conditions where only one form of the redox couple is present in appreciable concentrations. Again, slopes near the Nernstian values of -59 and -29 mV, respectively, were obtained. All experiments were carried out using solution volumes between 280 and 1400 pL with injection volumes between 8 and 100 pL. The miniscule volumes allowed for extremely rapid mixing (<305 ms) as well. The small volumes and rapid mixing along with the high accuracy and sensitivity of these measurements lend support to the use of this approach in applications where time is a factor and only small volumes are available for testing. PMID

  5. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    NASA Astrophysics Data System (ADS)

    Smettem, Keith; Harris, Nick; Cranny, Andy; Klaus, Julian; Pfister, Laurent

    2016-04-01

    Quantifying the travel times, pathways and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor) potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for three stream reaches in Luxembourg. Sensor results are comparable to data obtained from more expensive electrical conductivity meters and allow spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  6. Polymeric membrane neutral phenol-sensitive electrodes for potentiometric G-quadruplex/hemin DNAzyme-based biosensing.

    PubMed

    Wang, Xuewei; Ding, Zhaofeng; Ren, Qingwei; Qin, Wei

    2013-02-01

    The first potentiometric transducer for G-quadruplex/hemin DNAzyme-based biosensing has been developed by using potential responses of electrically neutral oligomeric phenols on polymeric membrane electrodes. In the presence of G-quadruplex/hemin DNAzyme and H(2)O(2), monomeric phenols (e.g., phenol, methylphenols, and methoxyphenols) can be condensed into oligomeric phenols. Because both substrates and products are nonionic under optimal pH conditions, these reactions are traditionally not considered in designing potentiometric biosensing schemes. However, in this paper, the electrically neutral oligomeric phenols have been found to induce highly sensitive potential responses on quaternary ammonium salt-doped polymeric membrane electrodes owing to their high lipophilicities. In contrast, the potential responses to monomeric phenolic substrates are rather low. Thus, the G-quadruplex/hemin DNAzyme-catalyzed oxidative coupling of monomeric phenols can induce large potential signals, and the catalytic activities of DNAzymes can be probed. A comparison of potential responses induced by peroxidations of 13 monomeric phenols indicates that p-methoxyphenol is the most efficient substrate for potentiometric detection of G-quadruplex/hemin DNAzymes. Finally, two label-free and separation-free potentiometric DNA assay protocols based on the G-quadruplex/hemin DNAzyme have been developed with sensitivities higher than those of colorimetric and fluorometric methods. Coupled with other features such as reliable instrumentation, low cost, ease of miniaturization, and resistance to color and turbid interferences, the proposed polymeric membrane-based potentiometric sensor promises to be a competitive transducer for peroxidase-mimicking DNAzyme-involved biosensing.

  7. Potentiometric sensors doped with biomolecules as a new approach to small molecule/biomolecule binding kinetics analysis.

    PubMed

    Daems, D; De Wael, K; Vissenberg, K; Van Camp, G; Nagels, L

    2014-04-15

    The most successful binding kinetics analysis systems at this moment include surface plasmon resonance (SPR), quartz microcrystal balance (QMB) and surface acoustic wave (SAW). Although these are powerful methods, they generally are complex, expensive and require the use of monolayers. Here, we report on potentiometric sensors as an inexpensive and simple alternative to do binding kinetics analysis between small molecules in solution and biomolecules (covalently) attached in a biopolymer sensor coating layer. As an example, dopamine and an anti-dopamine aptamer were used as the small molecule and the biomolecule respectively. Binding between both follows a Langmuir adsorption type model and creates a surface potential. The system operates in Flow Injection Analysis mode (FIA). Besides being an interesting new binding kinetics tool, the approach allows systematic design of potentiometric biosensors (in the present study a dopamine sensor), and gives new insights into the functioning of ion-selective electrodes (ISE's).

  8. Two analyte calibrations from the transient response of a single potentiometric sensor employed with the SIA technique.

    PubMed

    Cartas, Raul; Mimendia, Aitor; Legin, Andrey; Del Valle, Manel

    2010-01-15

    Simultaneous quantification of Cd(2+) and Pb(2+) in solution has been correctly targeted using the kinetic information from a single non-specific potentiometric sensor. Dual quantification was accomplished from the complex information in the transient response of an electrode used in a Sequential Injection Analysis (SIA) system and recorded after step injection of sample. Data was firstly preprocessed with the Discrete Wavelet Transform (DWT) to extract significant features and then fed into an Artificial Neural Network (ANN) for building the calibration model. DWT stage was optimized regarding the wavelet function and decomposition level, while the ANN stage was optimized on its structure. To simultaneously corroborate the effectiveness of the approach, two different potentiometric sensors were used as study case, one using a glass selective to Cd(2+) and another a PVC membrane selective to Pb(2+).

  9. Research on the enhancement of signal-to-noise ratio of light-addressable potentiometric sensor by optical focusing

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Liu, Shi-bin; Yin, Shi-min; Liang, Jin-tao

    2016-01-01

    For enhancing the response of light-addressable potentiometric sensor (LAPS) and further improving its signal- to-noise ratio ( SNR), an optical focusing method is adopted. Experimental research and theoretical analysis reveal that the magnitude of responsive signal is increased by optical focusing, and the SNR is improved remarkably. These research results indicate that the optical focusing is an effective approach for improving SNR of LAPS.

  10. Use of information visualization methods eliminating cross talk in multiple sensing units investigated for a light-addressable potentiometric sensor.

    PubMed

    Siqueira, José R; Maki, Rafael M; Paulovich, Fernando V; Werner, Carl F; Poghossian, Arshak; de Oliveira, Maria C F; Zucolotto, Valtencir; Oliveira, Osvaldo N; Schöning, Michael J

    2010-01-01

    The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.

  11. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    SciTech Connect

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  12. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    NASA Astrophysics Data System (ADS)

    Saefurohman, Asep; Buchari, Noviandri, Indra; Syoni

    2014-03-01

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm-1, 1031 cm-1 and 794.7 cm-1 for P=O stretching and stretching POC from group -OP =O. The result showed shift wave number for P =O stretching of the cluster (-OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm-1 indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R3P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10-3 M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10-5 and 10-1 M.

  13. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    SciTech Connect

    Saefurohman, Asep Buchari, Noviandri, Indra; Syoni

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  14. Going Beyond, Going Further: Knives, Forks, and Beer Cans as Potentiometric Sensors.

    ERIC Educational Resources Information Center

    Selig, Walter S.

    1985-01-01

    Background information, materials needed, and procedures used are provided for potentiometric fluoride, halide, orthophosphate, and sulfate titrations. Typical results obtained are also provided for each type of titration. (JN)

  15. Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine.

    PubMed

    Nery, Emilia Witkowska; Kubota, Lauro T

    2016-04-28

    The following manuscript details the stages of construction of a novel paper-based electronic tongue with an integrated Ag/AgCl reference, which can operate using a minimal amount of sample (40 μL). First, we optimized the fabrication procedure of silver electrodes, testing a set of different methodologies (electroless plating, use of silver nanoparticles and commercial silver paints). Later a novel, integrated electronic tongue system was assembled with the use of readily available materials such as paper, wax, lamination sheets, bleach etc. New system was thoroughly characterized and the ion-selective potentiometric sensors presented performance close to theoretical. An electronic tongue, composed of electrodes sensitive to sodium, calcium, ammonia and a cross-sensitive, anion-selective electrode was used to analyze 34 beer samples (12 types, 19 brands). This system was able to discriminate beers from different brands, and types, indicate presence of stabilizers and antioxidants, dyes or even unmalted cereals and carbohydrates added to the fermentation wort. Samples could be classified by type of fermentation (low, high) and system was able to predict pH and in part also alcohol content of tested beers. In the next step sample volume was minimalized by the use of paper sample pads and measurement in flow conditions. In order to test the impact of this advancement a four electrode system, with cross-sensitive (anion-selective, cation-selective, Ca(2+)/Mg(2+), K(+)/Na(+)) electrodes was applied for the analysis of 11 types of wine (4 types of grapes, red/white, 3 countries). Proposed matrix was able to group wines produced from different varieties of grapes (Chardonnay, Americanas, Malbec, Merlot) using only 40 μL of sample. Apart from that, storage stability studies were performed using a multimeter, therefore showing that not only fabrication but also detection can be accomplished by means of off-the-shelf components. This manuscript not only describes new

  16. Accuracy of potentiometric oxygen sensors with Bi/Bi2O3 reference electrode for use in liquid LBE

    NASA Astrophysics Data System (ADS)

    Lim, J.; Mariën, A.; Rosseel, K.; Aerts, A.; Van den Bosch, J.

    2012-10-01

    Potentiometric oxygen sensors fabricated with yttria partially stabilized zirconia (YPSZ) and a Bi/Bi2O3 reference electrode were tested in oxygen saturated lead-bismuth eutectic (LBE) and oxygen saturated tin (Sn), respectively, in order to estimate the accuracy of the oxygen sensors prior to applying them to R&D work for MYRRHA. The accuracy of these sensors was estimated in the temperature range of 673-733 K by measuring the electromotive force (emf) of eight sensors. The standard deviation on the measured emf data was about 0.79 mV in the case of oxygen saturated LBE and was about 1.25 mV in the case of oxygen saturated Sn. These values result in a standard deviation of 4% on the oxygen concentration in LBE which is calculated from the measured emf.

  17. Potentiometric RuO2-Ta2O5 pH sensors fabricated using thick film and LTCC technologies.

    PubMed

    Manjakkal, Libu; Zaraska, Krzysztof; Cvejin, Katarina; Kulawik, Jan; Szwagierczak, Dorota

    2016-01-15

    The paper reports on the preparation, properties and application of potentiometric pH sensors with thick film RuO2-Ta2O5 sensing electrode and Ag/AgCl/KCl reference electrode screen printed on an alumina substrate. Furthermore, it presents fabrication procedure and characterization of a new miniaturized pH sensor on LTCC (low temperature cofired ceramics) substrate, destined for wireless monitoring. The crystal structure, phase and elemental composition, and microstructure of the films were investigated by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy. Potentiometric characterization was performed in a wide pH range of 2-12 for different storage conditions and pH loops. The advantages of the proposed thick film pH sensors are: (a) low cost and easy fabrication, (b) excellent sensitivity close to the Nernstian response (56mV/pH) in the wide pH range, (c) fast response, (d) long lifetime, (e) good reproducibility, (f) low hysteresis and drift effects, and (g) low cross-sensitivity towards Li(+), Na(+) and K(+) as interfering ions. The applicability of the sensors for pH measurement of river, tap and distilled water, and some drinks was also tested.

  18. Potentiometric RuO2-Ta2O5 pH sensors fabricated using thick film and LTCC technologies.

    PubMed

    Manjakkal, Libu; Zaraska, Krzysztof; Cvejin, Katarina; Kulawik, Jan; Szwagierczak, Dorota

    2016-01-15

    The paper reports on the preparation, properties and application of potentiometric pH sensors with thick film RuO2-Ta2O5 sensing electrode and Ag/AgCl/KCl reference electrode screen printed on an alumina substrate. Furthermore, it presents fabrication procedure and characterization of a new miniaturized pH sensor on LTCC (low temperature cofired ceramics) substrate, destined for wireless monitoring. The crystal structure, phase and elemental composition, and microstructure of the films were investigated by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy. Potentiometric characterization was performed in a wide pH range of 2-12 for different storage conditions and pH loops. The advantages of the proposed thick film pH sensors are: (a) low cost and easy fabrication, (b) excellent sensitivity close to the Nernstian response (56mV/pH) in the wide pH range, (c) fast response, (d) long lifetime, (e) good reproducibility, (f) low hysteresis and drift effects, and (g) low cross-sensitivity towards Li(+), Na(+) and K(+) as interfering ions. The applicability of the sensors for pH measurement of river, tap and distilled water, and some drinks was also tested. PMID:26592601

  19. Biomaterial based sulphur di oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Sarkar, A.

    2013-06-01

    Biomaterials are getting importance in the present research field of sensors. In this present paper performance of biomaterial based gas sensor made of gum Arabica and garlic extract had been studied. Extract of garlic clove with multiple medicinal and chemical utility can be proved to be useful in sensing Sulphur di Oxide gas. On exposure to Sulphur di Oxide gas the material under observation suffers some temporary structural change, which can be observed in form of amplified potentiometric change through simple electronic circuitry. Exploiting this very property a potentiometric gas sensor of faster response and recovery time can be designed. In this work sensing property of the said material has been studied through DC conductance, FTIR spectrum etc.

  20. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  1. Electrochemical Sensors Based on Organic Conjugated Polymers

    PubMed Central

    Rahman, Md. Aminur; Kumar, Pankaj; Park, Deog-Su; Shim, Yoon-Bo

    2008-01-01

    Organic conjugated polymers (conducting polymers) have emerged as potential candidates for electrochemical sensors. Due to their straightforward preparation methods, unique properties, and stability in air, conducting polymers have been applied to energy storage, electrochemical devices, memory devices, chemical sensors, and electrocatalysts. Conducting polymers are also known to be compatible with biological molecules in a neutral aqueous solution. Thus, these are extensively used in the fabrication of accurate, fast, and inexpensive devices, such as biosensors and chemical sensors in the medical diagnostic laboratories. Conducting polymer-based electrochemical sensors and biosensors play an important role in the improvement of public health and environment because rapid detection, high sensitivity, small size, and specificity are achievable for environmental monitoring and clinical diagnostics. In this review, we summarized the recent advances in conducting polymer-based electrochemical sensors, which covers chemical sensors (potentiometric, voltammetric, amperometric) and biosensors (enzyme based biosensors, immunosensors, DNA sensors).

  2. A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection.

    PubMed

    Zhang, Qi; Prabhu, Alok; San, Avdar; Al-Sharab, Jafar F; Levon, Kalle

    2015-10-15

    An ultrasensitive immunosensor based on potentiometric ELISA for the detection of a cardiac biomarker, troponin I-T-C (Tn I-T-C) complex, was developed. The sensor fabrication involves typical sandwich ELISA procedures, while the final signal readout was achieved using open circuit potentiometry (OCP). Glassy carbon (GC) working electrodes were first coated with emulsion-polymerized polyaniline/dinonylnaphthalenesulfonic acid (PANI/DNNSA) and the coated surface was utilized as a transducer layer on which sandwich ELISA incubation steps were performed. An enzymatic reaction between o-phenylenediamine (OPD) and hydrogen peroxide (H2O2) was catalyzed by horseradish peroxidase (HRP) labeled on the secondary antibodies. The polymer transducer charged state was mediated through electron (e(-)) and charge transfers between the transducer and charged species generated by the same enzymatic reaction. Such a change in the polymer transducer led to potential variations against an Ag/AgCl reference electrode as a function of Tn I-T-C complex concentration during incubations. The sequence of OPD and H2O2 additions, electrochemical properties of the PANI/DNNSA layer and non-specific binding prevention were all crucial factors for the assay performance. Under optimized conditions, the assay has a low limit of detection (LOD) (< 5 pg/mL or 56 fM), a wide dynamic range (> 6 orders of magnitude), high repeatability (coefficient of variance < 8% for all concentrations higher than 5 pg/mL) and a short detection time (< 10 min).

  3. Microsized graphite sensors for potentiometric determination of cyclobenzaprine hydrochloride in pure powder, tablets, and plasma.

    PubMed

    Ramadan, Nesrin K; Zaazaa, Hala E; Merey, Hanan A

    2011-01-01

    Two cyclobenzaprine hydrochloride (CZ) microsized graphite selective sensors were investigated with dibutylsebacate as a plasticizer in a polymeric matrix of carboxylated polyvinyl chloride (PVC-COOH) in the case of sensor 1, based on the interaction between the drug and the dissociated COOH groups in the PVC-COOH. Sensor 2 was based on the interaction between the drug and ammonium reineckate, which acted as anionic electroactive material in the presence of polyvinyl chloride matrix. The two sensors were constructed by using 2-hydroxy propyl beta-cyclodextrin as an ionophore, which has a significant influence on increasing the membrane sensitivity and selectivity of both sensors. Fast and stable Nernstian responses of 1 x 10(-5) - 1 x 10(-2) and 1 x 10(-4) - 1 x 10(-2) M for the two sensors, respectively, with slopes of 58.6 and 55.5 mV/decade, respectively, over the pH range 2-4 were obtained. The proposed method displayed useful analytical characteristics for determination of CZ in its pure powder form with average recoveries 99.95 +/- 0.23 and 99.61 +/- 0.34% for sensors 1 and 2, respectively, and in plasma with good recoveries. The sensors were also used to determine the intact drug in the presence of its degradate and, thus, could be used as stability-indicating methods. The obtained results by the proposed methods were statistically analyzed and compared with those obtained by the U.S. Pharmacopeia method; no significant difference for either accuracy or precision was observed. Results obtained with the two electrodes revealed their performance characteristics, which were evaluated according to International Union of Pure and Applied Chemistry recommendations. PMID:22320088

  4. Non-Severinghaus potentiometric dissolved CO2 sensor with improved characteristics.

    PubMed

    Xie, Xiaojiang; Bakker, Eric

    2013-02-01

    A new type of carbon dioxide sensor comprising a pH glass electrode measured against a carbonate-selective membrane electrode based on a tweezer type carbonate ionophore is presented here for the first time. No cumbersome liquid junction based reference element is utilized in this measurement. The sensor shows an expected nernstian divalent response slope to dissolved CO(2) over a wide range covering the routine environmental and physiological PCO(2) levels. Unlike the conventional Severinghaus CO(2) probe for which the response is substantially delayed to up to 10 min due to diffusion of carbon dioxide into the internal compartment, the ion-selective CO(2) sensor proposed here shows a response time (t(95%)) of 5 s. When used together with a traditional reference electrode, the sensor system is confirmed to also monitor sample pH and carbonate along with carbon dioxide. A selectivity analysis suggests that Cl(-) does not interfere even at high concentrations, allowing one to explore this type of sensor probe for use in seawater or undiluted blood samples. The CO(2) probe has been used in an aquarium to monitor the CO(2) levels caused by the diurnal cycles caused by the metabolism of the aquatic plants and shows stable and reproducible results. PMID:23305117

  5. Potentiometric Measurement of Transition Ranges and Titration Errors for Acid/Base Indicators

    NASA Astrophysics Data System (ADS)

    Flowers, Paul A.

    1997-07-01

    Sophomore analytical chemistry courses typically devote a substantial amount of lecture time to acid/base equilibrium theory, and usually include at least one laboratory project employing potentiometric titrations. In an effort to provide students a laboratory experience that more directly supports their classroom discussions on this important topic, an experiment involving potentiometric measurement of transition ranges and titration errors for common acid/base indicators has been developed. The pH and visually-assessed color of a millimolar strong acid/base system are monitored as a function of added titrant volume, and the resultant data plotted to permit determination of the indicator's transition range and associated titration error. Student response is typically quite positive, and the measured quantities correlate reasonably well to literature values.

  6. Miniaturized membrane sensors for potentiometric determination of metoprolol tartrate and hydrochlorothiazide.

    PubMed

    Ramadan, Nesrin K; Mohamed, Heba M; Mostafa, Azza A

    2012-06-01

    Four microsized graphite and platinum wire poly(vinyl chloride) matrix membrane electrodes responsive to some drugs affecting cardiovascular system, Metoprolol tartrate (MT) and Hydrochlorothiazide (HZ) were developed, described and characterized. These sensors were constructed by using (2-Hydroxypropyl)-β-cyclodextrin (2HP β-CD) as an ionophore which has a significant influence on increasing both membrane sensitivity and selectivity. The four sensors were fabricated in a polymeric matrix of carboxylated polyvinyl chloride (PVC-COOH) and dioctylphthalate (DOP) as a plasticizer, based on the interaction between the drugs and the dissociated COOH groups in the PVC-COOH. Fast and stable Nernstian responses of 1.0 × 10-6-1.0 × 10-2 M for MT (sensors 1 and 2) and of 1.0 × 10-7-1.0 × 10-3 M for HZ (sensors 3 and 4) over pH range 3.0-9.0 and 3.0-7.0 for the MT and HZ sensors respectively were obtained. Nernstian slopes of 56.2, 54.6, 19.0 and 20.8 mV/decade for electrodes 1-4 respectively were observed. The proposed method displayed useful analytical characteristics for the determination of MT and HZ in their pure powder forms with average recoveries of 99.11 ± 0.357, 99.21 ± 0.389, 100.08 ± 0.459 and 100.28 ± 0.438% for sensors 1-4 respectively. The lower limit of detection (LOD) were 5.5 × 10-6, 4.5 × 10-6, 4.8 × 10-8 and 5.0 × 10-8 M for sensors 1-4 respectively indicated high sensitivity. The four sensors displayed a good stability over a period of 6 weeks. The selectivity coefficients of the developed sensors indicated excellent selectivity. Results obtained by the four electrodes revealed the performance characteristics of these electrodes which evaluated according to IUPAC recommendations. The method was successively applied for the determination of MT and HZ in presence of each other, in presence of Salamide (SA), the main degradation product of HZ, in their pharmaceutical formulations and in human plasma samples. Statistical comparison between the

  7. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor.

    PubMed

    Hassan, Saad S M; Sayour, Hossam E M; Kamel, Ayman H

    2009-04-27

    A novel poly(vinyl chloride) matrix membrane sensor responsive to 4-nitrophenylphosphate (4-NPP) substrate is described, characterized and used for the potentiometric assay of acid (ACP) and alkaline (ALP) phosphatase enzymes. The sensor is based on the use of the ion-association complex of 4-NPP anion with nickel(II)-bathophenanthroline cation as an electroactive material and nitrophenyloctyl ether (NPOE) as a solvent mediator. The sensor displays good selectivity and stability and demonstrates a near-Nernstian response for 4-NPP over the concentration range 9.6x10(-6) to 1.0x10(-2) M with an anionic slope of 28.6+/-0.3 mV decade(-1) and a detection limit of 6.3x10(-6) M over the pH range 4.5-10. The sensor is used to measure the decrease of a fixed concentration of 4-NPP substrate as a function of acid and alkaline phosphatase enzyme activities at optimized conditions of pH and temperature. A linear relationship between the initial rate of 4-NPP substrate hydrolysis and enzyme activity holds over 0.05-3.0 and 0.03-3.4 IU L(-1) of ACP and ALP enzymes, respectively. Validation of the method by measuring the lower detection limit, range, accuracy, precision, within-day repeatability and between-day-variability reveals good performance characteristics of the proposed sensor. The sensor is used for the determination of acid and alkaline phosphatase enzyme activities in biological fluids of some patients suffering from alcoholic cirrhosis, acute myelocytic leukemia, pre-eclampsia and prostatic cancer. The sensor is also utilized for assessment of alkaline phosphatase enzyme in milk and dairy products. The results obtained agree fairly well with data obtained by the standard spectrophotometric methods.

  8. Review on State-of-the-art in Polymer Based pH Sensors

    PubMed Central

    Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian

    2007-01-01

    This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring.

  9. Potentiometric study of reaction between periodate and iodide as their tetrabutylammonium salts in chloroform. Application to the determination of iodide and potentiometric detection of end points in acid-base titrations in chloroform.

    PubMed

    Pournaghi-Azar, M H; Farhadi, K

    1995-03-01

    A potentiometric method for the titration of tetrabutylammonium iodide (TBAI) in chloroform using tetrabutylammonium periodate (TBAPI) as a strong and suitable oxidizing reagent is described. The potentiometric conditions were optimized and the equilibrium constants of the reactions occurring during the titration were determined. The method was used for the determination of iodide both in chloroform and aqueous solutions after extraction into chloroform as ion-association with tetraphenylarsonium. The reaction between TBAPI and TBAI was also used as acid indicator for the potentiometric detection of end points of acid-base titrations in chloroform.

  10. Sequential injection system with higher dimensional electrochemical sensor signals Part 2. Potentiometric e-tongue for the determination of alkaline ions.

    PubMed

    Cortina, M; Gutés, A; Alegret, S; Del Valle, Manuel

    2005-06-15

    An intelligent, automatic system based on an array of non-specific-response chemical sensors was developed. As a great amount of information is required for its correct modelling, we propose a system generating it itself. The sequential injection analysis (SIA) technique was chosen as it enables the processes of training, calibration, validation and operation to be automated simply. Detection was carried out using an array of potentiometric sensors based on PVC membranes of different selectivity. The diluted standard solutions needed for system learning and response modelling are automatically prepared from more concentrated standards. The electrodes used were characterised with respect to one and two analytes, by means of high-dimensionality calibrations, and the response surface of each was represented; this characterisation enabled an interference study of great practical utility. The combined response was modelled by means of artificial neural networks (ANNs), and thus it was possible to obtain an automated electronic tongue based on SIA. In order to identify the ANN which provided the best model of the electrode responses, some of the network's parameters were optimised and its usefulness in determining NH(4)(+), K(+) and Na(+) ions in synthetic samples was then tested. Finally, it was used to determine these ions in commercial fertilisers, the obtained results being compared with reference methods. PMID:18970109

  11. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.

    PubMed

    Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui

    2005-06-01

    A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.

  12. Iodine--iodide reference electrode for potentiometric titrations of bases in acetic acid.

    PubMed

    Maccà, Carlo; Soldà, Lidia

    2002-03-01

    The suitability of the half-cell Pt/I2, KI in glacial acetic acid as reference electrode for potentiometric titrations of weak bases in the same medium was investigated. This electrode is easily prepared. It has been found very convenient in use and performing at least as well as the best electrodes used for the same purpose. Some phenomenological aspects of the behaviour of the above half-cell, of interest for the use as the reference electrode in the laboratory practice have been observed, that show important differences respect aqueous medium and other organic solvents.

  13. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer

    NASA Astrophysics Data System (ADS)

    Wu, Chunsheng; Bronder, Thomas; Poghossian, Arshak; Werner, Carl Frederik; Schöning, Michael J.

    2015-03-01

    A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization

  14. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer.

    PubMed

    Wu, Chunsheng; Bronder, Thomas; Poghossian, Arshak; Werner, Carl Frederik; Schöning, Michael J

    2015-04-14

    A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout. PMID:25771844

  15. Fusion of Potentiometric & Voltammetric Electronic Tongue for Classification of Black Tea Taste based on Theaflavins (TF) Content

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Nabarun; Legin, Andrey; Papieva, Irina; Sarkar, Subrata; Kirsanov, Dmitry; Kartsova, Anna; Ghosh, Arunangshu; Bandyopadhyay, Rajib

    2011-09-01

    Black tea is an extensively consumed beverage worldwide with an expanding market. The final quality of black tea depends upon number of chemical compounds present in the tea. Out of these compounds, theaflavins (TF), which is responsible for astringency in black tea, plays an important role in determining the final taste of the finished black tea. The present paper reports our effort to correlate the theaflavins contents with the voltammetric and potentiometric electronic tongue (e-tongue) data. Noble metal-based electrode array has been used for collecting data though voltammetric electronic tongue where as liquid filled membrane based electrodes have been used for potentiometric electronic tongue. Black tea samples with tea taster score and biochemical results have been collected from Tea Research Association, Tocklai, India for the analysis purpose. In this paper, voltammetric and potentiometric e-tongue responses are combined to demonstrate improvement of cluster formation among tea samples with different ranges of TF values.

  16. Advances and trends in ionophore-based chemical sensors

    NASA Astrophysics Data System (ADS)

    Mikhelson, K. N.; Peshkova, M. A.

    2015-06-01

    The recent advances in the theory and practice of potentiometric, conductometric and optical sensors based on ionophores are critically reviewed. The role of the heterogeneity of the sensor/sample systems is emphasized, and it is shown that due to this heterogeneity such sensors respond to the analyte activities rather than to concentrations. The basics of the origin of the response of all three kinds of ionophore-based sensors are briefly described. The use of novel sensor materials, new preparation and application techniques of the sensors as well as advances in theoretical treatment of the sensor response are analyzed using literature sources published mainly from 2012 to 2014. The basic achievements made in the past are also addressed when necessary for better understanding of the trends in the field of ionophore-based sensors. The bibliography includes 295 references.

  17. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations.

    PubMed

    Ma, Wei-Jhe; Luo, Ching-Hsing; Lin, Jiun-Ling; Chou, Sin-Houng; Chen, Ping-Hung; Syu, Mei-Jywan; Kuo, Shin-Hung; Lai, Shin-Chi

    2016-01-01

    This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA) was used to measure and amplify the open-circuit potential (OCP) between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine) polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16 × 10(-4) to 3.16 × 10(-2) M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R² = 0.995). This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA·h) for at least four days. Accordingly, its use is feasible and even promising for home-care applications. PMID:27049390

  18. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations

    PubMed Central

    Ma, Wei-Jhe; Luo, Ching-Hsing; Lin, Jiun-Ling; Chou, Sin-Houng; Chen, Ping-Hung; Syu, Mei-Jywan; Kuo, Shin-Hung; Lai, Shin-Chi

    2016-01-01

    This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA) was used to measure and amplify the open-circuit potential (OCP) between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine) polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16 × 10−4 to 3.16 × 10−2 M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R2 = 0.995). This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA·h) for at least four days. Accordingly, its use is feasible and even promising for home-care applications. PMID:27049390

  19. Highly efficient potentiometric glucose biosensor based on functionalized InN quantum dots

    NASA Astrophysics Data System (ADS)

    Alvi, N. H.; Soto Rodriguez, P. E. D.; Gómez, V. J.; Kumar, Praveen; Amin, G.; Nur, O.; Willander, M.; Nötzel, R.

    2012-10-01

    We present a fast, highly sensitive, and efficient potentiometric glucose biosensor based on functionalized InN quantum-dots (QDs). The InN QDs are grown by molecular beam epitaxy. The InN QDs are bio-chemically functionalized through physical adsorption of glucose oxidase (GOD). GOD enzyme-coated InN QDs based biosensor exhibits excellent linear glucose concentration dependent electrochemical response against an Ag/AgCl reference electrode over a wide logarithmic glucose concentration range (1 × 10-5 M to 1 × 10-2 M) with a high sensitivity of 80 mV/decade. It exhibits a fast response time of less than 2 s with good stability and reusability and shows negligible response to common interferents such as ascorbic acid and uric acid. The fabricated biosensor has full potential to be an attractive candidate for blood sugar concentration detection in clinical diagnoses.

  20. In Situ Potentiometry and Ellipsometry: A Promising Tool to Study Biofouling of Potentiometric Sensors.

    PubMed

    Lisak, Grzegorz; Arnebrant, Thomas; Lewenstam, Andrzej; Bobacka, Johan; Ruzgas, Tautgirdas

    2016-03-15

    In situ potentiometry and null ellipsometry was combined and used as a tool to follow the kinetics of biofouling of ion-selective electrodes (ISEs). The study was performed using custom-made solid-contact K(+)-ISEs consisting of a gold surface with immobilized 6-(ferrocenyl)hexanethiol as ion-to-electron transducer that was coated with a potassium-selective plasticized polymer membrane. The electrode potential and the ellipsometric signal (corresponding to the amount of adsorbed protein) were recorded simultaneously during adsorption of bovine serum albumin (BSA) at the surface of the K(+)-ISEs. This in situ method may become useful in developing sensors with minimized biofouling.

  1. In Situ Potentiometry and Ellipsometry: A Promising Tool to Study Biofouling of Potentiometric Sensors.

    PubMed

    Lisak, Grzegorz; Arnebrant, Thomas; Lewenstam, Andrzej; Bobacka, Johan; Ruzgas, Tautgirdas

    2016-03-15

    In situ potentiometry and null ellipsometry was combined and used as a tool to follow the kinetics of biofouling of ion-selective electrodes (ISEs). The study was performed using custom-made solid-contact K(+)-ISEs consisting of a gold surface with immobilized 6-(ferrocenyl)hexanethiol as ion-to-electron transducer that was coated with a potassium-selective plasticized polymer membrane. The electrode potential and the ellipsometric signal (corresponding to the amount of adsorbed protein) were recorded simultaneously during adsorption of bovine serum albumin (BSA) at the surface of the K(+)-ISEs. This in situ method may become useful in developing sensors with minimized biofouling. PMID:26864883

  2. Modified carbon paste sensor for the potentiometric determination of neostigmine bromide in pharmaceutical formulations, human plasma and urine.

    PubMed

    Khorshid, A F; Issa, Y M

    2014-01-15

    A novel, simple, rapid, selective and sensitive method for the determination of neostigmine (Ns) ion in its bulk powder, different pharmaceutical dosage forms, and biological fluids (plasma and urine) using four modified carbon paste electrodes was developed. Sensor 1 is based on ion-association Ns-TPB, sensor 2 used Ns-PT, sensor 3 comprises a mixture of (Ns-PT+Ns-TPB) and sensor 4 was constructed using (Ns-PT+β-CD). Solvent mediator 2-NPPE exhibited a proper behavior including Nernstian slope ranging from 61.5±0.5 to 64.5±0.5 mV per decade over the pH range of 3.8-10 for the four sensors. Linear responses of Ns within the concentration range 1.0×10(-7)-1.0×10(-2) mol/L were obtained. The response time is very short (≤10s) with a detection limit 6.3×10(-8) M. In flow injection analysis (FIA), sensor 3 shows a Nernstian slope value 75.5±0.5 mV per decade within the concentration range of 1×10(-6)-1×10(-2) mol/L and with a detection limit 7.5×10(-7) mol/L. The utility of mixed or additives of β-CD had a significant influence on increasing the sensitivity of sensors 3 and 4 compared to sensors 1 and 2. The sensors were applied for the determination of neostigmine (Ns) ion in its bulk powder, different pharmaceutical dosage forms, and biological fluids (plasma and urine). The results obtained were satisfactory with excellent percentage recovery comparable with official method for the assay based on non-aqueous titration using perchloric acid as a titrant.

  3. Direct potentiometric determination of diastase activity in honey.

    PubMed

    Sak-Bosnar, Milan; Sakač, Nikola

    2012-11-15

    A novel method for the determination of diastase activity is reported. The method is based on a direct potentiometric measurement of triiodide ion that is released when a starch-triiodide complex is hydrolysed by honey diastase. The increase of free triiodide ion concentration in a sample is found to be directly proportional to the diastase activity of the sample. A response mechanism of the platinum redox electrode is proposed, allowing a calculation of the diastase activity factor (F). The sensor and analyte parameters, including F, were obtained by least squares fitting of potentiometric data using the optimisation function of the Solver add-in of Microsoft Excel. The values of F obtained by the new direct potentiometric method were compared with those obtained using the standard Phadebas method (DN values), and the two values were found to agree within experimental error. Finally, the diastase activity of nine varieties of honey was determined using the novel method developed here.

  4. Permian potentiometric analysis

    SciTech Connect

    Devary, J.L.

    1983-09-01

    Pacific Northwest Laboratory (PNL) was requested to analyze potentiometric data from the Wolfcamp Formation of the Permian System to evaluate the recommendations by the University of Texas/Bureau of Economic Geology (UT/BEG) that additional geohydrologic boreholes be drilled into the Wolfcamp. The UT/BEG recommended that two stratigraphic and two geohydrologic borings be drilled into the Permian System during FY83 and that several shallow hydrologic tests be made in the Dockum Formation. A geostatistical technique known as kriging was applied to objectively evaluate these geohydrologic borehole recommendations. The Deaf Smith County location appears to be an excellent choice for a borehole. No high quality potentiometric data are available from Deaf Smith County and a borehole location immediately upgradient from the candidate repository site is needed. Adding this borehole location to the potentiometric data base will significantly reduce field data uncertainty near the location being studied. The Swisher County location does not appear to be the best choice. High quality data values H2206 and H2360 are located immediately upgradient from the proposed repository site. The best placement of additional geohydrological boreholes in the Wolfcamp Formation depends strongly upon the proposed repository location. The variability of the potentiometric data causes estimation errors to rapidly increase away from locations of field measurements. Suggested locations for additional boreholes for the Deaf Smith investigations are in northwest Randall or central Potter Counties. Ideal borehole locations for the Swisher county studies appear to be in southeast Randall and Armstrong Counties.

  5. Application of an ELISA-type screen printed electrode-based potentiometric assay to the detection of Cryptosporidium parvum oocysts.

    PubMed

    Laczka, Olivier; Skillman, Lucy; Ditcham, William G; Hamdorf, Brenton; Wong, Danny K Y; Bergquist, Peter; Sunna, Anwar

    2013-11-01

    We report a novel electrochemical method for the rapid detection of the parasitic protozoan, Cryptosporidium parvum. An antibody-based capture format was transferred onto screen-printed electrodes and the presence of horseradish peroxidase-labelled antibodies binding to the oocysts was potentiometrically detected. This method allowed the detection of 5 × 10(2)Cryptosporidium oocysts per mL in 60 min.

  6. A potentiometric formaldehyde biosensor based on immobilization of alcohol oxidase on acryloxysuccinimide-modified acrylic microspheres.

    PubMed

    Ling, Yew Pei; Heng, Lee Yook

    2010-01-01

    A new alcohol oxidase (AOX) enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide) [poly(nBA-NAS)] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS) microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE). Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor's analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3-316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R(2) = 0.9776, n = 3). The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation) and 1.11% RSD, respectively (n = 3). The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor's performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.

  7. A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres

    PubMed Central

    Ling, Yew Pei; Heng, Lee Yook

    2010-01-01

    A new alcohol oxidase (AOX) enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide) [poly(nBA-NAS)] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS) microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE). Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor’s analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3–316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R2 = 0.9776, n = 3). The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation) and 1.11% RSD, respectively (n = 3). The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor’s performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods. PMID:22163450

  8. A Gas-Sensor-Based Urea Enzyme Electrode: Its Construction and Use in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Riechel, Thomas L.

    1984-01-01

    Describes an undergraduate experiment for the potentiometric determination of urea based on the physical entrapment of urease on the tip of an ammonia gas sensor. An advantage of this technique is the ease with which the ammonia electrode can be converted to a urea electrode. (JN)

  9. Novel miniaturized sensors for potentiometric batch and flow-injection analysis (FIA) of perchlorate in fireworks and propellants.

    PubMed

    Almeer, Saeed H M A; Zogby, Ibrahim A; Hassan, Saad S M

    2014-11-01

    Three planar miniaturized perchlorate membrane sensors (3×5 mm(2)) are prepared using a flexible Kaptan substrate coated with nitron-perchlorate (NT-ClO4) [sensor 1], methylene blue-perchlorate (MB-ClO4) [sensor II] and indium-porphyrin (In-Por) [sensor III] as electroactive materials in PVC membranes plasticized with 2-NPPE. Sensors I, II and III display near-Nernstian response for 1.0×10(-5)-1.0×10(-2), 3.1×10(-5)-1.0×10(-2) and 3.1×10(-6)-1.0×10(-2) mol L(-1) ClO4(-) with lower detection limits of 6.1×10(-6), 6.9×10(-6) and 1.2×10(-6) mol L(-1), and anionic calibration slopes of 50.9±0.4, 48.4±0.4 and 57.7±0.3 mV decade(-1), respectively. Methods for determining perchlorate using these sensors offer many attractive advantages including simplicity, flexibility, cost effectiveness, wide linear dynamic response range (0.1-1000 ppm), low detection limit (<1.2×10(-6) mol L(-1)≡0.1 ppm), small sample test volume (100 μL), safety, short response time (<20 s), long life span (~8 weeks), and extended wide working pH range (4.5-8.0). The sensors show high selectivity in the presence of some inorganic ions (e.g., PO4(3-), SO4(2-), S2O3(2-), NO2(-), NO3(-), N3(-), CN(-), Cl(-), Br(-), I(-)) and automation feasibility. Indium-porphyrin based membrane sensor (sensor III) is used as a detector in a wall-jet flow injection set-up to enable accurate flow injection analysis (FIA) of perchlorate in some fireworks without interferences from the associated reducing agents (sulfur and charcoal), binders (dextrin, lactose), coloring agents (calcium, strontium, copper, iron, sodium), color brighten (linseed oil) and regulators (aluminum flakes) which are commonly used in the formulations. The sensor is also used for perchlorate assessment in some propellant powders. The results fairly agree with data obtained by ion-chromatography.

  10. Novel miniaturized sensors for potentiometric batch and flow-injection analysis (FIA) of perchlorate in fireworks and propellants.

    PubMed

    Almeer, Saeed H M A; Zogby, Ibrahim A; Hassan, Saad S M

    2014-11-01

    Three planar miniaturized perchlorate membrane sensors (3×5 mm(2)) are prepared using a flexible Kaptan substrate coated with nitron-perchlorate (NT-ClO4) [sensor 1], methylene blue-perchlorate (MB-ClO4) [sensor II] and indium-porphyrin (In-Por) [sensor III] as electroactive materials in PVC membranes plasticized with 2-NPPE. Sensors I, II and III display near-Nernstian response for 1.0×10(-5)-1.0×10(-2), 3.1×10(-5)-1.0×10(-2) and 3.1×10(-6)-1.0×10(-2) mol L(-1) ClO4(-) with lower detection limits of 6.1×10(-6), 6.9×10(-6) and 1.2×10(-6) mol L(-1), and anionic calibration slopes of 50.9±0.4, 48.4±0.4 and 57.7±0.3 mV decade(-1), respectively. Methods for determining perchlorate using these sensors offer many attractive advantages including simplicity, flexibility, cost effectiveness, wide linear dynamic response range (0.1-1000 ppm), low detection limit (<1.2×10(-6) mol L(-1)≡0.1 ppm), small sample test volume (100 μL), safety, short response time (<20 s), long life span (~8 weeks), and extended wide working pH range (4.5-8.0). The sensors show high selectivity in the presence of some inorganic ions (e.g., PO4(3-), SO4(2-), S2O3(2-), NO2(-), NO3(-), N3(-), CN(-), Cl(-), Br(-), I(-)) and automation feasibility. Indium-porphyrin based membrane sensor (sensor III) is used as a detector in a wall-jet flow injection set-up to enable accurate flow injection analysis (FIA) of perchlorate in some fireworks without interferences from the associated reducing agents (sulfur and charcoal), binders (dextrin, lactose), coloring agents (calcium, strontium, copper, iron, sodium), color brighten (linseed oil) and regulators (aluminum flakes) which are commonly used in the formulations. The sensor is also used for perchlorate assessment in some propellant powders. The results fairly agree with data obtained by ion-chromatography. PMID:25127583

  11. Potentiometric sensors enabling fast screening of the benign prostatic hyperplasia drug alfuzosin in pharmaceuticals, urine and serum.

    PubMed

    Gupta, Vinod K; Singh, Ashok K; Gupta, Barkha

    2007-08-01

    The construction and characterization of potentiometric membrane electrodes are described for the quantification of alfuzosin, a drug used in a mono- and combined therapy of benign prostatic hyperplasia (BPH). The membranes of these electrodes consist of alfuzosin hydrochloride-tetraphenyl borate, (Az-TPB), chlorophenyl borate (Az-ClPB), and phosphotungstate (Az(3)-PT) ion associations as molecular recognition reagent dispersed in PVC matrix with dioctylpthalate as plasticizer. The performance characteristics of these electrodes, which were evaluated according to IUPAC recommendations, revealed a fast, stable and liner response for alfuzosin over the concentration ranges of 8.3 x 10(-6) to 1.0 x 10(-2) M, 3.8 x 10(-6) to 1.0 x 10(-2) M, 7.5 x 10(-7) to 1.0 x 10(-2) M AzCl with cationic slopes of 57.0, 56.0 and 58.5 mV/decade, respectively. The solubility product of the ion-pair and the formation constant of the precipitation reaction leading to the ion-pair formation were determined conductometrically. The electrodes, fully characterized in terms of composition, life span and usable pH range, were applied to the potentiometric determination of alfuzosin hydrochloride ion in different pharmaceutical preparations and biological fluids without any interference from excipients or diluents commonly used in drug formulations. The potentiometric method was also used in the determination of alfuzosin hydrochloride in pharmaceutical preparations in four batches with different expiration dates. Validation of the method showed suitability of the proposed electrodes for use in the quality control assessment of alfuzosin hydrochloride. This potentiometric method offers the advantages of high-throughput determination, simplicity, accuracy, automation feasibility, and applicability to turbid and colored sample solutions. PMID:17979639

  12. Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities.

    PubMed

    Glomme, A; März, J; Dressman, J B

    2005-01-01

    Solubility is one of the most important parameters for lead selection and optimization during drug discovery. Its determination should therefore take place as early as possible in the process. Because of the large numbers of compounds involved and the very low amounts of each compound available in the early development stage, it is highly desirable to measure the solubility with as little compound as possible and to be able to improve the throughput of the methods used. In this work, a miniaturized shake-flask method was developed and the solubility results were compared with those measured by semiautomated potentiometric acid/base titrations and computational methods for 21 poorly soluble compounds with solubilities mostly in the range 0.03-30 microg/mL. The potentiometric method is very economical (approximately 100 microg of a poorly soluble compound is needed) and is able to create a pH/solubility profile with one single determination, but is limited to ionizable compounds. The miniaturized shake-flask method can be used for all compounds and a wide variety of media. Its precision and throughput proved superior to the potentiometric method for very poorly soluble compounds. Up to 20 compounds a week can be studied with one set-up. Calculated solubility data seem to be sufficient for a first estimate of the solubility, but they cannot currently be used as a substitute for experimental measurements at key decision points in the development process.

  13. Potentiometric Response Characteristics of Membrane-Based Cs + -Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres

    DOE PAGESBeta

    Peper, Shane; Gonczy, Chad

    2011-01-01

    Csmore » + -selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between 1 × 10 − 3 and 1 × 10 − 4  M+ , a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE. Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10 -1 –10 -5  M+ , a conventional lower detection limit of 8.1 × 10 − 6  M+ , and a response slope of 57.7 mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3.« less

  14. Potentiometric determination of pK(A) of organic bases in acetone by the application of coulometry.

    PubMed

    Vajgand, V J; Mihajlović, R P; Dzudović, R M

    1989-11-01

    A coulometric-potentiometric method for the determination of pK(A) values of organic bases in anhydrous acetone is described. The bases were titrated with protons obtained by anodic oxidation of hydrogen dissolved in palladium, in the presence of sodium perchlorate as the supporting electrolyte. A pair of glass electrodes was used for measuring directly the difference between the half-neutralization potentials of the standard and the base being studied. The pK(A) values obtained were close to those reported in the literature. The effect of the supporting electrolyte concentration on the pK(A) values of some of the bases was also studied.

  15. Multiwalled carbon nanotube based molecular imprinted polymer for trace determination of 2,4-dichlorophenoxyaceticacid in natural water samples using a potentiometric method

    NASA Astrophysics Data System (ADS)

    Anirudhan, Thayyath S.; Alexander, Sheeba

    2014-06-01

    A novel potentiometric sensor based on ion imprinted polymer inclusion membrane (IPIM) was prepared from the modification of multiwalled carbon nanotube (MWCNT) based molecularly imprinted polymer for the trace determination of the pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) in natural water samples. MWCNTs are initially functionalized with vinyl groups through nitric acid oxidation along with reacting by allylamine. MWCNT based imprinted polymer (MWCNT-MIP) was synthesized by means of methacrylic acid (MAA) as the monomer, trimethylol propane trimethacrylate (TRIM) as the cross linker, α,α‧-azobisisobutyronitrile (AIBN) as the initiator and 2,4-D an organochlorine pesticide molecule as the template. Organized material was characterized by means of FTIR, XRD and SEM analyses. The sensing membrane was developed by the inclusion of 2,4-D imprinted polymer materials in the polyvinyl chloride (PVC) matrix. The optimization of operational parameters normally used such as amount and nature of plasticizers sensing material, pH and response time was conducted. From the non-imprinted (NIPIM) and imprinted polymer inclusion membrane (IPIM) sensors the response behavior of 2,4-D was compared under optimum conditions. The IPIM sensor responds in the range of 1 × 10-9-1 × 10-5 M and the detection limit was found to be 1.2 × 10-9 M. The stability of MWCNT-IPIM sensor was checked by various methods and it is found to be 3 months and it can be reused many times without losing its sensitivity. For the application of sensor experiments with ground and tap water samples were performed.

  16. Comparison of a potentiometric and a micromechanical triglyceride biosensor.

    PubMed

    Fernandez, Renny Edwin; Hareesh, Vemulachedu; Bhattacharya, Enakshi; Chadha, Anju

    2009-01-01

    Sensitive biosensors for detection of triglyceride concentration are important. In this paper we report on two types of silicon based triglyceride sensors: an electrolyte-insulator-semiconductor capacitor (EISCAP) which is a potentiometric device and a polysilicon microcantilever. The detection principle for both sensors is based on the enzymatic hydrolysis of triglyceride though the sensing mechanisms are different: electronic for the EISCAP and mechanical for the microcantilever. The characteristics and performances of the two sensors are critically compared. The EISCAP sensor necessitates the presence of a buffer for stable measurements which limits the sensitivity of the sensor at low concentrations of the bioanalyte to 1mM. The cantilever sensor works without a buffer which improves the lower level of sensitivity to 10 microm. Both sensors are found to give reproducible and reliable results.

  17. Novel CeO₂-based screen-printed potentiometric electrodes for pH monitoring.

    PubMed

    Betelu, S; Polychronopoulou, K; Rebholz, C; Ignatiadis, I

    2011-12-15

    Nuclear waste repositories are being installed in deep excavated rock formations in some places in Europe to isolate and store radioactive waste. In France, the Callovo-Oxfordian formation (COx) is a possible candidate for nuclear waste storage. This work investigates the applicability of CeO(2)-based oxides (CeO(2), Ce(0.8)Sm(0.2)O(2) and Ce(0.8)Zr(0.2)O(2)) for monitoring the pH of the COx pore water (T=25°C). The study is limited to the pH range between 5.5 and 13.2, which includes the pH values that have been encountered or are anticipated in the COx formation during its evolution as radioactive waste repository due mainly to alkalinisation, an increase in salinity, and a decrease in redox potential. Screen-printing was done to assemble electrodes and rapidly generate data sets. The electrochemical behavior of CeO(2)-based screen-printed electrodes (CeO(2)-based SPEs) was determined by cyclic voltammetry and electrochemical impedance spectroscopy. The use of the electrodes for pH sensing was then evaluated by potentiometric measurements. The feasibility of measuring pH with CeO(2)-based SPEs was first tested in NH(4)Cl/NH(3) buffer solutions, leading to electrode calibration over the widest range of pH, from around neutral to basic pH. Experiments were then conducted in NaHCO(3)/Na(2)CO(3) buffer samples similar to conditions prevailing in the COx formation. Ce(0.8)Zr(0.2)O(2) SPEs exhibit a near-Nernstian behavior (sensitivity -(51±2)mV/pH) in the pH range of 5.5-13.2 at 25°C. Electrode response was slightly affected by the direction of the pH change. Electrode reliability was clearly demonstrated for pH monitoring. Probes based on the same components, but more durably designed, could be considered for pH measurements in radioactive waste repositories. PMID:22099659

  18. Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix.

    PubMed

    Syu, Mei-Jywan; Chang, Yu-Sung

    2009-04-15

    Potentio-dynamic polymerization of buffered urease and pyrrole monomer onto carbon papers was conducted to fabricate an immobilized urease electrode for measuring the urea concentration. To use carbon paper as the substrate for the electro-growth of polypyrrole matrix not only created sufficient adhesion of the conducting polymer layer but also provided superior entrapment of urease enzymes. The potentiometric response corresponding to ammonia, the product formed from the urease catalyzed urea reaction, was employed for the urea concentration measurement. Scanning electron microscopic photographs showed that the polypyrrole matrix deposited on the carbon papers appeared to be of a cylindrical nanotube shape. The charge density applied in the polymerization was found to affect the potentiometric response while the potential-scanning rate showed minor influence. The composite electrodes had high sensitivity in urea detection, showing a response linear to the logarithm of the urea concentration in the range of 10(-3) to 10 mM. The detection of urea solution prepared in water and buffer was also compared. Ionic effect on the sensing of urea solution was investigated. By comparing the data reported in literature, the urease/polypyrrole/carbon paper electrode developed in this work showed superior long-term stability and reusability. The detection of urea in serum was also well performed.

  19. Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd(II) in water.

    PubMed

    Jang, Am; Zou, Zhiwei; Lee, Kang Kug; Ahn, Chong H; Bishop, Paul L

    2010-11-15

    Due to their toxicity to humans and animals, heavy metals and nitrate in groundwater are of particular concern. The combination of high toxicity and widespread occurrence has created a pressing need for effective monitoring and measurement of nitrate and heavy metals in soil pore water and groundwater at shallow depths. In this work, a new electrochemical sensing platform with the self-assembly nanobeads-packed (nBP) hetero columns has been developed for the pH and nitrate measurements. In addition, for on-site determination of cadmium (Cd(II)), a bismuth (Bi(III)) based polymer lab chip sensor using the square-wave anodic stripping voltammetry (SWASV) sensing principle has been designed, fabricated and successfully characterized. Factors affecting sensitivity and precision of the sensor, including deposition potential and deposition time, were studied. Miniaturized electrochemical lab chip sensors could be very valuable in environmental monitoring area due to their many benefits, such as greatly reduced sensing cost, sensing system portability, and ease of use.

  20. All-solid-state reference electrodes based on colloid-imprinted mesoporous carbon and their application in disposable paper-based potentiometric sensing devices.

    PubMed

    Hu, Jinbo; Ho, Kieu T; Zou, Xu U; Smyrl, William H; Stein, Andreas; Bühlmann, Philippe

    2015-03-01

    Reference electrodes are used in almost every electroanalytical measurement. Here, all-solid-state reference electrodes are described that employ colloid-imprinted mesoporous (CIM) carbon as solid contact and a poly(vinyl chloride) reference membrane to contact the sample. Such a reference membrane is doped with a moderately hydrophilic ionic liquid and a hydrophobic redox couple, leading to well-defined constant potentials at the interfaces of this membrane to the sample and to the solid contact, respectively. Due to the intrinsic properties of CIM carbon, reference electrodes with a CIM carbon solid contact exhibit excellent resistance to common interfering agents such as light and O2, with outstanding potential stability in continuous potentiometric measurements. The potential drift of CIM carbon-based reference electrodes without redox couple is as low as 1.7 μV/h over 110 h, making them the most stable all-solid-state reference electrodes reported so far. To demonstrate the compatibility of CIM carbon-based reference electrodes with miniaturized potentiometric systems, these reference electrodes were integrated into paper-based potentiometric sensing devices, successfully replacing the conventional reference electrode with its reference electrolyte solution. As a proof of concept, disposable paper-based Cl(-) sensing devices that contain stencil-printed Ag/AgCl-based Cl(-) selective electrodes and CIM carbon-based reference electrodes were constructed. These sensing devices are inexpensive, easy to use, and offer highly reproducible Cl(-) measurements with sample volumes as low as 10 μL. PMID:25630744

  1. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    PubMed Central

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-01-01

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days. PMID:24322561

  2. Potentiometric responses of polymeric liquid membranes based on hydrophobic chelating agents to metal ions.

    PubMed

    Itoh, Y; Ueda, Y; Hirano, A; Sugawara, M; Tohda, K; Akaiwa, H; Umezawa, Y

    2001-05-01

    The effect of hydrophobicity of acidic chelating agents as sensing materials on the potentiometric responses of polymeric liquid membranes was investigated. The chelating agents tested were 8-quinolinol (HOx), dithizone (HDz), 1-(2-pyridylazo)-2-naphthol (PAN) and their alkylated analogues, 5-octyloxymethyl-8-quinolinol (HO8Q), di(phexylphenyl)thiocarbazone (C6HDz), 7-pentadecyloxy-1-(2-pyridylazo)-2-naphthol (C15PAN) and a series of N-alkylcarbonyl-N-phenylhydroxylamines (CnPHA, n = 3, 6, 9, 12). The distribution coefficients between membrane solvent and water were determined to evaluate the hydrophobicity of the agents. The potential-pH profiles of the membranes containing hydrophobic chelating agents demonstrated the generation of potentiometric responses, while less hydrophobic agents gave no response. A possible model for the generation of membrane potential is proposed. The charge separation is attained by the permselective uptake of metal cations by the chelating agent anion at membrane/solution interface, where the high hydrophobicity of the agent enables the anionic or deprotonated form of the agents to remain at the membrane/solution interface.

  3. A new sensitive organic/inorganic hybrid material based on titanium oxide for the potentiometric detection of iron(III).

    PubMed

    Becuwe, M; Rouge, P; Gervais, C; Courty, M; Dassonville-Klimpt, A; Sonnet, P; Baudrin, E

    2012-12-15

    The formation of a new hybrid material based on titanium dioxide as inorganic support and containing an iron organochelator (ICL670) is described. An organophosphorous coupling agent was used to graft the organic molecule on the oxide surface. The attachment of the organic substrate was well-confirmed by FTIR (DRIFT), solid-state (31)P and (13)C CPMAS NMR, thermal analysis and the integrity of the structural and morphological parameters were verified using XRD and TEM analyses. The interaction between the material and dissolved iron(III) was also investigated through potentiometric measurements and demonstrated the interest of this new non-siliceous based hybrid material. The obtained linear evolution of the open circuit potential from 10(-2) to 10(-6) mol L(-1) can be used for the analytical detection of iron(III).

  4. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    USGS Publications Warehouse

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  5. Stream base flow and potentiometric surface of the Upper Floridan aquifer in south-Central and southwestern Georgia, November 2008

    USGS Publications Warehouse

    Gordon, Debbie W.; Peck, Michael F.

    2010-01-01

    An investigation to document groundwater levels and stream base flow in the lower Chattahoochee-Flint and western and central Aucilla-Suwanee-Ochlockonee River basins during low-flow conditions was conducted by the U.S. Geological Survey in November 2008. During most of 2008, moderate to severe drought conditions prevailed throughout southwestern Georgia. Groundwater levels were below median daily levels throughout most of 2008; however, in some wells, groundwater levels rose to median daily levels by November. Discharge in most of the streams in the study area also had risen to median levels by November. The potentiometric surface of the Upper Floridan aquifer was constructed from water-level measurements collected in 21 counties from 376 wells during November 1-10, 2008. The potentiometric surface indicates that groundwater in the study area generally flows to the south and toward streams except in reaches discharging to the Upper Floridan aquifer. The degree of connection between the Upper Floridan aquifer and streams decreases east of the Flint River where the overburden is thicker. Decreased connectivity between ground and surface water is evident from the stream-stage altitudes measured in November 2008 east of the Flint River, which are not similar to water-level altitudes measured in the Upper Floridan aquifer. Stream-stage measurements were collected at 111 sites-26 U.S. Geological Survey streamgaging sites and 85 additional synoptic sites without gages. Streamflow measurements were made at 87 of the sites during November 2008 and were used to estimate base flow. The measurements indicate that stream reaches range from losing up to 10 cubic feet per second to gaining up to 4,559 cubic feet per second; five stream reaches were determined to be losing stream reaches. Of the 11 stream reaches in the Alapaha River subbasin, 7 were dry when measured in November 2008.

  6. Fabrication of a potentiometric/amperometric bifunctional enzyme microbiosensor.

    PubMed

    Reddy, K Ravi Charan; Turcu, Florin; Schulte, Albert; Kayastha, Arvind M; Schuhmann, Wolfgang

    2005-08-01

    We report the fabrication and functional characterization of a needle-type bifunctional enzyme microbiosensor that has, as technical novelty, simultaneously integrated a potentiometric and amperometric detection of an enzyme-catalyzed reaction at the tip of a pulled glass micropipet. The construction involved immobilizing an enzyme onto the platinized outer tip surface using the precipitation of electrodeposition paint with direct entrapment of the biocomponent in the slowly growing polymer film. Products of enzyme-substrate reaction could then be targeted in a dual-detection mode on one hand with the covered Pt layer at the tip region as amperometric detector and on the other hand with a proton-selective liquid membrane-based potentiometric sensor inside the open pipet tip. Completing and testing bifunctional glucose microsensors demonstrated the functionality of the proposed strategy. Synchronized amperometric and potentiometric detection of the addition of a glucose standard to a buffer solution became evident by observing stepwise increases in the amperometric H2O2 oxidation current and corresponding increases in the potential of the pH-selective sensor, which translates to a local pH decrease around the tip due to hydrolysis of enzymatically formed gluconic acid. PMID:16053323

  7. "Click" Patterning of Self-Assembled Monolayers on Hydrogen-Terminated Silicon Surfaces and Their Characterization Using Light-Addressable Potentiometric Sensors.

    PubMed

    Wang, Jian; Wu, Fan; Watkinson, Michael; Zhu, Jingyuan; Krause, Steffi

    2015-09-01

    Two potential strategies for chemically patterning alkyne-terminated self-assembled monolayers (SAMs) on oxide-free silicon or silicon-on-sapphire (SOS) substrates were investigated and compared. The patterned surfaces were validated using a light-addressable potentiometric sensor (LAPS) for the first time. The first strategy involved an integration of photolithography with "click" chemistry. Detailed surface characterization (i.e. water contact angle, ellipsometry, AFM, and XPS) and LAPS measurements showed that photoresist processing not only decreases the coverage of organic monolayers but also introduces chemically bonded contaminants on the surfaces, thus significantly reducing the quality of the SAMs and the utility of "click" surface modification. The formation of chemical contaminants in photolithography was also observed on carboxylic acid- and alkyl-terminated monolayers using LAPS. In contrast, a second approach combined microcontact printing (μCP) with "click" chemistry; that is azide (azido-oligo(ethylene glycol) (OEG)-NH2) inks were printed on alkyne-terminated SAMs on silicon or SOS through PDMS stamps. The surface characterization results for the sample printed with a flat featureless PDMS stamp demonstrated a nondestructive and efficient method of μCP to perform "click" reactions on alkyne-terminated, oxide-free silicon surfaces for the first time. For the sample printed with a featured PDMS stamp, LAPS imaging showed a good agreement with the pattern of the PDMS stamp, indicating the successful chemical patterning on non-oxidized silicon and SOS substrates and the capability of LAPS to image the molecular patterns with high sensitivity.

  8. Tandem electrochemical desalination-potentiometric nitrate sensing for seawater analysis.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Bakker, Eric

    2015-08-18

    We report on a methodology for the direct potentiometric determination of nitrate in seawater by in-line coupling to an electrochemical desalination module. A microfluidic custom-fabricated thin layer flat cell allows one to electrochemically reduce the chloride concentration of seawater more than 100-fold, from 600 mM down to ∼2.8 mM. The desalinator operates by the exhaustive electrochemical plating of the halides from the thin layer sample onto a silver element as silver chloride, which is coupled to the transfer of the counter cations across a permselective ion-exchange membrane to an outer solution. As a consequence of suppressing the major interference of an ion-exchanger based membrane, the 80 μL desalinated sample plug is passed to a potentiometric flow cell of 13 μL volume. The potentiometric sensor is composed of an all-solid-state nitrate selective electrode based on lipophilic carbon nanotubes (f-MWCNTs) as an ion-to-electron transducer (slope of -58.9 mV dec(-1), limit of detection of 5 × 10(-7) M, and response time of 5 s in batch mode) and a miniaturized reference electrode. Nitrate is successfully determined in desalinated seawater using ion chromatography as the reference method. It is anticipated that this concept may form an attractive platform for in situ environmental analysis of a variety of ions that normally suffer from interference by the high saline level of seawater. PMID:26201537

  9. Tandem electrochemical desalination-potentiometric nitrate sensing for seawater analysis.

    PubMed

    Cuartero, Maria; Crespo, Gastón A; Bakker, Eric

    2015-08-18

    We report on a methodology for the direct potentiometric determination of nitrate in seawater by in-line coupling to an electrochemical desalination module. A microfluidic custom-fabricated thin layer flat cell allows one to electrochemically reduce the chloride concentration of seawater more than 100-fold, from 600 mM down to ∼2.8 mM. The desalinator operates by the exhaustive electrochemical plating of the halides from the thin layer sample onto a silver element as silver chloride, which is coupled to the transfer of the counter cations across a permselective ion-exchange membrane to an outer solution. As a consequence of suppressing the major interference of an ion-exchanger based membrane, the 80 μL desalinated sample plug is passed to a potentiometric flow cell of 13 μL volume. The potentiometric sensor is composed of an all-solid-state nitrate selective electrode based on lipophilic carbon nanotubes (f-MWCNTs) as an ion-to-electron transducer (slope of -58.9 mV dec(-1), limit of detection of 5 × 10(-7) M, and response time of 5 s in batch mode) and a miniaturized reference electrode. Nitrate is successfully determined in desalinated seawater using ion chromatography as the reference method. It is anticipated that this concept may form an attractive platform for in situ environmental analysis of a variety of ions that normally suffer from interference by the high saline level of seawater.

  10. Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores.

    PubMed

    Singh, A K; Gupta, V K; Gupta, Barkha

    2007-02-28

    The two chromium chelates of Schiff bases, N-(acetoacetanilide)-1,2-diaminoethane (L(1)) and N,N'-bis(acetoacetanilide)-triethylenetetraammine (L(2)), have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Cr(III). The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz. o-Nitrophenyloctyl ether (o-NPOE), dioctylpthalate (DOP), dibutylphthalate (DBP), tris(2-ethylhexyl)phosphate (TEHP), and benzyl acetate (BA) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of L(1):PVC:DBP:NaTPB in the ratio 5:150:250:3 (w/w). The sensor exhibits Nernstian response in the concentration range 8.9 x 10(-8) to 1.0 x 10(-1) M Cr(3+) with limit of detection 5.6 x 10(-8) M. The proposed sensor manifest advantages of relatively fast response (10s) and good selectivity over some alkali, alkaline earth, transition and heavy metal ions. The selectivity behavior of the proposed electrode revealed a considerable improvement as compared to the best previously PVC-membrane electrode for chromium(III) ion. The potentiometric response of the proposed sensor was independent of pH of the test solution in the range of 2.0-7.0. The sensor has found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 3 months. The proposed electrode was used as an indicator electrode in potentiometric titration of chromium ion with EDTA and in direct determination in different water and food samples.

  11. Potentiometric analytical microsystem based on the integration of a gas-diffusion step for on-line ammonium determination in water recycling processes in manned space missions.

    PubMed

    Calvo-López, Antonio; Ymbern, Oriol; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2015-05-18

    The design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane. The potentiometric detection system is based on an all-solid state ammonium selective electrode and a screen-printed Ag/AgCl reference electrode. The analytical features provided by the analytical microsystem after the optimization process were a linear range from 0.15 to 500 mg L(-1) and a detection limit of 0.07 ± 0.01 mg L(-1). Nevertheless, the operational features can be easily adapted to other applications through the modification of the hydrodynamic variables of the microfluidic platform.

  12. Potentiometric analytical microsystem based on the integration of a gas-diffusion step for on-line ammonium determination in water recycling processes in manned space missions.

    PubMed

    Calvo-López, Antonio; Ymbern, Oriol; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2015-05-18

    The design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane. The potentiometric detection system is based on an all-solid state ammonium selective electrode and a screen-printed Ag/AgCl reference electrode. The analytical features provided by the analytical microsystem after the optimization process were a linear range from 0.15 to 500 mg L(-1) and a detection limit of 0.07 ± 0.01 mg L(-1). Nevertheless, the operational features can be easily adapted to other applications through the modification of the hydrodynamic variables of the microfluidic platform. PMID:25910442

  13. Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.; Ammar, Reda A. A.; Chinnathambi, Arunachalam

    2015-05-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been synthesized [L = 4-pyridin-2-yl-methylene amino-4H-1,2,4-triazole-3-thiol]. The elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (SNN). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.34-10.46 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The Schiff base acts as tridentate ligand coordinated through deprotonated thiolic sulfur, azomethine nitrogen and pyridine nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coast-Redfern, Horowitz-Metzger (HM), Piloyan-Novikova (PN) and Broido's equations. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. Both the Schiff's base ligand and its complexes have been screened for antibacterial activities.

  14. Simultaneous and automated monitoring of the multimetal biosorption processes by potentiometric sensor array and artificial neural network.

    PubMed

    Wilson, D; del Valle, M; Alegret, S; Valderrama, C; Florido, A

    2013-09-30

    In this communication, a new methodology for the simultaneous and automated monitoring of biosorption processes of multimetal mixtures of polluting heavy metals on vegetable wastes based on flow-injection potentiometry (FIP) and electronic tongue detection (ET) is presented. A fixed-bed column filled with grape stalks from wine industry wastes is used as the biosorption setup to remove the metal mixtures from the influent solution. The monitoring system consists in a computer controlled-FIP prototype with the ET based on an array of 9 flow-through ion-selective electrodes and electrodes with generic response to divalent ions placed in series, plus an artificial neural network response model. The cross-response to Cu(2+), Cd(2+), Zn(2+), Pb(2+) and Ca(2+) (as target ions) is used, and only when dynamic treatment of the kinetic components of the transient signal is incorporated, a correct operation of the system is achieved. For this purpose, the FIA peaks are transformed via use of Fourier treatment, and selected coefficients are used to feed an artificial neural network response model. Real-time monitoring of different binary (Cu(2+)/ Pb(2+)), (Cu(2+)/ Zn(2+)) and ternary mixtures (Cu(2+)/ Pb(2+)/ Zn(2+)), (Cu(2+)/ Zn(2+)/ Cd(2+)), simultaneous to the release of Ca(2+) in the effluent solution, are achieved satisfactorily using the reported system, obtaining the corresponding breakthrough curves, and showing the ion-exchange mechanism among the different metals. Analytical performance is verified against conventional spectroscopic techniques, with good concordance of the obtained breakthrough curves and modeled adsorption parameters.

  15. Simultaneous and automated monitoring of the multimetal biosorption processes by potentiometric sensor array and artificial neural network.

    PubMed

    Wilson, D; del Valle, M; Alegret, S; Valderrama, C; Florido, A

    2013-09-30

    In this communication, a new methodology for the simultaneous and automated monitoring of biosorption processes of multimetal mixtures of polluting heavy metals on vegetable wastes based on flow-injection potentiometry (FIP) and electronic tongue detection (ET) is presented. A fixed-bed column filled with grape stalks from wine industry wastes is used as the biosorption setup to remove the metal mixtures from the influent solution. The monitoring system consists in a computer controlled-FIP prototype with the ET based on an array of 9 flow-through ion-selective electrodes and electrodes with generic response to divalent ions placed in series, plus an artificial neural network response model. The cross-response to Cu(2+), Cd(2+), Zn(2+), Pb(2+) and Ca(2+) (as target ions) is used, and only when dynamic treatment of the kinetic components of the transient signal is incorporated, a correct operation of the system is achieved. For this purpose, the FIA peaks are transformed via use of Fourier treatment, and selected coefficients are used to feed an artificial neural network response model. Real-time monitoring of different binary (Cu(2+)/ Pb(2+)), (Cu(2+)/ Zn(2+)) and ternary mixtures (Cu(2+)/ Pb(2+)/ Zn(2+)), (Cu(2+)/ Zn(2+)/ Cd(2+)), simultaneous to the release of Ca(2+) in the effluent solution, are achieved satisfactorily using the reported system, obtaining the corresponding breakthrough curves, and showing the ion-exchange mechanism among the different metals. Analytical performance is verified against conventional spectroscopic techniques, with good concordance of the obtained breakthrough curves and modeled adsorption parameters. PMID:23953435

  16. Polypyrrole-calcion film as a membrane and solid-contact in an indicator electrode for potentiometric titrations.

    PubMed

    Blaz, T; Migdalski, J; Lewenstam, A

    2000-06-21

    This paper shows the application of conducting polymers (CPs) for constructing potentiometric indicator electrodes. Two types of polypyrrole (PPy)-based calcium sensors are presented, one sensor with PPy-calcion film as the active part and the other sensor with PPy-calcion as a solid-state contact coated with a conventional membrane selective towards calcium ions. It is shown that the PPy-calcion film, due to the complexing properties of calcion ensuring high loading of the film with calcium, is sufficiently selective to be used as the active part or as a mediating layer of the indicator electrode. The electrode, with PPy-calcion film as the active part, was used as the indicator electrode in potentiometric titrations of calcium in mixed solvents, where conventional PVC-based electrode can not be used. For the first time, the practical applicability of PPy-based electrodes in titrations is demonstrated.

  17. Potentiometric surfaces of the Arnold Engineering Development Complex Area, Arnold Air Force Base, Tennessee, May and September 2011

    USGS Publications Warehouse

    Haugh, Connor J.; Robinson, John A.

    2016-01-29

    During May 2011, when water levels were near seasonal highs, water-level data were collected from 374 monitoring wells; and during September 2011, when water levels were near seasonal lows, water-level data were collected from 376 monitoring wells. Potentiometric surfaces were mapped by contouring altitudes of water levels measured in wells completed in the shallow aquifer, the upper and lower parts of the Manchester aquifer, and the Fort Payne aquifer. Water levels are generally 2 to 14 feet lower in September compared to May. The potentiometric-surface maps for all aquifers indicate a groundwater depression at the J4 test cell. Similar groundwater depressions in the shallow and upper parts of the Manchester aquifer are within the main testing area at the Arnold Engineering Development Complex at dewatering facilities.

  18. Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples.

    PubMed

    Stepurska, K V; Soldatkin, O O; Arkhypova, V M; Soldatkin, A P; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V

    2015-11-01

    This study aimed at the development and optimization of a potentiometric biosensor based on pH-sensitive field-effect transistors and acetylcholinesterase for aflatoxin B1 determination in real samples. Optimal conditions for bioselective elements operation were defined and analytical characteristics of the proposed biosensor were studied. The proposed biosensor characterized high operational stability and reproducibility of signal. Selectivity of acetylcholinesterase-biosensor to aflatoxins in relation to other groups of toxic substances was analyzed. The developed biosensor was applied to the determination of aflatoxin B1 in real samples (sesame, walnut and pea).

  19. Supramolecular Based Membrane Sensors

    PubMed Central

    Ganjali, Mohammad Reza; Norouzi, Parviz; Rezapour, Morteza; Faridbod, Farnoush; Pourjavid, Mohammad Reza

    2006-01-01

    Supramolecular chemistry can be defined as a field of chemistry, which studies the complex multi-molecular species formed from molecular components that have relatively simpler structures. This field has been subject to extensive research over the past four decades. This review discusses classification of supramolecules and their application in design and construction of ion selective sensors.

  20. Characterization of a hybrid-smectite nanomaterial formed by immobilizing of N-pyridin-2-ylmethylsuccinamic acid onto (3-aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application

    NASA Astrophysics Data System (ADS)

    Topcu, Cihan; Caglar, Sema; Caglar, Bulent; Coldur, Fatih; Cubuk, Osman; Sarp, Gokhan; Gedik, Kubra; Bozkurt Cirak, Burcu; Tabak, Ahmet

    2016-09-01

    A novel N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite nanomaterial was synthesized by immobilizing of N-pyridin-2-ylmethylsuccinamic acid through chemical bonding onto (3-aminopropyl)triethoxysilane modified smectite. The structural, thermal, morphological and surface properties of raw, silane-grafted and the N-pyridin-2-ylmethylsuccinamic acid-functionalized smectites were investigated by various characterization techniques. The thermal analysis data showed the presence of peaks in the temperature range from 200 °C to 600 °C due to the presence of physically adsorbed silanes, intercalated silanes, surface grafted silanes and chemically grafted silane molecules between the smectite layers. The powder x-ray diffraction patterns clearly indicated that the aminopropyl molecules also intercalated into the smectite interlayers as bilayer arrangement whereas N-pyridin-2-ylmethylsuccinamic acid molecules were only attached to 3-aminopropyltriethoxysilane molecules on the external surface and edges of clay and they did not intercalate. Fourier transform infrared spectroscopy confirms N-pyridin-2-ylmethylsuccinamic acid molecules bonding through the amide bond between the amine group of aminopropyltriethoxysilane molecules and a carboxylic acid functional group of N-pyridin-2-ylmethylsuccinamic acid molecules. The guest molecules functionalized onto the smectite caused significant alterations in the textural and morphological parameters of the raw smectite. The anchoring of N-pyridin-2-ylmethylsuccinamic acid molecules led to positive electrophoretic mobility values when compared to starting materials. N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite was employed as an electroactive ingredient in the structure of potentiometric PVC-membrane sensor. The sensor exhibited more selective potentiometric response towards chlorate ions compared to the other common anionic species.

  1. Micellar acid-base potentiometric titrations of weak acidic and/or insoluble drugs.

    PubMed

    Gerakis, A M; Koupparis, M A; Efstathiou, C E

    1993-01-01

    The effect of various surfactants [the cationics cetyl trimethyl ammonium bromide (CTAB) and cetyl pyridinium chloride (CPC), the anionic sodium dodecyl sulphate (SDS), and the nonionic polysorbate 80 (Tween 80)] on the solubility and ionization constant of some sparingly soluble weak acids of pharmaceutical interest was studied. Benzoic acid (and its 3-methyl-, 3-nitro-, and 4-tert-butyl-derivatives), acetylsalicylic acid, naproxen and iopanoic acid were chosen as model examples. Precise and accurate acid-base titrations in micellar systems were made feasible using a microcomputer-controlled titrator. The response curve, response time and potential drift of the glass electrode in the micellar systems were examined. The cationics CTAB and CPC were found to increase considerably the ionization constant of the weak acids (delta pKa ranged from -0.21 to -3.57), while the anionic SDS showed negligible effect and the nonionic Tween 80 generally decreased the ionization constants. The solubility of the acids in aqueous micellar and acidified micellar solutions was studied spectrophotometrically and it was found increased in all cases. Acetylsalicylic acid, naproxen, benzoic acid and iopanoic acid could be easily determined in raw material and some of them in pharmaceutical preparations by direct titration in CTAB-micellar system instead of using the traditional non-aqueous or back titrimetry. Precisions of 0.3-4.3% RSD and good correlation with the official tedious methods were obtained. The interference study of some excipients showed that a preliminary test should be carried out before the assay of formulations.

  2. Graphene based multifunctional flame sensor.

    PubMed

    Ferry, Darim B; Pavan Kumar, R; Reddy, Siva K; Mukherjee, Anwesha; Misra, Abha

    2015-05-15

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.

  3. Graphene based multifunctional flame sensor.

    PubMed

    Ferry, Darim B; Pavan Kumar, R; Reddy, Siva K; Mukherjee, Anwesha; Misra, Abha

    2015-05-15

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes. PMID:25900408

  4. Graphene based multifunctional flame sensor

    NASA Astrophysics Data System (ADS)

    Ferry, Darim B.; Pavan Kumar, R.; Reddy, Siva K.; Mukherjee, Anwesha; Misra, Abha

    2015-05-01

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.

  5. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  6. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    NASA Astrophysics Data System (ADS)

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-07-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs.

  7. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    PubMed Central

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  8. Potentiometric Biosensor for Studying Hydroquinone Cytotoxicity in vitro

    PubMed Central

    Wang, Yanyan; Chen, Qiang; Zeng, Xiangqun

    2009-01-01

    Many processes in living cells have electrochemical characteristics that are suitable for measurement by potentiometric biosensors. Potentiometric biosensors allow non invasive, real-time monitoring of the extracellular environment changes by measuring the potential at cell/sensor interface. This can be used as an indicator for overall cell cytotoxicity. The present work employs a potentiometric sensor array to investigate the cytotoxicity of hydroquinone to cultured mammalian V79 cells. Various electrode substrates (Au, PPy-HQ and PPy-PS) used for cell growth were designed and characterized. The controllable release of hydroquinone from PPy substrates was studied. Our results showed that hydroquinone exposure affected cell proliferation and delayed cell growth and attachment in a dose-dependent manner. Additionally, we have shown that exposure of V79 cells to hydroquinone at low doses (i.e 5μM) for more than 15 hours allows V79 cells to gain enhanced adaptability to survive exposure to high toxic HQ doses afterwards. Compared with traditional methods, the potentiometric biosensor not only provides non-invasive and real time monitoring of the cellular reactions but also is more sensitive for in vitro cytotoxicity study. By real time and non-invasive monitoring of the extracellular potential in vitro, the potentiometric sensor system represents a promising biosensor system for drug discovery. PMID:19926470

  9. Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins.

    PubMed

    Düzgün, Ali; Maroto, Alicia; Mairal, Teresa; O'Sullivan, Ciara; Rius, F Xavier

    2010-05-01

    A facile, solid-contact selective potentiometric aptasensor exploiting a network of single-walled carbon nanotubes (SWCNT) acting as a transducing element is described in this work. The molecular properties of the SWCNT surface have been modified by covalently linking aptamers as biorecognition elements to the carboxylic groups of the SWCNT walls. As a model system to demonstrate the generic application of the approach, a 15-mer thrombin aptamer interacts with thrombin and the affinity interaction gives rise to a direct potentiometric signal that can be easily recorded within 15 s. The dynamic linear range, with a sensitivity of 8.0 mV/log a(Thr) corresponds to the 10(-7)-10(-6) M range of thrombin concentrations, with a limit of detection of 80 nM. The aptasensor displays selectivity against elastase and bovine serum albumin and is easily regenerated by immersion in 2 M NaCl. The aptasensor demonstrates the capacity of direct detection of the recognition event avoiding the use of labels, mediators, or the addition of further reagents or analyte accumulation. PMID:20419254

  10. Potentiometric flow injection sensing system for determination of heparin based on current-controlled release of protamine.

    PubMed

    Lei, Jiahong; Ding, Jiawang; Chen, Yan; Qin, Wei

    2015-02-01

    A flow injection system incorporated with a polycation-sensitive polymeric membrane electrode in the flow cell is proposed for potentiometric determination of heparin. An external current in nano-ampere scale is continuously applied across the polymeric membrane for controlled release of protamine from the inner filling solution to the sample solution, which makes the electrode membrane regenerate quickly after each measurement. The protamine released at membrane-sample interface is consumed by heparin injected into the flow cell via their strong electrostatic interaction, thus decreasing the measured potential, by which heparin can be detected. Under optimized conditions, a linear relationship between the potential peak height and the concentration of heparin in the sample solution can be obtained in the range of 0.1-2.0 U mL(-1), and the detection limit is 0.06 U mL(-1). The proposed potentiometric sensing system has been successfully applied to the determination of heparin in undiluted sheep whole blood.

  11. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    PubMed

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  12. Graphene Based Flexible Gas Sensors

    NASA Astrophysics Data System (ADS)

    Yi, Congwen

    Graphene is a novel carbon material with great promise for a range of applications due to its electronic and mechanical properties. Its two-dimensional nature translates to a high sensitivity to surface chemical interactions thereby making it an ideal platform for sensors. Graphene's electronic properties are not degraded due to mechanical flexing or strain (Kim, K. S., et al. nature 07719, 2009) offering another advantage for flexible sensors integrated into numerous systems including fabrics, etc. We have demonstrated a graphene NO2 sensor on a solid substrate (100nm SiO2/heavily doped silicon). Three different methods were used to synthesize graphene and the sensor fabrication process was optimized accordingly. Water is used as a controllable p-type dopant in graphene to study the relationship between doping and graphene's response to NO2 . Experimental results show that interface water between graphene and the supporting SiO2 substrate induces higher p-doping in graphene, leading to a higher sensitivity to NO2, consistent with theoretical predications (Zhang, Y. et al., Nanotechnology 20(2009) 185504). We have also demonstrated a flexible and stretchable graphene-based sensor. Few layer graphene, grown on a Ni substrate, is etched and transferred to a highly stretchable polymer substrate (VHB from 3M) with preloaded stress, followed by metal contact formation to construct a flexible, stretchable sensor. With up to 500% deformation caused by compressive stress, graphene still shows stable electrical response to NO2. Our results suggest that higher compressive stress results in smaller sheet resistance and higher sensitivity to NO2. A possible molecular detection sensor utilizing Surface Enhanced Raman Spectrum (SERS) based on a graphene/gallium nanoparticles platform is also studied. By correlating the enhancement of the graphene Raman modes with metal coverage, we propose that the Ga transfers electrons to the graphene creating local regions of enhanced

  13. New approach in the treatment of data from an acid-base potentiometric titrationI. Monocomponent systems of monofunctional acids and bases.

    PubMed

    Maslarska, Vania; Tencheva, Jasmina; Budevsky, Omortag

    2003-01-01

    Based on precise analysis of the acid-base equilibrium, a new approach in the treatment of experimental data from a potentiometric titration is proposed. A new general formula giving explicitly the relation V=f([H(+)]) is derived, valid for every acid-base titration, which includes mono- and polyfunctional protolytes and their mixtures. The present study is the first practical application of this formula for the simplest case, the analysis of one monofunctional protolyte. The collected mV data during the titration are converted into pH-values by means of an auto pH-calibration procedure, thus avoiding preliminary preparation of the measuring system. The mentioned pH-calibration method is applicable also in water-organic mixtures and allows the quantitative determination of sparingly soluble substances (particularly pharmaceuticals). The treatment of the data is performed by means of ready-to-use software products, which makes the proposed approach accessible for a wide range of applications.

  14. Electronic aptamer-based sensors.

    PubMed

    Willner, Itamar; Zayats, Maya

    2007-01-01

    The selection of aptamers-nucleic acids that specifically bind low-molecular-weight substrates or proteins-by the SELEX (systematic evolution of ligands by exponential enrichment) procedure has attracted recent efforts directed to the development of new specific recognition units. In particular, extensive activities have been directed to the application of aptamers as versatile materials for the design of biosensors. The Minireview summarizes the recent accomplishments in developing electronic aptamer-based sensors (aptasensors), which include electrochemical, field-effect transistor, and microgravimetric quartz crystal microbalance sensors, and describes methods to develop amplified aptasensor devices and label-free aptasensors.

  15. Polymer based tunneling sensor

    NASA Technical Reports Server (NTRS)

    Cui, Tianhong (Inventor); Wang, Jing (Inventor); Zhao, Yongjun (Inventor)

    2006-01-01

    A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.

  16. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug.

    PubMed

    El-Naby, Eman H; Kamel, Ayman H

    2015-09-01

    A biomimetic potentiometric sensor for specific recognition of dextromethorphan (DXM), a drug classified according to the Drug Enforcement Administration (DEA) as a "drug of concern", is designed and characterized. A molecularly imprinted polymer (MIP), with special molecular recognition properties of DXM, was prepared by thermal polymerization in which DXM acted as template molecule, methacrylic acid (MAA) and acrylonitrile (AN) acted as functional monomers in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors revealed near-Nernstian response with slopes of 49.6±0.5 and 53.4±0.5 mV decade(-1) with a detection limit of 1.9×10(-6), and 1.0×10(-6) mol L(-1) DXM with MIP/MAA and MIP/AN membrane based sensors, respectively. Significantly improved accuracy, precision, response time, stability, selectivity and sensitivity were offered by these simple and cost-effective potentiometric sensors compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to assay DXM in pharmaceutical products. PMID:26046285

  17. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug.

    PubMed

    El-Naby, Eman H; Kamel, Ayman H

    2015-09-01

    A biomimetic potentiometric sensor for specific recognition of dextromethorphan (DXM), a drug classified according to the Drug Enforcement Administration (DEA) as a "drug of concern", is designed and characterized. A molecularly imprinted polymer (MIP), with special molecular recognition properties of DXM, was prepared by thermal polymerization in which DXM acted as template molecule, methacrylic acid (MAA) and acrylonitrile (AN) acted as functional monomers in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors revealed near-Nernstian response with slopes of 49.6±0.5 and 53.4±0.5 mV decade(-1) with a detection limit of 1.9×10(-6), and 1.0×10(-6) mol L(-1) DXM with MIP/MAA and MIP/AN membrane based sensors, respectively. Significantly improved accuracy, precision, response time, stability, selectivity and sensitivity were offered by these simple and cost-effective potentiometric sensors compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to assay DXM in pharmaceutical products.

  18. Potentiometric surfaces, summer 2013 and winter 2015, and select hydrographs for the Southern High Plains aquifer, Cannon Air Force Base, Curry County, New Mexico

    USGS Publications Warehouse

    Collison, Jake

    2016-01-01

    Cannon Air Force Base (Cannon AFB) is located in the High Plains physiographic region of east-central New Mexico, about 5 miles west of Clovis, New Mexico. The area surrounding Cannon AFB is primarily used for agriculture, including irrigated cropland and dairies. The Southern High Plains aquifer is the principal source of water for Cannon AFB, for the nearby town of Clovis, and for local agriculture and dairies. The Southern High Plains aquifer in the vicinity of Cannon AFB consists of three subsurface geological formations: the Chinle Formation of Triassic age, the Ogallala Formation of Tertiary age, and the Blackwater Draw Formation of Quaternary age. The Ogallala Formation is the main water-yielding formation of the Southern High Plains aquifer. Groundwater-supplied, center-pivot irrigation dominates pumping from the Southern High Plains aquifer in the area surrounding Cannon AFB, where the irrigation season typically extends from early March through October. The U.S. Geological Survey has been monitoring groundwater levels in the vicinity of Cannon AFB since 1954 and has developed general potentiometric-surface maps that show groundwater flow from northwest to southeast in the study area. While previous potentiometric-surface maps show the general direction of groundwater flow, a denser well network is needed to show details of groundwater flow at a local scale. Groundwater levels were measured in 93 wells during summer 2013 and 100 wells during winter 2015.The summer and winter potentiometric-surface maps display the presence of what is interpreted to be a groundwater trough trending from the northwest to the southeast through the study area. This groundwater trough may be the hydraulic expression of a Tertiary-age paleochannel. Groundwater north of the trough flows in a southerly direction into the trough, and groundwater south of the trough flows in an easterly direction into the trough.During the 18-month period between summer 2013 and winter 2015, changes

  19. Potentiometric surfaces, summer 2013 and winter 2015, and select hydrographs for the Southern High Plains aquifer, Cannon Air Force Base, Curry County, New Mexico

    USGS Publications Warehouse

    Collison, Jake

    2016-04-07

    Cannon Air Force Base (Cannon AFB) is located in the High Plains physiographic region of east-central New Mexico, about 5 miles west of Clovis, New Mexico. The area surrounding Cannon AFB is primarily used for agriculture, including irrigated cropland and dairies. The Southern High Plains aquifer is the principal source of water for Cannon AFB, for the nearby town of Clovis, and for local agriculture and dairies. The Southern High Plains aquifer in the vicinity of Cannon AFB consists of three subsurface geological formations: the Chinle Formation of Triassic age, the Ogallala Formation of Tertiary age, and the Blackwater Draw Formation of Quaternary age. The Ogallala Formation is the main water-yielding formation of the Southern High Plains aquifer. Groundwater-supplied, center-pivot irrigation dominates pumping from the Southern High Plains aquifer in the area surrounding Cannon AFB, where the irrigation season typically extends from early March through October. The U.S. Geological Survey has been monitoring groundwater levels in the vicinity of Cannon AFB since 1954 and has developed general potentiometric-surface maps that show groundwater flow from northwest to southeast in the study area. While previous potentiometric-surface maps show the general direction of groundwater flow, a denser well network is needed to show details of groundwater flow at a local scale. Groundwater levels were measured in 93 wells during summer 2013 and 100 wells during winter 2015.The summer and winter potentiometric-surface maps display the presence of what is interpreted to be a groundwater trough trending from the northwest to the southeast through the study area. This groundwater trough may be the hydraulic expression of a Tertiary-age paleochannel. Groundwater north of the trough flows in a southerly direction into the trough, and groundwater south of the trough flows in an easterly direction into the trough.During the 18-month period between summer 2013 and winter 2015, changes

  20. Fluorographene based Ultrasensitive Ammonia Sensor

    PubMed Central

    Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N.

    2016-01-01

    Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM–0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4+ are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents −~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors. PMID:27142522

  1. Reputation-based secure sensor localization in wireless sensor networks.

    PubMed

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments.

  2. Reputation-Based Secure Sensor Localization in Wireless Sensor Networks

    PubMed Central

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940

  3. Potentiometric detection and removal of copper using porphyrins

    PubMed Central

    2013-01-01

    Background Copper is an essential trace element with a great importance in industry, environment and biological systems. The great advantage of ion-selective sensors in comparison with other proposed techniques is that they are measuring the free metal ion activity which is responsible for their toxicity. Porphyrins are known to be among the best ionophores in formulation of ion-selective sensors. Results A symmetrically substituted meso-porphyrin, namely: 5,10,15,20-tetrakis(4-allyloxyphenyl)porphyrin (TAPP) was used in the construction of a new copper selective-sensor and was also tested for the removal of copper from waste waters. The potentiometric response characteristics (slope and selectivity) of copper-selective electrodes based on TAPP in o-nitrophenyloctylether (o-NPOE), dioctyl phtalate (DOP) and dioctyl sebacate (DOS) plasticized with poly(vinyl chloride) membranes are compared. Conclusions The best results were obtained for the membrane plasticized with DOP. The sensor has linear response in the range 1x10-7 – 1x10-1 M with 28.4 ± 0.4 mV/decade near-Nernstian slope towards copper ions and presents good selectivity. Due to its chelating nature, the same porphyrin was also tested for the retention of copper from synthetic copper samples, showing a maximum adsorption capacity of 280 mg/g. PMID:23829792

  4. Carbon Nanotube Based Light Sensor

    NASA Technical Reports Server (NTRS)

    Wincheski, russell A. (Inventor); Smits, Jan M. (Inventor); Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor); Ingram, JoAnne L. (Inventor)

    2006-01-01

    A light sensor substrate comprises a base made from a semi-conductive material and topped with a layer of an electrically non-conductive material. A first electrode and a plurality of carbon nanotube (CNT)-based conductors are positioned on the layer of electrically non-conductive material with the CNT-based conductors being distributed in a spaced apart fashion about a periphery of the first electrode. Each CNT-based conductor is coupled on one end thereof to the first electrode and extends away from the first electrode to terminate at a second free end. A second or gate electrode is positioned on the non-conductive material layer and is spaced apart from the second free end of each CNT-based conductor. Coupled to the first and second electrode is a device for detecting electron transfer along the CNT-based conductors resulting from light impinging on the CNT-based conductors.

  5. Image-based occupancy sensor

    DOEpatents

    Polese, Luigi Gentile; Brackney, Larry

    2015-05-19

    An image-based occupancy sensor includes a motion detection module that receives and processes an image signal to generate a motion detection signal, a people detection module that receives the image signal and processes the image signal to generate a people detection signal, a face detection module that receives the image signal and processes the image signal to generate a face detection signal, and a sensor integration module that receives the motion detection signal from the motion detection module, receives the people detection signal from the people detection module, receives the face detection signal from the face detection module, and generates an occupancy signal using the motion detection signal, the people detection signal, and the face detection signal, with the occupancy signal indicating vacancy or occupancy, with an occupancy indication specifying that one or more people are detected within the monitored volume.

  6. Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode

    NASA Astrophysics Data System (ADS)

    Mashuni; Ramadhan, L. O. A. N.; Jahiding, M.; Herniati

    2016-02-01

    Biosensor for analysis of diazinon pesticide using Potentiometric transducer has been developed. The basic element of this biosensor was a gold electrode modified with an immobilized acetylcholinesterase enzyme layer formed by entrapment with glutaraldehyde crosslinked-cellulose acetate. The aim of the research is to determine the composition of glutaraldehyde crosslinked-cellulose acetate in the gold electrode which provide optimum performance of biosensors of diazinon pesticide analysis on characterization include a range of working concentration, sensitivity, and detection limit. The results showed the composition of the cellulose acetate 15% and glutaraldehyde 25% that obtain optimum performance in the measurement of diazinon pesticide with a range of working concentration of 10-6 ppm to 1 ppm, the value of sensitivity 20.275 mV/decade and detection limit 10-6 ppm. The use of cellulose acetate provides highly sensitive devices allowing the efficient analysis of pesticides. The response time of electrode is on the measurement of pesticide diazinon with concentration variation of 10-6 ppm to 1 ppm with response time is about 5 minutes.

  7. Organically nanoporous silica gel based on carbon paste electrode for potentiometric detection of trace Cr(III).

    PubMed

    Zhou, Wei; Chai, Yaqin; Yuan, Ruo; Guo, Junxiang; Wu, Xia

    2009-08-11

    A new ion-selective electrode (ISE) for the detection of trace chromium(III) was designed by using 2-acetylpyridine and nanoporous silica gel (APNSG)-functionalized carbon paste electrode (CPE). The presence of APNSG acted as not only a paste binder, but also a reactive material. With 7.5 wt% APNSG proportions, the developed electrode exhibited wide dynamic range of 1.0 x 10(-8) to 1.0 x 10(-3) M toward Cr(III) with a detection limit of 8.0 x 10(-9) M and a Nernstian slope of 19.8 +/- 0.2 mV decade(-1). The as-prepared electrode displayed rapid response (approximately 55 s), long-time stability, and high sensitivity. Moreover, the potentiometric responses could be carried out with wide pH range of 1.5-5.0. In addition, the content of Cr(III) in food samples, e.g. coffee and tea leaves, has been assayed by the developed electrode, atomic absorption spectrophotometer (AAS) and atomic emission spectrometer (ICP-AES), respectively, and consistent results were obtained. Importantly, the response mechanism of the proposed electrode was investigated by using AC impedance and UV-vis spectroscopy.

  8. Refractive index sensor based on magnetoplasmonic crystals

    NASA Astrophysics Data System (ADS)

    Grunin, A. A.; Mukha, I. R.; Chetvertukhin, A. V.; Fedyanin, A. A.

    2016-10-01

    A magneto-optical surface plasmon resonance (MOSPR) sensor based on a magnetoplasmonic crystal trilayer structure is presented. The sensitivity of the MOSPR sensor is studied as a function of ferromagnetic layer thickness and at the different modes of operation. The enhancement of the sensitivity caused by using the MOSPR sensor in magneto-optical modulation regime in comparison with reflection regime is observed.

  9. Modeling the acid-base properties of bacterial surfaces: A combined spectroscopic and potentiometric study of the gram-positive bacterium Bacillus subtilis.

    PubMed

    Leone, Laura; Ferri, Diego; Manfredi, Carla; Persson, Per; Shchukarev, Andrei; Sjöberg, Staffan; Loring, John

    2007-09-15

    In this study, macroscopic and spectroscopic data were combined to develop a surface complexation model that describes the acid-base properties of Bacillus subtilis. The bacteria were freeze-dried and then resuspended in 0.1 M NaCl ionic medium. Macroscopic measurements included potentiometric acid-base titrations and electrophoretic mobility measurements. In addition, ATR-FTIR spectra of wet pastes from suspensions of Bacillus subtilis at different pH values were collected. The least-squares program MAGPIE was used to generate a surface complexation model that takes into account the presence of three acid-base sites on the surface: tripple bond COOH, tripple bond NH+, and tripple bond PO-, which were identified previously by XPS measurements. Both potentiometric titration data and ATR-FTIR spectra were used quantitatively, and electrostatic effects at the charged bacterial surface were accounted for using the constant capacitance model. The model was calculated using two different approaches: in the first one XPS data were used to constrain the ratio of the total concentrations of all three surface sites. The capacitance of the double layer, the total buffer capacity, and the deprotonation constants of the tripple bond NH+, tripple bond POH, and tripple bond COOH species were determined in the fit. A second approach is presented in which the ratio determined by XPS of the total concentrations of tripple bond NH+ to tripple bond PO- sites is relaxed. The total concentration of tripple bond PO- sites was determined in the fit, while the deprotonation constant for tripple bond POH was manually varied until the minimization led to a model which predicted an isoelectric point that resulted in consistency with electrophoretic mobility data. The model explains well the buffering capacity of Bacillus subtilis suspensions in a wide pH range (between pH=3 and pH=9) which is of considerable environmental interest. In particular, a similar quantitative use of the IR data

  10. Secured network sensor-based defense system

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Shen, Dan; Ge, Linqiang; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Network sensor-based defense (NSD) systems have been widely used to defend against cyber threats. Nonetheless, if the adversary finds ways to identify the location of monitor sensors, the effectiveness of NSD systems can be reduced. In this paper, we propose both temporal and spatial perturbation based defense mechanisms to secure NSD systems and make the monitor sensor invisible to the adversary. The temporal-perturbation based defense manipulates the timing information of published data so that the probability of successfully recognizing monitor sensors can be reduced. The spatial-perturbation based defense dynamically redeploys monitor sensors in the network so that the adversary cannot obtain the complete information to recognize all of the monitor sensors. We carried out experiments using real-world traffic traces to evaluate the effectiveness of our proposed defense mechanisms. Our data shows that our proposed defense mechanisms can reduce the attack accuracy of recognizing detection sensors.

  11. Transmission-grating-based wavefront tilt sensor.

    PubMed

    Iwata, Koichi; Fukuda, Hiroki; Moriwaki, Kousuke

    2009-07-10

    We propose a new type of tilt sensor. It consists of a grating and an image sensor. It detects the tilt of the collimated wavefront reflected from a plane mirror. Its principle is described and analyzed based on wave optics. Experimental results show its validity. Simulations of the ordinary autocollimator and the proposed tilt sensor show that the effect of noise on the measured angle is smaller for the latter. These results show a possibility of making a smaller and simpler tilt sensor.

  12. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements.

    PubMed

    Basozabal, Itsaso; Guerreiro, Antonio; Gomez-Caballero, Alberto; Aranzazu Goicolea, M; Barrio, Ramón J

    2014-08-15

    A new potentiometric sensor based on molecularly imprinted nanoparticles produced via the solid-phase imprinting method was developed. For histamine quantification, the nanoparticles were incorporated within a membrane, which was then used to fabricate an ion-selective electrode. The use of nanoparticles with high affinity and specificity allowed for label-free detection/quantification of histamine in real samples with short response times. The sensor could selectively quantify histamine in presence of other biogenic amines in real wine and fish matrices. The limit of detection achieved was 1.12×10(-6)molL(-1), with a linear range between 10(-6) and 10(-2)molL(-1) and a response time below 20s, making the sensor as developed a promising tool for direct quantification of histamine in the food industry.

  13. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement. 2. Evidence from continuous potentiometric titrations.

    PubMed

    Duc, Myriam; Gaboriaud, Fabien; Thomas, Fabien

    2005-09-01

    The effects of experimental procedures on the acid-base consumption titration curves of montmorillonite suspension were studied using continuous potentiometric titration. For that purpose, the hysteresis amplitudes between the acid and base branches were found to be useful to systematically evaluate the impacts of storage conditions (wet or dried), the atmosphere in titration reactor, the solid-liquid ratio, the time interval between successive increments, and the ionic strength. In the case of storage conditions, the increase of the hysteresis was significantly higher for longer storage of clay in suspension and drying procedures compared to "fresh" clay suspension. The titration carried out under air demonstrated carbonate contamination that could only be cancelled by performing experiments under inert gas. Interestingly, the increase of the time intervals between successive increments of titrant strongly emphasized the amplitude of hysteresis, which could be correlated with the slow kinetic process specifically observed for acid addition in acid media. Thus, such kinetic behavior is probably associated with dissolution processes of clay particles. However, the resulting curves recorded at different ionic strengths under optimized conditions did not show the common intersection point required to define point of zero charge. Nevertheless, the ionic strength dependence of the point of zero net proton charge suggested that the point of zero charge of sodic montmorillonite could be estimated as lower than 5.

  14. Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.

  15. Linear air-fuel sensor development

    SciTech Connect

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  16. Gas sensors based on electrospun nanofibers.

    PubMed

    Ding, Bin; Wang, Moran; Yu, Jianyong; Sun, Gang

    2009-01-01

    Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various sensing techniques such as acoustic wave, resistive, photoelectric, and optical techniques. The results of sensing experiments indicate that the nanofiber-based sensors showed much higher sensitivity and quicker responses to target gases, compared with sensors based on flat films. PMID:22573976

  17. Tactile sensors based on conductive polymers

    NASA Astrophysics Data System (ADS)

    Castellanos-Ramos, Julian; Navas-Gonzalez, Rafael; Macicior, Haritz; Ochoteco, Estibalitz; Vidal-Verdú, Fernando

    2009-05-01

    This paper presents results from a few tactile sensors we have designed and fabricated. These sensors are based on a common approach that consists of placing a sheet of piezoresistive material on the top of a set of electrodes. If a force is exerted against the surface of the so obtained sensor, the contact area between the electrodes and the piezoresistive material changes. Therefore, the resistance at the interface changes. This is exploited as transconduction principle to measure forces and build advanced tactile sensors. For this purpose, we use a thin film of conductive polymers as the piezoresistive material. Specifically, a conductive water-based ink of these polymers is deposited by spin coating on a flexible plastic sheet, giving as a result a smooth, homogeneous and conducting thin film on it. The main interest in this procedure is it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work we present results from sensors made with two technologies. First, we have used a Printed Circuit Board technology to fabricate the set of electrodes and addressing tracks. Then we have placed the flexible plastic sheet with the conductive polymer film on them to obtain the sensor. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with a screen printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. There is a very interesting difference with the other sensors, that consists of the use of an elastomer as insulation material between conductive layers. Besides of its role as insulator, this elastomer allows the modification of the force versus resistance relationship. It also improves the dynamic response of the sensor because it implements a restoration force that helps the sensor to relax quicker when the force is taken off.

  18. New potentiometric and spectrophotometric methods for the determination of dextromethorphan in pharmaceutical preparations.

    PubMed

    Elmosallamy, Mohamed A F; Amin, Alaa S

    2014-01-01

    New, simple and convenient potentiometric and spectrophotometric methods are described for the determination of dextromethorphan hydrobromide (DXM) in pharmaceutical preparations. The potentiometric technique is based on developing a potentiometric sensor incorporating the dextromethorphan tetrakis(p-chlorophenyl)borate ion-pair complex as an electroactive species in a plasticized PVC matrix membrane with o-nitophenyl octyl ether or dioctyl phthalate. The sensor shows a rapid near Nernstian response of over 1 × 10(-5) - 1 × 10(-2) mol L(-1) dextromethorphan in the pH range of 3.0 - 9.0. The detection limit is 2 × 10(-6) mol L(-1) DXM and the response time is instantaneous (2 s). The proposed spectrophotometric technique involves the reaction of DXM with eriochrom black T (EBT) to form an ion-associate complex. Solvent extraction is used to improve the selectivity of the method. The optimal extraction and reaction conditions have been studied, and the analytical characteristics of the method have been obtained. Linearity is obeyed in the range of 7.37 - 73.7 × 10(-5) mol L(-1) DXM, and the detection limit of the method is 1.29 × 10(-5) mol L(-1). The relative standard deviation (RSD) and relative error for six replicate measurements of 3.685 × 10(-4) mol L(-1) are 0.672 and 0.855%, respectively. The interference effect of some excepients has also been tested. The drug contents in pharmaceutical preparations were successfully determined by the proposed methods by applying the standard-addition technique.

  19. Flexible Hall sensors based on graphene

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-03-01

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT-1 and 79 V AT-1 were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  20. Flexible Hall sensors based on graphene.

    PubMed

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-04-14

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT(-1) and 79 V AT(-1) were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  1. Polymer-Based Carbon Monoxide Sensors

    NASA Technical Reports Server (NTRS)

    Homer, M. L.; Shevade, A. V.; Zhou, H.; Kisor, A. K.; Lara, L. M.; Yen, S.-P. S.; Ryan, M. A.

    2010-01-01

    Polymer-based sensors have been used primarily to detect volatile organics and inorganics; they are not usually used for smaller, gas phase molecules. We report the development and use of two types of polymer-based sensors for the detection of carbon monoxide. Further understanding of the experimental results is also obtained by performing molecular modeling studies to investigate the polymer-carbon monoxide interactions. The first type is a carbon-black-polymer composite that is comprised of a non-conducting polymer base that has been impregnated with carbon black to make it conducting. These chemiresistor sensors show good response to carbon monoxide but do not have a long lifetime. The second type of sensor has a non-conducting polymer base but includes both a porphyrin-functionalized polypyrrole and carbon black. These sensors show good, repeatable and reversible response to carbon monoxide at room temperature.

  2. SiC-Based Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak; Liu, C. C.; Wu, Q. H.

    1997-01-01

    Electronic grade Silicon Carbide (SiC) is a ceramic material which can operate as a semiconductor at temperatures above 600 C. Recently, SiC semiconductors have been used in Schottky diode gas sensor structures. These sensors have been shown to be functional at temperatures significantly above the normal operating range of Si-based devices. SiC sensor operation at these higher temperatures allows detection of gases such as hydrocarbons which are not detectable at lower temperatures. This paper discusses the development of SiC-based Schottky diode gas sensors for the detection of hydrogen, hydrocarbons, and nitrogen oxides (NO(x)). Sensor designs for these applications are discussed. High sensitivity is observed for the hydrogen and hydrocarbon sensors using Pd on SiC Schottky diodes while the NO(x) sensors are still under development. A prototype sensor package has been fabricated which allows high temperature operation in a room temperature ambient by minimizing heat loss to that ambient. It is concluded that SiC-based gas sensors have considerable potential in a variety of gas sensing applications.

  3. Studies on bis(crown ether)-based ion-selective electrodes for the potentiometric determination of sodium and potassium in serum.

    PubMed

    Moody, G J; Saad, B B; Thomas, J D

    1989-01-01

    Bis(crown ether)-based ion-selective electrodes for sodium and potassium are described, based on the bis[(12-crown-4)-2-ylmethyl]-2-dodecyl-2-methyl malonate sensor(I) for sodium and the bis[(benzo-15-crown-5)-15-ylmethyl] pimelate sensor(II) for potassium. The best results were obtained when the sensors were used in association with 2-nitrophenyl octyl ether as plasticising solvent mediator and potassium tetrakis(4-chlorophenyl)borate as anion excluder in poly(vinyl chloride) matrices. Electrode slopes were near-Nernstian, with detection limits of less than 10(-5) M. The electrode features are compared with those of a sodium glass membrane electrode, for sensor I, and with a valinomycin-based potassium electrode, for sensor II. The electrodes are also discussed in relation to others reported for sensors I and II and are shown to be superior. However, although the electrodes described offer promising alternatives to glass electrodes for sodium and valinomycin electrodes for potassium, data for sodium and potassium measurements in blood serum indicate a need for further research in order to improve the correlation with flame photometric measurements.

  4. Graphene-based charge sensors

    NASA Astrophysics Data System (ADS)

    Neumann, C.; Volk, C.; Engels, S.; Stampfer, C.

    2013-11-01

    We discuss graphene nanoribbon-based charge sensors and focus on their functionality in the presence of external magnetic fields and high frequency pulses applied to a nearby gate electrode. The charge detectors work well with in-plane magnetic fields of up to 7 T and pulse frequencies of up to 20 MHz. By analyzing the step height in the charge detector’s current at individual charging events in a nearby quantum dot, we determine the ideal operation conditions with respect to the applied charge detector bias. Average charge sensitivities of 1.3 × 10-3e Hz-1/2 can be achieved. Additionally, we investigate the back action of the charge detector current on the quantum transport through a nearby quantum dot. By varying the charge detector bias from 0 to 4.5 mV, we can increase the Coulomb peak currents measured at the quantum dot by a factor of around 400. Furthermore, we can completely lift the Coulomb blockade in the quantum dot.

  5. SiC-Based Gas Sensor Development

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Gray, M.; Androjna, D.; Chen, L.-Y.; Hoffman, R. W., Jr.; Liu, C. C.; Wu, Q. H.

    2000-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for applications such as emission measurements and leak detection. The effects of the geometry of the tin oxide film in a Pd/SnO2/SiC structure will be discussed as well as improvements in packaging SiC-based sensors. It is concluded that there is considerable versatility in the formation of SiC-based Schottky diode gas sensing structures which will potentially allow the fabrication of a SiC-based gas sensor array for a variety of gases and temperatures.

  6. Polypyrrole based gas sensor for ammonia detection

    NASA Astrophysics Data System (ADS)

    Dunst, K. J.; Cysewska, K.; Kalinowski, P.; Jasiński, P.

    2016-01-01

    The nature of polypyrrole response to toxic gases does not allow using the sensor in a conventional way. The main aim of this study is to acquire the information about the concentration using different approaches: a linear approximation, a non-linear approximation and a tangent method. In this paper a two-steps procedure for sensor response measurements has been utilized. Polypyrrole films were electrochemically synthesized on the interdigitated electrodes. Gas sensing measurements of polypyrrole based sensor were carried out at room temperature. The influence of the flow rate on the sensing performance to NH3 were investigated. The preliminary studies of aging of the sensor were also explored.

  7. [A USB-Based Digital ECG Sensor].

    PubMed

    Shi Bol; Kong, Xiangyong; Ma, Xiaozhi; Zhang, Genxuan

    2016-01-01

    Based on the ECG-specific BMD 101 integrated circun chip, this study designed a digital ECG sensor. In practical application, users just need to connect the ECG sensor 'o upper computer (such as PC or mobile phone) through USB interface, to realize the functions including display, alarm, saving, transfer etc. After tests, They demonstrate that the sensor can be applied to the detection of arrhythmia, such as bigeminy coupled rhythm, proiosystole etc. Besides, the sensor has various advantages in monitoring an managing the heart health of people out of hospital, including low cost, small volume, usableness, simplicity of operation etc. PMID:27197497

  8. Overview of fiber grating-based sensors

    NASA Astrophysics Data System (ADS)

    Meltz, Gerald

    1996-11-01

    Optical fiber sensor technology based on intra-core Bragg gratings has been used in a number of important application areas ranging from structural monitoring to chemical sensing. Practical and cost effective systems are not far in the future judging from advances in grating manufacture and sensor readout instrumentation. Fiber grating technology is not driven by its use in sensors but rather by valuable applications in dense, broadband WDM telecommunications. In this paper, we review the fundamentals of Bragg grating sensors and discuss various means for wavelength-shift demodulation, separation of temperature and strain responses and new directions that will offer additional capabilities.

  9. Model-Based Method for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  10. Recent Advances in Paper-Based Sensors

    PubMed Central

    Liana, Devi D.; Raguse, Burkhard; Gooding, J. Justin; Chow, Edith

    2012-01-01

    Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed. PMID:23112667

  11. Information-based self-organization of sensor nodes of a sensor network

    DOEpatents

    Ko, Teresa H.; Berry, Nina M.

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  12. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  13. A risk-based sensor placement methodology.

    PubMed

    Lee, Ronald W; Kulesz, James J

    2008-10-30

    A risk-based sensor placement methodology is proposed to solve the problem of optimal location of sensors to protect population against the exposure to, and effects of, known and/or postulated chemical, biological, and/or radiological threats. Risk is calculated as a quantitative value representing population at risk from exposure at standard exposure levels. Historical meteorological data are used to characterize weather conditions as the frequency of wind speed and direction pairs. The meteorological data drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate risk values. Sensor locations are determined via an iterative dynamic programming algorithm whereby threats detected by sensors placed in prior iterations are removed from consideration in subsequent iterations. In addition to the risk-based placement algorithm, the proposed methodology provides a quantification of the marginal utility of each additional sensor. This is the fraction of the total risk accounted for by placement of the sensor. Thus, the criteria for halting the iterative process can be the number of sensors available, a threshold marginal utility value, and/or a minimum cumulative utility achieved with all sensors.

  14. Toward sensor-based context aware systems.

    PubMed

    Sakurai, Yoshitaka; Takada, Kouhei; Anisetti, Marco; Bellandi, Valerio; Ceravolo, Paolo; Damiani, Ernesto; Tsuruta, Setsuo

    2012-01-01

    This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information. PMID:22368489

  15. Novel choline esterase based sensor for monitoring of organophosphorus pollutants

    SciTech Connect

    Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.

    1996-12-31

    Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.

  16. Beer classification by means of a potentiometric electronic tongue.

    PubMed

    Cetó, Xavier; Gutiérrez-Capitán, Manuel; Calvo, Daniel; del Valle, Manel

    2013-12-01

    In this work, an electronic tongue (ET) system based on an array of potentiometric ion-selective electrodes (ISEs) for the discrimination of different commercial beer types is presented. The array was formed by 21 ISEs combining both cationic and anionic sensors with others with generic response. For this purpose beer samples were analyzed with the ET without any pretreatment rather than the smooth agitation of the samples with a magnetic stirrer in order to reduce the foaming of samples, which could interfere into the measurements. Then, the obtained responses were evaluated using two different pattern recognition methods, principal component analysis (PCA), which allowed identifying some initial patterns, and linear discriminant analysis (LDA) in order to achieve the correct recognition of sample varieties (81.9% accuracy). In the case of LDA, a stepwise inclusion method for variable selection based on Mahalanobis distance criteria was used to select the most discriminating variables. In this respect, the results showed that the use of supervised pattern recognition methods such as LDA is a good alternative for the resolution of complex identification situations. In addition, in order to show an ET quantitative application, beer alcohol content was predicted from the array data employing an artificial neural network model (root mean square error for testing subset was 0.131 abv).

  17. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  18. Use of Sequential Injection Analysis to construct a Potentiometric Electronic Tongue: Application to the Multidetermination of Heavy Metals

    NASA Astrophysics Data System (ADS)

    Mimendia, Aitor; Legin, Andrey; Merkoçi, Arben; del Valle, Manel

    2009-05-01

    An automated potentiometric electronic tongue (ET) was developed for the quantitative determination of heavy metal mixtures. The Sequential Injection Analysis (SIA) technique was used in order to automate the obtaining of input data, and the combined response was modeled by means of Artificial Neural Networks (ANN). The sensor array was formed by four sensors: two based on chalcogenide glasses Cd sensor and Cu sensor, and the rest on poly(vinyl chloride) membranes Pb sensor and Zn sensor. The Ion Selective Electrode (ISE) sensors were first characterized with respect to one and two analytes, by means of high-dimensionality calibrations, thanks to the use of the automated flow system; this characterization enabled an interference study of great practical utility. To take profit of the dynamic nature of the sensor's response, the kinetic profile of each sensor was compacted by Fast Fourier Transform (FFT) and the extracted coefficients were used as inputs for the ANN in the multidetermination applications. In order to identify the ANN which provided the best model of the electrode responses, some of the network parameters were optimized. Finally analyses were performed employing synthetic samples and water samples of the river Ebro; obtained results were compared with reference methods.

  19. Use of Sequential Injection Analysis to construct a Potentiometric Electronic Tongue: Application to the Multidetermination of Heavy Metals

    SciTech Connect

    Mimendia, Aitor; Merkoci, Arben; Valle, Manel del; Legin, Andrey

    2009-05-23

    An automated potentiometric electronic tongue (ET) was developed for the quantitative determination of heavy metal mixtures. The Sequential Injection Analysis (SIA) technique was used in order to automate the obtaining of input data, and the combined response was modeled by means of Artificial Neural Networks (ANN). The sensor array was formed by four sensors: two based on chalcogenide glasses Cd sensor and Cu sensor, and the rest on poly(vinyl chloride) membranes Pb sensor and Zn sensor. The Ion Selective Electrode (ISE) sensors were first characterized with respect to one and two analytes, by means of high-dimensionality calibrations, thanks to the use of the automated flow system; this characterization enabled an interference study of great practical utility. To take profit of the dynamic nature of the sensor's response, the kinetic profile of each sensor was compacted by Fast Fourier Transform (FFT) and the extracted coefficients were used as inputs for the ANN in the multidetermination applications. In order to identify the ANN which provided the best model of the electrode responses, some of the network parameters were optimized. Finally analyses were performed employing synthetic samples and water samples of the river Ebro; obtained results were compared with reference methods.

  20. On the accuracy of acid-base determinations from potentiometric titrations using only a few points from the titration curve.

    PubMed

    Olin, A; Wallén, B

    1977-05-01

    There are several procedures which use only a few points on the titration curve for the calculation of equivalence volumes in acid-base titrations. The accuracy of such determinations will depend on the positions of the points on the titration curve. The effects of errors in the stability constants and in the pH measurements on the accuracy of the analysis have been considered, and the results are used to establish the conditions under which these errors are minimized.

  1. A Raspberry Pi-Based Attitude Sensor

    NASA Astrophysics Data System (ADS)

    Sreejith, A. G.; Mathew, Joice; Sarpotdar, Mayuresh; Mohan, Rekhesh; Nayak, Akshata; Safonova, Margarita; Murthy, Jayant

    We have developed a lightweight low-cost attitude sensor, based on a Raspberry Pi, built with readily available commercial components. It can be used in experiments where weight and power are constrained, such as in high-altitude lightweight balloon flights. This attitude sensor will be used as a major building block in a closed-loop control system with driver motors to stabilize and point cameras and telescopes for astronomical observations from a balloon-borne payload.

  2. Solid state potentiometric gaseous oxide sensor

    NASA Technical Reports Server (NTRS)

    Wachsman, Eric D. (Inventor); Azad, Abdul Majeed (Inventor)

    2003-01-01

    A solid state electrochemical cell (10a) for measuring the concentration of a component of a gas mixture (12) includes first semiconductor electrode (14) and second semiconductor electrode (16) formed from first and second semiconductor materials, respectively. The materials are selected so as to undergo a change in resistivity upon contacting a gas component, such as CO or NO. An electrolyte (18) is provided in contact with the first and second semiconductor electrodes. A reference cell can be included in contact with the electrolyte. Preferably, a voltage response of the first semiconductor electrode is opposite in slope direction to that of the second semiconductor electrode to produce a voltage response equal to the sum of the absolute values of the control system uses measured pollutant concentrations to direct adjustment of engine combustion conditions.

  3. A ferrofluid-based wireless pressure sensor

    NASA Astrophysics Data System (ADS)

    Chitnis, Girish; Ziaie, Babak

    2013-12-01

    This paper presents a wireless pressure sensor design based on magnetic fluid displacement over a planar coil and its corresponding inductance change. The design of the pressure sensor is presented followed by its fabrication and characterization. Experimental results show a good correlation with a nonlinear model relating the applied pressure to the change in coil self-resonant frequency. A prototype sensor (radius = 6 mm, thickness = 2 mm) based on the above principal using an oil-based ferrofluid (50 µl, ferrite concentration 2%), a polyimide-embedded planar coil (L = 1 µH), and a 25 µm thick polyimide membrane shows a sensitivity of 3 KHz mmHg-1 with a base-line resonant frequency of f0 = 109 MHz.

  4. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  5. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  6. An estimated potentiometric surface of the Death Valley region, Nevada and California, developed using geographic information system and automated interpolation techniques

    SciTech Connect

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1998-07-01

    An estimated potentiometric surface was constructed for the Death Valley region, Nevada and California, from numerous, disparate data sets. The potentiometric surface was required for conceptualization of the ground-water flow system and for construction of a numerical model to aid in the regional characterization for the Yucca Mountain repository. Because accurate, manual extrapolation of potentiometric levels over large distances is difficult, a geographic-information-system method was developed to incorporate available data and apply hydrogeologic rules during contour construction. Altitudes of lakes, springs, and wetlands, interpreted as areas where the potentiometric surface intercepts the land surface, were combined with water levels from well data. Because interpreted ground-water recharge and discharge areas commonly coincide with groundwater basin boundaries, these areas also were used to constrain a gridding algorithm and to appropriately place local maxima and minima in the potentiometric-surface map. The resulting initial potentiometric surface was examined to define areas where the algorithm incorrectly extrapolated the potentiometric surface above the land surface. A map of low-permeability rocks overlaid on the potentiometric surface also indicated areas that required editing based on hydrogeologic reasoning. An interactive editor was used to adjust generated contours to better represent the natural water table conditions, such as large hydraulic gradients and troughs, or ``vees``. The resulting estimated potentiometric-surface map agreed well with previously constructed maps. Potentiometric-surface characteristics including potentiometric-surface mounds and depressions, surface troughs, and large hydraulic gradients were described.

  7. Wearable tactile sensor based on flexible microfluidics.

    PubMed

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity. PMID:27438370

  8. Wearable tactile sensor based on flexible microfluidics.

    PubMed

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity.

  9. Pristine carbon nanotubes based resistive temperature sensor

    NASA Astrophysics Data System (ADS)

    Alam, Md Bayazeed; Saini, Sudhir Kumar; Sharma, Daya Shankar; Agarwal, Pankaj B.

    2016-04-01

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible method to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ˜ 0.29%/°C in the 25°C to 60°C temperature range.

  10. Map showing the potentiometric surface of the Aquia Aquifer, May 19-23, 1980

    USGS Publications Warehouse

    Chapelle, Frank; Drummond, Dave; Curley, Tracey

    1981-01-01

    The map is based on water level measurements made May 19-23, 1980. The well network used included 83 wells which have been screened in the Aquia aquifer (Aquia Formation of Paleocene Age). Highest levels of the potentiometric surface, 20 to 35 feet above sea level, were measured near the outcrop or subcrop of the aquifer in the topographically high areas of Anne Arundel and Prince Georges Counties. The potentiometric surface slopes to the southeast. Four separate and extensive cones of depression have developed in the potentiometric surface in the vicinities of Lexington Park, Leonardtown, Prince Frederick, and Chesapeake Beach. The cones of Leonardtown and Lexington Park seem to be merging. (USGS)

  11. Micromachined hydrocarbon-based gas sensors

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashok; George, Naveen; Cherukuri, J.

    1995-09-01

    We report the technology for the design and fabrication of bulk-micromachined hydrocarbon based gas sensors in standard two micron n-well CMOS process. The hydrocarbon based gas sensor is a palladium-oxide-polysilicon type MOS structure. The gas sensor is realized in three steps: the layout design in CMOS technology using VLSI CAD tools, post-processing on fabricated CMOS devices followed by the deposition of palladium. The design includes additional layer in CMOS called 'open' which enables the formation of a 'cavity' in the silicon substrate and results in a micromachined structure. After the fabrication of CMOS devices a single maskless etch in an aqueous solution of ethylenediamine-pyrocatechol or xenon difluoride is done to create a 'cavity' followed by gas in palladium changes the C-V characteristics of the MOS structure and is detected through an integrated readout CMOS electronics.

  12. A Risk-Based Sensor Placement Methodology

    SciTech Connect

    Lee, Ronald W; Kulesz, James J

    2008-01-01

    A risk-based sensor placement methodology is proposed to solve the problem of optimal location of sensors or detectors to protect population against the exposure to and effects of known and/or postulated chemical, biological, and/or radiological threats. Risk is calculated as a quantitative value representing population at risk from exposure against standard exposure levels. Historical meteorological data are used to characterize weather conditions as the frequency of wind speed and direction pairs. The meteorological data drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate risk values. Sensor locations are determined via an iterative dynamic programming algorithm whereby threats captured or detected by sensors placed in prior stages are removed from consideration in subsequent stages. In addition to the risk-based placement algorithm, the proposed methodology provides a quantification of the marginal utility of each additional sensor or detector. Thus, the criterion for halting the iterative process can be the number of detectors available, a threshold marginal utility value, or the cumulative detection of a minimum factor of the total risk value represented by all threats. The methodology quantifies the effect of threat reduction measures, such as reduced probability of one or more threats due to administrative and/or engineering controls.

  13. Potentiometric flow injection system for determination of reductants using a polymeric membrane permanganate ion-selective electrode based on current-controlled reagent delivery.

    PubMed

    Song, Wenjing; Ding, Jiawang; Liang, Rongning; Qin, Wei

    2011-10-17

    A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis.

  14. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.

    PubMed

    Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M

    2014-10-01

    Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils.

  15. Portable nanoparticle based sensors for antioxidant analysis.

    PubMed

    Sharpe, Erica; Andreescu, Silvana

    2015-01-01

    Interest in portable sensing devices has increased throughout the past decade. Portable sensors are convenient for use in remote locations and in places with limited resources for advanced instrumentation. Often such devices utilize advanced technology that allows the final user to simply deposit the sample onto the sensing platform without preparation of multiple reagents. Herein, we describe preparation and characterization of a colorimetric paper-based metal oxide sensing array designed for the field detection of polyphenolic antioxidants. This sensor is a good candidate for use in analysis of the antioxidant character of food, drink, botanical medicines, physiological fluids, and more. PMID:25323510

  16. Paper-Based Electrical Respiration Sensor.

    PubMed

    Güder, Firat; Ainla, Alar; Redston, Julia; Mosadegh, Bobak; Glavan, Ana; Martin, T J; Whitesides, George M

    2016-05-01

    Current methods of monitoring breathing require cumbersome, inconvenient, and often expensive devices; this requirement sets practical limitations on the frequency and duration of measurements. This article describes a paper-based moisture sensor that uses the hygroscopic character of paper (i.e. the ability of paper to adsorb water reversibly from the surrounding environment) to measure patterns and rate of respiration by converting the changes in humidity caused by cycles of inhalation and exhalation to electrical signals. The changing level of humidity that occurs in a cycle causes a corresponding change in the ionic conductivity of the sensor, which can be measured electrically. By combining the paper sensor with conventional electronics, data concerning respiration can be transmitted to a nearby smartphone or tablet computer for post-processing, and subsequently to a cloud server. This means of sensing provides a new, practical method of recording and analyzing patterns of breathing. PMID:27059088

  17. Electrochemical Sensors Based on Carbon Nanotubes

    PubMed Central

    Saleh Ahammad, A. J.; Lee, Jae-Joon; Rahman, Md. Aminur

    2009-01-01

    This review focuses on recent contributions in the development of the electrochemical sensors based on carbon nanotubes (CNTs). CNTs have unique mechanical and electronic properties, combined with chemical stability, and behave electrically as a metal or semiconductor, depending on their structure. For sensing applications, CNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used as electrodes modifier in electrochemical reactions, and easy protein immobilization with retention of its activity for potential biosensors. CNTs play an important role in the performance of electrochemical biosensors, immunosensors, and DNA biosensors. Various methods have been developed for the design of sensors using CNTs in recent years. Herein we summarize the applications of CNTs in the construction of electrochemical sensors and biosensors along with other nanomaterials and conducting polymers. PMID:22574013

  18. A novel approach for high precision rapid potentiometric titrations: application to hydrazine assay.

    PubMed

    Sahoo, P; Malathi, N; Ananthanarayanan, R; Praveen, K; Murali, N

    2011-11-01

    We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ~2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO(3) in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors.

  19. Electrospinning cellulose based nanofibers for sensor applications

    NASA Astrophysics Data System (ADS)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  20. Fiber based photonic-crystal acoustic sensor

    NASA Astrophysics Data System (ADS)

    Kilic, Onur

    -crystal reflector embedded in a compliant silicon diaphragm placed at the tip of a single-mode fiber. Measurements in air indicate that this sensor has a relatively uniform frequency response up to at least 50 kHz, which is at least one order of magnitude higher than existing all-fiber acoustic sensors. This sensor was also shown to be able to detect pressures as low as 18 muPa/Hz 1/2. This limit is four orders of magnitude lower than in similar types of acoustic fiber sensors that are based on a deflectable diaphragm at the fiber end. This significant improvement is to a large extent due to the higher reflectivity of the reflectors, which is itself due to the use of a photonic crystal. Through a modification in the design, such a sensor can also be used in water. In addition to the high compliance of the diaphragm, the advantage for using the photonic-crystal slab is that the holes provide a venting channel for pressure equalization. As a result, the hydrophone can be employed in deep-sea applications without suffering from the high static pressure. Measurements in water over the range of 10 kHz-50 kHz show that this hydrophone has a minimum detectable pressure of only 10 muPa/Hz1/2, close to the ambient thermal-noise level. A model was developed to show that after optimization to ocean acoustics, the sensor has a theoretical minimum detectable pressure that follows the minimum ambient noise spectrum of the ocean in the bandwidth of 1 Hz-100 kHz. This makes this sensor extremely broadband compared to commercial fiber hydrophones, which are bulky and poorly responsive to frequencies above a few hundred Hz, since they require a long length of fiber. By placing several such sensors with different acoustic power ranges within a single sensor chip, this hydrophone is capable of exhibiting a dynamic range in the excess of 200 dB (1010).

  1. Potentiometric Electronic Tongues for Foodstuff and Biosample Recognition—An Overview

    PubMed Central

    Ciosek, Patrycja; Wróblewski, Wojciech

    2011-01-01

    Potentiometric sensors are attractive tools for the fabrication of various electronic tongues that can be used in wide area of applications, ranging from foodstuff recognition to environmental monitoring and medical diagnostics. Their main advantages are the ability to modify their selectivity (including cross-sensitivity effects) and the possibility of miniaturization using appropriate construction methods for the transducer part (e.g., with the use of solid-state technology). In this overview various examples of the design, performance, and applications of potentiometric electronic tongues are presented. The results summarize recent research in the field conducted in the Department of Microbioanalytics, Warsaw University of Technology (WUT). PMID:22163870

  2. Sensor-based interior modeling

    SciTech Connect

    Herbert, M.; Hoffman, R.; Johnson, A.; Osborn, J.

    1995-02-01

    Robots and remote systems will play crucial roles in future decontamination and decommissioning (D&D) of nuclear facilities. Many of these facilities, such as uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities, are dormant; there is also an increasing number of commercial reactors whose useful lifetime is nearly over. To reduce worker exposure to radiation, occupational and other hazards associated with D&D tasks, robots will execute much of the work agenda. Traditional teleoperated systems rely on human understanding (based on information gathered by remote viewing cameras) of the work environment to safely control the remote equipment. However, removing the operator from the work site substantially reduces his efficiency and effectiveness. To approach the productivity of a human worker, tasks will be performed telerobotically, in which many aspects of task execution are delegated to robot controllers and other software. This paper describes a system that semi-automatically builds a virtual world for remote D&D operations by constructing 3-D models of a robot`s work environment. Planar and quadric surface representations of objects typically found in nuclear facilities are generated from laser rangefinder data with a minimum of human interaction. The surface representations are then incorporated into a task space model that can be viewed and analyzed by the operator, accessed by motion planning and robot safeguarding algorithms, and ultimately used by the operator to instruct the robot at a level much higher than teleoperation.

  3. ISFET-based sensor signal processor chip design for environment monitoring applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga

    2004-12-01

    In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.

  4. Design and Evaluation of Potentiometric Principles for Bladder Volume Monitoring: A Preliminary Study

    PubMed Central

    Chen, Shih-Ching; Hsieh, Tsung-Hsun; Fan, Wen-Jia; Lai, Chien-Hung; Chen, Chun-Lung; Wei, Wei-Feng; Peng, Chih-Wei

    2015-01-01

    Recent advances in microelectronics and wireless transmission technology have led to the development of various implantable sensors for real-time monitoring of bladder conditions. Although various sensing approaches for monitoring bladder conditions were reported, most such sensors have remained at the laboratory stage due to the existence of vital drawbacks. In the present study, we explored a new concept for monitoring the bladder capacity on the basis of potentiometric principles. A prototype of a potentiometer module was designed and fabricated and integrated with a commercial wireless transmission module and power unit. A series of in vitro pig bladder experiments was conducted to determine the best design parameters for implementing the prototype potentiometric device and to prove its feasibility. We successfully implemented the potentiometric module in a pig bladder model in vitro, and the error of the accuracy of bladder volume detection was <±3%. Although the proposed potentiometric device was built using a commercial wireless module, the design principles and animal experience gathered from this research can serve as a basis for developing new implantable bladder sensors in the future. PMID:26039421

  5. A magnetic cell-based sensor.

    PubMed

    Wang, Hua; Mahdavi, Alborz; Tirrell, David A; Hajimiri, Ali

    2012-11-01

    Cell-based sensing represents a new paradigm for performing direct and accurate detection of cell- or tissue-specific responses by incorporating living cells or tissues as an integral part of a sensor. Here we report a new magnetic cell-based sensing platform by combining magnetic sensors implemented in the complementary metal-oxide-semiconductor (CMOS) integrated microelectronics process with cardiac progenitor cells that are differentiated directly on-chip. We show that the pulsatile movements of on-chip cardiac progenitor cells can be monitored in a real-time manner. Our work provides a new low-cost approach to enable high-throughput screening systems as used in drug development and hand-held devices for point-of-care (PoC) biomedical diagnostic applications.

  6. Temperature Sensors Based on WGM Optical Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute; Itchenko, Vladimir; Matsko, Andrey; Strekalov, Dmitry

    2008-01-01

    A proposed technique for measuring temperature would exploit differences between the temperature dependences of the frequencies of two different electromagnetic modes of a whispering gallery-mode (WGM) optical resonator. An apparatus based on this technique was originally intended to be part of a control system for stabilizing a laser frequency in the face of temperature fluctuations. When suitably calibrated, apparatuses based on this technique could also serve as precise temperature sensors for purposes other than stabilization of lasers. A sensor according to the proposal would include (1) a transparent WGM dielectric resonator having at least two different sets of modes characterized by different thermo-optical constants and (2) optoelectronic instrumentation for measuring the difference between the temperature-dependent shifts of the resonance frequencies of the two sets of modes.

  7. Magnetocardiography with sensors based on giant magnetoresistance

    NASA Astrophysics Data System (ADS)

    Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.

    2011-04-01

    Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.

  8. Paper-Based Active Tactile Sensor Array.

    PubMed

    Zhong, Qize; Zhong, Junwen; Cheng, Xiaofeng; Yao, Xu; Wang, Bo; Li, Wenbo; Wu, Nan; Liu, Kang; Hu, Bin; Zhou, Jun

    2015-11-25

    A paper-based active tactile sensor -array (PATSA) with a dynamic sensitivity of 0.35 V N(-1) is demonstrated. The pixel position of the PATSA can be routed by analyzing the real-time recording voltages in the pressing process. The PATSA performance, which remains functional when removing partial areas, reveals that the device has a potential application to customized electronic skins. PMID:26450138

  9. Potentiometric map of the Cockfield Aquifer in Mississippi, fall 1984

    USGS Publications Warehouse

    Darden, Daphne

    1986-01-01

    This map, the second in a series for the Cockfield aquifer in Mississippi, follows a map that delineated the 1980 potentiometric surface of the aquifer. This water level map is based on water level measurements made in about 80 wells in the Cockfield aquifer in the fall of 1984. The contours show altitudes at which water levels would have stood in tightly cased unpumped wells in fall 1984. (Lantz-PTT)

  10. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability.

    PubMed

    Bandodkar, Amay J; Jeerapan, Itthipon; You, Jung-Min; Nuñez-Flores, Rogelio; Wang, Joseph

    2016-01-13

    We present the first example of an all-printed, inexpensive, highly stretchable CNT-based electrochemical sensor and biofuel cell array. The synergistic effect of utilizing specially tailored screen printable stretchable inks that combine the attractive electrical and mechanical properties of CNTs with the elastomeric properties of polyurethane as a binder along with a judiciously designed free-standing serpentine pattern enables the printed device to possess two degrees of stretchability. Owing to these synergistic design and nanomaterial-based ink effects, the device withstands extremely large levels of strains (up to 500% strain) with negligible effect on its structural integrity and performance. This represents the highest stretchability offered by a printed device reported to date. Extensive electrochemical characterization of the printed device reveal that repeated stretching, torsional twisting, and indenting stress has negligible impact on its electrochemical properties. The wide-range applicability of this platform to realize highly stretchable CNT-based electrochemical sensors and biofuel cells has been demonstrated by fabricating and characterizing potentiometric ammonium sensor, amperometric enzyme-based glucose sensor, enzymatic glucose biofuel cell, and self-powered biosensor. Highly stretchable printable multianalyte sensor, multifuel biofuel cell, or any combination thereof can thus be realized using the printed CNT array. Such combination of intrinsically stretchable printed nanomaterial-based electrodes and strain-enduring design patterns holds considerable promise for creating an attractive class of inexpensive multifunctional, highly stretchable printed devices that satisfy the requirements of diverse healthcare and energy fields wherein resilience toward extreme mechanical deformations is mandatory. PMID:26694819

  11. Neural network based analysis for chemical sensor arrays

    SciTech Connect

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-04-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. In this paper, we examine the effectiveness of using artificial neural networks for real-time data analysis of a sensor array. Analyzing the sensor data in parallel may allow for rapid identification of contaminants in the field without requiring highly selective individual sensors. We use a prototype sensor array which consists of nine tin-oxide Taguchi-type sensors, a temperature sensor, and a humidity sensor. We illustrate that by using neural network based analysis of the sensor data, the selectivity of the sensor array may be significantly improved, especially when some (or all) the sensors are not highly selective.

  12. Organic thin films based sensor applications

    NASA Astrophysics Data System (ADS)

    Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2006-03-01

    Organic semiconductors, such as pentacene, are particularly interesting because of its potential for various applications including thin film transistors (TFTs), electronic papers, radio frequency identification cards (RFIDs), and sensors. In this paper, we review recent progress in organic electronics with emphasis on their applications for sensing devices, and investigate the morphologies of pentacene films deposited on SiO II and Si surfaces at different substrate temperatures. Scanning electron microcopy (SEM) micrographs from a nominally 50nm-thick pentacene film on SiO II indicate that the grain sizes of pentacene film increase with an increase in substrate temperature. In addition, the grain size on clean silicon grown at a substrate temperature of 100 degrees C is markedly larger that on SiO II, ranging 10~20μm. Based on this morphological investigation on pentacene films, various types of organic sensors and devices with conjunction with interdigitated, gated and ungated structures are presented.

  13. Carbon Nanotube-Based Chemical Sensors.

    PubMed

    Meyyappan, M

    2016-04-27

    The need to sense gases and vapors arises in numerous scenarios in industrial, environmental, security and medical applications. Traditionally, this activity has utilized bulky instruments to obtain both qualitative and quantitative information on the constituents of the gas mixture. It is ideal to use sensors for this purpose since they are smaller in size and less expensive; however, their performance in the field must match that of established analytical instruments in order to gain acceptance. In this regard, nanomaterials as sensing media offer advantages in sensitivity, preparation of chip-based sensors and construction of electronic nose for selective detection of analytes of interest. This article provides a review of the use of carbon nanotubes in gas and vapor sensing. PMID:26959284

  14. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    PubMed Central

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  15. Gait recognition based on Kinect sensor

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed; Al-Jawad, Naseer; Sabir, Azhin T.

    2014-05-01

    This paper presents gait recognition based on human skeleton and trajectory of joint points captured by Microsoft Kinect sensor. In this paper Two sets of dynamic features are extracted during one gait cycle: the first is Horizontal Distance Features (HDF) that is based on the distances between (Ankles, knees, hands, shoulders), the second set is the Vertical Distance Features (VDF) that provide significant information of human gait extracted from the height to the ground of (hand, shoulder, and ankles) during one gait cycle. Extracting these two sets of feature are difficult and not accurate based on using traditional camera, therefore the Kinect sensor is used in this paper to determine the precise measurements. The two sets of feature are separately tested and then fused to create one feature vector. A database has been created in house to perform our experiments. This database consists of sixteen males and four females. For each individual, 10 videos have been recorded, each record includes in average two gait cycles. The Kinect sensor is used here to extract all the skeleton points, and these points are used to build up the feature vectors mentioned above. K-nearest neighbor is used as the classification method based on Cityblock distance function. Based on the experimental result the proposed method provides 56% as a recognition rate using HDF, while VDF provided 83.5% recognition accuracy. When fusing both of the HDF and VDF as one feature vector, the recognition rate increased to 92%, the experimental result shows that our method provides significant result compared to the existence methods.

  16. Theoretical study of the acid-base properties of the montmorillonite/electrolyte interface: influence of the surface heterogeneity and ionic strength on the potentiometric titration curves.

    PubMed

    Zarzycki, Piotr; Thomas, Fabien

    2006-10-15

    The parallel shape of the potentiometric titration curves for montmorillonite suspension is explained using the surface complexation model and taking into account the surface heterogeneity. The homogeneous models give accurate predictions only if they assume unphysically large values of the equilibrium constants for the exchange process occurring on the basal plane. However, the assumption that the basal plane is energetically heterogeneous allows to fit the experimental data (reported by Avena and De Pauli [M. Avena, C.P. De Pauli, J. Colloid Interface Sci. 202 (1998) 195-204]) for reasonable values of exchange equilibrium constant equal to 1.26 (suggested by Fletcher and Sposito [P. Fletcher, G. Sposito, Clay Miner. 24 (1989) 375-391]). Moreover, we observed the typical behavior of point of zero net proton charge (pznpc) as a function of logarithm of the electrolyte concentration (log[C]). We showed that the slope of the linear dependence, pznpc=f(log[C]), is proportional to the number of isomorphic substitutions in the crystal phase, which was also observed in the experimental studies.

  17. Biomimetic, polymer-based microcantilever infrared sensors

    NASA Astrophysics Data System (ADS)

    Mueller, Michael Thomas

    This dissertation describes the initial development of a polymer-based, microcantilever infrared sensor. The development of the sensor is bio-inspired and based upon the long-range infrared sensor found in the pyrophilous jewel beetle Melanophila acuminata, which is able to seek out forest fires from more than 50 km away. Based on several proposed models of the infrared detector found in Melanophila acuminata, as well as published in vivo experiments, the feasibility of polymer-based infrared thermal sensors was explored and developed. Polymer materials were chosen due to their high absorptivity in the infrared range due to vibrational resonance modes characteristic of their organic bonds. Polymeric materials investigated in the course of this work include the polysaccharide and biomaterial chitin, its deacetylated derivative, chitosan, and the work-horse polymer of the semiconductor industry, novolak-resin-based photoresist. Chitin and chitosan are particularly noteworthy polymers for exploration in infrared detection due to their natural absorbance of infrared radiation near the 3 mum and 10 mum bands, which are important for the detection of the temperatures of warm engines and human body temperature, respectively. Because only limited work (primarily focused on electrodeposition) has been focused on the microscale patterning of chitosan, a photolithography process for chitosan and chitin was developed to allow the integration of the material into a variety of microelectromechanical systems processes. In addition to optical/infrared sensing, this process has a variety of potential applications in tissue engineering, protein engineering, and lab-on-a-chip devices. To demonstrate these areas of use, surface functionalization was demonstrated using bioconjugation to attach a protein to a patterned chitosan surface. Thin films of chitosan and chitin were characterized using laser profilometry to identify the effect of temperature on the film stress, and contact

  18. A Large Area Tactile Sensor Patch Based on Commercial Force Sensors

    PubMed Central

    Vidal-Verdú, Fernando; Barquero, Maria Jose; Castellanos-Ramos, Julián; Navas-González, Rafael; Sánchez, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2011-01-01

    This paper reports the design of a tactile sensor patch to cover large areas of robots and machines that interact with human beings. Many devices have been proposed to meet such a demand. These realizations are mostly custom-built or developed in the lab. The sensor of this paper is implemented with commercial force sensors. This has the benefit of a more foreseeable response of the sensor if its behavior is understood as the aggregation of readings from all the individual force sensors in the array. A few reported large area tactile sensors are also based on commercial sensors. However, the one in this paper is the first of this kind based on the use of polymeric commercial force sensing resistors (FSR) as unit elements of the array or tactels, which results in a robust sensor. The paper discusses design issues related to some necessary modifications of the force sensor, its assembly in an array, and the signal conditioning. The patch has 16 × 9 force sensors mounted on a flexible printed circuit board with a spatial resolution of 18.5 mm. The force range of a tactel is 6 N and its sensitivity is 0.6 V/N. The array is read at a rate of 78 frames per second. Finally, two simple application examples are also carried out with the sensor mounted on the forearm of a rescue robot that communicates with the sensor through a CAN bus. PMID:22163910

  19. Research of marine sensor web based on SOA and EDA

    NASA Astrophysics Data System (ADS)

    Jiang, Yongguo; Dou, Jinfeng; Guo, Zhongwen; Hu, Keyong

    2015-04-01

    A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean `instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.

  20. Potentiometric Surface of the Ozark Aquifer in Northern Arkansas, 2007

    USGS Publications Warehouse

    Pugh, Aaron L.

    2008-01-01

    The Ozark aquifer in northern Arkansas is composed of dolomite, limestone, sandstone, and shale of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 58 well and 5 spring water-level measurements collected in 2007 in Arkansas and Missouri, has a maximum water-level altitude measurement of 1,169 feet in Carroll County and a minimum water-level altitude measurement of 118 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the west, northwest, and north in the western part of the study area. Comparing the 2007 potentiometric-surface map with a predevelopment potentiometric-surface map indicates general agreement between the two surfaces except in the northwestern part of the study area. Potentiometric-surface differences can be attributed to withdrawals related to increasing population, changes in public-supply sources, processes or water withdrawals outside the study area, or differences in data-collection or map-construction methods. The rapidly increasing population within the study area appears to have some effect on ground-water levels. Although, the effect appears to have been minimized by the development and use of surface-water distribution infrastructure, suggesting most of the incoming populations are fulfilling their water needs from surface-water sources. The conversion of some users from ground water to surface water may be allowing water levels in wells to recover (rise) or decline at a slower rate, such as in Benton, Carroll, and Washington Counties.

  1. Potentiometric surface of the Ozark Aquifer in northern Arkansas, 1995

    USGS Publications Warehouse

    Pugh, Aaron L.

    1998-01-01

    The Ozark aquifer in northern Arkansas is comprised of dolostones, limestones, sandstones, and shales of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and diffuse flow components with large spatial variations in porosity and permeability. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the northwest and north in the western part of the study area. Within Arkansas, the potentiometric-surface map based on October- December 1995 data indicates maximum water-level altitudes of greater than 1,300 feet in Boone, Carroll, and Madison Counties and minimum water-level altitudes of less than 400 feet in Independence, Izard, Lawrence, Randolph, Sharp, and Stone Counties. Comparing the 1995 potentiometric-surface map with a predevelopment potentiometric- surface map (Imes, 199), indicates general agreement between the two surfaces except in parts of Benton and Sharp Counties. Water-level differences could be attributed to differences in the time of year in which the water-level data were collected, differences in pumping conditions just prior to water-level measurement, differences in interpretation resulting (in part) from greater number of water-level measurements used for this report than for Imes (1990), or erroneous water-level data.

  2. Waveguide-based optical chemical sensor

    DOEpatents

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  3. Nanotechnology-based Sensors for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Mickelson, Willi

    2010-03-01

    COINS mission is to inspire and realize applications directed towards sensing of environmental conditions using nano-mechanical technology, integrated with suitable societal implications studies and educational, outreach, and knowledge transfer programs. Specifically, the technical focus of COINS is to develop the means for realizing its two major technology applications -- personal and community-based environmental monitoring (PACMON) and tagging tracking and locating (TTL). These platforms combine technologies of molecular recognition and signal transduction, energy harvesting and conversion, efficient signal processing and wireless communications, and mobility. In this talk, I will give an overview of some of the recent advances in our environmental monitoring sensor development.

  4. Sensor Saturation Compensated Smoothing Algorithm for Inertial Sensor Based Motion Tracking

    PubMed Central

    Dang, Quoc Khanh; Suh, Young Soo

    2014-01-01

    In this paper, a smoothing algorithm for compensating inertial sensor saturation is proposed. The sensor saturation happens when a sensor measures a value that is larger than its dynamic range. This can lead to a considerable accumulated error. To compensate the lost information in saturated sensor data, we propose a smoothing algorithm in which the saturation compensation is formulated as an optimization problem. Based on a standard smoothing algorithm with zero velocity intervals, two saturation estimation methods were proposed. Simulation and experiments prove that the proposed methods are effective in compensating the sensor saturation. PMID:24806740

  5. Protein Detection with Potentiometric Aptasensors: A Comparative Study between Polyaniline and Single-Walled Carbon Nanotubes Transducers

    PubMed Central

    Imran, Hassan; Levon, Kalle; Rius, F. Xavier

    2013-01-01

    A comparison study on the performance characteristics and surface characterization of two different solid-contact selective potentiometric thrombin aptasensors, one exploiting a network of single-walled carbon nanotubes (SWCNTs) and the other the polyaniline (PANI), both acting as a transducing element, is described in this work. The molecular properties of both SWCNT and PANI surfaces have been modified by covalently linking thrombin binding aptamers as biorecognition elements. The two aptasensors are compared and characterized through potentiometry and electrochemical impedance spectroscopy (EIS) based on the voltammetric response of multiply charged transition metal cations (such as hexaammineruthenium, [Ru(NH3)6]3+) bound electrostatically to the DNA probes. The surface densities of aptamers were accurately determined by the integration of the peak for the reduction of [Ru(NH3)6]3+ to [Ru(NH3)6]2+. The differences and the similarities, as well as the transduction mechanism, are also discussed. The sensitivity is calculated as 2.97 mV/decade and 8.03 mV/decade for the PANI and SWCNTs aptasensors, respectively. These results are in accordance with the higher surface density of the aptamers in the SWCNT potentiometric sensor. PMID:23533345

  6. Wave front sensor based on holographic optical elements

    NASA Astrophysics Data System (ADS)

    Kovalev, M. S.; Krasin, G. K.; Malinina, P. I.; Odinokov, S. B.; Sagatelyan, H. R.

    2016-08-01

    A wavefront sensor (WFS) based on holographic optical elements, namely computer generated Fourier holograms is proposed as a perspective alternative to the Shack-Hartmann sensor. A possibility of single and multimode sensor and the dependence of their characteristics were investigated.

  7. Thermal energy harvesting plasmonic based chemical sensors.

    PubMed

    Karker, Nicholas; Dharmalingam, Gnanaprakash; Carpenter, Michael A

    2014-10-28

    Detection of gases such as H2, CO, and NO2 at 500 °C or greater requires materials with thermal stability and reliability. One of the major barriers toward integration of plasmonic-based chemical sensors is the requirement of multiple components such as light sources and spectrometers. In this work, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis offers a novel path toward simplification and integration of plasmonic-based sensing methods. PMID:25280004

  8. UV sensors based on liquid crystals mixtures

    NASA Astrophysics Data System (ADS)

    Chanishvili, Andro; Petriashvili, Gia; Chilaya, Guram; Barberi, Riccardo; De Santo, Maria P.; Matranga, Mario A.; Ciuchi, F.

    2006-04-01

    The Erythemal Response Spectrum is a scientific expression that describes the sensitivity of the skin to the ultraviolet radiation. The skin sensitivity strongly depends on the UV wavelength: a long exposition to UV radiation causes erythema once a threshold dose has been exceeded. In the past years several devices have been developed in order to monitor the UV exposure, most of them are based on inorganic materials that are able to mimic the human skin behaviour under UV radiation. We present a new device based on liquid crystals technology. The sensor is based on a liquid crystalline mixture that absorbs photons at UV wavelength and emits them at a longer one. This system presents several innovative features: the absorption range of the mixture can be varied to be sensitive to different wavelengths, the luminescence intensity can be tuned, the system can be implemented on flexible devices.

  9. All-plastic fiber-based pressure sensor.

    PubMed

    Bundalo, Ivan-Lazar; Lwin, Richard; Leon-Saval, Sergio; Argyros, Alexander

    2016-02-01

    We present a feasibility study and a prototype of an all-plastic fiber-based pressure sensor. The sensor is based on long period gratings inscribed for the first time to the best of our knowledge by a CO2 laser in polymethyl methacrylate (PMMA) microstructured fibers and coupled to a pod-like transducer that converts pressure to strain. The sensor prototype was characterized for pressures up to 150 mbars, and various parameters related to its construction were also characterized in order to enhance sensitivity. We consider this sensor in the context of future applications in endoscopic pressure sensors. PMID:26836084

  10. All-plastic fiber-based pressure sensor.

    PubMed

    Bundalo, Ivan-Lazar; Lwin, Richard; Leon-Saval, Sergio; Argyros, Alexander

    2016-02-01

    We present a feasibility study and a prototype of an all-plastic fiber-based pressure sensor. The sensor is based on long period gratings inscribed for the first time to the best of our knowledge by a CO2 laser in polymethyl methacrylate (PMMA) microstructured fibers and coupled to a pod-like transducer that converts pressure to strain. The sensor prototype was characterized for pressures up to 150 mbars, and various parameters related to its construction were also characterized in order to enhance sensitivity. We consider this sensor in the context of future applications in endoscopic pressure sensors.

  11. Potentiometric surface of the Upper Floridan aquifer in the Suwannee River Water Management District, Florida, May 2005

    USGS Publications Warehouse

    Verdi, Richard Jay; Sepulveda, A. Alejandro

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the Suwannee River Water Management District (SRWMD) during May 2005. Potentiometric contours are based on water-level measurements taken at more than 400 observation wells during the period of May 1-31, 2005. A potentiometric surface is defined as an areal representation of the levels to which water would rise in tightly cased wells open to an aquifer (Fetter, 1988). Since these water-level measurements from the Upper Floridan aquifer were taken over a 31-day period, they do not represent a 'snapshot' of the conditions at a specific date and time.

  12. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada; Water-resources investigations report 93-4000

    SciTech Connect

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-05-01

    This report presents a revised potentiometric-surface map based mainly on the 1988 average water levels at Yucca Mountain and the nearby vicinity extending from Crater Flat to Jackass Flats. Discussion includes an explanation of the revised potentiometric-surface map, an examination of yearly trends in the water levels, and adjustments for temperature and density effects in the deeper wells. Report scope focuses on the potentiometric surface of the uppermost saturated zone in the Tertiary volcanic rocks at Yucca Mountain. Some information, related to the underlying Paleozoic carbonate aquifer, pertinent to the volcanic flow system, is presented.

  13. Gas Sensors Based on Conducting Polymers

    PubMed Central

    Bai, Hua; Shi, Gaoquan

    2007-01-01

    The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

  14. Sensors Based on Spectroscopy of Guided Waves

    NASA Astrophysics Data System (ADS)

    Homola, Jiří

    The last two decades have witnessed remarkable progress in the develpment of affinity biosensors and their applications in areas such as environmental protection, biotechnology, medical diagnostics, drug screening, food safety, and security. An affinity biosensor consists of a transducer and a biological recognition element which is able to interact with a selected analyte. Various optical methods have been exploited in biosensors including fluorescence spectroscopy, interferometry (reflectometric white light interferometry, modal interferometry in optical waveguide structures), and spectroscopy of guided modes of optical waveguides. Optical biosensors based on spectroscopy of guided modes of optical waveguides - grating coupler, resonant mirror, and surface plasmon resonance (SPR) - rely on the measurement of binding-induced refractive index changes and thus are label-free technologies. This paper reviews fundamentals of optical sensors based on spectroscopy of guided modes of optical waveguides and their applications.

  15. Sensors and actuators based on SOI materials

    NASA Astrophysics Data System (ADS)

    Sanz-Velasco, Anke; Nafari, Alexandra; Rödjegård, Henrik; Bring, Martin; Hedsten, Karin; Enoksson, Peter; Bengtsson, Stefan

    2006-05-01

    Examples of using SOI materials for formation of novel sensor and actuator structures at Chalmers University of Technology are given. Using SOI material gives advantages in formation of sensor and actuator structures, such as a nanoindentation force sensor, a three-axis accelerometer, a miniaturized pinball game and integration of diffractive optical elements onto silicon.

  16. Determination of urine ionic composition with potentiometric multisensor system.

    PubMed

    Yaroshenko, Irina; Kirsanov, Dmitry; Kartsova, Lyudmila; Sidorova, Alla; Borisova, Irina; Legin, Andrey

    2015-01-01

    The ionic composition of urine is a good indicator of patient's general condition and allows for diagnostics of certain medical problems such as e.g., urolithiasis. Due to environmental factors and malnutrition the number of registered urinary tract cases continuously increases. Most of the methods currently used for urine analysis are expensive, quite laborious and require skilled personnel. The present work deals with feasibility study of potentiometric multisensor system of 18 ion-selective and cross-sensitive sensors as an analytical tool for determination of urine ionic composition. In total 136 samples from patients of Urolithiasis Laboratory and healthy people were analyzed by the multisensor system as well as by capillary electrophoresis as a reference method. Various chemometric approaches were implemented to relate the data from electrochemical measurements with the reference data. Logistic regression (LR) was applied for classification of samples into healthy and unhealthy producing reasonable misclassification rates. Projection on Latent Structures (PLS) regression was applied for quantitative analysis of ionic composition from potentiometric data. Mean relative errors of simultaneous prediction of sodium, potassium, ammonium, calcium, magnesium, chloride, sulfate, phosphate, urate and creatinine from multisensor system response were in the range 3-13% for independent test sets. This shows a good promise for development of a fast and inexpensive alternative method for urine analysis. PMID:25281140

  17. Single conducting polymer nanowire based conductometric sensors

    NASA Astrophysics Data System (ADS)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against

  18. Resistive Oxygen Gas Sensors for Harsh Environments

    PubMed Central

    Moos, Ralf; Izu, Noriya; Rettig, Frank; Reiß, Sebastian; Shin, Woosuck; Matsubara, Ichiro

    2011-01-01

    Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development of these sensor materials. It focuses especially on approaches to obtain a temperature independent behavior. It is shown that although in the past 40 years there have always been several research groups working concurrently with resistive oxygen sensors, novel ideas continue to emerge today with respect to improvements of the sensor response time, the temperature dependence, the long-term stability or the manufacture of the devices themselves using novel techniques for the sensitive films. Materials that are the focus of this review are metal oxides; especially titania, titanates, and ceria-based formulations. PMID:22163805

  19. A New Electrochemical Sensor Based on Task-Specific Ionic Liquids-Modified Palm Shell Activated Carbon for the Determination of Mercury in Water Samples

    PubMed Central

    Ismaiel, Ahmed Abu; Aroua, Mohamed Kheireddine; Yusoff, Rozita

    2014-01-01

    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10−9 to 1.0 × 10−2 M, with a detection limit of 1 × 10−10 M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (∼5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3–9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species. PMID:25051034

  20. Development of a dipodal Schiff base ligand with N-imine and O-naphtholate donors: A potential chelator towards Cu(II) metal ion established through potentiometric and spectrophotometric studies

    NASA Astrophysics Data System (ADS)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2015-08-01

    A novel hydroxynaphthaldehyde derived Schiff base ligand N,N'-bis-[2-[(2-hydroxy-1-naphthyl)methyleneamino]ethyl]propanediamide (DOTA2HNAP) containing nitrogen and oxygen donor atoms has been developed. The lowest energy molecular structure of DOTA2HNAP and its complexes with Cu (II) metal ion were examined by molecular mechanics using MM+ force which later was re-optimized by semi-empirical method. The theoretical IR and UV spectra of the ligand were obtained using semi empirical/ZINDO/PM3 and were compared with the experimental ones. The coordinating ability of DOTA2HNAP with H+ and Cu(II) ions was investigated in 1:99 (DMSO: water) binary solvent mixture at 25±1°C by potentiometric and spectrophotometric method. The electronic spectra of the ligand show three distinct peaks (253nm, 320nm and 360nm) implicating existence of the Schiff base in quinone form that was well supported by theoretical spectral studies. Out of various complex species forming in solution, all the metal ions show higher stability of complexes when in 1:1 metal-ligand stoichiometry, binding through two N-imine and two O-naphtholate groups.

  1. Development of a dipodal Schiff base ligand with N-imine and O-naphtholate donors: A potential chelator towards Cu(II) metal ion established through potentiometric and spectrophotometric studies

    SciTech Connect

    Baral, Minati Gupta, Amit; Kanungo, B. K.

    2015-08-28

    A novel hydroxynaphthaldehyde derived Schiff base ligand N,N’-bis-[2-[(2-hydroxy-1-naphthyl)methyleneamino]ethyl]propanediamide (DOTA2HNAP) containing nitrogen and oxygen donor atoms has been developed. The lowest energy molecular structure of DOTA2HNAP and its complexes with Cu (II) metal ion were examined by molecular mechanics using MM+ force which later was re-optimized by semi-empirical method. The theoretical IR and UV spectra of the ligand were obtained using semi empirical/ZINDO/PM3 and were compared with the experimental ones. The coordinating ability of DOTA2HNAP with H{sup +} and Cu(II) ions was investigated in 1:99 (DMSO: water) binary solvent mixture at 25±1°C by potentiometric and spectrophotometric method. The electronic spectra of the ligand show three distinct peaks (253nm, 320nm and 360nm) implicating existence of the Schiff base in quinone form that was well supported by theoretical spectral studies. Out of various complex species forming in solution, all the metal ions show higher stability of complexes when in 1:1 metal-ligand stoichiometry, binding through two N-imine and two O-naphtholate groups.

  2. Physiological Sensor Signals Classification for Healthcare Using Sensor Data Fusion and Case-Based Reasoning

    PubMed Central

    Begum, Shahina; Barua, Shaibal; Ahmed, Mobyen Uddin

    2014-01-01

    Today, clinicians often do diagnosis and classification of diseases based on information collected from several physiological sensor signals. However, sensor signal could easily be vulnerable to uncertain noises or interferences and due to large individual variations sensitivity to different physiological sensors could also vary. Therefore, multiple sensor signal fusion is valuable to provide more robust and reliable decision. This paper demonstrates a physiological sensor signal classification approach using sensor signal fusion and case-based reasoning. The proposed approach has been evaluated to classify Stressed or Relaxed individuals using sensor data fusion. Physiological sensor signals i.e., Heart Rate (HR), Finger Temperature (FT), Respiration Rate (RR), Carbon dioxide (CO2) and Oxygen Saturation (SpO2) are collected during the data collection phase. Here, sensor fusion has been done in two different ways: (i) decision-level fusion using features extracted through traditional approaches; and (ii) data-level fusion using features extracted by means of Multivariate Multiscale Entropy (MMSE). Case-Based Reasoning (CBR) is applied for the classification of the signals. The experimental result shows that the proposed system could classify Stressed or Relaxed individual 87.5% accurately compare to an expert in the domain. So, it shows promising result in the psychophysiological domain and could be possible to adapt this approach to other relevant healthcare systems. PMID:24995374

  3. Optical Sensors Based on Plastic Fibers

    PubMed Central

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  4. Carbon-Nanotube-Based Chemical Gas Sensor

    NASA Technical Reports Server (NTRS)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  5. Electroanalytical studies on Cu (II) ion-selective sensor of coated pyrolytic graphite electrodes based on N2S2O2 and N2S2O3 heterocyclic benzothiazol ligands.

    PubMed

    Singh, A K; Sahani, Manoj Kumar; Bandi, Koteswara Rao; Jain, A K

    2014-08-01

    Benzothiazol based chelating ionophores such as 1,3-bis[2-(1,3-benzothiazol-2-yl)-phenoxy]propane (L1) and 1,2'-bis[2-(1,3-benzothiazol-2-yl)-phenoxy]2-ethoxyethane(L2) were synthesized and explored as neutral ionophores in the fabrication of Cu(2+) ion-selective electrodes. Variety of PVC-based electrodes i.e., polymeric membrane electrodes (PME), coated graphite electrodes (CGE) and coated pyrolytic graphite electrodes (CPGE) were prepared. The membranes having composition L1:PVC:1-CN:NaTPB≡5:38:55:2 (w/w; mg) and L2:PVC:1-CN:NaTPB in the ratio of 6:39:53:2 are found to be exhibit the best potentiometric characteristics. The comparative studies of PME, CGE and CPGE based on L2 reveals that the CPGE is superior in terms of low detection limit of 6.30×10(-9) mol L(-1) with a Nernstian slope of 29.5 mV decade(-1) of activity between pH2.0 to 8.5 with a fast response time of 9s and could be used over a period of 5 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for the estimation of Cu(2+) ion in real samples viz., water, soil and herbal medicinal plants and besides this, the sensor was also used as an indicator electrode in the potentiometric determination of Cu(2+) with EDTA.

  6. Vehicle Fault Diagnose Based on Smart Sensor

    NASA Astrophysics Data System (ADS)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  7. Sensor-based demand controlled ventilation

    SciTech Connect

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  8. Protein Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Ksendzov, Alexander

    2006-01-01

    Prototype transducers based on integrated optical ring resonators have been demonstrated to be useful for detecting the protein avidin in extremely dilute solutions. In an experiment, one of the transducers proved to be capable of indicating the presence of avidin at a concentration of as little as 300 pM in a buffer solution a detection sensitivity comparable to that achievable by previously reported protein-detection techniques. These transducers are serving as models for the further development of integrated-optics sensors for detecting small quantities of other proteins and protein-like substances. The basic principle of these transducers was described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. The differences between the present transducers and the ones described in the cited prior article lie in details of implementation of the basic principle. As before, the resonator in a transducer of the present type is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, consists of a layer comprising sublayers having indices of refraction lower than that of the waveguide core. The outermost sublayer absorbs the chemical of interest (in this case, avidin). The index of refraction of the outermost sublayer changes with the concentration of absorbed avidin. The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer sublayer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in the index of refraction of the outermost sublayer causes a measurable change in the spectrum of the resonator output.

  9. Detection of Salmonella typhimurium using phage-based magnetostrictive sensor

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Ramji S.; Hu, Jing; Guntupalli, Rajesh; Wan, Jiehui; Huang, Shichu; Yang, Hong; Petrenko, Valery A.; Barbaree, James M.; Chin, Bryan A.

    2006-05-01

    This article presents a contactless, remote sensing Salmonella typhimurium sensor based on the principle of magnetostriction. Magnetostrictive materials have been used widely for various types of sensor systems. In this work, the use of a magnetostrictive material for the detection of Salmonella typhimurium has been established. The mass of the bacteria attached to the sensor causes changes in the resonance frequency of the sensor. Filamentous bacteriophage was used as a probe order to ensure specific and selective binding of the bacteria onto the sensor surface. Thus changes in response of the sensor due to the mass added onto the sensor caused by specific attachment of bacteria can be monitored in absence of any contact to the sensor. The response of the sensor due to increasing concentrations (from 5x101 to 5x10 8 cfu/ml) of the bacteria was studied. A reduction in the physical dimensions enhances the sensitivity of these sensors and hence different dimensions of the sensor ribbons were studied. For a 2mm x 0.1mm x 0.02mm the detection limit was observed to be of the order of 10 4 cfu/mL and for a sensor of 1mm x 0.2mm x 0.02mm a reduced detection limit of 10 3 cfu/mL was achieved.

  10. Voltammetry as a virtual potentiometric sensor in modelling of a metal-ligand system and refinement of stability constants. Part 4. An electrochemical study of NiII complexes with methylene diphosphonic acid.

    PubMed

    Cukrowski, Ignacy; Mogano, Daniel M; Zeevaart, Jan Rijn

    2005-12-01

    The Ni(II)-MDP-OH system (MDP=methylene diphosphonic acid) and stability constants of complexes formed at ionic strength 0.15M at 298K were established by direct current polarography (DCP) and glass electrode potentiometry (GEP). The final M-L-OH model could only be arrived to by employing recent concept of virtual potentiometry (VP). VP-data were generated from non-equilibrium and dynamic DC polarographic technique. The VP and GEP data were refined simultaneously by software dedicated to potentiometric studies of metal complexes. Species distribution diagrams that were generated for different experimental conditions employed in this work assisted in making the final choice regarding the metal-ligand model. The model established contains ML, ML(2), ML(OH) and ML(OH)(2) with stability constants, as logbeta, 7.94+/-0.02, 13.75+/-0.02, 12.04 (fixed value), and 16.75+/-0.05, respectively. It has been demonstrated that virtual potential must be used in modelling operations (predictions of species formed) when a polarographic signal decreases significantly due to the formation of polarographically inactive species (or formation of inert complexes). The linear free energy relationships that included stability constant logK(1) for Ni(II)-MDP established in this work together with other available data were used to predict logK(1) values for Sm(III) and Ho(III) with MDP. The logK(1) values for Sm(III)-MDP and Ho(III)-MDP were estimated to be 9.65+/-0.10 and 9.85+/-0.10, respectively. PMID:16213588

  11. The use of graphite electrodes in potentiometric titrations

    SciTech Connect

    Selig, W.S.

    1987-04-01

    The use of various types of graphite as indicator electrodes in potentiometry has been limited to acid-base and redox titrations. We have expanded the range of feasible titrations to: (1) precipitation titrations; (2) acid-base titrations; (3) compleximetric titrations; and (4) redox titrations. Graphite covered with an organic membrane containing poly(vinyl chloride) (PVC) and a plasticizer is particularly useful in monitoring the endpoints of titrations in which insoluble ion-pairs are formed. The potentiometric titration of fluoride vs La(III) or Th(IV), or of sulfate vs Pb (II) or Ba(II), which can be monitored with a plain carbon rod, is discussed.

  12. Ultra-Sensitivity Glucose Sensor Based on Field Emitters

    PubMed Central

    2009-01-01

    A new glucose sensor based on field emitter of ZnO nanorod arrays (ZNA) was fabricated. This new type of ZNA field emitter-based sensor shows high sensitivity with experimental limit of detection of 1 nM glucose solution and a detection range from 1 nM to 50 μM in air at room temperature, which is lower than that of glucose sensors based on surface plasmon resonance spectroscopy, fluorescence signal transmission, and electrochemical signal transduction. The new glucose sensor provides a key technique for promising consuming application in biological system for detecting low levels of glucose on single cells or bacterial cultures. PMID:20596378

  13. Development of GaN-based microchemical sensor nodes

    NASA Technical Reports Server (NTRS)

    Prokopuk, Nicholas; Son, Kyung-Ah; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  14. Development of GaN-based micro chemical sensor nodes

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Prokopuk, Nicholas; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based on III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  15. Force/torque and tactile sensors for sensor-based manipulator control

    NASA Technical Reports Server (NTRS)

    Vanbrussel, H.; Belieen, H.; Bao, Chao-Ying

    1989-01-01

    The autonomy of manipulators, in space and in industrial environments, can be dramatically enhanced by the use of force/torque and tactile sensors. The development and future use of a six-component force/torque sensor for the Hermes Robot Arm (HERA) Basic End-Effector (BEE) is discussed. Then a multifunctional gripper system based on tactile sensors is described. The basic transducing element of the sensor is a sheet of pressure-sensitive polymer. Tactile image processing algorithms for slip detection, object position estimation, and object recognition are described.

  16. A potentiometric biosensor for rapid on-site disease diagnostics.

    PubMed

    Tarasov, Alexey; Gray, Darren W; Tsai, Meng-Yen; Shields, Niall; Montrose, Armelle; Creedon, Niamh; Lovera, Pierre; O'Riordan, Alan; Mooney, Mark H; Vogel, Eric M

    2016-05-15

    Quantitative point-of-care (POC) devices are the next generation for serological disease diagnosis. Whilst pathogen serology is typically performed by centralized laboratories using Enzyme-Linked ImmunoSorbent Assay (ELISA), faster on-site diagnosis would infer improved disease management and treatment decisions. Using the model pathogen Bovine Herpes Virus-1 (BHV-1) this study employs an extended-gate field-effect transistor (FET) for direct potentiometric serological diagnosis. BHV-1 is a major viral pathogen of Bovine Respiratory Disease (BRD), the leading cause of economic loss ($2 billion annually in the US only) to the cattle and dairy industry. To demonstrate the sensor capabilities as a diagnostic tool, BHV-1 viral protein gE was expressed and immobilized on the sensor surface to serve as a capture antigen for a BHV-1-specific antibody (anti-gE), produced in cattle in response to viral infection. The gE-coated immunosensor was shown to be highly sensitive and selective to anti-gE present in commercially available anti-BHV-1 antiserum and in real serum samples from cattle with results being in excellent agreement with Surface Plasmon Resonance (SPR) and ELISA. The FET sensor is significantly faster than ELISA (<10 min), a crucial factor for successful disease intervention. This sensor technology is versatile, amenable to multiplexing, easily integrated to POC devices, and has the potential to impact a wide range of human and animal diseases.

  17. A potentiometric biosensor for rapid on-site disease diagnostics.

    PubMed

    Tarasov, Alexey; Gray, Darren W; Tsai, Meng-Yen; Shields, Niall; Montrose, Armelle; Creedon, Niamh; Lovera, Pierre; O'Riordan, Alan; Mooney, Mark H; Vogel, Eric M

    2016-05-15

    Quantitative point-of-care (POC) devices are the next generation for serological disease diagnosis. Whilst pathogen serology is typically performed by centralized laboratories using Enzyme-Linked ImmunoSorbent Assay (ELISA), faster on-site diagnosis would infer improved disease management and treatment decisions. Using the model pathogen Bovine Herpes Virus-1 (BHV-1) this study employs an extended-gate field-effect transistor (FET) for direct potentiometric serological diagnosis. BHV-1 is a major viral pathogen of Bovine Respiratory Disease (BRD), the leading cause of economic loss ($2 billion annually in the US only) to the cattle and dairy industry. To demonstrate the sensor capabilities as a diagnostic tool, BHV-1 viral protein gE was expressed and immobilized on the sensor surface to serve as a capture antigen for a BHV-1-specific antibody (anti-gE), produced in cattle in response to viral infection. The gE-coated immunosensor was shown to be highly sensitive and selective to anti-gE present in commercially available anti-BHV-1 antiserum and in real serum samples from cattle with results being in excellent agreement with Surface Plasmon Resonance (SPR) and ELISA. The FET sensor is significantly faster than ELISA (<10 min), a crucial factor for successful disease intervention. This sensor technology is versatile, amenable to multiplexing, easily integrated to POC devices, and has the potential to impact a wide range of human and animal diseases. PMID:26765531

  18. Chemical Sensors Based on Optical Ring Resonators

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  19. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model.

    PubMed

    Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2007-09-01

    The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.

  20. Polymer-based sensor array for phytochemical detection

    NASA Astrophysics Data System (ADS)

    Weerakoon, Kanchana A.; Hiremath, Nitilaksha; Chin, Bryan A.

    2012-05-01

    Monitoring for the appearance of volatile organic compounds emitted by plants which correspond to time of first insect attack can be used to detect the early stages of insect infestation. This paper reports a chemical sensor array consisting of polymer based chemiresistor sensors that could detect insect infestation effectively. The sensor array consists of sensors with micro electronically fabricated interdigitated electrodes, and twelve different types of electro active polymer layers. The sensor array was cheap, easy to fabricate, and could be used easily in agricultural fields. The polymer array was found to be sensitive to a variety of volatile organic compounds emitted by plants including γ-terpinene α-pinene, pcymene, farnesene, limonene and cis-hexenyl acetate. The sensor array was not only able to detect but also distinguish between these compounds. The twelve sensors produced a resistance change for each of the analytes detected, and each of these responses together produced a unique fingerprint, enabling to distinguish among these chemicals.

  1. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  2. Biotoxin Detection Using Cell-Based Sensors

    PubMed Central

    Banerjee, Pratik; Kintzios, Spyridon; Prabhakarpandian, Balabhaskar

    2013-01-01

    Cell-based biosensors (CBBs) utilize the principles of cell-based assays (CBAs) by employing living cells for detection of different analytes from environment, food, clinical, or other sources. For toxin detection, CBBs are emerging as unique alternatives to other analytical methods. The main advantage of using CBBs for probing biotoxins and toxic agents is that CBBs respond to the toxic exposures in the manner related to actual physiologic responses of the vulnerable subjects. The results obtained from CBBs are based on the toxin-cell interactions, and therefore, reveal functional information (such as mode of action, toxic potency, bioavailability, target tissue or organ, etc.) about the toxin. CBBs incorporate both prokaryotic (bacteria) and eukaryotic (yeast, invertebrate and vertebrate) cells. To create CBB devices, living cells are directly integrated onto the biosensor platform. The sensors report the cellular responses upon exposures to toxins and the resulting cellular signals are transduced by secondary transducers generating optical or electrical signals outputs followed by appropriate read-outs. Examples of the layout and operation of cellular biosensors for detection of selected biotoxins are summarized. PMID:24335754

  3. The influence of sensor orientation on activity-based rate responsive pacing. Sensor Orientation Study Group.

    PubMed

    Theres, H; Philippon, F; Melzer, C; Combs, W; Prest-Berg, K

    1998-11-01

    Piezoelectric activity-based rate responsive pacemakers are commonly implanted with the sensor facing inward. This study was conducted to assess the safe and effective rate response of an activity-based rate responsive pacemaker implanted with the sensor facing outward. A comparison were made to a previously studied patient group with sensor facing inward. Patient and pacemaker data was collected at predischarge and 2-month follow-up. Two-minute hall walks in conjunction with programmer-assisted rate response assessment were utilized to standardize initial rate response parameter settings for both patient groups. At 2-month follow-up, sensor rate response to a stage 3 limited CAEP protocol was recorded. Adequate sensor rate response was achieved for both patient groups. No difference was noted in reported patient complications for both groups. A statistically significant difference in programmed rate response curve setting and activity threshold for the two groups was noted at 2-month follow-up. Adequate sensor rate response was achieved for a patient population implanted with an activity-based rate responsive pacemaker with sensor facing outward. In this orientation, one higher rate response curve setting and an activity threshold one value more sensitive were required on average when compared to the normal sensor orientation group. PMID:9826862

  4. Distributed model-based nonlinear sensor fault diagnosis in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lo, Chun; Lynch, Jerome P.; Liu, Mingyan

    2016-01-01

    Wireless sensors operating in harsh environments have the potential to be error-prone. This paper presents a distributive model-based diagnosis algorithm that identifies nonlinear sensor faults. The diagnosis algorithm has advantages over existing fault diagnosis methods such as centralized model-based and distributive model-free methods. An algorithm is presented for detecting common non-linearity faults without using reference sensors. The study introduces a model-based fault diagnosis framework that is implemented within a pair of wireless sensors. The detection of sensor nonlinearities is shown to be equivalent to solving the largest empty rectangle (LER) problem, given a set of features extracted from an analysis of sensor outputs. A low-complexity algorithm that gives an approximate solution to the LER problem is proposed for embedment in resource constrained wireless sensors. By solving the LER problem, sensors corrupted by non-linearity faults can be isolated and identified. Extensive analysis evaluates the performance of the proposed algorithm through simulation.

  5. Cooperative UAV-Based Communications Backbone for Sensor Networks

    SciTech Connect

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  6. Simple Potentiometric Determination of Reducing Sugars

    ERIC Educational Resources Information Center

    Moresco, Henry; Sanson, Pedro; Seoane, Gustavo

    2008-01-01

    In this article a potentiometric method for reducing sugar quantification is described. Copper(II) ion reacts with the reducing sugar (glucose, fructose, and others), and the excess is quantified using a copper wire indicator electrode. In order to accelerate the kinetics of the reaction, working conditions such as pH and temperature must be…

  7. Tactile MEMS-based sensor for delicate microsurgery

    NASA Astrophysics Data System (ADS)

    Park, Young Soo; Lee, Wooho; Gopalsami, Nachappa; Gundeti, Mohan

    2014-06-01

    This paper presents development of a new MEMS-based tactile microsensor to replicate the delicate sense of touch in robotic surgery. Using an epoxy-based photoresist, SU-8, as substrate, the piezoresistive type sensor is flexible, robust, and easy to fabricate in mass. Sensor characteristic tests indicate adequate sensitivity and linearity, and the multiple sensor elements can match full range of surgical tissue stiffness. Such characteristic nearly match the most delicate sense of touch at the human fingertip. It is expected such a sensor is essential for delicate surgeries, such as handling delicate tissues and microsurgery.

  8. Optical sensor based on sensitive polymer layer

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Martan, Tomas; Müller, Ralf; Brodersen, Olaf; Mohr, Gerhard J.

    2008-11-01

    In chemical, oil, and food industries, there are still higher requirements on miniaturization of optical sensors for a concentration measurement of gases e.g. a CO2, O2, and NH3. The paper deals with development of miniaturised optical sensor for an aqueous carbon dioxide measurement using a sensitive polymer layer. The optical sensor module consists of two parts, a remission sensor and a removable layered structure (with incorporated dyed polymer) which is closely placed on the surface of a remission sensor. A dyed polymer film is used as an optical-chemical transducer working on a principle of colour changes caused by a chemical reaction of an analyte and indicator dye. A novel remission sensor module was developed for an evaluation of the spectral absorption changes of sensitive polymer layer. The remission sensor module composed of LED diodes located in a central cavity of the sensor module and PIN diodes situated around the cavity. The LEDs emit light with optimised wavelengths and irradiate the polymer film. Light response (the changes of the spectral absorption) of the irradiated polymer film is detected by PIN diodes. A colour shift is further analyzed and evaluated by electronics without using a photometer.

  9. Star sensor image acquisition and preprocessing hardware system based on CMOS image sensor and FGPA

    NASA Astrophysics Data System (ADS)

    Hao, Xuetao; Jiang, Jie; Zhang, Guangjun

    2003-09-01

    Star Sensor is an avionics instrument used to provide the absolute 3-axis attitude of a spacecraft utilizing star observations. It consists of an electronic camera and associated processing electronics. As outcome of advancing state-of-the-art, new generation star sensor features faster, lower cost, power dissipation and size than the first generation star sensor. This paper describes a star sensor anterior image acquisition and pre-processing hardware system based on CMOS image-sensor and FPGA technology. Practically, star images are produced by a simple simulator on PC, acquired by CMOS image sensor, pre-processed by FPGA, saved in SRAM, read out by EPP protocol and validated by an image process software on PC. The hardware part of system acquires images thought CMOS image-sensor controlled by FPGA, then processes image data by a circuit module of FPGA, and save images to SRAM for test. Basic image data for star recognition and attitude determination of spacecrafts are provided by it. As an important reference for developing star sensor prototype, the system validates the performance advantages of new generation star sensor.

  10. Micro biochemical sensor based on SOI planar optical waveguide

    NASA Astrophysics Data System (ADS)

    Du, Yang; Dong, Ying

    2014-02-01

    A novel biochemical sensor based on planar optical waveguide is presented in this paper. The features of the sensor are as follows, the planar optical waveguide is made of SOI (Silicon-On-Insulator) material, a Mach Zehnder (M-Z) Interferometer structure is adopted as the sensing part, the sensor chip is fabricated using CMOS compatible technology and the size of the sensor chip is on the micron scale. Compared with the traditional biochemical sensors, this new type of sensor has such notable advantages as miniaturization, integration, high sensitivity and strong anti-interference capability, which provide the sensor with potential applications where traditional biochemical sensors cannot be used. At first, the benefits of SOI material comparing to other optical waveguide materials were analyzed in this paper. Then, according to the optical waveguide mode theory, M-Z interferometer waveguide was designed for the single mode behavior. By theoretical analysis of the radiation loss in the Y-junction of the planar waveguide interferometer, the relationship between the branch angle and the radiation loss was obtained. The power transfer function and the parametric equation of sensitivity of the M-Z interferometer were obtained through analysis of the waveguide structure. At last, the resolution of the effective refractive index and the characteristics of sensitivity of the sensor based on SOI M-Z Interferometer waveguide were simulated and analyzed by utilizing MATLAB software. As a result, the sensitivity of SOI M-Z Interferometer sensor can reach the order of 10-7 magnitude.

  11. Cryogenic Fiber Optic Sensors Based on Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Swinehart, P. R.; Maklad, M.; Courts, S. S.

    2008-03-01

    Fiber optic sensing has many favorable characteristics—a single fiber can be used to multiplex multiple sensors along the length of the fiber, fiber optic sensing is immune to electromagnetic noise and is inherently safe for combustible liquids and atmospheres. Previously, fiber optic sensors based on fiber Bragg gratings (FBGs) have been demonstrated for cryogenic use for both temperature and strain sensing, but often little data is supplied as to the reproducibility or unit-to-unit uniformity of these sensors. Lake Shore Cryotronics has manufactured fiber optic cryogenic temperature sensors based on Bragg gratings using novel packaging techniques. The temperature response and reproducibility is reported from 80K to 480K for glass-packaged sensors, and a calibration for a high sensitivity, wide range zinc-packaged sensor is reported.

  12. Septonex-tetraphenylborate screen-printed ion selective electrode for the potentiometric determination of Septonex in pharmaceutical preparations.

    PubMed

    Mohamed, Gehad G; El-Shahat, M F; Al-Sabagh, A M; Migahed, M A; Ali, Tamer Awad

    2011-04-01

    A screen-printed electrode (SPE) was fabricated for the determination of 1-(ethoxycarbonyl)pentadecyltrimethylammonium bromide (Septonex) based on the use of Septonex-tetraphenylborate as the electroactive substance, and o-nitrophenyloctylether (o-NPOE) as the plasticizing agent. The electrode passes a near-Nernstian cationic slope of 59.33 ± 0.85 mV from activity between pH values of 2 to 9 with a lower detection limit of 9×10(-7) M and response time of about 5 s and exhibits an adequate shelf-life of 6 months. The method was applied for the determination of Septonex in pharmaceutical preparations. A percentage recovery of 99.88% was obtained with RSD=1.24%. The electrode was successfully applied in the determination of Septonex in laboratory-prepared samples by direct potentiometric, calibration curve and standard addition methods. Potentiometric titration of Septonex with sodium tetraphenylborate and phosphotungstic acid as a titrant was monitored with the modified screen-printed electrode as an end-point indicator electrode. Selectivity coefficients for Septonex relative to a number of potential interfering substances were determined. The sensor was highly selective for Septonex over a large number of compounds. Selectivity coefficient data for some common ions show negligible interference; however, cetyltrimethylammonium bromide and iodide ions interfere significantly. The analytical usefulness of the proposed electrode was evaluated by its application in the determination of Septonex in laboratory-prepared pharmaceutical samples with satisfactory results. The results obtained with the fabricated sensor are comparable with those obtained by the British Pharmacopeia method.

  13. Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 2001

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the potentiometric surface of the Upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in Southern Maryland during September 2001. The map is based on water-level measurements in 49 wells. The potentiometric surface was highest at 118 feet above sea level near the northern boundary and outcrop area of the aquifer in northern Anne Arundel County. From this area, the potentiometric surface declined to the southeast toward large well fields in the Annapolis area, and from all directions toward a cone of depression located southwest of Waldorf. The ground-water level declined to 26 feet below sea level in the Annapolis area, and the lowest water level was 132 feet below sea level southwest of Waldorf.

  14. Potentiometric surface of the upper Patapsco aquifer in southern Maryland, September 1999

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2001-01-01

    This report presents a map showing the potentiometric surface of the Upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in Southern Maryland during September 1999. The map is based on water-level measurements in 49 wells. The potentiometric surface was 119 feet above sea level near the northern boundary and outcrop area of the aquifer in a topographically high area of Anne Arundel County, and 55 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometric surface declined to the southeast toward large well fields in the Annapolis area, and from all directions toward a cone of depression southwest of Waldorf. Ground-water levels declined to 20 feet below sea level in the Annapolis area, and 131 feet below sea level southwest of Waldorf.

  15. Sensitivity of perimeter sensor based on Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Szustakowski, Mieczyslaw; Zyczkowski, Marek; Ciurapinski, Wieslaw M.; Palka, Norbert

    2004-09-01

    The theoretical analysis of sensitivity of the Sagnac interferometer-based sensor is presented. This setup has wide range of implementation -- one of them is a perimeter sensor for security systems. Sensor sensitivity is determined firstly by a frequency-phase sensitivity, which is connected with the interferometer principle of operation and, secondly, by electronic noise of a processing unit and attenuation of used fiber optic.

  16. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors

    NASA Astrophysics Data System (ADS)

    Schoukroun-Barnes, Lauren R.; Macazo, Florika C.; Gutierrez, Brenda; Lottermoser, Justine; Liu, Juan; White, Ryan J.

    2016-06-01

    The development of structure-switching, electrochemical, aptamer-based sensors over the past ˜10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.

  17. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors.

    PubMed

    Schoukroun-Barnes, Lauren R; Macazo, Florika C; Gutierrez, Brenda; Lottermoser, Justine; Liu, Juan; White, Ryan J

    2016-06-12

    The development of structure-switching, electrochemical, aptamer-based sensors over the past ∼10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.

  18. Potentiometric surface of the Magothy aquifer in southern Maryland, September 1999

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2001-01-01

    This report presents a map showing the change in the potentiometric surface of the Lower Patapsco aquifer in the Lower Patapsco Formation of Cretaceous age in Southern Maryland for September 1990 and September 1999. The map, based on water?level measurements in 52 wells, shows that the change of the potentiometric surface during the 9- year period ranged from a rise of 13 feet at Indian Head and 6 feet near the outcrop area in Glen Burnie, to declines of 34 feet at Arnold, 30 feet at Waldorf, and 24 feet at Morgantown.

  19. Construction of a potentiometric glutamate biosensor for determination of glutamate in some real samples.

    PubMed

    Y Lmaz, Demet; Karaku, Emine

    2011-12-01

    The potentiometric glutamate biosensor based on ammonium-selective poly(vinylchloride) (PVC) membrane electrode was constructed by chemically immobilizing glutamate oxidase. Ammonium ions produced after an enzymatic reaction were determined potentiometrically. We determined the optimum working conditions of the biosensor such as buffer concentration, buffer pH, lifetime, response time, linear working range, kinetic constants (K(m) and V(max)) of glutamate oxidase enzyme used for biosensor construction values, and other response characteristics. Additionally, glutamate assay in some real samples such as chicken bullion, healthy human serum, and commercial multipower amino acid mixture were also successfully carried out. The results showed good agreement with previously reported values.

  20. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2001

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland for September 1982 and September 2001. The map, based on water level measurements in 58 wells, shows that the potentiometric surface during the 19-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 120 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer.

  1. sensor for mainstream capnography based on TDLAS

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Strzoda, R.; Schrobenhauser, R.; Weigel, R.

    2014-09-01

    The setup and signal processing for a mainstream capnography sensor is presented in this paper. The probe exhibits an optical path length of 2.5 cm and is equipped with a vertical-cavity surface-emitting laser at 2 μm. The sensor does not need any calibration, since the CO2 absorption line as well as the laser background is measured using direct tunable diode laser absorption spectroscopy. Unavoidable optical fringes are reduced with a self-developed fringe rejection method. The sensor achieves a concentration resolution <300 ppmv at 4 vol% and a measurement rate >30 Hz.

  2. Development of electrochemical sensors for nano scale Tb(III) ion determination based on pendant macrocyclic ligands.

    PubMed

    Singh, Ashok K; Singh, Prerna; Banerjee, Shibdas; Mehtab, Sameena

    2009-02-01

    The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetramethylacrylate-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-di ene (L(1)) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L(2)) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L(1): PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L(1) was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb(3+) ions with limits of detection of 3.4 x 10(-8)mol L(-1) for PME and 5.7 x 10(-9)mol L(-1) for CGE. The response time for PME and CGE was found to be 10s and 8s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb(3+) ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb(3+) ions in tap water and various binary mixtures with quantitative results. PMID:19110124

  3. Development of electrochemical sensors for nano scale Tb(III) ion determination based on pendant macrocyclic ligands.

    PubMed

    Singh, Ashok K; Singh, Prerna; Banerjee, Shibdas; Mehtab, Sameena

    2009-02-01

    The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetramethylacrylate-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-di ene (L(1)) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L(2)) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L(1): PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L(1) was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb(3+) ions with limits of detection of 3.4 x 10(-8)mol L(-1) for PME and 5.7 x 10(-9)mol L(-1) for CGE. The response time for PME and CGE was found to be 10s and 8s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb(3+) ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb(3+) ions in tap water and various binary mixtures with quantitative results.

  4. Electrochemical sample matrix elimination for trace-level potentiometric detection with polymeric membrane ion-selective electrodes.

    PubMed

    Chumbimuni-Torres, Karin Y; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric

    2008-08-01

    Potentiometric sensors are today sufficiently well understood and optimized to reach ultratrace level (subnanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth-coated electrode, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte.

  5. Fluorescent sensors based on bacterial fusion proteins

    NASA Astrophysics Data System (ADS)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  6. A wearable sensor based on CLYC scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Benjamin S.; Myjak, Mitchell J.; Zalavadia, Mital A.; Smart, John E.; Willett, Jesse A.; Landgren, Peter C.; Greulich, Christopher R.

    2016-06-01

    We have developed a wearable radiation sensor using Cs2LiYCl6:Ce (CLYC) for simultaneous gamma-ray and neutron detection. The system includes two ∅ 2.5 × 2.5cm3 crystals coupled to small, metal-body photomultiplier tubes. A custom, low-power electronics base digitizes the output signal at three time points and enables both pulse height and pulse shape discrimination of gamma rays and neutrons. The total counts, anomaly detection metrics, and identified isotopes are displayed on a small screen. Users may leave the device in unattended mode to collect long-dwell energy spectra. The system stores up to 18 h of one-second data, including energy spectra, and may transfer the data to a remote computer via a wired or wireless connection. The prototype is 18 × 13 × 7.5cm3, weighs 1.3 kg, not including the protective pouch, and runs on six AA alkaline batteries for 29 h with the wireless link active, or 41 h with the wireless link disabled. In this paper, we summarize the system design and present characterization results from the detector modules. The energy resolution is about 6.5% full width at half maximum at 662 keV due to the small photomultiplier tube selected, and the linearity and pulse shape discrimination performance are very good.

  7. Nanoscale ear drum: Graphene based nanoscale sensors

    NASA Astrophysics Data System (ADS)

    Avdoshenko, Stas M.; Gomes da Rocha, Claudia; Cuniberti, Gianaurelio

    2012-05-01

    The difficulty in determining the mass of a sample increases as its size diminishes. At the nanoscale, there are no direct methods for resolving the mass of single molecules or nanoparticles and so more sophisticated approaches based on electromechanical phenomena are required. More importantly, one demands that such nanoelectromechanical techniques could provide not only information about the mass of the target molecules but also about their geometrical properties. In this sense, we report a theoretical study that illustrates in detail how graphene membranes can operate as nanoelectromechanical mass-sensor devices. Wide graphene sheets were exposed to different types and amounts of molecules and molecular dynamic simulations were employed to treat these doping processes statistically. We demonstrate that the mass variation effect and information about the graphene-molecule interactions can be inferred through dynamical response functions. Our results confirm the potential use of graphene as a mass detector device with remarkable precision in estimating variations in mass at the molecular scale and other physical properties of the dopants.

  8. Biomimetic virus-based colourimetric sensors

    NASA Astrophysics Data System (ADS)

    Oh, Jin-Woo; Chung, Woo-Jae; Heo, Kwang; Jin, Hyo-Eon; Lee, Byung Yang; Wang, Eddie; Zueger, Chris; Wong, Winnie; Meyer, Joel; Kim, Chuntae; Lee, So-Young; Kim, Won-Geun; Zemla, Marcin; Auer, Manfred; Hexemer, Alexander; Lee, Seung-Wuk

    2014-01-01

    Many materials in nature change colours in response to stimuli, making them attractive for use as sensor platform. However, both natural materials and their synthetic analogues lack selectivity towards specific chemicals, and introducing such selectivity remains a challenge. Here we report the self-assembly of genetically engineered viruses (M13 phage) into target-specific, colourimetric biosensors. The sensors are composed of phage-bundle nanostructures and exhibit viewing-angle independent colour, similar to collagen structures in turkey skin. On exposure to various volatile organic chemicals, the structures rapidly swell and undergo distinct colour changes. Furthermore, sensors composed of phage displaying trinitrotoluene (TNT)-binding peptide motifs identified from a phage display selectively distinguish TNT down to 300 p.p.b. over similarly structured chemicals. Our tunable, colourimetric sensors can be useful for the detection of a variety of harmful toxicants and pathogens to protect human health and national security.

  9. Few-mode fiber based sensor in biomedical application

    NASA Astrophysics Data System (ADS)

    Zhang, Jing

    2015-05-01

    A novel few-mode fiber based sensor for monitoring the vital signs of pulse (heart rate), and breathing rate (respiratory rate) was developed. The sensor was applied in non-invasive measurement of pulse and breathing rates. The pulse, breathing and even body movement affected the sensor's output as the strain on the few-mode fiber changed with these activities. This sensor has simple structure and easy to fabricate. Its signal is easy to monitor. It can be used in the medical equipment in what situation non-invasive realtime monitoring and measurement of pulse rate, and respiratory/body movement pattern of healthy subjects are required.

  10. Illumination-based synchronization of high-speed vision sensors.

    PubMed

    Hou, Lei; Kagami, Shingo; Hashimoto, Koichi

    2010-01-01

    To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.

  11. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    PubMed

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-01

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

  12. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    PubMed

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-01

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics. PMID:26842553

  13. A carbon nanotube based ammonia sensor on cotton textile

    NASA Astrophysics Data System (ADS)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.

  14. Optimization of Surface Acoustic Wave-Based Rate Sensors

    PubMed Central

    Xu, Fangqian; Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liang, Yong

    2015-01-01

    The optimization of an surface acoustic wave (SAW)-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor. PMID:26473865

  15. Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane.

    PubMed

    Darabi, Mohammad Ali; Khosrozadeh, Ali; Wang, Quan; Xing, Malcolm

    2015-12-01

    Presented in this work is a novel and facile approach to fabricate an elastic, attachable, and cost-efficient carbon nanotube (CNT)-based strain gauge which can be efficiently used as bodily motion sensors. An innovative and unique method is introduced to align CNTs without external excitations or any complicated procedure. In this design, CNTs are aligned and distributed uniformly on the entire chewing gum by multiple stretching and folding technique. The current sensor is demonstrated to be a linear strain sensor for at least strains up to 200% and can detect strains as high as 530% with a high sensitivity ranging from 12 to 25 and high durability. The gum sensor has been used as bodily motion sensors, and outstanding results are achieved; the sensitivity is quite high, capable of tracing slow breathing. Since the gum sensor can be patterned into various forms, it has wide applications in miniaturized sensors and biochips. Interestingly, we revealed that our gum sensor has the ability to monitor humidity changes with high sensitivity and fast resistance response capable of monitoring human breathing. PMID:26524110

  16. Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane.

    PubMed

    Darabi, Mohammad Ali; Khosrozadeh, Ali; Wang, Quan; Xing, Malcolm

    2015-12-01

    Presented in this work is a novel and facile approach to fabricate an elastic, attachable, and cost-efficient carbon nanotube (CNT)-based strain gauge which can be efficiently used as bodily motion sensors. An innovative and unique method is introduced to align CNTs without external excitations or any complicated procedure. In this design, CNTs are aligned and distributed uniformly on the entire chewing gum by multiple stretching and folding technique. The current sensor is demonstrated to be a linear strain sensor for at least strains up to 200% and can detect strains as high as 530% with a high sensitivity ranging from 12 to 25 and high durability. The gum sensor has been used as bodily motion sensors, and outstanding results are achieved; the sensitivity is quite high, capable of tracing slow breathing. Since the gum sensor can be patterned into various forms, it has wide applications in miniaturized sensors and biochips. Interestingly, we revealed that our gum sensor has the ability to monitor humidity changes with high sensitivity and fast resistance response capable of monitoring human breathing.

  17. Optical fiber ultrasonic sensor networks based on WDM and TDM

    NASA Astrophysics Data System (ADS)

    Guo, Zhenwu; Li, Weixiang; Liu, Tiegen

    2011-02-01

    An optical fiber sensor network for ultrasonic measurement based on wavelength division multiplexing (WDM) and time division multiplexing (TDM) technology is presented. Each of the sensor probes is an optical fiber extrinsic Fabry-Perot interferometer (EFPI) which is composed of the fiber's end face and the aluminum thin diaphragm. The sensors are arranged in different wavelength domains formed by a wavelength division multiplexer. Each wavelength division multiplexer, with a group of the sensors, is connected to one of the output ports of optical switch to realize TDM. The signal of each sensor is exported sequentially from a tunable narrowband optical filter (TNOF) that queries every sensor though scanning mode. The principle of the phenomenon of phase induced signal fade in interferometric fiber-optic sensors is also analyzed. Nicely, the detection method above implements the operation of anti-phase induced signal fade detection. The system is interrogated by broadband light source. The scanning range of TNOF is full of the bandwidth of the light source. The result of experiment in water show that the sensor sensitivity reaches -162dB(0dB=1rad/μPa), the frequency response range is from 10KHz to 5 MHz. The number of multiplexing sensors based on WDM and TDM reaches to 64.

  18. Chip-Based Sensors for Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Fang, Zhichao

    Nucleic acid analysis is one of the most important disease diagnostic approaches in medical practice, and has been commonly used in cancer biomarker detection, bacterial speciation and many other fields in laboratory. Currently, the application of powerful research methods for genetic analysis, including the polymerase chain reaction (PCR), DNA sequencing, and gene expression profiling using fluorescence microarrays, are not widely used in hospitals and extended-care units due to high-cost, long detection times, and extensive sample preparation. Bioassays, especially chip-based electrochemical sensors, may be suitable for the next generation of rapid, sensitive, and multiplexed detection tools. Herein, we report three different microelectrode platforms with capabilities enabled by nano- and microtechnology: nanoelectrode ensembles (NEEs), nanostructured microelectrodes (NMEs), and hierarchical nanostructured microelectrodes (HNMEs), all of which are able to directly detect unpurified RNA in clinical samples without enzymatic amplification. Biomarkers that are cancer and infectious disease relevant to clinical medicine were chosen to be the targets. Markers were successfully detected with clinically-relevant sensitivity. Using peptide nucleic acids (PNAs) as probes and an electrocatalytic reporter system, NEEs were able to detect prostate cancer-related gene fusions in tumor tissue samples with 100 ng of RNA. The development of NMEs improved the sensitivity of the assay further to 10 aM of DNA target, and multiplexed detection of RNA sequences of different prostate cancer-related gene fusion types was achieved on the chip-based NMEs platform. An HNMEs chip integrated with a bacterial lysis device was able to detect as few as 25 cfu bacteria in 30 minutes and monitor the detection in real time. Bacterial detection could also be performed in neat urine samples. The development of these versatile clinical diagnostic tools could be extended to the detection of various

  19. Combine harvester monitor system based on wireless sensor network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  20. Fabrication of a highly selective cadmium (II) sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane as a supramolecular ionophore.

    PubMed

    Ghaemi, Arezoo; Tavakkoli, Haman; Mombeni, Tayebeh

    2014-05-01

    A new cadmium (II) ion selective sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (kryptofix5) as a supramolecular carrier has been developed. The membrane solutions containing polyvinyl chloride (PVC), plasticizer, sodium tetraphenylborate (NaTPB) as a lipophilic ionic additive and kryptofix5 as an ionophore were directly coated on the surface of graphite rods. The best composition of the coated membrane (w/w%) was found to be: 30.0% PVC, 61.0% dioctyl sebacate (DOS), 6.0% NaTPB and 3.0% kryptofix5. The sensor indicates a good linear response for Cd(2+) cation over a wide concentration range from 1.0×10(-5) to 1.0×10(-1) M with a Nernstian slope of 29.8±0.1 mV/decade and the detection limit is 8.4×10(-6) M. The response time of the sensor is 15s and it can be used for 7 weeks without significant drift in potential. The sensor operates in the wide pH range of 1.0-6.0. This sensor reveals a very good selectivity toward Cd(2+) ion over a wide range of alkali, transition and heavy metal cations. The sensor was used as an indicator electrode for potentiometric titration of Cd(2+) using sodium fluoride and ethylenediaminetetraacetic acid (EDTA) solutions with a sharp potential change that occurred at the end point. In addition, the proposed sensor was successfully used for determination of Cd(2+) cation in real water samples.

  1. Fabrication of a highly selective cadmium (II) sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane as a supramolecular ionophore.

    PubMed

    Ghaemi, Arezoo; Tavakkoli, Haman; Mombeni, Tayebeh

    2014-05-01

    A new cadmium (II) ion selective sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (kryptofix5) as a supramolecular carrier has been developed. The membrane solutions containing polyvinyl chloride (PVC), plasticizer, sodium tetraphenylborate (NaTPB) as a lipophilic ionic additive and kryptofix5 as an ionophore were directly coated on the surface of graphite rods. The best composition of the coated membrane (w/w%) was found to be: 30.0% PVC, 61.0% dioctyl sebacate (DOS), 6.0% NaTPB and 3.0% kryptofix5. The sensor indicates a good linear response for Cd(2+) cation over a wide concentration range from 1.0×10(-5) to 1.0×10(-1) M with a Nernstian slope of 29.8±0.1 mV/decade and the detection limit is 8.4×10(-6) M. The response time of the sensor is 15s and it can be used for 7 weeks without significant drift in potential. The sensor operates in the wide pH range of 1.0-6.0. This sensor reveals a very good selectivity toward Cd(2+) ion over a wide range of alkali, transition and heavy metal cations. The sensor was used as an indicator electrode for potentiometric titration of Cd(2+) using sodium fluoride and ethylenediaminetetraacetic acid (EDTA) solutions with a sharp potential change that occurred at the end point. In addition, the proposed sensor was successfully used for determination of Cd(2+) cation in real water samples. PMID:24656367

  2. Heterogeneous Electrochemical Aptamer-Based Sensor Surfaces for Controlled Sensor Response.

    PubMed

    Schoukroun-Barnes, Lauren R; Glaser, Ethan P; White, Ryan J

    2015-06-16

    Structure-switching sensors utilize recognition elements that undergo a conformation change upon target binding that is converted into a quantitative signal. Electrochemical, aptamer-based sensors achieve detection of analytes through a conformation change in an electrode-bound, oligonucleotide aptamer by measuring changes in electron transfer efficiencies. The analytical performance of these sensors is related to the magnitude of the conformation change of the aptamer. The goal of the present work is to develop a general method to predictably tune the analytical performance (sensitivity and linear range) of electrochemical, aptamer-based sensors by utilizing a mixture of rationally designed aptamer sequences that are specific for the same target but with different affinities on the same electrode surface. To demonstrate control over sensor performance, we developed heterogeneous sensors for two representative small molecule targets (adenosine triphosphate and tobramycin). We demonstrate that mixtures of modified sequences can be used to tune the affinity, dynamic range, and sensitivity of the resulting sensors predicted by a bi-Langmuir-type isotherm.

  3. Modified screen-printed ion selective electrodes for potentiometric determination of sodium dodecylsulfate in different samples.

    PubMed

    Ali, Tamer Awad; Mohamed, Gehad G

    2015-01-01

    Fabrication and general performance characteristics of novel screen-printed sensors for potentiometric determination of sodium dodecylsulfate (SDS) are described. The sensors are based on the use of ion-association complexes of SDS with cetylpyridinium chloride (electrode I) and cetyltrimethylammonium bromide (electrode II) as exchange sites in a screen-printed electrode matrix. Electrodes (I) and (II) show fast, stable, and near-Nernstian response for the mono-charge anion of SDS over the concentration range of 1×10(-2) - 5.8×10(-7) and 1×10(-2)-6.3×10(-7) mol/L at 25°C and the pH range of 2.0-9.0 and 2.0-8.0 with anionic slope of 57.32±0.81 and 56.58±0.65 mV/decade, respectively. Electrodes (I) and (II) have lower LODs of 5.8×10(-7) and 6.3×10(-7) mol/L and response times of about 8 and 13 s, respectively. Shelf life of 5 months for both electrodes is adequate. Selectivity coefficients of SDS related to a number of interfering cations, and some inorganic compounds were investigated. There were negligible interferences caused by most of the investigated species. The direct determination of 0.10-13.50 mg of SDS by electrodes (I) and (II) shows average recoveries of 99.96 and 99.85%, and mean RSDs of 0.83 and 1.04%, respectively. In the present investigation, both electrodes were used successfully as end point indicators for determination of SDS in pure pharmaceutical preparations and real spiked water samples. The results obtained using the proposed sensors to determine SDS in solution compared favorably with those obtained by the standard addition method.

  4. Potentiometric titration and equivalent weight of humic acid

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.

  5. A Risk-Based Sensor Placement Methodology

    SciTech Connect

    Lee, Ronald W; Kulesz, James J

    2006-08-01

    A sensor placement methodology is proposed to solve the problem of optimal location of sensors or detectors to protect population against the exposure to and effects of known and/or postulated chemical, biological, and/or radiological threats. Historical meteorological data are used to characterize weather conditions as wind speed and direction pairs with the percentage of occurrence of the pairs over the historical period. The meteorological data drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate population at risk against standard exposure levels. Sensor locations are determined via a dynamic programming algorithm where threats captured or detected by sensors placed in prior stages are removed from consideration in subsequent stages. Moreover, the proposed methodology provides a quantification of the marginal utility of each additional sensor or detector. Thus, the criterion for halting the iterative process can be the number of detectors available, a threshold marginal utility value, or the cumulative detection of a minimum factor of the total risk value represented by all threats.

  6. Calibration of a HTS Based LOX 400 mm Level Sensor

    NASA Astrophysics Data System (ADS)

    Karunanithi, R.; Jacob, S.; Nadig, D. S.; Prasad, M. V. N.; Gour, Abhay S.; Pankaj, S.; Gowthaman, M.; Sudharshan, H.

    The measurement of the cryogen level in a cryostage of space crafts is crucial. At the same time the weight of the sensor should be small as it affects the payload fraction of the space craft. An attempt to develop a HTS based level sensor of 400 mm for Liquid Oxygen (LOX) measurement was made. In the initial phase of testing, loss of superconductivity of HTS wire in LOX inside a cryostat was noticed. Thus, a new four wall cryostat was designed to have a stable LOX level to provide thermal stability to the HTS based LOX sensor. The calibration of the developed sensor was carried out against capacitance level sensor which was pre calibrated using diode array to verify its linearity and performance for different current excitation levels. The calibrations were carried out without heater wires. The automatic data logging was accomplished using a program developed in LabVIEW 11.0.

  7. Two-dimensional photonic crystal based sensor for pressure sensing

    NASA Astrophysics Data System (ADS)

    Vijaya Shanthi, Krishnan; Robinson, Savarimuthu

    2014-09-01

    In this paper, a two-dimensional photonic crystal (2DPC) based pressure sensor is proposed and designed, and the sensing characteristics such as the sensitivity and dynamic range are analyzed over the range of pressure from 0 GPa to 7 GPa. The sensor is based on 2DPC with the square array of silicon rods surrounded by air. The sensor consists of two photonic crystal quasi waveguides and L3 defect. The L3 defect is placed in between two waveguides and is formed by modifying the radius of three Si rods. It is noticed that through simulation, the resonant wavelength of the sensor is shifted linearly towards the higher wavelength region while increasing the applied pressure level. The achieved sensitivity and dynamic range of the sensor is 2 nm/GPa and 7 Gpa, respectively.

  8. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  9. M13 Bacteriophage Based Protein Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Ju Hun

    Despite significant progress in biotechnology and biosensing, early detection and disease diagnosis remains a critical issue for improving patient survival rates and well-being. Many of the typical detection schemes currently used possess issues such as low sensitivity and accuracy and are also time consuming to run and expensive. In addition, multiplexed detection remains difficult to achieve. Therefore, developing advanced approaches for reliable, simple, quantitative analysis of multiple markers in solution that also are highly sensitive are still in demand. In recent years, much of the research has primarily focused on improving two key components of biosensors: the bio-recognition agent (bio-receptor) and the transducer. Particular bio-receptors that have been used include antibodies, aptamers, molecular imprinted polymers, and small affinity peptides. In terms of transducing agents, nanomaterials have been considered as attractive candidates due to their inherent nanoscale size, durability and unique chemical and physical properties. The key focus of this thesis is the design of a protein detection and identification system that is based on chemically engineered M13 bacteriophage coupled with nanomaterials. The first chapter provides an introduction of biosensors and M13 bacteriophage in general, where the advantages of each are provided. In chapter 2, an efficient and enzyme-free sensor is demonstrated from modified M13 bacteriophage to generate highly sensitive colorimetric signals from gold nanocrystals. In chapter 3, DNA conjugated M13 were used to enable facile and rapid detection of antigens in solution that also provides modalities for identification. Lastly, high DNA loadings per phage was achieved via hydrozone chemistry and these were applied in conjunction with Raman active DNA-gold/silver core/shell nanoparticles toward highly sensitive SERS sensing.

  10. Ethanol sensor based on nanocrystallite cadmium ferrite

    SciTech Connect

    Gadkari, Ashok B.; Shinde, Tukaram J.; Vasambekar, Pramod N.

    2015-06-24

    The cadmium ferrite was synthesized by oxalate co-precipitation method. The crystal structure and surface morphology were examined by X-ray diffraction and SEM techniques, respectively. The nanocrystallite CdFe{sub 2}O{sub 4} sensor was tested for LPG, Cl{sub 2} and C{sub 2}H{sub 5}OH. The sensitivity was measured at various operating temperatures in the range of 100-400°C. The sensor shows highest sensitivity and selectivity to C{sub 2}H{sub 5}OH at 350°C. The response and recovery time was measured at operating temperature of 350°C. The sensor exhibits a lower response and recovery time for LPG and Cl{sub 2} as compared to ethanol.

  11. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  12. Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties.

    PubMed

    Atalay, Ozgur; Kennon, William Richard; Husain, Muhammad Dawood

    2013-08-21

    The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties.

  13. [Semiautomatic potentiometric titration of gastric juice].

    PubMed

    Mnuskina, M M; Meerov, G I; Nadezhina, L S; Semenov, V P; Chekanina, M I; Savchenko, V P; Grinzaĭd, E L

    1990-01-01

    Using commercial equipment manufactured in this country, the authors have assembled a unit for semiautomatic potentiometric titration and developed a method for such titration, permitting a rapid determination of free and bound HCl and the total acidity of the gastric juice. The equipment and method are recommended for wide use at laboratories of therapeutic institutions, of biologic factories manufacturing medicinal commercial gastric juice, and of research institutes.

  14. Elaboration, activity and stability of silica-based nitroaromatic sensors.

    PubMed

    Mercier, Dimitri; Pereira, Franck; Méthivier, Christophe; Montméat, Pierre; Hairault, Lionel; Pradier, Claire-Marie

    2013-08-21

    Functionalized silica-based thin films, modified with hydrophobic groups, were synthesized and used as sensors for nitroaromatic compound (NAC) specific detection. Their performance and behavior, in terms of stability, ageing and regeneration, have been fully characterized by combining chemical characterization techniques and electron microscopy. NAC was efficiently and specifically detected using these silica-based sensors, but showed a great degradation in the presence of humidity. Moreover, the sensor sensitivity seriously decreases with storage time. Methyl- and phenyl-functionalization helped to overcome this humidity sensitivity. Surface characterization enabled us to establish a direct correlation between the appearance, and increasing amount, of adsorbed carbonyl-containing species, and sensor efficiency. This contamination, appearing after only one month, was particularly important when sensors were stored in plastic containers. Rinsing with cyclohexane enables us to recover part of the sensor performance but does not yield a complete regeneration of the sensors. This work led us to the definition of optimized elaboration and storage conditions for nitroaromatic sensors. PMID:23812282

  15. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    PubMed Central

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  16. Micro-Vibration-Based Slip Detection in Tactile Force Sensors

    PubMed Central

    Fernandez, Raul; Payo, Ismael; Vazquez, Andres S.; Becedas, Jonathan

    2014-01-01

    Tactile sensing provides critical information, such as force, texture, shape or temperature, in manipulation tasks. In particular, tactile sensors traditionally used in robotics are emphasized in contact force determination for grasping control and object recognition. Nevertheless, slip detection is also crucial to successfully manipulate an object. Several approaches have appeared to detect slipping, the majority being a combination of complex sensors with complex algorithms. In this paper, we deal with simplicity, analyzing how a novel, but simple, algorithm, based on micro-vibration detection, can be used in a simple, but low-cost and durable, force sensor. We also analyze the results of using the same principle to detect slipping in other force sensors based on flexible parts. In particular, we show and compare the slip detection with: (i) a flexible finger, designed by the authors, acting as a force sensor; (ii) the finger torque sensor of a commercial robotic hand; (iii) a commercial six-axis force sensor mounted on the wrist of a robot; and (iv) a fingertip piezoresistive matrix sensor. PMID:24394598

  17. Micro-vibration-based slip detection in tactile force sensors.

    PubMed

    Fernandez, Raul; Payo, Ismael; Vazquez, Andres S; Becedas, Jonathan

    2014-01-03

    Tactile sensing provides critical information, such as force, texture, shape or temperature, in manipulation tasks. In particular, tactile sensors traditionally used in robotics are emphasized in contact force determination for grasping control and object recognition. Nevertheless, slip detection is also crucial to successfully manipulate an object. Several approaches have appeared to detect slipping, the majority being a combination of complex sensors with complex algorithms. In this paper, we deal with simplicity, analyzing how a novel, but simple, algorithm, based on micro-vibration detection, can be used in a simple, but low-cost and durable, force sensor. We also analyze the results of using the same principle to detect slipping in other force sensors based on flexible parts. In particular, we show and compare the slip detection with: (i) a flexible finger, designed by the authors, acting as a force sensor; (ii) the finger torque sensor of a commercial robotic hand; (iii) a commercial six-axis force sensor mounted on the wrist of a robot; and (iv) a fingertip piezoresistive matrix sensor.

  18. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.

    PubMed

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and 24 fuzzy rules for the robot's movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  19. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.

    PubMed

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-12-26

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and 24 fuzzy rules for the robot's movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  20. Portable Nanoparticle-Based Sensors for Food Safety Assessment.

    PubMed

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2015-12-05

    The use of nanotechnology-derived products in the development of sensors and analytical measurement methodologies has increased significantly over the past decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and nanostructures to enhance sensitivity and selectivity, design new detection schemes, improve sample preparation and increase portability. This review summarizes recent advancements in the design and development of NP-based sensors for assessing food safety. The most common types of NPs used to fabricate sensors for detection of food contaminants are discussed. Selected examples of NP-based detection schemes with colorimetric and electrochemical detection are provided with focus on sensors for the detection of chemical and biological contaminants including pesticides, heavy metals, bacterial pathogens and natural toxins. Current trends in the development of low-cost portable NP-based technology for rapid assessment of food safety as well as challenges for practical implementation and future research directions are discussed.

  1. Portable Nanoparticle-Based Sensors for Food Safety Assessment.

    PubMed

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2015-01-01

    The use of nanotechnology-derived products in the development of sensors and analytical measurement methodologies has increased significantly over the past decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and nanostructures to enhance sensitivity and selectivity, design new detection schemes, improve sample preparation and increase portability. This review summarizes recent advancements in the design and development of NP-based sensors for assessing food safety. The most common types of NPs used to fabricate sensors for detection of food contaminants are discussed. Selected examples of NP-based detection schemes with colorimetric and electrochemical detection are provided with focus on sensors for the detection of chemical and biological contaminants including pesticides, heavy metals, bacterial pathogens and natural toxins. Current trends in the development of low-cost portable NP-based technology for rapid assessment of food safety as well as challenges for practical implementation and future research directions are discussed. PMID:26690169

  2. Portable Nanoparticle-Based Sensors for Food Safety Assessment

    PubMed Central

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2015-01-01

    The use of nanotechnology-derived products in the development of sensors and analytical measurement methodologies has increased significantly over the past decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and nanostructures to enhance sensitivity and selectivity, design new detection schemes, improve sample preparation and increase portability. This review summarizes recent advancements in the design and development of NP-based sensors for assessing food safety. The most common types of NPs used to fabricate sensors for detection of food contaminants are discussed. Selected examples of NP-based detection schemes with colorimetric and electrochemical detection are provided with focus on sensors for the detection of chemical and biological contaminants including pesticides, heavy metals, bacterial pathogens and natural toxins. Current trends in the development of low-cost portable NP-based technology for rapid assessment of food safety as well as challenges for practical implementation and future research directions are discussed. PMID:26690169

  3. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  4. Planar Laser-Based QEPAS Trace Gas Sensor.

    PubMed

    Ma, Yufei; He, Ying; Chen, Cheng; Yu, Xin; Zhang, Jingbo; Peng, Jiangbo; Sun, Rui; Tittel, Frank K

    2016-01-01

    A novel quartz enhanced photoacoustic spectroscopy (QEPAS) trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF) prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation. PMID:27367686

  5. Planar Laser-Based QEPAS Trace Gas Sensor

    PubMed Central

    Ma, Yufei; He, Ying; Chen, Cheng; Yu, Xin; Zhang, Jingbo; Peng, Jiangbo; Sun, Rui; Tittel, Frank K.

    2016-01-01

    A novel quartz enhanced photoacoustic spectroscopy (QEPAS) trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF) prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation. PMID:27367686

  6. Surface characterization of hydroxyapatite: potentiometric titrations coupled with solubility measurements.

    PubMed

    Skartsila, Kyriaki; Spanos, Nikos

    2007-04-15

    The acid-base properties of synthetically prepared and well-characterized hydroxyapatite (HAP) in contact with KNO3 solutions were investigated at 25 degrees C, through potentiometric titrations, zeta-potential measurements, and surface complex modeling. Aliquots of suspension were withdrawn every 0.5 pH unit during the titration procedure and analyzed for calcium and phosphate. It was found that, even for rapid titration experiments, a remarkable amount of H+ ions (H+dissol.) is consumed in the bulk solution in reacting with species coming from the dissolution of HAP. These H+ ions must be taken into account in the H+ mass balance, in order for true value for the point of zero charge (pzc=6.5+/-0.2) and consequently true value for the surface charge (sigma0) to be obtained. Besides the conventional potentiometric titration technique, it was found that pzc may be determined much more easily as the intersection point of the suspension titration curve and the blank one modified to include the amount of H+dissol. obtained at one ionic strength. Finally, a surface complexation model was proposed for the development of surface charge. Experimental data were satisfactorily fitted by using the value of 4.2 F m-2 for the capacitance.

  7. MIS-based sensors with hydrogen selectivity

    DOEpatents

    Li; ,Dongmei; Medlin, J. William; McDaniel, Anthony H.; Bastasz, Robert J.

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  8. Self-powered magnetic sensor based on a triboelectric nanogenerator.

    PubMed

    Yang, Ya; Lin, Long; Zhang, Yue; Jing, Qingshen; Hou, Te-Chien; Wang, Zhong Lin

    2012-11-27

    Magnetic sensors are usually based on the Hall effect or a magnetoresistive sensing mechanism. Here we demonstrate that a nanogenerator can serve as a sensor for detecting the variation of the time-dependent magnetic field. The output voltage of the sensor was found to exponentially increase with increasing magnetic field. The detection sensitivities for the change and the changing rate of magnetic field are about 0.0363 ± 0.0004 ln(mV)/G and 0.0497 ± 0.0006 ln(mV)/(G/s), respectively. The response time and reset time of the sensor are about 0.13 and 0.34 s, respectively. The fabricated sensor has a detection resolution of about 3 G and can work under low frequencies (<0.4 Hz).

  9. Sensor network based vehicle classification and license plate identification system

    SciTech Connect

    Frigo, Janette Rose; Brennan, Sean M; Rosten, Edward J; Raby, Eric Y; Kulathumani, Vinod K

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  10. Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives.

    PubMed

    Anzai, Jun-Ichi

    2016-10-01

    This review provides an overview of recent progress made in the development of electrochemical biosensors based on phenylboronic acid (PBA) and its derivatives. PBAs are known to selectively bind 1,2- and 1,3-diols to form negatively charged boronate esters in neutral aqueous media and have been used to construct electrochemical glucose sensors because of this selective binding. PBA-modified metal and carbon electrodes have been widely studied as voltammetric and potentiometric glucose sensors. In some cases, ferroceneboronic acid or ferrocene-modified phenylboronic acids are used as sugar-selective redox compounds. Another option for sensors using PBA-modified electrodes is potentiometric detection, in which the changes in surface potential of the electrodes are detected as an output signal. An ion-sensitive field effect transistor (FET) has been used as a signal transducer in potentiometric sensors. Glycoproteins, such as glycated hemoglobin (HbA1c), avidin, and serum albumin can also be detected by PBA-modified electrodes because they contain hydrocarbon chains on the surface. HbA1c sensors are promising alternatives to enzyme-based glucose sensors for monitoring blood glucose levels over the preceding 2-3months. In addition, PBA-modified electrodes can be used to detect a variety of compounds including hydroxy acids and fluoride (F(-)) ions. PBA-based F(-) ion sensors may be useful if reagentless sensors can be developed.

  11. Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives.

    PubMed

    Anzai, Jun-Ichi

    2016-10-01

    This review provides an overview of recent progress made in the development of electrochemical biosensors based on phenylboronic acid (PBA) and its derivatives. PBAs are known to selectively bind 1,2- and 1,3-diols to form negatively charged boronate esters in neutral aqueous media and have been used to construct electrochemical glucose sensors because of this selective binding. PBA-modified metal and carbon electrodes have been widely studied as voltammetric and potentiometric glucose sensors. In some cases, ferroceneboronic acid or ferrocene-modified phenylboronic acids are used as sugar-selective redox compounds. Another option for sensors using PBA-modified electrodes is potentiometric detection, in which the changes in surface potential of the electrodes are detected as an output signal. An ion-sensitive field effect transistor (FET) has been used as a signal transducer in potentiometric sensors. Glycoproteins, such as glycated hemoglobin (HbA1c), avidin, and serum albumin can also be detected by PBA-modified electrodes because they contain hydrocarbon chains on the surface. HbA1c sensors are promising alternatives to enzyme-based glucose sensors for monitoring blood glucose levels over the preceding 2-3months. In addition, PBA-modified electrodes can be used to detect a variety of compounds including hydroxy acids and fluoride (F(-)) ions. PBA-based F(-) ion sensors may be useful if reagentless sensors can be developed. PMID:27287174

  12. Haem-based sensors: a still growing old superfamily.

    PubMed

    Germani, Francesca; Moens, Luc; Dewilde, Sylvia

    2013-01-01

    The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches. PMID:24054793

  13. Novel localized surface plasmon resonance based optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Muri, Harald Ian D. I.; Hjelme, Dag R.

    2016-03-01

    Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP's in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP's available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.

  14. Plasmonics Based Harsh Environment Compatible Chemical Sensors

    SciTech Connect

    Michael Carpenter

    2012-01-15

    Au-YSZ, Au-TiO{sub 2} and Au-CeO{sub 2} nanocomposite films have been investigated as a potential sensing element for high-temperature plasmonic sensing of H{sub 2}, CO, and NO{sub 2} in an oxygen containing environment. The Au-YSZ and Au-TiO{sub 2} films were deposited using PVD methods, while the CeO{sub 2} thin film was deposited by molecular beam epitaxy (MBE) and Au was implanted into the as-grown film at an elevated temperature followed by high temperature annealing to form well-defined Au nanoclusters. Each of the films were characterized by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). For the gas sensing experiments, separate exposures to varying concentrations of H{sub 2}, CO, and NO{sub 2} were performed at a temperature of 500°C in oxygen backgrounds of 5.0, 10, and ~21% O{sub 2}. Changes in the localized surface plasmon resonance (LSPR) absorption peak were monitored during gas exposures and are believed to be the result of oxidation-reduction processes that fill or create oxygen vacancies in the respective metal oxides. This process affects the LSPR peak position either by charge exchange with the Au nanoparticles or by changes in the dielectric constant surrounding the particles. Hyperspectral multivariate analysis was used to gauge the inherent selectivity of the film between the separate analytes. From principal component analysis (PCA), unique and identifiable responses were seen for each of the analytes. Linear discriminant analysis (LDA) was also used on the Au-CeO{sub 2} results and showed separation between analytes as well as trends in gas concentration. Results indicate that each of the films are is selective towards O{sub 2}, H{sub 2}, CO, and NO{sub 2} in separate exposures. However, when the films were analyzed in a sensor array based experiment, ie simultaneous exposures to the target gases, PCA analysis of the combined response showed an even greater selective character towards the target gases. Combined

  15. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    SciTech Connect

    Zhu, Chengzhou; Yang, Guohai; Li, He; Du, Dan; Lin, Yuehe

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advances in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.

  16. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    DOE PAGESBeta

    Zhu, Chengzhou; Yang, Guohai; Li, He; Du, Dan; Lin, Yuehe

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advancesmore » in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.« less

  17. Optical hydrogen sensors based on metal-hydrides

    NASA Astrophysics Data System (ADS)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  18. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory

    PubMed Central

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-01

    Sensor data fusion plays an important role in fault diagnosis. Dempster–Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods. PMID:26797611

  19. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory.

    PubMed

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-18

    Sensor data fusion plays an important role in fault diagnosis. Dempster-Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods.

  20. Analysis of Vehicle Detection with WSN-Based Ultrasonic Sensors

    PubMed Central

    Jo, Youngtae.; Jung, Inbum.

    2014-01-01

    Existing traffic information acquisition systems suffer from high cost and low scalability. To address these problems, the application of wireless sensor networks (WSNs) has been studied, as WSN-based systems are highly scalable and have a low cost of installing and replacing the systems. Magnetic, acoustic and accelerometer sensors have been considered for WSN-based traffic surveillance, but the use of ultrasonic sensors has not been studied. The limitations of WSN-based systems make it necessary to employ power saving methods and vehicle detection algorithms with low computational complexity. In this paper, we model and analyze optimal power saving methodologies for an ultrasonic sensor and present a computationally-efficient vehicle detection algorithm using ultrasonic data. The proposed methodologies are implemented and evaluated with a tiny microprocessor on real roads. The evaluation results show that the low computational complexity of our algorithm does not compromise the accuracy of vehicle detection. PMID:25093342

  1. Analysis of vehicle detection with WSN-based ultrasonic sensors.

    PubMed

    Jo, Youngtae; Jung, Inbum

    2014-08-04

    Existing traffic information acquisition systems suffer from high cost and low scalability. To address these problems, the application of wireless sensor networks (WSNs) has been studied, as WSN-based systems are highly scalable and have a low cost of installing and replacing the systems. Magnetic, acoustic and accelerometer sensors have been considered for WSN-based traffic surveillance, but the use of ultrasonic sensors has not been studied. The limitations of WSN-based systems make it necessary to employ power saving methods and vehicle detection algorithms with low computational complexity. In this paper, we model and analyze optimal power saving methodologies for an ultrasonic sensor and present a computationally-efficient vehicle detection algorithm using ultrasonic data. The proposed methodologies are implemented and evaluated with a tiny microprocessor on real roads. The evaluation results show that the low computational complexity of our algorithm does not compromise the accuracy of vehicle detection.

  2. Force-compensated hydrogel-based pH sensor

    NASA Astrophysics Data System (ADS)

    Deng, Kangfa; Gerlach, Gerald; Guenther, Margarita

    2015-04-01

    This paper presents the design, simulation, assembly and testing of a force-compensated hydrogel-based pH sensor. In the conventional deflection method, a piezoresistive pressure sensor is used as a chemical-mechanical-electronic transducer to measure the volume change of a pH-sensitive hydrogel. In this compensation method, the pH-sensitive hydrogel keeps its volume constant during the whole measuring process, independent of applied pH value. In order to maintain a balanced state, an additional thermal actuator is integrated into the close-loop sensor system with higher precision and faster dynamic response. Poly (N-isopropylacrylamide) (PNIPAAm) with 5 mol% monomer 3-acrylamido propionic acid (AAmPA) is used as the temperature-sensitive hydrogel, while poly (vinyl alcohol) with poly (acrylic acid) (PAA) serves as the pH-sensitive hydrogel. A thermal simulation is introduced to assess the temperature distribution of the whole microsystem, especially the temperature influence on both hydrogels. Following tests are detailed to verify the working functions of a sensor based on pH-sensitive hydrogel and an actuator based on temperature-sensitive hydrogel. A miniaturized prototype is assembled and investigated in deionized water: the response time amounts to about 25 min, just half of that one of a sensor based on the conventional deflection method. The results confirm the applicability of t he compensation method to the hydrogel-based sensors.

  3. Sensor-fusion-based biometric identity verification

    SciTech Connect

    Carlson, J.J.; Bouchard, A.M.; Osbourn, G.C.; Martinez, R.F.; Bartholomew, J.W.; Jordan, J.B.; Flachs, G.M.; Bao, Z.; Zhu, L.

    1998-02-01

    Future generation automated human biometric identification and verification will require multiple features/sensors together with internal and external information sources to achieve high performance, accuracy, and reliability in uncontrolled environments. The primary objective of the proposed research is to develop a theoretical and practical basis for identifying and verifying people using standoff biometric features that can be obtained with minimal inconvenience during the verification process. The basic problem involves selecting sensors and discovering features that provide sufficient information to reliably verify a person`s identity under the uncertainties caused by measurement errors and tactics of uncooperative subjects. A system was developed for discovering hand, face, ear, and voice features and fusing them to verify the identity of people. The system obtains its robustness and reliability by fusing many coarse and easily measured features into a near minimal probability of error decision algorithm.

  4. Enzyme-Based Fiber Optic Sensors

    NASA Astrophysics Data System (ADS)

    Kulp, Thomas J.; Camins, Irene; Angel, Stanley M.

    1988-06-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and, consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of ~0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is ~5 to 12 min.

  5. Enzyme-based fiber optic sensors

    SciTech Connect

    Kulp, T.J.; Camins, I.; Angel, S.M.

    1987-12-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of approx.0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is approx.5 to 12 min. 7 figs.

  6. Nanomaterial Based Sensors for NASA Missions

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    Nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and metal nanowires have shown interesting electronic properties and therefore have been pursued for a variety of space applications requiring ultrasensitive and light-weight sensor and electronic devices. We have been pursuing development of chemical and biosensors using carbon nanotubes and carbon nanofibers for the last several years and this talk will present the benefits of nanomaterials these applications. More recently, printing approaches to manufacturing these devices have been explored as a strategy that is compatible to a microgravity environment. Nanomaterials are either grown in house or purchased and processed as electrical inks. Chemical modification or coatings are added to the nanomaterials to tailor the nanomaterial to the exact application. The development of printed chemical sensors and biosensors will be discussed for applications ranging from crew life support to exploration missions.

  7. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, May 2008

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2008. Potentiometric contours are based on water-level measurements collected at 567 wells during the period May 6-May 27, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours. Measured values of the potentiometric surface ranged from 7 feet below NGVD29 near Fernandina Beach, Florida, to 124 feet above NGVD29 in Polk County, Florida. The average water level of the network in May 2008 was about 1 foot lower than the average in September 2007 following below-average rainfall during the dry season of 2007-08. Seasonal differences in network average water levels generally range from 4 to 6 feet. For 457 wells with previous measurements, May 2008 levels ranged from about 19 feet below to about 11 feet above September 2007 water levels. The average water level of the network in May 2008 was about 1 foot higher than the average in May 2007. For 544 wells with previous measurements, May 2008 levels ranged from about 8 feet below to about 13 feet above May 2007 water levels. Long-term hydrographs of ground-water levels for continuous and periodic wells are available

  8. Electro-active material (EAM) based bend sensors

    NASA Astrophysics Data System (ADS)

    LaComb, Ronald; LaComb, Julie

    2010-04-01

    The capability to accurately estimate strain and orientation of cables in an undersea environment is important for a multitude of applications. One way to estimate the positional location of a submersed cable is to utilize a network of distributed bend sensors providing inputs to a curve fitting algorithm. In this work commercially available bend sensors are characterized for small deflections. In addition proto-type devices are presented which can potentially improve device sensitivity. Commercially available bend sensors are based upon electro-active materials and variable resistance materials. Electro-active materials (EAM) are known for their actuator functionality but certain EAMs are capable of sensing as well. New advances in materials such as Ionic Polymer Metal Composites (IPMC) are proving suitable for quasi-static sensor applications. These sensors are low power, conformal and produce directionally dependent output voltages which are linearly proportional to deflection, with voltage polarity representative of the deflection direction. IPMCs are capable of being morphed for increased sensitivity. Variable resistivity sensors are based on smart epoxy polymer and carbon loaded inks. These sensors are inexpensive and conformal and unlike EAMs provide static measurements.

  9. Design and use of electrochemical sensors in enantioselective high throughput screening of drugs. A minireview.

    PubMed

    Stefana, R I; van Staden, J L; Aboul-Enein, H Y

    2000-12-01

    The importance of reliable detection systems for enantiomeric assays increases with the necessity of high throughput screening analysis of raw materials for the pharmaceutical industry. The utilization of electrochemical sensors in enantioselective analysis is an accurate and precise alternative to chromatographic techniques. The reliability of the response characteristics as well as of the analytical information obtained by using electrochemical sensors is strictly correlated with the design of the sensors. The designs evaluated for sensors have been based on PVC, imprinting polymers and carbon paste matrices. Among these, carbon paste sensors have been the most reliable and have been utilized for the construction of potentiometric, enantioselective membrane electrodes as well as for amperometric biosensors, and immunosensors. There are two ways to use the electrochemical sensors in enantioselective screening analysis: selective binding and catalyst selectivity. A molecule with a special chemical architecture is required for selective binding: a lock for a key. The high reliability of analytical information obtained using these sensors has made possible the automation of potentiometric and amperometric techniques by integration of enantioselective sensors as detectors in flow injection analysis and sequential injection analysis techniques.

  10. Compact IR laser for calibration of space based sensors

    SciTech Connect

    Kietrick, K.M.; Dezenberg, G.; Hamilton, C.; Vann, J.; LaSala, J.

    1996-04-17

    An Er:YAG laser, operating at 2.94 microns, has been developed for in-theater calibration of space based infrared sensors. The laser is used to illuminate a spaceborne sensor focal plane from a surveyed ground reference point. The known reference point is compared to the laser position reported by the sensor, and boresight corrections are made. The Er:YAG laser is side pumped by a InGaAs diode array and is tuned to an atmospheric microwindow with and intracavity etalon. This technology is being directly applied to meet Army requirements for enhanced deep strike targeting information supplied to theater weapons systems.

  11. Aptamer-based viability impedimetric sensor for viruses.

    PubMed

    Labib, Mahmoud; Zamay, Anna S; Muharemagic, Darija; Chechik, Alexey V; Bell, John C; Berezovski, Maxim V

    2012-02-21

    The development of aptamer-based viability impedimetric sensor for viruses (AptaVISens-V) is presented. Highly specific DNA aptamers to intact vaccinia virus were selected using cell-SELEX technique and integrated into impedimetric sensors via self-assembly onto a gold microelectrode. Remarkably, this aptasensor is highly selective and can successfully detect viable vaccinia virus particles (down to 60 virions in a microliter) and distinguish them from nonviable viruses in a label-free electrochemical assay format. It also opens a new venue for the development of a variety of viability sensors for detection of many microorganisms and spores.

  12. Smart sensors wireless measurement network based on Bluetooth standard

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Jachowicz, Ryszard; Jablonski, Michal

    2003-09-01

    The paper briefly describes Bluetooth standard and authors" Bluetoth sensors modules construction. At the beginning the short comparison of existing on the market standards of wireless data transmission (IEEE802.11, IEEE802.11b/g, IEEE802.11a, HomeRF, Bluetooth, Radiometrix, Motorola, IrDA) brought out by main firms is presented. Next selected Bluetooth features and functions useful to sensors wireless network creations are discussed. At the end our own Bluetooth sensor based on the newest Ericsson ROK 101 007 module is specified.

  13. Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures

    SciTech Connect

    Barry, Richard C.; Lin, Yuehe; Wang, Jun; Liu, Guodong; Timchalk, Charles

    2009-01-01

    This manuscript highlights research focused on the development of field-deployable analytical instruments based on EC detection. Background information and a general overview of EC detection methods and integrated use of nanomaterials in the development of these sensors are provided. New developments in EC sensors using various types of screen-printed electrodes, integrated nanomaterials, and immunoassays are discussed. Recent applications of EC sensors for assessing exposure to pesticides or detecting biomarkers of disease are highlighted to demonstrate the ability to monitor chemical metabolites, enzyme activity, or protein biomarkers of disease. In addition, future considerations and opportunities for advancing the use of EC platforms for dosimetric studies are covered.

  14. A space-based concept for a collision warning sensor

    NASA Technical Reports Server (NTRS)

    Talent, David L.; Vilas, Faith

    1990-01-01

    This paper describes a concept for a space-based collision warning sensor experiment, the Debris Collision Warning Sensor (DCWS) experiment, in which the sensor will rely on passive sensing of debris in optical and IR passband. The DCWS experiment will be carried out under various conditions of solar phase angle and pass geometry; debris from 1.5 m to 1 mm diam will be observable. The mission characteristics include inclination in the 55-60 deg range and an altitude of about 500 km. The results of the DCWS experiment will be used to generate collision warning scenarios for the Space Station Freedom.

  15. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: poly(vinyl chloride)-based sensor for acetate.

    PubMed

    Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A

    2008-08-15

    A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of <15s and a Nernstian slope of 60.3+/-0.3 mV decade(-1) of activity. Influences of the membrane composition, and possible interfering anions were investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.

  16. Galvanic cell without liquid junction for potentiometric determination of copper.

    PubMed

    Migdalski, Jan; Błaz, Teresa; Zrałka, Barbara; Lewenstam, Andrzej

    2007-07-01

    This paper describes potentiometric measurements in an integrated galvanic cell with both indicator and reference electrodes. Both electrodes are conducting polymer-based. The copper-sensitive indicator electrode is made by using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with 2-(o-arsenophenylazo)-1,8-dihydroxynaphthalene-3,6-disulphonic sodium salt (Arsenazo-I) as the electroactive substance in the film, while the reference electrode is based on PEDOT doped by 2-morpholineoethanesulfonic acid (MES). It is shown that the galvanic cell can be used for determination of copper both in non-aqueous media (where all PVC-based membranes failed) and in the presence of chloride ions, which disturb the signal of conventional copper ion-selective electrodes with solid-state membranes. It is further shown that the titration of copper ions can be successfully monitored using the described electrochemical cell.

  17. Rapid determination of the equivalence volume in potentiometric acid-base titrations to a preset pH-I Theory and applications.

    PubMed

    Ivaska, A

    1974-06-01

    A new approach to shorten the time needed for an acid-base titration has been made. The method developed is based on the equation for acid-base titrations derived by Ingman and Still. The equation is transformed into such a form that only one titration point is needed to calculate the equivalence volume when the titration is carried out to a preset pH which can be chosen according to the experimental conditions. The method is used for titration of acetic acid, log K(H)(HA) = 4.65, hydroxylammonium ion, log K(H)(HA) approximately 6.2, and boric acid, log K(H)(HA) approximately 9.1, with an error of 0.1-0.5%. In titration of hydrogen ascorbate ion, log K(H)(HA) approximately 11.3, the error obtained was about 0.3-2%.

  18. Sensor Systems Based on FPGAs and Their Applications: A Survey

    PubMed Central

    de la Piedra, Antonio; Braeken, An; Touhafi, Abdellah

    2012-01-01

    In this manuscript, we present a survey of designs and implementations of research sensor nodes that rely on FPGAs, either based upon standalone platforms or as a combination of microcontroller and FPGA. Several current challenges in sensor networks are distinguished and linked to the features of modern FPGAs. As it turns out, low-power optimized FPGAs are able to enhance the computation of several types of algorithms in terms of speed and power consumption in comparison to microcontrollers of commercial sensor nodes. We show that architectures based on the combination of microcontrollers and FPGA can play a key role in the future of sensor networks, in fields where processing capabilities such as strong cryptography, self-testing and data compression, among others, are paramount.

  19. Torque Sensor Based on Tunnel-Diode Oscillator

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Young, Joseph

    2008-01-01

    A proposed torque sensor would be capable of operating over the temperature range from 1 to 400 K, whereas a typical commercially available torque sensor is limited to the narrower temperature range of 244 to 338 K. The design of this sensor would exploit the wide temperature range and other desirable attributes of differential transducers based on tunnel-diode oscillators as described in "Multiplexing Transducers Based on Tunnel-Diode Oscillators". The proposed torque sensor would include three flexural springs that would couple torque between a hollow outer drive shaft and a solid inner drive shaft. The torque would be deduced from the torsional relative deflection of the two shafts, which would be sensed via changes in capacitances of two capacitors defined by two electrodes attached to the inner shaft and a common middle electrode attached to the outer shaft.

  20. A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica

    PubMed Central

    Wagner, Thorsten; Krotzky, Sören; Weiß, Alexander; Sauerwald, Tilman; Kohl, Claus-Dieter; Roggenbuck, Jan; Tiemann, Michael

    2011-01-01

    Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures. PMID:22163790

  1. Flexible textile-based strain sensor induced by contacts

    NASA Astrophysics Data System (ADS)

    Zhang, Hui

    2015-10-01

    In this paper, the contact effects are used as the key sensing element to develop flexible textile-structured strain sensors. The structures of the contact are analyzed theoretically and the contact resistances are investigated experimentally. The electromechanical properties of the textiles are investigated to find the key factors which determine the sensitivity, repeatability, and linearity of the sensor. The sensing mechanism is based on the change of contact resistance induced by the change of the configuration of the textiles. In order to improve the performance of the textile strain sensor, the contact resistance is designed based on the electromechanical properties of the fabric. It can be seen from the results that the performance of the sensor is largely affected by the structure of the contacts, which are determined by the morphology of fiber surface and the structures of the yarn and fabric.

  2. SERS-based pesticide detection by using nanofinger sensors

    NASA Astrophysics Data System (ADS)

    Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong

    2015-01-01

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  3. Voronoi-based localisation algorithm for mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Guan, Zixiao; Zhang, Yongtao; Zhang, Baihai; Dong, Lijing

    2016-11-01

    Localisation is an essential and important part in wireless sensor networks (WSNs). Many applications require location information. So far, there are less researchers studying on mobile sensor networks (MSNs) than static sensor networks (SSNs). However, MSNs are required in more and more areas such that the number of anchor nodes can be reduced and the location accuracy can be improved. In this paper, we firstly propose a range-free Voronoi-based Monte Carlo localisation algorithm (VMCL) for MSNs. We improve the localisation accuracy by making better use of the information that a sensor node gathers. Then, we propose an optimal region selection strategy of Voronoi diagram based on VMCL, called ORSS-VMCL, to increase the efficiency and accuracy for VMCL by adapting the size of Voronoi area during the filtering process. Simulation results show that the accuracy of these two algorithms, especially ORSS-VMCL, outperforms traditional MCL.

  4. RESTFul based heterogeneous Geoprocessing workflow interoperation for Sensor Web Service

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Chen, Nengcheng; Di, Liping

    2012-10-01

    Advanced sensors on board satellites offer detailed Earth observations. A workflow is one approach for designing, implementing and constructing a flexible and live link between these sensors' resources and users. It can coordinate, organize and aggregate the distributed sensor Web services to meet the requirement of a complex Earth observation scenario. A RESTFul based workflow interoperation method is proposed to integrate heterogeneous workflows into an interoperable unit. The Atom protocols are applied to describe and manage workflow resources. The XML Process Definition Language (XPDL) and Business Process Execution Language (BPEL) workflow standards are applied to structure a workflow that accesses sensor information and one that processes it separately. Then, a scenario for nitrogen dioxide (NO2) from a volcanic eruption is used to investigate the feasibility of the proposed method. The RESTFul based workflows interoperation system can describe, publish, discover, access and coordinate heterogeneous Geoprocessing workflows.

  5. Glucose sensor based on conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Koinkar, Pankaj; Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In the present investigation, a glucose sensor based on conducting polyaniline nanowire electrode junction (CPNEJ) has been reported. The CPNEJ platform was modified by glucose oxidase by cross-linking in the presence of glutaraldehyde. The signal transduction mechanism of the sensor is based on the change in micro electrode junction conductance as a result of glucose oxidation induced change in the polymer redox state. Small size of CPNEJ sensor causes to regenerate enzyme naturally without need of redox mediators, as a result it consumes minimum amount of oxygen and also gives very fast response. This sensor exhibited good linear response range from 1 mM to 20 mM of glucose concentration with excellent sensitivity of 12 μA/mM.

  6. Mobility in free-space optics based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ghosh, Anjan K.; Verma, Pramode; Huck, Robert C.

    2009-05-01

    This paper proposes an FSO-based mobile sensor network that is not subject to RF interference common to wireless sensor networks. FSO-based mobile sensor networks can potentially be used in a battlefield where security of communication, including freedom from susceptibility to enemy-induced jamming, is important. The paper discusses the design of nodes containing multiple transceivers composed of LEDs and photo detectors. Results of initial experiments are included. The work reported in this paper is part of an ongoing investigation on mobile FSO networks, including the design of efficient protocols that can allow the mobile sensor nodes to function as a mesh network permitting information exchange among nodes directly and, possibly, through an intermediate node.

  7. Plastic Optical Fiber Displacement Sensor Based on Dual Cycling Bending

    PubMed Central

    Kuang, Jao-Hwa; Chen, Pao-Chuan; Chen, Yung-Chuan

    2010-01-01

    In this study, a high sensitivity and easy fabricated plastic optical fiber (POF) displacement sensor is proposed. A POF specimen subjected to dual cyclic bending is used to improve the sensitivity of the POF displacement sensor. The effects of interval between rollers, relative displacement and number of rollers on the sensitivity of the displacement sensor are analyzed both experimentally and numerically. A good agreement between the experimental measurements and numerical calculations is obtained. The results show that the interval between rollers affects sensitivity most significantly than the other design parameters. Based on the experimental data, a linear equation is derived to estimate the relationship between the power loss and the relative displacement. The difference between the estimated results and the experimental results is found to be less than 8%. The results also show that the proposed POF displacement sensor based on dual cyclic bending can be used to detect displacement accurately. PMID:22163465

  8. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1982

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, Judith C.; Curtin, Stephen E.

    1982-01-01

    A map was prepared that shows the potentiometric surface of the Magothy aquifer in southern Maryland in September 1982. The map is based on measurements from a network of 83 observation wells. The highest levels of the potentiometric surface, 57 and 58 feet above sea level, were measured near the outcrop-subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The potentiometric surface slopes to the southeast to about sea level along much of the western shore of the Chesapeake Bay. Three distinct and extensive cones of depression have developed in the potentiometric surface around the well fields of the Annapolis area, Waldorf area, and Chalk Point. Several square miles of each cone are below sea level, and in some areas at Chalk Point and Waldorf, the cone is more than 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy Administration. (USGS)

  9. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  10. Concentration-related response potentiometric titrations to study the interaction of small molecules with large biomolecules.

    PubMed

    Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J

    2014-12-16

    In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands.

  11. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals. PMID:27444048

  12. Interferometric sensors based on sinusoidal optical path length modulation

    NASA Astrophysics Data System (ADS)

    Knell, Holger; Schake, Markus; Schulz, Markus; Lehmann, Peter

    2014-05-01

    Sinusoidal optical path length modulation of the reference or the measurement arm of an interferometer is a technique which is a fast alternative to white light or phase shifting interferometry. In this paper three different sensors using this periodical modulation are presented. In addition, signal processing algorithms based on Discrete Fourier Transform, Hilbert Transform and parameter estimation are analyzed. These algorithms are used to obtain measurement results which demonstrate the capabilities of the presented interferometric sensors.

  13. Molecularly Imprinted Polymer Based Sensor for the Detection of Theophylline

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.; del Valle, Manel

    2011-11-01

    A molecularly imprinted polymer (MIP) impedance-based sensor was employed to detect theophylline in distilled water. To evaluate its sensibility, impedance measurements were carried out in a diluted solution of theophylline (1 mM) and distilled water using MIP and NIP (reference non-imprinted polymer) sensors. MIP showed higher sensitivity to theophylline than the NIP. This feature shows their suitability for developing an electronic tongue system for determination of methylxanthines.

  14. Potentiometric surface in the Central Oklahoma (Garber-Wellington) aquifer, Oklahoma, 2009

    USGS Publications Warehouse

    Mashburn, Shana L.; Magers, Jessica

    2011-01-01

    A study of the hydrogeology of the Central Oklahoma aquifer was started in 2008 to provide the Oklahoma Water Resources Board (OWRB) hydrogeologic data and a groundwater flow model that can be used as a tool to help manage the aquifer. The 1973 Oklahoma water law requires the OWRB to do hydrologic investigations of Oklahoma's aquifers (termed 'groundwater basins') and to determine amounts of water that may be withdrawn by permitted water users. 'Maximum annual yield' is a term used by OWRB to describe the total amount of water that can be withdrawn from a specific aquifer in any year while allowing a minimum 20-year life of the basin (Oklahoma Water Resources Board, 2010). Currently (2010), the maximum annual yield has not been determined for the Central Oklahoma aquifer. Until the maximum annual yield determination is made, water users are issued a temporary permit by the OWRB for 2 acre-feet/acre per year. The objective of the study, in cooperation with the Oklahoma Water Resources Board, was to study the hydrogeology of the Central Oklahoma aquifer to provide information that will enable the OWRB to determine the maximum annual yield of the aquifer based on different proposed management plans. Groundwater flow models are typically used by the OWRB as a tool to help determine the maximum annual yield. This report presents the potentiometric surface of the Central Oklahoma aquifer based on water-level data collected in 2009 as part of the current (2010) hydrologic study. The U.S. Geological Survey (USGS) Hydrologic Investigations Atlas HA-724 by Christenson and others (1992) presents the 1986-87 potentiometric-surface map. This 1986-87 potentiometric-surface map was made as part of the USGS National Water-Quality Assessment pilot project for the Central Oklahoma aquifer that examined the geochemical and hydrogeological processes operating in the aquifer. An attempt was made to obtain water-level measurements for the 2009 potentiometric-surface map from the wells

  15. Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: application to sulfamethoxazole.

    PubMed

    Almeida, S A A; Truta, Liliana A A N A; Queirós, Raquel B; Montenegro, M C B S M; Cunha, Alexandre L; Sales, M G F

    2012-05-15

    Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN)<500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10(-5) to 1 × 10(-10) and 1 × 10(-3) to 1 × 10(-8)mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10(-8)mol/L) SMX for a sub-Nernstian slope of -40.3 mV/decade from 5.0 × 10(-8) to 2.4 × 10(-5)mol/L. The described sensors were found promising devices for field applications. The good selectivity of the sensory materials together with a carefully selected composition for the inner reference solution allowed LODs near the nanomolar range. Both solid-contact and "pipette tip"-based sensors were successfully applied to the analysis of aquaculture waters.

  16. Elements for successful sensor-based process control {Integrated Metrology}

    NASA Astrophysics Data System (ADS)

    Butler, Stephanie Watts

    1998-11-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended.

  17. Inertial Sensor-Based Gait Recognition: A Review.

    PubMed

    Sprager, Sebastijan; Juric, Matjaz B

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  18. Inertial Sensor-Based Gait Recognition: A Review

    PubMed Central

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  19. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    PubMed

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  20. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    PubMed Central

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  1. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    PubMed

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  2. Automatic sensor placement for model-based robot vision.

    PubMed

    Chen, S Y; Li, Y F

    2004-02-01

    This paper presents a method for automatic sensor placement for model-based robot vision. In such a vision system, the sensor often needs to be moved from one pose to another around the object to observe all features of interest. This allows multiple three-dimensional (3-D) images to be taken from different vantage viewpoints. The task involves determination of the optimal sensor placements and a shortest path through these viewpoints. During the sensor planning, object features are resampled as individual points attached with surface normals. The optimal sensor placement graph is achieved by a genetic algorithm in which a min-max criterion is used for the evaluation. A shortest path is determined by Christofides algorithm. A Viewpoint Planner is developed to generate the sensor placement plan. It includes many functions, such as 3-D animation of the object geometry, sensor specification, initialization of the viewpoint number and their distribution, viewpoint evolution, shortest path computation, scene simulation of a specific viewpoint, parameter amendment. Experiments are also carried out on a real robot vision system to demonstrate the effectiveness of the proposed method.

  3. Development of metamaterial based low cost passive wireless temperature sensor

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Shuvo, Mohammad Arif Ishtiaq; Delfin, Diego; Lin, Yirong; Choudhuri, Ahsan; Rumpf, R. C.

    2014-03-01

    Wireless passive temperature sensors are gaining increasing attention due to the ever-growing need of precise monitoring of temperature in high temperature energy conversion systems such as gas turbines and coal-based power plants. Unfortunately, the harsh environment such as high temperature and corrosive atmosphere present in these systems limits current solutions. In order to alleviate these issues, this paper presents the design, simulation, and manufacturing process of a low cost, passive, and wireless temperature sensor that can withstand high temperature and harsh environment. The temperature sensor was designed following the principle of metamaterials by utilizing Closed Ring Resonators (CRR) embedded in a dielectric matrix. The proposed wireless, passive temperature sensor behaves like an LC circuit that has a resonance frequency that depends on temperature. A full wave electromagnetic solver Ansys Ansoft HFSS was used to perform simulations to determine the optimum dimensions and geometry of the sensor unit. The sensor unit was prepared by conventional powder-binder compression method. Commercially available metal washers were used as CRR structures and Barium Titanate (BTO) was used as the dielectric materials. Response of the fabricated sensor at room temperature was analyzed using a pair of horn antenna connected with a network analyzer.

  4. Video-Based Sensor for Robotic Position and Attitude determination

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Book, Michael L.; Roe, Fred D., Jr. (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center (MSFC) has, for the last ten years, developed various video-based sensors for use in automated docking systems. The latest generation of sensor will operate at rates of up to 100 Hz, determining the relative position (X, Y, and Z) and attitude (Roll, Pitch, and Yaw) between the sensor and a small 3-dimensional target, making it suitable for applications in robotic sensing. The Advanced Video Guidance Sensor (AVGS) is designed to track multiple targets at different ranges and determine the position and attitude of each one. The previous generation of video sensor, the Video Guidance Sensor (VGS), was flown twice on the Space Shuttle to test its performance on orbit. One of the tests performed was determining the relative positions and attitudes between the VGS and its target, which was moved to various positions using the Remote Manipulator System (RMS). The RMS position data and VGS measured data were analyzed after the flights, with good correlation between the position and attitude data of the two data sets. The test using the RMS gives a good idea of the ability of the use of the AVGS as a sensor for end-effector position and attitude determination.

  5. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, May 1995

    USGS Publications Warehouse

    Knowles, Leel; O'Reilly, A. M.; Phelps, G.G.; Bradner, L.A.

    1995-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1995. The map is based on water-level measurements made at more than 900 wells and springs. Approximately 30 new wells were added to better define the potentiometric surface mainly in the northwest area of the map. Data on the map were contoured using 5-foot contour intervals in most areas. Two new wells located north of Rainbow Springs indicate a slight northward extension of the depressed area surrounding the springs. Several new wells in Bradford County indicate a slight reduction in the size of the potentiometric-surface high along the northwest edge of the county. The potentiometric surface of this karstic aquifer generally reflects land surface topography. Potentiometric-surface highs often correspond to topographic highs, which are areas of recharge to the Upper Floridan aquifer. Springs within topographic lows along with areas of more diffuse upward leakage are natural zones of discharge. Municipal, agricultural, and industrial withdrawals have lowered the potentiometric surface in some areas. The potentiometric surface ranged from 127 feet above sea level in Polk County to 84 feet below sea level in southeast Georgia near the St. Marys River. Water levels measured in May 1995 generally were about 0 to 4 feet higher than those measured in May 1994 except in St. Lucie County and near Rainbow Springs, where levels were 1 to 3 feet lower. Generally, May 1995 water levels were 0 to 5 feet lower than levels in September 1994, except near Orlando, where levels were 6 to 12 feet lower, and across the northwest corner of the map area which includes Marion, Alachua, Bradford, Baker, and Nassau Counties, north and west Duval County, and south Georgia. (USGS)

  6. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    PubMed

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions.

  7. NOx Sensor Development

    SciTech Connect

    Woo, L Y; Glass, R S

    2010-11-01

    NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaust sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications

  8. Gas Sensors Based on Ceramic p-n Heterocontacts

    SciTech Connect

    Aygun, Seymen Murat

    2005-01-01

    Ceramic p-n heterocontacts based on CuO/ZnO were successfully synthesized and a systematic study of their hydrogen sensitivity was conducted. The sensitivity and response rates of CuO/ZnO sensors were studied utilizing current-voltage, current-time, and impedance spectroscopy measurements. The heterocontacts showed well-defined rectifying characteristics and were observed to detect hydrogen via both dc and ac measurements. Surface coverage data were derived from current-time measurements which were then fit to a two-site Langmuir adsorption model quite satisfactorily. The fit suggested that there should be two energetically different adsorption sites in the system. The heterocontacts were doped in an attempt to increase the sensitivity and the response rate of the sensor. First, the effects of doping the p-type (CuO) on the sensor characteristics were investigated. Doping the p-type CuO with both acceptor and isovalent dopants greatly improved the hydrogen sensitivity. The sensitivity of pure heterocontact observed via I-V measurements was increased from ~2.3 to ~9.4 with Ni doping. Dopants also enhanced the rectifying characteristics of the heterocontacts. Small amounts of Li addition were shown to decrease the reverse bias (saturation) current to 0.2 mA at a bias level of -5V. No unambiguous trends were observed between the sensitivity, the conductivity, and the density of the samples. Comparing the two phase microstructure to the single phase microstructure there was no dramatic increase in the sensitivity. Kinetic studies also confirmed the improved sensor characteristics with doping. The dopants decreased the response time of the sensor by decreasing the response time of one of the adsorption sites. The n-type ZnO was doped with both acceptor and donor dopants. Li doping resulted in the degradation of the p-n junction and the response time of the sensor. However, the current-voltage behavior of Ga-doped heterocontacts showed the best rectifying characteristics

  9. Performance Evaluation of Triangulation Based Range Sensors

    PubMed Central

    Guidi, Gabriele; Russo, Michele; Magrassi, Grazia; Bordegoni, Monica

    2010-01-01

    The performance of 2D digital imaging systems depends on several factors related with both optical and electronic processing. These concepts have originated standards, which have been conceived for photographic equipment and bi-dimensional scanning systems, and which have been aimed at estimating different parameters such as resolution, noise or dynamic range. Conversely, no standard test protocols currently exist for evaluating the corresponding performances of 3D imaging systems such as laser scanners or pattern projection range cameras. This paper is focused on investigating experimental processes for evaluating some critical parameters of 3D equipment, by extending the concepts defined by the ISO standards to the 3D domain. The experimental part of this work concerns the characterization of different range sensors through the extraction of their resolution, accuracy and uncertainty from sets of 3D data acquisitions of specifically designed test objects whose geometrical characteristics are known in advance. The major objective of this contribution is to suggest an easy characterization process for generating a reliable comparison between the performances of different range sensors and to check if a specific piece of equipment is compliant with the expected characteristics. PMID:22163599

  10. NV-THERM based sensor effects for imaging simulations

    NASA Astrophysics Data System (ADS)

    Tomkinson, David; Wilhelm, Teresa; Flug, Eric; Miller, Brian; Ra, Chun; Tran, Vinh; Kang, Robin

    2005-05-01

    The Night Vision and Electronics Sensors Directorate Electro-optics Simulation Toolkit (NVEOST), follow-on to Paint-The-Night, produces real time simulation of IR scenes and sequences using modeled backgrounds and targets with physics and empirically based IR signatures. Range dependant atmospheric effects are incorporated, realistically degrading the infrared scene impinging on an infrared imaging device. Current sensor effects implementation for Paint the Night (PTN) and the Night Vision Image Generator (NVIG) is a 3 step process. First the scene energy is further attenuated by the sensor optic. Second, a prefilter kernel developed off-line, is applied to scenes or frames to affect the sensor modulation transfer function (MTF) "blurring" of scene elements. Thirdly, sensor noise is overlaid on scenes, or more often frames of scenes. NVESD is improving the PTN functionality, now entitled NVEOST, in several ways. In the near future, a sensor effects tool will directly read an NVTHERM input data file, extract that data which it can utilize and then automatically generate the sensor "world view" of a NVEOST scenario. These will include those elements currently employed: optical transmission, parameters used to calculate prefilter MTF (telescope, detector geometry) and temporal-spatial random noise (σTVH). Important improvements will include treatment of sampling effects (under sampling and super-resolution), certain significant postfilters (signal processing including boost and frame integration) and spatial noise. The sensor effects implementation will require minimal interaction; only a well developed NVTHERM input parameter set will be required. The developments described below will enhance NVEOST's utility not only as a virtual simulator but also as a formidable sensor design tool.

  11. An Immunity-Based Anomaly Detection System with Sensor Agents

    PubMed Central

    Okamoto, Takeshi; Ishida, Yoshiteru

    2009-01-01

    This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems. PMID:22291560

  12. Space-based sensor management and geostationary satellites tracking

    NASA Astrophysics Data System (ADS)

    El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Donatelli, D.

    2007-04-01

    Sensor management for space situational awareness presents a daunting theoretical and practical challenge as it requires the use of multiple types of sensors on a variety of platforms to ensure that the space environment is continuously monitored. We demonstrate a new approach utilizing the Posterior Expected Number of Targets (PENT) as the sensor management objective function, an observation model for a space-based EO/IR sensor platform, and a Probability Hypothesis Density Particle Filter (PHD-PF) tracker. Simulation and results using actual Geostationary Satellites are presented. We also demonstrate enhanced performance by applying the ProgressiveWeighting Correction (PWC) method for regularization in the implementation of the PHD-PF tracker.

  13. Semiconductor metal oxide compounds based gas sensors: A literature review

    NASA Astrophysics Data System (ADS)

    Patil, Sunil Jagannath; Patil, Arun Vithal; Dighavkar, Chandrakant Govindrao; Thakare, Kashinath Shravan; Borase, Ratan Yadav; Nandre, Sachin Jayaram; Deshpande, Nishad Gopal; Ahire, Rajendra Ramdas

    2015-03-01

    This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein.

  14. Novel carbon dioxide gas sensor based on infrared absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Lui, Junfang; Yuan, Mei

    2000-08-01

    The feasibility of sensing carbon dioxide with a IR single- beam optical structure is studied, and a novel carbon dioxide gas sensor based on IR absorption is achieved. Applying the Lambert-Beer law and some key techniques such as current stabilization for IR source, using a high-quality IR detector, and data compensation for the influences of ambience temperature and atmosphere total pressure, the sensor can measure carbon dioxide with high precision and efficiency. The mathematical models for providing temperature and pressure compensation for the sensor are established. Moreover the solutions to the models are proposed. Both the models and the solutions to the models are verified via experiments. The sensor possesses the advantages of small volume, light weight, low power consumption, and high reliability. Therefore it can be used in many associated fields, such as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  15. An improved sensor for electrochemical microcalorimetry, based on lithiumtantalate

    NASA Astrophysics Data System (ADS)

    Frittmann, Stefan; Halka, Vadym; Jaramillo, Carlos; Schuster, Rolf

    2015-06-01

    We have developed a pyroelectric sensor for electrochemical microcalorimetry, based on LiTaO3, which provides unprecedented sensitivity for the detection of electrochemically induced heat effects. Deterioration of the heat signal by electrostriction effects on the electrode surface is suppressed by a multilayered construction, where an intermediate sapphire sheet dampens mechanical deformations. Thus, well textured thin metal films become viable candidates as electrodes. We demonstrate the sensor performance for Cu underpotential deposition on (111)-textured Au films on sapphire. The sensor signal compares well with a purely thermal signal induced by heating with laser pulses. The high sensitivity of the sensor is demonstrated by measuring heat effects upon double layer charging in perchloric acid, i.e., in the absence of electrochemical charge- or ion-transfer reactions.

  16. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  17. An easily fabricated high performance ionic polymer based sensor network

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Wang, Yanjie; Hu, Xiaopin; Sun, Xiaofei; Chang, Longfei; Lu, Pin

    2016-08-01

    Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

  18. Engineering new aptamer geometries for electrochemical aptamer-based sensors

    NASA Astrophysics Data System (ADS)

    White, Ryan J.; Plaxco, Kevin W.

    2009-05-01

    Electrochemical aptamer-based sensors (E-AB sensors) represent a promising new approach to the detection of small molecules. E-AB sensors comprise an aptamer that is attached at one end to an electrode surface. The distal end of the aptamer probed is modified with an electroactive redox marker for signal transduction. Herein we report on the optimization of a cocaine-detecting E-AB sensor via optimization of the geometry of the aptamer. We explore two new aptamer architectures, one in which we concatenate three cocaine aptamers into a poly-aptamer and a second in which we divide the cocaine aptamer into pieces connected via an unstructured, 60-thymine linker. Both of these structures are designed such that the reporting redox tag will be located farther from the electrode in the unfolded, target-free conformation. Consistent with this, we find that signal gains of these two constructs are two to three times higher than that of the original E-AB architecture. Likewise all three architectures are selective enough to deploy directly in complex sample matrices, such as undiluted whole blood, with all three sensors successfully detecting the presence of cocaine. The findings in this ongoing study should be of value in future efforts to optimize the signaling of electrochemical aptamer-based sensors.

  19. Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks

    PubMed Central

    Srie Vidhya Janani, E.; Ganesh Kumar, P.

    2015-01-01

    The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417

  20. APTAMER-BASED SERRS SENSOR FOR THROMBIN DETECTION

    SciTech Connect

    Cho, H; Baker, B R; Wachsmann-Hogiu, S; Pagba, C V; Laurence, T A; Lane, S M; Lee, L P; Tok, J B

    2008-07-02

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human a-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5{prime}-capped, 3{prime}-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes.

  1. Vehicle passes detector based on multi-sensor analysis

    NASA Astrophysics Data System (ADS)

    Bocharov, D.; Sidorchuk, D.; Konovalenko, I.; Koptelov, I.

    2015-02-01

    The study concerned deals with a new approach to the problem of detecting vehicle passes in vision-based automatic vehicle classification system. Essential non-affinity image variations and signals from induction loop are the events that can be considered as detectors of an object presence. We propose several vehicle detection techniques based on image processing and induction loop signal analysis. Also we suggest a combined method based on multi-sensor analysis to improve vehicle detection performance. Experimental results in complex outdoor environments show that the proposed multi-sensor algorithm is effective for vehicles detection.

  2. Map showing how the potentiometric surface of the Magothy Aquifer of August 1980 differed from the potentiometric surface of September 1977, in southern Maryland

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, J.C.; Curtin, Stephen E.

    1982-01-01

    The map is based on the differences between two sets of water-level measurements made in 65 observation wells. One set was made in 1977, a relatively dry year, and the other set was made in 1980, another relatively dry year. The map shows that the potentiometric surface was higher in 1980, by as much as 9 feet, than it was in 1977, in a band a few miles wide near the outcrop and subcrop areas of the aquifer in northern Prince Georges County and central Anne Arundel County. In the remainder of the map area, the 1980 potentiometric surface was lower than it had been in 1977, with declines as great as 20 feet measured in well fields at Waldorf and Chalk Point. The network of observation wells was developed and is operated and maintained as part of the cooperative program between the U.S. Geological Survey and agencies of the Maryland Department of Natural Resources. (USGS)

  3. Laser-based sensors for oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Brown, Carl E.; Fingas, Mervin F.; Mullin, Joseph V.

    1997-07-01

    Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. It has long been recognized that there is no one sensor which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide field-of- view and can therefore be used to map the overall extent of the spill. These sensors, however lack the capability to positively identify oil and related products, especially along complicated beach and shoreline environments where several substrates are present. The laser-based sensors under development by the Emergencies Science Division of Environment Canada are designed to fill specific roles in oil spill response. The scanning laser environmental airborne fluorosensor (SLEAF) is being developed to detect and map oil and related petroleum products in complex marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non-specific sensors. This confirmation will release response crews from the time-consuming task of physically inspecting each site, and direct crews to sites that require remediation. The laser ultrasonic remote sensing of oil thickness (LURSOT) sensor will provide an absolute measurement of oil thickness from an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper describes the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identifies the anticipated benefits of the use of this technology

  4. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  5. Analytical Sensor Response Function of Viscosity Sensors Based on Layered Piezoelectric Thickness Shear Resonators

    NASA Astrophysics Data System (ADS)

    Benes, Ewald; Nowotny, Helmut; Braun, Stefan; Radel, Stefan; Gröschl, Martin

    Resonant piezoelectric sensors based on bulk acoustic wave (BAW) thickness shear resonators are promising for the inline measurement of fluid viscosity, e.g., in industrial processes. The sensor response function can be derived from the general rigorous transfer matrix description of one-dimensional layered structures consisting of piezoelectric and non-piezoelectric layers of arbitrary number. This model according to Nowotny et al. provides a complete analytical description of the electrical and mechanical behaviour of such structures with two electrodes and arbitrary acoustic termination impedances (Rig-1d-Model). We apply this model to derive the sensor response functions and the mechanical displacement curves of the following configurations appropriate for viscosity sensors: An AT cut quartz crystal plate in contact with vacuum at the backside plane and with the liquid under investigation at the front side plane (QL). An AT cut quartz crystal in contact with the liquid under investigation at both sides (LQL). It is shown that in the QL case the originally only heuristically introduced and well established sensor response function according to Kanasawa can be derived from the Rig-1d-Model by introducing minor approximations. Experimental results are presented for the LQL configuration using an N1000 viscosity reference oil as test fluid.

  6. Robust Model-Based Sensor Fault Monitoring System for Nonlinear Systems in Sensor Networks

    PubMed Central

    Wang, Dejun; Song, Shiyao

    2014-01-01

    A new model-based sensor fault diagnosis (FD) scheme, using an equivalent model, is developed for a kind of Multiple Inputs Multiple Outputs (MIMO) nonlinear system which fulfills the Lipschitz condition. The equivalent model, which is a bank of one-dimensional linear state equations with the bounded model uncertainty, can take the place of a plant's exact nonlinear model in the case of sensor FD. This scheme shows a new perspective whereby, by using the equivalent model, it doesn't have to study the nonlinear internal structure character or get the exact model. The influence of the model uncertainty on the residuals is explained in this paper. A method, called pretreatment, is utilized to minimize the model uncertainty. The eigenstructure assignment method with assistant state is employed to solve the problem of perfect decoupling against the model uncertainty, disturbance, system faults, the relevant actuator faults, or even the case of no input from the relevant actuator. The realization of the proposed scheme is given by an algorithm according to a single sensor FD, and verified by a simulation example. Depending on the above, a sensor fault monitoring system is established by the sensor network and diagnosis logic, then the effectiveness is testified by a simulation. PMID:25320904

  7. Laser-based Sensors for Chemical Detection

    SciTech Connect

    Myers, Tanya L.; Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Schiffern, John T.; Cannon, Bret D.

    2010-05-10

    Stand-off detection of hazardous materials ensures that the responder is located at a safe distance from the suspected source. Remote detection and identification of hazardous materials can be accomplished using a highly sensitive and portable device, at significant distances downwind from the source or the threat. Optical sensing methods, in particular infrared absorption spectroscopy combined with quantum cascade lasers (QCLs), are highly suited for the detection of chemical substances since they enable rapid detection and are amenable for autonomous operation in a compact and rugged package. This talk will discuss the sensor systems developed at Pacific Northwest National Laboratory and will discuss the progress to reduce the size and power while maintaining sensitivity to enable stand-off detection of multiple chemicals.

  8. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  9. Aptamer based electrochemical sensors for emerging environmental pollutants

    NASA Astrophysics Data System (ADS)

    Hayat, Akhtar; Marty, Jean Louis

    2014-06-01

    Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide) as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.

  10. Carbon nanotube based pressure sensor for flexible electronics

    SciTech Connect

    So, Hye-Mi; Sim, Jin Woo; Kwon, Jinhyeong; Yun, Jongju; Baik, Seunghyun; Chang, Won Seok

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  11. Micro- and nano-structure based oligonucleotide sensors.

    PubMed

    Ferrier, David C; Shaver, Michael P; Hands, Philip J W

    2015-06-15

    This paper presents a review of micro- and nano-structure based oligonucleotide detection and quantification techniques. The characteristics of such devices make them very attractive for Point-of-Care or On-Site-Testing biosensing applications. Their small scale means that they can be robust and portable, their compatibility with modern CMOS electronics means that they can easily be incorporated into hand-held devices and their suitability for mass production means that, out of the different approaches to oligonucleotide detection, they are the most suitable for commercialisation. This review discusses the advantages of micro- and nano-structure based sensors and covers the various oligonucleotide detection techniques that have been developed to date. These include: Bulk Acoustic Wave and Surface Acoustic Wave devices, micro- and nano-cantilever sensors, gene Field Effect Transistors, and nanowire and nanopore based sensors. Oligonucleotide immobilisation techniques are also discussed.

  12. Aptamer based electrochemical sensors for emerging environmental pollutants

    PubMed Central

    Hayat, Akhtar; Marty, Jean L.

    2014-01-01

    Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide) as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants. PMID:25019067

  13. Autonomous star tracker based on active pixel sensors (APS)

    NASA Astrophysics Data System (ADS)

    Schmidt, U.

    2004-06-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  14. A taste sensor based on surface imprinted TiO2 membrane

    NASA Astrophysics Data System (ADS)

    Xiao, Wenxiang; Chen, Zhencheng; Jiang, Xingguo; Zhao, Hongtian; Chu, Fugang; Hou, Hongbin

    2012-03-01

    Surface imprinted TiO2 membranes had been prepared and used as sensing membranes for basic tastes discrimination. Four basic taste molecules (citric acid, D-glucose, quinine hydrochloride and sodium L-glutamate for sour, sweet, bitter and umami respectively) were used as templates for imprinting. The sensor was fabricated in light-addressable potentiometric principle. Experimental results show that membranes imprinted by citric acid and quinine hydrochloride exhibit similar response behaviors towards four taste substances, that is citric acid > quinine hydrochloride > sodium L-glutamate > D-glucose. Membrane imprinted by sodium L-glutamate is sensitive towards quinine hydrochloride. Except for D-glucose imprinting membrane, other three membranes are inert to glucose. Combined with principal component analysis, four basic tastes can be well distinguished.

  15. A taste sensor based on surface imprinted TiO2 membrane

    NASA Astrophysics Data System (ADS)

    Xiao, Wenxiang; Chen, Zhencheng; Jiang, Xingguo; Zhao, Hongtian; Chu, Fugang; Hou, Hongbin

    2011-11-01

    Surface imprinted TiO2 membranes had been prepared and used as sensing membranes for basic tastes discrimination. Four basic taste molecules (citric acid, D-glucose, quinine hydrochloride and sodium L-glutamate for sour, sweet, bitter and umami respectively) were used as templates for imprinting. The sensor was fabricated in light-addressable potentiometric principle. Experimental results show that membranes imprinted by citric acid and quinine hydrochloride exhibit similar response behaviors towards four taste substances, that is citric acid > quinine hydrochloride > sodium L-glutamate > D-glucose. Membrane imprinted by sodium L-glutamate is sensitive towards quinine hydrochloride. Except for D-glucose imprinting membrane, other three membranes are inert to glucose. Combined with principal component analysis, four basic tastes can be well distinguished.

  16. Potentiometric studies at ORNL with hydrogen electrode concentration cells

    SciTech Connect

    Mesmer, R.E.; Palmer, D.A.; Wesolowski, D.J.

    1994-12-31

    The absence of suitably stable reference electrodes for and to 300 C led ORNL to develop hydrogen electrode concentration cells for studies of equilibria of interest in reactor and steam generator systems to about 300 C during the late 1960`s and seventies. During the intervening two dozen years over twenty scientists have participated in potentiometric studies at Oak Ridge and much of that work will be summarized in this paper. A description of hydrogen electrode concentration cells developed in the late sixties and currently in use at Oak Ridge is given. The method of measurement, data interpretation, and published results are reviewed for studies of acid-base ionization, metal ion hydrolysis, and metal complexation reactions using principally such cells in titration or flow modes. 41 refs.

  17. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  18. Resonant Magnetic Field Sensors Based On MEMS Technology.

    PubMed

    Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  19. MEMS Based Flow Sensors and Their Application on Flow Imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yingchen; Chen, Nannan; Engel, Jonathan; Tucker, Craig; Pandya, Saunvit; Liu, Chang

    2006-11-01

    We report characterization and application of recently developed, MEMS based, out-of-plane hot-wire anemometer (HWA) sensor and bio-inspired artificial hair cell (AHC) sensor. Sensitivities of 0.2mm/s for HWA and 0.1mm/s for AHC have been achieved in water flows, comparing with 1mm/s of a conventional HWA. In contrast to its high sensitivity, the AHC sensor can survive 55 bending of its hair, making it very robust. After calibration, both HWA and AHC sensors were employed for dipole field and wake measurements. The dipole field was generated by a vibrating sphere in a large water tank; the measurement results match very well with the analytical model. The wake was created by a circular cylinder in a water channel; the RMS velocity distributions replicate the main features of a typical wake accurately. The two types of sensors were also applied in array format to mimic a fish lateral line for imaging hydrodynamic events. Multi-modal sensors capable of simultaneous measurement of flow velocity, shear stress, pressure and temperature are under development.

  20. Sensor-based navigation of air duct inspection mobile robots

    NASA Astrophysics Data System (ADS)

    Koh, Kyoungchul; Choi, H. J.; Kim, Jae-Seon; Ko, Kuk Won; Cho, Hyungsuck

    2001-02-01

    12 This paper deals with an image sensor system and its position estimation algorithm for autonomous duct cleaning and inspection mobile robots. For the real application, a hierarchical control structure that consists of robot motion controller and image sensor system is designed considering the efficient and autonomous motion behaviors in narrow space such as air ducts. The sensor's system consists of a CCD camera and two laser sources to generate slit beams. The image of the structured lights is used for calculating the geometric parameters of the air ducts which are usually designed with a rectangular section. With the acquired 3D information about the environment, the mobile robot with two differential driving wheels is able to autonomously navigates along the duct path without any human intervention. For real time navigation, the relative position estimation of the robot are performed from 3D image reconstructed by the sensor system. The calibration and image processing methods used for the sensor system are presented with the experimental data. The experimental results show the possibility of the sensor based navigation which is important for effective duct cleaning by small mobile robots.

  1. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  2. A Bionic Camera-Based Polarization Navigation Sensor

    PubMed Central

    Wang, Daobin; Liang, Huawei; Zhu, Hui; Zhang, Shuai

    2014-01-01

    Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor calibration experiment of the sensor has been done under a beam of standard polarized light. The experiment results show that after noise reduction the accuracy of the sensor can reach up to 0.3256°. It is also compared with GPS and INS (Inertial Navigation System) in the single-point measurement mode through an outdoor experiment. Through time compensation and location compensation, the sensor can be a useful alternative to GPS and INS. In addition, the sensor also can measure the polarization distribution pattern when it works in multi-point measurement mode. PMID:25051029

  3. A bionic camera-based polarization navigation sensor.

    PubMed

    Wang, Daobin; Liang, Huawei; Zhu, Hui; Zhang, Shuai

    2014-07-21

    Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor calibration experiment of the sensor has been done under a beam of standard polarized light. The experiment results show that after noise reduction the accuracy of the sensor can reach up to 0.3256°. It is also compared with GPS and INS (Inertial Navigation System) in the single-point measurement mode through an outdoor experiment. Through time compensation and location compensation, the sensor can be a useful alternative to GPS and INS. In addition, the sensor also can measure the polarization distribution pattern when it works in multi-point measurement mode.

  4. Illicit material detector based on gas sensors and neural networks

    NASA Astrophysics Data System (ADS)

    Grimaldi, Vincent; Politano, Jean-Luc

    1997-02-01

    In accordance with its missions, le Centre de Recherches et d'Etudes de la Logistique de la Police Nationale francaise (CREL) has been conducting research for the past few years targeted at detecting drugs and explosives. We have focused our approach of the underlying physical and chemical detection principles on solid state gas sensors, in the hope of developing a hand-held drugs and explosives detector. The CREL and Laboratory and Scientific Services Directorate are research partners for this project. Using generic hydrocarbon, industrially available, metal oxide sensors as illicit material detectors, requires usage precautions. Indeed, neither the product's concentrations, nor even the products themselves, belong to the intended usage specifications. Therefore, the CREL is currently investigating two major research topics: controlling the sensor's environment: with environmental control we improve the detection of small product concentration; determining detection thresholds: both drugs and explosives disseminate low gas concentration. We are attempting to quantify the minimal concentration which triggers detection. In the long run, we foresee a computer-based tool likely to detect a target gas in a noisy atmosphere. A neural network is the suitable tool for interpreting the response of heterogeneous sensor matrix. This information processing structure, alongside with proper sensor environment control, will lessen the repercussions of common MOS sensor sensitivity characteristic dispersion.

  5. Probing the kinetics of quantum dot-based proteolytic sensors.

    PubMed

    Díaz, Sebastián A; Malonoski, Anthony P; Susumu, Kimihiro; Hofele, Romina V; Oh, Eunkeu; Medintz, Igor L

    2015-09-01

    As an enzyme superfamily, proteases are rivaled only by kinases in terms of their abundance within the human genome. Two ratiometric quantum dot (QD) Förster resonance energy transfer-based sensors designed to monitor the activity of the proteolytic enzymes collagenase and elastase are investigated here. Given the unique material constraints of these sensing constructs, assays are realized utilizing excess enzyme and fixed substrate in progress curve format to yield enzyme specificity or k cat/K m ratios. The range of k cat/Km values derived is 0.5-1.1 mM(-1) s(-1) for the collagenase sensor and 3.7-4.2 mM(-1) s(-1) for the elastase sensor. Of greater interest is the observation that the elastase sensor can be well represented by the Michaelis-Menten model while the collagenase sensor cannot. The latter demonstrates increased specificity at higher peptide substrate/QD loading values and an apparent QD-caused reversible inhibition as the reaction progresses. Understanding the detailed kinetic mechanisms that underpin these types of sensors will be important especially for their further quantitative utilization.

  6. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  7. The absolute radiometric calibration of space-based sensors

    NASA Astrophysics Data System (ADS)

    Holm, Ronald Gene

    A reflectance based inflight calibration procedure is used to determine the radiance reaching the entrance pupil of a sensor. This procedure uses ground based measurements coupled with a radiative transfer code to characterize the effects the atmosphere has on the signal reaching the sensor. The computed radiance is compared to the digital count output of the sensor associated with the image of a test site. This provides an update to the preflight calibration of the system and a check on the on-board internal calibrator. This calibration procedure was used to perform a series of 5 calibrations of the LANDSAT-5 Thematic Mapper. The absolute calibration techniques were put to another test with a series of 3 calibration of the SPOT-1 High Resolution Visible sensors. The procedure for performing a satellite calibration was then used to demonstrate how a calibrated satellite sensor can be used to quantitatively evaluate surface reflectance over a wide range of surface features. Predicted reflectance factors were compared to values obtained from aircraft based radiometer data. A strong correlation was shown between reflectance values determined from satellite imagery and low flying aircraft data.

  8. Ligand exchange based paraoxon imprınted QCM sensor.

    PubMed

    Özkütük, Ebru Birlik; Diltemiz, Sibel Emir; Özalp, Elif; Say, Rıdvan; Ersöz, Arzu

    2013-03-01

    In the present work, a paraoxon imprinted QCM sensor has been developed for the determination of paraoxon based on the modification of paraoxon imprinted film onto a quartz crystal combining the advantages of high selectivity of the piezoelectric microgravimetry using MIP film technique and high sensitivity of QCM detection. The paraoxon selective memories have formed on QCM electrode surface by using a new metal-chelate interaction based on pre-organized monomer and the paraoxon recognition activity of these molecular memories was investigated. Molecular imprinted polymer (MIP) film for the detection of paraoxon was developed and the analytical performance of paraoxon imprinted sensor was studied. The molecular imprinted polymer were characterized by FTIR measurements. Paraoxon imprinted sensor was characterized with AFM and ellipsometer. The study also includes the measurement of binding interaction of paraoxon imprinted quartz crystal microbalance (QCM) sensor, selectivity experiments and analytical performance of QCM electrode. The detection limit and the affinity constant (K(affinity)) were found to be 0.06 μM and 2.25 × 10(4) M(-1) for paraoxon [MAAP-Cu(II)-paraoxon] based thin film, respectively. Also, it has been observed that the selectivity of the prepared paraoxon imprinted sensor is high compared to a similar chemical structure which is parathion.

  9. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.

    PubMed

    Yu, Zhi-gang; Zaitouna, Anita J; Lai, Rebecca Y

    2014-02-17

    This article summarizes the sensor performance of four electrochemical DNA sensors that exploit the recently developed displacement-replacement sensing motif. In the absence of the target, the capture probe is partially hybridized to the signaling probe at the distal end, positioning the redox label, methylene blue (MB), away from the electrode. In the presence of the target, the MB-modified signaling probe is released; one type of probe is capable of assuming a stem-loop probe (SLP) conformation, whereas the other type adopts a linear probe (LP) conformation. Independent of the sensor architecture, all four sensors showed "signal-on" sensor behavior. Unlike the previous report, here we focused on elucidating the effect of the redox label tether length and flexibility on sensor sensitivity, specificity, selectivity, and reusability. For both SLP and LP sensors, the limit of detection was 10 pM for sensors fabricated using a signaling probe with three extra thymine (T3) bases linked to the MB label. A limit of detection of 100 pM was determined for sensors fabricated using a signaling probe with five extra thymine (T5) bases. The linear dynamic range was between 10 pM and 100 nM for the T3 sensors, and between 100 pM and 100 nM for the T5 sensors. When compared to the LP sensors, the SLP sensors showed higher signal enhancement in the presence of the full-complement target. More importantly, the SLP-T5 sensor was found to be highly specific; it is capable of discriminating between the full complement and single-base mismatch targets even when employed in undiluted blood serum. Overall, these results highlight the advantages of using oligo-T(s) as a tunable linker to control flexibility of the tethered redox label, so as to achieve the desired sensor response.

  10. SiC-Based Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai

    1997-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.

  11. Validation of Underwater Sensor Package Using Feature Based SLAM.

    PubMed

    Cain, Christopher; Leonessa, Alexander

    2016-01-01

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package. PMID:26999142

  12. Validation of Underwater Sensor Package Using Feature Based SLAM

    PubMed Central

    Cain, Christopher; Leonessa, Alexander

    2016-01-01

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package. PMID:26999142

  13. Validation of Underwater Sensor Package Using Feature Based SLAM.

    PubMed

    Cain, Christopher; Leonessa, Alexander

    2016-03-17

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package.

  14. Dynamic potential and surface morphology study of sertraline membrane sensors

    PubMed Central

    Khater, M.M.; Issa, Y.M.; Hassib, H.B.; Mohammed, S.H.

    2014-01-01

    New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24 mV/decade and 2.51, 5.62 and 4.85 μmol L−1 for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.01–10.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944

  15. Monitoring Cooperative Binding Using Electrochemical DNA-Based Sensors

    PubMed Central

    2015-01-01

    Electrochemical DNA-based (E-DNA) sensors are utilized to detect a variety of targets including complementary DNA, small molecules, and proteins. These sensors typically employ surface-bound single-stranded oligonucleotides that are modified with a redox-active molecule on the distal 3′ terminus. Target-induced flexibility changes of the DNA probe alter the efficiency of electron transfer between the redox active methylene blue and the electrode surface, allowing for quantitative detection of target concentration. While numerous studies have utilized the specific and sensitive abilities of E-DNA sensors to quantify target concentration, no studies to date have demonstrated the ability of this class of collision-based sensors to elucidate biochemical-binding mechanisms such as cooperativity. In this study, we demonstrate that E-DNA sensors fabricated with various lengths of surface-bound oligodeoxythymidylate [(dT)n] sensing probes are able to quantitatively distinguish between cooperative and noncooperative binding of a single-stranded DNA-binding protein. Specifically, we demonstrate that oligo(dT) E-DNA sensors are able to quantitatively detect nM levels (50 nM–4 μM) of gene 32 protein (g32p). Furthermore, the sensors exhibit signal that is able to distinguish between the cooperative binding of the full-length g32p and the noncooperative binding of the core domain (*III) fragment to single-stranded DNA. Finally, we demonstrate that this binding is both probe-length- and ionic-strength-dependent. This study illustrates a new quantitative property of this powerful class of biosensor and represents a rapid and simple methodology for understanding protein–DNA binding mechanisms. PMID:25517392

  16. Monitoring cooperative binding using electrochemical DNA-based sensors.

    PubMed

    Macazo, Florika C; Karpel, Richard L; White, Ryan J

    2015-01-20

    Electrochemical DNA-based (E-DNA) sensors are utilized to detect a variety of targets including complementary DNA, small molecules, and proteins. These sensors typically employ surface-bound single-stranded oligonucleotides that are modified with a redox-active molecule on the distal 3' terminus. Target-induced flexibility changes of the DNA probe alter the efficiency of electron transfer between the redox active methylene blue and the electrode surface, allowing for quantitative detection of target concentration. While numerous studies have utilized the specific and sensitive abilities of E-DNA sensors to quantify target concentration, no studies to date have demonstrated the ability of this class of collision-based sensors to elucidate biochemical-binding mechanisms such as cooperativity. In this study, we demonstrate that E-DNA sensors fabricated with various lengths of surface-bound oligodeoxythymidylate [(dT)n] sensing probes are able to quantitatively distinguish between cooperative and noncooperative binding of a single-stranded DNA-binding protein. Specifically, we demonstrate that oligo(dT) E-DNA sensors are able to quantitatively detect nM levels (50 nM-4 μM) of gene 32 protein (g32p). Furthermore, the sensors exhibit signal that is able to distinguish between the cooperative binding of the full-length g32p and the noncooperative binding of the core domain (*III) fragment to single-stranded DNA. Finally, we demonstrate that this binding is both probe-length- and ionic-strength-dependent. This study illustrates a new quantitative property of this powerful class of biosensor and represents a rapid and simple methodology for understanding protein-DNA binding mechanisms.

  17. A micromachined pressure sensor based on an array of microswitches.

    PubMed

    Park, Chang-Sin; Lee, Dong-Weon

    2010-05-01

    A micromachined pressure sensor based on an array of microswitches is presented. The pressure sensor consists of a silicon substrate that has a thin metal-deposited diaphragm and indium tin oxide (ITO)-based switch arrays patterned on a Pyrex glass. When pressure is applied to the thin diaphragm through a small tube, the diaphragm starts to deform and contact the array of switches at a certain pressure level. The increase in the contact area due to the diaphragm deformation causes the change in electrical resistance between two terminals of the ITO resistor. The change in resistance that corresponds to electrical output in the pressure sensor is measured by the use of a simple circuit. We also describe the results of numerical simulations that are carried out to find a suitable range of the pressure. The simulation results are in good agreement with the experimental results.

  18. MEMS-based sensors for post-earthquake damage assessment

    NASA Astrophysics Data System (ADS)

    Pozzi, M.; Zonta, D.; Trapani, D.; Athanasopoulos, N.; Amditis, A. J.; Bimpas, M.; Garetsos, A.; Stratakos, Y. E.; Ulieru, D.

    2011-07-01

    The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims to produce small size sensing nodes for measurement of strain and acceleration, integrating Micro-Electro-Mechanical Systems (MEMS) based sensors and Radio Frequency Identification (RFID) tags in a single package that will be attached to reinforced concrete buildings and will transmit data using a wireless interface. During the first phase of the project completed so far, sensor prototypes were produced by assembling preexisting components. This paper outlines the device operating principles, production scheme and operation at both unit and network levels. It also reports on validation campaigns conducted in the laboratory to assess system performance. Accelerometer sensors were tested on a reduced scale metal frame mounted on a shaking table, while strain sensors were embedded in both reduced and full-scale reinforced concrete specimens undergoing increasing deformation cycles up to extensive damage and collapse. The performance of the sensors developed for the project and their applicability to long-term seismic monitoring are discussed.

  19. Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures

    PubMed Central

    Barry, Richard C.; Lin, Yuehe; Wang, Jun; Liu, Guodong; Timchalk, Charles A.

    2009-01-01

    The coupling of dosimetry measurements and modeling represents a promising strategy for deciphering the relationship between chemical exposure and disease outcome. To support the development and implementation of biological monitoring programs, quantitative technologies for measuring xenobiotic exposure are needed. The development of portable nanotechnology-based electrochemical sensors has the potential to meet the needs for low cost, rapid, high-throughput and ultrasensitive detectors for biomonitoring an array of chemical markers. Highly selective electrochemical (EC) sensors capable of pM sensitivity, high-throughput and low sample requirements (<50uL) are discussed. These portable analytical systems have many advantages over currently available technologies, thus potentially representing the next-generation of biomonitoring analyzers. This manuscript highlights research focused on the development of field-deployable analytical instruments based on EC detection. Background information and a general overview of EC detection methods and integrated use of nanomaterials in the development of these sensors are provided. New developments in EC sensors using various types of screen-printed electrodes, integrated nanomaterials, and immunoassays are presented. Recent applications of EC sensors for assessing exposure to pesticides or detecting biomarkers of disease are highlighted to demonstrate the ability to monitor chemical metabolites, enzyme activity, or protein biomarkers of disease. In addition, future considerations and opportunities for advancing the use of EC platforms for dosimetric studies are discussed. PMID:19018275

  20. Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures.

    PubMed

    Barry, Richard C; Lin, Yuehe; Wang, Jun; Liu, Guodong; Timchalk, Charles A

    2009-01-01

    The coupling of dosimetry measurements and modeling represents a promising strategy for deciphering the relationship between chemical exposure and disease outcome. To support the development and implementation of biological monitoring programs, quantitative technologies for measuring xenobiotic exposure are needed. The development of portable nanotechnology-based electrochemical (EC) sensors has the potential to meet the needs for low cost, rapid, high-throughput, and ultrasensitive detectors for biomonitoring an array of chemical markers. Highly selective EC sensors capable of pM sensitivity, high-throughput and low sample requirements (<50 microl) are discussed. These portable analytical systems have many advantages over currently available technologies, thus potentially representing the next generation of biomonitoring analyzers. This paper highlights research focused on the development of field-deployable analytical instruments based on EC detection. Background information and a general overview of EC detection methods and integrated use of nanomaterials in the development of these sensors are provided. New developments in EC sensors using various types of screen-printed electrodes, integrated nanomaterials, and immunoassays are presented. Recent applications of EC sensors for assessing exposure to pesticides or detecting biomarkers of disease are highlighted to demonstrate the ability to monitor chemical metabolites, enzyme activity, or protein biomarkers of disease. In addition, future considerations and opportunities for advancing the use of EC platforms for dosimetric studies are discussed.

  1. A Universal Intelligent System-on-Chip Based Sensor Interface

    PubMed Central

    Mattoli, Virgilio; Mondini, Alessio; Mazzolai, Barbara; Ferri, Gabriele; Dario, Paolo

    2010-01-01

    The need for real-time/reliable/low-maintenance distributed monitoring systems, e.g., wireless sensor networks, has been becoming more and more evident in many applications in the environmental, agro-alimentary, medical, and industrial fields. The growing interest in technologies related to sensors is an important indicator of these new needs. The design and the realization of complex and/or distributed monitoring systems is often difficult due to the multitude of different electronic interfaces presented by the sensors available on the market. To address these issues the authors propose the concept of a Universal Intelligent Sensor Interface (UISI), a new low-cost system based on a single commercial chip able to convert a generic transducer into an intelligent sensor with multiple standardized interfaces. The device presented offers a flexible analog and/or digital front-end, able to interface different transducer typologies (such as conditioned, unconditioned, resistive, current output, capacitive and digital transducers). The device also provides enhanced processing and storage capabilities, as well as a configurable multi-standard output interface (including plug-and-play interface based on IEEE 1451.3). In this work the general concept of UISI and the design of reconfigurable hardware are presented, together with experimental test results validating the proposed device. PMID:22163624

  2. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  3. Voltage-Biased Magnetic Sensors Based on Tuned Varistors

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Stapleton, William. A.; Sutanto, Ivan; Shamsuzzoha, M.

    2015-04-01

    In this paper, we explore the possibility of finding practical applications when the nonlinear current-voltage ( I- V) characteristics of a varistor are modified by the application of external magnetic fields. With this goal in mind, varistors based on a pseudobrookite oxide semiconductor have been studied. Pseudobrookite (PsB) is a wide bandgap n-type semiconductor with the bandgap of 2.77 eV. It is also weakly ferromagnetic. The "voltage-dependent resistor" (VDR) mode of the magnetically-tuned pseudobrookite varistors offers an opportunity to advance magnetic sensor technology. The resistive and magnetoresistive parameters of PsB VDRs exhibit good responses to applied magnetic fields and they can therefore be the basis for the fabrication of simple yet practical magnetic sensors. These sensors can cover the range of magnetic fields between 0 and 4500 Oe with good accuracy, and could possibly be considered as a substitute for Hall Effect-based sensors for many applications. Also, due to their simple structure, they would be rugged and not susceptible to abuses. They may also be suitable for applications in hazardous environments such as high temperatures and atmospheres having the presence of radiation, such as neutrons, protons, etc. It is also possible that these novel sensors could be suitable for geological applications such as in well logging in search of energy sources.

  4. Development of capacitance-based and impedance-based wireless sensors and sensor nodes for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Mascarenas, David D. L.; Flynn, Eric B.; Todd, Michael D.; Overly, Timothy G.; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.

    2010-06-01

    A field demonstration of a new and hybrid wireless sensing network paradigm for structural health monitoring (SHM) is presented. In this paradigm, both power and data interrogation commands are conveyed via a mobile agent that is sent to each sensor node to perform individual interrogations, which can alleviate several limitations of traditional sensing networks. This paper will discuss such prototype systems, which will be used to interrogate capacitive-based and impedance-based sensors for SHM applications. The capacitive-based wireless sensor node is specifically built to collect peak displacement measurements. In addition, a wireless sensor node for collecting electromechanical impedance data has also been developed. Both sensor nodes are specifically designed to accept various power sources and to be wirelessly triggered on an as-needed basis so that they can be used for the hybrid sensing network approach. The capabilities of these miniaturized and portable devices are demonstrated in the laboratory and the field, which was performed at the Alamosa Canyon Bridge in southern New Mexico.

  5. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    PubMed

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  6. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    PubMed

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-01-01

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions. PMID:25171121

  7. Engineering Paper-Based Sensors for Zika Virus

    DOE PAGESBeta

    Meagher, Robert J.; Negrete, Oscar A.; Van Rompay, Koen K.

    2016-05-30

    The emergence of Zika virus in Latin America has created an urgent need for new, simple yet sensitive diagnostic tests. We highlight recent work using paper-based sensors coupled with CRISPR/Cas9 to detect Zika RNA, as a new approach to rapid development and deployment of field-ready diagnostics for emerging infectious diseases.

  8. Recent Electrochemical and Optical Sensors in Flow-Based Analysis

    PubMed Central

    Chailapakul, Orawon; Ngamukot, Passapol; Yoosamran, Alongkorn; Siangproh, Weena; Wangfuengkanagul, Nattakarn

    2006-01-01

    Some recent analytical sensors based on electrochemical and optical detection coupled with different flow techniques have been chosen in this overview. A brief description of fundamental concepts and applications of each flow technique, such as flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA), and multipumped FIA (MPFIA) were reviewed.

  9. Engineering Paper-Based Sensors for Zika Virus.

    PubMed

    Meagher, Robert J; Negrete, Oscar A; Van Rompay, Koen K

    2016-07-01

    The emergence of Zika virus (ZIKV) infections in Latin America and Southeast Asia has created an urgent need for new, simple, yet sensitive, diagnostic tests. We highlight recent work using paper-based sensors coupled with CRISPR/Cas9 to detect ZIKV RNA as a new approach to achieve rapid development and deployment of field-ready diagnostics for emerging infectious diseases.

  10. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  11. Real-Time, Sensor-Based Computing in the Laboratory.

    ERIC Educational Resources Information Center

    Badmus, O. O.; And Others

    1996-01-01

    Demonstrates the importance of Real-Time, Sensor-Based (RTSB) computing and how it can be easily and effectively integrated into university student laboratories. Describes the experimental processes, the process instrumentation and process-computer interface, the computer and communications systems, and typical software. Provides much technical…

  12. Biometrics based novel key distribution solution for body sensor networks.

    PubMed

    Miao, Fen; Jiang, Lei; Li, Ye; Zhang, Yuan-Ting

    2009-01-01

    The security of wireless body sensor network (BSN) is very important to telemedicine and m-healthcare, and it still remains a critical challenge. This paper presents a novel key distribution solution which allows two sensors in one BSN to agree on a changeable cryptographic key. A previously published scheme, fuzzy vault, is firstly applied to secure the random cryptographic key generated from electrocardiographic (ECG) signals. Simulations based on ECG data from MIT PhysioBank database, produce a minimum half total error rate (HTER) of 0.65%, which demonstrates our key distribution solution is promising compared with previous method, with HTER of 4.26%. PMID:19964960

  13. Biometrics based novel key distribution solution for body sensor networks.

    PubMed

    Miao, Fen; Jiang, Lei; Li, Ye; Zhang, Yuan-Ting

    2009-01-01

    The security of wireless body sensor network (BSN) is very important to telemedicine and m-healthcare, and it still remains a critical challenge. This paper presents a novel key distribution solution which allows two sensors in one BSN to agree on a changeable cryptographic key. A previously published scheme, fuzzy vault, is firstly applied to secure the random cryptographic key generated from electrocardiographic (ECG) signals. Simulations based on ECG data from MIT PhysioBank database, produce a minimum half total error rate (HTER) of 0.65%, which demonstrates our key distribution solution is promising compared with previous method, with HTER of 4.26%.

  14. VCSEL-based flexible opto-fluidic fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Kang, Dongseok; Gai, Boju; Yoon, Jongseung

    2016-03-01

    Flexible opto-fluidic fluorescence sensors based on microscale vertical cavity surface emitting lasers (micro-VCSELs) and silicon photodiodes (Si-PDs) are demonstrated, where arrays of 850 nm micro-VCSELs and thin film Si-PDs are heterogeneously integrated on a polyethylene terephthalate (PET) substrate by transfer printing, in conjunction with elastomeric fluidic channel. Enabled with optical isolation trenches together with wavelength- and angle-selective spectral filters implemented to suppress the absorption of excitation light, the integrated flexible fluorescence sensors exhibited significantly enhanced signal-to-background ratio, resulting in a maximum sensitivity of 5 × 10-5 wt% of infrared-absorbing organic dyes.

  15. The difference between the potentiometric surfaces of the lower Patapsco aquifer, September 1990 and September 1999 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2001-01-01

    This report presents a map showing the change in the potentiometric surface of the Lower Patapsco aquifer in the Lower Patapsco Formation of Cretaceous age in Southern Maryland for September 1990 and September 1999. The map, based on water?level measurements in 52 wells, shows that the change of the potentiometric surface during the 9- year period ranged from a rise of 13 feet at Indian Head and 6 feet near the outcrop area in Glen Burnie, to declines of 34 feet at Arnold, 30 feet at Waldorf, and 24 feet at Morgantown.

  16. The difference between the potentiometric surfaces of the Upper Patasco Aquifer, September 1990 and September 2003 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the change in the potentiometric surface of the Upper Patapsco aquifer in the Upper Patapsco Formation of Cretaceous age in Southern Maryland for September 1990 and September 2003. The map, based on water level measurements in 32 wells, shows that during the 13-year period, the potentiometric surface changed from an increase of 6 feet at Arnold, which is located just north of Annapolis, to a decline of 25 feet at Waldorf and Lexington Park and 20 feet at LaPlata and the Chalk Point powerplant.

  17. The difference between the potentiometric surfaces of the Lower Patapsco Aquifer, September 1990 and September 2003 in Southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the change in the potentiometric surface of the Lower Patapsco aquifer in the Lower Patapsco Formation of Cretaceous age in Southern Maryland for September 1990 and September 2003. The map, based on water level measurements in 45 wells, shows that the change of the potentiometric surface during the 13- year period ranged from rises of 17 feet at Indian Head and 9 feet near the outcrop area in Glen Burnie, to declines of 40 feet at Arnold, 44 feet at Severndale, 48 feet at Waldorf, 69 feet at LaPlata, and 31 feet at the Morgantown powerplant.

  18. The Difference Between the Potentiometric Surfaces of the Upper Patapsco Aquifer, September 1982 and September 2001 in Southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the change in the potentiometric surface of the Upper Patapsco aquifer in the Upper Patapsco Formation of Cretaceous age in Southern Maryland for September 1990 and September 2001. The map, based on water level measurements in 35 wells, shows that during the 11-year period, the potentiometric surface ranged from an increase of 3 feet at Arnold, which is located just north of Annapolis, to a decline of 24 feet 5 miles south of LaPlata and 20 feet at both Waldorf and LaPlata.

  19. The difference between the potentiometric surfaces of the Magothy aquifer, September 1975 and September 1999 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2001-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in Southern Maryland for September 1975 and September 1999. The map, based on water level measurements in 61 wells, shows that the potentiometric surface during the 24-year period ranged from zero at the outcrop area, which is in the northernmost part of the study area, to a decline of 76 feet in Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  20. The Difference Between the Potentiometric Surfaces of the Magothy Aquifer, September 1975 and September 2001 in Southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in Southern Maryland for September 1975 and September 2001. The map, based on water level measurements in 54 wells, shows that during the 26-year period, the potentiometric surface ranged from zero at the outcrop area, which is in the northernmost part of the study area, to a decline of 75 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  1. The Difference Between the Potentiometric Surfaces of the Magothy Aquifer in Southern Maryland, September 1975 and September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland between September 1975 and September 2009. The map, based on water level differences obtained from 48 wells, shows that during the 34-year period, the potentiometric surface had little change at the outcrop area, which is in the northernmost part of the study area, but declined 75 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  2. The difference between the potentiometric surfaces of the Magothy aquifer, September 1975 and September 2003 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in Southern Maryland for September 1975 and September 2003. The map, based on water level measurements in 51 wells, shows that during the 28-year period, the potentiometric surface had no change at the outcrop area, which is in the northernmost part of the study area, but declined 71 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  3. The Difference Between the Potentiometric Surfaces of the Upper Patapsco Aquifer in Southern Maryland, September 1990 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland for September 1990 and September 2007. The map, based on water-level measurements in 33 wells, shows that during the 17-year period, the change in the potentiometric surface ranged from zero at the edge of the outcrop area in northern Anne Arundel County to a decline of 28 feet at Crofton Meadows, 38 feet at Arnold, 36 feet at Waldorf, 35 feet at the Chalk Point power plant, and 40 feet at Lexington Park.

  4. The Difference Between the Potentiometric Surfaces of the Magothy Aquifer in Southern Maryland, September 1975 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland for September 1975 and September 2007. The map, based on water-level measurements in 51 wells, shows that during the 32-year period, the potentiometric surface had no change at the outcrop area, which is in the northernmost part of the study area, but declined 90 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  5. The difference between the potentiometric surfaces of the Aquia Aquifer, September 1982 and September 2003 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreason, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland for September 1982 and September 2003. The map, based on water level measurements in 56 wells, shows that the potentiometric surface during the 21-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 108 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer.

  6. The difference between the potentiometric surfaces of the upper Patapsco aquifer, September 1990 and September 1999 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2001-01-01

    This report presents a map showing the change in the potentiometric surface of the Upper Patapsco aquifer in the Upper Patapsco Formation of Cretaceous age in Southern Maryland for September 1990 and September 1999. The map, based on water?level measurements in 37 wells, shows that the potentiometric surface during the 9- year period ranged from a decline of 1 foot in the northernmost part of the study area, which is near the outcrop of the aquifer, to a decline of 22 feet at LaPlata, which is near the southwesternmost part of the study area.

  7. The Difference Between the Potentiometric Surfaces of the Aquia Aquifer in Southern Maryland, September 1982 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland for September 1982 and September 2007. The map, based on water-level measurements in 53 wells, shows that the potentiometric surface during the 25-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 117 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer.

  8. The Difference Between the Potentiometric Surfaces of the Aquia Aquifer, September 1982 and September 2001 in Southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland for September 1982 and September 2001. The map, based on water level measurements in 58 wells, shows that the potentiometric surface during the 19-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 120 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer.

  9. The difference between the potentiometric surfaces of the Aquia aquifer, September 1982 and September 1999 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2001-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland for September 1982 and September 1999. The map, based on water level measurements in 67 wells, shows that the change of the potentiometric surface during the 17-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 101 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer.

  10. The Difference Between the Potentiometric Surfaces of the Aquia Aquifer in Southern Maryland, September 1982 and September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland between September 1982 and September 2009. The map, based on water level differences obtained from 49 wells, shows that the potentiometric surface during the 27-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 111 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  11. Ultrafast response sensor to formaldehyde gas based on metal oxide.

    PubMed

    Choi, N-J; Lee, H-K; Moon, S E; Kim, J; Yang, W S

    2014-08-01

    Thick film semiconductor gas sensors based on indium oxide were fabricated on Si substrate. The sensing materials on Si substrate were characterized using optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and so on. They were very fine and uniform and we found out that particle sizes were about 20~30 nm through XRD analysis. Gas responses of fabricated sensors were measured in a chamber where gas flow was controlled by mass flow controller (MFC). Their resistance changes were monitored in real time by using data acquisition board and personal computer. Gas response characteristics were examined for formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. Particularly, the sensors showed responses to formaldehyde gas at sub ppm (cf, standard of natural environment in building is about 80 ppb by ministry of environment in Korea), as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repetition, selectivity, response speed and reproducibility of the sensors. The lowest detection limit is HCHO 25 ppb and sensitivity at 800 ppb is over 25% at 350 °C operating temperature. The response time (8 s) and recovery time (15 s) to HCHO gas at 200 ppb were very fast compared to other commercial products in flow type measurement condition. Repetition measurement was very good with ±3% in full measurement range. The fabricated metal oxide gas sensor showed good performance to HCHO gas and proved that it could be adaptable to indoor environment in building. PMID:25936006

  12. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    PubMed Central

    Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing

    2014-01-01

    One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed. PMID:25232915

  13. Carbon Nanotube-Based Structural Health Monitoring Sensors

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  14. Planar integrated polymer-based optical strain sensor

    NASA Astrophysics Data System (ADS)

    Kelb, Christian; Reithmeier, Eduard; Roth, Bernhard

    2014-03-01

    In this work we present a new type of optical strain sensor that can be manufactured by MEMS typical processes such as photolithography or by hot embossing. Such sensors can be of interest for a range of new applications in structural health monitoring for buildings and aircraft, process control and life science. The approach aims at high sensitivity and dynamic range for 1D and 2D sensing of mechanical strain and can also be extended to quantities such as pressure, force, and humidity. The sensor consists of an array of planar polymer-based multimode waveguides whose output light is guided through a measurement area and focused onto a second array of smaller detection waveguides by using micro-optical elements. Strain induced in the measurement area varies the distance between the two waveguide arrays, thus, changing the coupling efficiency. This, in turn, leads to a variation in output intensity or wavelength which is monitored. We performed extensive optical simulations in order to identify the optimal sensor layout with regard to either resolution or measurement range or both. Since the initial approach relies on manufacturing polymer waveguides with cross sections between 20×20 μm2 and 100×100 μm2 the simulations were carried out using raytracing models. For the readout of the sensor a simple fitting algorithm is proposed.

  15. Optical sensor based system to monitor caries activity

    NASA Astrophysics Data System (ADS)

    Shrestha, A.; Tahir, R.; Kishen, A.

    2007-07-01

    The aim of the study is to evaluate the ability of a visible light based spectroscopic sensor system to monitor caries activity in saliva. In this study an optical sensor is utilized to monitor the bacterial-mediated acidogenic profile of stimulated saliva using a photosensitive pH indicator. Microbiological assessment of the saliva samples were carried out using the conventional culture methods. In addition, the shifts in the pH of saliva-sucrose samples were recorded using a pH meter. The absorption spectra obtained from the optical sensor showed peak maxima at 595nm, which decreased as a function of time. The microbiological assessment showed increase in the bacterial count as a function of time. A strong positive correlation was also observed between the rates of decrease in the absorption intensity measured using the optical sensor and the decrease in pH measured using the pH meter. This study highlights the potential advantages of using the optical sensor as a sensitive and rapid chairside system for monitoring caries activity by quantification of the acidogenic profile of saliva.

  16. Sensor-based fine telemanipulation for space robotics

    NASA Technical Reports Server (NTRS)

    Andrenucci, M.; Bergamasco, M.; Dario, P.

    1989-01-01

    The control of a multifingered hand slave in order to accurately exert arbitrary forces and impart small movements to a grasped object is, at present, a knotty problem in teleoperation. Although a number of articulated robotic hands have been proposed in the recent past for dexterous manipulation in autonomous robots, the possible use of such hands as slaves in teleoperated manipulation is hindered by the present lack of sensors in those hands, and (even if those sensors were available) by the inherent difficulty of transmitting to the master operator the complex sensations elicited by such sensors at the slave level. An analysis of different problems related to sensor-based telemanipulation is presented. The general sensory systems requirements for dexterous slave manipulators are pointed out and the description of a practical sensory system set-up for the developed robotic system is presented. The problem of feeding back to the human master operator stimuli that can be interpreted by his central nervous system as originated during real dexterous manipulation is then considered. Finally, some preliminary work aimed at developing an instrumented glove designed purposely for commanding the master operation and incorporating Kevlar tendons and tension sensors, is discussed.

  17. Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation.

    PubMed

    Soldatkin, Oleksandr O; Shelyakina, Margaryta K; Arkhypova, Valentyna N; Soy, Esin; Kirdeciler, Salih Kaan; Ozansoy Kasap, Berna; Lagarde, Florence; Jaffrezic-Renault, Nicole; Akata Kurç, Burcu; Soldatkin, Alexei P; Dzyadevych, Sergei V

    2015-01-01

    A number of potentiometric biosensors based on coimmobilization of enzymes with different types of zeolite on pH-ion-sensitive field-effect transistor (ISFET) have been developed. Their working characteristics have been determined and compared. It was shown that clinoptilolite and zeolite Beta polymorph A (BEA) are more promising for creating biosensors than zeolite A. Changing the concentration of zeolite BEA in membranes, it is possible to extend the biosensor linear measurement range. The two-layer method of deposition of the enzyme with clinoptilolite was found to provide a significant increase in the biosensor sensitivity to substrates, whereas thermal modification of the zeolite BEA crystals can improve analytical characteristics of potentiometric biosensors for detection of toxic substances. These results show that it is possible to regulate the ISFET characteristics for different enzyme-based biosensors by tailoring the electrode surfaces via different zeolites. This makes zeolites strong candidates for integration into biosensors as ISFET modifiers.

  18. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor

    NASA Astrophysics Data System (ADS)

    Brown, P.; Whiteside, B. J.; Beek, T. J.; Fox, P.; Horbury, T. S.; Oddy, T. M.; Archer, M. O.; Eastwood, J. P.; Sanz-Hernández, D.; Sample, J. G.; Cupido, E.; O'Brien, H.; Carr, C. M.

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45 000 nT ambient field.

  19. Surface Coverage in Wireless Sensor Networks Based on Delaunay Tetrahedralization

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. G.; Neves, L. A.; Pinto, A. R.; Nascimento, M. Z.; Zafalon, G. F. D.; Valêncio, C.

    2015-01-01

    In this work is presented a new method for sensor deployment on 3D surfaces. The method was structured on different steps. The first one aimed discretizes the relief of interest with Delaunay algorithm. The tetrahedra and relative values (spatial coordinates of each vertex and faces) were input to construction of 3D Voronoi diagram. Each circumcenter was calculated as a candidate position for a sensor node: the corresponding circular coverage area was calculated based on a radius r. The r value can be adjusted to simulate different kinds of sensors. The Dijkstra algorithm and a selection method were applied to eliminate candidate positions with overlapped coverage areas or beyond of surface of interest. Performance evaluations measures were defined using coverage area and communication as criteria. The results were relevant, once the mean coverage rate achieved on three different surfaces were among 91% and 100%.

  20. Highly sensitive DNA sensor based on polypyrrole nanowire

    NASA Astrophysics Data System (ADS)

    Mai, Anh Tuan; Duc, Thanh Pham; Thi, Xuan Chu; Nguyen, Minh Hieu; Nguyen, Hoang Hai

    2014-08-01

    This paper describes the development of a DNA sensor based on polypyrrole nanowire. By using potentiostatic technique, in the presence of gelatin as the soft mold, the polypyrrole nanowires were synthesized on the surface of the micro-sensor. The surface enhanced Raman spectroscopy shows that the Nsbnd H ends of the polypyrrole nanowires orientate upward from the surface facilitating the DNA probe immobilization through the simple linkage with the phosphate groups of the probe DNA. The label-free signal readout was carried out by lock-in amplifier technique. The response time of the DNA sensor is 10 s and the measurement time was 5 min. The lowest detectable concentration of Escherichia coli DNA was 0.1 nM.