Sample records for potentiometric sensor modified

  1. Determination of vanadium(V) by direct automatic potentiometric titration with EDTA using a chemically modified electrode as a potentiometric sensor.

    PubMed

    Quintar, S E; Santagata, J P; Cortinez, V A

    2005-10-15

    A chemically modified electrode (CME) was prepared and studied as a potentiometric sensor for the end-point detection in the automatic titration of vanadium(V) with EDTA. The CME was constructed with a paste prepared by mixing spectral-grade graphite powder, Nujol oil and N-2-naphthoyl-N-p-tolylhydroxamic acid (NTHA). Buffer systems, pH effects and the concentration range were studied. Interference ions were separated by applying a liquid-liquid extraction procedure. The CME did not require any special conditioning before using. The electrode was constructed with very inexpensive materials and was easily made. It could be continuously used, at least two months without removing the paste. Automatic potentiometric titration curves were obtained for V(V) within 5 x 10(-5) to 2 x 10(-3)M with acceptable accuracy and precision. The developed method was applied to V(V) determination in alloys for hip prosthesis.

  2. A New Electrochemical Sensor Based on Task-Specific Ionic Liquids-Modified Palm Shell Activated Carbon for the Determination of Mercury in Water Samples

    PubMed Central

    Ismaiel, Ahmed Abu; Aroua, Mohamed Kheireddine; Yusoff, Rozita

    2014-01-01

    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10−9 to 1.0 × 10−2 M, with a detection limit of 1 × 10−10 M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (∼5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3–9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species. PMID:25051034

  3. Development of a novel MWCNTs-triazene-modified carbon paste electrode for potentiometric assessment of Hg(II) in the aquatic environments.

    PubMed

    Mashhadizadeh, Mohammad Hossein; Ramezani, Soleyman; Rofouei, Mohammad Kazem

    2015-02-01

    In this approach, a new chemically modified carbon paste electrode was assembled for potentiometric assay of mercury(II) ion in the aqueous environments. Hereby, MWCNTs were used in the carbon paste composition to meliorate the electrical conductivity and sensitivity of the carbon paste owing to its exceptional physicochemical characteristics. Likewise, participation of the BEPT as a super-selective ionophore in the carbon paste composition boosted significantly the selectivity of the modified electrode towards Hg(II) ions over a wide concentration range of 4.0 × 10(-9)-2.2 × 10(-3) mol L(-1) with a lower detection limit of 3.1 × 10(-9) mol L(-1). Besides, Nernstian slope of the proposed sensor was 28.9(± 0.4)mV/decade over a pH range of 3.0-5.2 with potentiometric short response time of 10s. In the interim, by storing in the dark and cool dry place during non-usage period, the electrode can be used for at least 30 days without any momentous divergence of the potentiometric response. Eventually, to judge about its practical efficiency, the arranged sensor was utilized successfully as an indicator electrode for potentiometric titration of mercury(II) with standard solution of EDTA. As well, the quantitative analysis of mercury(II) ions in some aqueous samples with sensible accuracy and precision was satisfactorily performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Review on State-of-the-art in Polymer Based pH Sensors

    PubMed Central

    Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian

    2007-01-01

    This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277

  5. Development of Novel Potentiometric Sensors for Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations, Serum and Urine Samples

    PubMed Central

    Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A.

    2017-01-01

    This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade-1 in the concentration range of 1×10-7–1×10-2 and 6.2×10-7–1×10-2 mol L-1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0–8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10-7 and 6.2×10-7 mol L-1), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug. PMID:28979305

  6. Development of Novel Potentiometric Sensors for Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations, Serum and Urine Samples.

    PubMed

    Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A

    2017-01-01

    This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade -1 in the concentration range of 1×10 -7 -1×10 -2 and 6.2×10 -7 -1×10 -2 mol L -1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0-8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10 -7 and 6.2×10 -7 mol L -1 ), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug.

  7. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring.

    PubMed

    Bandodkar, Amay J; Hung, Vinci W S; Jia, Wenzhao; Valdés-Ramírez, Gabriela; Windmiller, Joshua R; Martinez, Alexandra G; Ramírez, Julian; Chan, Garrett; Kerman, Kagan; Wang, Joseph

    2013-01-07

    This article presents the fabrication and characterization of novel tattoo-based solid-contact ion-selective electrodes (ISEs) for non-invasive potentiometric monitoring of epidermal pH levels. The new fabrication approach combines commercially available temporary transfer tattoo paper with conventional screen printing and solid-contact polymer ISE methodologies. The resulting tattoo-based potentiometric sensors exhibit rapid and sensitive response to a wide range of pH changes with no carry-over effects. Furthermore, the tattoo ISE sensors endure repetitive mechanical deformation, which is a key requirement of wearable and epidermal sensors. The flexible and conformal nature of the tattoo sensors enable them to be mounted on nearly any exposed skin surface for real-time pH monitoring of the human perspiration, as illustrated from the response during a strenuous physical activity. The resulting tattoo-based ISE sensors offer considerable promise as wearable potentiometric sensors suitable for diverse applications.

  8. Potentiometric sensors for the selective determination of sulbutiamine.

    PubMed

    Ahmed, M A; Elbeshlawy, M M

    1999-11-01

    Five novel polyvinyl chloride (PVC) matrix membrane sensors for the selective determination of sulbutiamine (SBA) cation are described. These sensors are based on molybdate, tetraphenylborate, reineckate, phosphotun gestate and phosphomolybdate, as possible ion-pairing agents. These sensors display rapid near-Nernstian stable response over a relatively wide concentration range 1x10(-2)-1x10(-6) M of sulbutiamine, with calibration slopes 28 32.6 mV decade(-1) over a reasonable pH range 2-6. The proposed sensors proved to have a good selectivity for SBA over some inorganic and organic cations. The five potentiometric sensors were applied successfully in the determination of SBA in a pharmaceutical preparation (arcalion-200) using both direct potentiometry and potentiometric titration. Direct potentiometric determination of microgram quantities of SBA gave average recoveries of 99.4 and 99.3 with mean standard deviation of 0.7 and 0.3 for pure SBA and arcalion-200 formulation respectively. Potentiometric titration of milligram quantities of SBA gave average recoveries of 99.3 and 98.7% with mean standard deviation of 0.7 and 1.2 for pure SBA and arcalion-200 formulation, respectively.

  9. Characterization of a hybrid-smectite nanomaterial formed by immobilizing of N-pyridin-2-ylmethylsuccinamic acid onto (3-aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application

    NASA Astrophysics Data System (ADS)

    Topcu, Cihan; Caglar, Sema; Caglar, Bulent; Coldur, Fatih; Cubuk, Osman; Sarp, Gokhan; Gedik, Kubra; Bozkurt Cirak, Burcu; Tabak, Ahmet

    2016-09-01

    A novel N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite nanomaterial was synthesized by immobilizing of N-pyridin-2-ylmethylsuccinamic acid through chemical bonding onto (3-aminopropyl)triethoxysilane modified smectite. The structural, thermal, morphological and surface properties of raw, silane-grafted and the N-pyridin-2-ylmethylsuccinamic acid-functionalized smectites were investigated by various characterization techniques. The thermal analysis data showed the presence of peaks in the temperature range from 200 °C to 600 °C due to the presence of physically adsorbed silanes, intercalated silanes, surface grafted silanes and chemically grafted silane molecules between the smectite layers. The powder x-ray diffraction patterns clearly indicated that the aminopropyl molecules also intercalated into the smectite interlayers as bilayer arrangement whereas N-pyridin-2-ylmethylsuccinamic acid molecules were only attached to 3-aminopropyltriethoxysilane molecules on the external surface and edges of clay and they did not intercalate. Fourier transform infrared spectroscopy confirms N-pyridin-2-ylmethylsuccinamic acid molecules bonding through the amide bond between the amine group of aminopropyltriethoxysilane molecules and a carboxylic acid functional group of N-pyridin-2-ylmethylsuccinamic acid molecules. The guest molecules functionalized onto the smectite caused significant alterations in the textural and morphological parameters of the raw smectite. The anchoring of N-pyridin-2-ylmethylsuccinamic acid molecules led to positive electrophoretic mobility values when compared to starting materials. N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite was employed as an electroactive ingredient in the structure of potentiometric PVC-membrane sensor. The sensor exhibited more selective potentiometric response towards chlorate ions compared to the other common anionic species.

  10. Real-time monitoring of ischemia inside stomach.

    PubMed

    Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep

    2013-02-15

    The low pH in the gastric juice of the stomach makes it difficult to fabricate stable and functional all-solid-state pH ISE sensors to sense ischemia, mainly because of anion interference and adhesion problem between the ISE membrane and the electrode surface. In this work, the adhesion of ISE membrane on solid surface at low pH was improved by modifying the surface with a conductive substrate containing hydrophilic and hydrophobic groups. This creates a stable and robust candidate for low pH applications. Moreover, anion interference problem at low pH was solved by integration of all-solid-state ISE and internal reference electrodes on an array. So, the same tendencies of anion interferences for all-solid-state ISE and all-solid-state reference electrodes cancel each other in differential potentiometric detection. The developed sensor presents a novel all-solid-state potentiometric, miniaturized and mass producible pH ISE sensor for detecting ischemia on the stomach tissue on an array designed for endoscopic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM.

    PubMed

    Issa, Yousry M; Mohamed, Sabrein H; Baset, Mohamed Abd-El

    2016-08-01

    Chemically modified carbon-paste (CMCP) and membrane- sensors based on incorporating benzothonium-tetraphenylborate (BT-TPB) were constructed for the analysis of benzethonium chloride, and some other surfactants such as sodium lauryl ether sulphate (SLES), sodium dodecyl sulphate (SDS), and linear alkylbenzene sulphonic acid (LABSA). All sensors showed good sensitivity and reverse wide linearity over a concentration range of 5.97×10(-7) to 1.00×10(-3) and 5.96×10(-7) to 3.03×10(-3)molL(-1) with limit of detection of 3.92×10(-7)and 3.40×10(-7)molL(-1) for membrane and chemically modified carbon paste sensors, respectively, with respect to benzethonium chloride (BT.Cl). They could be used over a wide pH range of 2.0-10.0. The thermal coefficients of membrane and CMCP sensors are 5.40×10(-4), 1.17×10(-4)V/°C, respectively. The sensors indicated a wide selectivity over different inorganic cations. The effect of soaking on the surface morphology of the membrane sensor was studied using EDX-SEM and AFM techniques. The response time was <10s The freshly prepared, exhausted membrane, and CMCP sensors were successfully applied for the potentiometric determination of the pure BT.Cl solution. They were also used for the determination of its pharmaceutical formulation Dermoplast(®) antibacterial spray (20% benzocaine+0.2% benzethonium chloride) with recovery values ranging from 97.54±1.70 to 101.25±1.12 and from 96.32±2.49 to 101.23±2.15%. The second goal of these sensors is the potentiometric determination of different surfactants such as SLES, SDS, and LABSA with good recovery values using BT.Cl as a titrant in their pure forms, and in samples containing one of them (shampoo, Touri(®) dishwashing liquid, and waste water). The statistical analysis of the obtained data was studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed. PMID:27879786

  13. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon

    PubMed Central

    Walcarius, Alain

    2017-01-01

    The past decade has seen an increasing number of extensive studies devoted to the exploitation of ordered mesoporous carbon (OMC) materials in electrochemistry, notably in the fields of energy and sensing. The present review summarizes the recent achievements made in field of electroanalysis using electrodes modified with such nanomaterials. On the basis of comprehensive tables, the interest in OMC for designing electrochemical sensors is illustrated through the various applications developed to date. They include voltammetric detection after preconcentration, electrocatalysis (intrinsically due to OMC or based on suitable catalysts deposited onto OMC), electrochemical biosensors, as well as electrochemiluminescence and potentiometric sensors. PMID:28800106

  14. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    PubMed

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  15. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.

    PubMed

    Guinovart, Tomàs; Parrilla, Marc; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J

    2013-09-21

    A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.

  16. Design and evaluation of potentiometric principles for bladder volume monitoring: a preliminary study.

    PubMed

    Chen, Shih-Ching; Hsieh, Tsung-Hsun; Fan, Wen-Jia; Lai, Chien-Hung; Chen, Chun-Lung; Wei, Wei-Feng; Peng, Chih-Wei

    2015-06-01

    Recent advances in microelectronics and wireless transmission technology have led to the development of various implantable sensors for real-time monitoring of bladder conditions. Although various sensing approaches for monitoring bladder conditions were reported, most such sensors have remained at the laboratory stage due to the existence of vital drawbacks. In the present study, we explored a new concept for monitoring the bladder capacity on the basis of potentiometric principles. A prototype of a potentiometer module was designed and fabricated and integrated with a commercial wireless transmission module and power unit. A series of in vitro pig bladder experiments was conducted to determine the best design parameters for implementing the prototype potentiometric device and to prove its feasibility. We successfully implemented the potentiometric module in a pig bladder model in vitro, and the error of the accuracy of bladder volume detection was <±3%. Although the proposed potentiometric device was built using a commercial wireless module, the design principles and animal experience gathered from this research can serve as a basis for developing new implantable bladder sensors in the future.

  17. Potentiometric Biosensor for Studying Hydroquinone Cytotoxicity in vitro

    PubMed Central

    Wang, Yanyan; Chen, Qiang; Zeng, Xiangqun

    2009-01-01

    Many processes in living cells have electrochemical characteristics that are suitable for measurement by potentiometric biosensors. Potentiometric biosensors allow non invasive, real-time monitoring of the extracellular environment changes by measuring the potential at cell/sensor interface. This can be used as an indicator for overall cell cytotoxicity. The present work employs a potentiometric sensor array to investigate the cytotoxicity of hydroquinone to cultured mammalian V79 cells. Various electrode substrates (Au, PPy-HQ and PPy-PS) used for cell growth were designed and characterized. The controllable release of hydroquinone from PPy substrates was studied. Our results showed that hydroquinone exposure affected cell proliferation and delayed cell growth and attachment in a dose-dependent manner. Additionally, we have shown that exposure of V79 cells to hydroquinone at low doses (i.e 5μM) for more than 15 hours allows V79 cells to gain enhanced adaptability to survive exposure to high toxic HQ doses afterwards. Compared with traditional methods, the potentiometric biosensor not only provides non-invasive and real time monitoring of the cellular reactions but also is more sensitive for in vitro cytotoxicity study. By real time and non-invasive monitoring of the extracellular potential in vitro, the potentiometric sensor system represents a promising biosensor system for drug discovery. PMID:19926470

  18. Integrated potentiometric detector for use in chip-based flow cells

    PubMed

    Tantra; Manz

    2000-07-01

    A new kind of potentiometric chip sensor for ion-selective electrodes (ISE) based on a solvent polymeric membrane is described. The chip sensor is designed to trap the organic cocktail inside the chip and to permit sample solution to flow past the membrane. The design allows the sensor to overcome technical problems of ruggedness and would therefore be ideal for industrial processes. The sensor performance for a Ba2+-ISE membrane based on a Vogtle ionophore showed electrochemical behavior similar to that observed in conventional electrodes and microelectrode arrangements.

  19. Going Beyond, Going Further: Knives, Forks, and Beer Cans as Potentiometric Sensors.

    ERIC Educational Resources Information Center

    Selig, Walter S.

    1985-01-01

    Background information, materials needed, and procedures used are provided for potentiometric fluoride, halide, orthophosphate, and sulfate titrations. Typical results obtained are also provided for each type of titration. (JN)

  20. Dynamic potential and surface morphology study of sertraline membrane sensors

    PubMed Central

    Khater, M.M.; Issa, Y.M.; Hassib, H.B.; Mohammed, S.H.

    2014-01-01

    New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24 mV/decade and 2.51, 5.62 and 4.85 μmol L−1 for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.01–10.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944

  1. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer.

    PubMed

    Kim, Dong-Min; Moon, Jong-Min; Lee, Won-Chul; Yoon, Jang-Hee; Choi, Cheol Soo; Shim, Yoon-Bo

    2017-05-15

    A non-enzymatic potentiometric glucose sensor for the determination of glucose in the micomolar level in saliva was developed based on a molecularly imprinted polymer (MIP) binding on a conducting polymer layer. A MIP containing acrylamide, and aminophenyl boronic acid, as a host molecule to glucose, was immobilized on benzoic acid-functionalized poly(terthiophene) (pTBA) by the amide bond formation onto a gold nanoparticles deposited-screen printed carbon electrode (pTBA/AuNPs/SPCE). Aromatic boronic acid was incorporated into the MIP layer to stably capture glucose and create a potentiometric signal through the changed pKa value of polymer film by the formation of boronate anion-glucose complex with generation of H + ions by the cis-diol reaction. Reversible binding and extraction of glucose on the sensor surface was observed using a quartz crystal microbalance. Each layer of the sensor probe was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The potentiometric response at the optimized conditions exhibited a wide linear dynamic range of 3.2×10 -7 to 1.0×10 -3 M, with a detection limit of 1.9 (±0.15)×10 -7 M. The sensor probe revealed an excellent selectivity and sensitivity for glucose compared to other saccharides. In addition, the reliability of the proposed glucose sensor was evaluated in physiological fluid samples of saliva and finger prick blood. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring.

    PubMed

    Bandodkar, Amay J; Molinnus, Denise; Mirza, Omar; Guinovart, Tomás; Windmiller, Joshua R; Valdés-Ramírez, Gabriela; Andrade, Francisco J; Schöning, Michael J; Wang, Joseph

    2014-04-15

    This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains. © 2013 Published by Elsevier B.V.

  3. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.

    PubMed

    Smolinska-Kempisty, K; Ahmad, O Sheej; Guerreiro, A; Karim, K; Piletska, E; Piletsky, S

    2017-10-15

    Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Combinatorial screening of potentiometric Pb(II) sensors from polysulfoaminoanthraquinone solid ionophore.

    PubMed

    Huang, Mei-Rong; Ding, Yong-Bo; Li, Xin-Gui

    2014-03-10

    A potentiometric Pb(II)-selective sensor was fabricated by a combinatorial screening of electrically conducting polysulfoaminoanthraquinone (PSA) nanoparticles as a solid ionophore, ion exchangers (oleic acid (OA) and NaTPB), plasticizers in a polyvinyl chloride (PVC) matrix, membrane thickness, inner filling ion species, and concentration. The membrane sensor with the composition of PSA/PVC/DOP (dioctyl phthalate)/OA (1.0:33:61:5.0) exhibited the best performance, including a slope of 29.3 mV decade(-1) in the concentration range 10(-6.3)-10(-1.6) M, detection limit of 1.6 × 10(-7) M, response time of 16 s, lifetime of five months, and good response reversibility. The proposed sensor has demonstrated good selectivity for Pb(II) over other monovalent, divalent and trivalent interfering ions, and could be used in a pH range of 3.62-5.22. The Pb(II) sensor has been successfully applied for the determination of Pb(II) concentration in real-world samples and also as an indicator electrode for potentiometric titration of lead ions.

  5. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the sensor can measure accurately the value of pH over a long period of time with low power consumption.

  6. Septonex-tetraphenylborate screen-printed ion selective electrode for the potentiometric determination of Septonex in pharmaceutical preparations.

    PubMed

    Mohamed, Gehad G; El-Shahat, M F; Al-Sabagh, A M; Migahed, M A; Ali, Tamer Awad

    2011-04-07

    A screen-printed electrode (SPE) was fabricated for the determination of 1-(ethoxycarbonyl)pentadecyltrimethylammonium bromide (Septonex) based on the use of Septonex-tetraphenylborate as the electroactive substance, and o-nitrophenyloctylether (o-NPOE) as the plasticizing agent. The electrode passes a near-Nernstian cationic slope of 59.33 ± 0.85 mV from activity between pH values of 2 to 9 with a lower detection limit of 9×10(-7) M and response time of about 5 s and exhibits an adequate shelf-life of 6 months. The method was applied for the determination of Septonex in pharmaceutical preparations. A percentage recovery of 99.88% was obtained with RSD=1.24%. The electrode was successfully applied in the determination of Septonex in laboratory-prepared samples by direct potentiometric, calibration curve and standard addition methods. Potentiometric titration of Septonex with sodium tetraphenylborate and phosphotungstic acid as a titrant was monitored with the modified screen-printed electrode as an end-point indicator electrode. Selectivity coefficients for Septonex relative to a number of potential interfering substances were determined. The sensor was highly selective for Septonex over a large number of compounds. Selectivity coefficient data for some common ions show negligible interference; however, cetyltrimethylammonium bromide and iodide ions interfere significantly. The analytical usefulness of the proposed electrode was evaluated by its application in the determination of Septonex in laboratory-prepared pharmaceutical samples with satisfactory results. The results obtained with the fabricated sensor are comparable with those obtained by the British Pharmacopeia method. © The Royal Society of Chemistry 2011

  7. Paper-based potentiometric pH sensor using carbon electrode drawn by pencil

    NASA Astrophysics Data System (ADS)

    Kawahara, Ryotaro; Sahatiya, Parikshit; Badhulika, Sushmee; Uno, Shigeyasu

    2018-04-01

    A flexible and disposable paper-based pH sensor fabricated with a pencil-drawn working electrode and a Ag/AgCl paste reference electrode is demonstrated for the first time to show pH response by the potentiometric principle. The sensor substrate is made of chromatography paper with a wax-printed hydrophobic area, and various types of carbon pencils are tested as working electrodes. The pH sensitivities of the electrodes drawn by carbon pencils with different hardnesses range from 16.5 to 26.9 mV/pH. The proposed sensor is expected to be more robust against shape change in electrodes on a flexible substrate than other types of chemiresistive/amperometric pH sensors.

  8. Biomaterial based sulphur di oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Sarkar, A.

    2013-06-01

    Biomaterials are getting importance in the present research field of sensors. In this present paper performance of biomaterial based gas sensor made of gum Arabica and garlic extract had been studied. Extract of garlic clove with multiple medicinal and chemical utility can be proved to be useful in sensing Sulphur di Oxide gas. On exposure to Sulphur di Oxide gas the material under observation suffers some temporary structural change, which can be observed in form of amplified potentiometric change through simple electronic circuitry. Exploiting this very property a potentiometric gas sensor of faster response and recovery time can be designed. In this work sensing property of the said material has been studied through DC conductance, FTIR spectrum etc.

  9. Nanoscale potentiometry.

    PubMed

    Bakker, Eric; Pretsch, Ernö

    2008-01-01

    Potentiometric sensors share unique characteristics that set them apart from other electrochemical sensors. Potentiometric nanoelectrodes have been reported and successfully used for many decades, and we review these developments. Current research chiefly focuses on nanoscale films at the outer or the inner side of the membrane, with outer layers for increasing biocompatibility, expanding the sensor response, or improving the limit of detection (LOD). Inner layers are mainly used for stabilizing the response and eliminating inner aqueous contacts or undesired nanoscale layers of water. We also discuss the ultimate detectability of ions with such sensors and the power of coupling the ultra-low LODs of ion-selective electrodes with nanoparticle labels to give attractive bioassays that can compete with state-of-the-art electrochemical detection.

  10. PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids.

    PubMed

    Abdel-Haleem, Fatehy M; Saad, Mohamed; Barhoum, Ahmed; Bechelany, Mikhael; Rizk, Mahmoud S

    2018-08-01

    We report on highly-sensitive ion-selective electrodes (ISEs) for potentiometric determining of galantamine hydrobromide (GB) in physiological fluids. Galantamine hydrobromide (GB) was selected for this study due to its previous medical importance for treating Alzheimer's disease. Three different types of ISEs were investigated: PVC membrane electrode (PVCE), carbon-paste electrode (CPE), and coated-wire electrode (CWE). In the construction of these electrodes, galantaminium-reineckate (GR) ion-pair was used as a sensing species for GB in solutions. The modified carbon-paste electrode (MCPE) was prepared using graphene oxide (MCPE-GO) and sodium tetrakis (trifluoromethyl) phenyl borate (MCPE-STFPB) as ion-exchanger. The potentiometric modified CPEs (MCPE-GO and MCPE-STFPB) show an improved performance in term of Nernstian slope, selectivity, response time, and response stability compared to the unmodified CPE. The prepared electrodes PVCE, CWE, CPE, MCPE-GO and MCPE-STFPB show Nernstian slopes of 59.9, 59.5, 58.1, 58.3 and 57.0 mV/conc. decade, and detection limits of 5.0 × 10 -6 , 6.3 × 10 -6 , 8.0 × 10 -6 , 6.0 × 10 -6 and 8.0 × 10 -6  mol L -1 , respectively. The prepared ISEs also show high selectivity against cations (i.e. Na + , K + , NH 4 + , Ca 2+ , Al 3+ , Fe 3+ ), amino acids (i.e. glycine, L-alanine alanine), and sugars (i.e. fructose, glucose, maltose, lactose). The prepared ISEs are applicable for determining GB in spiked serums, urines, and pharmaceutical preparations, using a standard addition and a direct potentiometric method. The fast response time (<10 s), long lifetime (1-5 weeks), reversibility and stability of the measured signals facilitate the application of these sensors for routine analysis of the real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Strontium (II)-Selective Potentiometric Sensor Based on Ester Derivative of 4-tert-butylcalix(8)arene in PVC Matrix

    PubMed Central

    Jain, Ajay K.; Gupta, Vinod K.; Raisoni, Jitendra R.

    2004-01-01

    Membranes of 4-tert-butylcalix(8)arene-octaacetic acid octaethyl ester (I) as an electroactive material, sodium tetraphenyl borate (NaTPB) as an anion excluder, and tri-n-butyl phosphate (TBP) as a solvent mediator in poly(vinyl chloride) (PVC) matrix have been tried for a strontium-selective sensor. The best performance was exhibited by the membrane having a composition 5:100:150:2 (I: PVC: TBP: NaTPB (w/w)). This sensor exhibits a good potentiometric response to Sr2+ over a wide concentration range (3.2 × 10 –5 –1.0 × 10 –1 M) with a Nernstian slope (30 mV/ decade). The response time of the sensor is 10 s and it has been used for a period of four months without any drift in potentials. The selectivity coefficient values are in the order of 0.01 for mono-, bi-, and trivalent cations which indicate a good selectivity for Sr2+ over a large number of cations. The useful pH range for the sensor was found to be 3-10 and it works well in mixtures with non-aqueous content up to 25 % (v/v). The sensor has been used as an indicator electrode in the potentiometric titration of Sr2+ against EDTA.

  12. A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.

    PubMed

    Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo

    2018-03-02

    Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.

  13. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    PubMed

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  14. Linear air-fuel sensor development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changesmore » by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.« less

  15. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    PubMed Central

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  16. Polymethacrylate Polymers with Appended Aluminum(III)-Tetraphenylporphyrins: Synthesis, Characterization and Evaluation as Macromolecular Ionophores for Electrochemical and Optical Fluoride Sensors

    PubMed Central

    Wang, Lin; Meyerhoff, Mark E.

    2008-01-01

    The synthesis and characterization of a novel polymethacylate polymer with covalently linked Al(III)-tetraphenylporphyrin (Al(III)-TPP) groups is reported. The new polymer is examined as a potential macromolecular ionophore for the preparation of polymeric membrane-based potentiometric and optical fluoride selective sensors. To prepare the polymer, an Al(III) porphyrin monomer modified with a methacrylate functionality is synthesized, allowing insertion into a polymethacrylate block copolymer (methyl methacrylate and decyl methacrylate) backbone. The resulting polymer can then be incorporated, along with appropriate additives, into conventional plasticized poly(vinyl chloride) films for testing electrochemical and optical fluoride response properties. The covalent attachment of the Al(III)-TPP ionophore to the copolymer matrix provides potentiometric sensors that exhibit significant selectivity for fluoride ion with extended lifetimes (compared to ion-selective membrane electrodes formulated with conventional free Al(III)-TPP structure). However, quite surprisingly, the attachment of the ionophore to the polymer does not eliminate the interaction of Al(III)-TPP structures to form dimeric species within the membrane phase in the presence of fluoride ion. Such interactions are confirmed by UV/visible spectroscopy of the blended polymeric films. Use of the new polymer-Al(III)-TPP conjugates to prepare optical fluoride sensors by co-incorporating a lipophilic pH indicator (4’,5’-dibromofluorescein octadecyl ester; ETH7075) is also examined and the resulting optical sensing films are shown to exhibit excellent selectivity for fluoride, with the potential for prolonged operational lifetime. PMID:18298973

  17. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    PubMed Central

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  18. Potentiometric chemical sensors from lignin-poly(propylene oxide) copolymers doped by carbon nanotubes.

    PubMed

    Rudnitskaya, Alisa; Evtuguin, Dmitry V; Costa, Luis C; Graça, M Pedro F; Fernandes, António J S; Correia, M Rosario P; Gomes, M Teresa S R; Oliveira, J A B P

    2013-01-21

    Hardwood and softwood lignins obtained from industrial sulphite and kraft and laboratory oxygen-organosolv pulping processes were employed in co-polymerization with tolylene 2,4-diisocyanate terminated poly(propylene glycol). The obtained lignin-based polyurethanes were doped with 0.72 w/w% of multiwall carbon nanotubes (MWCNTs) with the aim of increasing their electrical conductivity to the levels suitable for sensor applications. Effects of the polymer doping with MWCNTs were assessed using electrical impedance (EIS) and UV-Resonance Raman (UV-RR) spectroscopy. Potentiometric sensors were prepared by drop casting of liquid polymer on the surface of carbon glass or platinum electrodes. Lignin-based sensors displayed a very low or no sensitivity to all alkali, alkali-earth and transition metal cations ions except Cr(VI) at pH 2. Response to Cr(VI) values of 39, 50 and 53 mV pX(-1) for the sensors based on kraft, organosolv and lignosulphonate lignins, respectively, were observed. Redox sensitivity values close to the theoretical values of 20 and 21 mV pX(-1) for organosolv and lignosulphonate based sensors respectively were detected in the Cr(III)/Cr(VI) solutions while a very low response was observed in the solutions containing Fe(CN)(6)(3-/4-). Conducting composite lignin-based polyurethanes doped with MWCNTs were suggested as being promising materials for Cr(VI)-sensitive potentiometric sensors.

  19. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    NASA Astrophysics Data System (ADS)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  20. Detecting Levels of Polyquaternium-10 (PQ-10) via Potentiometric Titration with Dextran Sulphate and Monitoring the Equivalence Point with a Polymeric Membrane-Based Polyion Sensor.

    PubMed

    Ferguson, Stephen A; Wang, Xuewei; Meyerhoff, Mark E

    2016-08-07

    Polymeric quaternary ammonium salts (polyquaterniums) have found increasing use in industrial and cosmetic applications in recent years. More specifically, polyquaternium-10 (PQ-10) is routinely used in cosmetic applications as a conditioner in personal care product formulations. Herein, we demonstrate the use of potentiometric polyion-sensitive polymeric membrane-based electrodes to quantify PQ-10 levels. Mixtures containing both PQ-10 and sodium lauryl sulfate (SLS) are used as model samples to illustrate this new method. SLS is often present in cosmetic samples that contain PQ-10 (e.g., shampoos, etc.) and this surfactant species interferes with the polyion sensor detection chemistry. However, it is shown here that SLS can be readily separated from the PQ-10/SLS mixture by use of an anion-exchange resin and that the PQ-10 can then be titrated with dextran sulphate (DS). This titration is monitored by potentiometric polyanion sensors to provide equivalence points that are directly proportional to PQ-10 concentrations.

  1. New potentiometric transducer based on a Mn(II) [2-formylquinoline thiosemicarbazone] complex for static and hydrodynamic assessment of azides.

    PubMed

    Kamel, Ayman H

    2015-11-01

    A new potentiometric transducer for selective recognition of azide is characterized and developed. The PVC plasticized based sensor incorporates Mn(II) [2-formylquinoline thiosemicarbazone] complex in the presence of tri dodecyl methyl ammonium chloride (TDMAC) as a lipophilic cationic additive. The sensor displayed a near-Nernstian response for azide over 1.0×10(-2)-1.0×10(-5) mol L(-1), with an anionic slope of -55.8±0.6 mV decade(-1) and lower limit of detection 0.34 µg mL(-1). The sensor was pH independent in the range 5.5-9 and presented good selectivity features towards several inorganic anions, and it is easily used in a flow injection system and compared with a tubular detector. The intrinsic characteristics of the detector in a low dispersion manifold were determined and compared with data obtained under a hydrodynamic mode of operation. This simple and inexpensive automation, with a good potentiometric detector, enabled the analysis of ~33 samples h(-1) without requiring pre-treatment procedures. The proposed method is also applied to the analysis of trace levels of azide in primer mixtures. Significantly improved accuracy, precision, response time, stability and selectivity were offered by these simple and cost-effective potentiometric sensor compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to determine azide ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Influences of Probe’s Morphology for Metal Ion Detection Based on Light-Addressable Potentiometric Sensors

    PubMed Central

    Shao, Chen; Zhou, Shuang; Yin, Xuebo; Gu, Yajun; Jia, Yunfang

    2016-01-01

    The sensing mechanism of binding Hg2+ into thymine-thymine (T-T) mismatched base pairs was introduced into a light-addressable potentiometric sensor (LAPS) with anti-Hg2+ aptamer as the sensing units. Three kinds of T-rich single-strand DNA (ssDNA) chains with different spacer lengths, from 0 to 12 –CH2 groups, were designed to investigate surface charge and morphological effects on the LAPS’ output. First, by comparing the responding of LAPS modified with three kinds of ssDNA, it was found that the best performance for Hg2+ sensing was exhibited by the probe without –CH2 groups. The detection limit of Hg2+ ion was 1 ppt under the optimal condition. Second, the cooperative effects of surface charge and morphology on the output were observed by the controlled experiments. The two effects were the negative charge balanced by metal cations and the morphological changing caused by the formation of T-Hg2+-T structure. In conclusion, not only the influences of the aptamer probe’s morphology and surface charge was investigated on the platform of LAPS, but also sensing Hg2+ ions was achieved for the first time by the presented aptamer LAPS. PMID:27187412

  3. Disposable screen-printed sensors for determination of duloxetine hydrochloride

    PubMed Central

    2012-01-01

    A screen-printed disposable electrode system for the determination of duloxetine hydrochloride (DL) was developed using screen-printing technology. Homemade printing has been characterized and optimized on the basis of effects of the modifier and plasticizers. The fabricated bi-electrode potentiometric strip containing both working and reference electrodes was used as duloxetine hydrochloride sensor. The proposed sensors worked satisfactorily in the concentration range from 1.0 × 10-6-1.0 × 10-2 mol L-1 with detection limit reaching 5.0 × 10-7 mol L-1 and adequate shelf life of 6 months. The method is accurate, precise and economical. The proposed method has been applied successfully for the analysis of the drug in pure and in its dosage forms. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically by recovery studies. PMID:22264225

  4. Eyeglasses based wireless electrolyte and metabolite sensor platform.

    PubMed

    Sempionatto, Juliane R; Nakagawa, Tatsuo; Pavinatto, Adriana; Mensah, Samantha T; Imani, Somayeh; Mercier, Patrick; Wang, Joseph

    2017-05-16

    The demand for wearable sensors has grown rapidly in recent years, with increasing attention being given to epidermal chemical sensing. Here, we present the first example of a fully integrated eyeglasses wireless multiplexed chemical sensing platform capable of real-time monitoring of sweat electrolytes and metabolites. The new concept has been realized by integrating an amperometric lactate biosensor and a potentiometric potassium ion-selective electrode into the two nose-bridge pads of the glasses and interfacing them with a wireless electronic backbone placed on the glasses' arms. Simultaneous real-time monitoring of sweat lactate and potassium levels with no apparent cross-talk is demonstrated along with wireless signal transduction. The electrochemical sensors were screen-printed on polyethylene terephthalate (PET) stickers and placed on each side of the glasses' nose pads in order to monitor sweat metabolites and electrolytes. The electronic backbone on the arms of the glasses' frame offers control of the amperometric and potentiometric transducers and enables Bluetooth wireless data transmission to the host device. The new eyeglasses system offers an interchangeable-sensor feature in connection with a variety of different nose-bridge amperometric and potentiometric sensor stickers. For example, the lactate bridge-pad sensor was replaced with a glucose one to offer convenient monitoring of sweat glucose. Such a fully integrated wireless "Lab-on-a-Glass" multiplexed biosensor platform can be readily expanded for the simultaneous monitoring of additional sweat electrolytes and metabolites.

  5. Extended Gate Field-Effect Transistor Biosensors for Point-Of-Care Testing of Uric Acid.

    PubMed

    Guan, Weihua; Reed, Mark A

    2017-01-01

    An enzyme-free redox potential sensor using off-chip extended-gate field effect transistor (EGFET) with a ferrocenyl-alkanethiol modified gold electrode has been used to quantify uric acid concentration in human serum and urine. Hexacyanoferrate (II) and (III) ions are used as redox reagent. The potentiometric sensor measures the interface potential on the ferrocene immobilized gold electrode, which is modulated by the redox reaction between uric acid and hexacyanoferrate ions. The device shows a near Nernstian response to uric acid and is highly specific to uric acid in human serum and urine. The interference that comes from glucose, bilirubin, ascorbic acid, and hemoglobin is negligible in the normal concentration range of these interferents. The sensor also exhibits excellent long term reliability and is regenerative. This extended gate field effect transistor based sensor is promising for point-of-care detection of uric acid due to the small size, low cost, and low sample volume consumption.

  6. Potentiometric Aptasensing of Vibrio alginolyticus Based on DNA Nanostructure-Modified Magnetic Beads.

    PubMed

    Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei

    2016-12-02

    A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10-100 CFU mL -1 with a detection limit of 10 CFU mL -1 , and a good specificity for the detection of Vibrio alginolyticus . This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures.

  7. Diurnal and seasonal variations of pH for a year in the western subarctic North Pacific observed by using a hybrid pH sensor

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshiyuki; Fujiki, Tetsuichi; Kimoto, Katsunori; Miwa, Tetsuya

    2017-04-01

    Ocean acidification has many far reaching impacts on plankton community in the ocean. There is great need of quality instrumentation to assess and monitor the changing seawater pH. To meet the need, we have developed the in situ high accurate pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring to participate the Wendy Schmidt Ocean health XPRIZE. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS is correcting the value of the potentiometric pH (measuring frequently) by the value of the spectrophotometric pH (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the HpHS can measure accurately the value of pH over a long period of time with low power consumption. In order to understand the seasonal and inter-annual variabilities of biogeochemical cycles and ecosystems, ship-based studies have been carried out since 1997 at time-series station K2 (47oN, 160oE) in the subarctic western North Pacific, which is a region with progression of ocean acidification. However, the ship-based studies of the open ocean have been limited in their ability to conduct high-frequency observations for understanding the biogeochemical cycles and ecosystems. To overcome the problem, we developed a hybrid profiling buoy system. The HpHS was attached to a remote automatic water sampler (200m) in the buoy system in July 2015. We recovered the buoy system in June 2016 and succeeded in observing seawater pH every four hours for a year. Here, we show an overview of the diurnal and seasonal variations of pH for a year at station K2. In addition, we examine a relationship between the pH variations and marine calcifiers recovered by the sediment trap during the same period.

  8. Potentiometric determination of pantoprazole using an ion-selective sensor based on polypyrrole doped films.

    PubMed

    Noronha, Bárbara V; Bindewald, Eduardo H; de Oliveira, Michelle C; Papi, Maurício A P; Bergamini, Márcio F; Marcolino, Luiz H

    2014-10-01

    The present work reports for the first time the use of polypyrrole (PPy) doped film for development of a potentiometric disposable sensor for determination of pantoprazole (PTZ), a drug used for ulcer treatment. Selective potentiometric response has been found by using a membrane of PPy doped with PTZ anions prepared under galvanostatic conditions at graphite pencil electrode (GPEM/PPy-PTZ) surface. Potentiometric response has been influenced for conditions adopted in polymerization and measurement step. After optimization of experimental (e.g. pH and time of conditioning) and instrumental parameters (e.g. current density and electrical charge) a linear analytical curve from 1.0 × 10(-5) to 1.1 × 10(-2) mol L(-1) with a slope of calibration of the 57.6 mV dec(-1) and limit of detection (LOD) of 6.9 × 10(-6) mol L(-1) was obtained. The determination of the PTZ content in pharmaceutical samples using the proposed methodology and official method recommended by Brazilian Pharmacopeia are in agreement at the 95% confidence level and within an acceptable range of error. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    PubMed Central

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  10. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    PubMed Central

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments. PMID:22163467

  11. Fabrication and performance of all-solid-state chloride sensors in synthetic concrete pore solutions.

    PubMed

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  12. Monitoring of beer fermentation based on hybrid electronic tongue.

    PubMed

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Electrochemical sample matrix elimination for trace-level potentiometric detection with polymeric membrane ion-selective electrodes.

    PubMed

    Chumbimuni-Torres, Karin Y; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric

    2008-08-01

    Potentiometric sensors are today sufficiently well understood and optimized to reach ultratrace level (subnanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth-coated electrode, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte.

  14. Electrochemical Sample Matrix Elimination for Trace Level Potentiometric Detection with Polymeric Membrane Ion-Selective Electrodes

    PubMed Central

    Chumbimuni-Torres, Karin Y.; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric

    2008-01-01

    Potentiometric sensors are today sufficiently well understood and optimized to reach ultra-trace level (sub-nanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination (EMPM) of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth coated electrodes, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte. PMID:18570385

  15. Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors

    PubMed Central

    Wang, Wei-Song; Huang, Hong-Yi; Chen, Shu-Chun; Ho, Kuo-Chuan; Lin, Chia-Yu; Chou, Tse-Chuan; Hu, Chih-Hsien; Wang, Wen-Fong; Wu, Cheng-Feng; Luo, Ching-Hsing

    2011-01-01

    A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC), a microcontroller unit (MCU), a graphical user interface (GUI), and a radio frequency (RF) transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA) to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA). The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR) greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment), a small size of 5.6 cm × 8.7 cm, high portability, and high integration. PMID:22164093

  16. Real-time telemetry system for amperometric and potentiometric electrochemical sensors.

    PubMed

    Wang, Wei-Song; Huang, Hong-Yi; Chen, Shu-Chun; Ho, Kuo-Chuan; Lin, Chia-Yu; Chou, Tse-Chuan; Hu, Chih-Hsien; Wang, Wen-Fong; Wu, Cheng-Feng; Luo, Ching-Hsing

    2011-01-01

    A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC), a microcontroller unit (MCU), a graphical user interface (GUI), and a radio frequency (RF) transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA) to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA). The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR) greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment), a small size of 5.6 cm × 8.7 cm, high portability, and high integration.

  17. Automated electronic tongue based on potentiometric sensors for the determination of a trinary anionic surfactant mixture.

    PubMed

    Cortina, Montserrat; Ecker, Christina; Calvo, Daniel; del Valle, Manuel

    2008-01-22

    An automated electronic tongue consisting of an array of potentiometric sensors and an artificial neural network (ANN) has been developed to resolve mixtures of anionic surfactants. The sensor array was formed by five different flow-through sensors for anionic surfactants, based on poly(vinyl chloride) membranes having cross-sensitivity features. Feedforward multilayer neural networks were used to predict surfactant concentrations. As a great amount of information is required for the correct modelling of the sensors response, a sequential injection analysis (SIA) system was used to automatically provide it. Dodecylsulfate (DS(-)), dodecylbenzenesulfonate (DBS(-)) and alpha-alkene sulfonate (ALF(-)) formed the three-analyte study case resolved in this work. Their concentrations varied from 0.2 to 4mM for ALF(-) and DBS(-) and from 0.2 to 5mM for DS(-). Good prediction ability was obtained with correlation coefficients better than 0.933 when the obtained values were compared with those expected for a set of 16 external test samples not used for training.

  18. Two Analyte Calibration From The Transient Response Of Potentiometric Sensors Employed With The SIA Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartas, Raul; Mimendia, Aitor; Valle, Manel del

    2009-05-23

    Calibration models for multi-analyte electronic tongues have been commonly built using a set of sensors, at least one per analyte under study. Complex signals recorded with these systems are formed by the sensors' responses to the analytes of interest plus interferents, from which a multivariate response model is then developed. This work describes a data treatment method for the simultaneous quantification of two species in solution employing the signal from a single sensor. The approach used here takes advantage of the complex information recorded with one electrode's transient after insertion of sample for building the calibration models for both analytes.more » The departure information from the electrode was firstly processed by discrete wavelet for transforming the signals to extract useful information and reduce its length, and then by artificial neural networks for fitting a model. Two different potentiometric sensors were used as study case for simultaneously corroborating the effectiveness of the approach.« less

  19. Light-Addressable Potentiometric Sensors for Quantitative Spatial Imaging of Chemical Species.

    PubMed

    Yoshinobu, Tatsuo; Miyamoto, Ko-Ichiro; Werner, Carl Frederik; Poghossian, Arshak; Wagner, Torsten; Schöning, Michael J

    2017-06-12

    A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.

  20. BIOSENSOR FOR DIRECT DETERMINATION OF ORGANOPHOSPHATE NERVE AGENTS. 1. POTENTIOMETRIC ENZYME ELECTRODE. (R823663)

    EPA Science Inventory

    A potentiometric enzyme electrode for the direct measurement of organophosphate (OP)
    nerve agents was developed. The basic element of this enzyme electrode was a pH electrode
    modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking
    OPH ...

  1. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer

    NASA Astrophysics Data System (ADS)

    Wu, Chunsheng; Bronder, Thomas; Poghossian, Arshak; Werner, Carl Frederik; Schöning, Michael J.

    2015-03-01

    A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07225a

  2. Potentiometric Aptasensing of Vibrio alginolyticus Based on DNA Nanostructure-Modified Magnetic Beads

    PubMed Central

    Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei

    2016-01-01

    A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10–100 CFU mL−1 with a detection limit of 10 CFU mL−1, and a good specificity for the detection of Vibrio alginolyticus. This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures. PMID:27918423

  3. A selective potentiometric copper (II) ion sensor based on the functionalized ZnO nanorods.

    PubMed

    Khun, K; Ibupoto, Z H; Liu, X; Nur, O; Willander, M; Danielsson, B

    2014-09-01

    In this work, ZnO nanorods were hydrothermally grown on the gold-coated glass substrate and characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques. The ZnO nanorods were functionalized by two different approaches and performance of the sensor electrode was monitored. Fourier transform infrared spectroscopy (FTIR) was carried out for the confirmation of interaction between the ionophore molecules and ZnO nanorods. In addition to this, the surface of the electrode was characterized by X-ray photoelectron spectroscopy (XPS) showing the chemical and electronic state of the ionophore and ZnO nanorod components. The ionophore solution was prepared in the stabilizer, poly vinyl chloride (PVC) and additives, and then functionalized on the ZnO nanorods that have shown the Nernstian response with the slope of 31 mV/decade. However, the Cu2+ ion sensor was fabricated only by immobilizing the selective copper ion ionophore membrane without the use of PVC, plasticizers, additives and stabilizers and the sensor electrode showed a linear potentiometric response with a slope of 56.4 mV/decade within a large dynamic concentration range (from 1.0 x 10(-6) to 1.0 x 10(-1) M) of copper (II) nitrate solutions. The sensor showed excellent repeatability and reproducibility with response time of less than 10 s. The negligible response to potentially interfering metal ions such as calcium (Ca2+), magnesium (Mg2+), potassium (K+), iron (Fe3+), zinc (Zn2+), and sodium (Na+) allows this sensor to be used in biological studies. It may also be used as an indicator electrode in the potentiometric titration.

  4. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit.

    PubMed

    Nakazato, Kazuo

    2014-03-28

    By integrating chemical reactions on a large-scale integration (LSI) chip, new types of device can be created. For biomedical applications, monolithically integrated sensor arrays for potentiometric, amperometric and impedimetric sensing of biomolecules have been developed. The potentiometric sensor array detects pH and redox reaction as a statistical distribution of fluctuations in time and space. For the amperometric sensor array, a microelectrode structure for measuring multiple currents at high speed has been proposed. The impedimetric sensor array is designed to measure impedance up to 10 MHz. The multimodal sensor array will enable synthetic analysis and make it possible to standardize biosensor chips. Another approach is to create new functional devices by integrating molecular systems with LSI chips, for example image sensors that incorporate biological materials with a sensor array. The quantum yield of the photoelectric conversion of photosynthesis is 100%, which is extremely difficult to achieve by artificial means. In a recently developed process, a molecular wire is plugged directly into a biological photosynthetic system to efficiently conduct electrons to a gold electrode. A single photon can be detected at room temperature using such a system combined with a molecular single-electron transistor.

  5. Solid State Gas Sensor Research in Germany – a Status Report

    PubMed Central

    Moos, Ralf; Sahner, Kathy; Fleischer, Maximilian; Guth, Ulrich; Barsan, Nicolae; Weimar, Udo

    2009-01-01

    This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor. PMID:22408529

  6. The Evolution of High Temperature Gas Sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, F. H.; Brosha, E. L.; Mukundan, R.

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  7. Design of a Selective and Sensitive PVC-Membrane Potentiometric Sensor for Strontium Ion Based on 1,10-Diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dione as a Neutral Ionophore

    PubMed Central

    Shamsipur, Mojtaba; Kazemi, Sayed Yahya; Sharghi, Hashem

    2007-01-01

    A novel PVC membrane sensor for the Sr2+ ion based on 1,10-diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dione has been prepared. The sensor possesses a Nernstian slope of 30.0 ± 0.6 mV decade-1 over a wide linear concentration range of 1.6 × 10-6-3.0 ×10-3 M with a detection limit of 6.3 ×10-7 M. It has a fast response time of <15 s and can be used for at least two months without any considerable divergence in potential. The potentiometric response is independent of the pH of test solution in the pH range 4.3-9.4. The proposed electrode shows good selectivities over a variety of alkali, alkaline earth, and transition metal ions.

  8. Potentiometric determination of ketotifen fumarate in pharmaceutical preparations and urine using carbon paste and PVC membrane selective electrodes.

    PubMed

    Frag, Eman Y Z; Mohamed, Gehad G; Khalil, Mohamed M; Hwehy, Mohammad M A

    2011-01-01

    This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10(-7) to 10(-2) mol L(-1). The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade(-1) for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0-6.0 and 2.0-7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method.

  9. Potentiometric Determination of Ketotifen Fumarate in Pharmaceutical Preparations and Urine Using Carbon Paste and PVC Membrane Selective Electrodes

    PubMed Central

    Frag, Eman Y. Z.; Mohamed, Gehad G.; Khalil, Mohamed M.; Hwehy, Mohammad M. A.

    2011-01-01

    This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10−7 to 10−2 mol L−1. The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade−1 for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0–6.0 and 2.0–7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method. PMID:22013443

  10. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level.

    PubMed

    Sahoo, P; Ananthanarayanan, R; Malathi, N; Rajiniganth, M P; Murali, N; Swaminathan, P

    2010-06-11

    A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 microg L(-1) levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L(-1) levels, with modification in methodology for accurate detection of end point even at 10.0 microg L(-1) levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 microg L(-1) O(2). Finally, several water samples containing dissolved oxygen from mg L(-1) to microg L(-1) levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 microg L(-1) O(2) level is 0.14 (n=5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 microg L(-1) levels. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Potentiometric perchlorate determination at nanomolar concentrations in vegetables.

    PubMed

    Leoterio, Dilmo M S; Paim, Ana Paula S; Belian, Mônica F; Galembeck, André; Lavorante, André F; Pinto, Edgar; Amorim, Célia G; Araújo, Alberto N; Montenegro, Maria C B S M

    2017-07-15

    In this work, an expeditious method based on the multi-commutated flow-analysis concept with potentiometric detection is proposed to perform determinations of the emergent contaminant perchlorate in vegetable matrices down to nanomolar concentration. To accomplish the task, a tubular shaped potentiometric sensor selective to perchlorate ion was constructed with a PVC membrane containing 12mmol/kg of the polyamine bisnaphthalimidopropyl-4,4'-diaminodiphenylmethane and 2-nitrophenyl phenyl ether 68% (w/w) as plasticizer casted on a conductive epoxy resin. Under optimal flow conditions, the sensor responded linearly in the concentration range of 6.3×10 -7 -1.0×10 -3 mol/L perchlorate. In order to extend the determinations to lower concentrations (4.6(±1.3)×10 -10 mol/L perchlorate), a column packed with 70mg of sodium 2,5,8,11,14-pentaoxa-1-silacyclotetradecane-polymer was coupled to the flow-system thus enabling prior pre-concentration of the perchlorate. The proposed procedure provides a simpler alternative for the determination of perchlorate in foods, nowadays only allowed by sophisticated and expensive equipment and laborious methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug.

    PubMed

    El-Naby, Eman H; Kamel, Ayman H

    2015-09-01

    A biomimetic potentiometric sensor for specific recognition of dextromethorphan (DXM), a drug classified according to the Drug Enforcement Administration (DEA) as a "drug of concern", is designed and characterized. A molecularly imprinted polymer (MIP), with special molecular recognition properties of DXM, was prepared by thermal polymerization in which DXM acted as template molecule, methacrylic acid (MAA) and acrylonitrile (AN) acted as functional monomers in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors revealed near-Nernstian response with slopes of 49.6±0.5 and 53.4±0.5 mV decade(-1) with a detection limit of 1.9×10(-6), and 1.0×10(-6) mol L(-1) DXM with MIP/MAA and MIP/AN membrane based sensors, respectively. Significantly improved accuracy, precision, response time, stability, selectivity and sensitivity were offered by these simple and cost-effective potentiometric sensors compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to assay DXM in pharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz

    2008-01-01

    Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825

  14. Use of the sulfide mineral pyrite as electrochemical sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile, propionitrile and benzonitrile.

    PubMed

    Mihajlović, Ljiljana; Nikolić-Mandić, Snezana; Vukanović, Branislav; Mihajlović, Randel

    2009-03-01

    Natural monocrystalline pyrite as a new indicator electrode for the potentiometric titration of weak acids in acetonitrile, propionitrile and benzonitrile was studied. The investigated electrode showed a linear dynamic response for p-toluenesulfonic acid concentrations in the range from 0.1 to 0.001 M, with a Nernstian slope of 74 mV per decade. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agent for this titration. The response time was less than (11 s) and the lifetime of the electrode is long. The advantages of the electrode are log-term stability, fast response, and reproducibility, while the sensor is easy to prepare and of low cost.

  15. Potentiometric sensors with carbon black supporting platinum nanoparticles.

    PubMed

    Paczosa-Bator, Beata; Cabaj, Leszek; Piech, Robert; Skupień, Krzysztof

    2013-11-05

    For the first time, a single-piece, all-solid-state ion-selective electrode was fabricated with carbon black supporting platinum nanoparticles (PtNPs-CB) and a polymeric membrane. The PtNPs-CB, as an intermediate layer, was drop-casted directly on the solid substrate, and then an ionophore-doped solvent polymeric membrane was added in order to form a sensor. The performance of the newly developed electrodes was evaluated on the basis of potassium and nitrate ions. The stability of the electrical potential for the electrodes was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric aqueous-layer test. Fabricated potassium- and nitrate-selective electrodes displayed a Nernstian slope and several outstanding properties such as high long-term potential stability, potential repeatability, and reproducibility.

  16. A Gas-Sensor-Based Urea Enzyme Electrode: Its Construction and Use in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Riechel, Thomas L.

    1984-01-01

    Describes an undergraduate experiment for the potentiometric determination of urea based on the physical entrapment of urease on the tip of an ammonia gas sensor. An advantage of this technique is the ease with which the ammonia electrode can be converted to a urea electrode. (JN)

  17. Solid-contact potentiometric sensors and multisensors based on polyaniline and thiacalixarene receptors for the analysis of some beverages and alcoholic drinks

    NASA Astrophysics Data System (ADS)

    Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady

    2018-04-01

    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.

  18. Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks.

    PubMed

    Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady

    2018-01-01

    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.

  19. Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks

    PubMed Central

    Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady

    2018-01-01

    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects. PMID:29740577

  20. Potentiometric chemical sensors for the detection of paralytic shellfish toxins.

    PubMed

    Ferreira, Nádia S; Cruz, Marco G N; Gomes, Maria Teresa S R; Rudnitskaya, Alisa

    2018-05-01

    Potentiometric chemical sensors for the detection of paralytic shellfish toxins have been developed. Four toxins typically encountered in Portuguese waters, namely saxitoxin, decarbamoyl saxitoxin, gonyautoxin GTX5 and C1&C2, were selected for the study. A series of miniaturized sensors with solid inner contact and plasticized polyvinylchloride membranes containing ionophores, nine compositions in total, were prepared and their characteristics evaluated. Sensors displayed cross-sensitivity to four studied toxins, i.e. response to several toxins together with low selectivity. High selectivity towards paralytic shellfish toxins was observed in the presence of inorganic cations with selectivity coefficients ranging from 0.04 to 0.001 for Na + and K + and 3.6*10 -4 to 3.4*10 -5 for Ca 2+ . Detection limits were in the range from 0.25 to 0.9 μmolL -1 for saxitoxin and decarbamoyl saxitoxin, and from 0.08 to 1.8 μmolL -1 for GTX5 and C1&C2, which allows toxin detection at the concentration levels corresponding to the legal limits. Characteristics of the developed sensors allow their use in the electronic tongue multisensor system for simultaneous quantification of paralytic shellfish toxins. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Label-free electrical detection using carbon nanotube-based biosensors.

    PubMed

    Maehashi, Kenzo; Matsumoto, Kazuhiko

    2009-01-01

    Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  2. Modern Directions for Potentiometric Sensors

    PubMed Central

    Bakker, Eric; Chumbimuni-Torres, Karin

    2009-01-01

    This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473

  3. Rapid determination of cadmium in rice using an all-solid RGO-enhanced light addressable potentiometric sensor.

    PubMed

    Zhang, Wen; Xu, Yiwei; Zou, Xiaobo

    2018-09-30

    Herein, an all-solid light addressable potentiometric sensor (LAPS) is presented for determination of cadmium (Cd) in rice. On the working surface of the LAPS, reduced graphene oxide (RGO) is introduced as a part of ion-to-electron transducer to improve ionophore behaviors. The composite modification of RGO and ionophore is validated with scanning electron microscopy. The as-fabricated sensor presents a rapid response in less than 10 s to target Cd. Meanwhile, it shows lower noise (0.23 mV) and better limit of detection (0.002 mg L -1 ) than LAPS (control) without RGO modification (0.37 mV; 0.008 mg L -1 ). With the proposed method, satisfactory precision, accuracy and selectivity are also established. This method is adopted in an extensive survey for 25 rice samples from 5 regions in China. The results are in very good agreement with those obtained using inductively-coupled plasma-mass spectrometry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Potentiometric determination of moxifloxacin in some pharmaceutical formulation using PVC membrane sensors.

    PubMed

    Hefnawy, Mohammed M; Homoda, Atef M; Abounassif, Mohammed A; Alanazi, Amer M; Al-Majed, Abdulrahaman; Mostafa, Gamal A

    2014-01-01

    The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 × 10(-2) - 4.0 × 10(-6), 1 × 10(-2) - 5.0 × 10(-6), 1 × 10(-2) - 5.0 × 10(-6) M), with detection limits of 3 × 10(-6), 4 × 10(-6) and 4.0 × 10(-6) M for sensor 1, 2 and 3, respectively over a pH range of 6.0 - 9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 μg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6% and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2 and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.

  5. New potentiometric and spectrophotometric methods for the determination of dextromethorphan in pharmaceutical preparations.

    PubMed

    Elmosallamy, Mohamed A F; Amin, Alaa S

    2014-01-01

    New, simple and convenient potentiometric and spectrophotometric methods are described for the determination of dextromethorphan hydrobromide (DXM) in pharmaceutical preparations. The potentiometric technique is based on developing a potentiometric sensor incorporating the dextromethorphan tetrakis(p-chlorophenyl)borate ion-pair complex as an electroactive species in a plasticized PVC matrix membrane with o-nitophenyl octyl ether or dioctyl phthalate. The sensor shows a rapid near Nernstian response of over 1 × 10(-5) - 1 × 10(-2) mol L(-1) dextromethorphan in the pH range of 3.0 - 9.0. The detection limit is 2 × 10(-6) mol L(-1) DXM and the response time is instantaneous (2 s). The proposed spectrophotometric technique involves the reaction of DXM with eriochrom black T (EBT) to form an ion-associate complex. Solvent extraction is used to improve the selectivity of the method. The optimal extraction and reaction conditions have been studied, and the analytical characteristics of the method have been obtained. Linearity is obeyed in the range of 7.37 - 73.7 × 10(-5) mol L(-1) DXM, and the detection limit of the method is 1.29 × 10(-5) mol L(-1). The relative standard deviation (RSD) and relative error for six replicate measurements of 3.685 × 10(-4) mol L(-1) are 0.672 and 0.855%, respectively. The interference effect of some excepients has also been tested. The drug contents in pharmaceutical preparations were successfully determined by the proposed methods by applying the standard-addition technique.

  6. Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline.

    PubMed

    Lakard, Boris; Magnin, Delphine; Deschaume, Olivier; Vanlancker, Guilhem; Glinel, Karine; Demoustier-Champagne, Sophie; Nysten, Bernard; Jonas, Alain M; Bertrand, Patrick; Yunus, Sami

    2011-06-15

    A potentiometric biosensor based on urease was developed for the quantitative determination of urea concentration in aqueous solutions for biomedical applications. The urease was either physisorbed onto an electrodeposited polyaniline film (PANI), or immobilized on a layer-by-layer film (LbL) assembled over the PANI film, that was obtained by the alternate deposition of charged polysaccharides (carboxymethylpullulan (CMP) and chitosan (CHI)). In the latter case, the urease (Urs) enzyme was either physically adsorbed or covalently grafted to the LbL film using carbodiimide coupling reaction. Potentiometric responses of the enzymatic biosensors were measured as a function of the urea concentration in aqueous solutions (from 10(-6) to 10(-1) mol L(-1) urea). Very high sensitivity and short response time were observed for the present biosensor. Moreover, a stability study showed a higher stability over time for the potentiometric response of the sensor with the enzyme-grafted LbL film, testifying for the protective nature of the polysaccharide coating and the interest of covalent grafting. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Titanium (III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples

    NASA Astrophysics Data System (ADS)

    Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah

    2014-04-01

    The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10-6-1.0 × 10-2 M and pH range from 1-2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 +/- 0.24 mV/dec, 7.9 × 10-7 M, and 20 s, respectively. The direct determination of 4-39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out.

  8. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  9. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  10. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  11. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    PubMed

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  12. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  13. Inventory Control.

    ERIC Educational Resources Information Center

    Byrum, David L., Ed.

    1984-01-01

    Presents three ideas to help hold costs down in purchasing and using science equipment. These include (1) use of pencils and other graphite rods as sensors in potentiometric titrations, (2) rubber bulb modification for pipetting, and (3) a heater for a glassware bath. (JM)

  14. PVC Membrane Sensors for Potentiometric Determination of Acebutolol

    PubMed Central

    Mostafa, Gamal Abdel-Hafiz; Hefnawy, Mohamed Mahmoud; Al-Majed, Abdulrahman

    2007-01-01

    The construction and general performance characteristics of two novel potentiometric membrane sensors responsive to the acebutolol are described. The sensors are based on the use of ion-association complexes of acebutolol (AC) with tetraphenylborate(TPB) (I) and phosphomolybdate(PM) (II) as exchange sites in a PVC matrix. The sensors show a fast, stable and near- Nernstian for the mono charge cation of AC over the concentration range 1×10-3 - ∼10-6 M at 25 °C over the pH range 2.0 - 6.0 with cationic slope of 51.5 ± 0.5 and 53.0 ± 0.5 per concentration decade for AC-I and AC-II sensors respectively. The lower detection limit is 6×10-6 M and 4×0-6 M with the response time 20-30 s in the same order of both sensors. Selectivity coefficients of AC related to a number of interfering cation and some organic compounds were investigated. There are negligible interferences are caused by most of the investigated species. The direct determination of 3 - 370 μg/ml of AC shows an average recovery of 99.4 and 99.5% and a mean relative standard deviation of 1.5% at 100.0 μg/ml for sensor I and II respectively. The results obtained by determination of AC in tablets using the proposed sensors which comparable favorably with those obtained by the British pharmacopoeia method. In the present investigation the electrodes have been utilized as end point indicator for some precipitation titration reactions. PMID:28903293

  15. Sulfadiazine-selective determination in aquaculture environment: selective potentiometric transduction by neutral or charged ionophores.

    PubMed

    Almeida, S A A; Heitor, A M; Montenegro, M C B S M; Sales, M G F

    2011-09-15

    Solid-contact sensors for the selective screening of sulfadiazine (SDZ) in aquaculture waters are reported. Sensor surfaces were made from PVC membranes doped with tetraphenylporphyrin-manganese(III) chloride, α-cyclodextrin, β-cyclodextrin, or γ-cyclodextrin ionophores that were dispersed in plasticizer. Some membranes also presented a positive or a negatively charged additive. Phorphyrin-based sensors relied on a charged carrier mechanism. They exhibited a near-Nernstian response with slopes of 52 mV decade(-1) and detection limits of 3.91×10(-5) mol L(-1). The addition of cationic lipophilic compounds to the membrane originated Nernstian behaviours, with slopes ranging 59.7-62.0 mV decade(-1) and wider linear ranges. Cyclodextrin-based sensors acted as neutral carriers. In general, sensors with positively charged additives showed an improved potentiometric performance when compared to those without additive. Some SDZ selective membranes displayed higher slopes and extended linear concentration ranges with an increasing amount of additive (always <100% ionophore). The sensors were independent from the pH of test solutions within 2-7. The sensors displayed fast response, always <15s. In general, a good discriminating ability was found in real sample environment. The sensors were successfully applied to the fast screening of SDZ in real waters samples from aquaculture fish farms. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in locus measurements of sulfadiazine or parent-drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Determination of binding constants of cyclodextrin inclusion complexes with amino acids and dipeptides by potentiometric titration.

    PubMed

    Kahle, Claudia; Holzgrabe, Ulrike

    2004-10-01

    Cyclodextrins are well known for their ability to separate enantiomers of drugs, natural products, and other chiral substances using HPLC, GC, or CE. The resolution of the enantiomers is due to the formation of diastereomeric complexes between the cyclodextrin and the pairs of enantiomers. The aim of this study was to determine the binding constants of the complexes between alpha- and beta-cyclodextrin and the enantiomers of a series of aliphatic and aromatic amino acids, and dipeptides, using a potentiometric titration method. The results of this method are compared to other methods, and correlated to findings in cyclodextrin-modified capillary electrophoresis and possible complex structures. Potentiometric titration was found to be an appropriate tool to determine the binding constants of cyclodextrin inclusion complexes.

  17. Titanium (III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples

    PubMed Central

    Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah

    2014-01-01

    The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10−6–1.0 × 10−2 M and pH range from 1–2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 ± 0.24 mV/dec, 7.9 × 10−7 M, and 20 s, respectively. The direct determination of 4–39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out. PMID:24722576

  18. Solute transport in streams of varying morphology inferred from a high resolution network of potentiometric wireless chloride sensors

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Smettem, Keith; Pfister, Laurent; Harris, Nick

    2017-04-01

    There is ongoing interest in understanding and quantifying the travel times and dispersion of solutes moving through stream environments, including the hyporheic zone and/or in-channel dead zones where retention affects biogeochemical cycling processes that are critical to stream ecosystem functioning. Modelling these transport and retention processes requires acquisition of tracer data from injection experiments where the concentrations are recorded downstream. Such experiments are often time consuming and costly, which may be the reason many modelling studies of chemical transport have tended to rely on relatively few well documented field case studies. This leads to the need of fast and cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds at various locations in the stream environment. To tackle this challenge we present data from several tracer experiments carried out in the Attert river catchment in Luxembourg employing low-cost (in the order of a euro per sensor) potentiometric chloride sensors in a distributed array. We injected NaCl under various baseflow conditions in streams of different morphologies and observed solute transport at various distances and locations. This data is used to benchmark the sensors to data obtained from more expensive electrical conductivity meters. Furthermore, the data allowed spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  19. A novel, fast responding, low noise potentiometric sensor containing a carbon-based polymeric membrane for measuring surfactants in industrial and environmental applications.

    PubMed

    Samardžić, Mirela; Galović, Olivera; Hajduković, Mateja; Sak-Bosnar, Milan

    2017-01-01

    A new high-sensitivity potentiometric sensor for anionic surfactants was fabricated using the dimethyldioctadecylammonium-tetraphenylborate (DDA-TPB) ion associate as an ionophore that was incorporated into a liquid PVC membrane. Carbon powder was used for immobilization of the ionophore in the membrane, thus significantly reducing its ohmic resistance and reducing its signal drift. The sensor exhibits a sub-Nernstian response for both dodecylbenzenesulfonate (DBS) and dodecyl sulfate (DS) in H 2 O (55.3 and 58.5mV/decade of activity, respectively) in a range between 3.2×10 -7 and 4.6×10 -3 M for DS and 2.5×10 -7 and 1.2×10 -3 M for DBS. The sensor also exhibited a sub-Nernstian response for DS and DBS in 10mM Na 2 SO 4 (55.4 and 57.7mV/decade of activity, respectively) between 2.5×10 -7 and 4.6×10 -3 M for DS and 1.5×10 -7 and 8.8×10 -4 M for DBS. The detection limits for DS and DBS in H 2 O were 2.5×10 -7 and 2.0×10 -7 M and in 10mM Na 2 SO 4 the detection limits were 2.5×10 -7 and 1.2×10 -7 M, respectively. The response time of the sensor was less than 5s for changes at higher concentration levels (above 1×10 -4 M) in both water and 10mM Na 2 SO 4. At lower concentrations (below 1×10 -5 M) the response times were 8 and 6s in water and 10mM Na 2 SO 4 , respectively. The signal drift of the sensor was 1.2mV/hour. The new carbon-based sensor exhibited excellent selectivity performance for DS over almost all of the anions commonly present in commercial formulations and it was successfully employed as an end-point detector in potentiometric titrations of anionic surfactants in a pH range from 3 to 12. Three-component mixtures containing sodium alkanesulfonate (C 10 , C 12 and C 14 ) were successfully differentially titrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Construction and performance characterization of screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in pharmaceutical preparations.

    PubMed

    Frag, Eman Y Z; Mohamed, Gehad G; El-Dien, F A Nour; Mohamed, Marwa E

    2011-01-21

    This paper describes the development of screen-printed (SPE) and carbon paste (CPE) sensors for the rapid and sensitive quantification of naphazoline hydrochloride (NPZ) in pharmaceutical formulations. This work compares the electroactivity of conventional carbon paste and screen-printed carbon paste electrodes towards potentiometric titration of NPZ. The repeatability and accuracy of measurements performed in the analysis of these pharmaceutical matrices using new screen printed sensors were evaluated. The influence of the electrode composition, conditioning time of the electrode and pH of the test solution, on the electrode performance were investigated. The drug electrode showed Nernstain responses in the concentration range from 1 × 10(-6) to 1 × 10(-2) mol L(-1) with slopes of 57.5 ± 1.3 and 55.9 ± 1.6 mV per decade for SPE and CPE, respectively, and was found to be very precise and usable within the pH range 3-8. These sensors exhibited a fast response time (about 3 s for both SPE and CPE, respectively), a low detection limit (3.5 × 10(-6) and 1.5 × 10(-6) M for SPE and CPE, respectively), a long lifetime (3 and 2 months for SPE and CPE, respectively) and good stability. The selectivity of the electrode toward a large number of inorganic cations, sugars and amino acids was tested. It was applied to potentiometric determination of NPZ in pure state and pharmaceutical preparation under batch conditions. The percentage recovery values for the assay of NPZ in tablets (relative standard deviations ≤0.3% for n = 4) were compared well with those obtained by the official method.

  1. Fabrication of novel coated pyrolytic graphite electrodes for the selective nano-level monitoring of Cd²⁺ ions in biological and environmental samples using polymeric membrane of newly synthesized macrocycle.

    PubMed

    Sahani, Manoj Kumar; Singh, A K; Jain, A K; Upadhyay, Anjali; Kumar, Amit; Singh, Udai P; Narang, Shikha

    2015-02-20

    Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.1(4,7).1(10,13)]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd(2+) ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58×10(-9) mol L(-1), Nernstian slope of 29.6 mV decade(-1) of activity. The sensor was found to be independent of pH in the range 2.5-8.5. The sensor showed a fast response time of 10s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd(2+) ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd(2+) ion with EDTA. Copyright © 2014. Published by Elsevier B.V.

  2. Label-free and substrate-free potentiometric aptasensing using polycation-sensitive membrane electrodes.

    PubMed

    Ding, Jiawang; Chen, Yan; Wang, Xuewei; Qin, Wei

    2012-02-21

    A potentiometric label-free and substrate-free (LFSF) aptasensing strategy which eliminates the labeling, separation, and immobilization steps is described in this paper. An aptamer binds specifically to a target molecule via reaction incubation, which could induce a change in the aptamer conformation from a random coil-like configuration to a rigid folded structure. Such a target binding-induced aptamer conformational change effectively prevents the aptamer from electrostatically interacting with the protamine binding domain. This could either shift the response curve for the potentiometric titration of the aptamer with protamine as monitored by a conventional polycation-sensitive membrane electrode or change the current-dependent potential detected by a protamine-conditioned polycation-sensitive electrode with the pulsed current-driven ion fluxes of protamine across the polymeric membrane. Using adenosine triphosphate (ATP) as a model analyte, the proposed concept offers potentiometric detection of ATP down to the submicromolar concentration range and has been applied to the determination of ATP in HeLa cells. In contrast to the current LFSF aptasensors based on optical detection, the proposed strategy allows the LFSF biosensing of aptamer/target binding events in a homogeneous solution via electrochemical transduction. It is anticipated that the proposed strategy will lay a foundation for development of potentiometric sensors for LFSF aptasensing of a variety of analytes where target binding-induced conformational changes such as the formation of folded structures and the opening of DNA hairpin loops are involved.

  3. Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids.

    PubMed

    Pankratova, Nadezda; Cuartero, Maria; Jowett, Laura A; Howe, Ethan N W; Gale, Philip A; Bakker, Eric; Crespo, Gastón A

    2018-01-15

    Fluorinated tripodal compounds were recently reported to be efficient transmembrane transporters for a series of inorganic anions. In particular, this class of receptors has been shown to be suitable for the effective complexation of chloride, nitrate, bicarbonate and sulfate anions via hydrogen bonding. The potentiometric properties of urea and thiourea-based fluorinated tripodal receptors are explored here for the first time, in light of the need for reliable sensors for chloride monitoring in undiluted biological fluids. The ion selective electrode (ISE) membranes with tren-based tris-urea bis(CF 3 ) tripodal compound (ionophore I) were found to exhibit the best selectivity for chloride over major lipophilic anions such as salicylate ( [Formula: see text] ) and thiocyanate ( [Formula: see text] ). Ionophore I-based ISEs were successfully applied for chloride determination in undiluted human serum as well as artificial serum sample, the slope of the linear calibration at the relevant background of interfering ions being close to Nernstian (49.8±1.7mV). The results of potentiometric measurements were confirmed by argentometric titration. Moreover, the ionophore I-based ISE membrane was shown to exhibit a very good long-term stability of potentiometric performance over the period of 10 weeks. Nuclear magnetic resonance (NMR) titrations, potentiometric sandwich membrane experiments and density functional theory (DFT) computational studies were performed to determine the binding constants and suggest 1:1 complexation stoichiometry for the ionophore I with chloride as well as salicylate. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Perception of olive oils sensory defects using a potentiometric taste device.

    PubMed

    Veloso, Ana C A; Silva, Lucas M; Rodrigues, Nuno; Rebello, Ligia P G; Dias, Luís G; Pereira, José A; Peres, António M

    2018-01-01

    The capability of perceiving olive oils sensory defects and intensities plays a key role on olive oils quality grade classification since olive oils can only be classified as extra-virgin if no defect can be perceived by a human trained sensory panel. Otherwise, olive oils may be classified as virgin or lampante depending on the median intensity of the defect predominantly perceived and on the physicochemical levels. However, sensory analysis is time-consuming and requires an official sensory panel, which can only evaluate a low number of samples per day. In this work, the potential use of an electronic tongue as a taste sensor device to identify the defect predominantly perceived in olive oils was evaluated. The potentiometric profiles recorded showed that intra- and inter-day signal drifts could be neglected (i.e., relative standard deviations lower than 25%), being not statistically significant the effect of the analysis day on the overall recorded E-tongue sensor fingerprints (P-value = 0.5715, for multivariate analysis of variance using Pillai's trace test), which significantly differ according to the olive oils' sensory defect (P-value = 0.0084, for multivariate analysis of variance using Pillai's trace test). Thus, a linear discriminant model based on 19 potentiometric signal sensors, selected by the simulated annealing algorithm, could be established to correctly predict the olive oil main sensory defect (fusty, rancid, wet-wood or winey-vinegary) with average sensitivity of 75 ± 3% and specificity of 73 ± 4% (repeated K-fold cross-validation variant: 4 folds×10 repeats). Similarly, a linear discriminant model, based on 24 selected sensors, correctly classified 92 ± 3% of the olive oils as virgin or lampante, being an average specificity of 93 ± 3% achieved. The overall satisfactory predictive performances strengthen the feasibility of the developed taste sensor device as a complementary methodology for olive oils' defects analysis and subsequent quality grade classification. Furthermore, the capability of identifying the type of sensory defect of an olive oil may allow establishing helpful insights regarding bad practices of olives or olive oils production, harvesting, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ion-selective electrolyte-gated field-effect transistors: prerequisites for proper functioning

    NASA Astrophysics Data System (ADS)

    Kofler, Johannes; Schmoltner, Kerstin; List-Kratochvil, Emil J. W.

    2014-10-01

    Electrolyte-gated organic field-effect transistors (EGOFETs) used as transducers and amplifiers in potentiometric sensors have recently attracted a significant amount of scientific interest. For that reason, the fundamental prerequisites to achieve a proper potentiometric signal amplification and transduction are examined. First, polarizable as well as non-polarizable semiconductor- and gate-electrolyte- interface combinations are investigated by normal pulse voltammetry. The results of these measurements are correlated with the corresponding transistor characteristics, clarifying the functional principle of EGOFETs and the requirements for high signal amplification. In addition to a good electrical performance, the EGOFET-transducers should also be compatible with the targeted sensing application. Accordingly, the influence of different gate materials and electrolytes on the sensing abilities, are discussed. Even though all physical requirements are met, EGOFETs typically exhibit irreversible degradation, if the gate potential exceeds a certain level. For that reason, EGOFETs have to be operated using a constant source-drain operation mode which is presented by means of an H+ (pH) sensitive ion-sensor.

  6. Determination of the total acidity in soft drinks using potentiometric sequential injection titration.

    PubMed

    van Staden, J Koos F; Mashamba, M Mulalo G; Stefan, R Raluca I

    2002-12-06

    A potentiometric SI titration system for the determination of total acidity in soft drinks is proposed. The concept is based on the aspiration of the acid soft drink sample between two base zones into a holding coil with the volume of the first base zone twice to that of the second one and channelled by flow reversal through a reaction coil to a potentiometric sensor. A solution of 0.1 mol l(-1) sodium chloride is used as ionic strength adjustment buffer in the carrier stream. The system has been applied to the analysis of some South African soft drinks having a total acidity level of about 0.2-0.3% (w/v). The method has a sample frequency of 45 samples per h with a linear range of 0.1 and 0.6% (w/v). It is easy to use, fully computerised, and gives the results that are comparable to both automated batch titration and manual titration.

  7. Novel potentiometric sensors for the determination of the dinotefuran insecticide residue levels in cucumber and soil samples.

    PubMed

    Abdel-Ghany, Maha F; Hussein, Lobna A; El Azab, Noha F

    2017-03-01

    Five new potentiometric membrane sensors for the determination of the dinotefuran levels in cucumber and soil samples have been developed. Four of these sensors were based on a newly designed molecularly imprinted polymer (MIP) material consisting of acrylamide or methacrylic acid as a functional monomer in a plasticized PVC (polyvinyl chloride) membrane before and after elution of the template. A fifth sensor, a carboxylated PVC-based sensor plasticized with dioctyl phthalate, was also prepared and tested. Sensor 1 (acrylamide washed) and sensor 3 (methacrylic acid washed) exhibited significantly enhanced responses towards dinotefuran over the concentration range of 10 -7 -10 -2 molL -1 . The limit of detection (LOD) for both sensors was 0.35µgL -1 . The response was near-Nernstian, with average slopes of 66.3 and 50.8mV/decade for sensors 1 and 3 respectively. Sensors 2 (acrylamide non-washed), 4 (methacrylic acid non-washed) and 5 (carboxylated-PVC) exhibited non-Nernstian responses over the concentration range of 10 -7 -10 -3 molL -1 , with LODs of 10.07, 6.90, and 4.30µgL -1 , respectively, as well as average slopes of 39.1, 27.2 and 33mV/decade, respectively. The application of the proposed sensors to the determination of the dinotefuran levels in spiked soil and cucumber samples was demonstrated. The average recoveries from the cucumber samples were from 7.93% to 106.43%, with a standard deviation of less than 13.73%, and recoveries from soil samples were from 97.46% to 108.71%, with a standard deviation of less than 10.66%. The sensors were applied successfully to the determination of the dinotefuran residue, its rate of disappearance and its half-life in cucumbers in soil in which a safety pre-harvest interval for dinotefuran was suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. RETRACTED: Development of electrode carbon paste modified by molecularly imprinted polymer as sensor for analysis of creatinine by potentiometric

    NASA Astrophysics Data System (ADS)

    Khasanah, Miratul; Darmokoesoemo, Handoko; Sari, Nunung Mareta; Kadmi, Yassine; Elmsellem, Hicham; Kusuma, Heri Septya

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy) This article has been retracted at the request of the Editors-in-Chief. After a thorough investigation, the Editors have concluded that the acceptance of this article was based upon the positive advice of two illegitimate reviewer reports. The reports were submitted from email accounts which were provided to the journal as suggested reviewers during the submission of the article. Although purportedly real reviewer accounts, the Editors have concluded that these were not of appropriate, independent reviewers. This manipulation of the peer-review process represents a clear violation of the fundamentals of peer review, our publishing policies, and publishing ethics standards. Apologies are offered to the reviewers whose identities were assumed and to the readers of the journal that this deception was not detected during the submission process.

  9. Electroanalytical and Spectroscopic Studies of Poly(2,2'-bithiophene)-Modified Platinum Electrode to Detect Catechol in the Presence of Ascorbic Acid

    ERIC Educational Resources Information Center

    Lunsford, Suzanne K.; Speelman, Nicole; Stinson, Jelynn; Yeary, Amber; Choi, Hyeok; Widera, Justyna; Dionysiou, Dionysios D.

    2008-01-01

    This article describes an undergraduate laboratory for an instrumental analysis course that integrates electroanalytical chemistry and infrared spectroscopy. Modified electrode surfaces are prepared by constant potentiometric electrolysis over the potential range of 1.5-1.8 V and analyzed by cyclic voltammetry and infrared spectroscopy. The…

  10. A High-Sensitivity Potentiometric 65-nm CMOS ISFET Sensor for Rapid E. coli Screening.

    PubMed

    Jiang, Yu; Liu, Xu; Dang, Tran Chien; Huang, Xiwei; Feng, Hao; Zhang, Qing; Yu, Hao

    2018-04-01

    Foodborne bacteria, inducing outbreaks of infection or poisoning, have posed great threats to food safety. Potentiometric sensors can identify bacteria levels in food by measuring medium's pH changes. However, most of these sensors face the limitation of low sensitivity and high cost. In this paper, we developed a high-sensitivity ion-sensitive field-effect transistor sensor. It is small sized, cost-efficient, and can be massively fabricated in a standard 65-nm complementary metal-oxide-semiconductor process. A subthreshold pH-to-time-to-voltage conversion scheme was proposed to improve the sensitivity. Furthermore, design parameters, such as chemical sensing area, transistor size, and discharging time, were optimized to enhance the performance. The intrinsic sensitivity of passivation membrane was calculated as 33.2 mV/pH. It was amplified to 123.8 mV/pH with a 0.01-pH resolution, which greatly exceeded 6.3 mV/pH observed in a traditional source-follower based readout structure. The sensing system was applied to Escherichia coli (E. coli) detection with densities ranging from 14 to 140 cfu/mL. Compared to the conventional direct plate counting method (24 h), more efficient sixfold smaller screening time (4 h) was achieved to differentiate samples' E. coli levels. The demonstrated portable, time-saving, and low-cost prescreen system has great potential for food safety detection.

  11. Ferrocene bound poly(vinyl chloride) as ion to electron transducer in electrochemical ion sensors.

    PubMed

    Pawlak, Marcin; Grygolowicz-Pawlak, Ewa; Bakker, Eric

    2010-08-15

    We report here on the synthesis of poly(vinyl chloride) (PVC) covalently modified with ferrocene groups (FcPVC) and the electrochemical behavior of the resulting polymeric membranes in view of designing all solid state voltammetric ion sensors. The Huisgen cycloaddition ("click chemistry") was found to be a simple and efficient method for ferrocene attachment. A degree of PVC modification with ferrocene groups between 1.9 and 6.1 mol % was achieved. The chemical modification of the PVC backbone does not significantly affect the ion-selective properties (selectivity, mobility, and solvent casting ability) of potentiometric sensing membranes applying this polymer. Importantly, the presence of such ferrocene groups may eliminate the need for an additional redox-active layer between the membrane and the inner electric contact in all solid state sensor designs. Electrochemical doping of this system was studied in a symmetrical sandwich configuration: glassy carbon electrode |FcPVC| glassy carbon electrode. Prior electrochemical doping from aqueous solution, resulting in a partial oxidation of the ferrocene groups, was confirmed to be necessary for the sandwich configuration to pass current effectively. The results suggest that only approximately 2.3 mol % of the ferrocene groups are electrochemically accessible, likely due to surface confined electrochemical behavior in the polymer. Indeed, cyclic voltammetry of aqueous hexacyanoferrate (III) remains featureless at cathodic potentials (down to -0.5 V). This indicates that the modified membrane is not responsive to redox-active species in the sample solution, making it possible to apply this polymer as a traditional, single membrane. Yet, the redox capacity of the electrode modified with this type of membrane was more than 520 microC considering a 20 mm(2) active electrode area, which appears to be sufficient for numerous practical ion voltammetric applications. The electrode was observed to operate reproducibly, with 1% standard deviation, when applying pulsed amperometric techniques.

  12. Current-biased potentiometric NOx sensor for vehicle emissions

    DOEpatents

    Martin, Louis Peter [Castro Valley, CA; Pham, Ai Quoc [San Jose, CA

    2006-12-26

    A nitrogen oxide sensor system for measuring the amount of nitrogen oxide in a gas. A first electrode is exposed to the gas. An electrolyte is positioned in contact with the first electrode. A second electrode is positioned in contact with the electrolyte. A means for applying a fixed current between the first electrode and the second electrode and monitoring the voltage required to maintain the fixed current provides a measurement of the amount of nitrogen oxide in the gas.

  13. Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite.

    PubMed

    Topcu, Cihan

    2016-12-01

    A novel polyvinyl chloride membrane chlorate (ClO 3 - ) selective electrode based on modified smectite was developed for the direct determination of chlorate ions and the potentiometric performance characteristics of its were examined. The best selectivity and sensitivity for chlorate ions were obtained for the electrode membrane containing ionophore/polyvinylchloride/o-nitrophenyloctylether in composition of 12/28/60 (w/w%). The proposed electrode showed a Nernstian response toward chlorate ions at pH=7 in the concentration range of 1×10 -7 -1×10 -1 M and the limit of detection was calculated as 9×10 -8 M from the constructed response plot. The linear slope of the electrode was -61±1mVdecade -1 for chlorate activity in the mentioned linear working range. The selectivity coefficients were calculated according to both the matched potential method and the separate solution method. The calculated selectivity coefficients showed that the electrode performed excellent selectivity for chlorate ions. The potentiometric response of electrode toward chlorate ions was found to be highly reproducible. The electrode potential was stable between pH=4-10 and it had a dynamic response time of <5s. The potentiometric behavior of the electrode in partial non-aqueous medium was also investigated and the obtained results (up to 5% (v/v) alcohol) were satisfactory. The proposed electrode was used during 15 weeks without any significant change in its potential response. Additionally, the electrode was very useful in water analysis studies such as dam water, river water, tap water, and swimming pool water where the direct determination of chlorate ions was required. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Resistive Oxygen Gas Sensors for Harsh Environments

    PubMed Central

    Moos, Ralf; Izu, Noriya; Rettig, Frank; Reiß, Sebastian; Shin, Woosuck; Matsubara, Ichiro

    2011-01-01

    Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development of these sensor materials. It focuses especially on approaches to obtain a temperature independent behavior. It is shown that although in the past 40 years there have always been several research groups working concurrently with resistive oxygen sensors, novel ideas continue to emerge today with respect to improvements of the sensor response time, the temperature dependence, the long-term stability or the manufacture of the devices themselves using novel techniques for the sensitive films. Materials that are the focus of this review are metal oxides; especially titania, titanates, and ceria-based formulations. PMID:22163805

  15. Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system.

    PubMed

    Simões da Costa, A M; Delgadillo, I; Rudnitskaya, A

    2014-11-01

    An array of 10 potentiometric chemical sensors has been applied to the detection of total Fe, Cu, Pb and Cd content in digested wine. As digestion of organic matter of wine is necessary prior to the trace metal detection using potentiometric sensors, sample preparation procedures have been optimized. Different variants of wet and microwave digestion and dry ashing, 14 conditions in total, have been tested. Decomposition of organic matter was assessed using Fourier transform mid-infrared spectroscopy and total phenolic content. Dry ashing was found to be the most effective method of wine digestion. Measurements with sensors in individual solutions of Fe(III), Cu(II), Pb(II) and Cd(II) prepared on different backgrounds have shown that their detection limits were below typical concentration levels of these metals in wines and, in the case of Cu, Pb and Cd below maximum allowed concentrations. Detection of Fe in digested wine samples was possible using discrete iron-sensitive sensors with chalcogenide glass membranes with RMSEP of 0.05 mmol L(-1) in the concentration range from 0.0786 to 0.472 mmol L(-1). Low concentration levels of Cu, Pb and Cd in wine and cross-sensitivity of respective sensors resulted in the non-linearity of their responses, requiring back-propagation neural network for the calibration. Calibration models have been calculated using measurements in the model mixed solutions containing all three metals and a set of digested wine sample. RMSEP values for Cu, Pb and Cd were 3.9, 39 and 1.2 μmol L(-1) in model solutions and 2, 150 and 1 μmol L(-1) in digested wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Methylation of hemoglobin to enhance flocculant performance

    USDA-ARS?s Scientific Manuscript database

    An inexpensive bioflocculant, bovine hemoglobin (Hb), has been covalently modified through methylation of the side chain carboxyl groups of aspartic and glutamic acid residues to improve its flocculation activity. Potentiometric titration of the recovered products showed approximately 28% degree of ...

  17. Natural monocrystalline pyrite as a sensor in non-aqueous solution Part I: Potentiometric titration of weak acids in, N,N-dimethylformamide, methylpyrrolidone and pyridine.

    PubMed

    Mihajlović, Lj V; Mihajlović, R P; Antonijević, M M; Vukanović, B V

    2004-11-15

    The possibility of applying natural monocrystaline pyrite as a sensor for the potentiometric titration of weak acids in N,N-dimethylformamide, methylpyrrolidone and pyridine was investigated. The potential of this electrode in N,N-dimethylformamide, methylpyrrolidone and pyridine exhibits a sub-Nernst dependence. In N,N-dimethylformamide the slope (mV/pH) is 39.0 and in methylpyrrolidone it is 45.0. The potential jumps at the titration end-point obtained in the titration of weak acids are higher than those obtained by the application of a glass electrode as the indicator electrode The potential in the course of the titration and at the titration end-point (TEP) are rapidly established. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agents for these titrations. The results obtained in the determination of the investigated weak acids deviate by 0.1-0.35% with respect to those obtained by using a glass electrode as the indicator electrode.

  18. Potentiometric NO2 Sensors Based on Thin Stabilized Zirconia Electrolytes and Asymmetric (La0.8Sr0.2)0.95MnO3 Electrodes

    PubMed Central

    Zou, Jie; Zheng, Yangong; Li, Junliang; Zhan, Zhongliang; Jian, Jiawen

    2015-01-01

    Here we report on a new architecture for potentiometric NO2 sensors that features thin 8YSZ electrolytes sandwiched between two porous (La0.8Sr0.2)0.95MnO3 (LSM95) layers—one thick and the other thin—fabricated by the tape casting and co-firing techniques. Measurements of their sensing characteristics show that reducing the porosity of the supporting LSM95 reference electrodes can increase the response voltages. In the meanwhile, thin LSM95 layers perform better than Pt as the sensing electrode since the former can provide higher response voltages and better linear relationship between the sensitivities and the NO2 concentrations over 40–1000 ppm. The best linear coefficient can be as high as 0.99 with a sensitivity value of 52 mV/decade as obtained at 500 °C. Analysis of the sensing mechanism suggests that the gas phase reactions within the porous LSM95 layers are critically important in determining the response voltages. PMID:26205270

  19. A Ho(III) potentiometric polymeric membrane sensor based on a new four dentate neutral ion carrier.

    PubMed

    Zamani, Hassan Ali; Zanganeh-Asadabadi, Abbas; Rohani, Mitra; Zabihi, Mohammad Saleh; Fadaee, Javad; Ganjali, Mohammad Reza; Faridbod, Farnoush; Meghdadi, Soraia

    2013-03-01

    In this research, we report a new Ho(3+)-PVC membrane electrode based on N-(4,5-dimethyl-2-(picolinamido)phenyl)picolinamide (H(2)Me(2)bpb) as a suitable ion carrier. Poly vinylchloride (PVC)-based membrane composed of H(2)Me(2)bpb with oleic acid (OA) as anionic additives, and o-nitrophenyloctyl ether (NPOE) as plasticized solvent mediator. The sensor exhibits a Nernstian slope of 20.1 ± 0.2 mV decade(-1) over the concentration range of 1.0 × 10(-6) to 1.0 × 1(-2) mol L(-1), and a detection limit of 5.0 × 10(-7) mol L(-1) of Ho(3+) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 3.5-9.4. It has a very short response time, in the whole concentration range (<10s), and can be used for at least eight weeks. The proposed electrode shows a good selectivity towards Ho(3+) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. To assess its analytical applicability the proposed Ho(3+) sensor was successfully applied as an indicator electrode in the titration of Ho(3+) ion solutions in certified reference materials, alloy samples and for the determination of the fluoride ion in two mouthwash preparations. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Micellar and analytical implications of a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate.

    PubMed

    Sanan, Reshu; Mahajan, Rakesh Kumar

    2013-03-15

    With an aim to characterize the micellar aggregates of imidazolium based ionic liquids, a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate (C12MeIm(+)DS(-)) has been developed. The electrode exhibited a linear response for the concentration range of 7.9×10(-5)-9.8×10(-3) M with a super-Nernstian slope of 92.94 mV/decade, a response time of 5 s and critical micellar concentration (cmc) of 10.09 mM for C12MeImBr. The performance of the electrode in investigating the cmc of C12MeImBr in the presence of two drugs [promazine hydrochloride (PMZ) and promethazine hydrochloride (PMT)] and three triblock copolymers (P123, L64 and F68) has been found to be satisfactory on comparison with conductivity measurements. Various micellar parameters have been evaluated for the binary mixtures of C12MeImBr with drugs and triblock copolymers using Clint's, Rubingh's, and Motomura's approach. Thus the electrode offers a simple, straightforward and relatively fast technique for the characterization of micellar aggregates of C12MeImBr, complementing existing conventional techniques. Further, the analytical importance of proposed C12MeIm(+)-ISE as end point indicator in potentiometric titrations and for direct determination of cationic surfactants [cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), benzalkonium chloride (BC)] in some commercial products was judged by comparing statistically with classical two-phase titration methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A novel approach for high precision rapid potentiometric titrations: application to hydrazine assay.

    PubMed

    Sahoo, P; Malathi, N; Ananthanarayanan, R; Praveen, K; Murali, N

    2011-11-01

    We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ~2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO(3) in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors. © 2011 American Institute of Physics

  2. A novel approach for high precision rapid potentiometric titrations: Application to hydrazine assay

    NASA Astrophysics Data System (ADS)

    Sahoo, P.; Malathi, N.; Ananthanarayanan, R.; Praveen, K.; Murali, N.

    2011-11-01

    We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ˜2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO3 in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors.

  3. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    PubMed Central

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-01-01

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days. PMID:24322561

  4. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.

    PubMed

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-12-06

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  5. Chemical sensors for space applications

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1992-01-01

    The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.

  6. Determination of Diffusion Parameters of CO2 Through Microporous PTFE Using a Potentiometric Method

    NASA Astrophysics Data System (ADS)

    Tarsiche, I.; Ciurchea, D.

    Dk values at the diffusion of CO2 through microporous PTFE of 1 to 7 × 10- 7 cm2 s- 1 in the concentration range from 4 × 10- 4 to 0.22 g/l CO2 are determined using a simple, fast and reliable potentiometric method. The method is based on the least-squares fitting of the potential versus time response of a self made CO2 sensitive Severinghaus type sensor with PTFE as a gas-permeable membrane. The obtained results are in good agreement with other reported literature data, both experimental or calculated ones using molecular dynamics simulations. The proposed technique is very sensitive especially at low concentrations of gas and may be used for the study of other polymeric membranes too.

  7. Fabrication and Evaluation of a Micro(Bio)Sensor Array Chip for Multiple Parallel Measurements of Important Cell Biomarkers

    PubMed Central

    Pemberton, Roy M.; Cox, Timothy; Tuffin, Rachel; Drago, Guido A.; Griffiths, John; Pittson, Robin; Johnson, Graham; Xu, Jinsheng; Sage, Ian C.; Davies, Rhodri; Jackson, Simon K.; Kenna, Gerry; Luxton, Richard; Hart, John P.

    2014-01-01

    This report describes the design and development of an integrated electrochemical cell culture monitoring system, based on enzyme-biosensors and chemical sensors, for monitoring indicators of mammalian cell metabolic status. MEMS technology was used to fabricate a microwell-format silicon platform including a thermometer, onto which chemical sensors (pH, O2) and screen-printed biosensors (glucose, lactate), were grafted/deposited. Microwells were formed over the fabricated sensors to give 5-well sensor strips which were interfaced with a multipotentiostat via a bespoke connector box interface. The operation of each sensor/biosensor type was examined individually, and examples of operating devices in five microwells in parallel, in either potentiometric (pH sensing) or amperometric (glucose biosensing) mode are shown. The performance characteristics of the sensors/biosensors indicate that the system could readily be applied to cell culture/toxicity studies. PMID:25360580

  8. Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors.

    PubMed

    Wong, Brian A; Friedle, Simone; Lippard, Stephen J

    2009-05-27

    The mechanism by which dipicolylamine (DPA) chelate-appended fluorophores respond to zinc was investigated by the synthesis and study of five new analogues of the 2',7'-dichlorofluorescein-based Zn(2+) sensor Zinpyr-1 (ZP1). With the use of absorption and emission spectroscopy in combination with potentiometric titrations, a detailed molecular picture has emerged of the Zn(2+) and H(+) binding properties of the ZP1 family of sensors. The two separate N(3)O donor atom sets on ZP1 converge to form binding pockets in which all four heteroatoms participate in coordination to either Zn(2+) or protons. The position of the pyridyl group nitrogen atom, 2-pyridyl or 4-pyridyl, has a large impact on the fluorescence response of the dyes to protons despite relatively small changes in pK(a) values. The fluorescence quenching effects of such multifunctional electron-donating units are often taken as a whole. Despite the structural complexity of ZP1, however, we provide evidence that the pyridyl arms of the DPA appendages participate in the quenching process, in addition to the contribution from the tertiary nitrogen amine atom. Potentiometric titrations reveal ZP1 dissociation constants (K(d)) for Zn(2+) of 0.04 pM and 1.2 nM for binding to the first and second binding pockets of the ligand, respectively, the second of which correlates with the value observed by fluorescence titration. This result demonstrates that both binding pockets of this symmetric, ditopic sensor need to be occupied in order for full fluorescence turn-on to be achieved. These results have significant implications for the design and implementation of fluorescent sensors for studies of mobile zinc ions in biology.

  9. Multiwalled carbon nanotube based molecular imprinted polymer for trace determination of 2,4-dichlorophenoxyaceticacid in natural water samples using a potentiometric method

    NASA Astrophysics Data System (ADS)

    Anirudhan, Thayyath S.; Alexander, Sheeba

    2014-06-01

    A novel potentiometric sensor based on ion imprinted polymer inclusion membrane (IPIM) was prepared from the modification of multiwalled carbon nanotube (MWCNT) based molecularly imprinted polymer for the trace determination of the pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) in natural water samples. MWCNTs are initially functionalized with vinyl groups through nitric acid oxidation along with reacting by allylamine. MWCNT based imprinted polymer (MWCNT-MIP) was synthesized by means of methacrylic acid (MAA) as the monomer, trimethylol propane trimethacrylate (TRIM) as the cross linker, α,α‧-azobisisobutyronitrile (AIBN) as the initiator and 2,4-D an organochlorine pesticide molecule as the template. Organized material was characterized by means of FTIR, XRD and SEM analyses. The sensing membrane was developed by the inclusion of 2,4-D imprinted polymer materials in the polyvinyl chloride (PVC) matrix. The optimization of operational parameters normally used such as amount and nature of plasticizers sensing material, pH and response time was conducted. From the non-imprinted (NIPIM) and imprinted polymer inclusion membrane (IPIM) sensors the response behavior of 2,4-D was compared under optimum conditions. The IPIM sensor responds in the range of 1 × 10-9-1 × 10-5 M and the detection limit was found to be 1.2 × 10-9 M. The stability of MWCNT-IPIM sensor was checked by various methods and it is found to be 3 months and it can be reused many times without losing its sensitivity. For the application of sensor experiments with ground and tap water samples were performed.

  10. Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano

    2012-07-01

    A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses onmore » developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.« less

  11. Light-Addressable Potentiometric Sensors using ZnO Nanorods as the Sensor Substrate for Bioanalytical Applications.

    PubMed

    Tu, Ying; Ahmad, Norlaily; Briscoe, Joe; Zhang, De-Wen; Krause, Steffi

    2018-06-22

    Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 μm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.

  12. Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: application to sulfamethoxazole and trimethoprim.

    PubMed

    Almeida, S A A; Arasa, E; Puyol, M; Martinez-Cisneros, C S; Alonso-Chamarro, J; Montenegro, M C B S M; Sales, M G F

    2011-12-15

    Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol-gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about -58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes -54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Mussel-inspired histidine-based transient network metal coordination hydrogels

    PubMed Central

    Fullenkamp, Dominic E.; He, Lihong; Barrett, Devin G.; Burghardt, Wesley R.; Messersmith, Phillip B.

    2013-01-01

    Transient network hydrogels cross-linked through histidine-divalent cation coordination bonds were studied by conventional rheologic methods using histidine-modified star poly(ethylene glycol) (PEG) polymers. These materials were inspired by the mussel, which is thought to use histidine-metal coordination bonds to impart self-healing properties in the mussel byssal thread. Hydrogel viscoelastic mechanical properties were studied as a function of metal, pH, concentration, and ionic strength. The equilibrium metal-binding constants were determined by dilute solution potentiometric titration of monofunctional histidine-modified methoxy-PEG and were found to be consistent with binding constants of small molecule analogs previously studied. pH-dependent speciation curves were then calculated using the equilibrium constants determined by potentiometric titration, providing insight into the pH dependence of histidine-metal ion coordination and guiding the design of metal coordination hydrogels. Gel relaxation dynamics were found to be uncorrelated with the equilibrium constants measured, but were correlated to the expected coordination bond dissociation rate constants. PMID:23441102

  14. Micromechanical potentiometric sensors

    DOEpatents

    Thundat, Thomas G.

    2000-01-01

    A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

  15. Metabolic Study of Cancer Cells Using a pH Sensitive Hydrogel Nanofiber Light Addressable Potentiometric Sensor.

    PubMed

    Shaibani, Parmiss Mojir; Etayash, Hashem; Naicker, Selvaraj; Kaur, Kamaljit; Thundat, Thomas

    2017-01-27

    We report a simple, fast, and cost-effective approach that measures cancer cell metabolism and their response to anticancer drugs in real time. Using a Light Addressable Potentiometric Sensor integrated with pH sensitive hydrogel nanofibers (NF-LAPS), we detect localized changes in pH of the media as cancer cells consume glucose and release lactate. NF-LAPS shows a sensitivity response of 74 mV/pH for cancer cells. Cancer cells (MDA MB231) showed a response of ∼0.4 unit change in pH compared to virtually no change observed for normal cells (MCF10A). We also observed a drop in pH for the multidrug-resistant cancer cells (MDA-MB-435MDR) in the presence of doxorubicin. However, inhibition of the metabolic enzymes such as hexokinase and lactate dehydrogenase-A suggested an improvement in the efficacy of doxorubicin by decreasing the level of acidification. This approach, based on extracellular acidification, enhances our understanding of cancer cell metabolic modes and their response to chemotherapies, which will help in the development of better treatments, including choice of drugs and dosages.

  16. Ionophore-Based Potentiometric Sensors for the Flow-Injection Determination of Promethazine Hydrochloride in Pharmaceutical Formulations and Human Urine

    PubMed Central

    Hassan, Ahmed Khudhair; Saad, Bahruddin; Ghani, Sulaiman Ab; Adnan, Rohana; Rahim, Afidah Abdul; Ahmad, Norariza; Mokhtar, Marina; Ameen, Suham Tawfiq; Al-Araji, Suad Mustafa

    2011-01-01

    Plasticised poly(vinyl chloride)-based membranes containing the ionophores (α-, β- and γ-cyclodextrins (CD), dibenzo-18-crown-6 (DB18C6) and dibenzo-30-crown-10 (DB30C10) were evaluated for their potentiometric response towards promethazine (PM) in a flow injection analysis (FIA) set-up. Good responses were obtained when β- and γ-CDs, and DB30C10 were used. The performance characteristics were further improved when tetrakis(4-chlorophenyl) borate (KTPB) was added to the membrane. The sensor based on β-CD, bis(2-ethylhexyl) adipate (BEHA) and KTPB exhibited the best performance among the eighteen sensor compositions that were tested. The response was linear from 1 × 10−5 to 1 × 10−2 M, slope was 61.3 mV decade−1, the pH independent region ranged from 4.5 to 7.0, a limit of detection of 5.3 × 10−6 M was possible and a lifetime of more than a month was observed when used in the FIA system. Other plasticisers such as dioctyl phenylphosphonate and tributyl phosphate do not show significant improvements in the quality of the sensors. The promising sensors were further tested for the effects of foreign ions (Li+, Na+, K+, Mg2+, Ca2+, Co2+, Cu2+, Cr3+, Fe3+, glucose, fructose). FIA conditions (e.g., effects of flow rate, injection volume, pH of the carrier stream) were also studied when the best sensor was used (based on β-CD). The sensor was applied to the determination of PM in four pharmaceutical preparations and human urine that were spiked with different levels of PM. Good agreement between the sensor and the manufacturer’s claimed values (for pharmaceutical preparations) was obtained, while mean recoveries of 98.6% were obtained for spiked urine samples. The molecular recognition features of the sensors as revealed by molecular modelling were rationalised by the nature of the interactions and complexation energies between the host and guest molecules. PMID:22346617

  17. The influence of mechanochemical modification on prevention of toxic ability of humic acids towards phenanthrene in aquatic environment

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, N. S.; Maltseva, E. V.; Glyzina, T. S.; Ovchinnikova, I. S.

    2015-11-01

    The aim of the research work is to quantify interaction between phenanthrene with modified humic acids in aquatic environment. The changes in the structure and properties of humic acids after modifications were studied with 1H NMR spectroscopy and potentiometric titration methods. Our research demonstrates that the application of thiourea as a modified agent increases the binding capacity of humic acids towards phenanthrene.

  18. Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.

    PubMed

    Kieninger, Jochen; Tamari, Yaara; Enderle, Barbara; Jobst, Gerhard; Sandvik, Joe A; Pettersen, Erik O; Urban, Gerald A

    2018-04-26

    The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.

  19. Extraction or adsorption? Voltammetric assessment of protamine transfer at ionophore-based polymeric membranes.

    PubMed

    Garada, Mohammed B; Kabagambe, Benjamin; Amemiya, Shigeru

    2015-01-01

    Cation-exchange extraction of polypeptide protamine from water into an ionophore-based polymeric membrane has been hypothesized as the origin of a potentiometric sensor response to this important heparin antidote. Here, we apply ion-transfer voltammetry not only to confirm protamine extraction into ionophore-doped polymeric membranes but also to reveal protamine adsorption at the membrane/water interface. Protamine adsorption is thermodynamically more favorable than protamine extraction as shown by cyclic voltammetry at plasticized poly(vinyl chloride) membranes containing dinonylnaphthalenesulfonate as a protamine-selective ionophore. Reversible adsorption of protamine at low concentrations down to 0.038 μg/mL is demonstrated by stripping voltammetry. Adsorptive preconcentration of protamine at the membrane/water interface is quantitatively modeled by using the Frumkin adsorption isotherm. We apply this model to ensure that stripping voltammograms are based on desorption of all protamine molecules that are transferred across the interface during a preconcentration step. In comparison to adsorption, voltammetric extraction of protamine requires ∼0.2 V more negative potentials, where a potentiometric super-Nernstian response to protamine is also observed. This agreement confirms that the potentiometric protamine response is based on protamine extraction. The voltammetrically reversible protamine extraction results in an apparently irreversible potentiometric response to protamine because back-extraction of protamine from the membrane extremely slows down at the mixed potential based on cation-exchange extraction of protamine. Significantly, this study demonstrates the advantages of ion-transfer voltammetry over potentiometry to quantitatively and mechanistically assess protamine transfer at ionophore-based polymeric membranes as foundation for reversible, selective, and sensitive detection of protamine.

  20. Reporter-free potentiometric sensing of boronic acids and their reactions by using quaternary ammonium salt-functionalized polymeric liquid membranes.

    PubMed

    Wang, Xuewei; Yue, Dengfeng; Lv, Enguang; Wu, Lei; Qin, Wei

    2014-02-18

    The tremendous applications of boronic acids (BAs) in chemical sensing, medical chemistry, molecular assembly, and organic synthesis lead to an urgent demand for developing effective sensing methods for BAs. This paper reports a facile and sensitive potentiometric sensor scheme for heterogeneous detection of BAs based on their unexpected potential responses on quaternary ammonium salt-doped polymeric liquid membranes. (11)B NMR data reveal that a quaternary ammonium chloride can trigger the hydrolysis of an electrically neutral BA in an aprotic solvent. Using the quaternary ammonium salt as the receptor, the BA molecules can be extracted from the sample solution into the polymeric membrane phase and undergo the concomitant hydrolysis. Such salt-triggered hydrolysis generates H(+) ions, which can be coejected into the aqueous phase with the counterions (e.g., Cl(-)) owing to their high hydrophilicities. The perturbation on the ionic partition at the sample-membrane interface changes the phase boundary potential and thus enables the potentiometric sensing of BAs. In contrast to other transduction methods for BAs, for which labeled or separate reporters are exclusively required, the present heterogeneous sensing scheme allows the direct detection of BAs without using any reporter molecules. This technique shows superior detection limits for BAs (e.g., 1.0 × 10(-6) M for phenylboronic acid) as compared to previously reported methods based on colorimetry, fluorimetry, and mass spectrometry. The proposed sensing strategy has also been successfully applied to potentiometric indication of the BA reactions with hydrogen peroxide and saccharides, which allows indirect and sensitive detection of these important species.

  1. Inorganic Thin-film Sensor Membranes with PLD-prepared Chalcogenide Glasses: Challenges and Implementation

    PubMed Central

    Kloock, Joachim P.; Mourzina, Youlia G.; Ermolenko, Yuri; Doll, Theodor; Schubert, Jürgen; Schöning, Michael J.

    2004-01-01

    Chalcogenide glasses offer an excellent “challenge” for their use and implementation in sensor arrays due to their good sensor-specific advantages in comparison to their crystalline counterparts. This paper will give an introduction on the preparation of chalcogenide glasses in the thin-film state. First, single microsensors have been prepared with the methods of semiconductor technology. In a next step, three microsensors are implemented onto one single silicon substrate to an “one chip” sensor array. Different ionselective chalcogenide glass membranes (PbSAgIAs2S3, CdSAgIAs2S3, CuAgAsSeTe and TlAgAsIS) were prepared by means of the pulsed laser deposition (PLD) process. The different sensor membranes and structures have been physically characterized by means of Rutherford backscattering spectrometry, scanning electron microscopy and video microscopy. The electrochemical behavior has been investigated by potentiometric measurements.

  2. Ferroelectric Dispersed Composite Solid Electrolyte for CO2 Gas Sensor

    NASA Astrophysics Data System (ADS)

    Singh, K.; Ambekar, P.; Bhoga, S. S.

    2002-12-01

    The Li2CO3:LiNbO3 composite system was investigated for the application in electrochemical gas sensor. The conductivity maximum is observed for 50Li2CO3+50LiNbO3. An enhancement in conductivity is understood to be due to the percolation threshold. The composite is also seen less sensitive to moisture. Potentiometric sensors are obtained using optimized composition. At the reference electrode, the activity of Li+ is fixed by using open reference electrode material. Good reversibility of cell emf was observed for PCO2 ranging from 200 ppm to 20% at 400°C. The cell response was Nernstian, following nearly two-electron reaction. The sensor showed negligible cross-sensitivity to moisture. Developed solid electrolyte not only exhibit shorter response time but also improves over all performance relative to the sensor based on pure carbonate.

  3. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    PubMed

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  4. Detection principles of biological and chemical FET sensors.

    PubMed

    Kaisti, Matti

    2017-12-15

    The seminal importance of detecting ions and molecules for point-of-care tests has driven the search for more sensitive, specific, and robust sensors. Electronic detection holds promise for future miniaturized in-situ applications and can be integrated into existing electronic manufacturing processes and technology. The resulting small devices will be inherently well suited for multiplexed and parallel detection. In this review, different field-effect transistor (FET) structures and detection principles are discussed, including label-free and indirect detection mechanisms. The fundamental detection principle governing every potentiometric sensor is introduced, and different state-of-the-art FET sensor structures are reviewed. This is followed by an analysis of electrolyte interfaces and their influence on sensor operation. Finally, the fundamentals of different detection mechanisms are reviewed and some detection schemes are discussed. In the conclusion, current commercial efforts are briefly considered. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Influence of the UV radiation on the screen-printed pH-sensitive layers based on graphene and ruthenium dioxide

    NASA Astrophysics Data System (ADS)

    Pepłowski, A.; Grudziński, D.; Raczyński, T.; Wróblewski, G.; Janczak, D.; Jakubowska, M.

    2017-08-01

    Electrodes for measuring pH of the solution were fabricated by the means of screen-printing technology. Potentiometric sensors' layers comprised of composite with polymer matrix and graphene nanoplatelets/ruthenium (IV) oxide nanopowder as functional phase. Transceivers were printed on the elastic PMMA foil. Regarding potential application of the sensors in the wearable devices, dynamic response of the electrodes to changing ultraviolet radiation levels was assessed, since RuO2 is reported to be UV-sensitive. Observed changes of the electrodes' potential were of sub-millivolt magnitude, being comparable to simultaneously observed signal drift. Given this stability under varying UV conditions and previously verified good flexibility, fabricated sensors meet the requirements for wearable applications.

  6. Synthesis of nano-sized hydrogen phosphate-imprinted polymer in acetonitrile/water mixture and its use as a recognition element of hydrogen phosphate selective all-solid state potentiometric electrode.

    PubMed

    Alizadeh, Taher; Atayi, Khalil

    2018-02-01

    Herein, a new recipe is introduced for the preparation of hydrogen phosphate ion-imprinted polymer nanoparticles (nano-IIP) in acetonitrile/water (63.5:36.5) using phosphoric acid as the template. The nano-IIP obtained was used as the recognition element of a carbon paste potentiometric sensor. The IIP electrode showed a Nernstian response to hydrogen phosphate anion; whereas, the non-imprinted polymer (NIP)-based electrode had no considerable sensitivity to the anion. The presence of both methacrylic acid and vinyl pyridine in the IIP structure, as well as optimization of the functional monomers-template proportion, was found to be important to observe the sensing capability of the IIP electrode. The nano-IIP electrode showed a dynamic linear range of 1 × 10 -5 -1 × 10 -1  mol L-1, Nernstian slope of 30.6 ± (0.5) mV decade -1 , response time of 25 seconds, and detection limit of 4.0 × 10 -6  mol L -1 . The utility of the electrodes was checked by potentiometric titration of hydrogen phosphate with La 3+ solution. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix.

    PubMed

    Syu, Mei-Jywan; Chang, Yu-Sung

    2009-04-15

    Potentio-dynamic polymerization of buffered urease and pyrrole monomer onto carbon papers was conducted to fabricate an immobilized urease electrode for measuring the urea concentration. To use carbon paper as the substrate for the electro-growth of polypyrrole matrix not only created sufficient adhesion of the conducting polymer layer but also provided superior entrapment of urease enzymes. The potentiometric response corresponding to ammonia, the product formed from the urease catalyzed urea reaction, was employed for the urea concentration measurement. Scanning electron microscopic photographs showed that the polypyrrole matrix deposited on the carbon papers appeared to be of a cylindrical nanotube shape. The charge density applied in the polymerization was found to affect the potentiometric response while the potential-scanning rate showed minor influence. The composite electrodes had high sensitivity in urea detection, showing a response linear to the logarithm of the urea concentration in the range of 10(-3) to 10 mM. The detection of urea solution prepared in water and buffer was also compared. Ionic effect on the sensing of urea solution was investigated. By comparing the data reported in literature, the urease/polypyrrole/carbon paper electrode developed in this work showed superior long-term stability and reusability. The detection of urea in serum was also well performed.

  8. Direct correlation between potentiometric and impedance biosensing of antibody-antigen interactions using an integrated system

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Yen; Creedon, Niamh; Brightbill, Eleanor; Pavlidis, Spyridon; Brown, Billyde; Gray, Darren W.; Shields, Niall; Sayers, Ríona; Mooney, Mark H.; O'Riordan, Alan; Vogel, Eric M.

    2017-08-01

    A fully integrated system that combines extended gate field-effect transistor (EGFET)-based potentiometric biosensors and electrochemical impedance spectroscopy (EIS)-based biosensors has been demonstrated. This integrated configuration enables the sequential measurement of the same immunological binding event on the same sensing surface and consequently sheds light on the fundamental origins of sensing signals produced by FET and EIS biosensors, as well as the correlation between the two. Detection of both the bovine serum albumin (BSA)/anti-BSA model system in buffer solution and bovine parainfluenza antibodies in complex blood plasma samples was demonstrated using the integrated biosensors. Comparison of the EGFET and EIS sensor responses reveals similar dynamic ranges, while equivalent circuit modeling of the EIS response shows that the commonly reported total impedance change (ΔZtotal) is dominated by the change in charge transfer resistance (Rct) rather than surface capacitance (Csurface). Using electrochemical kinetics and the Butler-Volmer equation, we unveil that the surface potential and charge transfer resistance, measured by potentiometric and impedance biosensors, respectively, are, in fact, intrinsically linked. This observation suggests that there is no significant gain in using the FET/EIS integrated system and leads to the demonstration that low-cost EGFET biosensors are sufficient as a detection tool to resolve the charge information of biomolecules for practical sensing applications.

  9. Highly selective electrode for potentiometric analysis of methadone in biological fluids and pharmaceutical formulations.

    PubMed

    Ardeshiri, Moslem; Jalali, Fahimeh

    2016-06-01

    In order to develop a fast and simple procedure for methadone analysis in biological fluids, a graphite paste electrode (GPE) was modified with the ion-pair of methadone-phosphotungstic acid, and multiwalled carbon nanotubes (MWCNTs). Optimized composition of the electrode with respect to graphite powder:paraffin oil:MWCNTs:ion pair, was 58:30:8:4 (w/w%). The electrode showed a near-Nernstian slope of 58.9 ± 0.3 mV/decade for methadone in a wide linear range of 1.0 × 10(-8)-4.6 × 10(-3)M, with a detection limit of 1.0 × 10(-8)M. The electrode response was independent of pH in the range of 5-11, with a fast response time (~4s) at 25 °C. The sensor showed high selectivity and was successfully applied to the determination of sub-micromolar concentrations of methadone in human blood serum and urine samples, with recoveries in the range of 95-99.8%. The average recovery of methadone from tablets (5 mg/tablet) by using the proposed method was 98%. The life time of the modified electrode was more than 5 months, due to the characteristic of GPE which can be cut off and fresh electrode surface be available. A titration procedure was performed for methadone analysis by using phosphotungstic acid, as titrating agent, which showed an accurate end point and 1:1 stoichiometry for the ion-pair formed (methadone:phosphotungstic acid). The simple and rapid procedure as well as excellent detection limit and selectivity are some of the advantages of the proposed sensor for methadone. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Unlabeled multi tumor marker detection system based on bioinitiated light addressable potentiometric sensor.

    PubMed

    Jia, Yun-Fang; Gao, Chun-Ying; He, Jia; Feng, Dao-Fu; Xing, Ke-Li; Wu, Ming; Liu, Yang; Cai, Wen-Sheng; Feng, Xi-Zeng

    2012-08-21

    Multi biomarkers' assays are of great significance in clinical diagnosis. A label-free multi tumor markers' parallel detection system was proposed based on a light addressable potentiometric sensor (LAPS). Arrayed LAPS chips with basic structure of Si(3)N(4)-SiO(2)-Si were prepared on silicon wafers, and the label-free parallel detection system for this component was developed with user friendly controlling interfaces. Then the l-3,4-dihydroxyphenyl-alanine (L-Dopa) hydrochloric solution was used to initiate the surface of LAPS. The L-Dopa immobilization state was investigated by the theoretical calculation. L-Dopa initiated LAPS' chip was biofunctionalized respectively by the antigens and antibodies of four tumor markers, α-fetoprotein (AFP), carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9) and Ferritin. Then unlabeled antibodies and antigens of these four biomarkers were detected by the proposed detection systems. Furthermore physical and measuring principles in this system were described, and qualitative understanding for experimental data were given. The measured response ranges were compared with their clinical cutoff values, and sensitivities were calculated by OriginLab. The results indicate that this bioinitiated LAPS based label-free detection system may offer a new choice for the realization of unlabeled multi tumor markers' clinical assay.

  11. Kinetic Modulation of Pulsed Chrono-potentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers

    PubMed Central

    Xu, Yida; Xu, Chao; Shvarev, Alexey; Becker, Thomas; De Marco, Roland

    2010-01-01

    Polymeric membrane ion selective electrodes are normally interrogated by zero current potentiometry, and their selectivity is understood to be primarily dependent on an extraction/ion-exchange equilibrium between the aqueous sample and polymeric membrane. If concentration gradients in the contacting diffusion layers are insubstantial, the membrane response is thought to be rather independent of kinetic processes such as surface blocking effects. In this work, the surface of calcium-selective polymeric ion-selective electrodes is coated with polyelectrolyte multilayers as evidenced by zeta potential measurements, atomic force microscopy and electrochemical impedance spectroscopy. Indeed, such multilayers have no effect on their potentiometric response if the membranes are formulated in a traditional manner, containing a lipophilic ion-exchanger and a calcium-selective ionophore. However, drastic changes in the potential response are observed if the membranes are operated in a recently introduced kinetic mode using pulsed chronopotentiometry. The results suggest that the assembled nanostructured multilayers drastically alter the kinetics of ion transport to the sensing membrane, making use of the effect that polyelectrolyte multilayers have different permeabilities toward ions with different valences. The results have implications to the design of chemically selective ion sensors since surface localized kinetic limitations can now be used as an additional dimension to tune the operational ion selectivity. PMID:17711298

  12. Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment.

    PubMed

    Yuan, Dajing; Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2017-01-03

    This work reports on a semiempirical treatment that allows one to rationalize and predict experimental conditions for thin-layer ionophore-based films with cation-exchange capacity read out with cyclic voltammetry. The transition between diffusional mass transport and thin-layer regime is described with a parameter (α), which depends on membrane composition, diffusion coefficient, scan rate, and electrode rotating speed. Once the thin-layer regime is fulfilled (α = 1), the membrane behaves in some analogy to a potentiometric sensor with a second discrimination variable (the applied potential) that allows one to operate such electrodes in a multianalyte detection mode owing to the variable applied ion-transfer potentials. The limit of detection of this regime is defined with a second parameter (β = 2) and is chosen in analogy to the definition of the detection limit for potentiometric sensors provided by the IUPAC. The analytical equations were validated through the simulation of the respective cyclic voltammograms under the same experimental conditions. While simulations of high complexity and better accuracy satisfactorily reproduced the experimental voltammograms during the forward and backward potential sweeps (companion paper 1), the semiempirical treatment here, while less accurate, is of low complexity and allows one to quite easily predict relevant experimental conditions for this emergent methodology.

  13. Nano-level monitoring of Mn(2+) ion by fabrication of coated pyrolytic graphite electrode based on isonicotinohydrazide derivatives.

    PubMed

    Sahani, Manoj Kumar; Singh, A K; Jain, A K

    2015-05-01

    The two ionophores N'(N',N‴E,N',N‴E)-N',N‴-((((oxybis(ethane-2,1-diyl))bis(oxy)) bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I1) and (N',N‴E,N',N‴E)-N',N‴-(((propane-1,3-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I2) were synthesised and investigated as neutral carrier in the fabrication of Mn(2+) ion selective sensor. Several membranes were prepared by incorporating different plasticizers and anionic excluders and their effect on potentiometric response was studied. The best analytical performance was obtained with the electrode having a membrane of composition of I2: PVC: o-NPOE: NaTPB in the ratio of 6:34:58:2 (w/w, mg). Comparative studies of coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) based on I2 reveal the superiority of CPGE. The CPGE exhibits wide working concentration range of 1.23×10(-8)-1.0×10(-1) mol L(-1) and a detection limit down to 4.78×10(-9) mol L(-1) with a Nernstian slope of 29.5±0.4 mV decade(-1) of activity. The sensor performs satisfactorily over a wide pH range (3.5-9.0) and exhibited a quick response time (9s). The sensor can work satisfactorily in water-acetonitrile and water-methanol mixtures. It can tolerate 30% acetonitrile and 20% methanol content in the mixtures. The sensor could be used for a period of four months without any significant divergence in performance. The sensor reflects its utility in the quantification of Mn(2+) ion in real samples and has been successfully employed as an indicator electrode in the potentiometric titration of Mn(2+) ion with ethylenediaminetetraacetic acid (EDTA). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Light addressable potentiometric sensor with an array of sensing regions

    NASA Astrophysics Data System (ADS)

    Liang, Weiguo; Han, JingHong; Zhang, Hong; Chen, Deyong

    2001-09-01

    This paper describes the mechanism of light addressable poteniometric sensors (LAPS) from the viewpoints of Semiconductor Physics, and introduces the fabrication of a multi-parameter LAPS chip. The MEMS technology is applied to produce a matrix of sensing regions on the wafer. By doing that, the cross talk among these regions is reduced, and the precision of the LAPS is increased. An IR-LED matrix is used as the light source, and the flow-injection method is used to input samples. The sensor system is compact and highly integrated. The measure and control system is composed of a personal computer, a lock-in amplifier, a potentiostat, a singlechip system, and an addressing circuit. Some experiments have been done with this device. The results show that this device is very promising for practical use.

  15. Design and construction of new potentiometric sensors for determination of Al3+ ion based on (Z)-2-(2-methyl benzylidene)-1-(2,4-dinitrophenyl) hydrazine.

    PubMed

    Mizani, F; Salmanzadeh Ardabili, S; Ganjaliab, M R; Faridbod, F; Payehghadr, M; Azmoodeh, M

    2015-04-01

    (Z)-2-(2-methyl benzylidene)-1-(2,4-dinitrophenyl) hydrazine (L) was used as an active component of PVC membrane electrode (PME), coated graphite electrode (CGE) and coated silver wire electrode (CWE) for sensing Al(3+) ion. The electrodes exhibited linear Nernstian responses to Al(3+) ion in the concentration range of 1.0×10(-6) to 1.0×10(-1)M (for PME, LOD=8.8×10(-7)M), 5.5×10(-7) to 2.0×10(-1)M (for CWE, LOD=3.3×10(-7)M) and 1.5×10(-7) to 1.0×10(-1)M (for CGE, LOD=9.2×10(-8)M). The best performances were observed with the membranes having the composition of L:PVC:NPOE:NaTPB in the ratio of 5:35:57:3 (w/w; mg). The electrodes have a response time of 6s and an applicable pH range of 3.5-9.1. The sensors have a lifetime of about 15weeks and exhibited excellent selectivity over a number of mono-, bi-, and tri-valent cations including alkali, alkaline earth metal, heavy and transition metal ions. Analytical utility of the proposed sensor has been further tested by using it as an indicator electrode in the potentiometric titration of Al(3+) with EDTA. The electrode was also successfully applied for the determination of Al(3+) ion in real and pharmaceutical samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2005

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2006-01-01

    INTRODUCTION This map depicts the potentiometric surface of the upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2005. Potentiometric contours are based on water level measurements collected at 598 wens during the period May 5 - 31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate upper Floridan aquifer responds mainly to rainfall, and more locally, to ground water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground water withdrawals locally have lowered the potentiometric surface. Ground water in the upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  17. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  18. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  19. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  20. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  1. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  2. Cyclodextrins Based Electrochemical Sensors for Biomedical and Pharmaceutical Analysis.

    PubMed

    Lenik, Joanna

    2017-01-01

    Electrochemical sensors are very convenient devices, as they may be used in a lot of fields starting from the food industry to environmental monitoring and medical diagnostics. They offer the values of simple design, reversible and reproducible measurements, as well as ensuring precise and accurate analytical information. Compared with other methods, electrochemical sensors are relatively simple as well as having low costs, which has led to intensive development, especially in the field of medicine and pharmaceuticals within the last decade. Recently, the number of publications covering the determination of aminoacids, dopamine, cholesterol, uric acid, biomarkers, vitamins and other pharmaceutical and biological compounds has significantly increased. Many possible types of such sensors and biosensors have been proposed: owing to the kind of the detection-potentiometric voltametric, amperometry, and the materials that can be used for, e.g. designing molecular architecture of the electrode/solution interface, carbon paste, carbon nanotubes, glass carbon, graphite, graphene, PVC, conductive polymers and/or nanoparticles. The active compounds which provide the complex formation with analyte (in the case of non-current techniques) or activate biomolecules electrochemically by particle recognition and selective preconcentration of analyte on the electrode surface (in the case of current techniques) are the most recently used cyclodextrins. These macrocyclic compounds have the ability to interact with a large diversity of guest particles to form complexes of the type of guest host, for example, with particles from drugs, biomolecules, through their hydrophilic outer surface and lipophilic inner cavities. Cyclodextrins have been the subject of frequent electrochemical studies that focused mostly on both their interactions in a solid state and in solution. The process of preparing of CDs modified electrodes would, consequently, open new avenues for new electrochemical sensors and, therefore, widen their use in biomedical and drug analysis. This review presents information on manufacturing techniques and performances of these sensors and biosensors. The opportunities for these sensors to carry out biomedical and pharmaceutical researches are demonstrated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Thiopental and Phenytoin as Novel Ionophores for Potentiometric Determination of Lead (II) Ions

    PubMed Central

    Rizk, Nashwa M.H.; Abbas, Samah S.; Hamza, Salem M.; Abd EL-Karem, Yasser M.

    2009-01-01

    Two novel polymeric membrane sensors for the analysis of Pb(II) have been developed based on two therapeutic drugs, thiopental (TP) and phenytoin (PT) as two new ionophores and potassium tetrakis(p-chlorophenyl) borate (KTpClPB) as a lipophilic additive, in plasticized PVC membranes. The sensors show a Nernstian response for Pb(II) ions over the wide concentration ranges of 1×10−2 – 7×10−6 M and 1×10−2 – 8×10−6 M for the sensors based on thiopental and phenytoin, respectively. The proposed sensors have a fast response time and can be used for more than nine weeks without any considerable divergence in potentials. The sensors exhibit comparatively good selectivity with respect to alkaline, alkaline earth and some transition and heavy metal ions. They were employed for direct determination of lead in solder alloys and in galena rocks with a good agreement with the obtained results by atomic absorption spectroscopy. PMID:22573991

  4. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features

    PubMed Central

    Li, Fu-an; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-01-01

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In2O3 composite, is designed to differentiate NO2, NH3, C3H6, CO within the level of 50–400 ppm. Results indicate that with adding 15 wt.% ZnO to In2O3, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode. PMID:28287492

  5. Determination of urine ionic composition with potentiometric multisensor system.

    PubMed

    Yaroshenko, Irina; Kirsanov, Dmitry; Kartsova, Lyudmila; Sidorova, Alla; Borisova, Irina; Legin, Andrey

    2015-01-01

    The ionic composition of urine is a good indicator of patient's general condition and allows for diagnostics of certain medical problems such as e.g., urolithiasis. Due to environmental factors and malnutrition the number of registered urinary tract cases continuously increases. Most of the methods currently used for urine analysis are expensive, quite laborious and require skilled personnel. The present work deals with feasibility study of potentiometric multisensor system of 18 ion-selective and cross-sensitive sensors as an analytical tool for determination of urine ionic composition. In total 136 samples from patients of Urolithiasis Laboratory and healthy people were analyzed by the multisensor system as well as by capillary electrophoresis as a reference method. Various chemometric approaches were implemented to relate the data from electrochemical measurements with the reference data. Logistic regression (LR) was applied for classification of samples into healthy and unhealthy producing reasonable misclassification rates. Projection on Latent Structures (PLS) regression was applied for quantitative analysis of ionic composition from potentiometric data. Mean relative errors of simultaneous prediction of sodium, potassium, ammonium, calcium, magnesium, chloride, sulfate, phosphate, urate and creatinine from multisensor system response were in the range 3-13% for independent test sets. This shows a good promise for development of a fast and inexpensive alternative method for urine analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September, 2004

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2005-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in September 2004. Potentiometric contours are based on water-level measurements collected at 608 wells during the period September 14-October 1, near the end of the wet season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  7. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May, 2004

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Knowles, Leel

    2004-01-01

    INTRODUCTION This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in May 2001. Potentiometric contours are based on water-level measurements collected at 684 wells during the period May 2 - 30, near the end of the dry season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  8. Measurements of the effects of wine maceration with oak chips using an electronic tongue.

    PubMed

    Rudnitskaya, Alisa; Schmidtke, Leigh M; Reis, Ana; Domingues, M Rosario M; Delgadillo, Ivonne; Debus, Bruno; Kirsanov, Dmitry; Legin, Andrey

    2017-08-15

    The use of oak products as a cheaper alternative to expensive wood barrels was recently permitted in Europe, which led to a continuous increase in the use of oak chips and staves in winemaking. The feasibility of the potentiometric electronic tongue as a tool for monitoring the effects of wine maceration with oak chips was evaluated. Four types of commercially available oak chips subjected to different thermal treatments and washing procedures and their mixture were studied. Ethanolic extracts of the chips were analysed using electrospray mass spectrometry and 28 phenolic and furanic compounds were identified. The electronic tongue comprising 22 potentiometric chemical sensors could distinguish artificial wine solutions and Cabernet Sauvignon wine macerated with different types of oak chips, quantify total and non-flavonoid phenolic content, as well as the concentrations of added oak chips. Using measurements at two pH levels, 3.2 and 6.5, improved the accuracy of quantification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electrochemical l-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase

    PubMed Central

    Ibupoto, Zafar Hussain; Ali Shah, Syed Muhammad Usman; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10−4–1 × 100 mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks. PMID:22736960

  10. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase.

    PubMed

    Ibupoto, Zafar Hussain; Shah, Syed Muhammad Usman Ali; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10(-4)-1 × 10(0) mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.

  11. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.

    PubMed

    Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M

    2014-10-01

    Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Polymeric Optical Sensors for Selective and Sensitive Nitrite Detection Using Cobalt(III) Corrole and Rh(III) Porphyrin as Ionophores

    PubMed Central

    Yang, Si; Wo, Yaqi; Meyerhoff, Mark E.

    2014-01-01

    Cobalt(III) 5, 10, 15-tris(4-tert-butylphenyl) corrole with a triphenylphosphine axial ligand and rhodium(III) 5,10,15,20-tetra(p-tert-butylphenyl)porphyrin are incorporated into plasticized poly(vinyl chloride) films to fabricate nitrite-selective bulk optodes via absorbance measurements. The resulting films yield sensitive, fast and fully reversible response toward nitrite with significantly enhanced nitrite selectivity over other anions including lipophilic anions such as thiocyanate and perchlorate. The selectivity patterns differ greatly from the Hofmeister series based on anion lipophilicity and are consistent with selectivity obtained with potentiometric sensors based on the same ionophores. The optical nitrite sensors are shown to be useful for detecting rates of emission of nitric oxide (NO) from NO releasing polymers containing S-nitroso-N-acetyl-penicillamine. PMID:25150700

  13. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations.

    PubMed

    Ma, Wei-Jhe; Luo, Ching-Hsing; Lin, Jiun-Ling; Chou, Sin-Houng; Chen, Ping-Hung; Syu, Mei-Jywan; Kuo, Shin-Hung; Lai, Shin-Chi

    2016-04-02

    This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA) was used to measure and amplify the open-circuit potential (OCP) between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine) polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16 × 10(-4) to 3.16 × 10(-2) M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R² = 0.995). This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA·h) for at least four days. Accordingly, its use is feasible and even promising for home-care applications.

  14. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations

    PubMed Central

    Ma, Wei-Jhe; Luo, Ching-Hsing; Lin, Jiun-Ling; Chou, Sin-Houng; Chen, Ping-Hung; Syu, Mei-Jywan; Kuo, Shin-Hung; Lai, Shin-Chi

    2016-01-01

    This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA) was used to measure and amplify the open-circuit potential (OCP) between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine) polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16 × 10−4 to 3.16 × 10−2 M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R2 = 0.995). This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA·h) for at least four days. Accordingly, its use is feasible and even promising for home-care applications. PMID:27049390

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2007

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2007. Potentiometric contours are based on water-level measurements collected at 566 wells during the period May 4-June 11 near the end of the dry season, however most of the water level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  17. Potentiometric Sensors Based on Surface Molecular Imprinting: Detection of Cancer Biomarkers and Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Zhang, Z; Jain, V

    2010-01-01

    The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for thismore » kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.« less

  18. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  19. A thiourea derivative as potential ionophore for copper sensing

    NASA Astrophysics Data System (ADS)

    Ying, Kook Shih; Heng, Lee Yook; Hassan, Nurul Izzaty; Hasbullah, Siti Aishah

    2018-04-01

    A new thiourea derivative, N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide (TPC), as a potential copper ionophore was investigated. TPC was immobilized via drop casting method into poly(n-butyl acrylate) pBA membrane and the sensor was characterized by potentiometric method. The sensor fabricated based on TPC showed a Nernstian response towards copper ion with the slope of 27.07±2.84 mV/decade in the range of 1.0×10-6 - 1.0-10-4 M and limit of detection of 6.24 × 10-7 M. In addition, based on the separate solution method (SSM), the logarithm selectivity coefficients were less than -3.00 for monovalent, divalent and trivalent cations that are present in the environmental water samples such as K+, Ca2+, Mg2+ and Fe3+. This confirmed that the sensor fabricated with TPC exhibited good sensitivity and selectivity towards copper ion.

  20. Ionophore-based potentiometric PVC membrane sensors for determination of phenobarbitone in pharmaceutical formulations.

    PubMed

    Alrabiah, Haitham; Al-Majed, Abdulrahman; Abounassif, Mohammed; Mostafa, Gamal A E

    2016-12-01

    The fabrication and development of two polyvinyl chloride (PVC) membrane sensors for assaying phenobarbitone sodium are described. Sensors 1 and 2 were fabricated utilizing β- or γ-cyclodextrin as ionophore in the presence of tridodecylmethylammonium chloride as a membrane additive, and PVC and dioctyl phthalate as plasticizer. The analytical parameters of both sensors were evaluated according to the IUPAC guidelines. The proposed sensors showed rapid, stable anionic response (-59.1 and -62.0 mV per decade) over a relatively wide phenobarbitone concentration range (5.0 × 10-6-1 × 10-2 and 8 × 10-6-1 × 10-2 mol L-1) in the pH range of 9-11. The limit of detection was 3.5 × 10-6 and 7.0 × 10-6 mol L-1 for sensors 1 and 2, respectively. The fabricated sensors showed high selectivity for phenobarbitone over the investigated foreign species. An average recovery of 2.54 μg mL-1 phenobarbitone sodium was 97.4 and 101.1 %, while the mean relative standard deviation was 3.0 and 2.1 %, for sensors 1 and 2, respectively. The results acquired for determination of phenobarbitone in its dosage forms utilizing the proposed sensors are in good agreement with those obtained by the British Pharmacopoeial method.

  1. YSZ-based sensor using Cr-Fe-based spinel-oxide electrodes for selective detection of CO.

    PubMed

    Anggraini, Sri Ayu; Fujio, Yuki; Ikeda, Hiroshi; Miura, Norio

    2017-08-22

    A selective carbon monoxide (CO) sensor was developed by the use of both of CuCrFeO 4 and CoCrFeO 4 as the sensing electrode (SE) for yttria-stabilized zirconia (YSZ)-based potentiometric sensor. The sensing-characteristic examinations of the YSZ-based sensors using each of spinel oxides as the single-SE sensor showed that CuCrFeO 4 -SE had the ability to detect CO, hydrocarbons and NO x gases, while CoCrFeO 4 -SE was sensitive to hydrocarbons and NO x gases. Thus, when both SEs were paired as a combined-SEs sensor, the resulting sensor could generate a selective response to CO at 450 °C under humid conditions. The sensor was also capable of detecting CO in the concentration range of 20-700 ppm. Its sensing mechanism that was examined via polarization-curve measurements was confirmed to be based on mixed-potential model. The CO response generated by the combined-SEs sensor was unaffected by the change of water vapor concentration in the range of 1.3-11.5 vol% H 2 O. Additionally, the sensing performance was stable during 13 days tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Potentiometric Indirect Uric Acid Sensor Based on ZnO Nanoflakes and Immobilized Uricase

    PubMed Central

    Usman Ali, Syed M.; Ibupoto, Zafar Hussain; Kashif, Muhammad; Hashim, Uda; Willander, Magnus

    2012-01-01

    In the present work zinc oxide nanoflakes (ZnO-NF) structures with a wall thickness around 50 to 100 nm were synthesized on a gold coated glass substrate using a low temperature hydrothermal method. The enzyme uricase was electrostatically immobilized in conjunction with Nafion membrane on the surface of well oriented ZnO-NFs, resulting in a sensitive, selective, stable and reproducible uric acid sensor. The electrochemical response of the ZnO-NF-based sensor vs. a Ag/AgCl reference electrode was found to be linear over a relatively wide logarithmic concentration range (500 nM to 1.5 mM). In addition, the ZnO-NF structures demonstrate vast surface area that allow high enzyme loading which results provided a higher sensitivity. The proposed ZnO-NF array-based sensor exhibited a high sensitivity of ∼66 mV/ decade in test electrolyte solutions of uric acid, with fast response time. The sensor response was unaffected by normal concentrations of common interferents such as ascorbic acid, glucose, and urea. PMID:22736977

  3. Processes for Assessing the Thermal Stability of Han-Based Liquid Propellants. Revision

    DTIC Science & Technology

    1990-07-01

    indicators is not adequate, and potentiometric determination cr’ the equivalence point is the most suitable method (Kraft and Fischer 1972). The use of...be determined by Karl Fischer titration. This method requires a special titration apparatus because the Titroprozessor 636 is not suited for this type... methods obtained from the literature (Kraft and Fischer 1972), and, where necessary, the manufacturer has modified evaluation methods (Firmenschrift

  4. Determination of Carbonyl Groups in Pyrolysis Bio-oils Using Potentiometric Titration: Review and Comparison of Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Stuart; Ferrell, Jack R.

    Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here in this study, we present a modification of the traditional carbonyl oximation procedures that results inmore » less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. Some compounds such as carbohydrates are not measured by the traditional method (modified Nicolaides method), resulting in low estimations of the carbonyl content. Furthermore, we have shown that reaction completion for the traditional method can take up to 300 hours. The new method presented here (the modified Faix method) reduces the reaction time to 2 hours, uses triethanolamine (TEA) in the place of pyridine, and requires a smaller sample size for the analysis. Carbonyl contents determined using this new method are consistently higher than when using the traditional titration methods.« less

  5. Determination of Carbonyl Groups in Pyrolysis Bio-oils Using Potentiometric Titration: Review and Comparison of Methods

    DOE PAGES

    Black, Stuart; Ferrell, Jack R.

    2016-01-06

    Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here in this study, we present a modification of the traditional carbonyl oximation procedures that results inmore » less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. Some compounds such as carbohydrates are not measured by the traditional method (modified Nicolaides method), resulting in low estimations of the carbonyl content. Furthermore, we have shown that reaction completion for the traditional method can take up to 300 hours. The new method presented here (the modified Faix method) reduces the reaction time to 2 hours, uses triethanolamine (TEA) in the place of pyridine, and requires a smaller sample size for the analysis. Carbonyl contents determined using this new method are consistently higher than when using the traditional titration methods.« less

  6. Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine.

    PubMed

    Nery, Emilia Witkowska; Kubota, Lauro T

    2016-04-28

    The following manuscript details the stages of construction of a novel paper-based electronic tongue with an integrated Ag/AgCl reference, which can operate using a minimal amount of sample (40 μL). First, we optimized the fabrication procedure of silver electrodes, testing a set of different methodologies (electroless plating, use of silver nanoparticles and commercial silver paints). Later a novel, integrated electronic tongue system was assembled with the use of readily available materials such as paper, wax, lamination sheets, bleach etc. New system was thoroughly characterized and the ion-selective potentiometric sensors presented performance close to theoretical. An electronic tongue, composed of electrodes sensitive to sodium, calcium, ammonia and a cross-sensitive, anion-selective electrode was used to analyze 34 beer samples (12 types, 19 brands). This system was able to discriminate beers from different brands, and types, indicate presence of stabilizers and antioxidants, dyes or even unmalted cereals and carbohydrates added to the fermentation wort. Samples could be classified by type of fermentation (low, high) and system was able to predict pH and in part also alcohol content of tested beers. In the next step sample volume was minimalized by the use of paper sample pads and measurement in flow conditions. In order to test the impact of this advancement a four electrode system, with cross-sensitive (anion-selective, cation-selective, Ca(2+)/Mg(2+), K(+)/Na(+)) electrodes was applied for the analysis of 11 types of wine (4 types of grapes, red/white, 3 countries). Proposed matrix was able to group wines produced from different varieties of grapes (Chardonnay, Americanas, Malbec, Merlot) using only 40 μL of sample. Apart from that, storage stability studies were performed using a multimeter, therefore showing that not only fabrication but also detection can be accomplished by means of off-the-shelf components. This manuscript not only describes new paper-based, potentiometric sensors but also according to our knowledge is the first description of an electrochemical paper-based electronic tongue with integrated reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    PubMed Central

    Rahman, Md. Mahbubur; Saleh Ahammad, A. J.; Jin, Joon-Hyung; Ahn, Sang Jung; Lee, Jae-Joon

    2010-01-01

    Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors. PMID:22399911

  8. Potentiometric Surfaces in the Springfield Plateau and Ozark Aquifers of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006

    USGS Publications Warehouse

    Gillip, Jonathan A.; Czarnecki, John B.; Mugel, Douglas N.

    2008-01-01

    The Springfield Plateau and Ozark aquifers are important sources of ground water in the Ozark Plateaus aquifer system. Water from these aquifers is used for agricultural, domestic, industrial, and municipal water sources. Changing water use over time in these aquifers presents a need for updated potentiometric-surface maps of the Springfield Plateau and Ozark aquifers. The Springfield Plateau aquifer consists of water-bearing Mississippian-age limestone and chert. The Ozark aquifer consists of Late Cambrian to Middle Devonian age water-bearing rocks consisting of dolostone, limestone, and sandstone. Both aquifers are complex with areally varying lithologies, discrete hydrologic units, varying permeabilities, and secondary permeabilities related to fractures and karst features. During the spring of 2006, ground-water levels were measured in 285 wells. These data, and water levels from selected lakes, rivers, and springs, were used to create potentiometric-surface maps for the Springfield Plateau and Ozark aquifers. Linear kriging was used initially to construct the water-level contours on the maps; the contours were subsequently modified using hydrologic judgment. The potentiometric-surface maps presented in this report represent ground-water conditions during the spring of 2006. During the spring of 2006, the region received less than average rainfall. Dry conditions prior to the spring of 2006 could have contributed to the observed water levels as well. The potentiometric-surface map of the Springfield Plateau aquifer shows a maximum measured water-level altitude within the study area of about 1,450 feet at a spring in Barry County, Missouri, and a minimum measured water-level altitude of 579 feet at a well in Ottawa County, Oklahoma. Cones of depression occur in Dade, Lawrence and Newton Counties in Missouri and Delaware and Ottawa Counties in Oklahoma. These cones of depression are associated with private wells. Ground water in the Springfield Plateau aquifer generally flows to the west in the study area, and to surface features (lakes, rivers, and springs) particularly in the south and east of the study area where the Springfield Plateau aquifer is closest to land surface. The potentiometric-surface map of the Ozark aquifer indicates a maximum measured water-level altitude of 1,303 feet in the study area at a well in Washington County, Arkansas, and a minimum measured water-level altitude of 390 feet in Ottawa County, Oklahoma. The water in the Ozark aquifer generally flows to the northwest in the northern part of the study area and to the west in the remaining study area. Cones of depression occur in Barry, Barton, Cedar, Jasper, Lawrence, McDonald, Newton, and Vernon Counties in Missouri, Cherokee and Crawford Counties in Kansas, and Craig and Ottawa Counties in Oklahoma. These cones of depression are associated with municipal supply wells. The flow directions, based on both potentiometric-surface maps, generally agree with flow directions indicated by previous studies.

  9. Graphene-based potentiometric biosensor for the immediate detection of living bacteria.

    PubMed

    Hernández, Rafael; Vallés, Cristina; Benito, Ana M; Maser, Wolfgang K; Rius, F Xavier; Riu, Jordi

    2014-04-15

    In this communication we present a potentiometric aptasensor based on chemically modified graphene (transducer layer of the aptasensor) and aptamers (sensing layer). Graphene oxide (GO) and reduced graphene oxide (RGO) are the basis for the construction of two versions of the aptasensor for the detection of a challenging living organism such as Staphylococcus aureus. In these two versions, DNA aptamers are either covalently (in the GO case) or non-covalently (in the RGO case) attached to the transducer layer. In both cases we are able to selectively detect a single CFU/mL of S. aureus in an assay close to real time, although the noise level associated to the aptasensors made with RGO is lower than the ones made with GO. These new aptasensors, that show a high selectivity, are characterized by the simplicity of the technique and the materials used for their construction while offering ultra-low detection limits in very short time responses in the detection of microorganisms. © 2013 Published by Elsevier B.V.

  10. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    PubMed

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Hydrothermal growth of CuO nanoleaf structures, and their mercuric ion detection application.

    PubMed

    Ibupoto, Z H; Khun, K; Willander, M

    2014-09-01

    Mercury is the hazardous heavy metal ion for the environment and the human being therefore its determination is very important and herein we describe the development of mercury ion sensor on the CuO nanoleaf like nanostructures using cetyltrimethylammonium bromide (CTAB) surfactant as template for the growth by hydrothermal growth method. Scanning electron microscopy and X-ray diffraction study has shown high density and good crystal quality of the fabricated CuO nanostructures respectively. The presented mercury ion sensor has detected the wide range of 1.0 x 10(-7) to 1.0 x 10(-1) M mercury ion concentrations with an acceptable Nernstian behaviour and a sensitivity of 30.1 ± 0.6 mV/decade. The proposed mercury ion sensor exhibited low detection limit of 1.0 x 10(-8) M and also a fast response time of less than 5 s. In addition, the presented mercury ion sensor has shown an excellent repeatability, reproducibility, stability and selectivity. Moreover, the mercury ion selective electrode based on CuO nanoleaves was tested as an indicator electrode in the potentiometric titration.

  12. A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-02-04

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.

  13. A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-01-01

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412

  14. High-temperature potentiometric oxygen sensor with internal reference

    DOEpatents

    Routbort, Jules L [Hinsdale, IL; Singh, Dileep [Naperville, IL; Dutta, Prabir K [Worthington, OH; Ramasamy, Ramamoorthy [North Royalton, OH; Spirig, John V [Columbus, OH; Akbar, Sheikh [Hilliard, OH

    2011-11-15

    A compact oxygen sensor is provided, comprising a mixture of metal and metal oxide an enclosure containing said mixture, said enclosure capable of isolating said mixture from an environment external of said enclosure, and a first wire having a first end residing within the enclosure and having a second end exposed to the environment. Also provided is a method for the fabrication of an oxygen sensor, the method comprising confining a metal-metal oxide solid mixture to a container which consists of a single material permeable to oxygen ions, supplying an electrical conductor having a first end and a second end, whereby the first end resides inside the container as a reference (PO.sub.2).sup.ref, and the second end resides outside the container in the atmosphere where oxygen partial pressure (PO.sub.2).sup.ext is to be measured, and sealing the container with additional single material such that grain boundary sliding occurs between grains of the single material and grains of the additional single material.

  15. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction.

    PubMed

    Du, Liping; Wang, Jian; Chen, Wei; Zhao, Luhang; Wu, Chunsheng; Wang, Ping

    2018-08-31

    This paper presents a dual functional extracellular recording biosensor based on a light-addressable potentiometric sensor (LAPS). The design and fabrication of this biosensor make it possible to record both extracellular membrane potential changes and ATP release from a single taste bud cell for the first time. For detecting ATP release, LAPS chip was functionalized with ATP-sensitive DNA aptamer by covalent immobilization. Taste bud cells isolated from rat were cultured on LAPS surface. When the desired single taste bud cell was illuminated by modulated light, ATP release from single taste bud cells can be measured by recording the shifts of bias voltage-photocurrent curves (I-V curves) when the LAPS chip is working in discrete mode. On the other hand, extracellular membrane potential changes can be monitored by recording the fluctuation of LAPS photocurrent when the LAPS chip is working in continuous mode. The results show this biosensor can effectively record the enhancive effect of the bitter substance and inhibitory effect of the carbenoxolone (CBX) on the extracellular membrane potential changes and ATP release of single taste bud cells. In addition, the inhibitory effect of CBX also confirms LAPS extracellular recordings are originated from bitter signal transduction. It is proved this biosensor is suitable for extracellular recording of ATP release and membrane potential changes of single taste bud cells. It is suggested this biosensor could be applied to investigating taste signal transduction at the single-cell level as well as applied to other types of cells which have similar functions to taste bud cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Functionalized β-cyclodextrin based potentiometric sensor for naproxen determination.

    PubMed

    Lenik, Joanna; Łyszczek, Renata

    2016-04-01

    Potentiometric sensors based on neutral β-cyclodextrins: (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin and anionic β-cyclodextrin: (2-hydroxy-3-N,N,N-trimethylamino)propyl-β-cyclodextrin chloride for naproxen are described. Inclusion complexes of naproxen with the above-mentioned cyclodextrins were studied using IR spectroscopy. The electrode surface was made from PVC membranes doped with the appropriate β-cyclodextrin as ionophores and quaternary ammonium chlorides as positive charge additives that were dispersed in plasticizers. The optimum membrane contains heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin, o-nitrophenyloctyl ether and tetraoctyl ammonium chloride as a lipophilic salt. The electrode is characterized by a Nernstian response slope of -59.0 ± 0.5 mV decade(-1) over the linear range of 5.0 × 10(-5)-1.0 × 10(-2) mol L(-1) and the detection limit 1.0 × 10(-5) mol L(-1), as well as the response time 10s. It can be used in the pH range 6.2-8.5 for 10 months without any considerable deterioration. Incorporation of β-cyclodextrins improved the electrode selectivity towards naproxen ions from several inorganic and organic interferents and some common drug excipients due to concovalent interactions (host molecule-guest molecule). The notable advantages of the naproxen-selective electrode include its high sensitivity, high selectivity, cost-effectiveness as well as accurate and comfortable application in drug analysis and milk samples. Copyright © 2015. Published by Elsevier B.V.

  17. Real-time potentiometric sensor; an innovative tool for monitoring hydrolysis of chemo/bio-degradable drugs in pharmaceutical sciences.

    PubMed

    Ma'mun, Ahmed; Abd El-Rahman, Mohamed K; Abd El-Kawy, Mohamed

    2018-05-30

    In recent years, the whole field of ion-selective electrodes(ISEs) in pharmaceutical sciences has expanded far beyond its original roots. The diverse range of opportunities offered by ISEs was broadly used in a number of pharmaceutical applications, with topics presented ranging from bioanalysis of drugs and metabolites, to protein binding studies, green analytical chemistry, impurity profiling, and drug dissolution in biorelevant media. Inspired from these advances and with the aim of extending the functional capabilities of ISEs, the primary focus of the present paper is the utilization of ISE as a tool in personalized medicine. Given the opportunity to explore biological events in real-time (such as drug metabolism) could be central to personalized medicine. (ATR) is a chemo-degradable and bio-degradable pharmaceutically active drug. Laudanosine (LDS) is the major degradation product and metabolite of ATR and is potentially toxic and reported to possess epileptogenic activity which increases the risk of convulsive effects. In this work, ATR have been subjected to both chemical and biological hydrolysis, and the course of the reactions is monitored by means of a ISE. In this study, we have designed an efficient real-time tracking strategy which substantially resolve the challenges of the ATR chemical and biological degradation kinetics. By utilizing a potentiometric sensor, tracking of ATR chemical and biological degradation kinetics can be performed in a very short time with excellent accuracy. The LOD was calculated to be 0.23 μmol L -1 , the potential drift was investigated over a period of 60 min and the value was 0.25 mV h -1 . Real serum samples for measurement the rate of in vitro metabolism of ATR was performed. Furthermore, a full description of the fabricated screen-printed sensor was presented. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, May 2008

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2008. Potentiometric contours are based on water-level measurements collected at 567 wells during the period May 6-May 27, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours. Measured values of the potentiometric surface ranged from 7 feet below NGVD29 near Fernandina Beach, Florida, to 124 feet above NGVD29 in Polk County, Florida. The average water level of the network in May 2008 was about 1 foot lower than the average in September 2007 following below-average rainfall during the dry season of 2007-08. Seasonal differences in network average water levels generally range from 4 to 6 feet. For 457 wells with previous measurements, May 2008 levels ranged from about 19 feet below to about 11 feet above September 2007 water levels. The average water level of the network in May 2008 was about 1 foot higher than the average in May 2007. For 544 wells with previous measurements, May 2008 levels ranged from about 8 feet below to about 13 feet above May 2007 water levels. Long-term hydrographs of ground-water levels for continuous and periodic wells are available at internet site: http://waterdata.usgs.gov/fl/nwis/gw

  19. Injection moulded microneedle sensor for real-time wireless pH monitoring.

    PubMed

    Mirza, Khalid B; Zuliani, Claudio; Hou, Benjamin; Ng, Fu Siong; Peters, Nicholas S; Toumazou, Christofer

    2017-07-01

    This paper describes the development of an array of individually addressable pH sensitive microneedles using injection moulding and their integration within a portable device for real-time wireless recording of pH distributions in biological samples. The fabricated microneedles are subjected to gold patterning followed by electrodeposition of iridium oxide to sensitize them to 0.07 units of pH change. Miniaturised electronics suitable for the sensors readout, analog-to-digital conversion and wireless transmission of the potentiometric data are embodied within the device, enabling it to measure real-time pH of soft biological samples such as muscles. In this paper, real-time recording of the cardiac pH distribution, during ischemia followed by reperfusion cycles in cardiac muscles of male Wistar rats has been demonstrated by using the microneedle array.

  20. Construction of a new selective coated disk electrode for Ag (I) based on modified polypyrrole-carbon nanotubes composite with new lariat ether.

    PubMed

    Abbaspour, A; Tashkhourian, J; Ahmadpour, S; Mirahmadi, E; Sharghi, H; Khalifeh, R; Shahriyari, M R

    2014-01-01

    A poly (vinyl chloride) (PVC) matrix membrane ion-selective electrode for silver (I) ion is fabricated based on modified polypyrrole - multiwalled carbon nanotubes composite with new lariat ether. This sensor has a Nernstian slope of 59.4±0.5mV/decade over a wide linear concentration range of 1.0×10(-7) to 1.0×10(-1)molL(-1) for silver (I) ion. It has a short response time of about 8.0s and can be used for at least 50days. The detection limit is 9.3×10(-8)molL(-1) for silver (I) ion, and the electrode was applicable in the wide pH range of 1.6 -7.7. The electrode shows good selectivity for silver ion against many cations such as Hg (II), which usually imposes serious interference in the determination of silver ion concentration. The use of multiwalled carbon nanotubes (MWCNTs) in a polymer matrix improves the linear range and sensitivity of the electrode. In addition by coating the solid contact with a layer of the polypyrrole (Ppy) before coating the membrane on it, not only did it reduce the drift in potential, but a shorter response time was also resulted. The proposed electrode was used as an indicator electrode for potentiometric titration of silver ions with chloride anions and in the titration of mixed halides. This electrode was successfully applied for the determination of silver ions in silver sulphadiazine as a burning cream. © 2013.

  1. The Potentiometric Titration of Filtrates from the Bachmann Process

    DTIC Science & Technology

    1942-06-23

    SCIENTIFIC RESEARCH AND DEVELOP11ENT The Potentiometric Titration of Filtrates from the Bachmann Process (OD-12) by F. C. Whitmore OSRD No. 654... Potentiometric Titration of Synthetic Mixtures. A? Nitric Acid-Acetic Acid. A sample of 60 ml. glacial acetic acid war diluted to 200 ml. with distilled...i4flinflr?fj3 TADLE 1 CO) |S?lDBnTl» POTENTIOMETRIC TITRATION OF SYNTHETIC t’.IXTURES WITH CONCENTRATED AJKDNIUM HYDROXIDE A; unonium HNO-j- AcOfi Ky

  2. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    PubMed Central

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  3. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  4. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  5. Reactivity of the cadmium ion in concentrated phosphoric acid solutions.

    PubMed

    De Gyves, J; Gonzales, J; Louis, C; Bessiere, J

    1989-07-01

    The solvation transfer coefficients which characterize the changes of ion reactivity with phosphoric acid concentration have been calculated for cadmium from the constants of the successive chloride complexes, and for silver and diethyldithiophosphate from potentiometric measurements. They evidence the strong desolvation of the cadmium species in concentrated phosphoric acid media, causing a remarkable increase of its reactivity. They allow the results of liquid-liquid extraction, precipitation and flotation reactions to be correctly interpreted and their changes to be foreseen when the reagents are modified.

  6. Novel choline esterase based sensor for monitoring of organophosphorus pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.

    1996-12-31

    Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.

  7. Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors

    NASA Astrophysics Data System (ADS)

    Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.

    2011-09-01

    The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.

  8. Zinc Oxide-Based Self-Powered Potentiometric Chemical Sensors for Biomolecules and Metal Ions.

    PubMed

    Israr-Qadir, Muhammad; Jamil-Rana, Sadaf; Nur, Omer; Willander, Magnus

    2017-07-19

    Advances in the miniaturization and portability of the chemical sensing devices have always been hindered by the external power supply problem, which has focused new interest in the fabrication of self-powered sensing devices for disease diagnosis and the monitoring of analytes. This review describes the fabrication of ZnO nanomaterial-based sensors synthesized on different conducting substrates for extracellular detection, and the use of a sharp borosilicate glass capillary (diameter, d = 700 nm) to grow ZnO nanostructures for intracellular detection purposes in individual human and frog cells. The electrocatalytic activity and fast electron transfer properties of the ZnO materials provide the necessary energy to operate as well as a quick sensing device output response, where the role of the nanomorphology utilized for the fabrication of the sensor is crucial for the production of the operational energy. Simplicity, design, cost, sensitivity, selectivity and a quick and stable response are the most important features of a reliable sensor for routine applications. The review details the extra- and intra-cellular applications of the biosensors for the detection and monitoring of different metallic ions present in biological matrices, along with the biomolecules glucose and cholesterol.

  9. Zinc Oxide-Based Self-Powered Potentiometric Chemical Sensors for Biomolecules and Metal Ions

    PubMed Central

    Israr-Qadir, Muhammad; Jamil-Rana, Sadaf; Nur, Omer; Willander, Magnus

    2017-01-01

    Advances in the miniaturization and portability of the chemical sensing devices have always been hindered by the external power supply problem, which has focused new interest in the fabrication of self-powered sensing devices for disease diagnosis and the monitoring of analytes. This review describes the fabrication of ZnO nanomaterial-based sensors synthesized on different conducting substrates for extracellular detection, and the use of a sharp borosilicate glass capillary (diameter, d = 700 nm) to grow ZnO nanostructures for intracellular detection purposes in individual human and frog cells. The electrocatalytic activity and fast electron transfer properties of the ZnO materials provide the necessary energy to operate as well as a quick sensing device output response, where the role of the nanomorphology utilized for the fabrication of the sensor is crucial for the production of the operational energy. Simplicity, design, cost, sensitivity, selectivity and a quick and stable response are the most important features of a reliable sensor for routine applications. The review details the extra- and intra-cellular applications of the biosensors for the detection and monitoring of different metallic ions present in biological matrices, along with the biomolecules glucose and cholesterol. PMID:28753916

  10. Determining a Solubility Product Constant by Potentiometric Titration to Increase Students' Conceptual Understanding of Potentiometry and Titrations

    ERIC Educational Resources Information Center

    Grabowski, Lauren E.; Goode, Scott R.

    2017-01-01

    Potentiometric titrations are widely taught in first-year undergraduate courses to connect electrochemistry, stoichiometry, and equilibria and to reinforce acid-base titrations. Students perform a potentiometric titration that is then analyzed to determine analyte concentrations and the solubility product constant of the solid species.

  11. Potentiometric map of the Winona-Tallahatta Aquifer in northwestern Mississippi, fall 1979

    USGS Publications Warehouse

    Wasson, B.E.

    1980-01-01

    The potentiometric map of the Winona-Tallahatta aquifer is one of a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources , Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. In the outcrop area of the Winona-Tallahatta aquifer the potentiometric surface is strongly affected by recharge from precipitation, by topography, and by drainage of the aquifer by streams. The potentiometric surface slopes downward generally to the west away from the area of outcrop and is strongly affected by recharge from precipitation, by topography, and by drainage of the aquifer by streams. The potentiometric surface slopes downward generally to the west away from the area of outcrop and is strongly affected by pumpage from wells in Leflore, Sunflower , and Bolivar Counties, Historically, water levels in or near the outcrop of the Winona-Tallahatta have shown little or no long-term changes, but the heavy withdrawals in the confined part of the aquifer have caused long-term water-level declines of 1 to 2 feet per year. (USGS)

  12. In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors.

    PubMed

    Cuartero, Maria; Crespo, Gaston; Cherubini, Thomas; Pankratova, Nadezda; Confalonieri, Fabio; Massa, Francesco; Tercier-Waeber, Mary-Lou; Abdou, Melina; Schäfer, Jörg; Bakker, Eric

    2018-04-03

    A new submersible probe for the in situ detection of nitrate, nitrite, and chloride in seawater is presented. Inline coupling of a desalination unit, an acidification unit, and a sensing flow cell containing all-solid-state membrane electrodes allows for the potentiometric detection of nitrate and nitrite after removal of the key interfering ions in seawater, chloride and hydroxide. Thus, the electrodes exhibited attractive analytical performances for the potentiometric detection of nitrate and nitrite in desalinated and acidified seawater: fast response time ( t 95 < 12 s), excellent stability (long-term drifts of <0.5 mV h -1 ), good reproducibility (calibration parameter deviation of <3%), and satisfactory accuracy (uncertainties <8%Diff compared to reference technique). The desalination cell, which can be repetitively used for about 30 times, may additionally be used as an exhaustive, and therefore calibration-free, electrochemical sensor for chloride and indirect salinity detection. The detection of these two parameters together with nitrate and nitrite may be useful for the correlation of relative changes in macronutrient levels with salinity cycles, which is of special interest in recessed coastal water bodies. The system is capable of autonomous operation during deployment, with routines for repetitive measurements (every 2 h), data storage and management, and computer visualization of the data in real time. In situ temporal profiles observed in the Arcachon Bay (France) showed valuable environmental information concerning tide-dependent cycles of nitrate and chloride levels in the lagoon, which are here observed for the first time using direct in situ measurements. The submersible probe based on membrane electrodes presented herein may facilitate the study of biogeochemical processes occurring in marine ecosystems by the direct monitoring of nitrate and nitrite levels, which are key chemical targets in coastal waters.

  13. Rapid automated method for on-site determination of sulfadiazine in fish farming: a stainless steel veterinary syringe coated with a selective membrane of PVC serving as a potentiometric detector in a flow-injection-analysis system.

    PubMed

    Almeida, S A A; Amorim, L R; Heitor, A H; Montenegro, M C B S M; Barbosa, J; Sá, L C; Sales, M G F

    2011-12-01

    Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% o-nitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade(-1) down to 1.0 × 10(-5) mol L(-1), with a limit of detection of 3.1 × 10(-6) mol L(-1) in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography-tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.

  14. Development of nanosized lanthanum strontium aluminum manganite as electrodes for potentiometric oxygen sensor

    DOE PAGES

    Mullen, Max R.; Spirig, John V.; Hoy, Julia; ...

    2014-11-01

    Nanocrystalline La0.8Sr0.2Al0.9Mn0.1O3 (LSAM) was synthesized by a microwave-assisted citrate method, and characterized by electron microscopy and X-ray diffraction. Electrical behavior of LSAM was investigated by impedance spectroscopy and activation energy of conduction was obtained. Joining of sintered bodies of LSAM and yttria-stabilized tetragonal zirconia polycrystals (YTZP), an extensively studied oxygen ion conducting electrolyte, was examined by isostatic hot pressing methods. Characteristics of the joining region were evaluated with microprobe Raman spectroscopy, and products formed at the interface, primarily strontium zirconate, was confirmed by examination of high temperature chemical reaction between LSAM and YTZP powders. Finally, the electrical properties of themore » LSAM were exploited for development of a high temperature oxygen sensor in which LSAM functioned as the electrode and YTZP as electrolyte.« less

  15. Open-Source Low-Cost Wireless Potentiometric Instrument for pH Determination Experiments

    ERIC Educational Resources Information Center

    Jin, Hao; Qin, Yiheng; Pan, Si; Alam, Arif U.; Dong, Shurong; Ghosh, Raja; Deen, M. Jamal

    2018-01-01

    pH determination is an essential experiment in many chemistry laboratories. It requires a potentiometric instrument with extremely low input bias current to accurately measure the voltage between a pH sensing electrode and a reference electrode. In this technology report, we propose an open-source potentiometric instrument for pH determination…

  16. Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode.

    PubMed

    Ding, Jiawang; Qin, Wei

    2013-09-15

    A simple, general and label-free potentiometric method to measure nuclease activities and oxidative DNA damage in a homogeneous solution using a polycation-sensitive membrane electrode is reported. Protamine, a linear polyionic species, is used as an indicator to report the cleavage of DNA by nucleases such as restriction and nonspecific nucleases, and the damage of DNA induced by hydroxyl radicals. Measurements can be done with a titration mode or a direct detection mode. For the potentiometric titration mode, the enzymatic cleavage dramatically affects the electrostatical interaction between DNA and protamine and thus shifts the response curve for the potentiometric titration of the DNA with protamine. Under the optimized conditions, the enzyme activities can be sensed potentiometrically with detection limits of 2.7×10(-4)U/µL for S1 nuclease, and of 3.9×10(-4)U/µL for DNase I. For the direct detection mode, a biocomplex between protamine and DNA is used as a substrate. The nuclease of interest cleaves the DNA from the protamine/DNA complex into smaller fragments, so that free protamine is generated and can be detected potentiometrically via the polycation-sensitive membrane electrode. Using a direct measurement, the nuclease activities could be rapidly detected with detection limits of 3.2×10(-4)U/µL for S1 nuclease, and of 4.5×10(-4)U/µL for DNase I. Moreover, the proposed potentiometric assays demonstrate the potential applications in the detection of hydroxyl radicals. It is anticipated that the present potentiometric strategy will provide a promising platform for high-throughput screening of nucleases, reactive oxygen species and the drugs with potential inhibition abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Galvanostatic Entrapment of Penicillinase into Polytyramine Films and its Utilization for the Potentiometric Determination of Penicillin

    PubMed Central

    Ismail, Fatma; Adeloju, Samuel B.

    2010-01-01

    A sensitive and reliable potentiometric biosensor for determination of penicillin has been developed by exploiting the self-limiting growth of the non-conducting polymer, polytyramine. Optimum polytyramine-penicillinase (PTy-PNCnase) films for potentiometric detection of penicillin were accomplished with monomer solutions which contained 0.03 M tyramine, 37 U/mL penicillinase, 0.01 M KNO3, and 3 mM penicillin with an applied current density of 0.8 mA/cm2 and an electropolymerisation time of 40 seconds. The potentiometric biosensor gave a linear concentration range of 3–283 μM for penicillin and achieved a minimum detectable concentration of 0.3 μM. The biosensor was successfully utilized for the detection of Amoxycillin and gave an average percentage recovery of 102 ± 6%. Satisfactory recoveries of penicillin G were also achieved in milk samples with the potentiometric biosensor when concentrations are ≥20 ppm. PMID:22319276

  18. Potentiometric map of the Coffee Sand Aquifer in northeastern Mississippi, October and November 1978

    USGS Publications Warehouse

    Wasson, B.E.

    1980-01-01

    This potentiometric map of the Coffee Sand aquifer in northeastern Mississippi is the fourth in a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources, Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. In the outcrop areas the potentiometric surface is strongly affected by recharge from precipitation, topography, and drainage of the aquifer by streams. The potentiometric surface slopes generally to the west away from the area of outcrop and is mildly affected by moderate ground-water withdrawals by wells in Tippah and Union County. Historically, water levels in or near the outcrop of the Coffee Sand have shown little or no long-term changes as shown by a hydrograph of one well in Alcorn County. In the downdip part of the aquifer water-level declines of 2 feet per year are common. (USGS)

  19. Potentiometric map of the Sparta aquifer system in Mississippi, fall, 1980

    USGS Publications Warehouse

    Wasson, B.E.

    1980-01-01

    This potentiometric map of the Sparta aquifer system is the tenth in a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources, Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. In the outcrop area of the Sparta, the potentiometric surface is strongly affected by recharge from precipitation, by topography, and by drainage of the aquifer into streams. The potentiometric surface slopes downward generally to the west away from the area of outcrop and is strongly affected by large ground-water withdrawals in the Jackson, Yazoo City, Cleveland, Clarksdale, and Memphis areas. Historically, water levels in or near the outcrop of the Sparta have shown little or no long-term changes, but during the past 20 years, in much of the confined part of the aquifer, water levels have declined from 1 to 3 feet per year. (USGS)

  20. Potentiometric surface of the upper Patapsco Aquifer in southern Maryland, September 1991

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, D.C.; Mack, Frederick K.

    1993-01-01

    A map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in southern Maryland during September 1991 was prepared from water levels measured in wells. The potentiometric surface was at least 70 feet above sea level near the northwestern boundary and outcrop area of the aquifer in a topographically high area of Anne Arundel County, and at least 56 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometric surface declined to the south and southeast toward large well fields in the Annapolis and Waldorf areas and at the Chalk Point powerplant.

  1. Potentiometric surface of the Floridan Aquifer and its use in management of water resources, St. Johns River Water Management District, Florida

    USGS Publications Warehouse

    Rodis, Harry George; Munch, D.A.

    1983-01-01

    The Floridan aquifer supplies most of the fresh groundwater for municipal, industrial, and agricultural uses within the 12,400 sq mi St. Johns River Water Management District. Because of the growing demand for water and the variation in rainfall, resource managers need timely information on short-term and long-term changes in the availability of fresh water. The purpose of this report is to explain potentiometric surface maps and their value in assessing the resource, particularly during drought conditions. The Floridan aquifer is recharged by rainfall falling directly on the outcrop of the aquifer, and, where the aquifer is overlain by the surficial aquifer with the water table above the potentiometric surface of the Floridan, by water infiltrating downward from the overlying surficial aquifer. Water is discharged by pumping and free-flowing wells, springflow, and upward leakage into overlying formations, streams, and lakes or into the ocean. Fluctuations in the potentiometric surface reflect net gains (recharge) or losses (discharge) of water stored in the aquifer. Net gains occur during the wet season (June through September) when recharge exceeds discharge and causes the potentiometric surface to rise in most places. Net losses in storage, and declines in the potentiometric surface, follow during the dry season (October through May) when discharge exceeds recharge. Seasonal changes in the potentiometric surface, based on a 2-yr average of water level measurements during May and September 1977, and May and September 1978, are illustrated. Two of the greater long-term declines in the potentiometric surface have occurred in the growing metropolitan areas of Jacksonville and Orlando-Winter Park, the two largest public suppliers of water in the Water Management District. Municipal pumpage increased in Jacksonville from 37 million gallons per day (mgd) in 1961 to 56 mgd in 1980. The increased pumpage and a deficiency in rainfall of 15.8 inches contributed to a decline in the potentiometric surface of as much as 15 ft. Orlando-Winter Park municipal pumpage increasing from 27 mgd in 1961 to 62 mgd in 1980. The periodic preparation of maps showing changes in the potentiometric surface of the aquifer provide the best base information for both short-term and long-term management of the water resources in the St. Johns River Water Management District. (Lantz-PTT)

  2. Potentiometric surface of the lower Cape Fear Aquifer in the central coastal plain of North Carolina, December 1986

    USGS Publications Warehouse

    Winner, M.D.; Lyke, William L.; Brockman, Allen R.

    1989-01-01

    Water level measurements were made in four wells open to the lower Cape Fear aquifer at the end of 1986 to determine the configuration of its potentiometric surface over an area of approximately 4,100 sq mi. Because of the scarcity of data, five earlier measurements were also used to help estimate the position of the potentiometric contours. These were one-time measurements in temporary observation wells. A broad cone of depression has formed in the area between Kinston and New Bern where the potentiometric surface is below sea level and seems likely related to large groundwater withdrawals from the aquifers overlying the lower Cape Fear in that area.

  3. Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties.

    PubMed

    Elhag, Sami; Khun, Kimleang; Khranovskyy, Volodymyr; Liu, Xianjie; Willander, Magnus; Nur, Omer

    2016-02-06

    In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10(-6) M to 10(-3) M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices.

  4. Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties

    PubMed Central

    Elhag, Sami; Khun, Kimleang; Khranovskyy, Volodymyr; Liu, Xianjie; Willander, Magnus; Nur, Omer

    2016-01-01

    In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10−6 M to 10−3 M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices. PMID:26861342

  5. A New, Directly Computer-Controlled pH Stat.

    DTIC Science & Technology

    1982-03-08

    Currently, potentiometric reaction-rate methods of analysis find a wide range of analytical application and a number of such procedeires and corresponding...oxidase glucose + 0 2 - gluconic acid + H20 2 Glucose concentrations are determined by potentiometrically measuring the rate at which gluconic acid is...of lKIlz. Electrodes and Reaction Vessel. Changes in pl! are measured * potentiometrically with a combination Ag/AgCl ceramic junction electrode (No

  6. An Ion-Selective Electrode for the Determination of Phencyclidine (PCP).

    DTIC Science & Technology

    1980-08-06

    as an indicator_ ectrode in potentiometric titration of PCPA at concentrations DD 1473 EDITION or I Nov soIS OSSOOL TC SEPURqITY CLAWSFICATION Of...and ISE detection limits determined as described previous (25). The PCP electrode was used as the indicator electrode in potentiometric titrations of...was standardized by potentiometric titration with a dodecyltrimethyl- ammonium bromide (DoTAB) solution using a DoTA+ ISE (25) as the indicator

  7. NOx Sensor Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, L Y; Glass, R S

    NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaustmore » sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications. Briefly, impedancemetric operation has shown the potential to overcome the drawbacks of other approaches, including higher sensitivity towards NO{sub x}, better long-term stability, potential for subtracting out background interferences, total NO{sub x} measurement, and lower cost materials and operation. Past LLNL research and development efforts have focused on characterizing different sensor materials and understanding complex sensing mechanisms. Continued effort has led to improved prototypes with better performance, including increased sensitivity (to less than 5 ppm) and long-term stability, with more appropriate designs for mass fabrication, including incorporation of an alumina substrate with an imbedded heater. Efforts in the last year to further improve sensor robustness have led to successful engine dynamometer testing with prototypes mounted directly in the engine manifold. Previous attempts had required exhaust gases to be routed into a separate furnace for testing due to mechanical failure of the sensor from engine vibrations. A more extensive cross-sensitivity study was also undertaken this last year to examine major noise factors including fluctuations in water, oxygen, and temperature. The quantitative data were then used to develop a strategy using numerical algorithms to improve sensor accuracy. The ultimate goal is the transfer of this technology to a supplier for commercialization. Due to the recent economic downturn, suppliers are demanding more comprehensive data and increased performance analysis before committing their resources to take the technology to market. Therefore, our NO{sub x} sensor work requires a level of technology development more thorough and extensive than ever before. The objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing methods that could be compatible with mass fabrication; and (3) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization.« less

  8. Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach.

    PubMed

    Bitziou, Eleni; O'Hare, Danny; Patel, Bhavik Anil

    2008-11-15

    Real-time simultaneous detection of changes in pH and levels of histamine over the oxyntic glands of guinea pig stomach have been investigated. An iridium oxide pH microelectrode was used in a potentiometric mode to record the pH decrease associated with acid secretion when the sensor approached the isolated tissue. A boron-doped diamond (BDD) microelectrode was used in an amperometric mode to detect histamine when the electrode was placed over the tissue. Both sensors provided stable and reproducible responses that were qualitatively consistent with the signaling mechanism for acid secretion at the stomach. Simultaneous measurements in the presence of pharmacological treatments produced significant variations in the signals obtained by both sensors. As the H2 receptor antagonist cimetidine was perfused to the tissue, histamine levels increased that produced an increase in the signal of the BDD electrode whereas the pH sensor recorded a decrease in acid secretion as expected. Addition of acetylcholine (ACh) stimulated additional acid secretion detected with the pH microelectrode whereas the BDD sensor recorded the histamine levels decreasing significantly. This result shows that the primary influence of ACh is directly on the parietal cell receptors rather then the ECL cell receptors of the oxyntic glands. These results highlight the power of this simultaneous detection technique in the monitoring and diagnosis of physiological significant signaling mechanisms and pathways.

  9. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    NASA Astrophysics Data System (ADS)

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  10. Novel PVC-membrane electrode for flow injection potentiometric determination of Biperiden in pharmaceutical preparations.

    PubMed

    Khaled, Elmorsy; El-Sabbagh, Inas A; El-Kholy, N G; Ghahni, E Y Abdel

    2011-12-15

    The construction and performance characteristics of Biperiden (BP) polyvinyl chloride (PVC) electrodes are described. Different methods for electrode fabrication are tested including; incorporation of BP-ion pairs (BP-IPs), incorporation of ion pairing agents, or soaking the plain electrode in BP-ion pairs suspension solution. Electrode matrices were optimized referring to the effect of modifier content and nature, plasticizer and the method of modification. The proposed electrodes work satisfactorily in the BP concentration range from 10(-5) to 10(-2)mol L(-1), with fast response time (7s) and adequate operational lifetime (28 days). The electrode potential is pH independent within the range 2.0-7.0, with good selectivity towards BP in presence of various interfering species. The developed electrodes have been applied for potentiometric determination of BP in pharmaceutical formulation under batch and flow injection analysis (FIA) conditions. FIA offers the advantages of accuracy and automation feasibility with high sampling frequency. The dissolution profile for Akineton tablets (2mg BP/tablet) was studied using the proposed electrode in comparison with the official methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A potentiometric chiral sensor for L-Phenylalanine based on crosslinked polymethylacrylic acid-polycarbazole hybrid molecularly imprinted polymer.

    PubMed

    Chen, Yu; Chen, Lei; Bi, Ruilin; Xu, Lan; Liu, Yan

    2012-11-19

    A novel chiral molecularly imprinted polymer (MIP) sensor for L-Phenylalanine has been developed, which is constructed by electrochemically driven cross-linking a pendant polymer precursor, poly[2-(N-carbazolyl)ethyl methacrylate-co-meth-acrylic acid]s (PCEMMAs). In this MIP sensing material, the recognition sites, the insulating polymethylacrylic acid (PMAA), were covalently bonded to the conducting polycarbazole which could be used as signal transfer interface between recognition layer and electrode. The mole ratio of copolymerizing monomers, 2-(N-carbazolyl) ethyl methacrylate:methylacrylic acid (CE:MAA), and the scanning cycles of electropolymerization were adjusted during the preparation of MIP sensing material. The optimized conditions, CE:MAA=3:2 and 20 scanning cycles, were obtained. And then the properties of MIP films were characterized by atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle. Open circuit potential-time technique was used to estimate the enantioselectivity of the MIP sensor. The results indicate that the promising sensor preferentially responses L-Phenylalanine (L-Phe) over D-Phenylalanine (D-Phe) with a selectivity coefficient K(D)(L)=5.75×10(-4) and the limit of detection (LOD) is 1.37μM, which reveals its good enantioselectivity and sensitivity. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  12. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability.

    PubMed

    Bandodkar, Amay J; Jeerapan, Itthipon; You, Jung-Min; Nuñez-Flores, Rogelio; Wang, Joseph

    2016-01-13

    We present the first example of an all-printed, inexpensive, highly stretchable CNT-based electrochemical sensor and biofuel cell array. The synergistic effect of utilizing specially tailored screen printable stretchable inks that combine the attractive electrical and mechanical properties of CNTs with the elastomeric properties of polyurethane as a binder along with a judiciously designed free-standing serpentine pattern enables the printed device to possess two degrees of stretchability. Owing to these synergistic design and nanomaterial-based ink effects, the device withstands extremely large levels of strains (up to 500% strain) with negligible effect on its structural integrity and performance. This represents the highest stretchability offered by a printed device reported to date. Extensive electrochemical characterization of the printed device reveal that repeated stretching, torsional twisting, and indenting stress has negligible impact on its electrochemical properties. The wide-range applicability of this platform to realize highly stretchable CNT-based electrochemical sensors and biofuel cells has been demonstrated by fabricating and characterizing potentiometric ammonium sensor, amperometric enzyme-based glucose sensor, enzymatic glucose biofuel cell, and self-powered biosensor. Highly stretchable printable multianalyte sensor, multifuel biofuel cell, or any combination thereof can thus be realized using the printed CNT array. Such combination of intrinsically stretchable printed nanomaterial-based electrodes and strain-enduring design patterns holds considerable promise for creating an attractive class of inexpensive multifunctional, highly stretchable printed devices that satisfy the requirements of diverse healthcare and energy fields wherein resilience toward extreme mechanical deformations is mandatory.

  13. Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbon-Polyaniline Composite.

    PubMed

    Rahimi, Rahim; Ochoa, Manuel; Tamayol, Ali; Khalili, Shahla; Khademhosseini, Ali; Ziaie, Babak

    2017-03-15

    The development of stretchable sensors has recently attracted considerable attention. These sensors have been used in wearable and robotics applications, such as personalized health-monitoring, motion detection, and human-machine interfaces. Herein, we report on a highly stretchable electrochemical pH sensor for wearable point-of-care applications that consists of a pH-sensitive working electrode and a liquid-junction-free reference electrode, in which the stretchable conductive interconnections are fabricated by laser carbonizing and micromachining of a polyimide sheet bonded to an Ecoflex substrate. This method produces highly porous carbonized 2D serpentine traces that are subsequently permeated with polyaniline (PANI) as the conductive filler, binding material, and pH-sensitive membrane. The experimental and simulation results demonstrate that the stretchable serpentine PANI/C-PI interconnections with an optimal trace width of 0.3 mm can withstand elongations of up to 135% and are robust to more than 12 000 stretch-and-release cycles at 20% strain without noticeable change in the resistance. The pH sensor displays a linear sensitivity of -53 mV/pH (r 2 = 0.976) with stable performance in the physiological range of pH 4-10. The sensor shows excellent stability to applied longitudinal and transverse strains up to 100% in different pH buffer solutions with a minimal deviation of less than ±4 mV. The material biocompatibility is confirmed with NIH 3T3 fibroblast cells via PrestoBlue assays.

  14. Potentiometric surface of the Magothy Aquifer in southern Maryland during September 1988

    USGS Publications Warehouse

    Mack, Frederick K.; Andreasen, David C.; Curtin, Stephen E.; Wheeler, Judith C.

    1990-01-01

    A map showing the potentiometric surface of the Magothy aquifer in southern Maryland during the fall of 1988 was prepared from water-level measurements in 83 observation wells. The potentiometric surface was highest near the northwest boundary and outcrop area of the aquifer in topographically high locations of Anne Arundel and Prince Georges Counties. The hydraulic gradient in the study area was generally southeastward or toward the centers of three cones of depression that have developed in response to pumping stresses. These cones formed around well fields in the Annapolis, Waldorf, and Chalk Point areas. The potentiometric surface of the Magothy aquifer was more than 40 ft below sea level in parts of the Waldorf and Chalk Point areas. (USGS)

  15. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    The groundwater-level measurements were used to construct a generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system. Groundwater-level altitudes measured in nonflowing and flowing wells used to construct the potentiometric-surface map ranged from 6,451 to 7,307 feet (excluding four unmeasured flowing wells used for contour construction purposes). The potentiometric-surface map indicates that groundwater in the study area generally moves from north to south, but this pattern of flow is altered locally by groundwater divides, groundwater discharge to the Green River, and possibly to a tributary river (Big Sandy River) and two reservoirs (Fontenelle and Big Sandy Reservoirs).

  16. Creating a monthly time series of the potentiometric surface in the Upper Floridan aquifer, Northern Tampa Bay area, Florida, January 2000-December 2009

    USGS Publications Warehouse

    Lee, Terrie M.; Fouad, Geoffrey G.

    2014-01-01

    In Florida’s karst terrain, where groundwater and surface waters interact, a mapping time series of the potentiometric surface in the Upper Floridan aquifer offers a versatile metric for assessing the hydrologic condition of both the aquifer and overlying streams and wetlands. Long-term groundwater monitoring data were used to generate a monthly time series of potentiometric surfaces in the Upper Floridan aquifer over a 573-square-mile area of west-central Florida between January 2000 and December 2009. Recorded groundwater elevations were collated for 260 groundwater monitoring wells in the Northern Tampa Bay area, and a continuous time series of daily observations was created for 197 of the wells by estimating missing daily values through regression relations with other monitoring wells. Kriging was used to interpolate the monthly average potentiometric-surface elevation in the Upper Floridan aquifer over a decade. The mapping time series gives spatial and temporal coherence to groundwater monitoring data collected continuously over the decade by three different organizations, but at various frequencies. Further, the mapping time series describes the potentiometric surface beneath parts of six regionally important stream watersheds and 11 municipal well fields that collectively withdraw about 90 million gallons per day from the Upper Floridan aquifer. Monthly semivariogram models were developed using monthly average groundwater levels at wells. Kriging was used to interpolate the monthly average potentiometric-surface elevations and to quantify the uncertainty in the interpolated elevations. Drawdown of the potentiometric surface within well fields was likely the cause of a characteristic decrease and then increase in the observed semivariance with increasing lag distance. This characteristic made use of the hole effect model appropriate for describing the monthly semivariograms and the interpolated surfaces. Spatial variance reflected in the monthly semivariograms decreased markedly between 2002 and 2003, timing that coincided with decreases in well-field pumping. Cross-validation results suggest that the kriging interpolation may smooth over the drawdown of the potentiometric surface near production wells. The groundwater monitoring network of 197 wells yielded an average kriging error in the potentiometric-surface elevations of 2 feet or less over approximately 70 percent of the map area. Additional data collection within the existing monitoring network of 260 wells and near selected well fields could reduce the error in individual months. Reducing the kriging error in other areas would require adding new monitoring wells. Potentiometric-surface elevations fluctuated by as much as 30 feet over the study period, and the spatially averaged elevation for the entire surface rose by about 2 feet over the decade. Monthly potentiometric-surface elevations describe the lateral groundwater flow patterns in the aquifer and are usable at a variety of spatial scales to describe vertical groundwater recharge and discharge conditions for overlying surface-water features.

  17. Labeling Cells with Silver/Dendrimer Nanocomposites

    DTIC Science & Technology

    2005-01-01

    used in further studies without additional purification. Potentiometric titrations were performed manually, under nitrogen atmosphere, at room...transmits light between 465 and 485 nm. Results and Discussion Figure IA presents potentiometric titration curves of Ag+-PAMAM_E5.NH 2 systems mixed at 15:1... Potentiometric titration curves of PAMAM_E5.NH 2 (circles) Ag+-PAMAME5.NH 2 30:1 (squares) and Ag+-PAMAME5.NH2 45:1 systems (triangles). B - UV-vis spectra of UV

  18. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, May 1994

    USGS Publications Warehouse

    Schiffer, D.M.; O'Reilly, A. M.; Phelps, G.G.; Bradner, L.A.; Halford, K.J.; Spechler, R.M.

    1994-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1994. The map is based on water-level measurements made at approximately 1,000 wells and several springs. Data on the map were contoured using 5-foot contour intervals in most areas. The potentiometric surface of this karstic aquifer generally reflects land surface topography. Potentiometric surface highs often correspond to topographic highs, which are areas of surficial recharge to the Upper Floridan aquifer. Springs within topographic lows along with areas of more diffuse upward leakage are natural zones of discharge. Municipal, agricultural, and industrial withdrawals have lowered the potentiometric surface in some areas. The potentiometric surface ranged from 125 feet above sea level in Polk County to 32 feet below sea level in Nassau County. Water levels in May 1994 generally were 0 to 3 feet lower than those measured in May 1993. Water levels in May 1994 in northeast Florida generally were 0 to 3 feet higher than in September 1993, except in the lower St. Johns River basin, where water levels were 0 to 4 feet lower than in September 1993. In the rest of the mapped area, water levels in May 1994 generally were 0 to 4 feet lower than those measured in September 1993.

  19. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  20. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1982

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, Judith C.; Curtin, Stephen E.

    1982-01-01

    A map was prepared that shows the potentiometric surface of the Magothy aquifer in southern Maryland in September 1982. The map is based on measurements from a network of 83 observation wells. The highest levels of the potentiometric surface, 57 and 58 feet above sea level, were measured near the outcrop-subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The potentiometric surface slopes to the southeast to about sea level along much of the western shore of the Chesapeake Bay. Three distinct and extensive cones of depression have developed in the potentiometric surface around the well fields of the Annapolis area, Waldorf area, and Chalk Point. Several square miles of each cone are below sea level, and in some areas at Chalk Point and Waldorf, the cone is more than 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy Administration. (USGS)

  1. Comparison between amperometric and true potentiometric end-point detection in the determination of water by the Karl Fischer method.

    PubMed

    Cedergren, A

    1974-06-01

    A rapid and sensitive method using true potentiometric end-point detection has been developed and compared with the conventional amperometric method for Karl Fischer determination of water. The effect of the sulphur dioxide concentration on the shape of the titration curve is shown. By using kinetic data it was possible to calculate the course of titrations and make comparisons with those found experimentally. The results prove that the main reaction is the slow step, both in the amperometric and the potentiometric method. Results obtained in the standardization of the Karl Fischer reagent showed that the potentiometric method, including titration to a preselected potential, gave a standard deviation of 0.001(1) mg of water per ml, the amperometric method using extrapolation 0.002(4) mg of water per ml and the amperometric titration to a pre-selected diffusion current 0.004(7) mg of water per ml. Theories and results dealing with dilution effects are presented. The time of analysis was 1-1.5 min for the potentiometric and 4-5 min for the amperometric method using extrapolation.

  2. Synthesis and characterization of a NaSICON series with general formula Na 2.8Zr 2-ySi 1.8-4yP 1.2+4yO 12 (0⩽ y⩽0.45)

    NASA Astrophysics Data System (ADS)

    Essoumhi, A.; Favotto, C.; Mansori, M.; Satre, P.

    2004-12-01

    In this work, we present the synthesis and the characterization of ionic conducting ceramics of NaSICON-type (Natrium super ionic conductor). The properties of this ceramic make it suitable for use in electrochemical devices. These solid electrolytes can be used as sensors for application in the manufacturing of potentiometric gas sensors, for the detection of pollutant emissions and for environment control. The family of NaSICON that we studied has as a general formula Na 2.8Zr 2-ySi 1.8-4yP 1.2+4yO 12 with 0⩽ y⩽0.45. The various compositions were synthesized by produced using the sol-gel method. The electric properties of these compositions were carried out by impedance spectroscopy. The results highlight the good conductivity of the Na 2.8Zr 1.775Si 0.9P 2.1O 12 composition.

  3. Samarium (III) Selective Membrane Sensor Based on Tin (IV) Boratophosphate

    PubMed Central

    Mittal, Susheel K.; Sharma, Harish Kumar; Kumar, Ashok S. K.

    2004-01-01

    A number of Sm (III) selective membranes of varying compositions using tin (IV) boratophosphate as electroactive material were prepared. Polyvinyl chloride, polystyrene and epoxy resin were used as binding materials. Membrane having composition of 40% exchanger and 60% epoxy resin exhibited best performance. This membrane worked well over a wide concentration range of 1×10-5M to 1×10-1 M of samarium ions with a Super-Nernstian slope of 40 mV/decade. It has a fast response time of less than 10 seconds and can be used for at least six months without any considerable divergence in potentials. The proposed sensor revealed good selectivities with respect to alkali, alkaline earth, some transition and rare earth metal ions and can be used in the pH range of 4.0-10.0. It was used as an indicator electrode in the potentiometric titration of Sm (III) ions against EDTA. Effect of internal solution was studied and the electrode was successfully used in non-aqueous media, too.

  4. Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique

    PubMed Central

    Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi

    2017-01-01

    We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH. PMID:28531106

  5. Fully-Polymeric pH Sensor Realized by Means of a Single-Step Soft Embossing Technique.

    PubMed

    Fanzio, Paola; Chang, Chi-Tung; Skolimowski, Maciej; Tanzi, Simone; Sasso, Luigi

    2017-05-20

    We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH.

  6. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin

    PubMed Central

    Ibupoto, Zafar Hussain; Ali, Syed Muhammad Usman; Khun, Kimleang; Chey, Chan Oeurn; Nur, Omer; Willander, Magnus

    2011-01-01

    In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed. PMID:25585565

  7. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin.

    PubMed

    Ibupoto, Zafar Hussain; Ali, Syed Muhammad Usman; Khun, Kimleang; Chey, Chan Oeurn; Nur, Omer; Willander, Magnus

    2011-10-27

    In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed.

  8. Potentiometric surface of the Magothy Aquifer in southern Maryland during the fall of 1987

    USGS Publications Warehouse

    Mack, Frederick K.; Andreasen, David C.; Curtin, Stephen E.; Wheeler, Judith C.

    1989-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Cretaceous Magothy Formation in southern Maryland during the fall of 1987 was prepared by using water level measurements in 85 observation wells. The potentiometric surface was highest near the northwestern boundary and outcrop area of the aquifer in topographically high locations of Anne Arundel and Prince Georges Counties. The hydraulic gradient in the study area was generally southeastward or toward the centers of three cones of depression which have developed in response to pumping stresses. These cones formed around well fields in the Annapolis, Waldorf, and Chalk Point areas. The potentiometric surface of the Magothy aquifer was more than 40 ft below sea level in parts of the Waldorf and Chalk Point areas. (USGS)

  9. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review.

    PubMed

    Wu, Chunsheng; Lillehoj, Peter B; Wang, Ping

    2015-11-07

    Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.

  10. Creating potentiometric surfaces from combined water well and oil well data in the midcontinent of the United States

    USGS Publications Warehouse

    Gianoutsos, Nicholas J.; Nelson, Philip H.

    2013-01-01

    For years, hydrologists have defined potentiometric surfaces using measured hydraulic-head values in water wells from aquifers. Down-dip, the oil and gas industry is also interested in the formation pressures of many of the same geologic formations for the purpose of hydrocarbon recovery. In oil and gas exploration, drillstem tests (DSTs) provide the formation pressure for a given depth interval in a well. These DST measurements can be used to calculate hydraulic-head values in deep hydrocarbon-bearing formations in areas where water wells do not exist. Unlike hydraulic-head measurements in water wells, which have a low number of problematic data points (outliers), only a small subset of the DST data measure true formation pressures. Using 3D imaging capabilities to view and clean the data, we have developed a process to estimate potentiometric surfaces from erratic DST data sets of hydrocarbon-bearing formations in the midcontinent of the U.S. The analysis indicates that the potentiometric surface is more readily defined through human interpretation of the chaotic DST data sets rather than through the application of filtering and geostatistical analysis. The data are viewed as a series of narrow, 400-mile-long swaths and a 2D viewer is used to select a subset of hydraulic-head values that represent the potentiometric surface. The user-selected subsets for each swath are then combined into one data set for each formation. These data are then joined with the hydraulic-head values from water wells to define the 3D potentiometric surfaces. The final product is an interactive, 3D digital display containing: (1) the subsurface structure of the formation, (2) the cluster of DST-derived hydraulic head values, (3) the user-selected subset of hydraulic-head values that define the potentiometric surface, (4) the hydraulic-head measurements from the corresponding shallow aquifer, (5) the resulting potentiometric surface encompassing both oil and gas and water wells, and (6) the land surface elevation of the region. Examples from the midcontinent of the United States, specifically Kansas, Oklahoma, and parts of adjacent states illustrate the process.

  11. Potentiometric surface in the Central Oklahoma (Garber-Wellington) aquifer, Oklahoma, 2009

    USGS Publications Warehouse

    Mashburn, Shana L.; Magers, Jessica

    2011-01-01

    A study of the hydrogeology of the Central Oklahoma aquifer was started in 2008 to provide the Oklahoma Water Resources Board (OWRB) hydrogeologic data and a groundwater flow model that can be used as a tool to help manage the aquifer. The 1973 Oklahoma water law requires the OWRB to do hydrologic investigations of Oklahoma's aquifers (termed 'groundwater basins') and to determine amounts of water that may be withdrawn by permitted water users. 'Maximum annual yield' is a term used by OWRB to describe the total amount of water that can be withdrawn from a specific aquifer in any year while allowing a minimum 20-year life of the basin (Oklahoma Water Resources Board, 2010). Currently (2010), the maximum annual yield has not been determined for the Central Oklahoma aquifer. Until the maximum annual yield determination is made, water users are issued a temporary permit by the OWRB for 2 acre-feet/acre per year. The objective of the study, in cooperation with the Oklahoma Water Resources Board, was to study the hydrogeology of the Central Oklahoma aquifer to provide information that will enable the OWRB to determine the maximum annual yield of the aquifer based on different proposed management plans. Groundwater flow models are typically used by the OWRB as a tool to help determine the maximum annual yield. This report presents the potentiometric surface of the Central Oklahoma aquifer based on water-level data collected in 2009 as part of the current (2010) hydrologic study. The U.S. Geological Survey (USGS) Hydrologic Investigations Atlas HA-724 by Christenson and others (1992) presents the 1986-87 potentiometric-surface map. This 1986-87 potentiometric-surface map was made as part of the USGS National Water-Quality Assessment pilot project for the Central Oklahoma aquifer that examined the geochemical and hydrogeological processes operating in the aquifer. An attempt was made to obtain water-level measurements for the 2009 potentiometric-surface map from the wells used for the 1986-87 potentiometric-surface map. Well symbols with circles on the 2009 potentiometric-surface map (fig. 1) indicate wells that were used for the 1986-87 potentiometric-surface map.

  12. Altitude and Configuration of the Potentiometric Surface in the Upper White Clay Creek and Lower West Branch Brandywine Creek Basins including Portions of Penn, London Grove, New Garden, Londonderry, West Marlborough, Highland, and East Fallowfield Townships and West Grove, Avondale, Modena, and South Coatesville boroughs, Chester County, Pennsylvania, May through July 2006

    USGS Publications Warehouse

    Hale, Lindsay B.

    2007-01-01

    INTRODUCTION Since 1984, the U.S. Geological Survey (USGS) has been mapping the altitude and configuration of the potentiometric surface in Chester County as part of an ongoing cooperative program to measure and describe the water resources of the county. These maps can be used to determine the general direction of ground-water flow and are frequently referenced by municipalities and developers to evaluate ground-water conditions for water supply and resource-protection requirements. For this study, the potentiometric surface was mapped for an area in south-central Chester County. The northern part of the map includes portions of Highland, East Fallowfield, Londonderry, and West Marlborough Townships and South Coatesville and Modena Boroughs. The southern part of the map includes portions of Londonderry, West Marlborough, Penn, London Grove, and New Garden Townships and West Grove and Avondale Boroughs. The study area is mostly underlain by metamorphic rocks of the Glenarm Supergroup including Peters Creek Schist, Octoraro Phyllite, Wissahickon Schist, Cockeysville Mrable, and Setters Quartzite; and by pegmatite, mafic gneiss, felsic gneiss, and diabase. Ground water is obtained from these bedrock formations by wells that intercept fractures. The altitude and configuration of the potentiometric surface was contoured from water levels measured on different dates in available wells during May through July 2006 and from the altitude of springs and perennial streams. Topography was used as a guide for contouring so that the altitude of the potentiometric surface was inferred nowhere to be higher than the land surface. The potentiometric surface shown on this map is an approximation of the water table. The altitude of the actual potentiometric surface may differ from the water table, especially in areas where wells are completed in a semi-confined zone or have long open intervals that reflect the composite hydraulic head of multiple water-yielding fractures. A composite head may differ from the potentiometric-surface altitude, particularly beneath hilltops and valleys where vertical hydraulic gradients are significant.

  13. Construction and evaluation of ion selective electrodes for nitrate with a summing operational amplifier. Application to tobacco analysis.

    PubMed

    Pérez-Olmos, R; Rios, A; Fernández, J R; Lapa, R A; Lima, J L

    2001-01-05

    In this paper, the construction and evaluation of an electrode selective to nitrate with improved sensitivity, constructed like a conventional electrode (ISE) but using an operational amplifier to sum the potentials supplied by four membranes (ESOA) is described. The two types of electrodes, without an inner reference solution, were constructed using tetraoctylammonium bromide as sensor, dibutylphthalate as solvent mediator and PVC as plastic matrix, the membranes obtained directly applied onto a conductive epoxy resin support. After the comparative evaluation of their working characteristics they were used in the determination of nitrate in different types of tobacco. The limit of detection of the direct potentiometric method developed was found to be 0.18 g kg(-1) and the precision and accuracy of the method, when applied to eight different samples of tobacco, expressed in terms of mean R.S.D. and average percentage of spike recovery was 0.6 and 100.3%, respectively. The comparison of variances showed, on all ocassions, that the results obtained by the ESOA were similar to those obtained by the conventional ISE, but with higher precision. Linear regression analysis showed good agreement (r=0.9994) between the results obtained by the developed potentiometric method and those of a spectrophotometric method based on brucine, adopted as reference method, when applied simultaneously to 32 samples of different types of tobacco.

  14. Potentiometric surface map of the Floridan Aquifer in the St Johns River Water Management District and vicinity, Florida, September, 1977

    USGS Publications Warehouse

    Watkins, F.A.; Laughlin, C.P.; Hayes, E.C.

    1977-01-01

    This map presents the potentiometric surface of the Floridan aquifer in the St. Johns River Water Management District and vicinity for September 1977. The Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made on approximately 900 wells and springs. The potentiometric surface is shown by 5-foot contours except in the Fernandina Beach area where 10- and 20-foot contours are used to show the deep cone of depression. This is the first map covering the entire St. Johns River Water Management District and vicinity for September, a high water-level period. The potentiometric surface ranged from 130 feet above mean sea level in Polk County to 131 feet below sea level in Nassau County. (Woodard-USGS)

  15. Potentiometric surface of the Magothy Aquifer in southern Maryland, September 1991

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, D.C.; Mack, Frederick K.

    1993-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1991 was prepared from water levels measured in 89 wells. The potentiometric surface was highest near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward toward the southeast, and the local gradients were directed toward the centers of 3 cones of depression that have developed in response to pumping. These cones were centered around well fields in the Annapolis, Waldorf, and Chalk Point areas. Groundwater levels were more than 50 feet below sea level in the Waldorf area, nearly 50 feet below sea level at Chalk Point, and greater than 10 feet below sea level near Annapolis.

  16. Potentiometric surface of the Magothy Aquifer in southern Maryland, September 1994

    USGS Publications Warehouse

    Curtin, Stephen E.; Mack, Frederick K.; Andreasen, David C.

    1995-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1994 was prepared from water levels measured in 85 wells. The potentiometric surface was highest near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward toward the southeast, and the local gradients were directed toward the centers of three cones of depression that have developed in response to pumping. These cones were centered around well fields in the Annapolis, Waldorf, and Chalk Point areas. Ground-water levels were as low as 60 feet below sea level in the Waldorf area, more than 45 feet below sea level at Chalk Point, and almost 15 feet below sea level near Annapolis.

  17. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 1995

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.

    1996-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1995 was prepared from water-level measurements in 92 wells. The potentiometric surface was highest near the northwestern boundaryand outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward towards the southeast and the local gradients were directed toward the centers of three cones of depression that have developed in response to pumping. These cones were centeredaround well fields in the Annapolis, Waldorf, and Chalk Point areas. Ground-water levels were as low as 63 feet below sea level in the Waldorf area, more than 50 feet below sea level at Chalk Point, and almost 20 feet below sea level near Annapolis.

  18. Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Harrold, Zoë R.; Gorman-Lewis, Drew

    2013-05-01

    Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.

  19. Accurate potentiometric determination of lipid membrane-water partition coefficients and apparent dissociation constants of ionizable drugs: electrostatic corrections.

    PubMed

    Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor

    2009-06-01

    Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.

  20. Comparison of methods for accurate end-point detection of potentiometric titrations

    NASA Astrophysics Data System (ADS)

    Villela, R. L. A.; Borges, P. P.; Vyskočil, L.

    2015-01-01

    Detection of the end point in potentiometric titrations has wide application on experiments that demand very low measurement uncertainties mainly for certifying reference materials. Simulations of experimental coulometric titration data and consequential error analysis of the end-point values were conducted using a programming code. These simulations revealed that the Levenberg-Marquardt method is in general more accurate than the traditional second derivative technique used currently as end-point detection for potentiometric titrations. Performance of the methods will be compared and presented in this paper.

  1. The difference between the potentiometric surfaces of the Aquia Aquifer of September 1982 and September 1995 in Southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.

    1996-01-01

    A map showing the net change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in southern Maryland was based on water levels measured in 66 wells from September 1982 to September 1995 and shows that the decline of the potentiometric surface during the 13-year period was 20 to 30 feet in most of the area. The decline was more than 50 feet in the Lexington Park area and more than 60 feet at Solomons Island.

  2. Novel potentiometric application for the determination of pantoprazole sodium and itopride hydrochloride in their pure and combined dosage form.

    PubMed

    Ragab, Mona T; Abd El-Rahman, Mohamed K; Ramadan, Nesrin K; El-Ragehy, Nariman A; El-Zeany, Badr A

    2015-06-01

    Three sensitive and selective polyvinyl chloride (PVC) matrix membrane electrodes were developed and investigated. Sensor I was developed using tetraheptylammonium bromide (THB) as an anion exchanger with 2-nitrophenyl octyl ether (2-NPOE) as a plasticizer for the determination of the anionic drug pantoprazole sodium sesquihydrate (PAN). To determine the cationic drug itopride hydrochloride (ITH), two electrodes (sensors II and III) were developed using potassium tetrakis(4-chlorophenyl) borate (KTCPB) as a cation exchanger with dioctyl phthalate (DOP) as a plasticizer. Selective molecular recognition components, 2-hydroxypropyl-β-cyclodextrin (2-HP βCD) and 4-tert-butylcalix[8]arene (tBC8), were used as ionophores to improve the selectivity of sensors II and III, respectively. The proposed sensors had a linear dynamic range of 1×10(-5) to 1×10(-2) mol L(-1) with Nernstian slopes of -54.83±0.451, 56.90±0.300, and 51.03±1.909 mV/decade for sensors I, II and III, respectively. The Nernstian slopes were also estimated over the pH ranges of 11-13, 3.5-8 and 4-7 for the three sensors, respectively. The proposed sensors displayed useful analytical characteristics for the determination of PAN and ITH in bulk powder, in laboratory prepared mixtures and in combined dosage forms with clear discrimination from several ions, sugars and some common drug excipients. The method was validated according to ICH guidelines. Statistical comparison between the results from the proposed method and the results from the reference methods showed no significant difference regarding accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip.

    PubMed

    Bonk, Sebastian M; Stubbe, Marco; Buehler, Sebastian M; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan

    2015-07-30

    We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  4. Potentiometric map of the Gordo Aquifer in northeastern Mississippi, September, October, and November 1978

    USGS Publications Warehouse

    Wasson, B.E.

    1979-01-01

    This potentiometric map of the Gordo aquifer in northeastern Mississippi is the second in a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources, Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. The potentiometric surface of the Gordo aquifer slopes generally to the west away from the outcrop area and it is depressed generally by large ground-water withdrawals in the Tupelo and Columbus areas. Historically, water levels in or near the outcrop of the Gordo aquifer have shown little or no long-term changes. Heavy withdrawals from the downdip area have caused long-term water-level declines of 1 to 2 feet per year in much of the confined part of the aquifer. Water-level decline in one observation well in Tupelo has averaged about 5 feet per year since 1966. (USGS)

  5. Potentiometric surface of the upper Patapsco Aquifer in southern Maryland, September 1994

    USGS Publications Warehouse

    Curtin, Stephen E.; Mack, Frederick K.; Andreasen, David C.

    1995-01-01

    A map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in southern Maryland during September 1994 was prepared from water levels measured in 43 wells. The potentiometric surface was at least 70 feet above sea level near the northwestern boundary and outcrop area of the aquifer in a topographically high area of Anne Arundel County, and nearly 60 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometric surface declined to the south and southeast toward large well fields in the Annapolis and Waldorf areas and at the Chalk Point powerplant. Ground-water levels reached nearly 30 feet below sea level in the Annapolis area, nearly 110 feet below sea level southwest of Waldorf, and more than 25 feet below sea level at the Chalk Point powerplant.

  6. Potentiometric surface of the middle Potomac Aquifer in Virginia 1993

    USGS Publications Warehouse

    Hammond, E.C.; McFarland, E.R.; Focazio, M.J.

    1994-01-01

    Ground-water level measurements from 50 wells in the middle Potomac aquifer in the Coastal Plain Physiographic Province of Virginia in 1993 were used to prepare a map of the potentiometric surface of the aquifer. The map shows the potentiometric surface of the middle Potomac aquifer sharply declining eastward from nearly 100 feet above sear level near the western boundary of the aquifer to 20 feet below sea level, and continues declining gradually toward the Chesapeake Bay and Atlantic Ocean. A cone of depression is apparent around well fields in Franklin, Virginia. The potentiometric surface also appears to be affected by pumping in the area of Henrico County and Hanover County, Virginia. The highest ground-water-level measurement was 89 feet above sea level in Chesterfield County near Richmond, and the lowest ground-water-level measurement was 179 feet below sea level in southeastern Isle of Wight County, Virginia.

  7. Potentiometric surface of the upper Floridan Aquifer in the St. Johns Water Management District and vicinity, Florida, May 1984

    USGS Publications Warehouse

    Schiner, George R.; Hayes, Eugene C.

    1984-01-01

    This map shows the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1984. The Upper Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made on approximately 1,000 wells and on several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area a 40-foot interval is used to show a deep cone of depression. The potentiometric surface ranged from 126 feet above sea level in Polk County to 84 feet below sea level in Nassau County. Water levels in key wells were mostly above, or less frequently, slightly below averages for May in response to diverse area rainfall patterns. Most levels in the district were about the same, or more commonly, 1 to 2 feet lower than May 1983 levels. (USGS)

  8. Potentiometric surface of the Floridan Aquifer, St. Johns River Water Management District and vicinity, Florida, May 1981

    USGS Publications Warehouse

    Schiner, George R.; Hayes, Eugene C.

    1981-01-01

    This map presents the potentiometric surface of the Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1981. The Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made in approximately 1,000 wells and at several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area 20 and 40-foot intervals are used to show a deep cone of depression. The potentiometric surface ranged from 122 feet above NGVD (National Geodetic Vertical Datum of 1929) in Polk County to 125 feet below NGVD in Nassau County. Water levels were at record lows in many counties due to lack of rainfall. Declines were as much as 10 feet and commonly 5 feet from the May 1980 levels. (USGS)

  9. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    PubMed

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  10. Differential potentiometric titration: development of a methodology for determining the point of zero charge of metal (hydr)oxides by one titration curve.

    PubMed

    Bourikas, Kyriakos; Kordulis, Christos; Lycourghiotis, Alexis

    2005-06-01

    A new methodology is presented, called differential potentiometric titration (DPT), which allows the determination of the point of zero charge (pzc) of metal (hydr)oxides using only one potentiometric curve. By performing extensive simulations of potentiometric titrations for various model (hydr)oxides, we found that an inflection point in a H+(cons,surf) versus pH potentiometric curve (H+(cons,surf): hydrogen ions consumed on the surface of the (hydr)oxide) and a peak in the corresponding differential curve, dH+(cons,surf)/dpH versus pH, appear at a pH equal to the pzc assumed for a model (hydr)oxide. This distinguishable peak appears at the same position irrespective of the surface ionization and the interfacial model adopted as well as the assumed ionic strength. It was found that the aforementioned peak also appears in the high-resolution differential potentiometric curves experimentally determined for four oxides (SiO2, TiO2, gamma-Al2O3, and MgO) that are widely used in various environmental and other technological applications. The application of DPT to the above-mentioned oxides provided practically the same pzc values as the corresponding ones achieved by using four different techniques as well as the corresponding isoelectric point (iep) values determined by microelectrophoresis. Differences between the pzc and iep values determined using various techniques in the case of MgO were attributed to the increasing dissolution of this oxide as pH decreases and the adsorption of cations (Mg2+, Na+) on the MgO/electrolytic solution interface.

  11. Potentiometric map of the Eutaw-McShan Aquifer in northeastern Mississippi, September, October, and November 1978

    USGS Publications Warehouse

    Wasson, B.E.

    1980-01-01

    This potentiometric map of the Eutaw-McShan aquifer in northeastern Mississippi is the third in a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources, Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. From its outcrop area the Eutaw-McShan aquifer dips about 30 feet per mile to the west and southwest. Thickness of the aquifer commonly is between 200 and 300 feet in most of the area, and commonly about one-half this thickness consists of sand. In the outcrop area the potentiometric surface is strongly affected by recharge from precipitation, topography, and drainage of the aquifer by streams. The potentiometric surface of the aquifer slopes generally to the west away from the area of outcrop and it is strongly affected by large ground-water withdrawals at or near Tupelo, Aberdeen, and West Point. Historically, water levels in or near the outcrop of the Eutaw-McShan aquifer have shown little or no long-term changes. Withdrawals of water by wells from the downdip area have caused long-term water-level declines of 1 to 2 feet per year in much of the confined part of the aquifer. Water-level declines during recent years in several observation wells in Lee County ranged from 2 to 9 feet per year. One hydrograph in Clay County that is near the center of the depression in the potentiometric surface at West Point shows about 5 feet per year of water-level decline since 1972. (USGS)

  12. Computer controlled titration with piston burette or peristaltic pump - a comparison.

    PubMed

    Hoffmann, W

    1996-09-01

    The advantages and problems of the use of piston burettes and peristaltic pumps for dosage of titrant solutions in automatic titrations are shown. For comparison, only the dosing devices were exchanged and all other components and conditions remained unchanged. The results of continuous acid base titration show good agreement and comparable reproducibility. Potentiometric sensors (glass electrodes) with different equilibration behaviour influence the results. The capability of such electrodes was tested. Conductometric measurements allow a much faster detection because there is no equilibration of electrodes. Piston burettes should be used for titration with very high precision, titration with organic solvents and slow titrations. Peristaltic pumps seem to be more suitable for continuous titrations and long time operation without service.

  13. Recognition and Sensing of Creatinine.

    PubMed

    Guinovart, Tomàs; Hernández-Alonso, Daniel; Adriaenssens, Louis; Blondeau, Pascal; Martínez-Belmonte, Marta; Rius, F Xavier; Andrade, Francisco J; Ballester, Pablo

    2016-02-12

    Current methods for creatinine quantification suffer from significant drawbacks when aiming to combine accuracy, simplicity, and affordability. Here, an unprecedented synthetic receptor, an aryl-substituted calix[4]pyrrole with a monophosphonate bridge, is reported that displays remarkable affinity for creatinine and the creatininium cation. The receptor works by including the guest in its deep and polar aromatic cavity and establishing directional interactions in three dimensions. When incorporated into a suitable polymeric membrane, this molecule acts as an ionophore. A highly sensitive and selective potentiometric sensor suitable for the determination of creatinine levels in biological fluids, such as urine or plasma, in an accurate, fast, simple, and cost-effective way has thus been developed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New acoustic techniques for leak detection in fossil fuel plant components

    NASA Astrophysics Data System (ADS)

    Parini, G.; Possa, G.

    Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.

  15. Microtitration of various anions with quaternary ammonium halides using solid-state electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selig, W.

    1980-01-01

    Many solid-state electrodes were found to respond as endpoint detectors in the potentiometric titration of large inorganic and organic anions with quaternary ammonium halides. The best response was obtained with the iodide and cyanide electrodes although practically any electrode can function as endpoint sensor. The titrants were hexadecylpyridinium chloride and hexadecyltrimethylammonium chloride; hexadecyltrimethylammonium bromide and Hyamine 1622 may also be used. Some inorganic anions thus titratable are perrhenate, persulfate, ferricyanide, hexafluorophosphate, and hexachloroplatinate. Examples of organic anions titratable are nitroform, tetraphenylborate, cyanotriphenylborate, picrate, long-chain sulfates and sulfonates, and some soaps. The reverse titration of quaternary ammonium halides vs dodecylsulfate ismore » also feasible. Some titrations are feasible in a partially nonaqueous medium.« less

  16. Electrochemical Detection of Multiple Bioprocess Analytes

    NASA Technical Reports Server (NTRS)

    Rauh, R. David

    2010-01-01

    An apparatus that includes highly miniaturized thin-film electrochemical sensor array has been demonstrated as a prototype of instruments for simultaneous detection of multiple substances of interest (analytes) and measurement of acidity or alkalinity in bioprocess streams. Measurements of pH and of concentrations of nutrients and wastes in cell-culture media, made by use of these instruments, are to be used as feedback for optimizing the growth of cells or the production of desired substances by the cultured cells. The apparatus is designed to utilize samples of minimal volume so as to minimize any perturbation of monitored processes. The apparatus can function in a potentiometric mode (for measuring pH), an amperometric mode (detecting analytes via oxidation/reduction reactions), or both. The sensor array is planar and includes multiple thin-film microelectrodes covered with hydrous iridium oxide. The oxide layer on each electrode serves as both a protective and electrochemical transducing layer. In its transducing role, the oxide provides electrical conductivity for amperometric measurement or pH response for potentiometric measurement. The oxide on an electrode can also serve as a matrix for one or more enzymes that render the electrode sensitive to a specific analyte. In addition to transducing electrodes, the array includes electrodes for potential control. The array can be fabricated by techniques familiar to the microelectronics industry. The sensor array is housed in a thin-film liquid-flow cell that has a total volume of about 100 mL. The flow cell is connected to a computer-controlled subsystem that periodically draws samples from the bioprocess stream to be monitored. Before entering the cell, each 100-mL sample is subjected to tangential-flow filtration to remove particles. In the present version of the apparatus, the electrodes are operated under control by a potentiostat and are used to simultaneously measure the pH and the concentration of glucose. It is anticipated that development of procedures for trapping more enzymes into hydrous iridium oxide (and possibly into other electroactive metal oxides) and of means for imparting long-term stability to the transducer layers should make it possible to monitor concentrations of products of many enzyme reactions for example, such key bioprocess analytes as amino acids, vitamins, lactose, and acetate.

  17. Preparation of Fe2O3-Clorprenaline/Tetraphenylborate Nanospheres and Their Application as Ion Selective Electrode for Determination of Clorprenaline in Pork

    NASA Astrophysics Data System (ADS)

    Shao, Xintian; Zhang, Jing; Li, Donghui; Yue, Jingli; Chen, Zhenhua

    2016-04-01

    A novel modified ion selective electrode based on Fe2O3-clorprenaline/tetraphenylborate nanospheres (Fe2O3-CLPT NSs) as electroactive materials for the determination of clorprenaline hydrochloride (CLP) is described. The α-Fe2O3 nanoparticles (NPs) were prepared by hydrothermal synthesis, then self-assembled on CLP/tetraphenylborate (TPB) to form Fe2O3-CLPT NSs, which were used as a potentiometric electrode for analyte determination innovatively. The Fe2O3-CLPT NSs modified electrode exhibited a wider concentration range from 1.0 × 10-7 to 1.0 × 10-1 mol/L and a lower detection limit of 3.7 × 10-8 mol/L compared with unmodified electrodes. The selectivity of the modified electrode was evaluated by fixed interference method. The good performance of the modified electrode such as wide pH range (2.4-6.7), fast response time (15 s), and adequate lifetime (14 weeks) indicate the utility of the modified electrode for evaluation of CLP content in various real samples. Finally, the modified electrode was successfully employed to detect CLP in pork samples with satisfactory results. These results demonstrated the Fe2O3-CLPT NSs modified electrode to be a functional and convenient method to the field of potentiometry determination of CLP in real samples.

  18. Computer Series, 62: Bits and Pieces, 25.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1985-01-01

    Describes: (1) a FORTH-language, computer-controlled potentiometric titration; (2) coulometric titrations using computer-interfaced potentiometric endpoint detection; (3) interfacing a scanning infrared spectrophotometer to a microcomputer; (4) demonstrations of signal-to-noise enhancement (digital filtering); (5) and an inexpensive Apple…

  19. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2001

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the change in the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland for September 1982 and September 2001. The map, based on water level measurements in 58 wells, shows that the potentiometric surface during the 19-year period declined from zero in the northernmost part of the study area, which is the outcrop of the aquifer, to 120 feet at Lexington Park. Lexington Park is near the southeasternmost part of the study area and approaches the downdip boundary of the aquifer.

  20. Potentiometric surface of the Magothy aquifer in southern Maryland, September 1999

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2001-01-01

    This report presents a map showing the change in the potentiometric surface of the Lower Patapsco aquifer in the Lower Patapsco Formation of Cretaceous age in Southern Maryland for September 1990 and September 1999. The map, based on water?level measurements in 52 wells, shows that the change of the potentiometric surface during the 9- year period ranged from a rise of 13 feet at Indian Head and 6 feet near the outcrop area in Glen Burnie, to declines of 34 feet at Arnold, 30 feet at Waldorf, and 24 feet at Morgantown.

  1. The difference between the potentiometric surfaces of the Upper Patasco Aquifer, September 1990 and September 2003 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the change in the potentiometric surface of the Upper Patapsco aquifer in the Upper Patapsco Formation of Cretaceous age in Southern Maryland for September 1990 and September 2003. The map, based on water level measurements in 32 wells, shows that during the 13-year period, the potentiometric surface changed from an increase of 6 feet at Arnold, which is located just north of Annapolis, to a decline of 25 feet at Waldorf and Lexington Park and 20 feet at LaPlata and the Chalk Point powerplant.

  2. Calculating Equilibrium Constants in the SnCl2-H2O-NaOH System According to Potentiometric Titration Data

    NASA Astrophysics Data System (ADS)

    Maskaeva, L. N.; Fedorova, E. A.; Yusupov, R. A.; Markov, V. F.

    2018-05-01

    The potentiometric titration of tin chloride SnCl2 is performed in the concentration range of 0.00009-1.1 mol/L with a solution of sodium hydroxide NaOH. According to potentiometric titration data based on modeling equilibria in the SnCl2-H2O-NaOH system, basic equations are generated for the main processes, and instability constants are calculated for the resulting hydroxo complexes and equilibrium constants of low-soluble tin(II) compounds. The data will be of interest for specialists in the field of theory of solutions.

  3. The Difference Between the Potentiometric Surfaces of the Upper Patapsco Aquifer, September 1982 and September 2001 in Southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the change in the potentiometric surface of the Upper Patapsco aquifer in the Upper Patapsco Formation of Cretaceous age in Southern Maryland for September 1990 and September 2001. The map, based on water level measurements in 35 wells, shows that during the 11-year period, the potentiometric surface ranged from an increase of 3 feet at Arnold, which is located just north of Annapolis, to a decline of 24 feet 5 miles south of LaPlata and 20 feet at both Waldorf and LaPlata.

  4. Concentration-related response potentiometric titrations to study the interaction of small molecules with large biomolecules.

    PubMed

    Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J

    2014-12-16

    In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands.

  5. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  6. Estimated 2012 groundwater potentiometric surface and drawdown from predevelopment to 2012 in the Santa Fe Group aquifer system in the Albuquerque metropolitan area, central New Mexico

    USGS Publications Warehouse

    Powell, Rachel I.; McKean, Sarah E.

    2014-01-01

    Historically, the water-supply requirements of the Albuquerque metropolitan area of central New Mexico were met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. In response to water-level declines, the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began diverting water from the San Juan-Chama Drinking Water Project in December 2008 to reduce the use of groundwater to meet municipal demand. Modifications in the demand for water and the source of the supply of water for the Albuquerque metropolitan area have resulted in a variable response in the potentiometric surface of the production zone (the interval of the aquifer, from within about 200 feet below the water table to 900 feet or more, in which supply wells generally are screened) of the Santa Fe Group aquifer system. Analysis of the magnitude and spatial distribution of water-level change can help improve the understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies’ efforts to minimize future water-level declines and improve sustainability. The U.S. Geological Survey (USGS), in cooperation with the ABCWUA, has developed an estimate of the 2012 potentiometric surface of the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. This potentiometric surface is the latest in a series of reports depicting the potentiometric surface of the area. This report presents the estimated potentiometric surface during winter (from December to March) of water year 2012 and the estimated changes in potentiometric surface between predevelopment (pre-1961) and water year 2012 for the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. Hydrographs from selected piezometers are included to provide details of historical water-level changes. In general, water-level measurements used for this report were collected in small-diameter observation wells screened over short intervals near the middle of the production zone and were considered to best represent the potentiometric head in the production zone. The water-level measurements were collected by various local and Federal agencies. The water year 2012 potentiometric surface map was created in a geographic information system, and the change in water-level altitude from predevelopment to water year 2012 was calculated. The 2012 potentiometric surface indicates that the general direction of groundwater flow is from the Rio Grande towards clusters of supply wells in the east, north, and west. Water-level changes from predevelopment to 2012 were variable across the Albuquerque metropolitan area. Estimated drawdown from 2008 was spatially variable across the Albuquerque metropolitan area. Hydrographs from piezometers on the east side of the river indicate an increase in the annual highest water-level measurement from 2008 to 2012. Hydrographs from piezometers in the northwest part of the study area indicate either steady decline of the water-level altitude over the period of record or recently variable trends in which water-level altitudes increased for a number of years but have declined since water year 2012.

  7. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    USGS Publications Warehouse

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  8. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  9. Behaviour of polydiacetylene vesicles under different conditions of temperature, pH and chemical components of milk.

    PubMed

    Oliveira, Cristiane Patrícia de; Soares, Nilda de Fátima Ferreira; Fontes, Edimar Aparecida Filomeno; Oliveira, Taíla Veloso de; Filho, Antônio Manoel Maradini

    2012-12-01

    Blue polydiacetylene vesicles were studied with regard to their behaviour under variations in storage temperature, heating, potentiometric titration and in the presence of chemical components of milk, to evaluate their application as a sensor in the food industry. Vesicles were prepared using 10,12-pentacosadienoic acid (PCDA)/1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). Their changes were monitored using UV-Vis absorption. Temperatures not exceeding 25°C did not cause colour change in PCDA/DMPC vesicles for a period of up to 60days of storage. Heating for 10min at 60 and 90°C, exposure to pH higher than 9.0 and the simulant solutions of the whey proteins, β-lactoglobulin and α-lactalbumin, promoted colour change from blue to red for the vesicles studied. The effects of routine factors on the characteristics and stability of polydiacetylene vesicles is important in defining the parameters related to their application as a sensor for the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Silver(I) ion-selective membrane based on Schiff base-p-tert-butylcalix[4]arene.

    PubMed

    Mahajan, R K; Kumar, M; Sharma, V; Kaur, I

    2001-04-01

    A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.

  11. Determination of chloride in admixtures and aggregates for cement by a simple flow injection potentiometric system.

    PubMed

    Junsomboon, Jaroon; Jakmunee, Jaroon

    2008-07-15

    A simple flow injection system using three 3-way solenoid valves as an electric control injection valve and with a simple home-made chloride ion selective electrode based on Ag/AgCl wire as a sensor for determination of water soluble chloride in admixtures and aggregates for cement has been developed. A liquid sample or an extract was injected into a water carrier stream which was then merged with 0.1M KNO(3) stream and flowed through a flow cell where the solution will be in contact with the sensor, producing a potential change recorded as a peak. A calibration graph in range of 10-100 mg L(-1) was obtained with a detection limit of 2 mg L(-1). Relative standard deviations for 7 replicates injecting of 20, 60 and 90 mg L(-1) chloride solutions were 1.0, 1.2 and 0.6%, respectively. Sample throughput of 60 h(-1) was achieved with the consumption of 1 mL each of electrolyte solution and water carrier. The developed method was validated by the British Standard methods.

  12. Instrumental measurement of beer taste attributes using an electronic tongue.

    PubMed

    Rudnitskaya, Alisa; Polshin, Evgeny; Kirsanov, Dmitry; Lammertyn, Jeroen; Nicolai, Bart; Saison, Daan; Delvaux, Freddy R; Delvaux, Filip; Legin, Andrey

    2009-07-30

    The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St. Petersburg University. The analysis of the sensory data and the calculation of the compromise average scores was made using STATIS. The beer samples were discriminated using both sensory panel and ET data based on PCA, and both data sets were compared using Canonical Correlation Analysis. The ET data were related to the sensory beer attributes using Partial Least Square regression for each attribute separately. Validation was done based on a test set comprising one-third of all samples. The ET was capable of predicting with good precision 20 sensory attributes of beer including such as bitter, sweet, sour, fruity, caramel, artificial, burnt, intensity and body.

  13. Fusion of Potentiometric & Voltammetric Electronic Tongue for Classification of Black Tea Taste based on Theaflavins (TF) Content

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Nabarun; Legin, Andrey; Papieva, Irina; Sarkar, Subrata; Kirsanov, Dmitry; Kartsova, Anna; Ghosh, Arunangshu; Bandyopadhyay, Rajib

    2011-09-01

    Black tea is an extensively consumed beverage worldwide with an expanding market. The final quality of black tea depends upon number of chemical compounds present in the tea. Out of these compounds, theaflavins (TF), which is responsible for astringency in black tea, plays an important role in determining the final taste of the finished black tea. The present paper reports our effort to correlate the theaflavins contents with the voltammetric and potentiometric electronic tongue (e-tongue) data. Noble metal-based electrode array has been used for collecting data though voltammetric electronic tongue where as liquid filled membrane based electrodes have been used for potentiometric electronic tongue. Black tea samples with tea taster score and biochemical results have been collected from Tea Research Association, Tocklai, India for the analysis purpose. In this paper, voltammetric and potentiometric e-tongue responses are combined to demonstrate improvement of cluster formation among tea samples with different ranges of TF values.

  14. Map showing how the potentiometric surface of the Magothy Aquifer of August 1980 differed from the potentiometric surface of September 1977, in southern Maryland

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, J.C.; Curtin, Stephen E.

    1982-01-01

    The map is based on the differences between two sets of water-level measurements made in 65 observation wells. One set was made in 1977, a relatively dry year, and the other set was made in 1980, another relatively dry year. The map shows that the potentiometric surface was higher in 1980, by as much as 9 feet, than it was in 1977, in a band a few miles wide near the outcrop and subcrop areas of the aquifer in northern Prince Georges County and central Anne Arundel County. In the remainder of the map area, the 1980 potentiometric surface was lower than it had been in 1977, with declines as great as 20 feet measured in well fields at Waldorf and Chalk Point. The network of observation wells was developed and is operated and maintained as part of the cooperative program between the U.S. Geological Survey and agencies of the Maryland Department of Natural Resources. (USGS)

  15. NASA Tech Briefs, April 2002. Volume 26, No. 4

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The contents include: 1) Application Briefs; 2) Sneak Preview of Sensors Expo; 3) The Complexity of the Diagnosis Problem; 4) Design Concepts for the ISS TransHab Module; 5) Characteristics of Supercritical Transitional Mixing Layers; 6) Electrometer for Triboelectric Evaluation of Materials; 7) Infrared CO2 Sensor With Built-In Calibration Chambers; 8) Solid-State Potentiometric CO Sensor; 9) Planetary Rover Absolute Heading Detection Using a Sun Sensor; 10) Concept for Utilizing Full Areas of STJ Photodetector Arrays; 11) Development of Cognitive Sensors; 12) Enabling Higher-Voltage Operation of SOl CMOS Transistors; 13) Estimating Antenna-Pointing Errors From Beam Squints; 14) Advanced-Fatigue-Crack-Growth and Fracture- Mechanics Program; 15) Software for Sequencing Spacecraft Actions; 16) Program Distributes and Tracks Organizational Memoranda; 16) Flat Membrane Device for Dehumidification of Air; 17) Inverted Hindle Mount Reduces Sag of a Large, Precise Mirror; 18) Heart-Pump-Outlet/Cannula Coupling; 19) Externally Triggered Microcapsules Release Drugs In Situ; 20) Combinatorial Drug Design Augmented by Information Theory; 21) Multiple-Path-Length Optical Absorbance Cell; 22) Model of a Fluidized Bed Containing a Mixture of Particles; 23) Refractive Secondary Concentrators for Solar Thermal Systems; 24) Cold Flow Calorimeter; 25) Methodology for Tracking Hazards and Predicting Failures; 26) Estimating Heterodyne-Interferometer Polarization Leakage; 27) An Efficient Algorithm for Propagation of Temporal- Constraint Networks; 28) Software for Continuous Replanning During Execution; 29) Surface-Launched Explorers for Reconnaissance/Scouting; 30) Firmware for a Small Motion-Control Processor; 31) Gear Bearings and Gear-Bearing Transmissions; and 32) Linear Dynamometer With Variable Stroke and Frequency.

  16. Selective Amplification of SPR Biosensor Signal for Recognition of rpoB Gene Fragments by Use of Gold Nanoparticles Modified by Thiolated DNA

    NASA Astrophysics Data System (ADS)

    Matsishin, M.; Rachkov, A.; Lopatynskyi, A.; Chegel, V.; Soldatkin, A.; El'skaya, A.

    2017-04-01

    An experimental approach for improving the sensitivity of the surface plasmon resonance (SPR) DNA hybridization sensor using gold nanoparticles (GNPs), modified by specific oligonucleotides, was elaborated. An influence of the ionic strength on the aggregation stability of unmodified GNPs and GNPs modified by the thiolated oligonucleotides was investigated by monitoring a value of light extinction at 520 nm that can be considered as a measure of a quantity of the non-aggregated GNPs. While the unmodified GNPs started to aggregate in 0.2 × saline-sodium citrate (SSC), GNPs modified by the negatively charged oligonucleotides were more stable at increasing ionic strength up to 0.5 × SSC. A bioselective element of the SPR DNA hybridization sensor was formed by immobilization on the gold sensor surface of the thiolated oligonucleotides P2, the sequence of which is a fragment of the rpoB gene of Mycobacterium tuberculosis. The injections into the measuring flow cell of the SPR spectrometer of various concentrations of GNPs modified by the complementary oligonucleotides T2-18m caused the pronounced concentration-dependent sequence-specific sensor responses. The magnitude of the sensor responses was much higher than in the case of the free standing complementary oligonucleotides. According to the obtained experimental data, the usage of GNPs modified by specific oligonucleotides can amplify the sensor response of the SPR DNA hybridization sensor in 1200 times.

  17. Effect of temperature on the protonation of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid in aqueous solutions: Potentiometric and calorimetric studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xingliang; Zhang, Zhicheng; Endrizzi, Francesco

    2015-06-01

    The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An 3+) from trivalent lanthanides (Ln 3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na +, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found tomore » exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln 3+ and An 3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln 3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the oxygen of a carboxylate group. These data, in conjunction with the thermodynamic parameters of Ln 3+/An 3+ complexes with HEDTA at different temperatures, will help to predict the speciation and temperature-dependent behavior of Ln 3+/An 3+ in the modified TALSPEAK process.« less

  18. A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection

    PubMed Central

    Luo, Ji; Yao, Jun; Lu, Yonggang; Ma, Wenying; Zhuang, Xuye

    2013-01-01

    A silver nanoparticle-modified evanescent field optical fiber sensor based on a MEMS microchannel chip has been successfully fabricated. Experimental results show that the sensor response decreases linearly with increasing concentration of analyte. Over a range of methylene blue concentrations from 0 to 0.4 μmol/mL, the sensor response is linear (R = 0.9496). A concentration variation of 0.1 μmol/mL can cause an absorbance change of 0.402 dB. Moreover, the optical responses of the same sensing fiber without decoration and modified with silver nanoparticles have also been compared. It can be observed that the output intensity of the Ag nanoparticle-modified sensor is enhanced and the sensitivity is higher. Meanwhile, the absorbance spectra are found to be more sensitive to concentration changes compared to the spectra of the peak wavelength. PMID:23519353

  19. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The difference between the potentiometric surfaces of the Magothy aquifer, September 1975 and September 1999 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2001-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in Southern Maryland for September 1975 and September 1999. The map, based on water level measurements in 61 wells, shows that the potentiometric surface during the 24-year period ranged from zero at the outcrop area, which is in the northernmost part of the study area, to a decline of 76 feet in Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  1. The difference between the potentiometric surfaces of the Magothy aquifer, September 1975 and September 2003 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in Southern Maryland for September 1975 and September 2003. The map, based on water level measurements in 51 wells, shows that during the 28-year period, the potentiometric surface had no change at the outcrop area, which is in the northernmost part of the study area, but declined 71 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  2. The Difference Between the Potentiometric Surfaces of the Magothy Aquifer, September 1975 and September 2001 in Southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in Southern Maryland for September 1975 and September 2001. The map, based on water level measurements in 54 wells, shows that during the 26-year period, the potentiometric surface ranged from zero at the outcrop area, which is in the northernmost part of the study area, to a decline of 75 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  3. Direct evidence of ionic fluxes across ion-selective membranes: a scanning electrochemical microscopic and potentiometric study.

    PubMed

    Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E

    2001-05-01

    Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.

  4. The Difference Between the Potentiometric Surfaces of the Magothy Aquifer in Southern Maryland, September 1975 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland for September 1975 and September 2007. The map, based on water-level measurements in 51 wells, shows that during the 32-year period, the potentiometric surface had no change at the outcrop area, which is in the northernmost part of the study area, but declined 90 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer.

  5. Relationship between potentiometric measurements, sensorial analysis, and some substances responsible for aroma degradation of white wines.

    PubMed

    Silva Ferreira, A C; Oliveira, Carla; Hogg, T; Guedes de Pinho, P

    2003-07-30

    Oxidative degradation of white wines can be described sensorially as developing from a loss at positive aroma characteristics, through the development of negative aromas to a linel stage of chromatic alterations. This work attempts to relate the oxidation "status" evaluate by potentiometric titrations, with sensorial degradation and the levels of substances responsible for "off-flavors", such as methional and phenylacetaldehyde. The potentiometric titration employed measures the most powerful antioxidants of white wines (e.g., those which more rapidly consume oxygen). Considering that aromatic precedes chromatic degradation, resistance to oxidation (ROX) constitutes a useful indicator of resistance to oxidation. Sensorial degradation (ID), potentiometric measures, and volatiles were determined both in samples submitted to a "forced aging" protocol and normal aged white wines. High correlation values were observed between ROX and the ID, in both sets (r > 0.87). ID is better explained by ROX values than by the indicated wine age or by the "degree of browning" (Abs = 420 nm). It was also observed that in samples with ROX values higher than 10, the concentration of methional and phenylacetaldehyde were above their respective odor threshold. Finally, it was observed that there is a relationship between oxygen consumption and the respective ROX. Although these results seem very promising, they needed to be further complemented in order to estimate the shelf life of a white wine using potentiometric titrations.

  6. Potentiometric surface of the Upper Floridan aquifer, west-central Florida, September 2010

    USGS Publications Warehouse

    Ortiz, A.G.

    2011-01-01

    This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2010. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when groundwater levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 53.17 inches for west-central Florida (from October 2009 through September 2010) was 0.41 inches above the historical cumulative average of 52.76 inches (Southwest Florida Water Management District, 2010). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District.

  7. Lead in Hair and in Red Wine by Potentiometric Stripping Analysis: The University Students' Design.

    ERIC Educational Resources Information Center

    Josephsen, Jens

    1985-01-01

    A new program for training upper secondary school chemistry teachers (SE 537 693) depends heavily on student project work. A project in which lead in hair and in red wine was examined by potentiometric stripping analysis is described and evaluated. (JN)

  8. Solid state potentiometric gaseous oxide sensor

    NASA Technical Reports Server (NTRS)

    Wachsman, Eric D. (Inventor); Azad, Abdul Majeed (Inventor)

    2003-01-01

    A solid state electrochemical cell (10a) for measuring the concentration of a component of a gas mixture (12) includes first semiconductor electrode (14) and second semiconductor electrode (16) formed from first and second semiconductor materials, respectively. The materials are selected so as to undergo a change in resistivity upon contacting a gas component, such as CO or NO. An electrolyte (18) is provided in contact with the first and second semiconductor electrodes. A reference cell can be included in contact with the electrolyte. Preferably, a voltage response of the first semiconductor electrode is opposite in slope direction to that of the second semiconductor electrode to produce a voltage response equal to the sum of the absolute values of the control system uses measured pollutant concentrations to direct adjustment of engine combustion conditions.

  9. Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore.

    PubMed

    Golcs, Ádám; Horváth, Viola; Huszthy, Péter; Tóth, Tünde

    2018-05-03

    Lead is a particularly toxic heavy metal that is present above acceptable levels in the water of many countries. This article describes a quick detection method of lead(II) ions using a polyvinyl chloride (PVC)-based ion-selective membrane electrode containing an acridono-crown ether ionophore by potentiometry. The electrochemical cell exhibits a Nernstian response for lead(II) ions between the concentration range of 10 −4 to 10 −2 M, and can be used in the pH range of 4⁻7. The applicability of this sensor was verified by measuring a multicomponent aqueous sample. Under the given conditions, this electrode is suitable for the selective quantitative analysis of lead(II) ions in the presence of many additional metal ions.

  10. Novel miniaturized sensors for potentiometric batch and flow-injection analysis (FIA) of perchlorate in fireworks and propellants.

    PubMed

    Almeer, Saeed H M A; Zogby, Ibrahim A; Hassan, Saad S M

    2014-11-01

    Three planar miniaturized perchlorate membrane sensors (3×5 mm(2)) are prepared using a flexible Kaptan substrate coated with nitron-perchlorate (NT-ClO4) [sensor 1], methylene blue-perchlorate (MB-ClO4) [sensor II] and indium-porphyrin (In-Por) [sensor III] as electroactive materials in PVC membranes plasticized with 2-NPPE. Sensors I, II and III display near-Nernstian response for 1.0×10(-5)-1.0×10(-2), 3.1×10(-5)-1.0×10(-2) and 3.1×10(-6)-1.0×10(-2) mol L(-1) ClO4(-) with lower detection limits of 6.1×10(-6), 6.9×10(-6) and 1.2×10(-6) mol L(-1), and anionic calibration slopes of 50.9±0.4, 48.4±0.4 and 57.7±0.3 mV decade(-1), respectively. Methods for determining perchlorate using these sensors offer many attractive advantages including simplicity, flexibility, cost effectiveness, wide linear dynamic response range (0.1-1000 ppm), low detection limit (<1.2×10(-6) mol L(-1)≡0.1 ppm), small sample test volume (100 μL), safety, short response time (<20 s), long life span (~8 weeks), and extended wide working pH range (4.5-8.0). The sensors show high selectivity in the presence of some inorganic ions (e.g., PO4(3-), SO4(2-), S2O3(2-), NO2(-), NO3(-), N3(-), CN(-), Cl(-), Br(-), I(-)) and automation feasibility. Indium-porphyrin based membrane sensor (sensor III) is used as a detector in a wall-jet flow injection set-up to enable accurate flow injection analysis (FIA) of perchlorate in some fireworks without interferences from the associated reducing agents (sulfur and charcoal), binders (dextrin, lactose), coloring agents (calcium, strontium, copper, iron, sodium), color brighten (linseed oil) and regulators (aluminum flakes) which are commonly used in the formulations. The sensor is also used for perchlorate assessment in some propellant powders. The results fairly agree with data obtained by ion-chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Primary response of high-aspect-ratio thermoresistive sensors

    NASA Astrophysics Data System (ADS)

    Majlesein, H. R.; Mitchell, D. L.; Bhattacharya, Pradeep K.; Singh, A.; Anderson, James A.

    1997-07-01

    There is a growing need for sensors in monitoring performance in modern quality products such as in electronics to monitor heat build up, substrate delaminations, and thermal runaway. In processing instruments, intelligent sensors are needed to measure deposited layer thickness and resistivities for process control, and in environmental electrical enclosures, they are used for climate monitoring and control. A yaw sensor for skid prevention utilizes very fine moveable components, and an automobile engine controller blends a microprocessor and sensor on the same chip. An Active-Pixel Image Sensor is integrated with a digital readout circuit to perform most of the functions in a video camera. Magnetostrictive transducers sense and damp vibrations. Improved acoustic sensors will be used in flow detection of air and other fluids, even at subsonic speeds. Optoelectronic sensor systems are being developed for installation on rocket engines to monitor exhaust gases for signs of wear in the engines. With new freon-free coolants being available the problems of A/C system corrosion have gone up in automobiles and need to be monitored more frequently. Defense cutbacks compel the storage of hardware in safe-custody for an indeterminate period of time, and this makes monitoring more essential. Just-in-time customized manufacturing in modern industries also needs dramatic adjustment in productivity of various selected items, leaving some manufacturing equipment idle for a long time, and therefore, it will be prone to more corrosion, and corrosion sensors are needed. In the medical device industry, development of implantable medical devices using both potentiometric and amperometric determination of parameters has, until now, been used with insufficient micro miniaturization, and thus, requires surgical implantation. In many applications, high-aspect- ratio devices, made possible by the use of synchrotron radiation lithography, allow more useful devices to be produced. High-aspect-ratio sensors will permit industries and various other users to attain more accurate measurements of physical properties and chemical compositions in many systems. Considerable engineering research has recently been focused on this type of fabrication effect. This paper looks at a high-aspect-ratio sensor bus thermorestrictive device with increased aspect-ratio of the interconnects to the device, using unique simulation software resources.

  12. On the binding of calcium by micelles composed of carboxy-modified pluronics measured by means of differential potentiometric titration and modeled with a self-consistent-field theory.

    PubMed

    Lauw, Y; Leermakers, F A M; Cohen Stuart, M A; Pinheiro, J P; Custers, J P A; van den Broeke, L J P; Keurentjes, J T F

    2006-12-19

    We perform differential potentiometric titration measurements for the binding of Ca2+ ions to micelles composed of the carboxylic acid end-standing Pluronic P85 block copolymer (i.e., CAE-85 (COOH-(EO)26-(PO)39-(EO)26-COOH)). Two different ion-selective electrodes (ISEs) are used to detect the free calcium concentration; the first ISE is an indicator electrode, and the second is a reference electrode. The titration is done by adding the block copolymers to a known solution of Ca2+ at neutral pH and high enough temperature (above the critical micellization temperature CMT) and various amount of added monovalent salt. By measuring the difference in the electromotive force between the two ISEs, the amount of Ca2+ that is bound by the micelles is calculated. This is then used to determine the binding constant of Ca2+ with the micelles, which is a missing parameter needed to perform molecular realistic self-consistent-field (SCF) calculations. It turns out that the micelles from block copolymer CAE-85 bind Ca2+ ions both electrostatically and specifically. The specific binding between Ca2+ and carboxylic groups in the corona of the micelles is modeled through the reaction equilibrium -COOCa+ <==> -COO- + Ca2+ with pKCa = 1.7 +/- 0.06.

  13. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.

    PubMed

    Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar

    2018-01-05

    A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Studying electron transfer through alkanethiol self-assembled monolayers on a hanging mercury drop electrode using potentiometric measurements.

    PubMed

    Cohen-Atiya, Meirav; Mandler, Daniel

    2006-10-14

    A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.

  15. Potentiometric surface, 2013, and water-level differences, 1991-2013, of the Carrizo-Wilcox aquifer in northwest Louisiana

    USGS Publications Warehouse

    Fendick, Robert B.; Carter, Kayla

    2015-01-01

    This report presents data and maps that illustrate the potentiometric surface of the Carrizo-Wilcox aquifer during March–May 2013 and water-level differences from 1991 to 2013. The potentiometric surface map can be used for determining the direction of groundwater flow, hydraulic gradients, and effects of withdrawals on the groundwater resource. The rate of groundwater movement also can be estimated from the gradient when the hydraulic conductivity is applied. Water-level data collected for this study are stored in the USGS National Water Information System (NWIS) (http://waterdata.usgs.gov/nwis) and are on file at the USGS office in Baton Rouge, La.

  16. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 69 wells. The highest measured water level was 85 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south. Local gradients were directed toward the center of a cone of depression in the Waldorf area that developed in response to pumping. Measured ground-water levels were as low as 90 feet below sea level in the Waldorf area.

  17. The difference between the potentiometric surfaces of the Magothy Aquifer of September 1986 and September 1988 in southern Maryland

    USGS Publications Warehouse

    Mack, Frederick K.; Andreasen, David C.; Curtin, Stephen E.; Wheeler, Judith C.

    1990-01-01

    A map was prepared that shows the net change in the potentiometric surface of the Magothy aquifer (in the Cretaceous Magothy Formation) in southern Maryland from the fall of 1986 to the fall of 1988. The map, based on water level measurements from 79 observation wells, shows that during the 2 year period the potentiometric surface declined less than 5 ft in most of the northern part of the study area and more than 10 ft in a 4-sq-mi area in northern Charles County. Net water-level rises of as much as 2 ft were measured in central Charles County. (USGS)

  18. Altitude and configuration of the potentiometric surface in the Lower White Clay Creek and Upper Christina River Basins including portions of Franklin, London Britain, New Garden, and New London Townships, Chester County, Pennsylvania, June through September 2005

    USGS Publications Warehouse

    Hale, Lindsay B.

    2006-01-01

    Since 1984, the U.S. Geological Survey (USGS) has been mapping the altitude and configuration of the potentiometric surface in Chester County as part of an ongoing cooperative program to measure and describe the water resources of the county.  Areas where the potentiometric surface has been mapped are shown on figure 1.  These maps can be used to determine the general direction of ground-water flow and are frequently referenced by municipalities and developers to evaluate ground-water conditions for water supply and resource-protection requirements (Wood, 1998).

  19. The Difference Between the Potentiometric Surfaces of the Upper Patapsco Aquifer in Southern Maryland, September 1990 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland for September 1990 and September 2007. The map, based on water-level measurements in 33 wells, shows that during the 17-year period, the change in the potentiometric surface ranged from zero at the edge of the outcrop area in northern Anne Arundel County to a decline of 28 feet at Crofton Meadows, 38 feet at Arnold, 36 feet at Waldorf, 35 feet at the Chalk Point power plant, and 40 feet at Lexington Park.

  20. Simple Potentiometric Determination of Reducing Sugars

    ERIC Educational Resources Information Center

    Moresco, Henry; Sanson, Pedro; Seoane, Gustavo

    2008-01-01

    In this article a potentiometric method for reducing sugar quantification is described. Copper(II) ion reacts with the reducing sugar (glucose, fructose, and others), and the excess is quantified using a copper wire indicator electrode. In order to accelerate the kinetics of the reaction, working conditions such as pH and temperature must be…

  1. Detection of Catechol by Potentiometric-Flow Injection Analysis in the Presence of Interferents

    ERIC Educational Resources Information Center

    Lunsford, Suzanne K.; Widera, Justyna; Zhang, Hong

    2007-01-01

    This article describes an undergraduate analytical chemistry experiment developed to teach instrumental lab skills while incorporating common interferents encountered in the real-world analysis of catechol. The lab technique incorporates potentiometric-flow injection analysis on a dibenzo-18-crown-6 dual platinum electrode to detect catechol in…

  2. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection.

    PubMed

    Chen, Hong-Jun; Zhang, Zhao-Hui; Cai, Rong; Chen, Xing; Liu, Yu-Nan; Rao, Wei; Yao, Shou-Zhuo

    2013-10-15

    In this work, an imprinted electrochemical sensor based on electrochemical reduced graphene covalently modified carbon electrode was developed for the determination of 4-nonylphenol (NP). An amine-terminated functional graphene oxide was covalently modified onto the electrode surface with diazonium salt reactions to improve the stability and reproducibility of the imprinted sensor. The electrochemical properties of each modified electrodes were investigated with differential pulse voltammetry (DPV). The electrochemical characteristic of the imprinted sensor was also investigated using electrochemical impedance spectroscopy (EIS) in detail. The response currents of the imprinted electrode exhibited a linear relationship toward 4-nonylphenol concentration ranging from 1.0 × 10(-11) to 1.0 × 10(-8) gm L(-1) with the detection limit of 3.5 × 10(-12) gm L(-1) (S/N=3). The fabricated electrochemical imprinted sensor was successfully applied to the detection of 4-nonylphenol in rain and lake water samples. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  3. Piezoelectric sensor for sensitive determination of metal ions based on the phosphate-modified dendrimer

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Shen, C. Y.; Lin, Y. M.; Du, J. C.

    2016-08-01

    Heavy metal ions arising from human activities are retained strongly in water; therefore public water supplies must be monitored regularly to ensure the timely detection of potential problems. A phosphate-modified dendrimer film was investigated on a quartz crystal microbalance (QCM) for sensing metal ions in water at room temperature in this study. The chemical structures and sensing properties were characterized by Fourier transform infrared spectroscopy and QCM measurement, respectively. This phosphate-modified dendrimer sensor can directly detect metal ions in aqueous solutions. This novel sensor was evaluated for its capacity to sense various metal ions. The sensor exhibited a higher sensitivity level and shorter response time to copper(II) ions than other sensors. The linear detection range of the prepared QCM based on the phosphate-modified dendrimer was 0.0001 ∼ 1 μM Cu(II) ions (R2 = 0.98). The detection properties, including sensitivity, response time, selectivity, reusability, maximum adsorption capacity, and adsorption equilibrium constants, were also investigated.

  4. Potentiometric surfaces of aquifers in the Cockfield Formation in southeastern Arkansas and the Wilcox Group in southern and northeastern Arkansas, 2000

    USGS Publications Warehouse

    Schrader, Tony P.; Joseph, Robert L.

    2000-01-01

    The Cockfield and lower Wilcox aquifers are sources of water for local use in southern and northeastern Arkansas, where in 1995 more than 51 million gallons per day of water was withdrawn. During January through April 2000, 54 water-level measurements were made in wells completed in the Cockfield aquifer, 13 water-level measurements were made in wells completed in the lower Wilcox aquifer in southern Arkansas, and 43 water-level measurements were made in wells completed in the lower Wilcox aquifer in northeastern Arkansas. The potentiometric surface data reveal spatial trends in both aquifers across the study areas. The regional direction of ground-water flow of the Cockfield aquifer is generally toward the east and south, away from the outcrop area, except in areas of intense ground-water withdrawals. The configuration of the potentiometric surface indicates that heavy pumpage has probably altered or reversed the natural direction of flow in these areas. A potentiometric low caused by the pumpage near Greenville, Mississippi, extends into Chicot, Desha, and Drew Counties. Water levels in five wells showed average declines between 0.5 and 0.8 foot per year. The regional direction of ground-water flow in the lower Wilcox aquifers is generally east and south, away from the outcrop, except in areas of intense ground-water withdrawals. Potentiometric depressions, where flow is toward centers of pumping, indicate that heavy pumpage has probably altered or reversed the natural direction of flow. Two potentiometric depressions are centered in the vicinity of Paragould and West Memphis, Arkansas, where ground-water withdrawals probably have altered the natural direction of flow. Long-term hydrographs of seven wells show water-level declines in the lower Wilcox aquifer in northeastern Arkansas. The average water-level decline in two wells was between 0.8 and 1.0 foot per year and in five wells was between 1.2 and 1.8 foot per year.

  5. Spectrofluorimetric and Potentiometric Determination of Acidity Constants of 4-(4'-Acetyloxy-3'-Methoxybenzylidene)-5-Oxazolone Derivatives.

    PubMed

    Taskiran, Derya Topkaya; Urut, Gulsiye Ozturk; Ayata, Sevda; Alp, Serap

    2017-03-01

    4-(4'-acetyloxy-3'-methoxybenzylidene)-5-oxazolone fluorescent molecules bearing four different aryl groups attached to the 2-position of 5-oxazolone ring have been investigated by spectrophotometric and potentiometric techniques in solution media. The acidity constants (pKa) of the fluorescent molecules were precisely determined in acetone, acetonitrile, dimethylformamide and in 1:1 mixture of toluene-isopropanol. The studied derivatives were titrated with tetrabutylammonium hydroxide and non-aqueous perchloric acid by scanning the basic and acidic region of the pH scale. A computerizable derivative method was used in order to descript precisely the end point and pKa values. The molecules investigated performed well-shaped and stoichiometric potentiometric titration curves.

  6. The Difference Between the Potentiometric Surfaces of the Magothy Aquifer in Southern Maryland, September 1975 and September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland between September 1975 and September 2009. The map, based on water level differences obtained from 48 wells, shows that during the 34-year period, the potentiometric surface had little change at the outcrop area, which is in the northernmost part of the study area, but declined 75 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  7. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District, May 1981

    USGS Publications Warehouse

    Yobbi, D.K.; Woodham, W.M.; Schiner, George R.

    1981-01-01

    A May 1981 potentiometric-surface map of the Southwest Florida Water Management District depicts the annual low water-level period. Potentiometric levels decreased 10 to 45 feet between September 1980 and May 1981 in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk, northwestern DeSoto, and Manatee Counties. Water levels in these areas are widely affected by pumping for irrigation and have the greatest range in fluctuations. Water-level decreases ranged from 0 to 1 feet in coastal, northern, and southern areas of the Water Management District. Water levels in all of the approximate 700 wells measured in May 1981 are lower than May 1980 because of the virtual absence of rainfall in April and May. (USGS)

  8. A two-dimensional, finite-difference model of the high plains aquifer in southern South Dakota

    USGS Publications Warehouse

    Kolm, K.E.; Case, H. L.

    1983-01-01

    The High Plains aquifer is the principal source of water for irrigation, industry, municipalities, and domestic use in south-central South Dakota. The aquifer, composed of upper sandstone units of the Arikaree Formation, and the overlying Ogallala and Sand Hills Formations, was simulated using a two-dimensional, finite-difference computer model. The maximum difference between simulated and measured potentiometric heads was less than 60 feet (1- to 4-percent error). Two-thirds of the simulated potentiometric heads were within 26 feet of the measured values (3-percent error). The estimated saturated thickness, computed from simulated potentiometric heads, was within 25-percent error of the known saturated thickness for 95 percent of the study area. (USGS)

  9. Modeling and simulation of soft sensor design for real-time speed estimation, measurement and control of induction motor.

    PubMed

    Etien, Erik

    2013-05-01

    This paper deals with the design of a speed soft sensor for induction motor. The sensor is based on the physical model of the motor. Because the validation step highlight the fact that the sensor cannot be validated for all the operating points, the model is modified in order to obtain a fully validated sensor in the whole speed range. An original feature of the proposed approach is that the modified model is derived from stability analysis using automatic control theory. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles

    PubMed Central

    Cinti, Stefano; Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe; Killard, Anthony J.

    2014-01-01

    A sensor for the simple and sensitive measurement of hydrogen peroxide has been developed which is based on screen printed electrodes (SPEs) modified with Prussian blue nanoparticles (PBNPs) deposited using piezoelectric inkjet printing. PBNP-modified SPEs were characterized using physical and electrochemical techniques to optimize the PBNP layer thickness and electroanalytical conditions for optimum measurement of hydrogen peroxide. Sensor optimization resulted in a limit of detection of 2 × 10−7 M, a linear range from 0 to 4.5 mM and a sensitivity of 762 μA·mM−1·cm−2 which was achieved using 20 layers of printed PBNPs. Sensors also demonstrated excellent reproducibility (<5% rsd). PMID:25093348

  11. Electrochemical sensing of bisphenol using a multilayer graphene nanobelt modified photolithography patterned platinum electrode

    NASA Astrophysics Data System (ADS)

    Karthick Kannan, Padmanathan; Hu, Chunxiao; Morgan, Hywel; Moshkalev, Stanislav A.; Sekhar Rout, Chandra

    2016-09-01

    An electrochemical sensor has been developed for the detection of Bisphenol-A (BPA) using photolithographically patterned platinum electrodes modified with multilayer graphene nanobelts (GNB). Compared to bare electrodes, the GNB modified electrode exhibited enhanced BPA oxidation current, due to the high effective surface area and high adsorption capacity of the GNB. The sensor showed a linear response over the concentration range from 0.5 μM-9 μM with a very low limit of detection = 37.33 nM. In addition, the sensor showed very good stability and reproducibility with good specificity, demonstrating that GNB is potentially a new material for the development of a practical BPA electrochemical sensor with application in both industrial and plastic industries.

  12. Phase retrieval using a modified Shack-Hartmann wavefront sensor with defocus.

    PubMed

    Li, Changwei; Li, Bangming; Zhang, Sijiong

    2014-02-01

    This paper proposes a modified Shack-Hartmann wavefront sensor for phase retrieval. The sensor is revamped by placing a detector at a defocused plane before the focal plane of the lenslet array of the Shack-Hartmann sensor. The algorithm for phase retrieval is an optimization with initial Zernike coefficients calculated by the conventional phase reconstruction of the Shack-Hartmann sensor. Numerical simulations show that the proposed sensor permits sensitive, accurate phase retrieval. Furthermore, experiments tested the feasibility of phase retrieval using the proposed sensor. The surface irregularity for a flat mirror was measured by the proposed method and a Veeco interferometer, respectively. The irregularity for the mirror measured by the proposed method is in very good agreement with that measured using the Veeco interferometer.

  13. Development of electrochemical sensor for the determination of palladium ions (Pd2+) using flexible screen printed un-modified carbon electrode.

    PubMed

    Velmurugan, Murugan; Thirumalraj, Balamurugan; Chen, Shen-Ming; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed S

    2017-01-01

    To date, the development of different modified electrodes have received much attention in electrochemistry. The modified electrodes have some drawbacks such as high cost, difficult to handle and not eco friendly. Hence, we report an electrochemical sensor for the determination of palladium ions (Pd 2+ ) using an un-modified screen printed carbon electrode has been developed for the first time, which are characterized and studied via scanning electron microscope and cyclic voltammetry. Prior to determination of Pd 2+ ions, the operational conditions of un-modified SPCE was optimized using cyclic voltammetry and showed excellent electro-analytical behavior towards the determination of Pd 2+ ions. Electrochemical determination of Pd 2+ ions reveal that the un-modified electrode showed lower detection limit of 1.32μM with a linear ranging from 3 to 133.35μM towards the Pd 2+ ions concentration via differential pulse voltammetry. The developed sensor also applied to the successfully determination of trace level Pd 2+ ions in spiked water samples. In addition, the advantage of this type of electrode is simple, disposable and cost effective in electrochemical sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: poly(vinyl chloride)-based sensor for acetate.

    PubMed

    Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A

    2008-08-15

    A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of <15s and a Nernstian slope of 60.3+/-0.3 mV decade(-1) of activity. Influences of the membrane composition, and possible interfering anions were investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.

  15. Rapid and Automated Analytical Methods for Redox Species Based on Potentiometric Flow Injection Analysis Using Potential Buffers

    PubMed Central

    Ohura, Hiroki; Imato, Toshihiko

    2011-01-01

    Two analytical methods, which prove the utility of a potentiometric flow injection technique for determining various redox species, based on the use of some redox potential buffers, are reviewed. The first is a potentiometric flow injection method in which a redox couple such as Fe(III)-Fe(II), Fe(CN)6 3−-Fe(CN)(CN)6 4−, and bromide-bromine and a redox electrode or a combined platinum-bromide ion selective electrode are used. The analytical principle and advantages of the method are discussed, and several examples of its application are reported. Another example is a highly sensitive potentiometric flow injection method, in which a large transient potential change due to bromine or chlorine as an intermediate, generated during the reaction of the oxidative species with an Fe(III)-Fe(II) potential buffer containing bromide or chloride, is utilized. The analytical principle and details of the proposed method are described, and examples of several applications are described. The determination of trace amounts of hydrazine, based on the detection of a transient change in potential caused by the reaction with a Ce(IV)-Ce(III) potential buffer, is also described. PMID:21584280

  16. Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement.

    PubMed

    Zhang, Lin; Yang, Wentao; Yang, Yuankui; Liu, Hong; Gu, Zhongze

    2015-11-07

    Here we report a smartphone-based potentiometric biosensor for point-of-care testing of salivary α-amylase (sAA), which is one of the most sensitive indices of autonomic nervous system activity, and therefore a promising non-invasive biomarker for mental health. The biosensing system includes a smartphone having a sAA-detection App, a potentiometric reader and a sensing chip with preloaded reagents. The saliva sample wicks into the reaction zone on the sensing chip so that the sAA reacts with the preloaded reagents, resulting in conversion of an electron mediator Fe(CN)6(3-) to Fe(CN)6(4-). The sensing chip is then pressed by fingers to push the reaction mixture into the detection zone for the potentiometric measurement. The potential measured by the smartphone-powered potentiometric reader is sent to the smartphone App via the USB port, and converted into sAA concentration based on a calibration curve. Using our method, sAA in real human sample is quantitatively analyzed within 5 min. The results are in good agreement with that obtained using a reference method, and correlated to psychological states of the subjects.

  17. Potentiometric-surface map of the Wyodak-Anderson Coal Bed, Powder River Structural Basin, Wyoming, 1973-84

    USGS Publications Warehouse

    Daddow, Pamela B.

    1986-01-01

    Previous water level maps of shallow aquifers in the Powder River structural basin in Wyoming were based on water levels from wells completed in different stratigraphic intervals within thick sequences of sedimentary rocks. A potentiometric surface using water levels from a single aquifer had never been mapped throughout the basin. The sandstone aquifers in the Fort Union Formation of Paleocene age and the Wasatch Formation of Eocene age are discontinuous and lenticular, and do not extend even short distances. Coal aquifers are more continuous and the Wyodak-Anderson coal bed, in the Fort Union Formation, has been mapped in much of the Powder River structural basin in Wyoming. Water level altitudes in the Wyodak-Anderson coal bed and other stratigraphically equivalent coal beds were mapped to determine if they represent a continuous potentiometric surface in the Powder River structural basin. The potentiometric surface, except in the vicinity of the Wyodak mine east of Gillette, represents a premining condition as it was based on water level measurements made during 1973-84 that were not significantly affected by mining. The map was prepared in cooperation with the U.S. Bureau of Land Management. (Lantz-PTT)

  18. Potentiometric surface of the Ozark aquifer in northern Arkansas, 2004

    USGS Publications Warehouse

    Schrader, T.P.

    2005-01-01

    The Ozark aquifer in northern Arkansas comprises dolomites, limestones, sandstones, and shales of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 59 well and 5 spring water-level measurements collected in 2004 in Arkansas and Missouri, indicates maximum water-level altitudes of about 1,188 feet in Benton County and minimum water-level altitudes of about 116 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the northwest and north in the western part of the study area. Comparing the 2004 potentiometric- surface map with a predevelopment potentiometricsurface map indicates general agreement between the two surfaces. Potentiometric-surface differences could be attributed to differences in pumping related to changing population from 1990 to 2000, change in source for public supplies, processes or water use outside the study area, or differences in data-collection or map-construction methods.

  19. Differentiation of four Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different measurement techniques.

    PubMed

    Söderström, C; Rudnitskaya, A; Legin, A; Krantz-Rülcker, C

    2005-09-29

    Two electronic tongues based on different measurement techniques were applied to the discrimination of four molds and one yeast. Chosen microorganisms were different species of Aspergillus and yeast specie Zygosaccharomyces bailii, which are known as food contaminants. The electronic tongue developed in Linköping University was based on voltammetry. Four working electrodes made of noble metals were used in a standard three-electrode configuration in this case. The St. Petersburg electronic tongue consisted of 27 potentiometric chemical sensors with enhanced cross-sensitivity. Sensors with chalcogenide glass and plasticized PVC membranes were used. Two sets of samples were measured using both electronic tongues. Firstly, broths were measured in which either one of the molds or the yeast grew until late logarithmic phase or border of the stationary phase. Broths inoculated by either one of molds or the yeast was measured at five different times during microorganism growth. Data were evaluated using principal component analysis (PCA), partial least square regression (PLS) and linear discriminant analysis (LDA). It was found that both measurement techniques could differentiate between fungi species. Merged data from both electronic tongues improved differentiation of the samples in selected cases.

  20. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  1. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    PubMed

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  2. Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum.

    PubMed

    Sadeghi, Susan; Motaharian, Ali

    2013-12-01

    A new sensitive voltammetric sensor for determination of sulfadiazine is described. The developed sensor is based on carbon paste electrode modified with sulfadiazine imprinted polymer (MIP) as a recognition element. For comparison, a non-imprinted polymer (NIP) modified carbon paste electrode was prepared. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods were performed to study the binding event and electrochemical behavior of sulfadiazine at the modified carbon paste electrodes. The determination of sulfadiazine after its extraction onto the electrode surface was carried out by DPV at 0.92 V vs. Ag/AgCl owing to oxidation of sulfadiazine. Under the optimized operational conditions, the peak current obtained at the MIP modified carbon paste electrode was proportional to the sulfadiazine concentration within the range of 2.0×10(-7)-1.0×10(-4) mol L(-1) with a detection limit and sensitivity of 1.4×10(-7) mol L(-1) and 4.2×10(5) μA L mol(-1), respectively. The reproducibility of the developed sensor in terms of relative standard deviation was 2.6%. The sensor was successfully applied for determination of sulfadiazine in spiked cow milk and human serum samples with recovery values in the range of 96.7-100.9%. © 2013.

  3. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes.

    PubMed

    Numnuam, Apon; Chumbimuni-Torres, Karin Y; Xiang, Yun; Bash, Ralph; Thavarungkul, Panote; Kanatharana, Proespichaya; Pretsch, Ernö; Wang, Joseph; Bakker, Eric

    2008-02-01

    We here report on the first example of an aptamer-based potentiometric sandwich assay of proteins. The measurements are based on CdS quantum dot labels of the secondary aptamer, which were determined with a novel solid-contact Cd2+-selective polymer membrane electrode after dissolution with hydrogen peroxide. The electrode exhibited cadmium ion detection limits of 100 pM in 100 mL samples and of 1 nM in 200 microL microwells, using a calcium-selective electrode as a pseudoreference electrode. As a prototype example, thrombin was measured in 200 microL samples with a lower detection limit of 0.14 nM corresponding to 28 fmol of analyte. The results show great promise for the potentiometric determination of proteins at very low concentrations in microliter samples.

  4. Signal processing with a summing operational amplifier in multicomponent potentiometric titrations.

    PubMed

    Parczewski, A

    1987-06-01

    It has been proved that application of two indicator electrodes connected to the ordinary titration apparatus through an auxiliary electronic device (a summing operational amplifier) significantly extends the scope of multicomponent potentiometric titrations in which the analytes are determined simultaneously from a single titration curve. For each analyte there is a corresponding potential jump on the titration curve. By application of the proposed auxiliary device, the sum of the electrode potentials is measured. The device also enables the relative sizes of the potential jumps at the end-points on the titration curve to be varied. The advantages of the proposed signal processing are exemplified by complexometric potentiometric titrations of Fe(III) and Cu(II) in mixtures, with a platinum electrode and a copper ion-selective electrode as the indicator electrodes.

  5. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 66 wells. The highest measured water level was 85 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south. Local hydraulic gradients were directed toward the center of a cone of depression in the Waldorf area that developed in response to pumping. Measured groundwater levels were as low as 71 feet below sea level in the Waldorf area. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  6. The difference between the potentiometric surfaces of the Upper Patapsco aquifer in southern Maryland, September 1990 and September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the change in the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland between September 1990 and September 2009. The map, based on water level differences obtained from 33 wells, shows that during the 19-year period, the change in the potentiometric surface ranged from zero at the edge of the outcrop area in northern Anne Arundel County to a decline of 20 feet at Broad Creek, 16 feet near Arnold, 32 feet at Waldorf, 37 feet at the Chalk Point power plant, and 43 feet at Lexington Park. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  7. The difference between the potentiometric surfaces of the lower Patapsco aquifer in southern Maryland, September 1990 and September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the change in the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland for September 1990 and September 2007. The map, based on water-level measurements in 45 wells, shows that the change of the potentiometric surface during the 17-year period ranged from increases of 19 feet at Indian Head and 6 feet near the outcrop area in Glen Burnie, to declines of 41 feet at Arnold, 45 feet at Severndale, 68 feet at Crofton Meadows, 77 feet at Waldorf, 76 feet at La Plata, 28 feet at the Morgantown power plant, and 35 feet at the Swan Point subdivision south of Morgantown.

  8. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, May 2009

    USGS Publications Warehouse

    Ortiz, Anita G.

    2009-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2009. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 48.53 inches for west-central Florida (from June 2008 through May 2009) was 4.12 inches below the historical cumulative average of 52.65 inches (Southwest Florida Water Management District, 2009). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period May 18-22, 2009. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2009). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition. The potentiometric contours are generalized to synoptically portray the head in a dynamic hydrologic system, taking due account of the variations in hydrogeologic conditions, such as differing depths of wells, nonsimultaneous measurements of water levels, variable effects of pumping, and changing climatic influence. The potentiometric contours may not conform exactly with the individual measurements of water levels.

  9. Potentiometric pH Measurements of Acidity Are Approximations, Some More Useful than Others

    ERIC Educational Resources Information Center

    de Levie, Robert

    2010-01-01

    A recent article by McCarty and Vitz "demonstrating that it is not true that pH = -log[H+]" is examined critically. Then, the focus shifts to underlying problems with the IUPAC definition of pH. It is shown how the potentiometric method can provide "estimates" of both the IUPAC-defined hydrogen activity "and" the hydrogen ion concentration, using…

  10. Computer analysis of potentiometric data of complexes formation in the solution

    NASA Astrophysics Data System (ADS)

    Jastrzab, Renata; Kaczmarek, Małgorzata T.; Tylkowski, Bartosz; Odani, Akira

    2018-02-01

    The determination of equilibrium constants is an important process for many branches of chemistry. In this review we provide the readers with a discussion on computer methods which have been applied for elaboration of potentiometric experimental data generated during complexes formation in solution. The review describes both: general basis of modeling tools and examples of the use of calculated stability constants.

  11. Optimal Search Strategy for the Definition of a DNAPL Source

    DTIC Science & Technology

    2009-08-01

    29. Flow field results for stochastic model (colored contours) and potentiometric map created by hydrogeologist using well water level measurements...potentiometric map created by hydrogeologist using well water level measurements (black contours). 5.1.3. Source search algorithm Figure 30 shows the 15...and C. D. Tankersley, “Forecasting piezometric head levels in the Floridian aquifer: A Kalman filtering approach”, Water Resources Research, 29(11

  12. Water-Table and Potentiometric-Surface Altitudes in the Upper Glacial, Magothy, and Lloyd Aquifers beneath Long Island, New York, March-April 2006

    USGS Publications Warehouse

    Monti, Jack; Busciolano, Ronald J.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects ground-water data at varying measurement frequencies to monitor the hydrologic situation on Long Island, New York. Each year during March and April, the USGS conducts a synoptic survey of hydrologic conditions to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island - the upper glacial, Magothy, and Lloyd aquifers. These data and the maps constructed from them are commonly used in studies of Long Island's hydrology, and by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 502 wells across Long Island during March-April 2006, were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured using these measurements. The water-table contours were interpreted using water-level data collected from 341 wells screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer's potentiometric-surface contours were interpreted from measurements at 102 wells screened in the middle to deep Magothy aquifer and (or) contiguous and hydraulically connected Jameco aquifer; and the Lloyd aquifer's potentiometric-surface contours were interpreted from measurements at 59 wells screened in the Lloyd aquifer or contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped. In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).

  13. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets.

    PubMed

    Meng, Fanli; Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-06-22

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.

  14. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets

    PubMed Central

    Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-01-01

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge. PMID:28640226

  15. Potentiometric Surfaces and Changes in Groundwater Levels in Selected Bedrock Aquifers in the Twin Cities Metropolitan Area, March-August 2008 and 1988-2008

    USGS Publications Warehouse

    Sanocki, Christopher A.; Langer, Susan K.; Menard, Jason C.

    2008-01-01

    This report depicts potentiometric surfaces and groundwater- level changes in three aquifers that underlie the seven-county Twin Cities Metropolitan Area. Approximately 350 groundwater levels were measured in wells from the three aquifers-the Prairie du Chien-Jordan, the Franconia-Ironton-Galesville, and the Mount Simon-Hinckley aquifers-in March and August of 2008. The report presents maps, associated data tables, and 22 geographic information system datasets. The maps presented in this report show the potentiometric surfaces in March and August of 2008 for all three aquifers, groundwater-level changes from March to August 2008 for each aquifer, and revised potentiometric-surface contours for the winter of 1988-89 for the Prairie du Chien-Jordan and the Mount Simon-Hinckley aquifers, and the estimated long-term (winter of 1988-89 to March 2008) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers. This report documents the methods used to construct the maps and provides a context for the period of the measurements. Although withdrawal demand is increasing in the Twin Cities Metropolitan area, particularly in the Prairie du Chien-Jordan aquifer, year-to-year changes in withdrawals can be substantial, and the relation between potentiometric surfaces in the major aquifers and year-to-year withdrawals is not well established. The estimated long-term (19-year) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers have not been large based on data and maps produced during this study, despite the large seasonal fluctuations shown by the March and August 2008 synoptic measurements.

  16. Potentiometric Surface of the Ozark Aquifer in Northern Arkansas, 2007

    USGS Publications Warehouse

    Pugh, Aaron L.

    2008-01-01

    The Ozark aquifer in northern Arkansas is composed of dolomite, limestone, sandstone, and shale of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 58 well and 5 spring water-level measurements collected in 2007 in Arkansas and Missouri, has a maximum water-level altitude measurement of 1,169 feet in Carroll County and a minimum water-level altitude measurement of 118 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the west, northwest, and north in the western part of the study area. Comparing the 2007 potentiometric-surface map with a predevelopment potentiometric-surface map indicates general agreement between the two surfaces except in the northwestern part of the study area. Potentiometric-surface differences can be attributed to withdrawals related to increasing population, changes in public-supply sources, processes or water withdrawals outside the study area, or differences in data-collection or map-construction methods. The rapidly increasing population within the study area appears to have some effect on ground-water levels. Although, the effect appears to have been minimized by the development and use of surface-water distribution infrastructure, suggesting most of the incoming populations are fulfilling their water needs from surface-water sources. The conversion of some users from ground water to surface water may be allowing water levels in wells to recover (rise) or decline at a slower rate, such as in Benton, Carroll, and Washington Counties.

  17. Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.

    DOEpatents

    Pipino, Andrew C. R.

    2003-02-04

    A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

  18. Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 1995

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.

    1996-01-01

    A map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in southern Maryland during September 1995 was prepared from water-level measurements in 42 wells. The potentiometric surface was nearly 120 feet above sea level near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel County, and 55 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometic surface declined to the south and southeast toward large well fields in the Annapolis and Waldorf areas and at the Chalk Point powerplant. Ground-water levels reached nearly 30 feet below sea level in the Annapolis area, 113 feet below sea level southwest of Waldorf, and more than 30 feet below sea level at the Chalk Point powerplant.

  19. Potentiometric surfaces of the Arnold Engineering Development Complex Area, Arnold Air Force Base, Tennessee, May and September 2011

    USGS Publications Warehouse

    Haugh, Connor J.; Robinson, John A.

    2016-01-29

    During May 2011, when water levels were near seasonal highs, water-level data were collected from 374 monitoring wells; and during September 2011, when water levels were near seasonal lows, water-level data were collected from 376 monitoring wells. Potentiometric surfaces were mapped by contouring altitudes of water levels measured in wells completed in the shallow aquifer, the upper and lower parts of the Manchester aquifer, and the Fort Payne aquifer. Water levels are generally 2 to 14 feet lower in September compared to May. The potentiometric-surface maps for all aquifers indicate a groundwater depression at the J4 test cell. Similar groundwater depressions in the shallow and upper parts of the Manchester aquifer are within the main testing area at the Arnold Engineering Development Complex at dewatering facilities.

  20. Potentiometric Surface of the Patuxent Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Patuxent aquifer in the Patuxent Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 41 wells. The highest measured water level was 165 feet above sea level near the northwestern boundary and in the outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined south towards well fields at Glen Burnie, Bryans Road, the Morgantown power plant, and the Chalk Point power plant. The measured ground-water levels were 81 feet below sea level at Glen Burnie, 47 feet below sea level southwest of Bryans Road, 27 feet below sea level at the Morgantown power plant, and 24 feet below sea level at the Chalk Point power plant.

  1. Potentiometric chip-based multipumping flow system for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples.

    PubMed

    Chango, Gabriela; Palacio, Edwin; Cerdà, Víctor

    2018-08-15

    A simple potentiometric chip-based multipumping flow system (MPFS) has been developed for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples. The proposed system was developed by using a poly(methyl methacrylate) chip microfluidic-conductor using the advantages of flow techniques with potentiometric detection. For this purpose, an automatic system has been designed and built by optimizing the variables involved in the process, such as: pH, ionic strength, stirring and sample volume. This system was applied successfully to water samples getting a versatile system with an analysis frequency of 12 samples per hour. Good correlation between chloride and fluoride concentration measured with ISE and ionic chromatography technique suggests satisfactory reliability of the system. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO₂ Modified Layers.

    PubMed

    Xue, Niuzi; Zhang, Qinyi; Zhang, Shunping; Zong, Pan; Yang, Feng

    2017-10-14

    It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS) gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO₂ (m-SnO₂) powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD), transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET). The gas sensors were fabricated using m-SnO₂ as the modified layers on the surface of commercial SnO₂ (c-SnO₂) by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO₂ layers on the c-SnO₂ gas sensor, and it was found that the S(c/m2) sensor exhibited the highest response (Ra/Rg = 22.2) to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed.

  4. Automated potentiometric electrolyte analysis system. [for use in weightlessness

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility is demonstrated of utilizing chemical sensing electrode technology as the basis for an automatically-controlled system for blood gas and electrolyte analyses under weightlessness conditions. The specific measurements required were pH, pCO2, sodium, chloride, potassium ions, and ionized calcium. The general electrode theory, and ion activity measurements are described along with the fluid transport package, electronics unit, and controller for the automated potentiometric analysis system.

  5. Potentiometric titration of metal ions in ethanol.

    PubMed

    Gibson, Graham T T; Mohamed, Mark F; Neverov, Alexei A; Brown, R S

    2006-09-18

    The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented.

  6. Potentiometric detection in UPLC as an easy alternative to determine cocaine in biological samples.

    PubMed

    Daems, Devin; van Nuijs, Alexander L N; Covaci, Adrian; Hamidi-Asl, Ezat; Van Camp, Guy; Nagels, Luc J

    2015-07-01

    The analytical methods which are often used for the determination of cocaine in complex biological matrices are a prescreening immunoassay and confirmation by chromatography combined with mass spectrometry. We suggest an ultra-high-pressure liquid chromatography combined with a potentiometric detector, as a fast and practical method to detect and quantify cocaine in biological samples. An adsorption/desorption model was used to investigate the usefulness of the potentiometric detector to determine cocaine in complex matrices. Detection limits of 6.3 ng mL(-1) were obtained in plasma and urine, which is below the maximum residue limit (MRL) of 25 ng mL(-1). A set of seven plasma samples and 10 urine samples were classified identically by both methods as exceeding the MRL or being inferior to it. The results obtained with the UPLC/potentiometric detection method were compared with the results obtained with the UPLC/MS method for samples spiked with varying cocaine concentrations. The intraclass correlation coefficient was 0.997 for serum (n =7) and 0.977 for urine (n =8). As liquid chromatography is an established technique, and as potentiometry is very simple and cost-effective in terms of equipment, we believe that this method is potentially easy, inexpensive, fast and reliable. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Application of nickel zinc ferrite/graphene nanocomposite as a modifier for fabrication of a sensitive electrochemical sensor for determination of omeprazole in real samples.

    PubMed

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2017-06-01

    In the present study, a simple and highly sensitive sensor for the determination of omeprazole based on nickel-zinc ferrite/graphene modified glassy carbon electrode is reported. The morphology and electro analytical performance of the fabricated sensor were characterized with X-ray diffraction spectrometry, Fourier transform infrared spectrometry, scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry and operation of the sensor. Results were compared with those achieved at the graphene modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions, linear response was over the range of 0.03-100.0µmolL -1 . The lower detection limit was found to be 0.015µmolL -1 . The effect of different interferences on the anodic current response of OMZ was investigated. By measuring the concentrations of omeprazole in plasma and pharmaceutical samples, the practical application of the modified electrode was evaluated. This revealed that the nickel-zinc ferrite/graphene modified glassy carbon electrode shows excellent analytical performance for the determination of omeprazole with a very low detection limit, high sensitivity, and very good accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Polymeric mercaptosilane-modified platinum electrodes for elimination of interferants in glucose biosensors.

    PubMed

    Jung, S K; Wilson, G S

    1996-02-15

    An oxidase-based glucose sensor has been developed that uses a mercaptosilane-modified platinum electrode to achieve selectivity of electrochemical interferants. A platinum-iridium (9:1) wire (0.178 mm o.d., sensing area of 1.12 mm2) is modified with (3-mercaptopropyl)trimethoxysilane. The modified sensors show excellent operational stability for more than 5 days. Glucose oxidase is immobilized on the modified surface (i) by using 3-maleimidopropionic acid as a linker or (ii) by cross-liking with bovine serum albumin using glutaraldehyde. Sensitivities in the range of 9.97 nA/mM glucose are observed when the enzyme is immobilized by method ii. Lower sensitivities (1.13 x 10(-1) nA/mM glucose) are observed when immobilization method i is employed. In terms of linear response range, the sensor enzyme-immobilized by method i is superior to that immobilized by method ii. The linearity is improved upon coating the enzyme layer with polyurethane. The sensor immobilized by method ii and coated with polyurethane exhibits a linear range to 15 mM glucose and excellent selectivity to glucose (0.47 nA/mM) against interferants such as ascorbic acid, uric acid, and acetaminophen.

  9. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1

    NASA Astrophysics Data System (ADS)

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-01

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08372a

  10. Microelectrode generator-collector systems for electrolytic titration: theoretical and practical considerations.

    PubMed

    Bell, Christopher G; Seelanan, Parinya; O'Hare, Danny

    2017-10-23

    Electochemical generator-collector systems, where one electrode is used to generate a reagent, have a potentially large field of application in sensing and measurement. We present a new theoretical description for coplanar microelectrode disc-disc systems where the collector is passive (such as a potentiometric sensor) and the generator is operating at constant flux. This solution is then used to develop a leading order solution for such a system where the reagent reacts reversibly in solution, such as in acid-base titration, where a hydrogen ion flux is generated by electrolysis of water. The principal novel result of the theory is that such devices are constrained by a maximum reagent flux. The hydrogen ion concentration at the collector will only reflect the buffer capacity of the bulk solution if this constraint is met. Both mathematical solutions are evaluated with several microfabricated devices and reasonable agreement with theory is demonstrated.

  11. A review on creatinine measurement techniques.

    PubMed

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr; Ganbari, Ahmad

    2012-08-15

    This paper reviews the entire recent global tendency for creatinine measurement. Creatinine biosensors involve complex relationships between biology and micro-mechatronics to which the blood is subjected. Comparison between new and old methods shows that new techniques (e.g. Molecular Imprinted Polymers based algorithms) are better than old methods (e.g. Elisa) in terms of stability and linear range. All methods and their details for serum, plasma, urine and blood samples are surveyed. They are categorized into five main algorithms: optical, electrochemical, impedometrical, Ion Selective Field-Effect Transistor (ISFET) based technique and chromatography. Response time, detection limit, linear range and selectivity of reported sensors are discussed. Potentiometric measurement technique has the lowest response time of 4-10 s and the lowest detection limit of 0.28 nmol L(-1) belongs to chromatographic technique. Comparison between various techniques of measurements indicates that the best selectivity belongs to MIP based and chromatographic techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Magneto-photonic crystal optical sensors with sensitive covers

    NASA Astrophysics Data System (ADS)

    Dissanayake, Neluka; Levy, Miguel; Chakravarty, A.; Heiden, P. A.; Chen, N.; Fratello, V. J.

    2011-08-01

    We report on a magneto-photonic crystal on-chip optical sensor for specific analyte detection with polypyrrole and gold nano particles as modified photonic crystal waveguide cover layers. The reaction of the active sensor material with various analytes modifies the electronic structure of the sensor layer causing changes in its refractive index and a strong transduction signal. Magneto-photonic crystal enhanced polarization rotation sensitive to the nature of the cover layer detects the index modification upon analyte adsorption. A high degree of selectivity and sensitivity are observed for aqueous ammonia and methanol with polypyrrole and for thiolated-gold- with gold-nanoparticles covers.

  13. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  14. A gas-sensing array produced from screen-printed, zeolite-modified chromium titanate

    NASA Astrophysics Data System (ADS)

    Pugh, David C.; Hailes, Stephen M. V.; Parkin, Ivan P.

    2015-08-01

    Metal oxide semiconducting (MOS) gas sensors represent a cheap, robust and sensitive technology for detecting volatile organic compounds. MOS sensors have consistently been shown to lack sensitivity to a broad range on analytes, leading to false positive errors. In this study an array of five chromium titanate (CTO) thick-film sensors were produced. These were modified by incorporating a range of zeolites, namely β, Y, mordenite and ZSM5, into the bulk sensor material. Sensors were exposed to three common reducing gases, namely acetone, ethanol and toluene, and a machine learning technique was applied to differentiate between the different gases. All sensors produced strong resistive responses (increases in resistance) and a support vector machine (SVM) was able to classify the data to a high degree of selectivity.

  15. Development and Testing of Prototype Commercial Gasifier Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelepouga, Serguei; Moery, Nathan; Wu, Mengbai

    This report presents the results of the sensor development and testing at the Wabash River gasifier. The project work was initiated with modification of the sensor software (Task 2) to enable real time temperature data acquisition, and to process and provide the obtained gasifier temperature information to the gasifier operators. The software modifications were conducted by the North Carolina State University (NCSU) researchers. The modified software was tested at the Gas Technology Institute (GTI) combustion laboratory to assess the temperature recognition algorithm accuracy and repeatability. Task 3 was focused on the sensor hardware modifications needed to improve reliability of themore » sensor system. NCSU conducted numerical modeling of the sensor probe’s purging flow. Based on the modeling results the probe purging system was redesigned to prevent carbon particulates deposition on the probe’s sapphire window. The modified design was evaluated and approved by the Wabash representative. The modified gasifier sensor was built and installed at the Wabash River gasifier on May 1 2014. (Task 4) The sensor was tested from the startup of the gasifier on May 5, 2015 until the planned autumn gasifier outage starting in the beginning of October, 2015. (Task 5) The project team successfully demonstrated the Gasifier Sensor system’s ability to monitor gasifier temperature while maintaining unobstructed optical access for six months without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage.« less

  16. Potentiometric surface and water-level difference maps of selected confined aquifers in Southern Maryland and Maryland’s Eastern Shore, 1975-2013

    USGS Publications Warehouse

    Staley, Andrew W.; Andreasen, David C.; Curtin, Stephen E.

    2014-01-01

    The potentiometric surface maps show water levels ranging from 165 feet above sea level to 199 feet below sea level. Water levels have declined by as much as 113 feet in the Aquia aquifer since 1982, 81 feet in the Magothy aquifer since 1975, and 61 and 95 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990.

  17. Potentiometric titration of thiols, cationic surfactants and halides using a solid-state silver-silver sulphide electrode.

    PubMed

    Pinzauti, S; Papeschi, G; La Porta, E

    1983-01-01

    A rugged, low resistance silver-silver sulphide solid-state electrode for determining pharmaceuticals as authentic samples or in dosage forms by potentiometric titration is described. Sodium tetraphenylborate, mercury(II) acetate and silver nitrate (0.01) M were employed as titrants in the analysis of cationic surfactants (cetylpyridinium chloride, benzethonium chloride, benzalkonium chloride and chlorhexidine salts), antithyroid drugs (methimazole and propylthiouracil) or sodium halides respectively.

  18. Altitude and configuration of the potentiometric surface in East Nottingham and West Nottingham Townships, Chester County, Pennsylvania, April through June 2004

    USGS Publications Warehouse

    Hale, Lindsay B.

    2006-01-01

    The maps shows the potentiometric surface for an area along the western boundary of Chester County that includes parts of East Nottingham and West Nottingham Townships.  The study area is mostly uderlain by metamorphic rocks of the Peters Creek Schist and Wissahickon Formation(Sloto, 1994).  Ground water is obtained from these bedrock formations by wells that intercept fractures.

  19. On-Board Monitoring of Engine Oil

    DTIC Science & Technology

    2011-04-01

    Viscosity of Transparent and Opaque Liquids at 40°C Infracal Soot Meter Karl Fischer Titration ASTM D 664 Standard Test Method for Acid Number of... methods involve potentiometric and colorimetric titrations, respectively. For both tests, a titration solvent is prepared and added to the oil. The...ASTM D 2896 and ASTM D 4739 [17]. Both methods involve potentiometric titrations. ASTM D 2896 uses a stronger acid and more polar solvent than ASTM D

  20. Analysis of Aircraft Fuels and Related Materials

    DTIC Science & Technology

    1982-09-01

    content by the Karl Fischer method . Each 2040 solvent sample represented a different step in a clean-up procedure conducted by Aero Propulsion...izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm. It has a re- peatability of 0.1 ppm... Method 163-80, which util- izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm and has a

  1. Comparison of HPLC, UV spectrophotometry and potentiometric titration methods for the determination of lumefantrine in pharmaceutical products.

    PubMed

    da Costa César, Isabela; Nogueira, Fernando Henrique Andrade; Pianetti, Gérson Antônio

    2008-09-10

    This paper describes the development and evaluation of a HPLC, UV spectrophotometry and potentiometric titration methods to quantify lumefantrine in raw materials and tablets. HPLC analyses were carried out using a Symmetry C(18) column and a mobile phase composed of methanol and 0.05% trifluoroacetic acid (80:20), with a flow rate of 1.0ml/min and UV detection at 335nm. For the spectrophotometric analyses, methanol was used as solvent and the wavelength of 335nm was selected for the detection. Non-aqueous titration of lumefantrine was carried out using perchloric acid as titrant and glacial acetic acid/acetic anhydride as solvent. The end point was potentiometrically determined. The three evaluated methods showed to be adequate to quantify lumefantrine in raw materials, while HPLC and UV methods presented the most reliable results for the analyses of tablets.

  2. Potentiometric surface map of the Magothy aquifer in southern Maryland, September, 2003

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Upper Cretaceous age in Southern Maryland during September 2002. The map is based on water-level measurements in 79 wells. The highest measured water level was 83 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south and east. Local gradients were directed toward the centers of two cones of depression that developed in response to pumping. These cones of depression were centered around well fields in the Waldorf area and at the Chalk Point power plant. Measured ground-water levels were as low as 81 feet below sea level in the Waldorf area and 75 feet below sea level at Chalk Point.

  3. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2002

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2003-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Upper Cretaceous age in Southern Maryland during September 2002. The map is based on water-level measurements in 79 wells. The highest measured water level was 83 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south and east. Local gradients were directed toward the centers of two cones of depression that developed in response to pumping. These cones of depression were centered around well fields in the Waldorf area and at the Chalk Point power plant. Measured ground-water levels were as low as 81 feet below sea level in the Waldorf area and 75 feet below sea level at Chalk Point.

  4. Potentiometric Surface of the Patuxent Aquifer in Southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the Patuxent aquifer in the Patuxent Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 42 wells. The highest measured water level was 169 feet above sea level in the outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined south towards well fields at Glen Burnie, Bryans Road, the Morgantown power plant, and the Chalk Point power plant. The measured groundwater levels were 78 feet below sea level at Glen Burnie, 56 feet below sea level at Bryans Road, 29 feet below sea level at the Morgantown power plant, and 28 feet below sea level at the Chalk Point power plant. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  5. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2001

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2001. The map is based on water-level measurements in 76 wells. The potentiometric surface was highest at 40 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level in the remainder of the study area. The hydraulic gradient was directed southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. A cone of depression formed in northern Calvert County due to pumpage at Chesapeake Beach and North Beach. The water level has declined to 44 feet below sea level in this area. The lowest measurement was 160 feet below sea level at the center of a cone of depression at Lexington Park.

  6. Potentiometric surface of the upper Floridan aquifer in Florida and in parts of Georgia, South Carolina, and Alabama, May 1985

    USGS Publications Warehouse

    Bush, Peter W.; Barr, G. Lynn; Clarke, John S.; Johnston, Richard H.

    1987-01-01

    A map, constructed as a part of the Floridan Regional Aquifer-System Analysis (RASA), shows the potentiometric surface of the Upper Floridan aquifer for May 1985. It is based on measurements of water level or artesian pressure made in about 2 ,500 wells during the period May 13 to 24, 1985. Only measurements from tightly cased wells open exclusively to the Upper Floridan aquifer were used to make the map. These included 1,425 wells in Florida, 924 in Georgia, 133 in South Carolina, and 21 in Alabama. The potentiometric surface of the Upper Floridan aquifer changed little between 1980 and 1985. Significant water level declines were observed only in southwest Georgia and west-central Florida. Low rainfall during early 1985 and associated pumping for irrigation caused the declines in both areas. (Lantz-PTT)

  7. Acid-base properties of the alumina surface: influence of the titration procedures on the microcalorimetric results.

    PubMed

    Morel, Jean-Pierre; Marmier, Nicolas; Hurel, Charlotte; Morel-Desrosiers, Nicole

    2009-10-01

    The enthalpy changes associated with the protonation and deprotonation of an alumina surface have been determined on the basis of microcalorimetry experiments and acid-base potentiometric titrations at 25 degrees C. It has been shown that the results may vary significantly according to the experimental procedure. In order to do so, the potentiometric and microcalorimetric titrations have been carried out first from an acidic pH to basic pH and second from a pH near the pH(zpc) of alumina to acidic or basic pH. It has been demonstrated that the pK(a) values deduced from the potentiometric titrations are the same whatever the experimental protocol whereas the only way to obtain meaningful enthalpies of proton exchange is to carry out microcalorimetric titrations by starting around the point of zero charge.

  8. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.

    PubMed

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-02-16

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.

  9. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors

    PubMed Central

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-01-01

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878

  10. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism

    PubMed Central

    Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose

    2014-01-01

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079

  11. Infection control procedures used in conjunction with computed dental radiography.

    PubMed

    Hubar, J S; Gardiner, D M

    2000-10-01

    Infection control guidelines for dental radiography have been modified since 1986, when the American Dental Association and the Centers for Disease Control and Prevention supported the concept of "universal blood and body fluid precautions." With the introduction of computed digital radiography, hardware manufacturers recommend that alternative infection control techniques are necessary to prevent potential damage to the digital x-ray sensors placed inside the patient's mouth. Thirty first-year dental hygiene students were asked to insert and remove a Schick CDR number 2 size intraoral digital x-ray sensor into modified Rinn XCP bitewing bite blocks and a modified Rinn Snap-a-ray five times with each of the recommended infection control covers. Reduced rates of cross contamination are possible if the plastic barrier envelope has an additional latex finger cot stretched over it and the x-ray sensor. Sole usage of a latex finger cot will result in a reduced incidence of contamination, but still not to acceptable levels. However, a plastic barrier envelope placed over the x-ray sensor and over the modified XCP bite block together or a covered sensor in a Snap-a-ray under normal conditions does not result in a perforation and is least likely to result in cross contamination.

  12. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks.

    PubMed

    Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing

    2018-02-28

    Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.

  13. New Electrochemically-Modified Carbon Paste Inclusion β-Cyclodextrin and Carbon Nanotubes Sensors for Quantification of Dorzolamide Hydrochloride.

    PubMed

    Alarfaj, Nawal Ahmad; El-Tohamy, Maha Farouk

    2016-12-02

    The present article introduces a new approach to fabricate carbon paste sensors, including carbon paste, modified carbon paste inclusion β-cyclodextrin, and carbon nanotubes for the quantification of dorzolamide hydrochloride (DRZ). This study is mainly based on the construction of three different carbon paste sensors by the incorporation of DRZ with phosphotungstic acid (PTA) to form dorzolamide-phosphotungstate (DRZ-PT) as an electroactive material in the presence of the solvent mediator ortho-nitrophenyloctyl ether ( o -NPOE). The fabricated conventional carbon paste sensor (sensor I), as well as the other modified carbon paste sensors using β-cyclodextrin (sensor II) and carbon nanotubes (sensor III), have been investigated. The sensors displayed Nernstian responses of 55.4 ± 0.6, 56.4 ± 0.4 and 58.1 ± 0.2 mV·decade -1 over concentration ranges of 1.0 × 10 -5 -1.0 × 10 -2 , 1.0 × 10 -6 -1.0 × 10 -2 , and 5.0 × 10 -8 -1.0 × 10 -2 mol·L -1 with lower detection limits of 5.0 × 10 -6 , 5.0 × 10 -7 , and 2.5 × 10 -9 mol·L -1 for sensors I, II, and III, respectively. The critical performance of the developed sensors was checked with respect to the effect of various parameters, including pH, selectivity, response time, linear concentration relationship, lifespan, etc. Method validation was applied according to the international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use ICH guidelines. The developed sensors were employed for the determination of DRZ in its bulk and dosage forms, as well as bio-samples. The observed data were statistically analyzed and compared with those obtained from other published methods.

  14. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers

    PubMed Central

    Xue, Niuzi; Zhang, Qinyi; Zhang, Shunping; Zong, Pan; Yang, Feng

    2017-01-01

    It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS) gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO2 (m-SnO2) powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD), transmission electron microscope (TEM) and Brunauer–Emmett–Teller (BET). The gas sensors were fabricated using m-SnO2 as the modified layers on the surface of commercial SnO2 (c-SnO2) by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO2 layers on the c-SnO2 gas sensor, and it was found that the S(c/m2) sensor exhibited the highest response (Ra/Rg = 22.2) to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed. PMID:29036898

  15. A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion

    NASA Astrophysics Data System (ADS)

    Tan, Funeng; Li, Lei

    2018-03-01

    A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.

  16. The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO₂/Zeolite Sensor.

    PubMed

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan; Wang, Xiaofeng

    2018-01-29

    In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO₂/Al₂O₃ ratio, different particle size of MFI type zeolites (ZSM-5) were coated on the SnO₂ to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO₂/Al₂O₃ = 70, grain size 300 nm) coated SnO₂ gas sensors to formaldehyde vapor were increased, and the response to acetone decreased compared with that of SnO₂ gas sensor, indicating an improved selectivity property. The other three ZSM-5 zeolites with SiO₂/Al₂O₃ 70, 150 and 470, respectively, and grain sizes all around 1 μm coated SnO₂ sensors did not show much difference with SnO₂ sensor for the response properties to both formaldehyde and acetone. The sensing mechanism of ZSM-5 modified sensors was briefly analyzed.

  17. Potassium sodium chloride integrated microconduits in a potentiometric analytical system.

    PubMed

    Hongbo, C; Junyan, S

    1991-09-01

    The preparation and application of a K(+), Na(+) and Cl(-) integrated microconduit potentiometric analytical system with tubular ion-selective electrodes (ISEs), microvalve, chemfold, electrostatic and pulse inhibitors is described. Electrochemical characteristics of the tubular ISEs and integrated microconduit FIA-ISEs were studied. The contents of K(+), Na(+) and Cl(-) in soil, water and serum were determined with the device. The analytical results agreed well with those obtained by flame photometric and silver nitrate volumetric methods.

  18. Potentiometric surfaces of the intermediate aquifer system, west-central Florida, May, 1993

    USGS Publications Warehouse

    Mularoni, R.A.

    1994-01-01

    The intermediate aquifer system underlies a 5000-sq-mi area including De Soto, Sarasota, Hardee, Manatee, and parts of Charlotte, Hillsborough, Highlands, and Polk Counties, Florida. It is overlain by the surf@cial aquifer system and underlain by the Floridan aquifer system. The potentiometric surface of the intermediate aquifer system was mapped by determining the altitude of water levels in a network of wells and represented on a map by contours that connect points of equal altitude. This map represents water-level conditions near the end of the spring dry season when ground- water withdrawals for agricultural use were high. The cumulative rainfall for the study area was 4.84 inches above normal for the period from June 1992 to May 1993. Hydrographs for selected wells indicated that the annual and seasonal fluctuations of the water levels were generally large (greater than 15 feet) in the central interior region where water demand for irrigation is high during the fall and spring. Seasonal fluctuations were smaller in the northern recharge area where water use is predominantly for public supply. Water levels measured in May 1993 for the composite intermediate aquifer potentiometric surface were lower than those measured in May or September 1992. A cone of depression exists in the potentiometric surface for the composite aquifer system at Warm Mineral Springs, which is a natural discharge point from this system.

  19. Potentiometric Surface of the Upper and Lower Aquifers of the North Coast Limestone Aquifer System and Hydrologic Conditions in the Arecibo-Manati Area, Puerto Rico, November 27-December 1, 2006

    USGS Publications Warehouse

    Rodriguez, Jose M.; Gómez-Gómez, Fernando

    2008-01-01

    A ground-water level synoptic survey of the limestone aquifer in the Arecibo to Manati area, Puerto Rico, was conducted from November 27 through December 1, 2006 by the U.S. Geological Survey in cooperation with the Puerto Rico Department of Natural and Environmental Resources. The purpose of the study was to define the spatial distribution of the potentiometric surface of the upper and lower aquifers of the North Coast limestone aquifer system. A potentiometric surface is defined as an areal representation of the levels to which water would rise in tightly cased wells open to an aquifer (Fetter, 1988). These potentiometric surface maps can be used by water-resources planners to understand the general direction of ground-water flow and to evaluate ground-water conditions for water supply and resource protection. The study was conducted during a period of rising ground-water levels resulting from above-normal rainfall during October and November 2006 when rainfall amount was about 30 percent above normal. The study area encompassed 125 square miles and was bounded to the north by the Atlantic Ocean, to the south by the southern extension of the limestone units, to the west by the Rio Grande de Arecibo, and to the east by the Rio Grande de Manati (pls. 1 and 2; inset).

  20. Development of chemiresponsive sensors for detection of common homemade explosives.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brotherton, Christopher M.; Wheeler, David Roger

    2012-05-01

    Field-structured chemiresistors (FSCRs) are polymer based sensors that exhibit a resistance change when exposed to an analyte of interest. The amount of resistance change depends on the polymer-analyte affinity. The affinity can be manipulated by modifying the polymer within the FSCRs. In this paper, we investigate the ability of chemically modified FSCRs to sense hydrogen peroxide vapor. Five chemical species were chosen based on their hydrophobicity or reactivity with hydrogen peroxide. Of the five investigated, FSCRs modified with allyl methyl sulfide exhibited a significant response to hydrogen peroxide vapor. Additionally, these same FSCRs were evaluated against a common interferrant inmore » hydrogen peroxide detection, water vapor. For the conditions investigated, the FSCRs modified with allyl methyl sulfide were able to successfully distinguish between water vapor and hydrogen peroxide vapor. A portion of the results presented here will be submitted to the Sensors and Actuators journal.« less

  1. Construction of a new Cu2+ coated wire ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylidene amino)phenyl)disufanyl)phenylimino)methyl)-4-methoxyphenol Schiff base.

    PubMed

    Shokrollahi, A; Abbaspour, A; Ghaedi, M; Haghighi, A Naghashian; Kianfar, A H; Ranjbar, M

    2011-03-15

    In this article a new coated platinum Cu(2+) ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L(1)) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10(-7)-1.0 × 10(-1) mol L(-1)) and a low detection limit of 9.8 × 10(-8) mol L(-1)of Cu(NO(3))(2). It has a Nernstian response with slope of 29.54 ± 1.62 mV decade(-1) and it is applicable in the pH range of 4.0-6.0 without any divergence in potential. The coated electrode has a short response time of approximately 9s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu(2+) ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu(2+) ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu(2+) ion with EDTA. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Biologically sensitive field-effect transistors: from ISFETs to NanoFETs.

    PubMed

    Pachauri, Vivek; Ingebrandt, Sven

    2016-06-30

    Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element covered by a gate dielectric layer which is electronically sensitive to the (bio-)chemical changes that occur on its surface. This review will provide a brief overview of the history of ISFET biosensors with general operation concepts and sensing mechanisms. We also discuss silicon nanowire-based ISFETs (SiNW FETs) as the modern nanoscale version of classical ISFETs, as well as strategies to functionalize them with biologically sensitive layers. We include in our discussion other ISFET types based on nanomaterials such as carbon nanotubes, metal oxides and so on. The latest examples of highly sensitive label-free detection of deoxyribonucleic acid (DNA) molecules using SiNW FETs and single-cell recordings for drug screening and other applications of ISFETs will be highlighted. Finally, we suggest new device platforms and newly developed, miniaturized read-out tools with multichannel potentiometric and impedimetric measurement capabilities for future biomedical applications. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Biologically sensitive field-effect transistors: from ISFETs to NanoFETs

    PubMed Central

    Pachauri, Vivek

    2016-01-01

    Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element covered by a gate dielectric layer which is electronically sensitive to the (bio-)chemical changes that occur on its surface. This review will provide a brief overview of the history of ISFET biosensors with general operation concepts and sensing mechanisms. We also discuss silicon nanowire-based ISFETs (SiNW FETs) as the modern nanoscale version of classical ISFETs, as well as strategies to functionalize them with biologically sensitive layers. We include in our discussion other ISFET types based on nanomaterials such as carbon nanotubes, metal oxides and so on. The latest examples of highly sensitive label-free detection of deoxyribonucleic acid (DNA) molecules using SiNW FETs and single-cell recordings for drug screening and other applications of ISFETs will be highlighted. Finally, we suggest new device platforms and newly developed, miniaturized read-out tools with multichannel potentiometric and impedimetric measurement capabilities for future biomedical applications. PMID:27365038

  4. ISFET-based sensor signal processor chip design for environment monitoring applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga

    2004-12-01

    In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.

  5. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  6. A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation.

    PubMed

    Tkach, Itshak; Jevtić, Aleksandar; Nof, Shimon Y; Edan, Yael

    2018-03-02

    Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors' performance, tasks' priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems.

  7. A nonaqueous potentiometric titration study of the dissociation of t-butyl methacrylate-methacrylic acid copolymers.

    PubMed

    Nakatani, Kiyoharu; Yamashita, Jun; Sekine, Tomomi; Toriumi, Minoru; Itani, Toshiro

    2003-05-01

    The dissociation of t-butyl methacrylate-methacrylic acid copolymers in dimethyl sulfoxide was analyzed by a nonaqueous potentiometric titration technique. The negative logarithm of the dissociation constant of the monomer unit of a methacrylic acid (MAA) monotonously increased with the increasing degree of dissociation corresponding to the titrant/MAA amount ratio, and was highly influenced by the copolymerization ratio. The results are discussed in terms of the suppression of the dissociation of MAA by a neighboring charged methacrylate anion unit.

  8. Ln3+-Catalyzed Alcoholysis of Organophosphates: New Methodology for the Catalytic Transformation of Phosphorus Pesticides and CW Agents

    DTIC Science & Technology

    2007-03-14

    1770. 9. Graham T. T. Gibson, Mark F. Mohamed, Alexei A. Neverov and R. S. Brown*, “ Potentiometric titration of metal ions in ethanol.” Inorganic...81, 495-504. 2 . Graham T. T. Gibson, Mark F. Mohamed, Alexei A. Neverov and R. S. Brown*, “ Potentiometric titration of metal ions in ethanol...necessary to understand the determination of pH in these anhydrous solvents, and then to undertake detailed studies of titration of metal

  9. Calorimetry Studies of Ammonia, Nitric Acid, and Ammonium Nitrate

    DTIC Science & Technology

    1979-10-01

    50 microns of Hg. Glass ampules containing NH4NO3were filled in the dry box and then flame-sealed under a nitrogen atmosphere. A Karl - Fischer titration...was standardized by potentiometric titration against standard 1 N HCI, For calorimetric measurements, samples were transferred by syringe into weighed... potentiometric titration against standard 1 N NaOH, was 99.6 + 0.2 wt% HNO3. As a measure of tte extent of reaction with the wall oTthe3* calorimeter, HNO3

  10. Semi-automatic version of the potentiometric titration method for characterization of uranium compounds.

    PubMed

    Cristiano, Bárbara F G; Delgado, José Ubiratan; da Silva, José Wanderley S; de Barros, Pedro D; de Araújo, Radier M S; Dias, Fábio C; Lopes, Ricardo T

    2012-09-01

    The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Berdalovic, I.; Bates, R.; Buttar, C.; Cardella, R.; Egidos Plaja, N.; Hemperek, T.; Hiti, B.; van Hoorne, J. W.; Kugathasan, T.; Mandic, I.; Maneuski, D.; Marin Tobon, C. A.; Moustakas, K.; Musa, L.; Pernegger, H.; Riedler, P.; Riegel, C.; Schaefer, D.; Schioppa, E. J.; Sharma, A.; Snoeys, W.; Solans Sanchez, C.; Wang, T.; Wermes, N.

    2018-01-01

    The upgrade of the ATLAS tracking detector (ITk) for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resistivity substrates with on-chip high-voltage biasing to achieve a large depleted active sensor volume. We have characterised depleted monolithic active pixel sensors (DMAPS), which were produced in a novel modified imaging process implemented in the TowerJazz 180 nm CMOS process in the framework of the monolithic sensor development for the ALICE experiment. Sensors fabricated in this modified process feature full depletion of the sensitive layer, a sensor capacitance of only a few fF and radiation tolerance up to 1015 neq/cm2. This paper summarises the measurements of charge collection properties in beam tests and in the laboratory using radioactive sources and edge TCT. The results of these measurements show significantly improved radiation hardness obtained for sensors manufactured using the modified process. This has opened the way to the design of two large scale demonstrators for the ATLAS ITk. To achieve a design compatible with the requirements of the outer pixel layers of the tracker, a charge sensitive front-end taking 500 nA from a 1.8 V supply is combined with a fast digital readout architecture. The low-power front-end with a 25 ns time resolution exploits the low sensor capacitance to reduce noise and analogue power, while the implemented readout architectures minimise power by reducing the digital activity.

  12. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    PubMed Central

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  13. Gas-Sensing Flip-Flop Circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Williams, Roger; Ryan, Margaret A.

    1995-01-01

    Gas-sensing integrated circuits consisting largely of modified static random-access memories (SRAMs) undergoing development, building on experience gained in use of modified SRAMs as radiation sensors. Each SRAM memory cell includes flip-flop circuit; sensors exploit metastable state that lies between two stable states (corresponding to binary logic states) of flip-flop circuit. Voltages of metastable states vary with exposures of gas-sensitive resistors.

  14. Small-volume potentiometric titrations: EPR investigations of Fe-S cluster N2 in mitochondrial complex I.

    PubMed

    Wright, John J; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2016-09-01

    EPR-based potentiometric titrations are a well-established method for determining the reduction potentials of cofactors in large and complex proteins with at least one EPR-active state. However, such titrations require large amounts of protein. Here, we report a new method that requires an order of magnitude less protein than previously described methods, and that provides EPR samples suitable for measurements at both X- and Q-band microwave frequencies. We demonstrate our method by determining the reduction potential of the terminal [4Fe-4S] cluster (N2) in the intramolecular electron-transfer relay in mammalian respiratory complex I. The value determined by our method, E m7 =-158mV, is precise, reproducible, and consistent with previously reported values. Our small-volume potentiometric titration method will facilitate detailed investigations of EPR-active centres in non-abundant and refractory proteins that can only be prepared in small quantities. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Preliminary map showing freshwater heads for the Mission Canyon and Lodgepole limestones and equivalent rocks of Mississippian age in the Northern Great Plains of Montana, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Miller, W. Roger; Strausz, S.A.

    1980-01-01

    A potentiometric-surface map showing freshwater heads for the Mission Canyon and Lodgepole Limestones of Mississippian age has been prepared as part of a study to determine the water-resources potential of the Mississippian Madison Limestone and associated rocks in the Northern Great Plains of Montana, North and South Dakota, and Wyoming. Most of the data used to prepare the map are from drill-stem tests of exploration and development wells drilled by the petroleum industry from 1946 to 1978. Some data are also from cased oil wells, water-production wells, and springs. A short explanation describes the seven categories of reliability used to evaluate the drill-stem-test data and identifies several factors that might explain the apparent anomalous highs and lows on the potentiometric surface. The map is at a scale of 1:1,000,000 and the potentiometric contour intervals are 100, 200, and 500 feet. (USGS)

  16. Potentiometric surface of the Upper Patapsco aquifer in southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 65 wells. The highest measured water level was 118 feet above sea level near the northern boundary and outcrop area of the aquifer in northern Anne Arundel County. From this area, the potentiometric surface declined to the south toward a well field in the Annapolis-Arnold area, and from all directions toward three additional cones of depression. These cones are located in the Waldorf-La Plata area, Chalk Point, and the Leonardtown-Lexington Park area. The lowest measured groundwater levels were 26 feet below sea level at Annapolis, 108 feet below sea level south of Waldorf, 60 feet below sea level at Chalk Point, and 83 feet below sea level at Leonardtown. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  17. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1981

    USGS Publications Warehouse

    Mack, F.K.; Wheeler, J.C.; Curtin, S.E.

    1982-01-01

    The map is based on measurements from a network of 83 observation wells cased to the Magothy aquifer. Highest levels of the potentiometric surface, 59 to 60 feet above sea level, were measured near the outcrop-subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The surface slopes to the southeast to above sea level along much of the western shore of Chesapeake Bay. Three separate, distinct, and extensive cones of depression have developed in the potentiometric surface around the well fields of the city of Annapolis-Broadneck Peninsula area, town of Waldorf, and Chalk Point. Several square miles of each cone are below sea level, and, in some areas at Chalk Point and Waldorf, the cone is 40 to 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy and Coastal Zone Administration. (USGS)

  18. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, August 1980

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, Judith C.; Curtin, Stephen E.

    1981-01-01

    This map is based on measurements made in a network of 77 observation wells. Highest levels of the potentiometric surface, 61 to 64 feet above sea level, were near the outcrop or subcrop of the aquifer in topographically high areas of Anne Arundel and northern Prince Georges Counties. The potentiometric surface slopes toward centers of pumpage near Annapolis, in northern Charles County, and southern Prince Georges County. Two separate , distinct, and extensive cones of depression have developed in the surface around the well fields of Waldorf, in northern Charles County, and the Chalk Point power plant, in southern Prince Georges County. The cone of depression in the Annapolis area has coalesced with a more shallow cone that includes the Broadneck Peninsula. The network of wells was developed and is operated and maintained as part of the cooperative program between the U.S. Geological Survey and agencies of the Maryland Department of Natural Resources. (USGS)

  19. Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 65 wells. The highest measured water level was 111 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale and Arnold. The measured ground-water levels were 87 feet below sea level at Severndale, and 42 feet below sea level at Arnold. There was also a cone of depression covering a large area in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The ground-water levels measured were as low as 219 feet below sea level at Waldorf, 187 feet below sea level at La Plata, 106 feet below sea level at Indian Head, and 89 feet below sea level at the Morgantown power plant.

  20. Potentiometric titration and equivalent weight of humic acid

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.

  1. Label-free potentiometric biosensor based on solid-contact for determination of total phenols in honey and propolis.

    PubMed

    Draghi, Patrícia Ferrante; Fernandes, Julio Cesar Bastos

    2017-03-01

    We developed a label-free potentiometric biosensor using tyrosinase extracted from Musa acuminata and immobilized by covalent bond on a surface of a solid-contact transducer. The transducer was manufactured containing two layers. The first layer contained a blend of poly(vinyl) chloride carboxylated (PVC-COOH), graphite and potassium permanganate. On this layer, we deposited a second layer containing just a mixture of poly(vinyl chloride) carboxylated and graphite. On the last layer of the transducer, we immobilized the tyrosinase enzyme by reaction with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride. The solid-contact potentiometric biosensor presented at low detection limit of 7.3×10 -7 M and a linear range to catechol concentration between 9.3×10 -7 M and 8.3×10 -2 M. This biosensor was applied to determine the amount of total phenols in different samples of honey and propolis. The results agreed with the Folin-Ciocalteu method. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Hydrogeologic setting and the potentiometric surfaces of regional aquifers in the Hollandale Embayment, southeastern Minnesota, 1970-80

    USGS Publications Warehouse

    Delin, G.N.; Woodward, D.G.

    1984-01-01

    Potentiometric-surface maps for each aquifer indicate that movement of ground water is predominantly toward the major rivers. The St. Croix, Minnesota, and Mississippi Rivers constitute regional discharge boundaries for ground-water flow. A major ground-water divide in the St. Peter, Prairie du Chien-Jordan, Ironton-Galesville, and Mount Simon-Hinckley aquifers in the south-central part of the Hollandale embayment separates ground-water flow northward toward the Twin Cities area and southward toward Iowa. The St. Peter and Prairie du Chien-Jordan aquifers in the southeastern part of the embayment contain ground-water mounds as high as 90 ft above the regional potentiometric surface. The mounds occur as a result of increased recharge where the Decorah-Platteville-Glenwood confining bed has been removed by erosion and the aquifers subcrop beneath drift that is about 20 ft thick. This head distribution produces a locally complex pattern of flow in which ground water moves southwesterly toward Iowa instead of directly toward the Mississippi River.

  3. Potentiometric analytical microsystem based on the integration of a gas-diffusion step for on-line ammonium determination in water recycling processes in manned space missions.

    PubMed

    Calvo-López, Antonio; Ymbern, Oriol; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2015-05-18

    The design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane. The potentiometric detection system is based on an all-solid state ammonium selective electrode and a screen-printed Ag/AgCl reference electrode. The analytical features provided by the analytical microsystem after the optimization process were a linear range from 0.15 to 500 mg L(-1) and a detection limit of 0.07 ± 0.01 mg L(-1). Nevertheless, the operational features can be easily adapted to other applications through the modification of the hydrodynamic variables of the microfluidic platform. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 50 wells. The highest measured water level was 120 feet above sea level near the northern boundary and outcrop area of the aquifer in northern Anne Arundel County. From this area, the potentiometric surface declined to the south toward a well field in the Annapolis-Arnold area, and from all directions toward four cones of depression. These cones are located in the Waldorf-La Plata area, Chalk Point-Prince Frederick area, Swan Point subdivision in southern Charles County, and the Lexington Park-St. Inigoes area. The lowest measured ground-water level was 44 feet below sea level at Arnold, 106 feet below sea level south of Waldorf, 54 feet below sea level at Swan Point, 59 feet below sea level at Chalk Point, and 58 feet below sea level at Lexington Park.

  5. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power consumption (no heating for operation, no voltage applied to the sensor, only a voltmeter is needed to measure the output), is small in size, is simple to batch-fabricate, and is high in sensor yield. It is applicable in a wide humidity range, with improved operation in low humidity after the additives were added to the Nafion film. Through further improvement and development, the sensor can be used for aerospace applications such as fuel leak detection, fire detection, and environmental monitoring.

  6. Investigation of interaction between the Pt(II) ions and aminosilane-modified silica surface in heterogeneous system

    NASA Astrophysics Data System (ADS)

    Nowicki, Waldemar; Gąsowska, Anna; Kirszensztejn, Piotr

    2016-05-01

    UV-vis spectroscopy measurements confirmed the reaction in heterogeneous system between Pt(II) ions and ethylenediamine type ligand, n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, immobilized at the silica surface. The formation of complexes is a consequence of interaction between the amine groups from the ligand grafted onto SiO2 and ions of platinum. A potentiometric titration technique was to determine the stability constants of complexes of Pt(II) with immobilized insoluble ligand (SG-L), on the silica gel. The results show the formation of three surface complexes of the same type (PtHSG-L, Pt(HSG-L)2, PtSG-L) with SG-L ligand, in a wide range of pH for different Debye length. The concentration distribution of the complexes in a heterogeneous system is evaluated.

  7. Advances on Aryldiazonium Salt Chemistry Based Interfacial Fabrication for Sensing Applications.

    PubMed

    Cao, Chaomin; Zhang, Yin; Jiang, Cheng; Qi, Meng; Liu, Guozhen

    2017-02-15

    Aryldiazonium salts as coupling agents for surface chemistry have evidenced their wide applications for the development of sensors. Combined with advances in nanomaterials, current trends in sensor science and a variety of particular advantages of aryldiazonium salt chemistry in sensing have driven the aryldiazonium salt-based sensing strategies to grow at an astonishing pace. This review focuses on the advances in the use of aryldiazonium salts for modifying interfaces in sensors and biosensors during the past decade. It will first summarize the current methods for modification of interfaces with aryldiazonium salts, and then discuss the sensing applications of aryldiazonium salts modified on different transducers (bulky solid electrodes, nanomaterials modified bulky solid electrodes, and nanoparticles). Finally, the challenges and perspectives that aryldiazonium salt chemistry is facing in sensing applications are critically discussed.

  8. A graphene-based electrochemical sensor for sensitive detection of paracetamol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Xinhuang; Wang, Jun; Wu, Hong

    2010-05-15

    An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptivemore » capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.« less

  9. Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection.

    PubMed

    Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza

    2011-07-20

    A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.

  10. Study of a QCM dimethyl methylphosphonate sensor based on a ZnO-modified nanowire-structured manganese dioxide film.

    PubMed

    Pei, Zhifu; Ma, Xingfa; Ding, Pengfei; Zhang, Wuming; Luo, Zhiyuan; Li, Guang

    2010-01-01

    Sensitive, selective and fast detection of chemical warfare agents is necessary for anti-terrorism purposes. In our search for functional materials sensitive to dimethyl methylphosphonate (DMMP), a simulant of sarin and other toxic organophosphorus compounds, we found that zinc oxide (ZnO) modification potentially enhances the absorption of DMMP on a manganese dioxide (MnO(2)) surface. The adsorption behavior of DMMP was evaluated through the detection of tiny organophosphonate compounds with quartz crystal microbalance (QCM) sensors coated with ZnO-modified MnO(2) nanofibers and pure MnO(2) nanofibers. Experimental results indicated that the QCM sensor coated with ZnO-modified nanostructured MnO(2) film exhibited much higher sensitivity and better selectivity in comparison with the one coated with pure MnO(2) nanofiber film. Therefore, the DMMP sensor developed with this composite nanostructured material should possess excellent selectivity and reasonable sensitivity towards the tiny gaseous DMMP species.

  11. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.

    PubMed

    Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming

    2013-12-01

    Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.

    PubMed

    Makos, Monique A; Omiatek, Donna M; Ewing, Andrew G; Heien, Michael L

    2010-06-15

    This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernible to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster.

  13. Honeycomb-like Porous Carbon-Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Manikandan, Arumugam; Lo, An-Ya; Chueh, Yu-Lun

    2015-07-29

    Herein, we report the preparation of Pongam seed shells-derived activated carbon and cobalt oxide (∼2-10 nm) nanocomposite (PSAC/Co3O4) by using a general and facile synthesis strategy. The as-synthesized PSAC/Co3O4 samples were characterized by a variety of physicochemical techniques. The PSAC/Co3O4-modified electrode is employed in two different applications such as high performance nonenzymatic glucose sensor and supercapacitor. Remarkably, the fabricated glucose sensor is exhibited an ultrahigh sensitivity of 34.2 mA mM(-1) cm(-2) with a very low detection limit (21 nM) and long-term durability. The PSAC/Co3O4 modified stainless steel electrode possesses an appreciable specific capacitance and remarkable long-term cycling stability. The obtained results suggest the as-synthesized PSAC/Co3O4 is more suitable for the nonenzymatic glucose sensor and supercapacitor applications outperforming the related carbon based modified electrodes, rendering practical industrial applications.

  14. Study of a QCM Dimethyl Methylphosphonate Sensor Based on a ZnO-Modified Nanowire-Structured Manganese Dioxide Film

    PubMed Central

    Pei, Zhifu; Ma, Xingfa; Ding, Pengfei; Zhang, Wuming; Luo, Zhiyuan; Li, Guang

    2010-01-01

    Sensitive, selective and fast detection of chemical warfare agents is necessary for anti-terrorism purposes. In our search for functional materials sensitive to dimethyl methylphosphonate (DMMP), a simulant of sarin and other toxic organophosphorus compounds, we found that zinc oxide (ZnO) modification potentially enhances the absorption of DMMP on a manganese dioxide (MnO2) surface. The adsorption behavior of DMMP was evaluated through the detection of tiny organophosphonate compounds with quartz crystal microbalance (QCM) sensors coated with ZnO-modified MnO2 nanofibers and pure MnO2 nanofibers. Experimental results indicated that the QCM sensor coated with ZnO-modified nanostructured MnO2 film exhibited much higher sensitivity and better selectivity in comparison with the one coated with pure MnO2 nanofiber film. Therefore, the DMMP sensor developed with this composite nanostructured material should possess excellent selectivity and reasonable sensitivity towards the tiny gaseous DMMP species. PMID:22163653

  15. Development and Characterization of a Voltammetric Carbon-fiber Microelectrode pH Sensor

    PubMed Central

    Makos, Monique A.; Omiatek, Donna M.; Ewing, Andrew G.; Heien, Michael L.

    2010-01-01

    This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernable to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster. PMID:20380393

  16. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  17. Descriptions and characterizations of water-level data and groundwater flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer

    USGS Publications Warehouse

    Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.

    2013-01-01

    This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.

  18. A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation †

    PubMed Central

    Nof, Shimon Y.; Edan, Yael

    2018-01-01

    Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors’ performance, tasks’ priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems. PMID:29498683

  19. Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages.

    PubMed

    Lonsdale, W; Wajrak, M; Alameh, K

    2018-04-01

    A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO 2 on Al 2 O 3 substrate, modified with thin layers of sputter-deposited Ta 2 O 5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO 2 . The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, September 2006

    USGS Publications Warehouse

    Ortiz, A.G.

    2007-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2006. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 46.06 inches for west-central Florida (from October 2005 through September 2006) was 6.91 inches below the historical cumulative average of 52.97 inches (Southwest Florida Water Management District, 2006). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during September 18-22, 2006. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman, 2007). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal high water-level condition.

  1. Potentiometric surface of the Upper Floridan aquifer, west-central Florida, September 2005

    USGS Publications Warehouse

    Ortiz, A.G.

    2006-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public-supply, domestic use, irrigation, and brackish-water desalination in coastal communities (Southwest Florida Water Management District, 2000).This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2005. The potentiometric surface is an imaginary surface, connecting points of equal altitude to which water will rise in tightly cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 55.19 inches for west-central Florida (from October 2004 through September 2005) was 2.00 inches above the historical cumulative average of 53.19 inches (Southwest Florida Water Management District, 2005). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District.This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period September 19-23, 2005. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Altamonte Springs, Florida (Kinnaman, 2006). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a "snapshot" of conditions at a specific time, nor do they necessarily coincide with the seasonal high water-level condition.

  2. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, September 2007

    USGS Publications Warehouse

    Ortiz, A.G.

    2008-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2007. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 39.50 inches for west-central Florida (from October 2006 through September 2007) was 13.42 inches below the historical cumulative average of 52.92 inches (Southwest Florida Water Management District, 2007). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period September 17-21, 2007. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2008). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal high water-level condition.

  3. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, September 2008

    USGS Publications Warehouse

    Ortiz, Anita G.

    2009-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2008. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 50.63 inches for west-central Florida (from October 2007 through September 2008) was 2.26 inches below the historical cumulative average of 52.89 inches (Southwest Florida Water Management District, 2008). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period September 15-19, 2008. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2009). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal high water-level condition.

  4. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, May 2008

    USGS Publications Warehouse

    Ortiz, A.G.

    2008-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2008. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 46.95 inches for west-central Florida (from June 2007 through May 2008) was 5.83 inches below the historical cumulative average of 52.78 inches (Southwest Florida Water Management District, 2008). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period May 19-23, 2008. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2008). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition.

  5. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, May 2007

    USGS Publications Warehouse

    Ortiz, A.G.

    2008-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2007. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 41.21 inches for west-central Florida (from June 2006 through May 2007) was 11.63 inches below the historical cumulative average of 52.84 inches (Southwest Florida Water Management District, 2007). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2007). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition.

  6. New Electrochemically-Modified Carbon Paste Inclusion β-Cyclodextrin and Carbon Nanotubes Sensors for Quantification of Dorzolamide Hydrochloride

    PubMed Central

    Alarfaj, Nawal Ahmad; El-Tohamy, Maha Farouk

    2016-01-01

    The present article introduces a new approach to fabricate carbon paste sensors, including carbon paste, modified carbon paste inclusion β-cyclodextrin, and carbon nanotubes for the quantification of dorzolamide hydrochloride (DRZ). This study is mainly based on the construction of three different carbon paste sensors by the incorporation of DRZ with phosphotungstic acid (PTA) to form dorzolamide-phosphotungstate (DRZ-PT) as an electroactive material in the presence of the solvent mediator ortho-nitrophenyloctyl ether (o-NPOE). The fabricated conventional carbon paste sensor (sensor I), as well as the other modified carbon paste sensors using β-cyclodextrin (sensor II) and carbon nanotubes (sensor III), have been investigated. The sensors displayed Nernstian responses of 55.4 ± 0.6, 56.4 ± 0.4 and 58.1 ± 0.2 mV·decade−1 over concentration ranges of 1.0 × 10−5–1.0 × 10−2, 1.0 × 10−6–1.0 × 10−2, and 5.0 × 10−8–1.0 × 10−2 mol·L−1 with lower detection limits of 5.0 × 10−6, 5.0 × 10−7, and 2.5 × 10−9 mol·L−1 for sensors I, II, and III, respectively. The critical performance of the developed sensors was checked with respect to the effect of various parameters, including pH, selectivity, response time, linear concentration relationship, lifespan, etc. Method validation was applied according to the international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use ICH guidelines. The developed sensors were employed for the determination of DRZ in its bulk and dosage forms, as well as bio-samples. The observed data were statistically analyzed and compared with those obtained from other published methods. PMID:27918458

  7. Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: Application as a glucose sensor.

    PubMed

    Samuei, Sara; Fakkar, Jila; Rezvani, Zolfaghar; Shomali, Ashkan; Habibi, Biuck

    2017-03-15

    In the present work, a novel nanocomposite based on the graphene quantum dots and CoNiAl-layered double-hydroxide was successfully synthesized by co-precipitation method. To achieve the morphological, structural and compositional information, the resulted nanocomposite was characterized by scanning electron microscopy X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and photoluminescence. Then, the nanocomposite was used as a modifier to fabricate a modified carbon paste electrode as a non-enzymatic sensor for glucose determination. Electrochemical behavior and determination of glucose at the nanocomposite modified carbon paste electrode were investigated by cyclic voltammetry and chronoamperometry methods, respectively. The prepared sensor offered good electrocatalytic properties, fast response time, high reproducibility and stability. At the optimum conditions, the constructed sensor exhibits wide linear range; 0.01-14.0 mM with a detection limit of 6 μM (S/N = 3) and high sensitivity of 48.717 μAmM -1 . Finally, the sensor was successfully applied to determine the glucose in real samples which demonstrated its applicability. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  9. Semi-automated potentiometric titration method for uranium characterization.

    PubMed

    Cristiano, B F G; Delgado, J U; da Silva, J W S; de Barros, P D; de Araújo, R M S; Lopes, R T

    2012-07-01

    The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.

    PubMed

    Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui

    2005-06-01

    A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.

  11. Interbasin groundwater flow in south central Nevada: A further comment on the discussion between Davisson et. al.. [1999a, 1999b] and Thomas [1999

    USGS Publications Warehouse

    Winograd, Isaac J.

    2001-01-01

    In their response to the comments by Thomas [1999], Davisson et al. [1999a] dismiss a large set of potentiometric measurements pertinent to an understanding of the hydrogeology of Yucca and Frenchman Flats in southcentral Nevada. This commentary is submitted to demonstrate, first, that their dismissal of this data set is unfounded and, second, that these potentiometric data call into question the central thesis of the original paper by Davisson et al. [1999b].

  12. Potentiometric surface of the Catahoula aquifer in central Louisiana, 2013

    USGS Publications Warehouse

    Fendick, Jr., Robert B.; Carter, Kayla

    2015-12-09

    The potentiometric surface of the Catahoula aquifer was constructed by using the altitude of water levels measured at 29 wells during the period May through September 2013. The altitude of water levels ranged from 0.02 ft above the National Geodetic Vertical Datum of 1929 (NGVD 29) in well Co-51 to 238 ft above NGVD 29 in well Na-317. Groundwater movement in the Catahoula aquifer is generally to the southeast and towards discharge areas beneath the Sabine, Red, Little, and Tensas River Valleys.

  13. Enhanced electrochemiluminescence sensor from tris(2,2'-bipyridyl)ruthenium(II) incorporated into MCM-41 and an ionic liquid-based carbon paste electrode.

    PubMed

    Li, Jing; Huang, Minghua; Liu, Xiaoqing; Wei, Hui; Xu, Yuanhong; Xu, Guobao; Wang, Erkang

    2007-07-01

    The electrochemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] ion-exchanged in the sulfonic-functionalized MCM-41 silicas was developed with tripropylamine (TPrA) as a co-reactant in a carbon paste electrode (CPE) using a room temperature ionic liquid (IL) as a binder. The sulfonic-functionalized silicas MCM-41 were used for preparing an ECL sensor by the electrostatic interactions between Ru(bpy)(3)(2+) cations and sulfonic acid groups. We used the IL as a binder to construct the CPE (IL-CPE) to replace the traditional binder of the CPE (T-CPE)--silicone oil. The results indicated that the MCM-41-modified IL-CPE had more open structures to allow faster diffusion of Ru(bpy)(3)(2+) and that the ionic liquid also acted as a conducting bridge to connect TPrA with Ru(bpy)(3)(2+) sites immobilized in the electrode, resulting in a higher ECL intensity compared with the MCM-41-modified T-CPE. Herein, the detection limit for TPrA of the MCM-41-modified IL-CPE was 7.2 nM, which was two orders of magnitude lower than that observed at the T-CPE. When this new sensor was used in flow injection analysis (FIA), the MCM-41-modified IL-CPE ECL sensor also showed good reproducibility. Furthermore, the sensor could also be renewed easily by mechanical polishing whenever needed.

  14. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  15. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  16. Electrochemical determination of bisphenol A in plastic bottled drinking water and canned beverages using a molecularly imprinted chitosan-graphene composite film modified electrode.

    PubMed

    Deng, Peihong; Xu, Zhifeng; Kuang, Yunfei

    2014-08-15

    Herein, a novel electrochemical sensor based on an acetylene black paste electrode modified with molecularly imprinted chitosan-graphene composite film for sensitive and selective detection of bisphenol A (BPA) has been developed. Several important parameters controlling the performance of the sensor were investigated and optimised. The imprinted sensor offers a fast response and sensitive BPA quantification. Under the optimal conditions, a linear range from 8.0 nM to 1.0 μM and 1.0 to 20 μM for the detection of BPA was observed with the detection limit of 6.0 nM (S/N=3). Meanwhile, the fabricated sensor showed excellent specific recognition to template molecule among the structural similarities and coexistence substances. Furthermore, this imprinted electrochemical sensor was successfully employed to detect BPA in plastic bottled drinking water and canned beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Development of a high-sensitivity plasticizer sensor based on a quartz crystal microbalance modified with a nanostructured nickel hydroxide film

    NASA Astrophysics Data System (ADS)

    Hu, Ruifen; Zhang, Kaihuan; Fan, Guokang; Luo, Zhiyuan; Li, Guang

    2015-05-01

    Nanostructured nickel hydroxide (nano-Ni(OH)2) was synthesized at a low temperature without annealing. Accordingly, a plasticizer sensor based on a quartz crystal microbalance (QCM) modified with the nano-Ni(OH)2 sensing film was fabricated to detect dibutyl phthalate (DBP) and its relative film thickness was optimized. The sensor worked at room temperature and exhibited a high sensitivity of 4.91 Hz ppb-1 to DBP in a low concentration range of 5-20 ppb, and an ultra-low detection limit of 5 ppb was achieved. In addition, the sensor maintained good repeatability as well as stability shown by the experimental data. The responses to five possible interferences and four other plasticizers were also measured, which indicated the excellent selectivity of the sensor and its potential use in monitoring plasticizers in a gaseous state.

  18. 75 FR 26318 - Office of Hazardous Materials Safety; Notice of Applications for Modification of Special Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... volume of the radiation sensor to be a function of the fill pressure not to exceed 57 grams of BF3 per sensor. 12561-M Rhodia, Inc., 49 CFR 172.203 (a); To modify the special Cranbury, NJ. 173.31; 179.13... Western 49 CFR 172.203(a), To modify the special International Gas & 172.301(c), permit to add DOT 3AL...

  19. Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A.

    PubMed

    Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Jubete, Elena; Ochoteco, Estibalitz; Loinaz, Iraida; Cabañero, Germán; García, Isabel; Penadés, Soledad

    2011-04-15

    The development of sensors to detect specific weak biological interactions is still today a challenging topic. Characteristics of carbohydrate-protein (lectin) interactions include high specificity and low affinity. This work describes the development of nanostructured impedimetric sensors for the detection of concanavalin A (Con A) binding to immobilized thiolated carbohydrate derivatives (D-mannose or D-glucose) onto screen-printed carbon electrodes (SPCEs) modified with gold nanoparticles. Thiolated D-galactose derivative was employed as negative control to evaluate the selectivity of the proposed methodology. After binding the thiolated carbohydrate to the nanostructured SPCEs, different functionalized thiols were employed to form mixed self-assembled monolayers (SAM). Electrochemical impedance spectroscopy (EIS) was employed as a technique to evaluate the binding of Con A to selected carbohydrates through the increase of electron transfer resistance of the ferri/ferrocyanide redox probe at the differently SAM modified electrodes. Different variables of the assay protocol were studied in order to optimize the sensor performance. Selective Con A determinations were only achieved by the formation of mixed SAMs with adequate functionalized thiols. Important differences were obtained depending on the chain lengths and functional groups of these thiols. For the 3-mercapto-1-propanesulfonate mixed SAMs, the electron transfer resistance varied linearly with the Con A concentration in the 2.2-40.0 μg mL(-1) range for D-mannose and D-glucose modified sensors. Low detection limits (0.099 and 0.078 pmol) and good reproducibility (6.9 and 6.1%, n=10) were obtained for the D-glucose and D-mannose modified sensors, respectively, without any amplification strategy. © 2011 American Chemical Society

  20. Expanding Cancer Detection Using Molecular Imprinting for a Novel Point-of-Care Diagnostic Device

    NASA Astrophysics Data System (ADS)

    Yu, Yingjie; Rafailovich, Miriam; Wang, Yantian; Kang, Yeona; Zhang, Lingxi; Rigas, Basil; Division of Gastroenterology, School of Medicine Team

    2013-03-01

    We propose the use of a potentiometric biosensor that incorporates the efficient and specific molecular imprinting (MI) method with a self-assembled monolayer (SAM). We first tested the biosensor using carcinoembryonic antigen, CEA, a biomarker associated with pancreatic cancer. No change in detection efficiency was observed, indicating that the sensor is able to discriminate for the template analyte even in concentrated solution of similar substances. In addition, we use biosensor to discriminate normal fibrinogen and damaged fibrinogen, which is critical for the detection of bleeding disorder. Computer simulations of the protein structure were performed in order to estimate the changes in morphology and determine the sensitivity of the biosensor to conformational changes in the proteins. We found that even small changes in PH can generate rotation of the surface functional groups. Yet, the results show that only when the detection and imprinting conditions are similar, robust signals occurs. Hence we concluded that both morphology and surface chemistry play a role in the recognition.

  1. Expanding Cancer Detection Using Molecular Imprinting for a Novel Point-of-Care Diagnostic Device

    NASA Astrophysics Data System (ADS)

    Yu, Yingjie; Rafailovich, Miriam; Wang, Yantian; Ranjbaran, Alina; Wang, Tom; Nam, David

    2012-02-01

    We propose the use of a potentiometric biosensor that incorporates the efficient and specific molecular imprinting (MI) method with a self-assembled monolayer (SAM). We first tested the biosensor using carcinoembryonic antigen, CEA, a biomarker associated with pancreatic cancer. No change in detection efficiency was observed when detection was performed in the presence of 100% serum albumin, indicating that the sensor is able to discriminate for the template analyte even in concentrated solution of similar substances. Computer simulations of the protein structure were performed in order to estimate the changes in morphology and determine the sensitivity of the biosensor to conformational changes in the proteins. We found that even small changes in PH can generate rotation of the surface functional groups, without significant change in the morphology. Yet, the results show that only when the detection and imprinting conditions are similar, robust signals occurs. Hence we concluded that both morphology and surface chemistry play a role in the recognition.

  2. Assessment of bitterness intensity and suppression effects using an Electronic Tongue

    NASA Astrophysics Data System (ADS)

    Legin, A.; Rudnitskaya, A.; Kirsanov, D.; Frolova, Yu.; Clapham, D.; Caricofe, R.

    2009-05-01

    Quantification of bitterness intensity and effectivness of bitterness suppression of a novel active pharmacological ingredient (API) being developed by GSK was performed using an Electronic Tongue (ET) based on potentiometric chemical sensors. Calibration of the ET was performed with solutions of quinine hydrochloride in the concentration range 0.4-360 mgL-1. An MLR calibration model was developed for predicting bitterness intensity expressed as "equivalent quinine concentration" of a series of solutions of quinine, bittrex and the API. Additionally the effectiveness of sucralose, mixture of aspartame and acesulfame K, and grape juice in masking the bitter taste of the API was assessed using two approaches. PCA models were produced and distances between compound containing solutions and corresponding placebos were calculated. The other approach consisted in calculating "equivalent quinine concentration" using a calibration model with respect to quinine concentration. According to both methods, the most effective taste masking was produced by grape juice, followed by the mixture of aspartame and acesulfame K.

  3. Estimated effects of projected ground-water withdrawals on movement of the saltwater front in the Floridan aquifer, 1976-2000, west-central Florida

    USGS Publications Warehouse

    Wilson, William Edward

    1982-01-01

    Maps of observed 1976 and simulated 2000 potentiometric surfaces were used to estimate rates of saltwater encroachment and theoretical predevelopment equilibrium positions of the saltwater-freshwater interface in west-central Florida. The observed saltwater front, defined by the 19,000 milligrams-per-liter line of equal chloride concentration in the lower part of the Floridan aquifer, corresponds closely to a theoretical predevelopment equilibrium position of a saltwater-freshwater interface. The interface position was computed by the Ghyben-Herzberg method, using heads from a map of the predevelopment potentiometric surface. In maps of both the observed May 1976 and simulated May 2000 potentiometric surface, the saltwater front was within a large seasonal cone of depression in parts of Hillsborough, Manatee, and Sarasota Counties. Average landward flow rate of the front was computed to be 0.30 foot per day in May 1976 and 0.36 foot per day in May 2000. Seaward potentiometric-surface gradient under simulated October 2000 conditions averaged 8.8 x 10-5 foot per foot less than under observed September 1976 conditions. Regional observation wells are desirable for monitoring potentiometric-level changes in western Hardee County and eastern Manatee County and for monitoring water-quality changes along the saltwater front, on its landward side, from mid-Sarasota County northward to Hillsborough County. Net landward movement of the saltwater front in the lower part of the Floridan aquifer is probably occurring under existing conditions. Pumping during 1976-2000 would probably increase slightly the rate of movement. However, rates are so slow that on a regional basis saltwater encroachment under existing and projected conditions is not presently a threat to the existing freshwater resources. The maximum projected regional landward movement, under 'worst case' conditions, of the saltwater front between 1976 and 2000 is estimated to be about one-half mile. Significant local encroachment could result from (1) ground-water development in the zone of transition and (2) deviations of local hydrogeologic conditions from average regional conditions.

  4. Bulk- and surface-modified combinable PDMS capillary sensor array as an easy-to-use sensing device with enhanced sensitivity to elevated concentrations of multiple serum sample components.

    PubMed

    Fujii, Yuji; Henares, Terence G; Kawamura, Kunio; Endo, Tatsuro; Hisamoto, Hideaki

    2012-04-21

    To enhance sensitivity and facilitate easy sample introduction into a combinable poly(dimethylsiloxane) (PDMS) capillary (CPC) sensor array, PDMS was modified in bulk and on its surface to prepare "black" PDMS coated with a silver layer and self-assembled monolayer (SAM). India ink, a traditional Japanese black ink, was added to the PDMS pre-polymer for bulk modification. The surface was modified by a silver mirror reaction followed by SAM formation using cysteine. These modifications enhanced the fluorescence signals by reflecting them from the surface and reducing background interference. A decrease in the water contact angle led to enhanced sensitivity and easy sample introduction. Furthermore, a CPC sensor array for multiplex detection of serum sample components was prepared that could quantify the analytes glucose, potassium, and alkaline phosphatase (ALP). When serum samples were introduced by capillary action, the CPC sensor array showed fluorescence responses for each analyte and successfully identified the components with elevated concentrations in the serum samples.

  5. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites.

    PubMed

    Fang, Linchuan; Huang, Qiaoyun; Wei, Xing; Liang, Wei; Rong, Xinming; Chen, Wenli; Cai, Peng

    2010-08-01

    Equilibrium adsorption experiments, isothermal titration calorimetry and potentiometric titration techniques were employed to investigate the adsorption of Cu(II) by extracellular polymeric substances (EPS) extracted from Pseudomonas putida X4, minerals (montmorillonite and goethite) and their composites. Compared with predicted values of Cu(II) adsorption on composites, the measured values of Cu(II) on EPS-montmorillonite composite increased, however, those on EPS-goethite composite decreased. Potentiometric titration results also showed that more surface sites were observed on EPS-montmorillonite composite and less reactive sites were found on EPS-goethite composite. The adsorption of Cu(II) on EPS molecules and their composites with minerals was an endothermic reaction, while that on minerals was exothermic. The positive values of enthalpy change (Delta H) and entropy change (DeltaS) for Cu(II) adsorption on EPS and mineral-EPS composites indicated that Cu(II) mainly interacts with carboxyl and phosphoryl groups as inner-sphere complexes on EPS molecules and their composites with minerals. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Preliminary interpretations of hydrogeologic data from boreholes and springs in the vicinity of Davis and Lavender Canyons, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thackston, J.W.

    1987-09-01

    This information is presented in tabular form and includes station locations, potentiometric levels, permeabilities, transmissibilities, total dissolved solids, depths, locations, data sources, a fracture log of the Gibson Dome No. 1 (GD-1) borehole, and other useful information. Three different ranking scales were used to evaluate available drill-stem test (DST) data. A preliminary detailed hydrogeologic column was prepared using the DST data and GD-1 borehole information. A series of preliminary potentiometric maps was interpreted from these data for the different hydrogeologic units. Preliminary potentiometric surface maps for the Lower Paleozoic Aquifer, Pennsylvanian Aquitard, Permian Aquifer/Aquitard, and Mesozoic (Jurassic) Aquifer were constructed.more » These maps show a general southwest flow direction in the Lower Paleozoic Aquifer, extremely low permeabilities in the Pennsylvanian, northerly ground-water flow in the Permian, and westward flow direction in the Mesozoic unit. The few data points in the Pennsylvanian tend to indicate that ground water in the upper Paradox Formation may be flowing toward the west and southwest in the area southeast of Six-Shooter Peaks.« less

  7. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 1999

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2001-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 1999. The map is based on water-level measurements in 85 wells. The potentiometric surface was above sea level near the northern boundary and outcrop area of the aquifer in a topographically high area of Anne Arundel County, and was below sea level in the remainder of the study area. The hydraulic gradient was directed southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. Ground-water levels were more than 80 feet below sea level in a 100-square-mile area surrounding the deepest part of the cone of depression. A cone of depression formed in northern Calvert County due to pumpage at Chesapeake Beach and North Beach. The water level has declined to 43 feet below sea level in this area. The lowest measurement was 164 feet below sea level in a well near the center of the cone of depression at Lexington Park.

  8. Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors

    PubMed Central

    2014-01-01

    A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors. PMID:24636423

  9. Quartz tuning fork based sensor for detection of volatile organic compounds: towards breath analysis

    NASA Astrophysics Data System (ADS)

    Sampson, Abraham; Panchal, Suresh; Phadke, Apoorva; Kashyap, A.; Suman, Jilma; Unnikrishnan, G.; Datar, Suwarna

    2018-04-01

    Several volatile organic compounds (VOCs) are present in the exhaled human breath whose concentration can vary depending on the physiological changes occurring within a human being. These changes in the concentration or the occurrence of a particular VOC can be used as signature of a particular disease in a person. In the present work, a sensor has been developed to detect VOCs such as 1,4-dimethoxy-2,3-butanediol (BD), and cyclohexanone (CH), acetone, methanol and ethanol. Except for BD and CH, the rest of the VOCs are present in a healthy person in ppm levels. CH and BD have been reported to be present in the exhaled human breath of breast cancer patients in ppm levels and can be used to distinguish between a healthy person and a person with breast cancer. The selectivity of the sensor towards these two compounds in the presence of other VOCs commonly present in human breath like acetone, ethanol and methanol has been studied. The sensor has been developed using modified Quartz Tuning Forks (QTFs) with the intent of developing an array of such sensors identifying different VOCs present in a healthy human’s breath. Two differently modified QTFs have been used to detect 1 ppm of 1,4-dimethoxy-2,3-butanediol and 20 ppm of cyclohexanone. Linear Discriminants Analysis (LDA) has been used to classify seven different VOCs. For this purpose, features extracted from sensor responses -shift in resonant frequency, response time and recovery time of the sensors- have been used as features in the model. Differently modified array of QTFs along with the use of LDA can be a useful pathway towards development of a QTF based sensor array for human breath analysis.

  10. A new electrochemical sensor for highly sensitive and selective detection of nitrite in food samples based on sonochemical synthesized Calcium Ferrite (CaFe2O4) clusters modified screen printed carbon electrode.

    PubMed

    Balasubramanian, Paramasivam; Settu, Ramki; Chen, Shen-Ming; Chen, Tse-Wei; Sharmila, Ganapathi

    2018-08-15

    Herein, we report a novel, disposable electrochemical sensor for the detection of nitrite ions in food samples based on the sonochemical synthesized orthorhombic CaFe 2 O 4 (CFO) clusters modified screen printed electrode. As synthesized CFO clusters were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and amperometry (i-t). Under optimal condition, the CFO modified electrode displayed a rapid current response to nitrite, a linear response range from 0.016 to 1921 µM associated with a low detection limit 6.6 nM. The suggested sensor also showed the excellent sensitivity of 3.712 μA μM -1  cm -2 . Furthermore, a good reproducibility, long-term stability and excellent selectivity were also attained on the proposed sensor. In addition, the practical applicability of the sensor was investigated via meat samples, tap water and drinking water, and showed desirable recovery rate, representing its possibilities for practical application. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-02-01

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future.

  12. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode.

    PubMed

    Chauhan, Nidhi; Chawla, Sheetal; Pundir, C S; Jain, Utkarsh

    2017-03-15

    An essential biological sensor for acetylcholine (ACh) detection is constructed by immobilizing enzymes, acetylcholinesterase (AChE) and choline oxidase (ChO), on the surface of iron oxide nanoparticles (Fe 2 O 3 NPs), poly(3,4-ethylenedioxythiophene) (PEDOT)-reduced graphene oxide (rGO) nanocomposite modified fluorine doped tin oxide (FTO). The qualitative and quantitative measurements of nanocomposites properties were accomplished by scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This prepared biological sensor delineated a wide linear range of 4.0nM to 800μM with a response time less than 4s and detection limit (based on S/N ratio) of 4.0nM. The sensor showed perfect sensitivity, excessive selectivity and stability for longer period of time during storage. Besides its very high-sensitivity, the biosensor has displayed a low detection limit which is reported for the first time in comparison to previously reported ACh sensors. By fabricating Fe 2 O 3 NPs/rGO/PEDOT modified FTO electrode for determining ACh level in serum samples, the applicability of biosensor has increased immensely as the detection of the level neurotransmitter is first priority for patients suffering from memory loss or Alzheimer's disease (AD). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors

    PubMed Central

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-01-01

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future. PMID:25655666

  14. A Novel Method for Fabricating Wearable, Piezoresistive, and Pressure Sensors Based on Modified-Graphite/Polyurethane Composite Films

    PubMed Central

    He, Yin; Li, Wei; Yang, Guilin; Liu, Hao; Lu, Junyu; Zheng, Tongtong; Li, Xiaojiu

    2017-01-01

    A wearable, low-cost, highly repeatable piezoresistive sensor was fabricated by the synthesis of modified-graphite and polyurethane (PU) composites and polydimethylsiloxane (PDMS). Graphite sheets functionalized by using a silane coupling agent (KH550) were distributed in PU/N,N-dimethylformamide (DMF) solution, which were then molded to modified-graphite/PU (MG/PU) composite films. Experimental results show that with increasing modified-graphite content, the tensile strength of the MG/PU films first increased and then decreased, and the elongation at break of the composite films showed a decreasing trend. The electrical conductivity of the composite films can be influenced by filler modification and concentration, and the percolation threshold of MG/PU was 28.03 wt %. Under liner uniaxial compression, the 30 wt % MG/PU composite films exhibited 0.274 kPa−1 piezoresistive sensitivity within the range of low pressure, and possessed better stability and hysteresis. The flexible MG/PU composite piezoresistive sensors have great potential for body motion, wearable devices for human healthcare, and garment pressure testing. PMID:28773047

  15. Water-table and Potentiometric-surface altitudes in the Upper Glacial, Magothy, and Lloyd aquifers beneath Long Island, New York, April-May 2010

    USGS Publications Warehouse

    Monti, Jack; Como, Michael D.; Busciolano, Ronald J.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the USGS conducts a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers (Smolensky and others, 1989)—and the hydraulically connected Jameco (Soren, 1971) and North Shore aquifers (Stumm, 2001). These data and the maps constructed from them are commonly used in studies of Long Island’s hydrology and are used by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 503 monitoring wells, a network of observation and supply wells, and 16 streamgage locations across Long Island during April–May 2010 were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured by using these measurements. The water-table contours were interpreted by using water-level data collected from 16 streamgages, 349 observation wells, and 1 supply well screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer’s potentiometric-surface contours were interpreted from measurements at 67 observation wells and 27 supply wells screened in the middle to deep Magothy aquifer and (or) the contiguous and hydraulically connected Jameco aquifer. The Lloyd aquifer’s potentiometric-surface contours were interpreted from measurements at 55 observation wells and 4 supply wells screened in the Lloyd aquifer or the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped (Busciolano, 2002). In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29). Hydrographs are included on these maps for selected wells that are instrumented with recording equipment. These hydrographs are representative of the 2010 water year1 to show the changes that have occurred throughout that period. The synoptic survey water level measured at the well is included on each hydrograph.

  16. Indirect Determination of Mercury Ion by Inhibition of a Glucose Biosensor Based on ZnO Nanorods

    PubMed Central

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-01-01

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10−6 mM to 0.5 × 10−4 mM, and from 0.5 × 10−4 mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10−3 mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users. PMID:23202200

  17. Indirect determination of mercury ion by inhibition of a glucose biosensor based on ZnO nanorods.

    PubMed

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-11-06

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10(-6) mM to 0.5 × 10(-4) mM, and from 0.5 × 10(-4) mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10(-3) mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users.

  18. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry.

    PubMed

    Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y

    2014-01-31

    Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    PubMed Central

    Abdel-Hamid, Refat; Newair, Emad F.

    2015-01-01

    A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA). The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV) and characterized using CV and scanning electron microscope (SEM). The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3). The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality. PMID:28347090

  20. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  1. Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode.

    PubMed

    Lakshmi, Dhana; Prasad, Bhim Bali; Sharma, Piyush Sindhu

    2006-09-15

    Molecularly imprinted polymers (MIP) have been elucidated to work as artificial receptors. In our present study, a MIP was applied as a molecular recognition element to a chemical sensor. We have constructed a creatinine sensor based on a MIP layer selective for creatinine and its differential pulse, cathodic stripping voltammetric detection (DPCSV) on a hanging mercury drop electrode (HMDE). The creatinine sensor was fabricated by the drop coating of dimethylformamide (DMF) solution of a creatinine-imprinted polymer onto the surface of HMDE. The modified-HMDE, preanodised in neutral medium at +0.4V versus Ag/AgCl for 120s, exhibited a marked enhancement in DPCSV current in comparison to the less anodised (

  2. A performance comparison of choline biosensors: anodic or cathodic detections of H2O2 generated by enzyme immobilized on a conducting polymer.

    PubMed

    Rahman, Md Aminur; Park, Deog-Soo; Shim, Yoon-Bo

    2004-07-15

    Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2':5',2"-terthiophene-3'-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H(2)O(2) in a choline solution at +0.6V. The other one modified with ChO/HRP utilized the reduction process of H(2)O(2) in a choline solution at -0.2V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0 x 10(-6) to 8.0 x 10(-5) M and the other based on ChO/CPME from 1.0 x 10(-6) to 5.0 x 10(-5) M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0 x 10(-7) and 4.0 x 10(-7) M, respectively. The response time of sensors was less than 5s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.

  3. para-Sulfonatocalix[6]arene-modified silver nanoparticles electrodeposited on glassy carbon electrode: preparation and electrochemical sensing of methyl parathion.

    PubMed

    Bian, Yinghui; Li, Chunya; Li, Haibing

    2010-05-15

    In this paper, a new electrochemical sensor, based on modified silver nanoparticles, was fabricated using one-step electrodeposition approach. The para-sulfonatocalix[6]arene-modified silver nanoparticles coated on glassy carbon electrode (pSC(6)-Ag NPs/GCE) was characterized by attenuated total reflection IR spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), etc. The pSC(6) as the host are highly efficient to capture organophosphates (OPs), which dramatically facilitates the enrichment of nitroaromatic OPs onto the electrochemical sensor surface. The combination of the host-guest supramolecular structure and the excellent electrochemical catalytic activities of the pSC(6)-Ag NPs/GCE provides a fast, simple, and sensitive electrochemical method for detecting nitroaromatic OPs. In this work, methyl parathion (MP) was used as a nitroaromatic OP model for testing the proposed sensor. In comparison with Ag NPs-modified electrode, the cathodic peak current of MP was amplified significantly. Differential pulse voltammetry was used for the simultaneous determination of MP. Under optimum conditions, the current increased linearly with the increasing concentration of MP in the range of 0.01-80microM, with a detection limit of 4.0nM (S/N=3). The fabrication reproducibility and stability of the sensor is better than that of enzyme-based electrodes. The possible underlying mechanism is discussed.

  4. Double-Track Electrochemical Green Approach for Simultaneous Dissolution Profiling of Naproxen Sodium and Diphenhydramine Hydrochloride.

    PubMed

    Shehata, Mostafa A; Fawaz, Esraa M; El-Rahman, Mohamed K Abd; Abdel-Moety, Ezzat M

    2017-11-30

    Acquisition of the dissolution profiles of more than single active ingredient in a multi-analyte pharmaceutical formulation is a mandatory manufacturing practice that is dominated by utilization of the off-line separation-based chromatographic methods. This contribution adopts a new "Double-Track" approach with the ultimate goal of advancing the in-line potentiometric sensors to their most effective applicability for simultaneous acquisition of the dissolution profiles of two active ingredients in a binary pharmaceutical formulation. The unique abilities of these sensors for real-time measurements is the key driver for adoption of "green analytical chemistry" (GAC) principles aiming to expand the application of eco-friendly analytical methods With the aim of performing a side-by-side comparison, this work investigates the degree of adherence of ISEs to the 12 principles of GAC in multicomponent dissolution profiling with respect to the HPLC. For the proof of concept, a binary mixture of naproxen sodium (NAPR) and diphenhydramine hydrochloride (DIPH) marketed as Aleve pm ® tablets was selected as a model for which dissolution profiles were attained by two techniques. The first "Double-Track" in-line strategy depends on dipping two highly integrated membrane sensors for continuous monitoring of the dissolution of each active pharmaceutical ingredient (API) by tracing the e.m.f change over the time scale. For the determination of NAPR, sensor I was developed using tridodecyl methyl ammonium chloride as an anion exchanger, while sensor II was developed for the determination of DIPH using potassium tetrakis (4-chlorophenyl) borate as a cation exchanger. The second off-line strategy utilizes a separation-based HPLC method via off-line tracking the increase of peak area by UV detection at 220nm over time using a mobile phase of acetonitrile: water (90:10) pH 3. The advantages of the newly introduced "Double-Track" approach regarding GAC principles are highlighted, and the merits of these benign real-time analyzers (ISEs) that can deliver equivalent analytical results as HPLC while significantly reducing solvent consumption/waste generation are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms.

    PubMed

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-04-22

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  6. Boronic acid based imprinted electrochemical sensor for rutin recognition and detection.

    PubMed

    Wang, Chunlei; Wang, Qi; Zhong, Min; Kan, Xianwen

    2016-10-21

    Multi-walled carbon nanotubes (MWNTs) and boronic acid based molecular imprinting polymer (MIP) were successively modified on a glassy carbon electrode surface to fabricate a novel electrochemical sensor for rutin recognition and detection. 3-Aminophenylboronic acid (APBA) was chosen as a monomer for the electropolymerization of MIP film in the presence of rutin. In addition to the imprinted cavities in MIP film to complement the template molecule in shape and functional groups, the high affinity between the boronic acid group of APBA and vicinal diols of rutin also enhanced the selectivity of the sensor, which made the sensor display a good selectivity to rutin. Moreover, the modified MWNTs improved the sensitivity of the sensor for rutin detection. The mole ratios of rutin and APBA, electropolymerized scan cycles and rates, and pH value of the detection solution were optimized. Under optimal conditions, the sensor was used to detect rutin in a linear range from 4.0 × 10 -7 to 1.0 × 10 -5 mol L -1 with a detection limit of 1.1 × 10 -7 mol L -1 . The sensor has also been applied to assay rutin in tablets with satisfactory results.

  7. Modeling of a Surface Acoustic Wave Strain Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  8. Regional potentiometric surface of the Ozark aquifer in Arkansas, Kansas, Missouri, and Oklahoma, November 2014–January 2015

    USGS Publications Warehouse

    Nottmeier, Anna M.

    2015-12-21

    The Ozark aquifer, within the Ozark Plateaus aquifer system (herein referred to as the “Ozark system”), is the primary groundwater source in the Ozark Plateaus physiographic province (herein referred to as the “Ozark Plateaus”) of Arkansas, Kansas, Missouri, and Oklahoma. Groundwater from the Ozark system has historically been an important part of the water resource base, and groundwater availability is a concern in some areas; dependency on the Ozark aquifer as a water supply has caused evolving, localized issues. The construction of a regional potentiometric-surface map of the Ozark aquifer is needed to aid assessment of current and future groundwater use and availability. The regional potentiometric-surface mapping is part of the U.S. Geological Survey (USGS) Groundwater Resources Program initiative (http://water.usgs.gov/ogw/gwrp/activities/regional.html) and the Ozark system groundwater availability project (http://ar.water.usgs.gov/ozarks), which seeks to quantify current groundwater resources, evaluate changes in these resources over time, and provide the information needed to simulate system response to future human-related and environmental stresses.The Ozark groundwater availability project objectives include assessing (1) growing demands for groundwater and associated declines in groundwater levels as agricultural, industrial, and public supply pumping increases to address needs; (2) regional climate variability and pumping effects on groundwater and surface-water flow paths; (3) effects of a gradual shift to a greater surface-water dependence in some areas; and (4) shale-gas production requiring groundwater and surface water for hydraulic fracturing. Data compiled and used to construct the regional Ozark aquifer potentiometric surface will aid in the assessment of those objectives.

  9. Non-enzymatic electrochemical glucose sensor based on NiMoO4 nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Cai, Daoping; Huang, Hui; Liu, Bin; Wang, Lingling; Liu, Yuan; Li, Han; Wang, Yanrong; Li, Qiuhong; Wang, Taihong

    2015-04-01

    A non-enzymatic glucose sensor based on the NiMoO4 nanorods has been fabricated for the first time. The electrocatalytic performance of the NiMoO4 nanorods’ modified electrode toward glucose oxidation was evaluated by cyclic voltammetry and amperometry. The NiMoO4 nanorods’ modified electrode showed a greatly enhanced electrocatalytic property toward glucose oxidation, as well as an excellent anti-interference and a good stability. Impressively, good accuracy and high precision for detecting glucose concentration in human serum samples were obtained. These excellent sensing properties, combined with good reproducibility and low cost, indicate that NiMoO4 nanorods are a promising candidate for non-enzymatic glucose sensors.

  10. Cu-modified carbon spheres/reduced graphene oxide as a high sensitivity of gas sensor for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Su, Zhibin; Tan, Li; Yang, Ruiqiang; Zhang, Yu; Tao, Jin; Zhang, Nan; Wen, Fusheng

    2018-03-01

    Nitrogen dioxide (NO2) as one of the most serious air pollution is harmful to people's health, therefore high-performance gas sensors is critically needed. Here, Cu-modified carbon spheres/reduced graphene oxide (Cu@CS/RGO) composite have been prepared as NO2 gas sensor material. Carbon sphere in the interlayer of RGO can increase the specific surface area of RGO. Copper nanoparticles decorated on the surface of CS can effectively enhance the adsorption activity of RGO as supplier of free electrons. The experimental results showed that its particular structure improved the gas sensitivity of RGO at different NO2 concentrations at room temperature.

  11. Stand alone, low current measurements on possible sensing platforms via Arduino Uno microcontroller with modified commercially available sensors

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Henson, Gabriel; Senevirathne, Indrajith

    Advent of cost-effective solid-state sensors has spurred an immense interest in microcontrollers, in particular Arduino microcontrollers. These include serious engineering and physical science applications due to their versatility and robustness. An Arduino microcontroller coupled with a commercially available sensor has been used to methodically measure, record, and explore low currents, low voltages, and corresponding dissipated power towards assessing secondary physical properties in a select set of engineered systems. System was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino software while the bootloader was used to upload the code. High-side measurement INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. A collection of measurements was obtained via the sensor and was compared with measurements from standardized devices to assess reliability and uncertainty. Some sensors were modified/hacked to improve the sensitivity of the measurements.

  12. Modification of glassy carbon electrode with poly(hydroxynaphthol blue)/multi-walled carbon nanotubes composite and construction a new voltammetric sensor for the simultaneous determination of hydroquinone, catechol, and resorcinol

    NASA Astrophysics Data System (ADS)

    Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir

    2018-03-01

    A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.

  13. Network compensation for missing sensors

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.

    1991-01-01

    A network learning translation invariance algorithm to compute interpolation functions is presented. This algorithm with one fixed receptive field can construct a linear transformation compensating for gain changes, sensor position jitter, and sensor loss when there are enough remaining sensors to adequately sample the input images. However, when the images are undersampled and complete compensation is not possible, the algorithm need to be modified. For moderate sensor losses, the algorithm works if the transformation weight adjustment is restricted to the weights to output units affected by the loss.

  14. Application of polymer-coated metal-insulator-semiconductor sensors for the detection of dissolved hydrogen

    NASA Astrophysics Data System (ADS)

    Li, Dongmei; Medlin, J. W.; Bastasz, R.

    2006-06-01

    The detection of dissolved hydrogen in liquids is crucial to many industrial applications, such as fault detection for oil-filled electrical equipment. To enhance the performance of metal-insulator-semiconductor (MIS) sensors for dissolved hydrogen detection, a palladium MIS sensor has been modified by depositing a polyimide (PI) layer above the palladium surface. Response measurements of the PI-coated sensors in mineral oil indicate that hydrogen is sensitively detected, while the effect of interfering gases on sensor response is minimized.

  15. Multiwall carbon nanotubes chemically modified carbon paste electrodes for determination of gentamicin sulfate in pharmaceutical preparations and biological fluids.

    PubMed

    Khalil, M M; Abed El-Aziz, G M

    2016-02-01

    This article focused on the construction and characteristics of novel and sensitive gentamicin carbon paste electrodes which are based on the incorporation of multiwall carbon nanotubes (MWCNTs) which improve the characteristics of the electrodes. The electrodes were constructed based on gentamicin-phosphotungstate (GNS-PTA) called CPE1, gentamicin-phosphomolybdate (GNS-PMA) called CPE2, GNS-PTA+ MWMCNTs called MWCPE1, and GNS-PMA+ MWMCNTs called MWCPE2. The constructed electrodes, at optimum paste composition, exhibited good Nernstian response for determination of gentamicin sulfate (GNS) over a linear concentration range from 2.5×10(-6) to 1×10(-2), 3.0×10(-6) to 1×10(-2), 4.9×10(-7) to 1×10(-2) and 5.0×10(-7) to 1×10(-2)molL(-1), with lower detection limit 1×10(-6), 1×10(-6), 1.9×10(-7) and 2.2×10(-7)molL(-1), and with slope values of 29.0±0.4, 29.2±0.7, 31.2±0.5 and 31.0±0.6mV/decade for CPE1, CPE2, MWCPE1 and MWCPE2, respectively. The response of electrodes is not affected by pH in the range 3-8 for CPE1 and CPE2 and in the range 2.5-8.5 for MWCPE1 and MWCPE2. The results showed fast dynamic response time (about 8-5s) and long lifetime (more than 2months) for all electrodes. The sensors showed high selectivity for gentamicin sulfate (GNS) with respect to a large number of interfering species. The constructed electrodes were successfully applied for determination of GNS in pure form, its pharmaceutical preparations and biological fluids using standard addition and potentiometric titration methods with high accuracy and precision. Published by Elsevier B.V.

  16. Nanopore DNA sensors based on dendrimer-modified nanopipettes.

    PubMed

    Fu, Yaqin; Tokuhisa, Hideo; Baker, Lane A

    2009-08-28

    A dendrimer-modified nanopipette is used to detect hybridization of a specific DNA sequence through evaluation of the extent of rectification of ion currents observed in the measured current-voltage response.

  17. Determination of Acid Dissociation Constants (pKa) of Bicyclic Thiohydantoin-Pyrrolidine Compounds in 20% Ethanol-Water Hydroorganic Solvent

    PubMed Central

    Nural, Yahya; Döndaş, H. Ali; Sarı, Hayati; Atabey, Hasan; Belveren, Samet; Gemili, Müge

    2014-01-01

    The acid dissociation constants of potential bioactive fused ring thiohydantoin-pyrrolidine compounds were determined by potentiometric titration in 20% (v/v) ethanol-water mixed at 25 ± 0.1°C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Proton affinities of potential donor atoms of the ligands were calculated by AM1 and PM3 semiempiric methods. We found, potentiometrically, three different acid dissociation constants for 1a–f. We suggest that these acid dissociation constants are related to the carboxyl, enol, and amino groups. PMID:24799905

  18. The difference between the potentiometric surfaces of the Magothy Aquifer of September 1975 and September 1995 in southern Maryland

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.

    1996-01-01

    A map showing the net change in the poentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland from September 1975 to September 1995 was based on water-level measurements in 67 wells. The map shows that the decline of the potentiometric surface during the 20-year period ranged from 2 to 21 feet in the northernmost part of the study area. The decline was greater than 40 feet in parts of southern Prince Georges County, 75 feet at Waldorf, and 28 feet at the Chalk Point powerplant.

  19. Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980

    USGS Publications Warehouse

    Ryals, G.N.

    1980-01-01

    The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS)

  20. Calixarene-based potentiometric ion-selective electrodes for silver.

    PubMed

    O'Connor, K M; Svehla, G; Harris, S J; McKervey, M A

    1992-11-01

    Four lipophilic sulphur and/or nitrogen containing calixarene derivatives have been tested as ionophores in Ag(I)-selective poly (vinyl chloride) membrane electrodes. All gave acceptable linear responses with one giving a response of 50 mV/dec in the Ag(I) ion activity range 10(-4)-10(-1)M and high selectivity towards other transition metals and sodium and potassium ions. This ionophore was also tested as a membrane coated glassy-carbon electrode where the sensitivity and selectivity of the conventional membrane electrode was found to be repeated. The latter electrode was then used in potentiometric titrations of halide ions with silver nitrate.

Top