Sample records for pounds thrust powers

  1. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    H-1 engine characteristics: The H-1 engine was developed under the management of the Marshall Space Flight Center (MSFC). The cluster of eight H-1 engines was used to power the first stage of the Saturn I (S-I stage) and Saturn IB (S-IVB stage) launch vehicles, and produced 188,00 pounds of thrust, a combined thrust of 1,500,000 pounds, later uprated to 205,000 pounds of thrust and a combined total thrust of 1,650,000 pounds for the Saturn IB program.

  2. Full scale hover test of a 25 foot tilt rotor

    NASA Technical Reports Server (NTRS)

    Helf, S.; Broman, E.; Gatchel, S.; Charles, B.

    1973-01-01

    The tilt rotor underwent a hover performance test on the Aero Propulsion Laboratory whirl stand at Wright-Patterson Air Force Base. The maximum thrust over density ratio measured at the design tip speed of 740 feet per second was 10,016 pounds. This occurred when the power over density ratio was 1721 horsepower. At the hover overspeed rpm, the thrust and power, over density ratio, were 11,008 pounds and 1866 horsepower. During the test, the maximum measured thrust coefficient was 0.177, and the rotor figure of merit exceeded 0.81. Measured lifting efficiency was 8.35 pounds per horsepower at the thrust a 13,000-pound aircraft would require for hover at sea level on a standard day. No effect of compressibility on performance is discernible in the test results (the range of tip Mach numbers tested was 0.55 to 0.71).

  3. Nuclear-Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rom, Frank E.

    1968-01-01

    The three basic types of nuclear power-plants (solid, liquid, and gas core) are compared on the bases of performance potential and the status of current technology. The solid-core systems are expected to have impulses in the range of 850 seconds, any thrust level (as long as it is greater than 10,000 pounds (44,480 newtons)), and thrust-to-engine-weight ratios of 2 to 20 pounds per pound (19.7 to 197 newtons per kilogram). There is negligible or no fuel loss from the solid-core system. The solid-core system, of course, has had the most work done on it. Large-scale tests have been performed on a breadboard engine that has produced specific impulses greater than 700 seconds at thrust levels of about 50,000 pounds (222,000 newtons). The liquid-core reactor would be interesting in the specific impulse range of 1200 to 1500 seconds. Again, any thrust level can be obtained depending on how big or small the reactor is made. The thrust-to-engine weight ratio for these systems would be in the range of 1 to 10. The discouraging feature of the liquid-core system is the high fuel-loss ratio anticipated. Values of 0.01 to 0.1 pound (0.00454 to 0.0454 kilograms) or uranium loss per pound (0.454 kilograms) of hydrogen are expected, if impulses in the range of 1200 to 1500 seconds are desired. The gas-core reactor shows specific impulses in the range of 1500 to 2500 seconds. The thrust levels should be at least as high as the weight so that the thrust-to-weight ratio does not go below 1. Because the engine weight is not expected to be under 100,000 pounds (444,800 newtons), thrust levels higher than 100,000 pounds (448,000 newtons) are of interest. The thrust-to-engine weights, in that case, would run from 1 to 20 pounds per pound (9.8 to 19.7 kilograms). Gas-core reactors tend to be very large, and can have high thrust-to-weight ratios. As in the case of the liquid-core system, the fuel loss that will be attendant with gas cores as envisioned today will be rather high. The loss rates will be 0.01 to 0.1 pound of uranium (0.00454 to 0.0454 kilograms) for each pound (0.454 kilograms) of hydrogen.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This is a cutaway illustration of the Saturn V launch vehicle with callouts of the major components. The Saturn V is the largest and most powerful launch vehicle developed in the United States. It was a three stage rocket, 363 feet in height, used for sending American astronauts to the moon and for placing the Skylab in Earth orbit. The Saturn V was designed to perform Earth orbital missions through the use of the first two stages, while all three stages were used for lunar expeditions. The S-IC stage (first stage) was powered by five F- engines, which burned kerosene and liquid oxygen to produce more than 7,500,000 pounds of thrust. The S-II (second) stage was powered by five J-2 engines, that burned liquid hydrogen and liquid oxygen and produced 1,150,000 pounds thrust. The S-IVB (third) stage used one J-2 engine, producing 230,000 pounds of thrust, with a re-start capability. The Marshall Space Flight Center and its contractors designed, developed, and assembled the Saturn V launch vehicle stages.

  5. Calculated Condenser Performance for a Mercury-Turbine Power Plant for Aircraft

    NASA Technical Reports Server (NTRS)

    Doyle, Ronald B.

    1948-01-01

    As part of an investigation af the application of nuclear energy to various types of power plants for aircraft, calculations have been made to determine the effect of several operating conditions on the performance of condensers for mercury-turbine power plants. The analysis covered 8 range of turbine-outlet pressures from 1 to 200 pounds per square inch absolute, turbine-inlet pressures from 300 to 700 pounds per square inch absolute,and a range of condenser cooling-air pressure drops, airplane flight speeds, and altitudes. The maximum load-carrying capacity (available for the nuclear reactor, working fluid, and cargo) of a mercury-turbine powered aircraft would be about half the gross weight of the airplane at a flight speed of 509 miles per hour and an altitude of 30,000 feet. This maximum is obtained with specific condenser frontal areas of 0.0063 square foot per net thrust horsepower with the condenser in a nacelle and 0.0060 square foot per net thrust horsepower with the condenser submerged in the wings (no external condenser drag) for a turbine-inlet pressure of 500 pounds per square inch absolute, a turbine-outlet pressure of 10 pounds per square inch absolute, and 8 turbine-inlet temperature of 1600 F.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    The Saturn IB S-IVB (second) stages in storage at the Douglas Aircraft Company's Sacramento Test Operations Facility (SACTO) in Sacramento, California. Designed and developed by the Marshall Space Flight Center and the Douglas Aircraft Company, the S-IVB stage was powered by a single J-2 engine, which produced 200,000 pounds of thrust, later uprated to 230,000 pounds for the Saturn V launch vehicle.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    This chart is an illustration of J-2 Engine characteristics. A cluster of five J-2 engines powered the Saturn V S-II (second) stage with each engine providing a thrust of 200,000 pounds. A single J-2 engine powered the S-IVB stage, the Saturn IB second stage, and the Saturn V third stage. The engine was uprated to provide 230,000 pounds of thrust for the fourth Apollo Saturn V flight and subsequent missions. Burning liquid hydrogen as fuel and using liquid oxygen as the oxidizer, the cluster of five J-2 engines for the S-II stage burned over one ton of propellant per second, during about 6 1/2 minutes of operation, to take the vehicle to an altitude of about 108 miles and a speed of near orbital velocity, about 17,400 miles per hour.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    Workmen remove the Saturn IB S-IVB-206, the second flight stage for the Skylab 2 mission, from the vehicle assembly building at the Kennedy Space Center. Designed and developed by the Marshall Space Flight Center and the Douglas Aircraft Company in Sacramento, California, the stage was powered by a single J-2 engine, which produced 200,000 pounds of thrust, later uprated to 230,000 pounds for the Saturn V launch vehicle.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-09

    A cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), initially had a thrust of 188,000 pounds each for a combined thrust of over 1,500,000 pounds. Later, the H-1 engine was upgraded to 205,000 pounds of thrust and a combined total thrust of 1,650,000 pounds for the Saturn IB program. This photo depicts a single modified H-1 engine. The H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).

  10. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    Workmen secure a J-2 engine onto the S-IVB (second) stage thrust structure. As part of Marshall Space Center's "building block" approach to the Saturn development, the S-IVB was utilized in the Saturn IBC launch vehicle as a second stage and the Saturn V launch vehicle as a third stage. The booster, built for NASA by McDornell Douglas Corporation, was powered by a single J-2 engine, initially capable of 200,000 pounds of thrust.

  11. Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    Workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, hoist the thrust structure assembly for the Saturn IB S-IB (first) stage. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.

  13. Space Shuttle Projects

    NASA Image and Video Library

    2004-04-15

    The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.

  14. Space Shuttle Drawing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    In one of the initial assembly steps for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, position the thrust structure. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    In one of the initial assembly steps for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, complete the thrust structure. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.

  17. Hovering and Low-Speed Performance and Control Characteristics of the Kaman Helicopter Rotor System as Determined on the Langley Helicopter Tower. TED No. NACA DE 205

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul J.; Paulnock, Russell S.

    1949-01-01

    An investigation has been conducted with the Langley helicopter tower to obtain basic performance and control characteristics of the Raman rotor system. Blade-pitch control is obtained in this configuration by utilizing an auxiliary flap to twist the blades. Rotor thrust and power required were measured for the hovering condition and over a range of wind velocities from 0 to 30 miles per hour. The control characteristics and the transient response of the rotor to various control movements were also measured. The hovering-performance data are presented as a survey of the wake velocities and the variation of torque coefficient with thrust coefficient. The power required for the test rotor to hover at a thrust of 1350 pounds and a rotor speed of 240 rpm is approximately 6.5 percent greater than that estimated for a conventional rotor of the same diameter and solidity. It is believed that most of this difference is caused by th e flap servomechanism. The reduction in total power required for sustentation of the single-rotor configuration tested at various wind velocities and at the normal operating rotor thrust was found to be similar to the theoretical and experimental results for ro tors with conventionally actuated pitch. The control effectiveness was determined as a function of rotor speed. Sufficient control was available to give a thrust range of 0 to 1500 pounds and a rotor tilt of plus or minus 7 degrees. The time lag between flap motion and blade-pitch response is approximately 0.02 to 0.03 second. The response of the rotor following the blade-pitch response is similar to that of a rotor with conventionally actuated pitch changes. The over-all characteristics of the rotor investigated indicate that satisfactory performance and control characteristics were obtained.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    The Saturn 1B S-IB (first) stage being prepared for shipment at Michoud Assembly Facility (MAF), near New Orleans, Louisiana. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at MAF, the S-IB stage utilized the eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.

  19. Flight Measurements of the Effect of a Controllable Thrust Reverser on the Flight Characteristics of a Single-Engine Jet Airplane

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.

    1959-01-01

    A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.

  20. Preliminary Investigation of Performance and Starting Characteristics of Liquid Fluorine : Liquid Oxygen Mixtures with Jet Fuel

    NASA Technical Reports Server (NTRS)

    Rothenberg, Edward A; Ordin, Paul M

    1954-01-01

    The performance of jet fuel with an oxidant mixture containing 70 percent liquid fluorine and 30 percent liquid oxygen by weight was investigated in a 500-pound-thrust engine operating at a chamber pressure of 300 pounds per square inch absolute. A one-oxidant-on-one-fuel skewed-hole impinging-jet injector was evaluated in a chamber of characteristic length equal to 50 inches. A maximum experimental specific impulse of 268 pound-seconds per pound was obtained at 25 percent fuel, which corresponds to 96 percent of the maximum theoretical specific impulse based on frozen composition expansion. The maximum characteristic velocity obtained was 6050 feet per second at 23 percent fuel, or 94 percent of the theoretical maximum. The average thrust coefficient was 1.38 for the 500-pound thrust combustion-chamber nozzle used, which was 99 percent of the theoretical (frozen) maximum. Mixtures of fluorine and oxygen were found to be self-igniting with jet fuel with fluorine concentrations as low as 4 percent, when low starting propellant flow rated were used.

  1. Rocketdyne - F-1 Saturn V First Stage Engine. Chapter 1, Appendix C

    NASA Technical Reports Server (NTRS)

    Biggs, Robert

    2009-01-01

    Before I go into the history of F-1, I want to discuss the F-1 engine s role in putting man on the moon. The F-1 engine was used in a cluster of five on the first stage, and that was the only power during the first stage. It took the Apollo launch vehicle, which was 363 feet tall and weighed six million pounds, and threw it downrange fifty miles, threw it up to forty miles of altitude, at Mach 7. It took two and one-half minutes to do that and, in the process, burned four and one-half million pounds of propellant, a pretty sizable task. (See Slide 2, Appendix C) My history goes back to the same year I started working at Rocketdyne. That s where the F-1 had its beginning, back early in 1957. In 1957, there was no space program. Rocketdyne was busy working overtime and extra days designing, developing, and producing rocket engines for weapons of mass destruction, not for scientific reasons. The Air Force contracted Rocketdyne to study how to make a rocket engine that had a million pounds of thrust. The highest thing going at the time had 150,000 pounds of thrust. Rocketdyne s thought was the new engine might be needed for a ballistic missile, not that it was going to go on a moon shot.

  2. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  3. Full Scale Technology Demonstration of a Modern Counterrotating Unducted Fan Engine Concept. Design Report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Unducted Fan engine (UDF trademark) concept is based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the design methodology and details for the major components of this engine. The design intent of the engine is to efficiently produce 25,000 pounds of static thrust while meeting life and stress requirements. The engine is required to operate at Mach numbers of 0.8 or above.

  4. Preliminary design of propulsion system for V/STOL research and technology aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The V/STOL Research and Technology Aircraft (RTA)propulsion system design effort is limited to components of the lift/cruise engines, turboshaft engine modifications, lift fan assembly, and propulsion system performance generation. The uninstalled total net thrust with all engines and fans operating at intermediate power was 37,114 pounds. Uninstalled system total net thrust was 27,102 pounds when one lift/cruise is inoperative. Components have lives above the 500 hours of the RTA duty cycle. The L/C engine used in a fixed nacelle has the cross shaft forward of the reduction gear whereas the cross shaft is aft of the reduction gear in a tilt nacelle L/C engine. The lift/cruise gearbox contains components and technologies from other DDA engines. The rotor has a 62-inch diameter and contains 22 composite blades that have a hub/tip ratio of 0.454. The blade pitch change mechanism contains hydraulic and mechanical redundancy. The lift fan assembly is completely self-contained including oil cooling in 10 exit vanes.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1962-06-07

    This photograph depicts the Rocketdyne static firing of the F-1 engine at the towering 76-meter Test Stand 1-C in Area 1-125 of the Edwards Air Force Base in California. The Saturn V S-IC (first) stage utilized five F-1 engines for its thrust. Each engine provided 1,500,000 pounds, for a combined thrust of 7,500,000 pounds with liquid oxygen and kerosene as its propellants.

  6. Altitude Starting Tests of a 1000-Pound-Thrust Solid-Propellant Rocket

    NASA Technical Reports Server (NTRS)

    Sloop, John L.; Rollbuhler, R. James; Krawczonek, Eugene M.

    1957-01-01

    Four solid-propellant rocket engines of nominal 1000-pound-thrust were tested for starting characteristics at pressure altitudes ranging from 112,500 to 123,000 feet and at a temperature of -75 F. All engines ignited and operated successfully. Average chamber pressures ranged from 1060 to ll90 pounds per square inch absolute with action times from 1.51 to 1.64 seconds and ignition delays from 0.070 t o approximately 0.088 second. The chamber pressures and action times were near the specifications, but the ignition delay was almost twice the specified value of 0.040 second.

  7. Men Working on Mock-Up of S-IC Thrust Structure

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This photograph depicts Marshall Space Flight Center employees, James Reagin, machinist (top); Floyd McGinnis, machinist; and Ernest Davis, experimental test mechanic (foreground), working on a mock up of the S-IC thrust structure. The S-IC stage is the first stage, or booster, of the 364-foot long Saturn V rocket that ultimately took astronauts to the Moon. The S-IC stage, burned over 15 tons of propellant per second during its 2.5 minutes of operation to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour. The stage was 138 feet long and 33 feet in diameter. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust.

  8. Air-Ground Teamwork on the Western Front. The Role of the XIX Tactical Air Command During August 1944

    DTIC Science & Technology

    1992-01-01

    Several trains and a power plant were successfully attacked as far east as Troyes and Soissons. It was moving day, this time from the vicinity of...planes were seen. Flying armed reconnaissance ahead of our columns thrusting east past Sens and Troyes , P-47’s had just dropped eight 5oo-pound bombs

  9. NASA Engineer Examines the Design of a Regeneratively-Cooled Rocket Engine

    NASA Image and Video Library

    1958-12-21

    An engineer at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a drawing showing the assembly and details of a 20,000-pound thrust regeneratively cooled rocket engine. The engine was being designed for testing in Lewis’ new Rocket Engine Test Facility, which began operating in the fall of 1957. The facility was the largest high-energy test facility in the country that was capable of handling liquid hydrogen and other liquid chemical fuels. The facility’s use of subscale engines up to 20,000 pounds of thrust permitted a cost-effective method of testing engines under various conditions. The Rocket Engine Test Facility was critical to the development of the technology that led to the use of hydrogen as a rocket fuel and the development of lightweight, regeneratively-cooled, hydrogen-fueled rocket engines. Regeneratively-cooled engines use the cryogenic liquid hydrogen as both the propellant and the coolant to prevent the engine from burning up. The fuel was fed through rows of narrow tubes that surrounded the combustion chamber and nozzle before being ignited inside the combustion chamber. The tubes are visible in the liner sitting on the desk. At the time, Pratt and Whitney was designing a 20,000-pound thrust liquid-hydrogen rocket engine, the RL-10. Two RL-10s would be used to power the Centaur second-stage rocket in the 1960s. The successful development of the Centaur rocket and the upper stages of the Saturn V were largely credited to the work carried out Lewis.

  10. Cruise Missile Engines

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Williams International's F107 fanjet engine is used in two types of cruise missiles, Navy-sponsored Tomahawk and the Air Force AGM-86B Air Launched Cruise Missile (ALCM). Engine produces about 600 pounds thrust, is one foot in diameter and weighs only 141 pounds. Design was aided by use of a COSMIC program in calculating airflows in engine's internal ducting, resulting in a more efficient engine with increased thrust and reduced fuel consumption.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    In one of the initial assembly steps for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, complete the lower shroud assembly. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized the eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    In the clustering procedure, an initial assembly step for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, position the central liquid-oxygen tank. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This cutaway drawing shows the S-IVB stage in its Saturn IB configuration. As a part of the Marshall Space Flight Center's (MSFC) "building block" approach to the Saturn development, the S-IVB stage was utilized in the Saturn IB launch vehicle as a second stage and, later, the Saturn V launch vehicle as a third stage. The stage was powered by a single J-2 engine, initially capable of 200,000 pounds of thrust.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    A Cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), had a thrust of 188,000 pound each for a combined thrust of over 1,500,000 pounds. The H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).

  15. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    A Cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. The H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), had a thrust of 188,000 pound each for a combined thrust of over 1,500,000 pounds. Each H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).

  16. U.S. Air Force Bomber Sustainment and Modernization: Background and Issues for Congress

    DTIC Science & Technology

    2014-06-04

    turbofan Thrust: Each engine up to 17,000 pounds Wingspan: 185 feet (56.4 meters) Length: 159 feet, 4 inches (48.5 meters) Height: 40 feet, 8...precision and non-precision weapons. Features The B-1B’s blended wing and body configuration, variable-geometry wings, and turbofan afterburning engines... turbofan engine with afterburner Thrust: 30,000-plus pounds with afterburner, per engine Wingspan: 137 feet (41.8 meters) extended forward, 79 feet

  17. IPD 100% Power Test

    NASA Image and Video Library

    2006-07-12

    The Integrated Powerhead Demonstration engine was fired at 100 percent power for the first time July 12, 2006 at NASA Stennis Space Center's E Test Complex. The IPD, which can generate about 250,000 pounds of thrust, is a reusable engine system whose technologies could one day help Americans return to the moon, and travel to Mars and beyond. The IPD engine has been designed, developed and tested through the combined efforts of Pratt & Whitney Rocketdyne and Aerojet, under the direction of the Air Force Research Laboratory and NASA's Marshall Space Flight Center.

  18. Space Shuttle Projects

    NASA Image and Video Library

    2001-01-01

    The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1975-01-01

    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  20. Deep Space 1 Ion Engine

    NASA Image and Video Library

    2002-12-21

    This image of a xenon ion engine prototype, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine. The engine is now in an ongoing extended- life test, in a vacuum test chamber at JPL, and has run for almost 500 days (12,000 hours) and is scheduled to complete nearly 625 days (15,000 hours) by the end of 2001. A similar engine powers the New Millennium Program's flagship mission, Deep Space 1, which uses the ion engine in a trip through the solar system. The engine, weighing 17.6 pounds (8 kilograms), is 15.7 inches (40 centimeters) in diameter and 15.7 inches long. The actual thrust comes from accelerating and expelling positively charged xenon atoms, or ions. While the ions are fired in great numbers out the thruster at more than 110,000 kilometers (68,000 miles) per hour, their mass is so low that the engine produces a gentle thrust of only 90 millinewtons (20-thousandths of a pound). http://photojournal.jpl.nasa.gov/catalog/PIA04238

  1. Apollo-Lunar Orbital Rendezvous Technique

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The film shows artists rendition of the spacecrafts, boosters, and flight of the Apollo lunar missions. The Apollo spacecraft will consist of three modules: the manned Command Module; the Service Module, which contains propulsion systems; and the Lunar Excursion Module (LEM) to carry astronauts to the moon and back to the Command and Service Modules. The spacecraft will be launched via a three-stage Saturn booster. The first stage will provide 7.5 million pounds of thrust from five F-1 engines for liftoff and initial powered flight. The second stage will develop 1 million pounds of thrust from five J-2 engines to boost the spacecraft almost into Earth orbit. Immediately after ignition of the second stage, the Launch Escape System will be jettisoned. A single J-2 engine in the S4B stage will provide 200,000 pounds of thrust to place the spacecraft in an earth parking orbit. It also will be used to propel the spacecraft into a translunar trajectory, then it will separate from the Apollo Modules. Onboard propulsion systems will be used to insert the spacecraft into lunar orbit. Two astronauts will enter the LEM, which will separate from the command and service modules. The LEM will go into elliptical orbit and prepare for landing. The LEM will lift off of the Moon's surface to return to the Command and Service Modules, and most likely be left in lunar orbit. After leaving the Moon's orbit, and shortly before entering Earth's orbit, the Service Module will be ejected. The Command Module will be oriented for reentry into the Earth's atmosphere. A drogue parachute will deploy at approximately 50,000 feet, followed by the main parachute system for touchdown.

  2. Air Taxi at Your Service

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Under an exclusive agreement with Eclipse Aviation Corporation, Williams International is manufacturing the EJ22 engine, a commercial version of the NASA/Williams FJX-2, for the Eclipse 500 aircraft. The new engine, which weighs approximately 85 pounds and delivers over 770 pounds of thrust, provides a higher thrust-to-weight ratio than any commercial turbofan ever produced. Being the smallest, quietest, and lightest commercial aircraft engine currently available, the EJ22 engine makes a whole new class of twinjet light aircraft feasible.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1964-11-01

    The Saturn I S-IV stage (second stage) assembly for the SA-9 mission underwent the weight and balance test in the hanger building at Cape Canaveral. The S-IV stage had six RL-10 engines which used liquid hydrogen and liquid oxygen as its propellants arranged in a circle. Each RL-10 engine produced a thrust of 15,000 pounds, a total combined thrust of 90,000 pounds. The SA-9 mission was the first Saturn with operational payload Pegasus I, meteoroid detection satellite, and launched on February 16, 1965.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    In the clustering procedure, an initial assembly step for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, place the first of eight outboard fuel tanks atop the central liquid-oxygen tank. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This cutaway illustration shows the Saturn V S-II (second) stage with callouts of major components. When the Saturn V first stage burns out and drops away, power for the Saturn was provided by the S-II (second) stage with five J-2 engines which produced a total of 1,150,000 pounds of thrust. Four outer engines are placed in a square pattern with gimbaling capability for control and guidance, with the fifth engine fixed rigidly in the center.

  6. The response of rotating machinery to external random vibration

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.; Chiang, T.; Badgley, R. H.

    1974-01-01

    A high-speed turbogenerator employing gas-lubricated hydrodynamic journal and thrust bearings was subjected to external random vibrations for the purpose of assessing bearing performance in a dynamic environment. The pivoted-pad type journal bearings and the step-sector thrust bearing supported a turbine-driven rotor weighing approximately twenty-one pounds at a nominal operating speed of 36,000 rpm. The response amplitudes of both the rigid-supported and flexible-supported bearing pads, the gimballed thrust bearing, and the rotor relative to the machine casing were measured with capacitance type displacement probes. Random vibrations were applied by means of a large electrodynamic shaker at input levels ranging between 0.5 g (rms) and 1.5 g (rms). Vibrations were applied both along and perpendicular to the rotor axis. Response measurements were analyzed for amplitude distribution and power spectral density. Experimental results compare well with calculations of amplitude power spectral density made for the case where the vibrations were applied along the rotor axis. In this case, the rotor-bearing system was treated as a linear, three-mass model.

  7. Linear test bed. Volume 1: Test bed no. 1. [aerospike test bed with segmented combustor

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Linear Test Bed program was to design, fabricate, and evaluation test an advanced aerospike test bed which employed the segmented combustor concept. The system is designated as a linear aerospike system and consists of a thrust chamber assembly, a power package, and a thrust frame. It was designed as an experimental system to demonstrate the feasibility of the linear aerospike-segmented combustor concept. The overall dimensions are 120 inches long by 120 inches wide by 96 inches in height. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure, at a mixture ratio of 5.5. At the design conditions, the sea level thrust is 200,000 pounds. The complete program including concept selection, design, fabrication, component test, system test, supporting analysis and posttest hardware inspection is described.

  8. Flight Test of the Aerojet 7KS-6000 T-27 Jato Rocket Motor

    NASA Technical Reports Server (NTRS)

    Bond, Aleck C.; Thibodaux, Joseph G., Jr.

    1949-01-01

    A flight test of the Aero jet Engineering Corporation's 7KS-6000 T-27 Jato rocket motor was conducted at the Langley Pilotless Aircraft Research Station at Wallops Island, Va, to determine the flight performance characteristics of the motor. The flight test imposed an absolute longitudinal acceleration of 9.8 g upon the rocket motor at 2.8 seconds after launching. The total impulse developed by the motor was 43,400 pound-seconds, and the thrusting time was 7.58 seconds. The maximum thrust was 7200 pounds and occurred at 4.8 seconds after launching. No thrust irregularities attributable to effects of the flight longitudinal acceleration were observed. Certain small thrust irregularities occurred in the flight test which appear to correspond to irregularities observed in static tests conducted elsewhere. A hypothesis regarding the origin of these small irregularities is presented.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1963-03-24

    This photograph depicts Marshall Space Flight Center employees, James Reagin, machinist (top); Floyd McGinnis, machinist; and Ernest Davis, experimental test mechanic (foreground), working on a mock up of the S-IC thrust structure. The S-IC stage is the first stage, or booster, of the 364-foot long Saturn V rocket that ultimately took astronauts to the Moon. The S-IC stage, burned over 15 tons of propellant per second during its 2.5 minutes of operation to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour. The stage was 138 feet long and 33 feet in diameter. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust.

  10. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    NASA Technical Reports Server (NTRS)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    A complete F-1 engine assembly is shown in this photograph. Designed and developed by Rocketdye under the direction of the Marshall Space Flight Center, the engine measured 19-feet tall by 12.5 feet at the nozzle exit, and each engine produced a 1,500,000-pound thrust using liquid oxygen and kerosene as the propellant. A cluster of five F-1 engines was mounted on the Saturn V S-IC (first) stage and burned 15 tons of liquid oxygen and kerosene each second to produce 7,500,000 pounds of thrust.

  12. Saturn Apollo Program

    NASA Image and Video Library

    2004-04-15

    H-1 Engine major components with callouts (chart 1): The H-1 engine was used in a cluster of eight on the the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern: four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine had a thrust of 188,000 pounds for a combined thrust of over 1,500,000 pounds.

  13. Saturn Apollo Program

    NASA Image and Video Library

    2004-04-15

    H-1 engine major components with callouts (chart 1). The H-1 engine was used in a cluster of eight on the the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern: four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine had a thrust of 188,000 pounds for a combined thrust of over 1,500,000 pounds.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1968-03-01

    The Saturn 1B first stage (S-IB) enters the NASA barge Point Barrow, in March 1968. The Marshall Space Flight Center (MSFC) utilized a number of water transportation craft to transport the Saturn stages to-and-from the manufacturing facilities and test sites, as well as delivery to the Kennedy Space Center for launch. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized the eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.

  15. Beamed energy propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, James M.

    1992-01-01

    Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1967-07-28

    This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes

  17. Saturn Apollo Program

    NASA Image and Video Library

    1965-05-01

    This photograph depicts a view of the test firing of all five F-1 engines for the Saturn V S-IC test stage at the Marshall Space Flight Center. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. The S-IC Static Test Stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level, and was required to hold down the brute force of the 7,500,000-pound thrust. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900-ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minutes.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1965-08-01

    Two workers are dwarfed by the five J-2 engines of the Saturn V second stage (S-II) as they make final inspections prior to a static test firing by North American Space Division. These five hydrogen -fueled engines produced one million pounds of thrust, and placed the Apollo spacecraft into earth orbit before departing for the moon. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1967-02-18

    This cutaway drawing shows the S-IVB (third stage) of the Saturn V launch vehicle. As a part of the Marshall Space Flight Center’s (MSFC) “building block” approach to the Saturn development, the S-IVB stage was utilized in the Saturn IB launch vehicle as a second stage and, later, the Saturn V launch vehicle as a third stage. The 59 foot long and 22 feet diameter stage was powered by a single J-2 engine, initially capable of 200,000 pounds of thrust.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    At the Marshall Space Flight Center (MSFC), the fuel tank assembly for the Saturn V S-IC-T (static test stage) fuel tank assembly is mated to the liquid oxygen (LOX) tank in building 4705. This stage underwent numerous static firings at the newly-built S-IC Static Test Stand at the MSFC west test area. The S-IC (first) stage used five F-1 engines that produced a total thrust of 7,500,000 pounds as each engine produced 1,500,000 pounds of thrust. The S-IC stage lifted the Saturn V vehicle and Apollo spacecraft from the launch pad.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    The S-IC-T stage was hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    The S-IC-T stage is hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage is a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months proving the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, houses the fuel and liquid oxygen tanks that hold a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    The S-IC-T stage was hoisted into the S-IC Static Test Stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle, not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks were cornected by a 26-foot intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  4. Investigation of Thrust Augmentation of a 1600-pound Thrust Centrifugal-flow-type Turbojet Engine by Injection of Refrigerants at Compressor Inlets

    NASA Technical Reports Server (NTRS)

    Jones, William L.; Dowman, Harry W.

    1947-01-01

    Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This cutaway illustration shows the Saturn V S-IVB (third) stage with the callouts of its major components. When the S-II (second) stage of the powerful Saturn V rocket burnt out and was separated the remaining units approached orbit around the Earth. Injection into the desired orbit was attaineded as the S-IVB (third stage) was ignited and burnt. The S-IVB stage was powered by a single 200,000-pound thrust J-2 engine and had a re-start capability built in for its J-2 engine. The S-IVB restarted to speed the Apollo spacecraft to escape velocity injecting it and the astronauts into a moon trajectory.

  6. Orbit transfer vehicle engine study, phase A extension. Volume 2A: Study results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Engine trade studies and systems analyses leading to a baseline engine selection for advanced expander cycle engine are discussed with emphasis on: (1) performance optimization of advanced expander cycle engines in the 10 to 20K pound thrust range; (2) selection of a recommended advanced expander engine configuration based on maximized performance and minimized mission risk, and definition of the components for this configuration; (3) characterization of the low thrust adaptation requirements and performance for the staged combustion engine; (4) generation of a suggested safety and reliability approach for OTV engines independent of engine cycle; (5) definition of program risk relationships between expander and staged combustion cycle engines; and (6) development of schedules and costs for the DDT&E, production, and operation phases of the 10K pound thrust expander engine program.

  7. Fluidic Emergency Thruster for Aircraft

    NASA Technical Reports Server (NTRS)

    Honda, T. S.

    1972-01-01

    The design, development, fabrication and test evaluation of two prototype fluidic emergency thrusters (FET) for aircraft stabilization are discussed. The fluidic control units were designed to provide, between two diametrically opposed nozzles, a thrust differential proportional to an input voltage signal. The emergency roll control requirements of the X-14 VTOL research aircraft were defined as typical design goals. Two control units, one on each wing tip, are intended to provide a maximum thrust of 224 pounds per unit. The units are designed to operate with 2500 psig, 2000 F gas from a solid propellant gas generator. The emergency system including the gas generator was designed to add less than 11 pounds per wing tip. The operating time under emergency conditions was specified as five seconds. The fluidic emergency thruster is similar in concept to a JATO system but has the added feature of controllable thrust.

  8. Design study of an air pump and integral lift engine ALF-504 using the Lycoming 502 core

    NASA Technical Reports Server (NTRS)

    Rauch, D.

    1972-01-01

    Design studies were conducted for an integral lift fan engine utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analyses include fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis.

  9. Solid Rocket Booster Separation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Quick Time movie shows the Space Shuttle Solid Rocket Booster (SRB) separation from the external tank (ET). After separation, the boosters fall to the ocean from which they are retrieved and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. That is equivalent to 44 million horsepower, or the combined power of 400,000 subcompact cars.

  10. Space Launch System Booster Passes Major Ground Test

    NASA Image and Video Library

    2015-03-11

    The largest, most powerful rocket booster ever built successfully fired up Wednesday for a major-milestone ground test in preparation for future missions to help propel NASA’s Space Launch System (SLS) rocket and Orion spacecraft to deep space destinations, including an asteroid and Mars. The booster fired for two minutes, the same amount of time it will fire when it lifts the SLS off the launch pad, and produced about 3.6 million pounds of thrust. The test was conducted at the Promontory, Utah test facility of commercial partner Orbital ATK.

  11. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cutaway illustration shows the Saturn V S-IC (first) stage with detailed callouts of the components. The S-IC Stage is 138 feet long and 33 feet in diameter, producing 7,500,000 pounds of thrust through five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  12. Saturn Apollo Program

    NASA Image and Video Library

    2004-04-15

    This cutaway illustration shows the Saturn V S-IC (first) stage with detailed callouts of the components. The S-IC Stage is 138 feet long and 33 feet in diameter, producing 7,500,000 pounds of thrust through five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  13. RS-84 Engine Completes Design Review

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is an artist's concept of the kerosene-fueled RS-84 engine, one of several technologies competing to power NASA's next generation of launch vehicles. The RS-84 has successfully completed its preliminary design review as a reusable, liquid kerosene booster engine that will deliver a thrust level of 1 million pounds of force. The preliminary design review is a lengthy technical analysis that evaluates engine design according to stringent system requirements. The review ensures development is on target to meet Next Generation Launch Technology goals: Improved safety, reliability, and cost.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This illustration shows a cutaway drawing with callouts of the major components for the S-IC (first) stage of the Saturn V launch vehicle. The S-IC stage is 138 feet long and 33 feet in diameter, producing more than 7,500,000 pounds of thrust through five F-1 engines powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimball for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  15. Saturn V Second Stage (S-II) Ready for Static Test

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Two workers are dwarfed by the five J-2 engines of the Saturn V second stage (S-II) as they make final inspections prior to a static test firing by North American Space Division. These five hydrogen -fueled engines produced one million pounds of thrust, and placed the Apollo spacecraft into earth orbit before departing for the moon. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  16. XLR-11 - X-1 rocket engine display

    NASA Technical Reports Server (NTRS)

    1996-01-01

    What started as a hobby for four rocket fanatics went on to break the sound barrier: Lovell Lawrence, Hugh Franklin Pierce, John Shesta, and Jimmy Wyld the four founders of Reaction Motors, Inc. that built the XLR-11 Rocket Engine. The XLR-11 engine is shown on display in the NASA Exchange Gift Shop, NASA Hugh L. Dryden Flight Research Center at Edwards, California. This engine, familiarly known as Black Betsy, a 4-chamber rocket that ignited diluted ethyl alcohol and liquid oxygen into 6000 pounds or more of thrust powered the X-1 series airplanes.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    S-IVB-505 and S-IVB-211, the flight version of the S-IVB stages, in the McDornell Douglas' S-IVB Assembly and Checkout Tower in Huntington Beach, California. As a part of the Marshall Space Flight Center `s "building block" approach to the Saturn vehicle development, the S-IVB stage, in its 200 series, was utilized as the Saturn IB launch vehicle's second stage, and, in its 500 series, the Saturn V's third stage. The S-IVB was powered by a single J-2 engine, initially capable of 200,000 pounds of thrust.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1964-03-01

    The flame and exhaust from the test firing of an F-1 engine blast out from the Saturn S-IB Static Test Stand in the east test area of the Marshall Space Flight Center. A Cluster of five F-1 engines, located in the S-IC (first) stage of the Saturn V vehicle, provided over 7,500,000 pounds of thrust to launch the giant rocket. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  19. NASA’s Space Launch System Engine Testing Heats Up

    NASA Image and Video Library

    2017-05-23

    NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, for the world’s most-powerful rocket. The 500-second test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, the Exploration Mission-1 (EM-1). The SLS rocket, powered by four RS-25 engines, will provide 2 million pounds of thrust and work in conjunction with two solid rocket boosters. These are former space shuttle main engines, modified to perform at a higher level and with a new controller.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1963-12-05

    The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB Static Test Stand which had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961 the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1963-12-01

    The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB static test stand that had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961, the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    Three S-IB stages near completion at the NASA's Michoud Assembly Facility (MAF) near New Orleans, Louisiana, in November 1967. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at MAF, the 90,000-pound booster utilized eight H-1 engines and each produced 200,000 pounds of thrust for the Saturn IB launch vehicle's first stage.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    Workers at the Michoud Assembly Facility near New Orleans, Louisiana install the H-1 engines into the S-IB stage, the Saturn IB launch vehicle's first stage. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at MAF, the 90,000-pound booster utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds.

  4. Injection Principles from Combustion Studies in a 200-Pound-Thrust Rocket Engine Using Liquid Oxygen and Heptane

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.; Auble, C. M.

    1955-01-01

    The importance of atomizing and mixing liquid oxygen and heptane was studied in a 200-pound-thrust rocket engine. Ten injector elements were used with both steel and transparent chambers. Characteristic velocity was measured over a range of mixture ratios. Combustion gas-flow and luminosity patterns within the chamber were obtained by photographic methods. The results show that, for efficient combustion, the propellants should be both atomized and mixed. Heptane atomization controlled the combustion rate to a much larger extent than oxygen atomization. Induced mixing, however, was required to complete combustion in the smallest volume. For stable, high-efficiency combustion and smooth engine starts, mixing after atomization was most promising.

  5. KSC Vertical Launch Site Evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, Lynne V.

    2007-01-01

    RS&H was tasked to evaluate the potential available launch sites for a combined two user launch pad. The Launch sites were to be contained entirely within current Kennedy Space Center property lines. The user launch vehicles to be used for evaluation are in the one million pounds of first stage thrust range. Additionally a second evaluation criterion was added early on in the study. A single user launch site was to be evaluated for a two million pound first stage thrust vehicle. Both scenarios were to be included in the report. To provide fidelity to the study criteria, a specific launch vehicle in the one million pound thrust range was chosen as a guide post or straw-man launch vehicle. The RpK K-1 vehicle is a current Commercial Orbital Transportation System (COTS), contract awardee along with the SpaceX Falcon 9 vehicle. SpaceX, at the time of writing, is planning to launch COTS and possibly other payloads from Cx-40 on Cape Canaveral Air Force Station property. RpK has yet to declare a specific launch site as their east coast US launch location. As such it was deemed appropriate that RpK's vehicle requirements be used as conceptual criteria. For the purposes of this study those criteria were marginally generalized to make them less specifiC.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1964-11-01

    This image shows the Saturn V S-IC-T stage (S-IC static test article) fuel tank being attached to the thrust structure in the vehicle assembly building at the Marshall Space Flight Center (MSFC). The S-IC stage utilized five F-1 engines that used liquid oxygen and kerosene as propellant and provided a combined thrust of 7,500,000 pounds.

  7. Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Campbell, C. E.; Farley, J. M.

    1960-01-01

    An investigation was conducted to obtain nozzle performance data with relatively large-scale models at pressure ratios as high as 120. Conical convergent-divergent nozzles with divergence angles alpha of 15, 25, and 29 deg. were each tested at area ratios of approximately 10, 25, and 40. Heated air (1200 F) was supplied at the nozzle inlet at pressures up to 145 pounds per square inch absolute and was exhausted into quiescent air at pressures as low as 1.2 pounds per square inch absolute. Thrust ratios for all nozzle configurations are presented over the range of pressure ratios attainable and were extrapolated when possible to design pressure ratio and beyond. Design thrust ratios decreased with increasing nozzle divergence angle according to the trend predicted by the (1 + cos alpha)/2 parameter. Decreasing the nozzle divergence angle resulted in sizable increases in thrust ratio for a given surface-area ratio (nozzle weight), particularly at low nozzle pressure ratios. Correlations of the nozzle static pressure at separation and of the average static pressure downstream of separation with various nozzle parameters permitted the calculation of thrust in the separated-flow region from unseparated static-pressure distributions. Thrust ratios calculated by this method agreed with measured values within about 1 percent.

  8. Design and test of a prototype scale ejector wing

    NASA Technical Reports Server (NTRS)

    Mefferd, L. A.; Alden, R. E.; Bevilacqua, P. M.

    1979-01-01

    A two dimensional momentum integral analysis was used to examine the effect of changing inlet area ratio, diffuser area ratio, and the ratio of ejector length to width. A relatively wide range of these parameters was considered. It was found that for constant inlet area ratio the augmentation increases with the ejector length, and for constant length: width ratio the augmentation increases with inlet area ratio. Scale model tests were used to verify these trends and to examine th effect of aspect ratio. On the basis of these results, an ejector configuration was selected for fabrication and testing at a scale representative of an ejector wing aircraft. The test ejector was powered by a Pratt-Whitney F401 engine developing approximately 12,000 pounds of thrust. The results of preliminary tests indicate that the ejector develops a thrust augmentation ratio better than 1.65.

  9. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

  10. Solid Rocket Boosters Separation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This view, taken by a motion picture tracking camera for the STS-3 mission, shows both left and right solid rocket boosters (SRB's) at the moment of separation from the external tank (ET). After impact to the ocean, they were retrieved and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. That is equivalent to 44 million horsepower, or the combined power of 400,000 subcompact cars.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This is a cutaway view of the Saturn V first stage, known as the S-IC, detailing the five F-1 engines and fuel cells. The S-IC stage is 138 feet long and 33 feet in diameter, producing more than 7,500,000 pounds of thrust through the five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  12. F-1 Engine for Saturn V Undergoing a Static Test

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The flame and exhaust from the test firing of an F-1 engine blast out from the Saturn S-IB Static Test Stand in the east test area of the Marshall Space Flight Center. A Cluster of five F-1 engines, located in the S-IC (first) stage of the Saturn V vehicle, provided over 7,500,000 pounds of thrust to launch the giant rocket. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  13. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1965-04-16

    This photograph depicts a dramatic view of the first test firing of all five F-1 engines for the Saturn V S-IC stage at the Marshall Space Flight Center. The testing lasted a full duration of 6.5 seconds. It also marked the first test performed in the new S-IC static test stand and the first test using the new control blockhouse. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. Required to hold down the brute force of a 7,500,000-pound thrust, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900 ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minute.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1970-01-22

    This Saturn V S-II (second) stage is being lifted into position for a test at the Vehicle Assembly Building at the Kennedy Space Center. When the Saturn V booster stage (S-IC) burned out and dropped away, power for the Saturn was provided by the 82-foot-long and 33-foot-diameter S-II stage. Developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center, the stage utilized five J-2 engines, each producing 200,000 pounds of thrust. The engines used liquid oxygen and liquid hydrogen as propellants. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    This photograph shows F-1 engines being stored in the F-1 Engine Preparation Shop, building 4666, at the Marshall Space Flight Center. Each F-1 engine produced a thrust of 1,500,000 pounds. A cluster of five engines was mounted on the thrust structure of the S-IC stage of a 364-foot long Saturn V launch vehicle that ultimately took astronauts to the Moon.

  17. Research Technology

    NASA Image and Video Library

    2002-03-11

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  18. Reaction Control Engine for Space Launch Initiative

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  19. Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Nguyen, N.; Cutler, A. D.

    2008-01-01

    This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-01

    S-IB-1, the first flight version of the Saturn IB launch vehicle's first stage (S-IB stage), sat in the Marshall Space Flight Center (MSFC) Saturn IB static test stand on March 15, 1965. Developed by the MSFC and built by the Chrysler Corporation at the Michoud Assembly Facility (MAF) in New Orleans, Louisiana, the 90,000-pound booster utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    This chart provides the vital statistics for the F-1 rocket engine. Developed by Rocketdyne, under the direction of the Marshall Space Flight Center, the F-1 engine was utilized in a cluster of five engines to propel the Saturn V's first stage, the S-IC. Liquid oxygen and kerosene were used as its propellant. Initially rated at 1,500,000 pounds of thrust, the engine was later uprated to 1,522,000 pounds of thrust after the third Saturn V launch (Apollo 8, the first marned Saturn V mission) in December 1968. The cluster of five F-1 engines burned over 15 tons of propellant per second, during its two and one-half minutes of operation, to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1965-01-01

    The Saturn V first stages were test fired at the Mississippi Test Facility and at the Marshall Space Flight Center (MSFC). Five F-1 engines powered the first stage, each developing 1.5 million pounds of thrust. The first stage, known as the S-IC stage, burned over 15 tons of propellant per second during its 2.5 minutes of operation to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour. The stage was 138 feet long and 33 feet in diameter. This photograph shows the test firing of an F-1 engine at the MSFC's S-IC Static Test Firing Facility.

  3. The Second Stage of a Saturn V Ready For Test

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This Saturn V S-II (second) stage is being lifted into position for a test at the Vehicle Assembly Building at the Kennedy Space Center. When the Saturn V booster stage (S-IC) burned out and dropped away, power for the Saturn was provided by the 82-foot-long and 33-foot-diameter S-II stage. Developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center, the stage utilized five J-2 engines, each producing 200,000 pounds of thrust. The engines used liquid oxygen and liquid hydrogen as propellants. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1965-03-15

    Workers at the Marshall Space Flight Center (MSFC) hoist S-IB-1, the first flight version of the Saturn IB launch vehicle's first stage (S-IB stage), into the Saturn IB static test stand on March 15, 1965. Developed by the MSFC and built by the Chrysler Corporation at the Michoud Assembly Facility (MAF) in New Orleans, Louisiana, the 90,000-pound booster utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds.

  5. Noncatalytic hydrazine thruster development - 0.050 to 5.0 pounds thrust

    NASA Technical Reports Server (NTRS)

    Murch, C. K.; Sackheim, R. L.; Kuenzly, J. D.; Callens, R. A.

    1976-01-01

    Noncatalytic (thermal-decompositon) hydrazine thrusters can operate in both the pulsing and steady-state modes to meet the propulsive requirements of long-life spacecraft. The thermal decomposition mode yields higher specific impulse than is characteristic of catalytic thrusters at similar thrust levels. This performance gain is the result of higher temperature operation and a lower fraction of ammonia dissociation. Some life limiting factors of catalytic thrusters are eliminated.

  6. Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  7. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2000-04-03

    This is a computer generated image of a Shuttle launch utilizing 2nd generation Reusable Launch Vehicle (RLV) flyback boosters, a futuristic concept that is currently undergoing study by NASA's Space Launch Initiative (SLI) Propulsion Office, managed by the Marshall Space Fight Center in Huntsville, Alabama, working in conjunction with the Agency's Glenn Research Center in Cleveland, Ohio. Currently, after providing thrust to the Space Shuttle, the solid rocket boosters are parachuted into the sea and are retrieved for reuse. The SLI is considering vehicle concepts that would fly first-stage boosters back to a designated landing site after separation from the orbital vehicle. These flyback boosters would be powered by several jet engines integrated into the booster capable of providing over 100,000 pounds of thrust. The study will determine the requirements for the engines, identify risk mitigation activities, and identify costs associated with risk mitigation and jet engine development and production, as well as determine candidate jet engine options to pursue for the flyback booster.

  8. Preliminary Investigation of an Underwater Ramjet Powered by Compressed Air

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J.; Shoemaker, Charles J.

    1961-01-01

    Part I contains the results of a preliminary experimental investigation of a particular design of an underwater ramjet or hydroduct powered by compressed air. The hydroduct is a propulsion device in which the energy of an expanding gas imparts additional momentum to a stream of water through mixing. The hydroduct model had a fineness ratio of 5.9, a maximum diameter of 3.2 inches, and a ratio of inlet area to frontal area of 0.32. The model was towed at a depth of 1 inch at forward speeds between 20 and 60 feet per second for airflow rates from 0.1 to 0.3 pound per second. Longitudinal force and pressures at the inlet and in the mixing chamber were determined. The hydroduct produced a positive thrust-minus-drag force at every test speed. The force and pressure coefficients were functions primarily of the ratio of weight airflow to free-stream velocity. The maximum propulsive efficiency based on the net internal thrust and an isothermal expansion of the air was approximately 53 percent at a thrust coefficient of 0.10. The performance of the test model may have been influenced by choking of the exit flow. Part II is a theoretical development of an underwater ramjet using air as "fuel." The basic assumption of the theoretical analysis is that a mixture of water and air can be treated as a compressible gas. More information on the properties of air-water mixtures is required to confirm this assumption or to suggest another approach. A method is suggested from which a more complete theoretical development, with the effects of choking included, may be obtained. An exploratory computation, in which this suggested method was used, indicated that the effect of choked flow on the thrust coefficient was minor.

  9. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Meadville, J. W.

    1980-01-01

    A study was conducted within the thrust range 450 to 9000 N (100 to 2000 pounds). Performance analyses were made on centrifugal, pitot, Barske, drag, Tesla, gear, piston, lobe, and vane pumps with liquid hydrogen, liquid methane, and liquid oxygen as propellants. Gaseous methane and hydrogen driven axial impulse turbines, vane expanders, piston expanders, and electric motors were studied as drivers. Data are presented on performance, sizes, weights, and estimated service lives and costs.

  10. Moisture content of southern pine as related to thrust, torque, and chip formation in boring

    Treesearch

    Charles W. McMillin; George E. Woodson

    1972-01-01

    Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,4000 rpm and removed chips 0.020 inch thick. For wood mositure contents ranging from ovendry to saturation, thrust was lower when boring along the grain (Average 98 pounds)...

  11. Douglas D-558-1 Skystreak landing on lakebed

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Douglas D-558-1 Skystreak is seen close-up in this 1949 photograph. The D-558-1 made its landing approach at about 210 knots and landed at 143 knots. Despite the (then) high landing speed, the pilots found the airplane's landing characteristics to be satisfactory. Conceived in 1945, the D558-1 Skystreak was designed by the Douglas Aircraft Company for the U.S. Navy Bureau of Aeronautics, in conjunction with the National Advisory Committee for Aeronautics (NACA). The Skystreaks were turojet powered aircraft that took off from the ground under their own power and had straight wings and tails. All three D-558-1 Skystreaks were powered by Allison J35-A-11 turbojet engines producing 5,000 pounds of thrust. All the Skystreaks were initially painted scarlet, which lead to the nickname 'crimson test tube.' NACA later had the color of the Skystreaks changed to white to improve optical tracking and photography. The Skystreaks carried 634 pounds of instrumentation and were almost ideal first-generation, simple, transonic research airplanes. Much of the research performed by the D-558-1 Skystreaks was quickly overshadowed in the public mind by Chuck Yeager and the X-1 rocketplane. However, the Skystreak performed an important role in aeronautical research by flying for extended periods of time at transonic speeds, which freed the X-1 to fly for limited periods at supersonic speeds.

  12. Aerospike thrust chamber program. [cumulative damage and maintenance of structural members in hydrogen oxygen engines

    NASA Technical Reports Server (NTRS)

    Campbell, J., Jr.; Cobb, S. M.

    1976-01-01

    An existing, but damaged, 25,000-pound thrust, flightweight, oxygen/hydrogen aerospike rocket thrust chamber was disassembled and partially repaired. A description is presented of the aerospike chamber configuration and of the damage it had suffered. Techniques for aerospike thrust chamber repair were developed, and are described, covering repair procedures for lightweight tubular nozzles, titanium thrust structures, and copper channel combustors. Effort was terminated prior to completion of the repairs and conduct of a planned hot fire test program when it was found that the copper alloy walls of many of the thrust chamber's 24 combustors had been degraded in strength and ductility during the initial fabrication of the thrust chamber. The degradation is discussed and traced to a reaction between oxygen and/or oxides diffused into the copper alloy during fabrication processes and the hydrogen utilized as a brazing furnace atmosphere during the initial assembly operation on many of the combustors. The effects of the H2/O2 reaction within the copper alloy are described.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1964-01-01

    This close-up view of the F-1 engine for the Saturn V S-IC (first) stage shows the engine's complexity, and also its large size as it dwarfs the technician. Developed by Rocketdyne, under the direction of the Marshall Space Flight Center, the F-1 engine was utilized in a cluster of five engines to propel the Saturn V's first stage, the S-IC. Liquid oxygen and kerosene were used as its propellant. Initially rated at 1,500,000 pounds of thrust, the engine was later uprated to 1,522,000 pounds of thrust after the third Saturn V launch (Apollo 8, the first marned Saturn V mission) in December 1968. The cluster of five F-1 engines burned over 15 tons of propellant per second, during its two and one-half minutes of operation, to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1963-01-01

    A close-up view of the F-1 Engine for the Saturn V S-IC (first) stage depicts the complexity of the engine. Developed by Rocketdyne under the direction of the Marshall Space Flight Center, the F-1 engine was utilized in a cluster of five engines to propel the Saturn V's first stage, the S-IC. Liquid oxygen and kerosene were used as its propellant. Initially rated at 1,500,000 pounds of thrust, the engine was later uprated to 1,522,000 pounds of thrust after the third Saturn V launch (Apollo 8, the first marned Saturn V mission) in December 1968. The cluster of five F-1 engines burned over 15 tons of propellant per second, during its two and one-half minutes of operation, to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    A J-2 engine undergoes static firing. The J-2, developed under the direction of the Marshall Space Flight Center, was propelled by liquid hydrogen and liquid oxygen. A single J-2 was utilized in the S-IVB stage (the second stage for the Saturn IB and third stage for the Saturn V) and in a cluster of five for the second stage (S-II) of the Saturn V. Initially rated at 200,000 pounds of thrust, the engine was later uprated in the Saturn V program to 230,000 pounds.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1961-05-16

    On October 27, 1961, the Marshall Space Flight Center (MSFC) and the Nation marked a high point in the 3-year-old Saturn development program when the first Saturn vehicle flew a flawless 215-mile ballistic trajectory from Cape Canaveral, Florida. SA-1 is pictured here, five months before launch, in the MSFC test stand on May 16, 1961. Developed and tested at MSFC under the direction of Dr. Wernher von Braun, SA-1 incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet. and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks, as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle.

  17. Moisture content of southern pine as related to thrust, torque, and chip formation in boring

    Treesearch

    C. W. McMillin; G. E. Woodson

    1972-01-01

    Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,400 rpm and removed chips 0.020 inch thick. For wood moisture contents ranging from ovendry to saturation, thrust was lower when boring along the grain (average 98 pounds) than...

  18. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    Workers at McDornel-Douglas install the Saturn IB S-IVB (second) stage for the Apollo-Soyuz mission into the company's S-IVB assembly and checkout tower in Huntington Beach, California. The Saturn IB launch vehicle was developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in its "building block" approach to Saturn rocket development. This vehicle utilized the Saturn I technology to further develop and refine the capabilities of a larger booster and the Apollo spacecraft required for the manned lunar missions. The S-IVB stage, later used as the third stage of the Saturn V launch vehicle, was powered by a single J-2 engine initially capable of 200,000 pounds of thrust.

  19. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  20. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  1. NLS propulsion - Government view

    NASA Technical Reports Server (NTRS)

    Smelser, Jerry W.

    1992-01-01

    The paper discusses the technology development for the Space Transportation Main Engine (STME). The STME is a liquid oxygen/liquid hydrogen engine with 650,000 pounds of thrust, which may be flown in single-engine or multiple-engine configurations, depending upon the payload and mission requirements. The technological developments completed so far include a vacuum plasma spray process, the liquid interface diffusion bonding, and a thin membrane platelet technology for the combustion chamber fabrication; baseline designs for the hydrogen turbopump and the oxygen pump; and the engine control system. The family of spacecraft for which this engine is being developed includes a 20,000 pound payload to LEO and a 150,000 pound to LEO vehicle.

  2. Performance of 4600-pound-thrust centrifugal-flow-type turbojet engine with water-alcohol injection at inlet

    NASA Technical Reports Server (NTRS)

    Glasser, Philip W

    1950-01-01

    An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.

  3. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A 10,000-pound thrust hybrid rocket motor is tested at Stennis Space Center's E-1 test facility. A hybrid rocket motor is a cross between a solid rocket and a liquid-fueled engine. It uses environmentally safe solid fuel and liquid oxygen.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    This cutaway illustrates the S-I stage, the first stage of the Saturn I vehicle developed by the Marshall Space Flight Center (MSFC). The stage was propelled by a cluster of eight H-1 engines, capable of producing 1,500,000 pounds of thrust.

  5. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  6. KSC-04pd1646

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne crane operator Joe Ferrante (left) lowers SSME 2058, the first SSME fully assembled at KSC, onto an engine stand with the assistance of other technicians on his team. The engine is being moved from its vertical work stand into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  7. KSC-04pd1645

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne crane operator Joe Ferrante (second from right) lifts SSME 2058, the first SSME fully assembled at KSC, with the assistance of other technicians on his team. The engine is being lifted from its vertical work stand into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  8. KSC-04PD-1648

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne quality inspector Nick Grimm (center) monitors the work of technicians on his team as they lower SSME 2058, the first SSME fully assembled at KSC, onto an engine stand. The engine is being placed into a horizontal position in preparation for shipment to NASAs Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  9. KSC-04pd1648

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne quality inspector Nick Grimm (center) monitors the work of technicians on his team as they lower SSME 2058, the first SSME fully assembled at KSC, onto an engine stand. The engine is being placed into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  10. Ares V: Game Changer for National Security Launch

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil; Morris, Bruce

    2009-01-01

    NASA is designing the Ares V cargo launch vehicle to vastly expand exploration of the Moon begun in the Apollo program and enable the exploration of Mars and beyond. As the largest launcher in history, Ares V also represents a national asset offering unprecedented opportunities for new science, national security, and commercial missions of unmatched size and scope. The Ares V is the heavy-lift component of NASA's dual-launch architecture that will replace the current space shuttle fleet, complete the International Space Station, and establish a permanent human presence on the Moon as a stepping-stone to destinations beyond. During extensive independent and internal architecture and vehicle trade studies as part of the Exploration Systems Architecture Study (ESAS), NASA selected the Ares I crew launch vehicle and the Ares V to support future exploration. The smaller Ares I will launch the Orion crew exploration vehicle with four to six astronauts into orbit. The Ares V is designed to carry the Altair lunar lander into orbit, rendezvous with Orion, and send the mated spacecraft toward lunar orbit. The Ares V will be the largest and most powerful launch vehicle in history, providing unprecedented payload mass and volume to establish a permanent lunar outpost and explore significantly more of the lunar surface than was done during the Apollo missions. The Ares V consists of a Core Stage, two Reusable Solid Rocket Boosters (RSRBs), Earth Departure Stage (EDS), and a payload shroud. For lunar missions, the shroud would cover the Lunar Surface Access Module (LSAM). The Ares V Core Stage is 33 feet in diameter and 212 feet in length, making it the largest rocket stage ever built. It is the same diameter as the Saturn V first stage, the S-IC. However, its length is about the same as the combined length of the Saturn V first and second stages. The Core Stage uses a cluster of five Pratt & Whitney Rocketdyne RS-68B rocket engines, each supplying about 700,000 pounds of thrust. Its propellants are liquid hydrogen and liquid oxygen. The two solid rocket boosters provide about 3.5 million pounds of thrust at liftoff. These 5.5-segment boosters are derived from the 4-segment boosters now used on the Space Shuttle, and are similar to those used in the Ares I first stage. The EDS is powered by one J-2X engine. The J-2X, which has roughly 294,000 pounds of thrust, also powers the Ares I Upper Stage. It is derived from the J-2 that powered the Saturn V second and third stages. The EDS performs two functions. Its initial suborbital burns will place the lunar lander into a stable Earth orbit. After the Orion crew vehicle, launched separately on an Ares I, docks with the lander/EDS stack, EDS will ignite a second time to put the combined 65-metric ton vehicle into a lunar transfer orbit. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be approximately 381 feet tall and have a gross liftoff mass of 8.1 million pounds. The current point-of-departure design exceeds Saturn V s mass capability by approximately 40 percent. Using the current payload shroud design, Ares V can carry 315,000 pounds to 29-degree low Earth orbit (LEO) or 77,000 pounds to a geosynchronous orbit. Another unique aspect of the Ares V is the 33-foot-diameter payload shroud, which encloses approximately 30,400 cubic feet of usable volume. A larger hypothetical shroud for encapsulating larger payloads has been studied. While Ares V makes possible larger payload masses and volumes, it may alternately make possible more cost-effective mission design if the relevant payload communities are willing to consider an alternative to the existing approach that has driven them to employ complexity to solve current launch vehicle mass and volume constraints. By using Ares V s mass and volume capabilities as margin, payload designers stand to reduce development risk and cost. Significant progress has been made on the Ares V to support a plaed fiscal 2011 authority-to-proceed (ATP) milestone. The Ares V team is actively reaching out to external organizations during this early concept phase to ensure that the Ares V vehicle can be leveraged for national security, science, and commercial development needs. This presentation will discuss Ares V vehicle configuration, the path to the current concept, accomplishments to date, and potential payload utilization opportunities.

  11. D-558-I in flight

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Douglas D-558-1 Skystreak is seen close-up in this early 1950s inflight photograph. Although less well known than the X-1, the D-558-1 could carry out research roles that complemented those of the more glamorous, rocket-powered craft. The D-558-1 was relatively slow, with only one flight exceeding a speed of Mach 1 (the speed of sound). However, the jet-powered Skystreak could fly for sustained periods at transonic speeds, increasing the amount of data a single flight could yield. By contrast, the rocket-powered X-1 could only provide transonic data for brief periods on each flight. Conceived in 1945, the D558-1 Skystreak was designed by the Douglas Aircraft Company for the U.S. Navy Bureau of Aeronautics, in conjunction with the National Advisory Committee for Aeronautics (NACA). The Skystreaks were turojet powered aircraft that took off from the ground under their own power and had straight wings and tails. All three D-558-1 Skystreaks were powered by Allison J35-A-11 turbojet engines producing 5,000 pounds of thrust. All the Skystreaks were initially painted scarlet, which lead to the nickname 'crimson test tube.' NACA later had the color of the Skystreaks changed to white to improve optical tracking and photography. The Skystreaks carried 634 pounds of instrumentation and were ideal first-generation, simple, transonic research airplanes. Much of the research performed by the D-558-1 Skystreaks, was quickly overshadowed in the public mind by Chuck Yeager and the X-1 rocketplane. However, the Skystreak performed an important role in aeronautical research by flying for extended periods of time at transonic speeds, which freed the X-1 to fly for limited periods at supersonic speeds.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1965-04-01

    S-IB-1, the first flight version of the Saturn IB launch vehicle's first stage (S-IB stage), undergoes a full-duration static firing in Saturn IB static test stand at the Marshall Space Flight Center (MSFC) on April 13, 1965. Developed by the MSFC and built by the Chrysler Corporation at the Michoud Assembly Facility (MAF) in New Orleans, Louisiana, the 90,000-pound booster utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds. Between April 1965 and July 1968, MSFC performed thirty-two static tests on twelve different S-IB stages.

  13. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  14. Around Marshall

    NASA Image and Video Library

    1998-11-04

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1989-01-20

    This photograph shows a static firing test of the Solid Rocket Qualification Motor-8 (QM-8) at the Morton Thiokol Test Site in Wasatch, Utah. The twin solid rocket boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  16. TMS delivered for A-3 Test Stand

    NASA Image and Video Library

    2010-03-17

    A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.

  17. 100-lbf LO2/CH4 RCS Thruster Testing and Validation

    NASA Technical Reports Server (NTRS)

    Barnes, Frank; Cannella, Matthew; Gomez, Carlos; Hand, Jeffrey; Rosenberg, David

    2009-01-01

    100 pound thrust liquid Oxygen-Methane thruster sized for RCS (Reaction Control System) applications. Innovative Design Characteristics include: a) Simple compact design with minimal part count; b) Gaseous or Liquid propellant operation; c) Affordable and Reusable; d) Greater flexibility than existing systems; e) Part of NASA'S study of "Green Propellants." Hot-fire testing validated performance and functionality of thruster. Thruster's dependence on mixture ratio has been evaluated. Data has been used to calculate performance parameters such as thrust and Isp. Data has been compared with previous test results to verify reliability and repeatability. Thruster was found to have an Isp of 131 s and 82 lbf thrust at a mixture ratio of 1.62.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1963-01-01

    J-2 engines for the Saturn IB/Saturn V launch vehicles are lined up in the assembly area at Rocketdyne's manufacturing plant in Canoga Park, California. Five J-2 engines provided more than 1,000,000 pounds of thrust to accelerate the second stage toward a Moon trajectory.

  19. Development and Hotfire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Greene, Sandy; Protz, Chris

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  20. KSC-2010-5768

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket awaits a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, in which all nine Merlin engines will fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Rusty Backer

  1. D-558-1 in flight

    NASA Technical Reports Server (NTRS)

    1952-01-01

    This 1952 NACA High-Speed Flight Research Station inflight photograph of the Douglas D-558-1 #3 Skystreak. Even with partial cloud cover the white aircraft was easy to see. The D-558-1 reflected NACA (National Advisory Committee for Aeronautics) ideas on a transonic research aircraft. NACA engineers favored a turbojet engine, as they saw a rocket-powered research aircraft as too risky. They were also more interested in transonic speed--from about Mach 0.8 to Mach 1.2--than in breaking the 'sound barrier' for the sake of doing so. The Army Air Forces had a different approach and developed the rocket-powered XS-1, which the NACA also flew and supported, although it favored the D-558-1. Conceived in 1945, the D558-1 Skystreak was designed by the Douglas Aircraft Company for the U.S. Navy Bureau of Aeronautics, in conjunction with the National Advisory Committee for Aeronautics (NACA). The Skystreaks were turojet powered aircraft that took off from the ground under their own power and had straight wings and tails. All three D-558-1 Skystreaks were powered by Allison J35-A-11 turbojet engines producing 5,000 pounds of thrust. All the Skystreaks were initially painted scarlet, which lead to the nickname 'crimson test tube.' NACA later had the color of the Skystreaks changed to white to improve optical tracking and photography. The Skystreaks carried 634 pounds of instrumentation and were ideal first-generation, simple, transonic research airplanes. Much of the research performed by the D-558-1 Skystreaks, was quickly overshadowed in the public mind by Chuck Yeager and the X-1 rocketplane. However, the Skystreak performed an important role in aeronautical research by flying for extended periods of time at transonic speeds, which freed the X-1 to fly for limited periods at supersonic speeds.

  2. Research Technology

    NASA Image and Video Library

    2002-03-13

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  3. A History of Welding on the Space Shuttle Main Engine (1975 to 2010)

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Russell, Carolyn K.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.

  4. Elimination of High-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Thomas E.

    1998-01-01

    NASA's Marshall Space Flight Center(MSFC) has been tasked with developing a 60,000 pound thrust, pump-fed, LOX/RP-1 engine under the Advanced Space Transportation Program(ASTP). This government-led design has been designated the Fastrac engine. The X-34 vehicle will use the Fastrac engine as the main propulsion system. The X-34 will be a suborbital vehicle developed by the Orbital Sciences Corporation. The X-34 vehicle will be launched from an L-1011 airliner. After launch, the X-34 vehicle will be able to climb to altitudes up to 250,000 feet and reach speeds up to Mach 8, over a mission range of 500 miles. The overall length, wingspan, and gross takeoff weight of the X-34 vehicle are 58.3 feet, 27.7 feet and 45,000 pounds, respectively. This report summarizes the plan of achieving a Fastrac thrust chamber assembly(TCA) stable bomb test that meets the JANNAF standards, the Fastrac TCA design, and the combustion instabilities exhibited by the Fastrac TCA during testing at MSFC's test stand 116 as determined from high-frequency fluctuating pressure measurements. This report also summarizes the characterization of the combustion instabilities from the pressure measurements and the steps taken to eliminate the instabilities.

  5. Monomethylhydrazine versus hydrazine fuels - Test results using a 100 pound thrust bipropellant rocket engine

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Stechman, R. C.

    1981-01-01

    A test program was performed to evaluate hydrazine (N2H4) as a fuel for a 445 Newton (100 lbf) thrust bipropellant rocket engine. Results of testing with an identical thruster utilizing monomethylhydrazine (MMH) are included for comparison. Engine performance with hydrazine fuel was essentially identical to that experienced with monomethylhydrazine although higher combustor wall temperatures (approximately 400 F) were obtained with hydrazine. Results are presented which indicate that hydrazine as a fuel is compatible with Marquardt bipropellant rocket engines which use monomethylhydrazine as a baseline fuel.

  6. Project SQUID. On the Performance Analysis of the Ducted Pulsejet

    DTIC Science & Technology

    1951-10-01

    by the mixing losses except for possible thrust augmentation at static operation or at extremely low flight velocities. The analysis, in the presented...oressure S btu/i- heir". added per pound of air "iass flow ratio = ft.’ "’i.Ug,pO gas constant A Btuaib.OR specifi" entropy t sec. time 1 lb. thrust = (a...from the tail pipe acts as an ejector jet in the surrounding flow, accelerating it, and thus tUnding to decrease the strength of the upstream moving

  7. Long life monopropellant hydrazine thruster evaluation for Space Station Freedom application

    NASA Technical Reports Server (NTRS)

    Popp, Christopher G.; Henderson, John B.

    1991-01-01

    In support of propulsion system thruster development activity for Space Station Freedom (SSF), NASA Johnson Space Center (JSC) is conducting a hydrazine thruster technology demonstration program. The goal of this program is to identify impulse life capability of state-of-the-art long life hydrazine thrusters nominally rated for 50 pounds thrust at 300 psia supply pressure. The SSF propulsion system requirement for impulse life of this thruster class is 1.5 million pound-seconds, corresponding to a throughput of approximately 6400 pounds of propellant, with a high performance (234 pound-seconds per propellant pound). Long life thrusters were procured from Hamilton Standard, The Marquardt Company, and Rocket Research Company. Testing has initiated on the thruster designs to identify life while simulating expected thruster firing duty cycles and durations for SSF using monopropellant grade hydrazine. This paper presents a review of the SSF propulsion system and requirements as applicable to hydrazine thrusters, the three long life thruster designs procured by JSC and the resultant acceptance test data for each thruster, and the JSC test plan and facility.

  8. 14 CFR 21.231 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... category rotorcraft; (4) Turbojet engines of not more than 1,000 pounds thrust; (5) Turbopropeller and reciprocating engines of not more than 500 brake horsepower; and (6) Propellers manufactured for use on engines covered by paragraph (a)(4) of this section; and (b) Issuing airworthiness approval tags for engines...

  9. Space Shuttle Projects

    NASA Image and Video Library

    1987-05-27

    This photograph is a long shot view of a full scale solid rocket motor (SRM) for the solid rocket booster (SRB) being test fired at Morton Thiokol's Wasatch Operations in Utah. The twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    Workmen inspect a J-2 engine at Rocketdyne's Canoga Park, California production facility. The J-2, developed under the direction of the Marshall Space Flight Center, was propelled by liquid hydrogen and liquid oxygen. A single J-2 engine was used in the S-IVB stage (the second stage of the Saturn IB and third stage for the Saturn V) and a cluster of five J-2 engines was used to propel the second stage of the Saturn V, the S-II. Initially rated at 200,000 pounds of thrust, the J-2 engine was later uprated in the Saturn V program to 230,000 pounds.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1967-09-09

    This image depicts the test firing of a J-2 engine in the S-IVB Test Stand at the Marshall Space Flight Center (MSFC). The J-2, developed by Rocketdyne under the direction of MSFC, was propelled by liquid hydrogen and liquid oxygen. A single J-2 was utilized in the S-IVB stage (the second stage for the Saturn IB and third stage for the Saturn V) and in a cluster of five for the second stage (S-II) of the Saturn V. Initially rated at 200,000 pounds of thrust, the engine was later upgraded in the Saturn V program to 230,000 pounds.

  12. Human Exploration and Settlement of the Moon Using LUNOX-Augmented NTR Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.

    1995-01-01

    An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOX) augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an 'afterburner' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat--'scramjet propulsion in reverse.' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by approximately 440%--from 3 to 13--while the Isp decreases by only approximately 45%--from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that 'big engine' performance can be obtained using smaller more affordable, easier to test NTR engines. 'Reoxidizing' the bipropellant LANTR system in low lunar orbit (LLO) with high density 'lunar-derived' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable 'all LH2' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid 'commuter' shuttle capable of 36 to 24 hour 'one way' trips to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.

  13. Human exploration and settlement of the Moon using LUNOX-augmented NTR propulsion

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.

    1995-10-01

    An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOX) augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an 'afterburner' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat--'scramjet propulsion in reverse.' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by approximately 440%--from 3 to 13--while the Isp decreases by only approximately 45%--from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that 'big engine' performance can be obtained using smaller more affordable, easier to test NTR engines. 'Reoxidizing' the bipropellant LANTR system in low lunar orbit (LLO) with high density 'lunar-derived' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable 'all LH2' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid 'commuter' shuttle capable of 36 to 24 hour 'one way' trips to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.

  14. Human exploration and settlement of the moon using lunox-augmented NTR propulsion

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.

    1995-01-01

    An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOS)-augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an ``afterburner'' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat—``scramjet propulsion in reverse.'' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by ˜440%—from 3 to 13—while the Isp decreases by only ˜45%—from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that ``big engine'' performance can be obtained using smaller, more affordable, easier to test NTR engines. ``Reoxidizing'' the bipropellant LANTR system in low lunar orbit (LLO) with high density ``lunar-derived'' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable ``all LH2'' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid ``commuter'' shuttle capable of 36 to 24 hour ``one way'' trip to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.

  15. KSC-04pd1641

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne technicians prepare to move SSME 2058, the first SSME fully assembled at KSC. Move conductor Bob Brackett (on ladder) supervises the placement of a sling around the engine with the assistance of crane operator Joe Ferrante (center) and a technician. The engine will be lifted from its vertical work stand into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  16. 76 FR 33161 - Installation and Use of Engine Cut-off Switches on Recreational Vessels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ...-off switches as a standard safety feature on propulsion machinery and/or starting controls installed... not most, propulsion machinery and/or starting controls installed on recreational vessels are... new subpart N that would cover propulsion machinery capable of developing static thrust of 115 pounds...

  17. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    Workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, install the last engine on the S-IB stage. Developed by the Marshall Space Flight Center (MSFC) and built by the Chrysler Corporation at MAF, the S-IB stage utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1962-11-16

    The Saturn I (SA-3) flight lifted off from Kennedy Space Center launch Complex 34, November 16, 1962. The third launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet. and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. During the SA-3 flight, the upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. The water was released at an altitude of 65 miles, where within only 5 seconds, it expanded into a massive ice cloud 4.6 miles in diameter. Release of this vast quantity of water in a near-space environment marked the first purely scientific large-scale experiment.

  19. n/a

    NASA Image and Video Library

    1963-03-28

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.

  20. n/a

    NASA Image and Video Library

    1963-03-28

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.

  1. KSC-2010-5772

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket awaits a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, in which all nine Merlin engines will fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  2. KSC-2010-5774

    NASA Image and Video Library

    2010-12-04

    CAPE CANAVERAL, Fla. -- During a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, all nine Merlin engines of the SpaceX Falcon 9 rocket fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX began to conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which ended after the engines fired at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  3. KSC-2010-5775

    NASA Image and Video Library

    2010-12-04

    CAPE CANAVERAL, Fla. -- During a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, all nine Merlin engines of the SpaceX Falcon 9 rocket fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX began to conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which ended after the engines fired at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  4. KSC-2010-5776

    NASA Image and Video Library

    2010-12-04

    CAPE CANAVERAL, Fla. -- During a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, all nine Merlin engines of the SpaceX Falcon 9 rocket fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX began to conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which ended after the engines fired at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  5. A Visual Photographic Study of Cylinder Lubrication

    NASA Technical Reports Server (NTRS)

    Shaw, Milton C; Nussdorfer, Theodore

    1946-01-01

    A V-type engine provided with a glass cylinder was used to study visually the lubrication characteristics of an aircraft-type piston. Photographs and data were obtained with the engine motored at engine speeds up to 1000 r.p.m. and constant cylinder-head pressures of 0 and 50 pounds per square inch. A study was made of the orientation of the piston under various operating conditions, which indicated that the piston was inclined with the crown nearest the major-thrust cylinder face throughout the greater part of the cycle. The piston moved laterally in the cylinder under the influence of piston side thrust.

  6. Advanced space engine powerhead breadboard assembly system study

    NASA Technical Reports Server (NTRS)

    Campbell, R. G.

    1978-01-01

    The objective of this study was to establish a preliminary design of a Powerhead Breadboard Assembly (PBA) for an 88 964-Newton (20,000-pound) thrust oxygen/hydrogen staged combustion cycle engine for use in orbital transfer vehicle propulsion. Existing turbopump, preburner, and thrust chamber components were integrated with interconnecting ducting, a heat exchanger, and a control system to complete the PBA design. Cycle studies were conducted to define starting transients and steady-state balances for the completed design. Specifications were developed for all valve applications and the conditions required for the control system integration with the facility for system test were defined.

  7. Space Launch Initiative (SLI) Engine Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  8. Space Shuttle Projects

    NASA Image and Video Library

    1979-07-13

    This is a photograph of the solid rocket booster's (SRB's) Qualification Motor-1 (QM-1) being prepared for a static firing in a test stand at the Morton Thiokol Test Site in Wasatch, Utah, showing the aft end of the booster. The twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  9. 36. Historic photo of Building 202 interior, shows shop area ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Historic photo of Building 202 interior, shows shop area with engineers assembling twenty-thousand-pound-thrust rocket engine, December 15, 1958. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-49343. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  10. LITTLE JOE II - LIFTOFF - WHITE SANDS MISSILE RANGE (WSMR), NM

    NASA Image and Video Library

    1963-08-28

    S63-15701 (28 August 1963) --- All seven motors of Little Joe II, ignited simultaneously at launch, with a total thrust of about 310,000 pounds. A maximum height of 24,000 feet was attained as Little Joe II traveled 47,000 feet north on the White Sands Test Range.

  11. GENERAL VIEW LOOKING NORTHWEST AT THE SATURN V STATIC TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW LOOKING NORTHWEST AT THE SATURN V STATIC TEST FACILITY. THIS TEST FACILITY WAS DESIGNED TO RESIST THE 12 MILLION POUNDES OF THRUST GENERATED BY THE THE SATURN V FIRST STAGE ENGINE CLUSTER. - Marshall Space Flight Center, Saturn V S-IC Static Test Facility, West Test Area, Huntsville, Madison County, AL

  12. Saturn Apollo Program

    NASA Image and Video Library

    1961-01-18

    The completely assembled Saturn 1 S-1 stage is being ready for checkout in the Marshall Space Flight Center, building 4705, January 18, 1961. The Saturn I S-I stage had eight H-1 engines clustered, using liquid oxygen/kerosene-1 (LOX/RP-1) propellants capable of producing a total of 1,500,000 pounds of thrust.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1961-01-01

    The Saturn I S-I stage with eight H-1 engines, located in Marshall Space Flight Center building 4705, showing the positioning of eight H-1 engines. The Saturn I S-I stage had eight H-1 engines clustered, using liquid oxygen/kerosene-1 (LOX/RP-1) propellants capable of producing a total of 1,500,000 pounds of thrust.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1951-01-23

    The photograph shows the completed Saturn 1 S-1 stage (booster) during the checkout in the Marshall Space Flight Center, building 4705, January 23, 1961. The Saturn I S-I stage had eight H-1 engines clustered, using liquid oxygen/kerosene-1 (LOX/RP-1) propellants capable of producing a total of 1,500,000 pounds of thrust.

  15. Thrust augmentation options for the Beta 2 two-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    1993-01-01

    NASA LeRC is continuing to study propulsion concepts for a horizontal takeoff and landing, fully reusable, two-stage-to-orbit vehicle. This will be capable of launching and returning a 10,000 pound payload to a 100 nautical mile polar orbit using low-risk technology. The vehicle, Beta 2, is a derivative of the USAF/Boeing Beta vehicle which was designed to deliver a 50,000 pound payload to a similar orbit. Beta 2 stages at Mach 6.5 and about 100,000 ft altitude. The propulsion system for the booster is an over/under turbine bypass engine/ramjet configuration. In this paper, several options for thrust augmentation were studied in order to improve the performance of this engine where there was a critical need. Options studies were turbine engine overspeed in the transonic region, water injection at a various turbine engine locations also during the transonic region, and water injection at the turbine engine face during high speed operation. The methodology, constraints, propulsion performance, and mission study results are presented.

  16. Noise Certification Predictions for FJX-2-Powered Aircraft Using Analytic Methods

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    1999-01-01

    Williams International Co. is currently developing the 700-pound thrust class FJX-2 turbofan engine for the general Aviation Propulsion Program's Turbine Engine Element. As part of the 1996 NASA-Williams cooperative working agreement, NASA agreed to analytically calculate the noise certification levels of the FJX-2-powered V-Jet II test bed aircraft. Although the V-Jet II is a demonstration aircraft that is unlikely to be produced and certified, the noise results presented here may be considered to be representative of the noise levels of small, general aviation jet aircraft that the FJX-2 would power. A single engine variant of the V-Jet II, the V-Jet I concept airplane, is also considered. Reported in this paper are the analytically predicted FJX-2/V-Jet noise levels appropriate for Federal Aviation Regulation certification. Also reported are FJX-2/V-Jet noise levels using noise metrics appropriate for the propeller-driven aircraft that will be its major market competition, as well as a sensitivity analysis of the certification noise levels to major system uncertainties.

  17. Effect of Ozone Addition on Combustion Efficiency of Hydrogen: Liquid-Oxygen Propellant in Small Rockets

    NASA Technical Reports Server (NTRS)

    Miller, Riley O.; Brown, Dwight D.

    1959-01-01

    An experimental study shows that 2 percent by weight ozone in oxygen has little effect on overall reactivity for a range of oxidant-fuel weight ratios from 1 to 6. This conclusion is based on characteristic-velocity measurements in 200-pound-thrust chambers at a pressure of 300 pounds per square inch absolute with low-efficiency injectors. The presence of 9 percent ozone in oxygen also did not affect performance in an efficient chamber. Explosions were encountered when equipment or procedure permitted ozone to concentrate locally. These experiments indicate that even small amounts of ozone in oxygen can cause operational problems.

  18. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust. The test was the first test ever anywhere outside Russia of a Russian designed and built engine.

  19. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  20. 35. Historic photo of Building 202 test stand with damage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Historic photo of Building 202 test stand with damage to twenty-thousand-pound-thrust rocket engine related to failure during testing, September 16, 1958. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-48704. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  1. Saturn Apollo Program

    NASA Image and Video Library

    1961-01-01

    The S-I stages for the Saturn I (SA-1 at right and SA-2 at left) are being assembled at the Marshall Space Flight Center, building 4705. The Saturn I S-I stage had eight H-1 engines clustered, using liquid oxygen/kerosene-1 (LOX/RP-1) propellants capable of producing a total of 1,500,000 pounds of thrust.

  2. KSC-2010-5769

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Rusty Backer

  3. Theoretical Performance of Hydrogen-Oxygen Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Sievers, Gilbert K.; Tomazic, William A.; Kinney, George R.

    1961-01-01

    Data are presented for liquid-hydrogen-liquid-oxygen thrust chambers at chamber pressures from 15 to 1200 pounds per square inch absolute, area ratios to approximately 300, and percent fuel from about 8 to 34 for both equilibrium and frozen composition during expansion. Specific impulse in vacuum, specific impulse, combustion-chamber temperature, nozzle-exit temperature, characteristic velocity, and the ratio of chamber-to-nozzle-exit pressure are included. The data are presented in convenient graphical forms to allow quick calculation of theoretical nozzle performance with over- or underexpansion, flow separation, and introduction of the propellants at various initial conditions or heat loss from the combustion chamber.

  4. D-558-1 on the ramp

    NASA Technical Reports Server (NTRS)

    1949-01-01

    This 1949 NACA Muroc Flight Test Unit photograph of the Douglas D-558-1 #3 Skystreak was taken in front of the NACA hangar at South Base, Edwards Air Force. NACA had the color of the Skystreaks changed from red to white for better optical tracking and photograpy. It was found that the dark red aircraft was hard to see against the dark blue sky over Edwards Air Force Base. The NACA Muroc Flight Test Unit went through several names before the organization became the NASA Dryden Flight Research Center in 1976. Conceived in 1945, the D558-1 Skystreak was designed by the Douglas Aircraft Company for the U.S. Navy Bureau of Aeronautics, in conjunction with the National Advisory Committee for Aeronautics (NACA). The Skystreaks were turojet powered aircraft that took off from the ground under their own power and had straight wings and tails. All three D-558-1 Skystreaks were powered by Allison J35-A-11 turbojet engines producing 5,000 pounds of thrust. All the Skystreaks were initially painted scarlet, which lead to the nickname 'crimson test tube.' NACA later had the color of the Skystreaks changed to white to improve optical tracking and photography. The Skystreaks carried 634 pounds of instrumentation and were ideal first-generation, simple, transonic research airplanes. Much of the research performed by the D-558-1 Skystreaks, was quickly overshadowed in the public mind by Chuck Yeager and the X-1 rocketplane. However, the Skystreak performed an important role in aeronautical research by flying for extended periods of time at transonic speeds, which freed the X-1 to fly for limited periods at supersonic speeds.

  5. D-558-1 on ramp with ground crew

    NASA Technical Reports Server (NTRS)

    1949-01-01

    In this NACA Muroc Flight Test Unit photograph taken in 1949, the Douglas D-558-1 is on the ramp at South Base, Edwards Air Force Base. Three members of the ground crew are seen poising against the left wing of the Skystreak. The D-558-1 was designed to be just large enough to hold the J35 turbojet engine, pilot, and instrumentation. The fuselage cross section had to be kept to a minimum. Due to this, the D-558-1 pilots found the cockpit so cramped that they could not easily turn their heads. Conceived in 1945, the D558-1 Skystreak was designed by the Douglas Aircraft Company for the U.S. Navy Bureau of Aeronautics, in conjunction with the National Advisory Committee for Aeronautics (NACA). The Skystreaks were turojet powered aircraft that took off from the ground under their own power and had straight wings and tails. All three D-558-1 Skystreaks were powered by Allison J35-A-11 turbojet engines producing 5,000 pounds of thrust. All the Skystreaks were initially painted scarlet, which lead to the nickname 'crimson test tube.' NACA later had the color of the Skystreaks changed to white to improve optical tracking and photography. The Skystreaks carried 634 pounds of instrumentation and were ideal first-generation, simple, transonic research airplanes. Much of the research performed by the D-558-1 Skystreaks, was quickly overshadowed in the public mind by Chuck Yeager and the X-1 rocketplane. However, the Skystreak performed an important role in aeronautical research by flying for extended periods of time at transonic speeds, which freed the X-1 to fly for limited periods at supersonic speeds.

  6. ER-2 #809 landing in Kiruna, Sweden after second flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    NASA Image and Video Library

    2000-01-26

    ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, an ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  7. ER-2 #809 outside Arena Arctica hangar in Kiruna, Sweden prior to the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    NASA Image and Video Library

    2000-01-24

    ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, an ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  8. ER-2 #809 receives preflight fueling outside Arena Arctica hangar in Kiruna, Sweden prior to the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    NASA Image and Video Library

    2000-01-24

    ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, an ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  9. ER-2 #809 during fueling for first flight in Kiruna, Sweden prior to the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    NASA Image and Video Library

    2000-01-24

    ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, an ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  10. Lockheed ER-2 #806 high altitude research aircraft in flight

    NASA Image and Video Library

    1998-11-17

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  11. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Image and Video Library

    2001-08-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  12. Lockheed ER-2C #809 high altitude research aircraft in flight

    NASA Image and Video Library

    1998-04-29

    ER-2C tail number 809, was one of two Airborne Science ER-2Cs used as science platforms by Dryden. The aircraft were platforms for a variety of high-altitude science missions flown over various parts of the world. They were also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2Cs were capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2C missions lasted about six hours with ranges of about 2,200 nautical miles. The aircraft typically flew at altitudes above 65,000 feet. On November 19, 1998, the ER-2C set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft was 63 feet long, with a wingspan of 104 feet. The top of the vertical tail was 16 feet above ground when the aircraft was on the bicycle-type landing gear. Cruising speeds were 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2C.

  13. Lockheed ER-2 #806 high altitude research aircraft during landing

    NASA Image and Video Library

    1998-12-18

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  14. ER-2 #809 in Kiruna, Sweden for the SAGE III Ozone Loss and Validation Experiment (SOLVE) with pilot Dee Porter entry for first flight

    NASA Image and Video Library

    2000-01-24

    ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, an ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  15. DETAIL SHOWING THE STERN TUBE, PROPELLOR SHAFT AND RELATED EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL SHOWING THE STERN TUBE, PROPELLOR SHAFT AND RELATED EQUIPMENT IN THE LOWER MOTOR ROOM. NOTE THE WORM-WHEEL TURNING GEAR AT CENTER, AND THE KINGBURY THRUST BEARING IN THE FOREGROUND IMMEDIATELY FOREWORD OF THE WORM-WHEEL GEAR. NOTE ALSO THE 50-POUND IRON BALLAST BLOCKS STACKED BETWEEN FRAMES. - Lightship 116, Pier 3, Inner Harbor, Baltimore, Independent City, MD

  16. Saturn Apollo Program

    NASA Image and Video Library

    1964-02-07

    This illustration, with callouts, is of the Saturn V SII (2nd Stage) developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center. The 82-foot-long and 33-foot-diameter S-II stage utilized five J-2 engines, each with a 200,000-pound thrust capability. The engine used liquid oxygen and liquid hydrogen as its propellants.

  17. Eagle RTS: A design for a regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Bryer, Paul; Buckles, Jon; Lemke, Paul; Peake, Kirk

    1992-01-01

    This university design project concerns the Eagle RTS (Regional Transport System), a 66 passenger, twin turboprop aircraft with a range of 836 nautical miles. It will operate with a crew of two pilots and two flight attendents. This aircraft will employ the use of aluminum alloys and composite materials to reduce the aircraft weight and increase aerodynamic efficiency. The Eagle RTS will use narrow body aerodynamics with a canard configuration to improve performance. Leading edge technology will be used in the cockpit to improve flight handling and safety. The Eagle RTS propulsion system will consist of two turboprop engines with a total thrust of approximately 6300 pounds, 3150 pounds thrust per engine, for the cruise configuration. The engines will be mounted on the aft section of the aircraft to increase passenger safety in the event of a propeller failure. Aft mounted engines will also increase the overall efficiency of the aircraft by reducing the aircraft's drag. The Eagle RTS is projected to have a takeoff distance of approximately 4700 feet and a landing distance of 6100 feet. These distances will allow the Eagle RTS to land at the relatively short runways of regional airports.

  18. Space Shuttle Projects

    NASA Image and Video Library

    1977-12-01

    The solid rocket booster (SRB) structural test article is being installed in the Solid Rocket Booster Test Facility for the structural and load verification test at the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1978-11-01

    The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  20. Solid Rocket Booster Structural Test Article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  1. Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications

    NASA Technical Reports Server (NTRS)

    Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.

    1961-01-01

    For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.

  2. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-05-06

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control ofmore » the thrust even under the low-intensity level.« less

  3. General Electric I-40 Engine at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1946-08-21

    A mechanic works on a General Electric I-40 turbojet at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The military selected General Electric’s West Lynn facility in 1941 to secretly replicate the centrifugal turbojet engine designed by British engineer Frank Whittle. General Electric’s first attempt, the I-A, was fraught with problems. The design was improved somewhat with the subsequent I-16 engine. It was not until the engine's next reincarnation as the I-40 in 1943 that General Electric’s efforts paid off. The 4000-pound thrust I-40 was incorporated into the Lockheed Shooting Star airframe and successfully flown in June 1944. The Shooting Star became the US’s first successful jet aircraft and the first US aircraft to reach 500 miles per hour. The NACA’s Lewis Flight Propulsion Laboratory studied all of General Electric’s centrifugal turbojets both during World War II and afterwards. The entire Shooting Star aircraft was investigated in the Altitude Wind Tunnel during 1945. The researchers studied the engine compressor performance, thrust augmentation using a water injection, and compared different fuel blends in a single combustor. The mechanic in this photograph is inserting a combustion liner into one of the 14 combustor cans. The compressor, which is not yet installed in this photograph, pushed high pressure air into these combustors. There the air mixed with the fuel and was heated. The hot air was then forced through a rotating turbine that powered the engine before being expelled out the nozzle to produce thrust.

  4. Monopropellant hydrazine resistoject: Engineering model fabrication and test task

    NASA Technical Reports Server (NTRS)

    Murch, C. K.

    1973-01-01

    The monopropellant hydrazine resistojet, termed the electrothermal hydrazine thruster (EHT) by TRW systems, thermally decomposes anhydrous hydrazine propellant to produce a high-temperature, low-molecular-weight gas for expulsion through a propulsive nozzle. The EHT developed for this program required about 3-5 watts of electrical power and produced 0.020 to 0.070 pound of thrust over the inlet pressure range of 100 to 400 psia. The thruster was designed for both pulsed and steady state operation. A summary of the GSFC original requirements and GSFC modified requirements, and the performance of the engineering model EHT is given. The experimental program leading to the engineering model EHT design, modifications necessary to achieve the required thruster life capability, and the results of the life test prgram. Other facets of the program, including analyses, preliminary design, specifications, data correlation, and recommendations for a flight model are discussed.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-01

    This image depicts the Saturn V S-IVB (third) stage for the Apollo 10 mission being removed from the Beta Test Stand 1 after its acceptance test at the Douglas Aircraft Company's Sacramento Test Operations (SACTO) facility. After the S-II (second) stage dropped away, the S-IVB (third) stage was ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity, injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in Huntington, California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle. The fully-assembled S-IVB (third) stage for the AS-503 (Apollo 8 mission) launch vehicle is pictured in the Douglas' vertical checkout building.

  7. KSC-2010-5773

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  8. KSC-2010-5770

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  9. KSC-2010-5771

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  10. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This photograph shows a test firing of the the Saturn V S-II (second) stage at the Mississippi Test Facility's (MTF) S-II test stand. When the Saturn V booster stage (S-IC) burns out and drops away, power for the Saturn will be provided by the 82-foot-long and 33-foot-diameter S-II stage. Developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center, the stage utilized five J-2 engines, each producing 200,000 pounds of thrust. The engines used liquid oxygen and liquid hydrogen as propellants. Static test of ground test versions of the S-II stage were conducted at North American Aviation's Santa Susana, California test site. All flight stages were tested at the Mississippi Test Facility, Bay St. Louis, Mississippi. MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Sternis Space Center in May 1988.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This photograph shows a test firing of the the Saturn V S-II (second) stage at the Mississippi Test Facility's (MTF) S-II test stand. When the Saturn V booster stage (S-IC) burns out and drops away, power for the Saturn will be provided by the 82-foot-long and 33-foot-diameter S-II stage. Developed by the Space Division of North American Aviation under the direction of the Marshall Space Flight Center, the stage utilized five J-2 engines, each producing 200,000 pounds of thrust. The engine used liquid oxygen and liquid hydrogen as its propellants. Static test of ground test versions of the S-II stage were conducted at North American Aviation's Santa Susana, California test site. All flight stages were tested at the Mississippi Test Facility, Bay St. Louis, Mississippi. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Sternis Space Center (SSC) in May 1988.

  12. Moving, Moving, Moving- A Giant Rocket Fuel Tank

    NASA Image and Video Library

    2016-10-07

    Technicians moved a giant fuel tank from the Vertical Assembly Center where the tank recently completed friction stir welding to an adjacent work area at NASA's Michoud Assembly Facility in New Orleans. More than 1.7 miles of welds have been completed for core stage hardware at Michoud. This liquid hydrogen fuel tank is the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank is more than 130 feet long, and together with the liquid oxygen tank holds 733,000 gallons of propellant to feed the vehicle's four RS-25 engines to produce a total of 2 million pounds of thrust. SLS will have the power and capacity to carry humans to Mars. For more information on the core stage: http://www.nasa.gov/exploration/syste... Video Credit: NASA/MAF/Eric Bordelon

  13. 14 CFR 23.77 - Balked landing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reciprocating engine-powered and single engine turbine powered airplane of more than 6,000 pounds maximum weight, and multiengine turbine engine-powered airplane of 6,000 pounds or less maximum weight in the normal... of movement of the power controls from minimum flight-idle position; (2) The landing gear extended...

  14. 14 CFR 23.77 - Balked landing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reciprocating engine-powered and single engine turbine powered airplane of more than 6,000 pounds maximum weight, and multiengine turbine engine-powered airplane of 6,000 pounds or less maximum weight in the normal... of movement of the power controls from minimum flight-idle position; (2) The landing gear extended...

  15. Long life monopropellant hydrazine thruster evaluation for Space Station Freedom application - Test results

    NASA Technical Reports Server (NTRS)

    Popp, Christopher G.; Cook, Joseph C.; Ragland, Brenda L.; Pate, Leah R.

    1992-01-01

    In support of propulsion system thruster development activity for Space Station Freedom (SSF), NASA Johnson Space Center (JSC) conducted a hydrazine thruster technology demonstration program. The goal of this program was to identify impulse life capability of state-of-the-art long life hydrazine thrusters nominally rated for 50 pounds thrust at 300 psia supply pressure. The SSF propulsion system requirement for impulse life of this thruster class is 1.5 million pounds-seconds, corresponding to a throughput of approximately 6400 pounds of propellant. Long life thrusters were procured from The Marquardt Company, Hamilton Standard, and Rocket Research Company, Testing at JSC was completed on the thruster designs to quantify life while simulating expected thruster firing duty cycles and durations for SSF. This paper presents a review of the SSF propulsion system hydrazine thruster requirements, summaries of the three long life thruster designs procured by JSC and acceptance test results for each thruster, the JSC thruster life evaluation test program, and the results of the JSC test program.

  16. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Bogardus, Scott; Loper, Brent; Nauman, Chris; Page, Jeff; Parris, Rusty; Steinbach, Greg

    1990-01-01

    The design process of the High Speed Civil Transport (HSCT) combines existing technology with the expectation of future technology to create a Mach 3.0 transport. The HSCT was designed to have a range in excess of 6000 nautical miles and carry up to 300 passengers. This range will allow the HSCT to service the economically expanding Pacific Basin region. Effort was made in the design to enable the aircraft to use conventional airports with standard 12,000 foot runways. With a takeoff thrust of 250,000 pounds, the four supersonic through-flow engines will accelerate the HSCT to a cruise speed of Mach 3.0. The 679,000 pound (at takeoff) HSCT is designed to cruise at an altitude of 70,000 feet, flying above most atmospheric disturbances.

  17. Free-Spinning-Tunnel Investigation to Determine the Effect of Spin-Recovery Rockets and Thrust Simulation on the Recovery Characteristics of a 1/21-Scale Model of the Chance Vought F7U-3 Airplane, TED No. NACA AD 3103

    NASA Technical Reports Server (NTRS)

    Burk, Sanger H., Jr.; Healy, Frederick M.

    1955-01-01

    An investigation of a l/21-scale model of the Chance Vought F7U-3 airplane in the co&at-load- condition has been conducted in the Langley 20-foot free-spinning tunnel, The recovery characteristics of the model were determined by use of spin-recovery rockets for the erect and inverted spinning condition. The rockets were so placed as to provide either a yawing or rolling moment about the model center of gravity. Also included in the investigation were tests to determine the effect of simulated engine thrust on the recovery characteristics of the model. On the basis of model tests, recoveries from erect and inverted spins were satisfactory when a yawing moment of 22,200 foot-pounds (full scale) was provided against the spin by rockets attached to the wing tips; the anti-spin yawing moment was applied for approximately 9 seconds, (full scale). Satisfactory recoveries were obtained from erect spins when a rolling moment of 22,200 foot-pounds (full scale) was provided with the spin (rolls right wing down in right spin). Although the inverted spin was satisfactorily terminated when a rolling moment of equal magnitude was provided, a roll rocket was not considered to be an optimum spin-recovery device to effect recoveries from inverted spins for this airplane because of resulting gyrations during spin recovery. Simulation of engine thrust had no apparent effect on the spin recovery characteristics.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    The F-1 engine was developed and built by Rocketdyne under the direction of the Marshall Space Flight Center. It measured 19 feet tall by 12.5 feet at the nozzle exit, and produced a 1,500,000-pound thrust using liquid oxygen and kerosene as the propellant. The image shows an F-1 engine being test fired at the Test Stand 1-C at the Edwards Air Force Base in California.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1968-06-01

    This photograph depicts a test firing of an F-1 engine at the F-1 engine test stand in the west test area of the Marshall Space Flight Center. This engine produced 1,500,000 pounds of thrust using liquid oxygen and RP-1, which is a derivative of kerosene. The F-1 engine test stand was constructed in 1963 to assist in the development of the F-1 engine.

  20. Test Stand at the Rocket Engine Test Facility

    NASA Image and Video Library

    1973-02-21

    The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.

  1. 45. Historic photo of Building 202 test cell interior, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Historic photo of Building 202 test cell interior, with engine mounted on test stand A. Close-up view of a twenty-thousand-pound-thrust engine being tested in relation with combustion oscillation studies, October 12, 1960. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-54595. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  2. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    The fuel tank assembly of the Saturn V S-IC (first) stage is readied to be mated to the liquid oxygen tank at the Marshall Space Flight Center. The fuel tank carried kerosene as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant. Each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    The fuel tank assembly for the Saturn V S-IC (first) stage arrived at the Marshall Space Flight Center, building 4707, for mating to the liquid oxygen tank. The fuel tank carried kerosene as its fuel. The S-IC stage used five F-1 engines, that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  4. 14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...

  5. 14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...

  6. rf power system for thrust measurements of a helicon plasma source.

    PubMed

    Kieckhafer, Alexander W; Walker, Mitchell L R

    2010-07-01

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.

  7. Determination of Local Experimental Heat-Transfer Coefficients on Combustion Side of an Ammonia-Oxygen Rocket

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Ehlers, Robert C.

    1961-01-01

    Local experimental heat-transfer coefficients were measured in the chamber and throat of a 2400-pound-thrust ammonia-oxygen rocket engine with a nominal chamber pressure of 600 pounds per square inch absolute. Three injector configurations were used. The rocket engine was run over a range of oxidant-fuel ratio and chamber pressure. The injector that achieved the best performance also produced the highest rates of heat flux at design conditions. The heat-transfer data from the best-performing injector agreed well with the simplified equation developed by Bartz at the throat region. A large spread of data was observed for the chamber. This spread was attributed generally to the variations of combustion processes. The spread was least evident, however, with the best-performing injector.

  8. rf power system for thrust measurements of a helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieckhafer, Alexander W.; Walker, Mitchell L. R.

    2010-07-15

    A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows goodmore » transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.« less

  9. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) This appendix specifies additional requirements for installation of an engine power control system that... crew to increase thrust or power. I25.2Definitions. (a) Automatic Takeoff Thrust Control System (ATTCS... mechanical and electrical, that sense engine failure, transmit signals, actuate fuel controls or power levers...

  10. 14 CFR 33.201 - Design and test requirements for Early ETOPS eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintenance errors that could result in an IFSD, loss of thrust control, or other power loss. (b) The design features of the engine must address problems shown to result in an IFSD, loss of thrust control, or other...-off, climb, cruise, descent, approach, and landing thrust or power and the use of thrust reverse (if...

  11. 14 CFR 33.201 - Design and test requirements for Early ETOPS eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintenance errors that could result in an IFSD, loss of thrust control, or other power loss. (b) The design features of the engine must address problems shown to result in an IFSD, loss of thrust control, or other...-off, climb, cruise, descent, approach, and landing thrust or power and the use of thrust reverse (if...

  12. 14 CFR 33.201 - Design and test requirements for Early ETOPS eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintenance errors that could result in an IFSD, loss of thrust control, or other power loss. (b) The design features of the engine must address problems shown to result in an IFSD, loss of thrust control, or other...-off, climb, cruise, descent, approach, and landing thrust or power and the use of thrust reverse (if...

  13. DoD High Performance Computing Modernization Program FY16 Annual Report

    DTIC Science & Technology

    2018-05-02

    vortex shedding from rotor blade tips using adaptive mesh refinement gives Helios the unique capability to assess the interaction of these vortices...with the fuselage and nearby rotor blades . Helios provides all the benefits for rotary-winged aircraft that Kestrel does for fixed-wing aircraft...rotor blade upgrade of the CH-47F Chinook helicopter to achieve up to an estimated 2,000 pounds increase in hover thrust (~10%) with limited

  14. Bistable (latching) solenoid actuated propellant isolation valve

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  15. 41. Historic photo of Building 202 test cell interior, Robert ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Historic photo of Building 202 test cell interior, Robert J. Gardener checking fuel implinging qualities of a twenty-thousand-pound-thrust rocket engine injector. Setting appears to be a platform mounted on top of scrubber tank underneath test cell floor, December 1959. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-52166. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  16. Water Electrolysis Propulsion System Testing

    DTIC Science & Technology

    1974-11-01

    3 98 11 Design Characteristics, Flightweight 0. 1 Pound Thrust 112 Engine 12 Steady State Temperature With 0. 1 Lbf. Molybdenum 136 Chamber 13 Run...the cell. This resulted in a local- ized high membrane temperature and softening of the material. The[I observed cratering or indentations at the...data also indicates that the high voltage in Cell No. 1 can- not be attributed entirely to the amubient temperature , because tile voltage is higher than

  17. Boeing's CST-100 Launch Abort Engine Test

    NASA Image and Video Library

    2016-10-20

    A launch abort engine built by Aerojet Rocketdyne is hot-fired during tests in the Mojave Desert in California. The engine produces up to 40,000 pounds of thrust and burns hypergolic propellants. The engines have been designed and built for use on Boeing’s CST-100 Starliner spacecraft in sets of four. In an emergency at the pad or during ascent, the engines would ignite to push the Starliner and its crew out of danger.

  18. Boeing's CST-100 Launch Abort Engine Test

    NASA Image and Video Library

    2016-10-17

    A launch abort engine built by Aerojet Rocketdyne is hot-fired during tests in the Mojave Desert in California. The engine produces up to 40,000 pounds of thrust and burns hypergolic propellants. The engines have been designed and built for use on Boeing’s CST-100 Starliner spacecraft in sets of four. In an emergency at the pad or during ascent, the engines would ignite to push the Starliner and its crew out of danger.

  19. Combat Airpower: Design Versus Use in a Limited War

    DTIC Science & Technology

    2014-06-13

    Thesis Committee Chair David Holden, M.A. , Member Phillip Pattee, Ph.D. , Member John T. Kuehn, Ph.D. Accepted this 13th...Symington to push the B-36 agenda. Chief of Naval Operations Admiral Louis E. Denfield, and the Secretary of the Navy John L. Sullivan strongly...The first design utilized four engines, each producing a mere 1,500 pounds of thrust.59 In order to overcome the clutter of this design, John Karanik

  20. Saturn Apollo Program

    NASA Image and Video Library

    1967-10-01

    S-IB-211, the flight version of the Saturn IB launch vehicle's first (S-IVB) stage, arrives at Marshall Space Flight Center's (MSFC's) S-IB static test stand. Between December 1967 and April 1968, the stage would undergo seven static test firings. The S-IB, developed by the MSFC and built by the Chrysler Corporation at the Michoud Assembly Facility near New Orleans, Louisiana, utilized eight H-1 engines and each produced 200,000 pounds of thrust.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1964-10-01

    Test firing of the Saturn I S-I Stage (S-1-10) at the Marshall Space Flight Center. This test stand was originally constructed in 1951 and sometimes called the Redstone or T tower. In l961, the test stand was modified to permit static firing of the S-I/S-IB stages, which produced a total thrust of 1,600,000 pounds. The name of the stand was then changed to the S-IB Static Test Stand.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1967-10-01

    S-IB-211, the flight version of the Saturn IB launch vehicle's first (S-IVB) stage, on its way to Marshall Space Flight Center's (MSFC's) west test area. Between December 1967 and April 1968, the stage would undergo seven static test firings. The S-IB, developed by the MSFC and built by the Chrysler Corporation at the Michoud Assembly Facility near New Orleans, Louisiana, utilized eight H-1 engines and each produced 200,000 pounds of thrust.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1967-10-01

    S-IB-211, the flight version of the Saturn IB launch vehicle's (S-IVB) first stage, after installation at the Marshall Space Flight Center's (MSFC's) S-IB static test stand. Between December 1967 and April 1968, the stage would undergo seven static test firings. The S-IB, developed by the MSFC and built by the Chrysler Corporation at the Michoud Assembly Facility near New Orleans, Louisiana, utilized eight H-1 engines and each produced 200,000 pounds of thrust.

  4. Measurement of Impulsive Thrust from a Closed Radio Frequency Cavity in Vacuum

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Lawrence, James; Vera, Jerry; Sylvester, Andre; Brady, David; Bailey, Paul

    2016-01-01

    A vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) has been completed. The test campaign consisted of a forward thrust phase and reverse thrust phase at less than 8 x 10(exp -6) Torr vacuum with power scans at 40 watts, 60 watts, and 80 watts. The test campaign included a null thrust test effort to identify any mundane sources of impulsive thrust, however none were identified. Thrust data from forward, reverse, and null suggests that the system is consistently performing with a thrust to power ratio of 1.2 +/- 0.1 mN/kW.

  5. Experimental investigation of combustor effects on rocket thrust chamber performance

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A design and experimental program to develop special instrumentation systems, design engine hardware, and conduct tests using LOX/GH2 propellants in which the propellant flow stratification was controlled is described. The mixture ratio was varied from 4.6 to 6 overall. The mixture ratios in the core and outer zone were varied from 3.5 to 6 and 5 to 8, respectively. The range in boundary layer coolant was from 0 to 10 percent of the fuel. The nominal chamber pressure and thrust were 225 psia and 7000 pounds, respectively. Pressure and heat flux profiles as well as gas sampling of the exhaust products were obtained. Specific impulse efficiencies of approximately 94 percent and characteristic velocity efficiencies of approximately 97 percent were obtained during the experiments.

  6. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints

    NASA Technical Reports Server (NTRS)

    Englander, Jacob Aldo; Vavrina, Matthew; Hinckley, David

    2016-01-01

    Low-thrust electric propulsion provides many advantages for mission to difficult targets-Comets and asteroids-Mercury-Outer planets (with sufficient power supply)Low-thrust electric propulsion is characterized by high power requirements but also very high specific impulse (Isp), leading to very good mass fractions. Low-thrust trajectory design is a very different process from chemical trajectory.

  7. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism.

    PubMed

    Nguyen, Tuan Anh; Vu Phan, Hoang; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-06-20

    This experimental study investigates the effect of three parameters: wing aspect ratio (AR), wing offset, and flapping frequency, on thrust generation and power consumption of a flapping-wing system based on a rack-pinion mechanism. The new flapping-wing system is simple but robust, and is able to create a large flapping amplitude. The thrust measured by a load cell reveals that for a given power, the flapping-wing system using a higher wing AR produces larger thrust and higher flapping frequency at the wing offset of 0.15[Formula: see text] or 0.20[Formula: see text] ([Formula: see text] is the mean chord) than other wing offsets. Of the three parameters, the flapping frequency plays a more significant role on thrust generation than either the wing AR or the wing offset. Based on the measured thrusts, an empirical equation for thrust prediction is suggested, as a function of wing area, flapping frequency, flapping angle, and wing AR. The difference between the predicted and measured thrusts was less than 7%, which proved that the empirical equation for thrust prediction is reasonable. On average, the measured power consumption to flap the wings shows that 46.5% of the input power is spent to produce aerodynamic forces, 14.0% to overcome inertia force, 9.5% to drive the rack-pinion-based flapping mechanism, and 30.0% is wasted as the power loss of the installed motor. From the power analysis, it is found that the wing with an AR of 2.25 using a wing offset of 0.20[Formula: see text] showed the optimal power loading in the flapping-wing system. In addition, the flapping frequency of 25 Hz is recommended as the optimal frequency of the current flapping-wing system for high efficiency, which was 48.3%, using a wing with an AR of 2.25 and a wing offset of 0.20[Formula: see text] in the proposed design.

  8. Surveyor Atlas-Centaur Shroud Venting Structural Test in the Space Power Chambers

    NASA Image and Video Library

    1967-06-21

    Setup of a Surveyor/Atlas/Centaur shroud in the Space Power Chambers for a leak test at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Centaur was a 15,000-pound thrust second-stage rocket designed for the military in 1957 and 1958 by General Dynamics. It was the first major rocket to use the liquid hydrogen technology developed by Lewis in the 1950s. The Centaur Program suffered numerous problems before being transferred to Lewis in 1962. Several test facilities at Lewis’ main campus and Plum Brook Station were built or modified specifically for Centaur, including the Space Power Chambers. In 1961, NASA Lewis management decided to convert its Altitude Wind Tunnel into two large test chambers and later renamed it the Space Power Chambers. The conversion, which took over 2 years, included the removal of the tunnel’s internal components and insertion of bulkheads to seal off the new chambers. The larger chamber, seen here, could simulate altitudes of 100,000 feet. It was used for Centaur shroud separation and propellant management studies until the early 1970s. The leak test in this photograph was likely an attempt to verify that the shroud’s honeycomb shell did not seep any of its internal air when the chamber was evacuated to pressures similar to those found in the upper atmosphere.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1989-06-03

    The Marshall Space Flight Center (MSFC) engineers test fired a 26-foot long, 100,000-pound-thrust solid rocket motor for 30 seconds at the MSFC east test area, the first test firing of the Modified NASA Motor (M-NASA Motor). The M-NASA Motor was fired in a newly constructed stand. The motor is 48-inches in diameter and was loaded with two propellant cartridges weighing a total of approximately 12,000 pounds. The purpose of the test was to learn more about solid rocket motor insulation and nozzle materials and to provide young engineers additional hands-on expertise in solid rocket motor technology. The test is a part of NASA's Solid Propulsion Integrity Program, that is to provide NASA engineers with the techniques, engineering tools, and computer programs to be able to better design, build, and verify solid rocket motors.

  10. Experimental Altitude Performance of JP-4 Fuel and Liquid-Oxygen Rocket Engine with an Area Ratio of 48

    NASA Technical Reports Server (NTRS)

    Fortini, Anthony; Hendrix, Charles D.; Huff, Vearl N.

    1959-01-01

    The performance for four altitudes (sea-level, 51,000, 65,000, and 70,000 ft) of a rocket engine having a nozzle area ratio of 48.39 and using JP-4 fuel and liquid oxygen as a propellant was evaluated experimentally by use of a 1000-pound-thrust engine operating at a chamber pressure of 600 pounds per square inch absolute. The altitude environment was obtained by a rocket-ejector system which utilized the rocket exhaust gases as the pumping fluid of the ejector. Also, an engine having a nozzle area ratio of 5.49 designed for sea level was tested at sea-level conditions. The following table lists values from faired experimental curves at an oxidant-fuel ratio of 2.3 for various approximate altitudes.

  11. KSC-2009-5942

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  12. KSC-2009-5938

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Jack Pfaller

  13. KSC-2009-6021

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, NASA's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Carl Winebarger

  14. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.

    1992-01-01

    A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    This photograph shows the fuel tank assembly for the Saturn V S-IC (first) stage being transported to the Marshall Space Flight Center, building 4705 for mating to the liquid oxygen (LOX) tank. The fuel tank carried kerosene (RP-1) as its fuel. The S-IC stage used five F-1 engines, that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  16. Saturn Apollo Program

    NASA Image and Video Library

    1965-01-01

    In one of the initial assembly steps for the first stage (S-IB stage) of the Saturn IB launch vehicle, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, position a "Spider Beam" to the central liquid-oxygen tank of the S-IB stage. Developed by the Marshall Space Flight Center (MSFC) and built by the Chrysler Corporation at MAF, the S-IB stage utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds.

  17. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  18. Optimal electric potential profile in a collisional magnetized thruster

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon; Makrinich, Gennady

    2016-10-01

    A major figure of merit in propulsion in general and in electric propulsion in particular is the thrust per unit of deposited power, the ratio of thrust over power. We have recently demonstrated experimentally and theoretically that for a fixed deposited power in the ions, the momentum delivered by the electric force is larger if the accelerated ions collide with neutrals during the acceleration. As expected, the higher thrust for given power is achieved for a collisional plasma at the expense of a lower thrust per unit mass flow rate. Operation in the collisional regime can be advantageous for certain space missions. We analyze a Hall thruster configuration in which the flow is only weakly ionized but there are frequent ion-neutral collisions. With a variational method we seek an electric potential profile that maximizes thrust over power. We then examine what radial magnetic field profile should determine such a potential profile. Supported by the Israel Science Foundation Grant 765/11.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1976-01-01

    This image illustrates the solid rocket motor (SRM)/solid rocket booster (SRB) configuration. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  20. An approach to the parametric design of ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.; Beattie, John R.; Hyman, Jay, Jr.

    1988-01-01

    A methodology that can be used to determine which of several physical constraints can limit ion thruster power and thrust, under various design and operating conditions, is presented. The methodology is exercised to demonstrate typical limitations imposed by grid system span-to-gap ratio, intragrid electric field, discharge chamber power per unit beam area, screen grid lifetime, and accelerator grid lifetime constraints. Limitations on power and thrust for a thruster defined by typical discharge chamber and grid system parameters when it is operated at maximum thrust-to-power are discussed. It is pointed out that other operational objectives such as optimization of payload fraction or mission duration can be substituted for the thrust-to-power objective and that the methodology can be used as a tool for mission analysis.

  1. KSC-65P-0205

    NASA Image and Video Library

    1965-11-06

    CAPE KENNEDY, Fla. -- At Cape Kennedy Air Force Station in Florida, a thrust augmented improved Delta lifts off with a three hundred eighty five pound geodetic Explorer spacecraft, designated GEOS-A. The spacecraft contains five geodetic instrumentation systems to provide simultaneous measurements that scientists require to establish a more precise model of the Earth's gravitational field, and to map a world coordinate system relating points on, or near the surface to the common center of mass. This will be the first launch for the improved Delta second stage. Photo Credit: NASA

  2. GEMINI-TITAN (GT)-11 - EARTH - SKY - DOCKING - OUTER SPACE

    NASA Image and Video Library

    1966-07-18

    S66-46144 (18 July 1966) --- The Gemini-10 spacecraft is successfully docked with the Agena Target Docking Vehicle 5005. The Agena display panel is clearly visible. After docking with the Agena, astronauts John W. Young, command pilot, and Michael Collins, pilot, fired the 16,000-pound thrust engine of Agena-10's primary propulsion system to boost the combined vehicles into an orbit with an apogee of 413 nautical miles to set a new altitude record for manned spaceflight. Photo credit: NASA

  3. KSC-04pd0950

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod is lowered toward the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  4. KSC-04pd0948

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod is maneuvered toward the engine interfaces on the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    The fuel tank assembly of the Saturn V S-IC (first) stage supported with the aid of a C frame on the transporter was readied to be transported to the Marshall Space Flight Center, building 4705. The fuel tank carried kerosene (RP-1) as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  6. Around Marshall

    NASA Image and Video Library

    1993-09-01

    Marshall Space Flight Center's F-1 Engine Test Stand is shown in this picture. Constructed in 1963, the test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1964-12-01

    This photograph shows how the fuel tank assembly and the liquid oxygen tank for the Saturn V S-IC (first) stage are placed side by side prior to commencement of the mating of the two stages in the Marshall Space Flight Center, building 4705. The fuel tank carried kerosene as its fuel. The S-IC stage used five F-1 engines, that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    In the "clustering" procedure, an initial assembly step for the first stage (S-IB stage) of the Saturn IB launch vehicle, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, place the first of eight outboard fuel tanks (left) next to the central liquid-oxygen tank of S-IB stage. Developed by the Marshall Space Flight Center (MSFC) and built by the Chrysler Corporation at MAF, the S-IB stage utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1969-01-01

    In the clustering procedure, an initial assembly step for the first stage (S-IB stage) of the Saturn IB launch vehicle, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, place the first of eight outboard fuel tanks next to the central liquid-oxygen tank of the S-IB stage. Developed by the Marshall Space Flight Center (MSFC) and built by the Chrysler Corporation at MAF, the S-IB stage utilized eight H-1 engines to produce a combined thrust of 1,600,000 pounds.

  10. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  11. Thrust Control Loop Design for Electric-Powered UAV

    NASA Astrophysics Data System (ADS)

    Byun, Heejae; Park, Sanghyuk

    2018-04-01

    This paper describes a process of designing a thrust control loop for an electric-powered fixed-wing unmanned aerial vehicle equipped with a propeller and a motor. In particular, the modeling method of the thrust system for thrust control is described in detail and the propeller thrust and torque force are modeled using blade element theory. A relation between current and torque of the motor is obtained using an experimental setup. Another relation between current, voltage and angular velocity is also obtained. The electric motor and the propeller dynamics are combined to model the thrust dynamics. The associated trim and linearization equations are derived. Then, the thrust dynamics are coupled with the flight dynamics to allow a proper design for the thrust loop in the flight control. The proposed method is validated by an application to a testbed UAV through simulations and flight test.

  12. Static Thrust and Vectoring Performance of a Spherical Convergent Flap Nozzle with a Nonrectangular Divergent Duct

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1998-01-01

    The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.

  13. Preliminary design of an auxiliary power unit for the space shuttle. Volume 4: Selected system supporting studies

    NASA Technical Reports Server (NTRS)

    Hamilton, M. L.; Burriss, W. L.

    1972-01-01

    Selected system supporting analyses in conjunction with the preliminary design of an auxiliary power unit (APU) for the space shuttle are presented. Both steady state and transient auxiliary power unit performance, based on digital computer programs, were examined. The selected APU provides up to 400 horsepower out of the gearbox, weighs 227 pounds, and requires 2 pounds per shaft horsepower hour of propellants.

  14. Recent advances in low-thrust propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1988-01-01

    The NASA low-thrust propulsion technology program is aimed at providing high performance options to a broad class of near-term and future missions. Major emphases of the program are on storable and hydrogen/oxygen low-thrust chemical, low-power (auxiliary) electrothermal, and high-power electric propulsion. This paper represents the major accomplishments of the program and discusses their impact.

  15. Around Marshall

    NASA Image and Video Library

    1963-11-20

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo shows the progress of the F-1 Test Stand as of November 20, 1963.

  16. Around Marshall

    NASA Image and Video Library

    1962-07-03

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of July 3, 1963. All four of its tower legs are well underway.

  17. Around Marshall

    NASA Image and Video Library

    1963-04-04

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 4, 1963 depicts the construction of the F-1 test stand foundation walls.

  18. Around Marshall

    NASA Image and Video Library

    1963-04-17

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 17, 1963 depicts the construction of the F-1 test stand foundation walls.

  19. Around Marshall

    NASA Image and Video Library

    1963-09-05

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 5, 1963.

  20. n/a

    NASA Image and Video Library

    1962-10-26

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken October 26, 1962, depicts the excavation process of the single engine F-1 stand.

  1. Around Marshall

    NASA Image and Video Library

    1963-09-30

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 30, 1963.

  2. Around Marshall

    NASA Image and Video Library

    1963-06-24

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of June 24, 1963. Two if its four tower legs are underway.

  3. n/a

    NASA Image and Video Library

    1962-11-15

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken November 15, 1962, depicts the excavation process of the single engine F-1 stand site.

  4. Around Marshall

    NASA Image and Video Library

    1963-10-22

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Northeast of the massive S-IC test stand, the F-1 Engine test stand was built. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the fuel tanks that housed kerosene and just beyond those is the F-1 test stand.

  5. Improved Propulsion Modeling for Low-Thrust Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Knittel, Jeremy M.; Englander, Jacob A.; Ozimek, Martin T.; Atchison, Justin A.; Gould, Julian J.

    2017-01-01

    Low-thrust trajectory design is tightly coupled with spacecraft systems design. In particular, the propulsion and power characteristics of a low-thrust spacecraft are major drivers in the design of the optimal trajectory. Accurate modeling of the power and propulsion behavior is essential for meaningful low-thrust trajectory optimization. In this work, we discuss new techniques to improve the accuracy of propulsion modeling in low-thrust trajectory optimization while maintaining the smooth derivatives that are necessary for a gradient-based optimizer. The resulting model is significantly more realistic than the industry standard and performs well inside an optimizer. A variety of deep-space trajectory examples are presented.

  6. Performance of a Low-Power Cylindrical Hall Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Raitses, Yevgeny; Smirnov, Artem; Fisch, Nathaniel J.

    2007-01-01

    Recent mission studies have shown that a Hall thruster which operates at relatively constant thrust efficiency (45-55%) over a broad power range (300W - 3kW) is enabling for deep space science missions when compared with slate-of-the-art ion thrusters. While conventional (annular) Hall thrusters can operate at high thrust efficiency at kW power levels, it is difficult to construct one that operates over a broad power envelope down to 0 (100 W) while maintaining relatively high efficiency. In this note we report the measured performance (I(sub sp), thrust and efficiency) of a cylindrical Hall thruster operating at 0 (100 W) input power.

  7. Revolutionizing Space Propulsion Through the Characterization of Iodine as Fuel for Hall-Effect Thrusters

    DTIC Science & Technology

    2011-03-01

    for controlled thruster operation at varying conditions. An inverted pendulum was used to take thrust measurements. Thrust to power ratio, anode...for comparison will include thrust, T. Thrust 21 can be measured by a sensitive inverted pendulum thrust stand. Specific impulse would be...to this pressure. III.4 Diagnostic Equipment The instrument used to take thrust measurements was the Busek T8 inverted pendulum thrust stand [13

  8. X-15A-2 and HL-10 parked on NASA ramp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The HL-10 is shown next to the X-15A-2 in 1966. Both aircraft later went on to set records. On October 3, 1967, the X-15A-2 reached a speed of Mach 6.7, which was the highest speed achieved by a piloted aircraft until the Space Shuttles far exceeded that speed in 1981 and afterwards. The HL-10 later became the fastest piloted lifting body when it flew at a speed of Mach 1.86 on February 18, 1970. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle. The X-15 was a rocket-powered aircraft roughly 50 feet long with a wingspan of 22 feet in its original configuration. The no. 2 aircraft was later modified to become the X-15A-2. First flown in 1959, the three X-15 aircraft made a total of 199 flights. Flight maximums of 354,200 feet in altitude and a speed of 4,520 miles per hour were obtained. The final flight occurred on Oct. 24, 1968. The X-15 was manufactured by North American Aviation (NAA), now a division of Boeing after that firm acquired the Rockwell International Corporation into which NAA had evolved. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 12,295 pounds empty and approximately 31,275 pounds at launch. The rocket engine, the XLR-99, was pilot-controlled and was capable of developing 57,000 pound of rated thrust and about 60,000 pounds of actual thrust. It was manufactured by the Reaction Motors Division of Thiokol Chemical Corp. Before that engine was installed, the aircraft was powered by two XLR-11 rocket engines. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the lower atmosphere, the X-15 used conventional aerodynamic controls such as vertical stabilizers to control yaw and horizontal stabilizers to control pitch when moving in synchronization, or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Eight hydrogen-peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Four of them on the wings (two on each wing) furnished roll control. Because the X-15 consumed a large amount of fuel, it was air launched from a B-52 aircraft at 45,000 feet and a speed of about 500 miles per hour. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 seconds of flight. The remainder of the normal 10- to 11-minute flight was without power and ended with a 200-mile-per-hour glide landing. Generally, one of two types of X-15 flight profiles was used--a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude.

  9. Space Shuttle Solid Rocket Booster Lightweight Recovery System

    NASA Technical Reports Server (NTRS)

    Wolf, Dean; Runkle, Roy E.

    1995-01-01

    The cancellation of the Advanced Solid Rocket Booster Project and the earth-to-orbit payload requirements for the Space Station dictated that the National Aeronautics and Space Administration (NASA) look at performance enhancements from all Space Transportation System (STS) elements (Orbiter Project, Space Shuttle Main Engine Project, External Tank Project, Solid Rocket Motor Project, & Solid Rocket Booster Project). The manifest for launching of Space Station components indicated that an additional 12-13000 pound lift capability was required on 10 missions and 15-20,000 pound additional lift capability is required on two missions. Trade studies conducted by all STS elements indicate that by deleting the parachute Recovery System (and associated hardware) from the Solid Rocket Boosters (SRBS) and going to a lightweight External Tank (ET) the 20,000 pound additional lift capability can be realized for the two missions. The deletion of the parachute Recovery System means the loss of four SRBs and this option is two expensive (loss of reusable hardware) to be used on the other 10 Space Station missions. Accordingly, each STS element looked at potential methods of weight savings, increased performance, etc. As the SRB and ET projects are non-propulsive (i.e. does not have launch thrust elements) their only contribution to overall payload enhancement can be achieved by the saving of weight while maintaining adequate safety factors and margins. The enhancement factor for the SRB project is 1:10. That is for each 10 pounds saved on the two SRBS; approximately 1 additional pound of payload in the orbiter bay can be placed into orbit. The SRB project decided early that the SRB recovery system was a prime candidate for weight reduction as it was designed in the early 1970s and weight optimization had never been a primary criteria.

  10. The 260: The Largest Solid Rocket Motor Ever Tested

    NASA Technical Reports Server (NTRS)

    Crimmins, P.; Cousineau, M.; Rogers, C.; Shell, V.

    1999-01-01

    Aerojet in the mid 1960s, under contract to NASA, built and static hot fire tested the largest solid rocket motor (SRM) in history for the purpose of demonstrating the feasibility of utilizing large SRMs for space exploration. This program successfully fabricated two high strength steel chambers, loaded each with approximately 1,68 million pounds of propellant, and static test fired these giants with their nozzles up from an underground silo located adjacent to the Florida everglades. Maximum thrust and total impulse in excess of 5,000,000 lbf and 3,470,000,000 lbf-sec were achieved. Flames from the second firing, conducted at night, were seen over eighty miles away. For comparative purposes: the thrust developed was nearly 100 times that of a Minuteman III second stage and the 260 in.-dia cross-section was over 3 times that of the Space Shuttle SRM.

  11. Preburner of Staged Combustion Rocket Engine

    NASA Technical Reports Server (NTRS)

    Yost, M. C.

    1978-01-01

    A regeneratively cooled LOX/hydrogen staged combustion assembly system with a 400:1 expansion area ratio nozzle utilizing an 89,000 Newton (20,000 pound) thrust regeneratively cooled thrust chamber and 175:1 tubular nozzle was analyzed, assembled, and tested. The components for this assembly include two spark/torch oxygen-hydrogen igniters, two servo-controlled LOX valves, a preburner injector, a preburner combustor, a main propellant injector, a regeneratively cooled combustion chamber, a regeneratively cooled tubular nozzle with an expansion area ratio of 175:1, an uncooled heavy-wall steel nozzle with an expansion area ratio of 400:1, and interconnecting ducting. The analytical effort was performed to optimize the thermal and structural characteristics of each of the new components and the ducting, and to reverify the capabilities of the previously fabricated components. The testing effort provided a demonstration of the preburner/combustor chamber operation, chamber combustion efficiency and stability, and chamber and nozzle heat transfer.

  12. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems

    NASA Technical Reports Server (NTRS)

    Woodis, W. R.; Runkle, R. E.

    1985-01-01

    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  13. Evaluation of a ducted-fan power plant designed for high output and good cruise fuel economy

    NASA Technical Reports Server (NTRS)

    Behun, M; Rom, F E; Hensley, R V

    1950-01-01

    Theoretical analysis of performance of a ducted-fan power plant designed both for high-output, high-altitude operation at low supersonic Mach numbers and for good fuel economy at lower fight speeds is presented. Performance of ducted fan is compared with performance (with and without tail-pipe burner) of two hypothetical turbojet engines. At maximum power, the ducted fan has propulsive thrust per unit of frontal area between thrusts obtained by turbojet engines with and without tail-pipe burners. At cruise, the ducted fan obtains lowest thrust specific fuel consumption. For equal maximum thrusts, the ducted fan obtains cruising flight duration and range appreciably greater than turbojet engines.

  14. Static internal performance including thrust vectoring and reversing of two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.

  15. From Paper to Production to Test: An Update on NASA's J-2X Engine for Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael

    2011-01-01

    The NASA/industry team responsible for developing the J-2X upper stage engine for the Space Launch System (SLS) Program has made significant progress toward moving beyond the design phase and into production, assembly, and test of development hardware. The J-2X engine exemplifies the SLS Program goal of using proven technology and experience from more than 50 years of United States spaceflight experience combined with modern manufacturing processes and approaches. It will power the second stage of the fully evolved SLS Program launch vehicle that will enable a return to human exploration of space beyond low earth orbit. Pratt & Whitney Rocketdyne (PWR) is under contract to develop and produce the engine, leveraging its flight-proven LH2/LOX, gas generator cycle J-2 and RS-68 engine capabilities, recent experience with the X-33 aerospike XRS-2200 engine, and development knowledge of the J-2S tap-off cycle engine. The J- 2X employs a gas generator operating cycle designed to produce 294,000 pounds of vacuum thrust in primary operating mode with its full nozzle extension. With a truncated nozzle extension suitable to support engine clustering on the stage, the nominal vacuum thrust level in primary mode is 285,000 pounds. It also has a secondary mode, during which it operates at 80 percent thrust by altering its mixture ratio. The J-2X development philosophy is based on proven hardware, an aggressive development schedule, and early risk reduction. NASA Marshall Space Flight Center (MSFC) and PWR began development of the J-2X in June 2006. The government/industry team of more than 600 people within NASA and PWR successfully completed the Critical Design Review (CDR) in November 2008, following extensive risk mitigation testing. Assembly of the first development engine was completed in May 2011 and the first engine test was conducted at the NASA Stennis Space Center (SSC), test stand A2, on 14 July 2011. Testing of the first development engine will continue through the autumn of 2011, be paused for test stand modifications to the passive diffuser, and then restart in the spring of 2012. This testing will be followed by specialized powerpack testing intended to examine the design and operating margins of the engine turbomachinery. The development plan beyond this point leads through more system-level, engine testing of several samples, analytical model validation activities, functional and performance verification, and then ultimate certification to support human spaceflight. This paper will discuss the J-2X development background, provide top-level information on design and development planning, and will explore some of the development challenges and mitigation activities pursued to date.

  16. Calculated performance of a mercury-compressor-jet powered airplane using a nuclear reactor as an energy source

    NASA Technical Reports Server (NTRS)

    Doyle, R B

    1951-01-01

    An analysis was made at a flight Mach number of 1.5, an altitude of 45,000 feet, a turbine-inlet temperature of 1460 degrees R, of a mercury compressor-jet powered airplane using a nuclear reactor as an energy source. The calculations covered a range of turbine-exhaust and turbine-inlet pressures and condenser-inlet Mach numbers. For a turbine--inlet pressure of 40 pounds per square inch absolute, a turbine-exhaust pressure of 14 pounds per square inch absolute, and a condenser-inlet Mach number of 0.23 the calculated airplane gross weight required to carry a 20,000 pound payload was 322000 pounds and the reactor heat release per unit volume was 8.9 kilowatts per cubic inch. These do not represent optimum operating conditions.

  17. Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.

  18. 14 CFR 33.73 - Power or thrust response.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power or thrust response. 33.73 Section 33.73 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.73 Power or...

  19. 14 CFR 33.73 - Power or thrust response.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power or thrust response. 33.73 Section 33.73 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.73 Power or...

  20. 14 CFR 33.73 - Power or thrust response.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power or thrust response. 33.73 Section 33.73 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.73 Power or...

  1. Simplex turbopump design

    NASA Technical Reports Server (NTRS)

    Marsh, Matt; Cowan, Penny

    1994-01-01

    Turbomachinery used in liquid rocket engines typically are composed of complex geometries made from high strength-to-weight super alloys and have long design and fabrication cycle times (3 to 5 years). A simple, low-cost turbopump is being designed in-house to demonstrate the ability to reduce the overall cost to $500K and compress life cycle time to 18 months. The simplex turbopump was designed to provide a discharge pressure of 1500 psia of liquid oxygen at 90 lbm/s. The turbine will be powered by gaseous oxygen. This eliminates the need for an inter-propellant seal typically required to separate the fuel-rich turbine gases from the liquid oxygen pump components. Materials used in the turbine flow paths will utilize existing characterized metals at 800 deg R that are compatible with a warm oxygen environment. This turbopump design would be suitable for integration with a 40 K pound thrust hybrid motor that provides warm oxygen from a tapped-off location to power the turbine. The preliminary and detailed analysis was completed in a year by a multiple discipline, concurrent engineering team. Manpower, schedule, and cost data were tracked during the process for a comparison to the initial goal. The Simplex hardware is the procurement cycle with the expectation of the first test to occur approximately 1.5 months behind the original schedule goal.

  2. Antimatter propulsion, status and prospects

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Hynes, Michael V.

    1986-01-01

    The use of advanced propulsion techniques must be considered if the currently envisioned launch date of the manned Mars mission were delayed until 2020 or later. Within the next thirty years, technological advances may allow such methods as beaming power to the ship, inertial-confinement fusion, or mass-conversion of antiprotons to become feasible. A propulsion system with an ISP of around 5000 s would allow the currently envisioned mission module to fly to Mars in 3 months and would require about one million pounds to be assembled in Earth orbit. Of the possible methods to achieve this, the antiproton mass-conversion reaction offers the highest potential, the greatest problems, and the most fascination. Increasing the production rates of antiprotons is a high priority task at facilities around the world. The application of antiprotons to propulsion requires the coupling of the energy released in the mass-conversion reaction to thrust-producing mechanisms. Recent proposals entail using the antiprotons to produce inertial confinement fusion or to produce negative muons which can catalyze fusion. By increasing the energy released per antiproton, the effective cost, (dollars/joule) can be reduced. These proposals and other areas of research can be investigated now. These short term results will be important in assessing the long range feasibility of an antiproton powered engine.

  3. 14 CFR 103.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the air by a single occupant; (b) Is used or intended to be used for recreation or sport purposes only... than 155 pounds; or (e) If powered: (1) Weighs less than 254 pounds empty weight, excluding floats and...

  4. Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms

    NASA Astrophysics Data System (ADS)

    Erturk, Alper; Delporte, Ghislain

    2011-12-01

    Fiber-based flexible piezoelectric composites offer several advantages to use in energy harvesting and biomimetic locomotion. These advantages include ease of application, high power density, effective bending actuation, silent operation over a range of frequencies, and light weight. Piezoelectric materials exhibit the well-known direct and converse piezoelectric effects. The direct piezoelectric effect has received growing attention for low-power generation to use in wireless electronic applications while the converse piezoelectric effect constitutes an alternative to replace the conventional actuators used in biomimetic locomotion. In this paper, underwater thrust and electricity generation are investigated experimentally by focusing on biomimetic structures with macro-fiber composite piezoelectrics. Fish-like bimorph configurations with and without a passive caudal fin (tail) are fabricated and compared. The favorable effect of having a passive caudal fin on the frequency bandwidth is reported. The presence of a passive caudal fin is observed to bring the second bending mode close to the first one, yielding a wideband behavior in thrust generation. The same smart fish configuration is tested for underwater piezoelectric power generation in response to harmonic excitation from its head. Resonant piezohydroelastic actuation is reported to generate milli-newton level hydrodynamic thrust using milli-watt level actuation power input. The average actuation power requirement for generating a mean thrust of 19 mN at 6 Hz using a 10 g piezoelastic fish with a caudal fin is measured as 120 mW. This work also discusses the feasibility of thrust generation using the harvested energy toward enabling self-powered swimmer-sensor platforms with comparisons based on the capacity levels of structural thin-film battery layers as well as harvested solar and vibrational energy.

  5. 40 CFR 49.23 - Federal Implementation Plan Provisions for Four Corners Power Plant, Navajo Nation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recertification events. When valid SO2 pounds per hour, NO2 pounds per hour, or NO2 pounds per million Btu... approval. (ii) In the event that the owner or operator is unable to develop the plan required in paragraph... requested by the Regional Administrator. (vii) In the event that a program for parameter monitoring on Units...

  6. 40 CFR 49.23 - Federal Implementation Plan Provisions for Four Corners Power Plant, Navajo Nation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recertification events. When valid SO2 pounds per hour, NO2 pounds per hour, or NO2 pounds per million Btu... approval. (ii) In the event that the owner or operator is unable to develop the plan required in paragraph... requested by the Regional Administrator. (vii) In the event that a program for parameter monitoring on Units...

  7. Space Shuttle Projects

    NASA Image and Video Library

    1977-01-01

    This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  8. 14 CFR 33.8 - Selection of engine power and thrust ratings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Selection of engine power and thrust ratings. 33.8 Section 33.8 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES General § 33.8 Selection of engine power and...

  9. 14 CFR 33.8 - Selection of engine power and thrust ratings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Selection of engine power and thrust ratings. 33.8 Section 33.8 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES General § 33.8 Selection of engine power and...

  10. GEMINI-TITAN (GT)-10 - EARTH SKY - RENDEZVOUS - OUTER SPACE

    NASA Image and Video Library

    1966-07-18

    S66-46122 (18 July 1966) --- Agena Target Docking Vehicle 5005 is photographed from the Gemini-Titan 10 (GT-10) spacecraft during rendezvous in space. The two spacecraft are about 38 feet apart. After docking with the Agena, astronauts John W. Young, command pilot, and Michael Collins, pilot, fired the 16,000 pound thrust engine of Agena X's primary propulsion system to boost the combined vehicles into an orbit with an apogee of 413 nautical miles to set a new altitude record for manned spaceflight. Photo credit: NASA

  11. Sea level side loads in high-area-ratio rocket engines

    NASA Technical Reports Server (NTRS)

    Nave, L. H.; Coffey, G. A.

    1973-01-01

    An empirical separation and side load model to obtain applied aerodynamic loads has been developed based on data obtained from full-scale J-2S (265K-pound-thrust engine with an area ratio of 40:1) engine and model testing. Experimental data include visual observations of the separation patterns that show the dynamic nature of the separation phenomenon. Comparisons between measured and applied side loads are made. Correlations relating the separation location to the applied side loads and the methods used to determine the separation location are given.

  12. Vice President Pence Visits SLS Engineering Test Facility

    NASA Image and Video Library

    2017-09-25

    The Vice President toured the SLS engineering facility where the engine section of the rocket’s massive core stage is undergoing a major stress test. The rocket’s four RS-25 engines and the two solid rocket boosters that attach to the SLS engine section will produce more than 8 million pounds of thrust to launch the Orion spacecraft beyond low-Earth orbit. More than 3,000 measurements using sensors installed on the test section will help ensure the core stage for all SLS missions can withstand the extreme forces of flight.

  13. KSC-04pd0942

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (seen from the back) is lifted off its transporter. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  14. KSC-04pd0949

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers stand by as the left-hand Orbital Maneuvering System (OMS) pod is maneuvered toward the engine interfaces on the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  15. KSC-04pd0944

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod is lifted at an angle from the transporter below. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  16. KSC-04pd0947

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (top of photo) is poised behind the engine interfaces on the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  17. KSC-04pd0946

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers on an upper level watch as the left-hand Orbital Maneuvering System (OMS) pod is lifted high to maneuver it toward the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  18. KSC-04pd0943

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers check the lifting of the left-hand Orbital Maneuvering System (OMS) pod. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  19. KSC-04pd0941

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (seen from the front) is lifted off its transporter. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  20. KSC-04pd0945

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a worker on an upper level watches as the left-hand Orbital Maneuvering System (OMS) pod is lifted high to maneuver it toward the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  1. ARC-1980-AC80-0107-4

    NASA Image and Video Library

    1980-02-06

    Outfitting the Space Shuttle Orbiter Columbia with the three main rocket engines that will boost the 75 ton spacecraft into orbit on its first flight is completed with the installation of Engine #2007 (top). At liftoff, each engine will be producing about 375,000 pounds of thrust, or about 12 million horsepower each, and gulping down its liquid oxygen and liquid hydrogen propellants at a rate of about 1,100 pounts per second. The Shuttle's main engines, the most efficient rocket engines ever built, are reusable and designed t operate over a life span of 55 missions.

  2. Challenges of Cold Conditioning and Static Testing the Ares Demonstration Motor (DM-2)

    NASA Technical Reports Server (NTRS)

    Quinn, Shyla; Davis, Larry C.

    2011-01-01

    The Ares first stage rocket is a "human-rated" motor capable of producing and sustaining 3.5 million pounds of thrust throughout it s two-minute burn period. A series of demonstration motors (DM) will be tested in different conditioned environments to confirm they meet all design specifications. The second demonstration motor (DM-2) was designated to be a "cold motor", this means the internal propellant mean bulk temperature (PMBT) was 40 +5\\-3 F. The motor was subjected to subfreezing temperatures for two months.

  3. Development Status of High-Thrust Density Electrostatic Engines

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Foster, John E.; Young, Jason A.; Crofton, Mark W.

    2017-01-01

    Ion thruster technology offers the highest performance and efficiency of any mature electric propulsion thruster. It has by far the highest demonstrated total impulse of any technology option, demonstrated at input power levels appropriate for primary propulsion. It has also been successfully implemented for primary propulsion in both geocentric and heliocentric environments, with excellent ground/in-space correlation of both its performance and life. Based on these attributes there is compelling reasoning to continue the development of this technology: it is a leading candidate for high power applications; and it provides risk reduction for as-yet unproven alternatives. As such it is important that the operational limitations of ion thruster technology be critically examined and in particular for its application to primary propulsion its capabilities relative to thrust the density and thrust-to-power ratio be understood. This publication briefly addresses some of the considerations relative to achieving high thrust density and maximizing thrust-to-power ratio with ion thruster technology, and discusses the status of development work in this area being executed under a collaborative effort among NASA Glenn Research Center, the Aerospace Corporation, and the University of Michigan.

  4. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  5. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This is a view of the Saturn V S-IVB (third) stage for the AS-209 (Apollo-Soyuz test project backup vehicle) on a transporter in the right foreground, and the S-IVB stage for AS-504 (Apollo 9 mission) being installed in the Beta Test Stand 1 at the SACTO facility in California. After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity and inject it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.

  7. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  8. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  9. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  10. KSC-98pc1334

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is viewed from above after installation on a Boeing Delta 7326 rocket . Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  11. KSC-98pc1354

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver the second half of the fairing to encapsulate Deep Space 1, targeted for launch aboard a Boeing Delta II rocket on Oct. 24. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  12. KSC-2009-6008

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, NASA’s Ares I-X test rocket soars into blue skies above Launch Pad 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Sandra Joseph and Kevin O'Connel

  13. KSC-2009-5936

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews, Canon

  14. KSC-98pc1335

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is uncovered after installation on a Boeing Delta 7326 rocket. Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  15. KSC-98pc1355

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers check make a final check of the fairing encapsulating Deep Space 1, which is targeted for launch aboard a Boeing Delta II rocket on Oct. 24. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  16. KSC-98pc1331

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is lowered in the white room for installation on a Boeing Delta 7326 rocket . The spacecraft is targeted for launch on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  17. KSC-98pc1333

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers remove the transportation canister around Deep Space 1 after installation on a Boeing Delta 7326 rocket . Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  18. KSC-98pc1346

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers begin encapsulating Deep Space 1 with the fairing (right side). Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  19. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the vehicles are very large, they are primarily made up of a habitat payload on one end, the engine on the opposite end and a connecting spine containing radiator acreage needed to reject the heat of this powerful, but inefficient engine. These studies concluded that the engine and spacecraft are within today's technology, could be built, tested, launched on several SLS launchers, integrated, checked out, maintained at an in-space LEO base, and operated for decades just as Caribbean cruise ships operate today. The nuclear issues were found to be far less daunting that [than for] current nuclear engines. The FFRE produces very small amounts of radioactive efflux compared to their impulse, easily contained in an evacuated "bore-hole" test site. The engine poses no launch risk since it is simply a structure containing no fissionable material. The nuclear fuel is carried to orbit in containers highly crash-proofed for launch accidents from which it, in a liquid medium, is injected into the FFRE. The radioactive exhaust, with a velocity above 300 kilometers per second rapidly leaves the solar system.

  20. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V. Similar bursts in thrust are observed using a square waveform grid bias at 10 kHz and +/- 350 V for volumetric flow rates of 6, 10, and 12 sccm at 150, 350, and 350 W respectively. The only operating condition that exhibits repeated thrust spikes throughout thruster operation is the 24 sccm condition with a 5:1 mixture ratio at 150 W RF power using the 10 kHz square waveform acceleration grid bias. Thrust spikes for this condition measure 3 mN with an error of +/- 2.5 mN. There are no operating conditions tested that show continuous thrust production.

  1. Extended operating range of the 30-cm ion thruster with simplified power processor requirements

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1981-01-01

    A two grid 30 cm diameter mercury ion thruster was operated with only six power supplies over the baseline J series thruster power throttle range with negligible impact on thruster performance. An analysis of the functional model power processor showed that the component mass and parts count could be reduced considerably and the electrical efficiency increased slightly by only replacing power supplies with relays. The input power, output thrust, and specific impulse of the thruster were then extended, still using six supplies, from 2660 watts, 0.13 newtons, and 2980 seconds to 9130 watts, 0.37 newtons, and 3820 seconds, respectively. Increases in thrust and power density enable reductions in the number of thrusters and power processors required for most missions. Preliminary assessments of the impact of thruster operation at increased thrust and power density on the discharge characteristics, performance, and lifetime of the thruster were also made.

  2. Thrust vectoring systems

    NASA Technical Reports Server (NTRS)

    King, H. J.; Schnelker, D.; Ward, J. W.; Dulgeroff, C.; Vahrenkamp, R.

    1972-01-01

    The design, fabrication, and testing of thrust vectorable ion optical systems capable of controlling the thrust direction from both 5- and 30-cm diameter ion thrusters is described. Both systems are capable of greater than 10 deg thrust deflection in any azimuthal direction. The 5-cm system is electrostatic and hence has a short response time and minimal power consumption. It has recently been tested for more than 7500 hours on an operational thruster. The 30-cm system is mechanical, has a response time of the order of 1 min, and consumes less than 0.3% of the total system input power at full deflection angle.

  3. 40 CFR 471.101 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... million off-pounds) of power metallurgy parts steam treated Copper 1.51 0.792 Cyanide 0.230 0.095 Lead 0... metallurgy parts tumbled, burnished, or cleaned Copper 8.36 4.40 Cyanide 1.28 0.528 Lead 1.85 0.880 Oil and... Maximum for monthly average mg/off-kg (pounds per million off-pounds) of powder metallurgy parts sawed or...

  4. Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle

    NASA Technical Reports Server (NTRS)

    Hall, Eldon W

    1944-01-01

    A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.

  5. Thrust Evaluation of an Arcjet Thruster Using Dimethyl Ether as a Propellant

    NASA Astrophysics Data System (ADS)

    Kakami, Akira; Beppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi

    This paper describes the performance of an arcjet thruster using dimethyl ether (DME) as a propellant. DME, an ether compound, has adequate characteristics for space propulsion systems; DME is storable in a liquid state without a high pressure or cryogenic device and requires no sophisticated temperature management. DME is gasified and liquefied simply by adjusting temperature, whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of the designed kW-class DME arcjet thruster is measured with a torsional thrust stand. Thrust measurements show that thrust is increased with propellant mass flow rate, and that thrust using DME propellant is higher than when using nitrogen. The prototype DME arcjet thruster yields a specific impulse of 330 s, a thruster efficiency of 0.14, and a thrust of 0.19 N at 60-mg/s DME mass flow rate at 25-A discharge current. The corresponding discharge power and specific power are 2.3 kW and 39 MJ/kg.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    This photograph shows the Saturn-I first stage (S-1 stage) being transported to the test stand for a static test firing at the Marshall Space Flight Center. Soon after NASA began operations in October 1958, it was evident that sending people and substantial equipment beyond the Earth's gravitational field would require launch vehicles with weight-lifting capabilities far beyond any developed to that time. In early 1959, NASA accepted the proposal of Dr. Wernher von Braun for a multistage rocket, with a number of engines clustered in one or more of the stages to provide a large total thrust. The initiation of the Saturn launch vehicle program ultimately led to the study and preliminary plarning of many different configurations and resulted in production of three Saturn launch vehicles, the Saturn-I, Saturn I-B, and Saturn V. The Saturn family of launch vehicles began with the Saturn-I, a two-stage vehicle originally designated C-1. The research and development program was planned in two phases, or blocks: one for first stage development (Block I) and the second for both first and second stage development (Block-II). Saturn I had a low-earth-orbit payload capability of approximately 25,000 pounds. The design of the first stage (S-1 stage) used a cluster of propellant tanks containing liquid oxygen (LOX) and kerosene (RP-1), and eight H-1 engines, yielding a total thrust of 1,500,000 pounds. Of the ten Saturn-Is planned, the first eight were designed and built at the Marshall Space Flight Center, and the remaining two were built by the Chrysler Corporation.

  7. Parking Lot and Public Viewing Area for STS-4 Landing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This aerial photo shows the large crowd of people and vehicles that assembled to watch the landing of STS-4 at Edwards Air Force Base in California in July 1982. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  8. Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  9. High-Power Hall Thruster Technology Evaluated for Primary Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Manzella, David H.; Jankovsky, Robert S.; Hofer, Richard R.

    2003-01-01

    High-power electric propulsion systems have been shown to be enabling for a number of NASA concepts, including piloted missions to Mars and Earth-orbiting solar electric power generation for terrestrial use (refs. 1 and 2). These types of missions require moderate transfer times and sizable thrust levels, resulting in an optimized propulsion system with greater specific impulse than conventional chemical systems and greater thrust than ion thruster systems. Hall thruster technology will offer a favorable combination of performance, reliability, and lifetime for such applications if input power can be scaled by more than an order of magnitude from the kilowatt level of the current state-of-the-art systems. As a result, the NASA Glenn Research Center conducted strategic technology research and development into high-power Hall thruster technology. During program year 2002, an in-house fabricated thruster, designated the NASA-457M, was experimentally evaluated at input powers up to 72 kW. These tests demonstrated the efficacy of scaling Hall thrusters to high power suitable for a range of future missions. Thrust up to nearly 3 N was measured. Discharge specific impulses ranged from 1750 to 3250 sec, with discharge efficiencies between 46 and 65 percent. This thruster is the highest power, highest thrust Hall thruster ever tested.

  10. Around Marshall

    NASA Image and Video Library

    1963-08-13

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of August 13, 1963. All four of its tower legs are well underway into the skyline.

  11. Around Marshall

    NASA Image and Video Library

    1963-01-14

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were constructed during this time frame. Built just north of the massive S-IC test stand was the F-1 Engine test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken January 14, 1963 depicts the F-1 test stand site with hoses pumping excess water from the site.

  12. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the... this subpart must be run with the reverser installed. In complying with this section, the power control... regimes of control operations are incorporated necessitating scheduling of the power-control lever motion...

  13. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the... this subpart must be run with the reverser installed. In complying with this section, the power control... regimes of control operations are incorporated necessitating scheduling of the power-control lever motion...

  14. Performance of Low-Power Pulsed Arcjets

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L.

    1995-01-01

    The Electric Propulsion Laboratory at UIUC has in place all the capability and diagnostics required for performance testing of low power pulsed and DC arcjets. The UIUC thrust stand is operating with excellent accuracy and sensitivity at very low thrust levels. An important aspect of the experimental setup is the use of a PID controller to maintain a constant thruster position, which reduces hysterisis effects. Electrical noise from the arcjet induces some noise into the thrust signal, but this does not affect the measurement.

  15. Shock Control and Power Extraction by MHD Processes in Hypersonic Air Flow

    DTIC Science & Technology

    2006-11-01

    green) directions. The lower curve is smoothed to remove the pulser induced oscillations. E. Modeling of Hypersonic Aerodynamic Control and Thrust ...combination of deceleration near the surface and acceleration of the outer flow at XzO. 5 , to only acceleration ( thrust ) at y=l (Fig. 19). 1 - 1 - f...7 8 9 10 M Figure 20. Thrust (F.) and lift (AL) forces, their ratio (AL/AD), and the MHD deposited power versus Mach number for MHD accelerator with X

  16. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Appendix I to Part 25—Installation of an Automatic Takeoff Thrust Control System (ATTCS) I25.1General. (a... crew to increase thrust or power. I25.2Definitions. (a) Automatic Takeoff Thrust Control System (ATTCS... Control System (ATTCS) I Appendix I to Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION...

  17. Helicon double layer thruster operation in a low magnetic field mode

    NASA Astrophysics Data System (ADS)

    Harle, T.; Pottinger, S. J.; Lappas, V. J.

    2013-02-01

    Direct thrust measurements are made of a helicon double layer thruster operating in a low magnetic field mode. The relationship between the imposed axial magnetic field and generated thrust is investigated for a radio frequency input power range 200-500 W for propellant flow rates of 16.5 and 20 sccm (0.46 and 0.55 mg s-1) of argon. The measured thrust shows a strong dependence on the magnetic field strength, increasing by up to a factor of 5 compared with the minimum thrust level recorded. A peak thrust of 0.4-1.1 mN depending on thruster operating conditions is obtained. This increase is observed to take place over a small range of peak magnetic field strengths in the region of 70-110 G. The magnitude of the thrust and the corresponding magnitude of the magnetic field at which the peak thrust occurs is shown to increase with increasing input power for a given propellant flow rate. The ion current determined using a retarding field energy analyser and the electron number density found using a microwave resonator probe both correlate with the observed trend in thrust as a function of applied magnetic field.

  18. Solar rocket system concept analysis

    NASA Technical Reports Server (NTRS)

    Boddy, J. A.

    1980-01-01

    The use of solar energy to heat propellant for application to Earth orbital/planetary propulsion systems is of interest because of its performance capabilities. The achievable specific impulse values are approximately double those delivered by a chemical rocket system, and the thrust is at least an order of magnitude greater than that produced by a mercury bombardment ion propulsion thruster. The primary advantage the solar heater thruster has over a mercury ion bombardment system is that its significantly higher thrust permits a marked reduction in mission trip time. The development of the space transportation system, offers the opportunity to utilize the full performance potential of the solar rocket. The requirements for transfer from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) was examined as the return trip, GEO to LEO, both with and without payload. Payload weights considered ranged from 2000 to 100,000 pounds. The performance of the solar rocket was compared with that provided by LO2-LH2, N2O4-MMH, and mercury ion bombardment systems.

  19. Operationalizing Special Operations Aviation in Indonesia

    DTIC Science & Technology

    2006-12-15

    special operations forces Builder: Lockheed Power Plant: Four Allison T56 -A-15 turboprop engines Thrust: 4,910 shaft horsepower each engine...Builder: Lockheed Power Plant: Four Allison T56 -A-15 turboprop engines Thrust: 4,910 shaft horsepower each engine Length: 98 feet, 9 inches (30.09

  20. Internal-Film Cooling of Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Sloop, J L; Kinney, George R

    1948-01-01

    Experiments were conducted with 1000-pound-thrust rocket engine to determine feasibility of cooling convergent-divergent nozzle by internal film of water introduced at nozzle entrance. Water flow of 3 percent of propellant flow reduced heat flow into nozzle to 55 percent of uncooled heat flow. Introduction of water by porous ring before nozzle resulted in more uniform coverage of nozzle than water introduced by single arrangement of 36 jets directed along nozzle wall. Water flow through porous ring of 3.5 percent of propellant flow stabilized wall temperature in convergent section but did not adequately cool throat or divergent sections.

  1. HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand

    NASA Technical Reports Server (NTRS)

    Chaparro, Javier

    2013-01-01

    During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of the Commodities Exchange Pallet, I also assisted in preparation for testing the upper stage of a sounding rocket developed as a Center Innovation Fund project. The main objective of this project is to demonstrate the integration between a propulsion system and a solid oxide fuel cell (SOFC). The upper stage and SOFC are scheduled to complete an integrated test in August of 2016. As part of preparation for scheduled testing, I was responsible for designing the upper stage's test stand/support structure and main engine plume deflector to be used during hot-fire testing (fig. 3). The structural components of the test stand need to meet safety requirements for operation of the propulsion system, which consist of a 100 pounds-thrust main engine and two 15 pounds-thrust reaction control thrusters. My main accomplishment for this project was the completion of the design and the parts selection for construction of the structure, scheduled to begin late April of 2016.

  2. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    NASA Technical Reports Server (NTRS)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.

  3. Rocketdyne - J-2 Saturn V 2nd and 3rd Stage Engine. Chapter 2, Appendix D

    NASA Technical Reports Server (NTRS)

    Coffman, Paul

    2009-01-01

    The J-2 engine was unique in many respects. Technology was not nearly as well-developed in oxygen/hydrogen engines at the start of the J-2 project. As a result, it experienced a number of "teething" problems. It was used in two stages on the Saturn V vehicle in the Apollo Program, as well as on the later Skylab and Apollo/Soyuz programs. In the Apollo Program, it was used on the S-II stage, which was the second stage of the Saturn V vehicle. There were five J-2 engines at the back end of the S-II Stage. In the S-IV-B stage, it was a single engine, but that single engine had to restart. The Apollo mission called for the entire vehicle to reach orbital velocity in low Earth orbit after the first firing of the Saturn-IV-B stage and, subsequently, to fire a second time to go on to the moon. The engine had to be man-rated (worthy of transporting humans). It had to have a high thrust rate and performance associated with oxygen/hydrogen engines, although there were some compromises there. It had to gimbal for thrust vector control. It was an open-cycle gas generator engine delivering up to 230,000 pounds of thrust.

  4. Upper stages utilizing electric propulsion

    NASA Technical Reports Server (NTRS)

    Byers, D. C.

    1980-01-01

    The payload characteristics of geocentric missions which utilize electron bombardment ion thruster systems are discussed. A baseline LEO to GEO orbit transfer mission was selected to describe the payload capabilities. The impacts on payloads of both mission parameters and electric propulsion technology options were evaluated. The characteristics of the electric propulsion thrust system and the power requirements were specified in order to predict payload mass. This was completed by utilizing a previously developed methodology which provides a detailed thrust system description after the final mass on orbit, the thrusting time, and the specific impulse are specified. The impact on payloads of total mass in LEO, thrusting time, propellant type, specific impulse, and power source characteristics was evaluated.

  5. Static performance of vectoring/reversing non-axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Willard, C. M.; Capone, F. J.; Konarski, M.; Stevens, H. L.

    1977-01-01

    An experimental program sponsored by the Air Force Flight Dynamics Laboratory is currently in progress to determine the internal and installed performance characteristics of five different thrust vectoring/reversing non-axisymmetric nozzle concepts for tactical fighter aircraft applications. Internal performance characteristics for the five non-axisymmetric nozzles and an advanced technology axisymmetric baseline nozzle were determined in static tests conducted in January 1977 at the NASA-Langley Research Center. The non-axisymmetric nozzle models were tested at thrust deflection angles of up to 30 degrees from horizontal at throat areas associated with both dry and afterburning power. In addition, dry power reverse thrust geometries were tested for three of the concepts. The best designs demonstrated internal performance levels essentially equivalent to the baseline axisymmetric nozzle at unvectored conditions. The best designs also gave minimum performance losses due to vectoring, and reverse thrust levels up to 50% of maximum dry power forward thrust. The installed performance characteristics will be established based on wind tunnel testing to be conducted at Arnold Engineering Development Center in the fall of 1977.

  6. Extended performance solar electric propulsion thrust system study. Volume 4: Thruster technology evaluation

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.; Weisman, Y. C.; Frisman, M.; Benson, G. C.; Mcgrath, R. J.; Martinelli, R. M.; Linsenbardt, T. L.; Beattie, J. R.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentrator solar array concept and is designed to interface with the Space Shuttle.

  7. X-31 quasi-tailless flight demonstration

    NASA Technical Reports Server (NTRS)

    Huber, Peter; Schellenger, Harvey G.

    1994-01-01

    The primary objective of the quasi-tailless flight demonstration is to demonstrate the feasibility of using thrust vectoring for directional control of an unstable aircraft. By using this low-cost, low-risk approach it is possible to get information about required thrust vector control power and deflection rates from an inflight experiment as well as insight in low-power thrust vectoring issues. The quasi-tailless flight demonstration series with the X-31 began in March 1994. The demonstration flight condition was Mach 1.2 at 37,500 feet. A series of basic flying quality maneuvers, doublets, bank to bank rolls, and wind-up-turns have been performed with a simulated 100% vertical tail reduction. Flight test and supporting simulation demonstrated that the quasi-tailless approach is effective in representing the reduced stability of tailless configurations. The flights also demonstrated that thrust vectoring could be effectively used to stabilize a directionally unstable configuration and provide control power for maneuver coordination.

  8. Extended performance solar electric propulsion thrust system study. Volume 3: Tradeoff studies of alternate thrust system configurations

    NASA Technical Reports Server (NTRS)

    Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. A program development plan was formulated that outlines the work structure considered necessary for developing, qualifying, and fabricating the flight hardware for the baseline thrust system within the time frame of a project to rendezvous with Halley's comet. An assessment was made of the costs and risks associated with a baseline thrust system as provided to the mission project under this plan. Critical procurements and interfaces were identified and defined.

  9. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...

  10. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...

  11. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...

  12. NASA Researchers Examine a Pratt and Whitney RL-10 Rocket Engine

    NASA Image and Video Library

    1962-04-21

    Lead Test Engineer John Kobak (right) and a technician use an oscilloscope to test the installation of a Pratt and Whitney RL-10 engine in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In 1955 the military asked Pratt and Whitney to develop hydrogen engines specifically for aircraft. The program was canceled in 1958, but Pratt and Whitney decided to use the experience to develop a liquid-hydrogen rocket engine, the RL-10. Two of the 15,000-pound-thrust RL-10 engines were used to power the new Centaur second-stage rocket. Centaur was designed to carry the Surveyor spacecraft on its mission to soft-land on the Moon. Pratt and Whitney ran into problems while testing the RL-10 at their facilities. NASA Headquarters assigned Lewis the responsibility for investigating the RL-10 problems because of the center’s long history of liquid-hydrogen development. Lewis’ Chemical Rocket Division began a series of tests to study the RL-10 at its Propulsion Systems Laboratory in March 1960. The facility contained two test chambers that could study powerful engines in simulated altitude conditions. The first series of RL-10 tests in early 1961 involved gimballing the engine as it fired. Lewis researchers were able to yaw and pitch the engine to simulate its behavior during a real flight.

  13. Space Launch System Resource Reel 2017

    NASA Image and Video Library

    2017-12-01

    NASA's new heavy-lift rocket, the Space Launch System, will be the most powerful rocket every built, launching astronauts in NASA's Orion spacecraft on missions into deep space. Two solid rocket boosters and four RS-25 engines will power the massive rocket, providing 8 million pounds of thrust during launch. Production and testing are underway for much of the rocket's critical hardware. With major welding complete on core stage hardware for the first integrated flight of SLS and Orion, the liquid hydrogen tank, intertank and liquid oxygen tank are ready for further outfitting. NASA's barge Pegasus has transported test hardware the first SLS hardware, the engine section to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. In preparation for testing and handling operations, engineers have built the core stage pathfinder, to practice transport without the risk of damaging flight hardware. Integrated structural testing is complete on the top part of the rocket, including the Orion stage adapter, launch vehicle stage adapter and interim cryogenic propulsion stage. The Orion Stage Adapter for SLS's first flight, which will carry 13 CubeSats as secondary payloads, is ready to be outfitted with wiring and brackets. Once structural testing and flight hardware production are complete, the core stage will undergo "green run" testing in the B-2 test stand at NASA's Stennis Space Center in Bay St. Louis, Mississippi. For more information about SLS, visit nasa.gov/sls.

  14. Flight Investigation of Effects of Transition, Landing Approaches, Partial-Power Vertical Descents, and Droop-Stop Pounding on the Bending and Torsional Moments Encountered by a Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Ludi, LeRoy H.

    1959-01-01

    Flight tests have been conducted with a single-rotor helicopter, one blade of which was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses, to determine the effects of transition, landing approaches, and partial-power vertical descents on the rotor-blade bending and torsional moments. In addition, ground tests were conducted to determine the effects of static droop-stop pounding on the rotor-blade moments. The results indicate that partial-power vertical descents and landing approaches produce rotor-blade moments that are higher than the moments encountered in any other flight condition investigated to date with this equipment. Decelerating through the transition region in level flight was found to result in higher vibratory moments than accelerating through this region. Deliberately induced static droop-stop pounding produced flapwise bending moments at the 14-percent-radius station which were as high as the moments experienced in landing approaches and partial-power vertical descents.

  15. Low Thrust Cis-Lunar Transfers Using a 40 kW-Class Solar Electric Propulsion Spacecraft

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Burke, Laura M.; Mccarty, Steven L.; Hack, Kurt J.; Whitley, Ryan J.; Davis, Diane C.; Ocampo, Cesar

    2017-01-01

    This paper captures trajectory analysis of a representative low thrust, high power Solar Electric Propulsion (SEP) vehicle to move a mass around cis-lunar space in the range of 20 to 40 kW power to the Electric Propulsion (EP) system. These cis-lunar transfers depart from a selected Near Rectilinear Halo Orbit (NRHO) and target other cis-lunar orbits. The NRHO cannot be characterized in the classical two-body dynamics more familiar in the human spaceflight community, and the use of low thrust orbit transfers provides unique analysis challenges. Among the target orbit destinations documented in this paper are transfers between a Southern and Northern NRHO, transfers between the NRHO and a Distant Retrograde Orbit (DRO) and a transfer between the NRHO and two different Earth Moon Lagrange Point 2 (EML2) Halo orbits. Because many different NRHOs and EML2 halo orbits exist, simplifying assumptions rely on previous analysis of orbits that meet current abort and communication requirements for human mission planning. Investigation is done into the sensitivities of these low thrust transfers to EP system power. Additionally, the impact of the Thrust to Weight ratio of these low thrust SEP systems and the ability to transit between these unique orbits are investigated.

  16. Performance characterization of a permanent-magnet helicon plasma thruster

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod

    2012-10-01

    Helicon plasma thrusters operated at a few kWs of rf power is an active area of an international research. Recent experiments have clarified part of the thrust-generation mechanisms. Thrust components which have been identified include an electron pressure inside the source region and a Lorentz force due to an electron diamagnetic drift current and a radial component of the applied magnetic field. The use of permanent magnets (PMs) instead of solenoids is one of the solutions for improving the thruster efficiency because it does not require electricity for the magnetic nozzle formation. Here the thrust imparted from a permanent-magnet helicon plasma thruster is directly measured using a pendulum thrust balance. The source consists of permanent magnet (PM) arrays, a double turn rf loop antenna powered by a 13.56 MHz rf generator and a glass source tube. The PM arrays provide a magnetic nozzle near the open exit of the source and two configurations, which have maximum field strengths of about 100 and 270 G, are tested. A thrust of 15 mN, specific impulse of 2000 sec and a thrust efficiency of 8 percent are presently obtained for 2 kW of input power, 24 sccm flow rate of argon and the stronger magnetic field configuration.

  17. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  18. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  19. Integrated Unmanned Air-Ground Robotics System, Volume 4

    DTIC Science & Technology

    2001-08-20

    3) IPT Integrated Product Team IRP Intermediate Power Rating JAUGS TBD JCDL TBD Joint Vision 2020 TBD Km Kilometer lbs. pounds MAE Mechanical and...compatible with emerging JCDL and/or JAUGS . 2.3.2.2. Payload must be “plug and play.” 2.3.3. Communications 2.3.3.1. System communications shall be robust...Power JCDL JAUGS Joint Architecture for Unmanned Ground Systems JP-8 Jet Propulsion Fuel 8 km Kilometer lbs. Pounds LOS Line Of Sight MAE Mechanical

  20. X-15A-2 and HL-10 parked on NASA ramp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Both the HL-10 and X-15A2, shown here parked beside one another on the NASA ramp in 1966, underwent modifications. The X-15 No. 2 had been damaged in a crash landing in November 1962. Subsequently, the fuselage was lengthened, and it was outfitted with two large drop tanks. These modifications allowed the X-15A-2 to reach the speed of Mach 6.7. On the HL-10, the stability problems that appeared on the first flight at the end of 1966 required a reshaping of the fins' leading edges to eliminate the separated airflow that was causing the unstable flight. By cambering the leading edges of the fins, the HL-10 team achieved attached flow and stable flight. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle. The X-15 was a rocket-powered aircraft roughly 50 feet long with a wingspan of 22 feet in its original configuration. The no. 2 aircraft was later modified to become the X-15A-2. First flown in 1959, the three X-15 aircraft made a total of 199 flights. Flight maximums of 354,200 feet in altitude and a speed of 4,520 miles per hour were obtained. The final flight occurred on Oct. 24, 1968. The X-15 was manufactured by North American Aviation (NAA), now a division of Boeing after that firm acquired the Rockwell International Corporation into which NAA had evolved. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 12,295 pounds empty and approximately 31,275 pounds at launch. The rocket engine, the XLR-99, was pilot-controlled and was capable of developing 57,000 pound of rated thrust and about 60,000 pounds of actual thrust. It was manufactured by the Reaction Motors Division of Thiokol Chemical Corp. Before that engine was installed, the aircraft was powered by two XLR-11 rocket engines. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the lower atmosphere, the X-15 used conventional aerodynamic controls such as vertical stabilizers to control yaw and horizontal stabilizers to control pitch when moving in synchronization, or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Eight hydrogen-peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Four of them on the wings (two on each wing) furnished roll control. Because the X-15 consumed a large amount of fuel, it was air launched from a B-52 aircraft at 45,000 feet and a speed of about 500 miles per hour. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 seconds of flight. The remainder of the normal 10- to 11-minute flight was without power and ended with a 200-mile-per-hour glide landing. Generally, one of two types of X-15 flight profiles was used--a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude.

  1. An Experimental Investigation of the Effect of Propellers Used as Aerodynamic Brakes on Stability and Control

    NASA Technical Reports Server (NTRS)

    Hanson, Frederick H

    1945-01-01

    Tests were made of a model representative of a single-engine tractor-type airplane for the purpose of determining the stability and control effects of a propeller used as an aerodynamic brake. The tests were made with single-and dual-rotation propellers to show the effect of type of propeller rotation, and with positive thrust to provide basic data with which to compare the effects of negative thrust. Four configurations of the model were used to give the effects of tilting the propeller thrust axis down 5 deg., raising the horizontal tail, and combining both tilt and raised tail. Results of the tests are reported herein. The effects of negative thrust were found to be significant. The longitudinal stability was increased because of the loss of wing lift and increase of the angle of attack of the tail. Directional stability and both longitudinal and directional control were decreased because of the reduced velocity at the tail. These effects are moderate for moderate braking but become pronounced with full-power braking, particularly at high values of lift coefficient. The effects of model configuration changes were small when compared with the over-all effects of negative-thrust operation; however, improved stability and control characteristics were exhibited by the model with the tilted thrust axis. Raising the horizontal tail improved the longitudinal characteristics, but was detrimental to directional characteristics. The use of dual-rotation propeller reduced the directional trim charges resulting from the braking operation. A prototype airplane was assumed and handling qualities were computed and analyzed for normal (positive thrust) and braking operation with full and partial power. The results of these analyses are presented for the longitudinal characteristics in steady and accelerated flight, and for the directional characteristics in high- and low-speed flight. It was found that by limiting the power output of the engine (assuming the constant-speed propeller will function in the range of blade angles required for negative thrust) the stability and control characteristics may be held within the limits required for safe operation. Braking with full power, particularly at low speeds, is dangerous, but braking with very small power output is satisfactory from the standpoint of control. The amount of braking produced with zero power output is equal to or better than that produced by conventional spoiler-type brakes.

  2. Direct thrust measurement of a permanent magnet helicon double layer thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Lafleur, T.; Charles, C.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  3. The calculated effect of trailing-edge flaps on the take-off of flying boats

    NASA Technical Reports Server (NTRS)

    Parkinson, J E; Bell, J W

    1934-01-01

    The results of take-off calculations are given for an application of simple trailing-edge flaps to two hypothetical flying boats, one having medium wing and power loading and consequently considerable excess of thrust over total resistance during the take-off run, the other having high wing and power loading and a very low excess thrust. For these seaplanes the effect of downward flap settings was: (1) to increase the total resistance below the stalling speed, (2) to decrease the get-away speed, (3) to improve the take-off performance of the seaplane having considerable excess thrust, and (4) to hinder the take-off of the seaplane having low excess thrust. It is indicated that flaps would allow a decrease in the high angles of wing setting necessary with most seaplanes, provided that the excess thrust is not too low.

  4. Rolls Royce Avon RA-14 Engine in the Altitude Wind Tunnel

    NASA Image and Video Library

    1956-03-21

    A Rolls Royce Avon RA-14 engine was tested in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics’ (NACA) Lewis Flight Propulsion Laboratory. The Avon RA-14 engine was a 16-stage axial-flow compressor turbojet capable of producing 9,500 pounds of thrust. The Avon replaced Rolls Royce’s successful Nene engine in 1950 and remained in service until 1974. It was one of several British engines studied in the tunnel during the 1950s. The Altitude Wind Tunnel went through a series of modifications in 1951 to increase its capabilities. An annex was attached to the Exhauster Building to house three new Ingersoll-Rand compressors. The wooden blades on the tunnel’s 31-foot diameter fan were replaced, a pump house and exhaust cooler were constructed underneath the tunnel, and two new cells were added to the cooling tower. The modified wind tunnel continued to analyze jet engines in the 1950s, although the engines, like the RA-14 seen here, were much more powerful than those studied several years before. Lewis researchers studied the RA-14 turbojet engine in the Altitude Wind Tunnel for 11 months in 1956. The engine was mounted on a stand capable of gauging engine thrust, and the tunnel’s air was ducted to the engine through a venturi and bellmouth inlet, seen in this photograph. The initial studies established the engine’s performance characteristics with a fixed-area nozzle and its acceleration characteristics. The researchers also used the tunnel to investigate windmilling of the compressor blades, restarting at high altitudes, and the engine’s performance limits at altitude.

  5. Fast Track Lunar NTR Systems Assessment for NASA's First Lunar Outpost and Its Evolvability to Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Alexander, Stephen W.

    1995-01-01

    Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. A 'standardized' set of engine and stage components are identified and used in a 'building block' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I(sub sp)) of 900 seconds, and an engine thrust-to-weight ratio of 4. 3. For the National Aeronautics and Space Administrations (NASA) First Lunar Outpost (FLO) mission, and expendable NTR stage powered by two such engines can deliver approximately 96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH2) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH2 capacity to approximately 20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The 'modular' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions.

  6. Optimal Low-Thrust Limited-Power Transfers between Arbitrary Elliptic Coplanar Orbits

    NASA Technical Reports Server (NTRS)

    daSilvaFernandes, Sandro; dasChagasCarvalho, Francisco

    2007-01-01

    In this work, a complete first order analytical solution, which includes the short periodic terms, for the problem of optimal low-thrust limited-power transfers between arbitrary elliptic coplanar orbits in a Newtonian central gravity field is obtained through Hamilton-Jacobi theory and a perturbation method based on Lie series.

  7. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Thrust or power augmentation system. 25.945 Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... must have an expansion space of not less than 2 percent of the tank capacity. It must be impossible to...

  8. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Thrust or power augmentation system. 25.945 Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... must have an expansion space of not less than 2 percent of the tank capacity. It must be impossible to...

  9. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Thrust or power augmentation system. 25.945 Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... must have an expansion space of not less than 2 percent of the tank capacity. It must be impossible to...

  10. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Thrust or power augmentation system. 25.945 Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... must have an expansion space of not less than 2 percent of the tank capacity. It must be impossible to...

  11. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Thrust or power augmentation system. 25.945 Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... must have an expansion space of not less than 2 percent of the tank capacity. It must be impossible to...

  12. Hamilton Standard Q-fan demonstrator dynamic pitch change test program, volume 1

    NASA Technical Reports Server (NTRS)

    Demers, W. J.; Nelson, D. J.; Wainauski, H. S.

    1975-01-01

    Tests of a full scale variable pitch fan engine to obtain data on the structural characteristics, response times, and fan/core engine compatibility during transient changes in blade angle, fan rpm, and engine power is reported. Steady state reverse thrust tests with a take off nozzle configuration were also conducted. The 1.4 meter diameter, 13 bladed controllable pitch fan was driven by a T55 L 11A engine with power and blade angle coordinated by a digital computer. The tests demonstrated an ability to change from full forward thrust to reverse thrust in less than one (1) second. Reverse thrust was effected through feather and through flat pitch; structural characteristics and engine/fan compatibility were within satisfactory limits.

  13. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  14. A miniature electrothermal thruster using microwave-excited microplasmas: Thrust measurement and its comparison with numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2007-06-15

    A microplasma thruster has been developed, consisting of a cylindrical microplasma source 10 mm long and 1.5 mm in inner diameter and a conical micronozzle 1.0-1.4 mm long with a throat of 0.12-0.2 mm in diameter. The feed or propellant gas employed is Ar at pressures of 10-100 kPa, and the surface-wave-excited plasma is established by 4.0 GHz microwaves at powers of <10 W. The thrust has been measured by a combination of target and pendulum methods, exhibiting the performance improved by discharging the plasma. The thrust obtained is 1.4 mN at an Ar gas flow rate of 60 SCCMmore » (1.8 mg/s) and a microwave power of 6 W, giving a specific impulse of 79 s and a thrust efficiency of 8.7%. The thrust and specific impulse are 0.9 mN and 51 s, respectively, in cold-gas operation. A comparison with numerical analysis indicates that the pressure thrust contributes significantly to the total thrust at low gas flow rates, and that the micronozzle tends to have an isothermal wall rather than an adiabatic.« less

  15. A 2000 ton crawler/transporter for operation in Prudhoe Bay, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trask, W.H.; Trask, J.L.; Crane, T.

    1986-01-01

    Recently designed and fabricated in Kennewick, Washington, a pair of 2000 ton capacity crawler/transporters has been used in moving refinery modules to permanent installations on Alaska's North Slope. Vehicle design features include four corner chain-driven, track driving sprockets (tumblers), resilient track roller suspensions, elevating load platform (hereinafter ''bolsters''), dynamic braking, diesel/torque converter power, automatic lubrication and electro-pneumatic controls. Four independent power units provide 1400 horse-power per crawler and over two million pounds of drawbar pull at converter stall. Weighing 300 tons, the pin-connected crawler dissembles for highway transport into loads of under 95,000 pounds.

  16. The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach.

    PubMed

    Richards, Christopher T

    2008-10-01

    The aims of this study were to explore the hydrodynamic mechanism of Xenopus laevis swimming and to describe how hind limb kinematics shift to control swimming performance. Kinematics of the joints, feet and body were obtained from high speed video of X. laevis frogs (N=4) during swimming over a range of speeds. A blade element approach was used to estimate thrust produced by both translational and rotational components of foot velocity. Peak thrust from the feet ranged from 0.09 to 0.69 N across speeds ranging from 0.28 to 1.2 m s(-1). Among 23 swimming strokes, net thrust impulse from rotational foot motion was significantly higher than net translational thrust impulse, ranging from 6.1 to 29.3 N ms, compared with a range of -7.0 to 4.1 N ms from foot translation. Additionally, X. laevis kinematics were used as a basis for a forward dynamic anuran swimming model. Input joint kinematics were modulated to independently vary the magnitudes of foot translational and rotational velocity. Simulations predicted that maximum swimming velocity (among all of the kinematics patterns tested) requires that maximal translational and maximal rotational foot velocity act in phase. However, consistent with experimental kinematics, translational and rotational motion contributed unequally to total thrust. The simulation powered purely by foot translation reached a lower peak stroke velocity than the pure rotational case (0.38 vs 0.54 m s(-1)). In all simulations, thrust from the foot was positive for the first half of the power stroke, but negative for the second half. Pure translational foot motion caused greater negative thrust (70% of peak positive thrust) compared with pure rotational simulation (35% peak positive thrust) suggesting that translational motion is propulsive only in the early stages of joint extension. Later in the power stroke, thrust produced by foot rotation overcomes negative thrust (due to translation). Hydrodynamic analysis from X. laevis as well as forward dynamics give insight into the differential roles of translational and rotational foot motion in the aquatic propulsion of anurans, providing a mechanistic link between joint kinematics and swimming performance.

  17. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  18. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  19. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  20. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  1. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  2. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.

  3. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  4. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.

  5. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.

  6. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  7. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.

  8. Deep Space 1 is encapsulated on launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  9. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  10. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload transportation container on Deep Space 1 before launch, targeted for Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight- tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  11. KSC-98pc1328

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  12. KSC-98pc1345

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  13. KSC-2009-5946

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. At right is space shuttle Atlantis, poised on Launch Pad 39A for liftoff, targeted for Nov. 16. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  14. KSC-98pc1329

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is lifted out of the transporter that carried it to Launch Pad 17A at Cape Canaveral Air Station. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  15. KSC-98pc1261

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October

  16. KSC-98pc1318

    NASA Image and Video Library

    1998-10-10

    KENNEDY SPACE CENTER, FLA. - Wrapped in an antistatic blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications System Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A. The spacecraft will be launched aboard Boeing's Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including an ion propulsion engine. Propelled by the gas xenon, the engine is being flight tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include softwre that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the firs two months, but will also make a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  17. KSC-98pc1262

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October

  18. KSC-98pc1264

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS

  19. KSC-98pc1313

    NASA Image and Video Library

    1998-10-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload transportation container on Deep Space 1 before launch, targeted for Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  20. KSC-98pc1260

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October

  1. KSC-98pc1332

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is lowered toward the second stage of a Boeing Delta 7326 rocket. The adapter on the spacecraft can be seen surrounding the booster motor. Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  2. KSC-98pc1347

    NASA Image and Video Library

    1998-10-16

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver part of the fairing (viewed from the inside) to encapsulate Deep Space 1. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  3. KSC-98pc1265

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS

  4. KSC-98pc1263

    NASA Image and Video Library

    1998-10-07

    KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October

  5. KSC-98pc1330

    NASA Image and Video Library

    1998-10-12

    KENNEDY SPACE CENTER, FLA. -- Just before sunrise, on Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is hoisted up the mobile service tower for installation on a Boeing Delta 7326 rocket . The spacecraft is targeted for launch on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999

  6. KSC-98pc1314

    NASA Image and Video Library

    1998-10-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS

  7. Swimming for your life: locomotor effort and oxygen consumption during the green turtle (Chelonia mydas) hatchling frenzy.

    PubMed

    Booth, David T

    2009-01-01

    Swimming effort and oxygen consumption of newly emerged green turtle Chelonia mydas hatchlings was measured simultaneously and continuously for the first 18 h of swimming after hatchlings entered the water. Oxygen consumption was tightly correlated to swimming effort during the first 12 h of swimming indicating that swimming is powered predominantly by aerobic metabolism. The patterns of swimming effort and oxygen consumption could be divided into three distinct phases: (1) the rapid fatigue phase from 0 to 2 h when the mean swim thrust decreased from 45 to 30 mN and oxygen consumption decreased from 33 to 18 ml h(-1); (2) the slow fatigue phase from 2 to 12 h when the mean swim thrust decreased from 30 to 22 mN and oxygen consumption decreased from 18 to 10 ml h(-1); and (3) the sustained effort phase from 12 to 18 h when mean swim thrust averaged 22 mN and oxygen consumption averaged 10 ml h(-1). The decrease in mean swim thrust was caused by a combination of a decrease in front flipper stroke rate during a power stroking bout, a decrease in mean maximum thrust during a power stroking bout and a decrease in the proportion of time spent power stroking. Hence hatchlings maximise their swimming thrust as soon as they enter the water, a time when a fast swimming speed will maximise the chance of surviving the gauntlet of predators inhabiting the shallow fringing reef before reaching the relative safety of deeper water.

  8. VLCT-13: A commercial transport for the 21st Century

    NASA Technical Reports Server (NTRS)

    Beal, Pamela; Sowels, Terri; Takahashi, Hitoshi; Cotton, Matt; Balanon, Will; Parayo, Manuel

    1993-01-01

    The growth of the Pacific Rim market has spurred airframers to begin feasibility studies of a large commercial transport. By the year 2001, 30 million travelers are expected to travel the Transpacific. A transport capable of hauling 800 PAX and 30,000 pounds of cargo, 7,000 nm is of specific interest. Special problems associated with this design are configuration, landing gear, passenger safety, airport compatibility, and engine thrust. A group of students at the California Polytechnic State University at San Luis Obispo developed a very large commercial transport, VLCT-13, conventional looking design which is both comfortable and economical. Passenger comfort includes seat pitches of 34 in and 40 in, width's of 23 in and 25 in, respectfully, and a 27 ft diameter cross section. A direct operating cost of 2.3 cents per passenger per seat-mile is estimated for this airplane design. The airplane market price is estimated to be $195 million 1993 dollars based on an aircraft take off weight of 1.4 million pounds. The problems associated with the VLCT-13 are discussed and possible solutions are presented.

  9. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1971-08-01

    This photograph of the Lunar Roving Vehicle (LRV) was taken during the Apollo 15 mission. Powered by battery, the lightweight electric car greatly increased the range of mobility and productivity on the scientific traverses for astronauts. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear and cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees. The LRV was designed and developed by the Marshall Space Flight Center and built by the Boeing Company.

  11. Performance of an 8 kW Hall Thruster

    DTIC Science & Technology

    2000-01-12

    For the purpose of either orbit raising and/or repositioning the Hall thruster must be capable of delivering sufficient thrust to minimize transfer...time. This coupled with the increasing on-board electric power capacity of military and commercial satellites, requires a high power Hall thruster that...development of a novel, high power Hall thruster , capable of efficient operation over a broad range of Isp and thrust. We call such a thruster the bi

  12. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  13. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Astrophysics Data System (ADS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  14. Iroquois Engine for the Avro Arrow in the Propulsion Systems Laboratory

    NASA Image and Video Library

    1957-08-21

    A researcher examines the Orenda Iroquois PS.13 turbojet in a Propulsion Systems Laboratory test chamber at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Iroquois was being developed to power the CF-105 Arrow fighter designed by the Avro Canada Company. Avro began design work on the Arrow jet fighter in 1952. The company’s Orenda branch suggested building a titanium-based PS.13 Iroquois engine after development problems arose with the British engines that Avro had originally intended to use. The 10-stage, 20,000-pound-thrust Iroquois would prove to be more powerful than any contemporary US or British turbojet. It was also significantly lighter and more fuel efficient. An Iroquois was sent to Cleveland in April 1957 so that Lewis researchers could study the engine’s basic performance for the air force in the Propulsion Systems Laboratory. The tests were run over a wide range of speeds and altitudes with variations in exhaust-nozzle area. Initial studies determined the Iroquois’s windmilling and ignition characteristics at high altitude. After operating for 64 minutes, the engine was reignited at altitudes up to the 63,000-foot limit of the facility. Various modifications were attempted to reduce the occurrence of stall but did not totally eradicate the problem. The Arrow jet fighter made its initial flight in March 1958 powered by a substitute engine. In February 1959, however, both the engine and the aircraft programs were cancelled. The world’s superpowers had quickly transitioned from bombers to ballistic missiles which rendered the Avro Arrow prematurely obsolete.

  15. Independent Review of the Failure Modes of F-1 Engine and Propellants System

    NASA Technical Reports Server (NTRS)

    Ray, Paul

    2003-01-01

    The F-1 is the powerful engine, that hurdled the Saturn V launch vehicle from the Earth to the moon on July 16,1969. The force that lifted the rocket overcoming the gravitational force during the first stage of the flight was provided by a cluster of five F-1 rocket engines, each of them developing over 1.5 million pounds of thrust (MSFC-MAN-507). The F-1 Rocket engine used RP-1 (Rocket Propellant-1, commercially known as Kerosene), as fuel with lox (liquid Oxygen) as oxidizer. NASA terminated Saturn V activity and has focused on Space Shuttle since 1972. The interest in rocket system has been revived to meet the National Launch System (NLS) program and a directive from the President to return to the Moon and exploration of the space including Mars. The new program Space Launch Initiative (SLI) is directed to drastically reduce the cost of flight for payloads, and adopt a reusable launch vehicle (RLV). To achieve this goal it is essential to have the ability of lifting huge payloads into low earth orbit. Probably requiring powerful boosters as strap-ons to a core vehicle, as was done for the Saturn launch vehicle. The logic in favor of adopting Saturn system, a proven technology, to meet the SLI challenge is very strong. The F-1 engine was the largest and most powerful liquid rocket engine ever built, and had exceptional performance. This study reviews the failure modes of the F-1 engine and propellant system.

  16. High-power, null-type, inverted pendulum thrust stand.

    PubMed

    Xu, Kunning G; Walker, Mitchell L R

    2009-05-01

    This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation.

  17. KSC-2013-3239

    NASA Image and Video Library

    2013-08-09

    CAPE CANAVERAL, Fla. – As seen on Google Maps, the massive F-1 engines of the Saturn V's first stage on display inside the Apollo/Saturn V Center at the Kennedy Space Center Visitor Complex. Each engine stands 19 feet tall with a diameter of more than 12 feet. The five engines on the first stage produced 7.5 million pounds of thrust at liftoff. The Saturn V was used to launch NASA's Apollo missions to the moon which saw 12 astronauts land and work on the lunar surface. Google precisely mapped Kennedy Space Center and some of its historical facilities for the company's map page. Photo credit: Google/Wendy Wang

  18. Saturn Apollo Program

    NASA Image and Video Library

    1967-09-09

    This photograph depicts the F-1 engine firing in the Marshall Space Flight Center’s F-1 Engine Static Test Stand. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. It is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1982-04-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-3 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1982-11-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-5 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  1. Theoretical Rocket Performance of Liquid Methane with Several Fluorine-Oxygen Mixtures Assuming Frozen Composition

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Kastner, Michael E

    1958-01-01

    Theoretical rocket performance for frozen composition during expansion was calculated for liquid methane with several fluorine-oxygen mixtures for a range of pressure ratios and oxidant-fuel ratios. The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. The maximum calculated value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.827atm) and an exit pressure of 1 atmosphere is 315.3 for 79.67 percent fluorine in the oxidant.

  2. NASA on a Strong Roll in Preparing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    NASA is on a roll when it comes to testing engines for its new Space Launch System (SLS) rocket that will send astronauts to deep-space destinations, including Mars. Just two weeks after the third test of a new RS-25 engine flight controller, the space agency recorded its fourth full-duration controller test Aug. 9 at Stennis Space Center near Bay St. Louis, Mississippi. Engineers conducted a 500-second test of the RS-25 engine controller on the A-1 Test Stand at Stennis. The test involved installing the controller on an RS-25 development engine and firing it in the same manner, and for the same length of time, as needed during an actual SLS launch. The test marked another milestone toward launch of the first integrated flight of the SLS rocket and Orion crew vehicle. Exploration Mission-1 will be an uncrewed mission into lunar orbit, designed to provide a final check-out test of rocket and Orion capabilities before astronauts are returned to deep space. The SLS rocket will be powered at launch by four RS-25 engines, providing a combined 2 million pounds of thrust, and with a pair of solid rocket boosters, providing more than 8 million pounds of total thrust. The RS-25 engines for the initial SLS flights are former space shuttle main engines that are now being used to launch the larger and heavier SLS rocket and with the new controller. The controller is a critical component that operates as the engine “brain” that communicates with SLS flight computers to receive operation performance commands and to provide diagnostic data on engine health and status. Engineers conducted early prototype tests at Stennis to collect data for development of the new controller by NASA, RS-25 prime contractor Aerojet Rocketdyne and subcontractor Honeywell. Testing of actual flight controllers began at Stennis in March. NASA is testing all controllers and engines designated for the EM-1 flight at Stennis. It also will test the SLS core stage for the flight at Stennis, which will involve installing the stage on the B-2 Test Stand and firing its four RS-25 engines simultaneously, as during an actual launch. RS-25 tests at Stennis are conducted by a team of NASA, Aerojet Rocketdyne and Syncom Space Services engineers and operators. Aerojet Rocketdyne is the RS-25 prime contractor. Syncom Space Services is the prime contractor for Stennis facilities and operations.

  3. 76 FR 64229 - Function and Reliability Flight Testing for Turbine-Powered Airplanes Weighing 6,000 Pounds or Less

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... contains regulatory documents #0;having general applicability and legal effect, most of which are keyed #0... structures, propulsion methods, and systems technologies, the 6,000-pound demarcation is no longer justified... F & R flight testing regardless of the airplane's systems complexity or level of automation. After...

  4. Around Marshall

    NASA Image and Video Library

    1963-01-15

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. Looking North, this aerial taken January 15, 1963, gives a closer view of the deep hole for the F-1 test stand site in the forefront. The S-IC test stand with towers prominent is to the right of center, and the Block House is seen left of center.

  5. Development of a 500-Watt portable generator

    NASA Astrophysics Data System (ADS)

    Knochenhauer, Robert John

    In many commercial and recreational environments where power is unavailable, there is a need for lightweight, efficient, reasonably priced and quiet power sources that can recharge batteries for various portable devices. The current benchmark device is the Honda EU1000i, a 1000-Watt (peak) generator that weighs only 29 pounds (dry) and has a respectable noise level of 59 dB (at 7 meters) under peak power loading. The intent of this thesis study is to focus on the thermal management of a novel generator design that develops peak power of 500-Watts, weighs in at less than 20 pounds (dry) and has a reasonably low noise level at peak power loading. Through the course of this assessment, two key lessons are learned: • Liquid cooling at this scale is possible, but not practical • Renewable power sources (wind turbines and/or solar panels) are viable alternatives when used in environments that offer suitable conditions.

  6. Effects of bleed air extraction on thrust levels on the F404-GE-400 turbofan engine

    NASA Technical Reports Server (NTRS)

    Yuhas, Andrew J.; Ray, Ronald J.

    1992-01-01

    A ground test was performed to determine the effects of compressor bleed flow extraction on the performance of F404-GE-400 afterburning turbofan engines. The two engines were installed in the F/A-18 High Alpha Research Vehicle at the NASA Dryden Flight Research Facility. A specialized bleed ducting system was installed onto the aircraft to control and measure engine bleed airflow while the aircraft was tied down to a thrust measuring stand. The test was conducted on each engine and at various power settings. The bleed air extraction levels analyzed included flow rates above the manufacturer's maximum specification limit. The measured relationship between thrust and bleed flow extraction was shown to be essentially linear at all power settings with an increase in bleed flow causing a corresponding decrease in thrust. A comparison with the F404-GE-400 steady-state engine simulation showed the estimation to be within +/- 1 percent of measured thrust losses for large increases in bleed flow rate.

  7. KSC-08pd1650

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – Auxiliary power unit 3, or APU3, is ready for installation in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  8. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  9. Sunmaster: An SEP cargo vehicle for Mars missions

    NASA Technical Reports Server (NTRS)

    Chiles, Aleasa; Fraser, Jennifer; Halsey, Andy; Honeycutt, David; Madden, Michael; Mcgough, Brian; Paulsen, David; Spear, Becky; Tarkenton, Lynne; Westley, Kevin

    1991-01-01

    Options are examined for an unmanned solar powered electric propulsion cargo vehicle for Mars missions. The 6 prime areas of study include: trajectory, propulsion system, power system, supporting structure, control system, and launch consideration. Optimization of the low thrust trajectory resulted in a total round trip mission time just under 4 years. The argon propelled electrostatic ion thruster system consists of seventeen 5 N engines and uses a specific impulse of 10,300 secs. At Earth, the system uses 13 engines to produce 60 N of thrust; at Mars, five engines are used, producing 25 N thrust. The thrust of the craft is varied between 60 N at Earth and 24 N at Mars due to reduced solar power available. Solar power is collected by a Fresnel lens concentrator system using a multistacked cell. This system provides 3.5 MW to the propulsion system after losses. Control and positioning to the craft are provided by a system of three double gimballed control moment gyros. Four shuttle 'C' launches will be used to transport the unassembled vehicle in modular units to low Earth orbit where it will be assembled using the Mobile Transporter of the Space Station Freedom.

  10. The Story of the Nuclear Rocket: Back to the Future

    NASA Astrophysics Data System (ADS)

    Dewar, James A.

    2002-01-01

    The United States had a nuclear rocket development program from 1955-1973 called Project Rover/NERVA. Twenty reactor tests demonstrated conclusively the superiority, flexibility and reliability of nuclear rocket engines over their chemical counterparts. This paper surveys the technical accomplishments from that perspective, to help illustrate why many call for the program's reestablishment. Most focus on the large NERVA, but this review will consider the little known Small Nuclear Engine. KIWI-B1B was one of the first tests in which nuclear rockets demonstrated their superiority. It ejected its core as it rose to 1000MW (a megawatt equals 50 pounds of thrust). This seems contradictory, how can a `failure' demonstrate superiority? Precisely in this: the reactor remained controllable going to and from 1000MW, still ejecting its core, but still turning out power. That gave insurance to a mission. A solid or liquid chemical engine suffering similar damage would likely shutdown or blow up. KIWI-TNT and Phoebus-1A had planned and unplanned accidents. That verified the safety of nuclear engines in launch operations. NRX/EST and XE-Prime proved they could startup reliably under their own power in a simulated space environment and change power without loss of specific impulse or control, from 20MW to 1000MW and back. That gave flexibility for mid-course corrections, maneuvering between orbits or breaking into orbit. Pewee and the Nuclear Furnace tested fuels to achieve 10 hours of engine operation with 60 recycles (stops and starts). That meant an engine could perform multiple missions. Work started on fuels promising1000 seconds of specific impulse. That meant increased power and payload capacity and speed. This contrasts with the 450 seconds of LOX/LH2. The NERVA of 1971 would be 1500MW, with 10/60 capability and 825 seconds of a specific impulse. Later generation NERVAs would be in excess of 1000 seconds, 3000MW and 10/60. The Nixon Administration cancelled it in 1971. After its demise, the Small Nuclear Engine appeared for unmanned missions. To fit in the space shuttle's 15 by 60 foot cargo bay, the 10 foot long engine would be 400MW, weigh 5600 pounds and use slush hydrogen. That left 50 feet and almost 60,000 pounds for the tank, propellant and payload that could vary in size, but it was nominally 5 tons. It would cost 500 million (in1972 dollars) and take a decade to develop. It had NERVA's operating characteristics, but subsequent generation systems envisioned longer engine life and recycle capability and specific impulses of 1000+ seconds. Nixon ended this in 1973. By reconsidering it instead of a nuclear electric engine that serves only space science, the nation could gain a fast, powerful system that would radically change most future unmanned space missions. With its recycle capability, a single engine could ferry large scientific payloads swiftly throughout the solar system. Yet it also could propel heavy national security and commercial payloads to geo-synchronous orbit. NASA might even offer a satellite retrieval service. Thus, one lesson is clear: it is 1960s era technology, but the Small Engine is not obsolete. If developed, it would serve not just one, but three users yet have growth potential for decades for an ever more expansive space program.

  11. Computational Investigations of Inboard Flow Separation and Mitigation Techniques on Multi-Megawatt Wind Turbines

    NASA Astrophysics Data System (ADS)

    Chow, Raymond

    The aerodynamic characteristics of the NREL 5-MW rotor have been examined using a Reynolds-averaged Navier-Stokes method, OVERFLOW2. A comprehensive off-body grid independence study has been performed. A strong dependence on the size of the near-body wake grid has been found. Rapid diffusion of the wake appears to generate an overprediction of power and thrust. A large, continuous near-wake grid at minimum of two rotor diameters downstream of the rotor appears to be necessary for accurate predictions of near-body forces. The NREL 5-MW rotor demonstrates significant inboard flow separation up to 30% of span. This separation appears to be highly three-dimensional, with a significant amount of radial flow increasing the size of the separated region outboard. Both integrated aerodynamic coefficients and detailed wake structures for the baseline NREL 5-MW rotor are in excellent agreement with results by Riso at Uinfinity = 8 and 11 m/s. A simple, continuous full-chord fence was applied at the maximum chord location of the blade, within the region of separation. This non-optimized device reduced the boundary-layer cross-flow and resulting separation, and increased rotor power capture by 0.9% and 0.6% at U infinity = 8 and 11 m/s, respectively. Suction side only fences perform similarly in terms of power capture but reduce the increase in rotor thrust. Fence heights from 0.5% to 17.5% of the maximum chord all demonstrate some level of effectiveness, with fences (1-2.5%cmax) showing similar performance gains to taller fences with smaller penalties in thrust. Performance in terms of power capture is not very sensitive to spanwise location when placed within the separation region. Blunt trailing edge modifications to the inboard region of the blade showed a relatively significant effect on rotor power. Over a large range of trailing edge thicknesses from hTE = 10 to 25%c, power was found to increase by 1.4%. Thrust increased proportionally with the thicknesses examined, reaching a comparable increase of 1.4% by a trailing edge thickness of 15%c. Decreasing inboard twist only acted to increase thrust without increasing power capture any further at U infinity = 11 m/s. While increasing inboard blade twist decreased power, but decreased thrust at even a higher rate. Vortex generators were not successively configured to significantly improve power capture in this study. Two of the three configurations examined actually decreased power capture and increased the separation region. The results found in this study are not believed to be representative of a properly sized and located array of VGs. The presence of the nose cone and nacelle body at the hub of the rotor is found to have a minimal effect on the power and thrust of the overall rotor. The downstream wake structure however is changed by the nacelle, potentially useful for wake tailoring when turbines are closely spaced together.

  12. Common radiation analysis model for 75,000 pound thrust NERVA engine (1137400E)

    NASA Technical Reports Server (NTRS)

    Warman, E. A.; Lindsey, B. A.

    1972-01-01

    The mathematical model and sources of radiation used for the radiation analysis and shielding activities in support of the design of the 1137400E version of the 75,000 lbs thrust NERVA engine are presented. The nuclear subsystem (NSS) and non-nuclear components are discussed. The geometrical model for the NSS is two dimensional as required for the DOT discrete ordinates computer code or for an azimuthally symetrical three dimensional Point Kernel or Monte Carlo code. The geometrical model for the non-nuclear components is three dimensional in the FASTER geometry format. This geometry routine is inherent in the ANSC versions of the QAD and GGG Point Kernal programs and the COHORT Monte Carlo program. Data are included pertaining to a pressure vessel surface radiation source data tape which has been used as the basis for starting ANSC analyses with the DASH code to bridge into the COHORT Monte Carlo code using the WANL supplied DOT angular flux leakage data. In addition to the model descriptions and sources of radiation, the methods of analyses are briefly described.

  13. Feasibility of Conducting J-2X Engine Testing at the Glenn Research Center Plum Brook Station B-2 Facility

    NASA Technical Reports Server (NTRS)

    Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.

    2008-01-01

    A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.

  14. KSC-2009-5951

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 12 times the thrust produced by a Boeing 747 jet aircraft, the Constellation Program's Ares I-X test rocket roars off Launch Pad 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and goes supersonic in 39 seconds. At left is space shuttle Atlantis, poised on Launch Pad 39A for liftoff, targeted for Nov. 16. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  15. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-12-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR / Earth return vehicle (ERV). It also allows the crew to travel to and from Mars on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixture ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two Magnum launches.

  16. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion. Revised Dec. 1998

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR / Earth return vehicle (ERV). It also allows the crew to travel to and from Mars on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixture ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two Magnum launches.

  17. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1998-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (Isp-850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately equal 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible, A family of modular "bimodal" NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, "zero-boiloff" liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR/ERV. It also allows the crew to travel to and from Mar on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixutre ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the lift capability of two Magnum launches.

  18. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    NASA Technical Reports Server (NTRS)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  19. High power arcjet

    NASA Technical Reports Server (NTRS)

    Auweter-Kurtz, M.; Glocker, B.; Goelz, T. M.; Habiger, H.; Kurtz, H. L.; Schrade, H. O.; Wegmann, T.

    1990-01-01

    The activities on the development of the high power arc jet HIPARC, the thrust balance, and plasma diagnostic probes are discussed. Modifications of the HIPARC design and a synopsis of the materials used are given. Further experimental results with the TT30 thruster in the 50 kW range are presented. Some first calibration measurements of the thrust balance are also included. Progress concerning the development of plasma diagnostic devices is documented.

  20. Static Thrust and Power Characteristics of Six Full-Scale Propellers

    NASA Technical Reports Server (NTRS)

    Hartman, Erwin P; Biermann, David

    1940-01-01

    Static thrust and power measurements were made of six full-scale propellers. The propellers were mounted in front of a liquid-cooled-engine nacelle and were tested at 15 different blade angles in the range from -7 1/2 degrees to 35 degrees at 0.75r. The test rig was located outdoors and the tests were made under conditions of approximately zero wind velocity.

  1. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  2. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  3. NACA D-558-2 Test Force w/P2B-1S & F-86

    NASA Technical Reports Server (NTRS)

    1952-01-01

    These people and this equipment supported the flight of the NACA D-558-2 Skyrocket at the High-Speed Flight Station at South Base, Edwards AFB. Note the two Sabre chase planes, the P2B-1S launch aircraft, and the profusion of ground support equipment, including communications, tracking, maintenance, and rescue vehicles. Research pilot A. Scott Crossfield stands in front of the Skyrocket. Three D-558-2 'Skyrockets' were built by Douglas Aircraft, Inc. for NACA and the Navy. The mission of the D-558-2 program was to investigate the flight characteristics of a swept-wing aircraft at high supersonic speeds. Particular attention was given to the problem of 'pitch-up,' a phenomenon often encountered with swept-wing configured aircraft. The D-558-2 was a single-place, 35-degree swept-wing aircraft measuring 42 feet in length. It was 12 feet, 8 inches in height and had a wingspan of 25 feet. Fully fueled it weighed from about 10,572 pounds to 15,787 pounds depending on configuration. The first of the three D-558-IIs had a Westinghouse J34-40 jet engine and took off under its own power. The second was equipped with a turbojet engine replaced in 1950 with a Reaction Motors Inc. LR8-RM-6 rocket engine. This aircraft was modified so it could be air-launched from a P2B-1S (Navy designation for the B-29) carrier aircraft. The third Skyrocket had the jet engine and the rocket engine but was also modified so it could be air-launched. The jet engine was for takeoff and climbing to altitude and the four-chambered rocket engine was for reaching supersonic speeds. The rocket engine was rated at 6,000 pounds of thrust. The D-558-2 was first flown on Feb. 4, 1948, by John Martin, a Douglas test pilot. A NACA pilot, Scott Crossfield, became the first person to fly faster than twice the speed of sound when he piloted the D-558-II to its maximum speed of 1,291 miles per hour on Nov. 20, 1953. Its peak altitude, 83,235 feet, a record in its day, was reached with USMC Lt. Col. Marion Carl behind the controls.

  4. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149...

  5. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149...

  6. Coherent Pound-Drever-Hall technique for high resolution fiber optic strain sensor at very low light power

    NASA Astrophysics Data System (ADS)

    Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan

    2017-04-01

    Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.

  7. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Brake power unit. 570.6 Section 570.6... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken... power assist system. This test is not applicable to vehicles equipped with full power brake system as...

  8. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  9. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael; Thomas, Robert; Crofton, Mark; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground-in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  10. Computation of optimal Mars trajectories via combined chemical/electrical propulsion, Part 3: Compromise solutions

    NASA Astrophysics Data System (ADS)

    Miele, A.; Wang, T.; Williams, P. N.

    2005-12-01

    The success of the solar-electric ion engine powering the DS1 spacecraft has paved the way toward the use of low-thrust electrical engines in future planetary/interplanetary missions. Vis-à-vis a chemical engine, an electrical engine has a higher specific impulse, implying a possible decrease in propellant mass; however, the low-thrust aspect discourages the use of an electrical engine in the near-planet phases of a trip, since this might result in an increase in flight time. Therefore, a fundamental design problem is to find the best combination of chemical propulsion and electrical propulsion for a given mission, for example, a mission from Earth to Mars. With this in mind, this paper is the third of a series dealing with the optimization of Earth Mars missions via the use of hybrid engines, namely the combination of high-thrust chemical engines for planetary flight and low-thrust electrical engines for interplanetary flight. We look at the deep-space interplanetary portion of the trajectory under rather idealized conditions. The two major performance indexes, the propellant mass and the flight time, are in conflict with one another for the following reason: any attempt at reducing the former causes an increase in the latter and vice versa. Therefore, it is natural to consider a compromise performance index involving the scaled values of the propellant mass and flight time weighted respectively by the compromise factor C and its complement 1-C. We use the compromise factor as the parameter of the one-parameter family of compromise trajectories. Analyses carried out with the sequential gradient-restoration algorithm for optimal control problems lead to results which can be highlighted as follows. Thrust profile. Generally speaking, the thrust profile of the compromise trajectory includes three subarcs: the first subarc is characterized by maximum thrust in conjunction with positive (upward) thrust direction; the second subarc is characterized by zero thrust (coasting flight); the third subarc is characterized by maximum thrust in conjunction with negative (downward) thrust direction. Effect of the compromise factor. As the compromise factor increases, the propellant mass decreases and the flight time increases; correspondingly, the following changes in the thrust profile take place: (a) the time lengths of the first and third subarcs (powered phases) decrease slightly, meaning that thrust application occurs for shorter duration; also, the average value of the thrust direction in the first and third subarcs decreases, implying higher efficiency of thrust application wrt the spacecraft energy level; as a result, the total propellant mass decreases; (b) the time length of the second subarc (coasting) increases considerably, resulting in total time increase. Minimum time trajectory. If C=0, the resulting minimum time trajectory has the following characteristics: (a) the time length of the coasting subarc reduces to zero and the three-subarc trajectory degenerates into a two-subarc trajectory; (b) maximum thrust is applied at all times and the thrust direction switches from upward to downward at midcourse. Minimum propellant mass trajectory. If C=1, the resulting minimum propellant mass trajectory has the following characteristics: (a) the thrust magnitude has a bang-zero-bang profile; (b) for the powered subarcs, the thrust direction is tangent to the flight path at all times.

  11. Advanced solar-propelled cargo spacecraft for Mars missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, J.; Beall, M.; Burianek, J.; Cinniger, A.; Dunmire, B.; Haberman, E.; Iwamoto, J.; Johnson, S.; Mccracken, S.; Miller, M.

    1989-01-01

    At the University of Washington, three concepts for an unmanned, solar powered, cargo spacecraft for Mars-support missions have been investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: a solar radiation absorption (SRA) system, a solar-pumped laser (SPL) system, and a solar powered mangetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process developed at the University of Washington. A solar concentrator focuses sunlight into an absorption chamber. A mixture of hydrogen and potassium vapor absorbs the incident radiation and is heated to approximately 3700 K. The hot propellant gas exhausts through a nozzle to produce thrust. The SRA has an I(sub sp) of approximately 1000 sec and produces a thrust of 2940 N using two thrust chambers. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sun-synchronous Earth orbit converts solar energy to laser energy. The laser beams are transmitted to the spacecraft via laser relay satellites. The laser energy heats the hydrogen propellant through a plasma breakdown process in the center of an absorption chamber. Propellant flowing through the chamber, heated by the plasma core, expands through a nozzle to produce thrust. The SPL has an I(sub sp) of 1285 sec and produces a thrust of 1200 N using two thrust chambers. The MPD system uses indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. In this system, the argon propellant is ionized and electromagnetically accelerated by a magnetoplasmadynamic arc to produce thrust. The MPD spacecraft has an I(sub sp) of 2490 sec and produces a thrust of 100 N. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft releases the payload as the spacecraft passes by Mars. Both the SRA-powered spacecraft and the SPL-powered spacecraft return to Earth for subsequent missions. The MPD-propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  12. Thrust generation experiments on microwave rocket with a beam concentrator for long distance wireless power feeding

    NASA Astrophysics Data System (ADS)

    Fukunari, Masafumi; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi

    2018-04-01

    Experiments using a 1 MW-class gyrotron were conducted to examine a beamed energy propulsion rocket, a microwave rocket with a beam concentrator for long-distance wireless power feeding. The incident beam is transmitted from a beam transmission mirror system. The beam transmission mirror system expands the incident beam diameter to 240 mm to extend the Rayleigh length. The beam concentrator receives the beam and guides it into a 56-mm-diameter cylindrical thruster tube. Plasma ignition and ionization front propagation in the thruster were observed through an acrylic window using a fast-framing camera. Atmospheric air was used as a propellant. Thrust generation was achieved with the beam concentrator. The maximum thrust impulse was estimated as 71 mN s/pulse from a pressure history at the thrust wall at the input energy of 638 J/pulse. The corresponding momentum coupling coefficient, Cm was inferred as 204 N/MW.

  13. A Double-Sided Linear Primary Permanent Magnet Vernier Machine

    PubMed Central

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250

  14. A double-sided linear primary permanent magnet vernier machine.

    PubMed

    Du, Yi; Zou, Chunhua; Liu, Xianxing

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.

  15. KSC-08pd1652

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians begin installation of an auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  16. KSC-08pd1651

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians begin installation of an auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  17. KSC-08pd1654

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, auxiliary power unit 3, or APU3, is in place on space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  18. KSC-08pd1653

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians install auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  19. Nanonewton thrust measurement of photon pressure propulsion using semiconductor laser

    NASA Astrophysics Data System (ADS)

    Iwami, K.; Akazawa, Taku; Ohtsuka, Tomohiro; Nishida, Hiroyuki; Umeda, Norihiro

    2011-09-01

    To evaluate the thrust produced by photon pressure emitted from a 100 W class continuous-wave semiconductor laser, a torsion-balance precise thrust stand is designed and tested. Photon emission propulsion using semiconductor light sources attract interests as a possible candidate for deep-space propellant-less propulsion and attitude control system. However, the thrust produced by photon emission as large as several ten nanonewtons requires precise thrust stand. A resonant method is adopted to enhance the sensitivity of the biflier torsional-spring thrust stand. The torsional spring constant and the resonant of the stand is 1.245 × 10-3 Nm/rad and 0.118 Hz, respectively. The experimental results showed good agreement with the theoretical estimation. The thrust efficiency for photon propulsion was also defined. A maximum thrust of 499 nN was produced by the laser with 208 W input power (75 W of optical output) corresponding to a thrust efficiency of 36.7%. The minimum detectable thrust of the stand was estimated to be 2.62 nN under oscillation at a frequency close to resonance.

  20. Net thrust calculation sensitivity of an afterburning turbofan engine to variations in input parameters

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.; Ray, R. J.; Walton, J. T.

    1985-01-01

    The calculated value of net thrust of an aircraft powered by a General Electric F404-GE-400 afterburning turbofan engine was evaluated for its sensitivity to various input parameters. The effects of a 1.0-percent change in each input parameter on the calculated value of net thrust with two calculation methods are compared. This paper presents the results of these comparisons and also gives the estimated accuracy of the overall net thrust calculation as determined from the influence coefficients and estimated parameter measurement accuracies.

  1. "Twentytwo horses struggling with the 30,000 pound load on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Twenty-two horses struggling with the 30,000 pound load on the mountain road. Eighteen animals are in front and four are on the push-pole behind." San Joaquin Light and Power Magazine, Vol. 1, No. 12, December 1913, p. 551 - Tule River Hydroelectric Complex, CA Highway 190 at North Fork of Middle Fork of Tule River, Springville, Tulare County, CA

  2. Nuclear Thermal Propulsion: Past, Present, and a Look Ahead

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2014-01-01

    NTR: High thrust high specific impulse (2 x LOXLH2 chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2 propellant which is then exhausted to produce thrust. Conventional chemical engine LH2 tanks, turbo pumps, regenerative nozzles and radiation-cooled shirt extensions used -- NTR is next evolutionary step in high performance liquid rocket engines.

  3. Low Thrust, Deep Throttling, US/CIS Integrated NTRE

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Kolganov, Vyacheslav; Rochow, Richard F.

    1994-07-01

    In 1993 our international team performed a follow-on ``Nuclear Thermal Rocket Engine (NTRE) Extended Life Feasibility Assessment'' study for the Nuclear Propulsion Office (NPO) at NASAs Lewis Research Center. The main purpose of this study was to complete the 1992 study matrix to assess NTRE designs at thrust levels of 22.5, 11.3, and 6.8 tonnes, using Commonwealth of Independent States (CIS) reactor technology. An additional Aerojet goal was to continue improving the NTRE concept we had generated. Deep throttling, mission performance optimized engine design parametrics, and reliability/cost enhancing engine system simplifications were studied, because they seem to be the last three basic design improvements sorely needed by post-NERVA NTRE. Deep throttling improves engine life by eliminating damaging thermal and mechanical shocks caused by after-cooling with pulsed coolant flow. Alternately, it improves mission performance with steady flow after-cooling by minimizing reactor over-cooling. Deep throttling also provides a practical transition from high pressures and powers of the high thrust power cycle to the low pressures and powers of our electric power generating mode. Two deep throttling designs are discussed; a workable system that was studied and a simplified system that is recommended for future study. Mission-optimized engine thrust/weight (T/W) and Isp predictions are included along with system flow schemes and concept sketches.

  4. Design and optimization of a modal- independent linear ultrasonic motor.

    PubMed

    Zhou, Shengli; Yao, Zhiyuan

    2014-03-01

    To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.

  5. Exhaust-stack nozzle area and shape for individual cylinder exhaust-gas jet-propulsion system

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Turner, Richard; Voss, Fred; Humble, Leroy V

    1943-01-01

    This report presents the results of an investigation conducted on the effect of exhaust-stack nozzle area, shape, and length on engine power, jet thrust, and gain in net thrust (engine propeller plus jet). Single-cylinder engine data were obtained using three straight stacks 25, 44, and 108 inches in length; an S-shaped stack, a 90 degree bend, a 180 degree bend, and a short straight stack having a closed branch faired into it. Each stack was fitted with nozzles varying in exit area from 0.91 square inch to the unrestricted area of the stack of 4.20 square inches. The engine was generally operated over a range of engine speeds from 1300 to 2100 r.p.m, inlet-manifold pressures from 22 to 30 inches of mercury absolute, and a fuel-air ratio of 0.08. The loss in engine power, the jet thrust, and the gain in net thrust are correlated in terms of several simple parameters. An example is given for determining the optimum nozzle area and the overall net thrust.

  6. Numerical Simulation of Cylindrical, Self-field MPD Thrusters with Multiple Propellants

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1994-01-01

    A two-dimensional, two-temperature, single fluid MHD code was used to predict the performance of cylindrical, self-field magnetoplasmadynamic (MPD) thrusters operated with argon, lithium, and hydrogen propellants. A thruster stability equation was determined relating maximum stable J(sup 2)/m values to cylindrical thruster geometry and propellant species. The maximum value of J(sup 2)/m was found to scale as the inverse of the propellant molecular weight to the 0.57 power, in rough agreement with limited experimental data which scales as the inverse square root of the propellant molecular weight. A general equation which relates total thrust to electromagnetic thrust, propellant molecular weight, and J(sup 2)/m was determined using reported thrust values for argon and hydrogen and calculated thrust values for lithium. In addition to argon, lithium, and hydrogen, the equation accurately predicted thrust for ammonia at sufficiently high J(sup 2)/m values. A simple algorithm is suggested to aid in the preliminary design of cylindrical, self-field MPD thrusters. A brief example is presented to illustrate the use of the algorithm in the design of a low power MPD thruster.

  7. Experimental Study of Ballistic-Missile Base Heating with Operating Rocket

    NASA Technical Reports Server (NTRS)

    Nettle, J. Cary

    1958-01-01

    A rocket of the 1000-pound-thrust class using liquid oxygen and JP-4 fuel as propellant was installed in the Lewis 8- by 6-foot tunnel to permit a controlled study of some of the factors affecting the heating of a rocket-missile base. Temperatures measured in the base region are presented from findings of three motor extension lengths relative to the base. Data are also presented for two combustion efficiency levels in the rocket motor. Temperature as high as 1200 F was measured in the base region because of the ignition of burnable rocket gases. combustibles that are dumped into the base by accessories seriously aggravate the base-burning temperature rise.

  8. Design and fabrication of prototype system for early warning of impending bearing failure

    NASA Technical Reports Server (NTRS)

    Meacher, J.; Chen, H. M.

    1974-01-01

    A test program was conducted with the objective of developing a method and equipment for on-line monitoring of installed ball bearings to detect deterioration or impending failure of the bearings. The program was directed at the spin-axis bearings of a control moment gyro. The bearings were tested at speeds of 6000 and 8000 rpm, thrust loads from 50 to 1000 pounds, with a wide range of lubrication conditions, with and without a simulated fatigue spall implanted in the inner race ball track. It was concluded that a bearing monitor system based on detection and analysis of modulations of a fault indicating bearing resonance frequency can provide a low threshold of sensitivity.

  9. Transfer film evaluation for shuttle engine turbopump bearing

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Dufrane, K. F.

    1981-01-01

    A series of low speed experiments to evaluate the possible occurrence of transfer film lubrication and the effectiveness of burnished films in the shuttle spacecraft main engine thrust bearings were conducted. No evidence of transfer film lubrication was evident, although this could have been the result of the (used) condition of the bearing. Burnished films of either Teflon or Rulon were found to greatly enhance the performance of the bearing. Crush load experiments indicated that the bearing ultimate load capability is on the order of 489,000 N (110,000 pounds). The effect of ball (as well as race) burnishing techniques on bearing performance, different types of burnished films, and transfer film formation are suggested for further study.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1972-12-07

    This is an Apollo 17 onboard photo of an astronaut beside the Lunar Roving Vehicle (LRV) on the lunar surface. Designed and developed by the Marshall Space Flight Center and built by the Boeing Company, the LRV was first used on the Apollo 15 mission and increased the range of astronauts' mobility and productivity on the lunar surface. This lightweight electric car had battery power sufficient for about 55 miles. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear, cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees.

  11. Neutral-depletion-induced axially asymmetric density in a helicon source and imparted thrust

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Takao, Yoshinori; Ando, Akira

    2016-02-01

    The high plasma density downstream of the source is observed to be sustained only for a few hundreds of microsecond at the initial phase of the discharge, when pulsing the radiofrequency power of a helicon plasma thruster. Measured relative density of argon neutrals inside the source implies that the neutrals are significantly depleted there. A position giving a maximum plasma density temporally moves to the upstream side of the source due to the neutral depletion and then the exhausted plasma density significantly decreases. The direct thrust measurement demonstrates that the higher thrust-to-power ratio is obtained by using only the initial phase of the high density plasma, compared with the steady-state operation.

  12. SLS Engine Section Test Article Moves From NASA Barge Pegasus To Test Stand at NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2017-05-18

    The NASA barge Pegasus made its first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from the barge to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  13. SLS Engine Section Test Article Arrives at Marshall on NASA Barge Pegasus

    NASA Image and Video Library

    2017-05-16

    The NASA barge Pegasus made it’s first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article will be moved to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  14. SLS Engine Section Test Article Loaded on Barge Pegasus at NASA's Michoud Assembly Facility

    NASA Image and Video Library

    2017-04-27

    A NASA move team loaded the engine section structural qualification test article for the Space Launch System into the barge Pegasus docked in the harbor at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from Building 103, Michoud’s 43-acre rocket factory, to the barge where it was loaded for a river trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The barge Pegasus will travel 1,240 miles by river to Marshall and endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  15. KSC-97pc145

    NASA Image and Video Library

    1997-01-12

    The Space Shuttle Atlantis transforms the early morning at KSC into near-daylight as its more than 7 million pounds of rocket thrust propels it from Launch Pad 39B at 4:27:23 a.m. EST Jan. 12 on its way to dock with the Mir space station for the fifth time.The 10-day mission will feature the transfer of Mission Specialist Jerry Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19, 1996. The other STS-81 crew members include Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr.; and Mission Specialists John M. Grunsfeld, Peter J. K. "Jeff" Wisoff and Marsha S. Ivins. During the five-day docking operations, the Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB-DM double module that will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station. The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission

  16. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm andmore » a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.« less

  17. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  18. Low thrust optimal orbital transfers

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1994-01-01

    For many optimal transfer problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs and thus will require more revolutions. In this research, we considered two approaches for solving this problem: a powered flight guidance algorithm previously developed for higher thrust transfers was modified and an 'averaging technique' was investigated.

  19. Conceptual design of two-stage-to-orbit hybrid launch vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object of this design class was to design an earth-to orbit vehicle to replace the present NASA space shuttle. The major motivations for designing a new vehicle were to reduce the cost of putting payloads into orbit and to design a vehicle that could better service the space station with a faster turn-around time. Another factor considered in the design was that near-term technology was to be used. Materials, engines and other important technologies were to be realized in the next 10 to 15 years. The first concept put forth by NASA to meet these objectives was the National Aerospace Plane (NASP). The NASP is a single-stage earth-to-orbit air-breathing vehicle. This concept ran into problems with the air-breathing engine providing enough thrust in the upper atmosphere, among other things. The solution of this design class is a two-stage-to-orbit vehicle. The first stage is air-breathing and the second stage is rocket-powered, similar to the space shuttle. The second stage is mounted on the top of the first stage in a piggy-back style. The vehicle takes off horizontally using only air-breathing engines, flies to Mach six at 100,000 feet, and launches the second stage towards its orbital path. The first stage, or booster, will weigh approximately 800,000 pounds and the second stage, or orbiter will weigh approximately 300,000 pounds. The major advantage of this design is the full recoverability of the first stage compared with the present solid rocket booster that are only partially recoverable and used only a few times. This reduces the cost as well as providing a more reliable and more readily available design for servicing the space station. The booster can fly an orbiter up, turn around, land, refuel, and be ready to launch another orbiter in a matter of hours.

  20. Three orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Aerospace engineering students at the Virginia Polytechnic Institute and State University undertook three design projects under the sponsorship of the NASA/USRA Advanced Space Design Program. All three projects addressed cargo and/or crew transportation between low Earth orbit and geosynchronous Earth orbit. Project SPARC presents a preliminary design of a fully reusable, chemically powered aeroassisted vehicle for a transfer of a crew of five and a 6000 to 20000 pound payload. The ASTV project outlines a chemically powered aeroassisted configuration that uses disposable tanks and a relatively small aerobrake to realize propellant savings. The third project, LOCOST, involves a reusable, hybrid laser/chemical vehicle designed for large cargo (up to 88,200 pounds) transportation.

Top