Sample records for povedenie ti zr

  1. (Zr,Ti)O2 interface structure in ZrO2-TiO2 nanolaminates with ultrathin periodicity

    NASA Astrophysics Data System (ADS)

    Aita, C. R.; DeLoach, J. D.; Yakovlev, V. V.

    2002-07-01

    A mixed cation interfacial structure in ZrO2-TiO2 nanolaminate films with ultrathin bilayer periodicity grown by sputter deposition at 297 K was identified by x-ray diffraction and nonresonant Raman spectroscopy. This structure consists of an amorphous phase at a ZrO2-on-TiO2 bilayer interface, followed by an extensive crystalline monoclinic (Zr,Ti)O2 solid solution predicted by Vegard's law. Monoclinic (Zr,Ti)O2 has previously been reported only once, in bulk powder of a single composition (ZrTiO4) at high pressure. Its stabilization in the nanolaminates is explained by the Gibbs-Thomson effect. This complex interfacial structure is shown to be a means of accommodating chemical mixing in the absence of a driving force for heteroepitaxy.

  2. Structure, mechanical properties, and grindability of dental Ti-Zr alloys.

    PubMed

    Ho, Wen-Fu; Chen, Wei-Kai; Wu, Shih-Ching; Hsu, Hsueh-Chuan

    2008-10-01

    Structure, mechanical properties and grindability of a series of binary Ti-Zr alloys with zirconium contents ranging from 10 to 40 wt% have been investigated. Commercially pure titanium (c.p. Ti) was used as a control. Experimental results indicated that the diffraction peaks of all the Ti-Zr alloys matched those for alpha Ti. No beta-phase peaks were found. The hardness of the Ti-Zr alloys increased as the Zr contents increased, and ranged from 266 HV (Ti-10Zr) to 350 HV (Ti-40Zr). As the concentration of zirconium in the alloys increased, the strength, elastic recovery angles and hardness increased. Moreover, the elastically recoverable angle of Ti-40Zr was higher than of c.p. Ti by as much as 550%. The grindability of each metal was found to be largely dependent on the grinding conditions. The Ti-40Zr alloy had a higher grinding rate and grinding ratio than c.p. Ti at low speed. The grinding rate of the Ti-40Zr alloy at 500 m/min was about 1.8 times larger than that of c.p. Ti, and the grinding ratio was about 1.6 times larger than that of c.p. Ti. Our research suggested that the Ti-40Zr alloy has better mechanical properties, excellent elastic recovery capability and improved grindability at low grinding speed. The Ti-40Zr alloy has a great potential for use as a dental machining alloy.

  3. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-07-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell ( n A u-v ) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_{{A}}^{{u - v}} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5˜45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2˜10 wt%. Thus, Ti-based filler metal with Zr content being 2˜10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n A u-v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface.

  4. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials.

    PubMed

    Murphy, M; Walczak, M S; Thomas, A G; Silikas, N; Berner, S; Lindsay, R

    2017-01-01

    Targeting understanding enhanced osseointegration kinetics, the goal of this study was to characterize the surface morphology and composition of Ti and TiZr dental implant substrates subjected to one of two surface treatments developed by Straumann. These two treatments are typically known as SLA and SLActive, with the latter resulting in more rapid osseointegration. A range of techniques was applied to characterize four different substrate/surface treatment combinations (Ti SLA , Ti SLActive , TiZr SLA , and TiZr SLActive ). Contact angle measurements established their hydrophilic/hydrophobic nature. Surface morphology was probed with scanning electron microscopy. X-ray diffraction, Raman μ-spectroscopy, and X-ray photoelectron spectroscopy were used to elucidate the composition of the near-surface region. Consistent with previous work, surface morphology was found to differ only at the nanoscale, with both SLActive substrates displaying nano-protrusions. Spectroscopic data indicate that all substrates exhibit surface films of titanium oxide displaying near TiO 2 stoichiometry. Raman μ-spectroscopy reveals that amorphous TiO 2 is most likely the only phase present on Ti SL A , whilst rutile-TiO 2 is also evidenced on Ti SLActive , TiZr SLA , and TiZr SLActive . For TiZr alloy substrates, there is no evidence of discrete phases of oxidized Zr. X-ray photoelectron spectra demonstrate that all samples are terminated by adventitious carbon, with it being somewhat thicker (∼1nm) on Ti SL A and TiZr SLA . Given previous in vivo studies, acquired data suggest that both nanoscale protrusions, and a thinner layer of adventitious carbon contribute to the more rapid osseointegration of SLActive dental implants. Composition of the surface oxide layer is apparently less important in determining osseointegration kinetics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Effects of interfacial layer on characteristics of TiN/ZrO2 structures.

    PubMed

    Kim, Younsoo; Kang, Sang Yeol; Choi, Jae Hyoung; Lim, Jae Soon; Park, Min Young; Chung, Suk-Jin; Chung, Jaegwan; Lee, Hyung Ik; Kim, Ki Hong; Kyoung, Yong Koo; Heo, Sung; Yoo, Cha Young; Kang, Ho-Kyu

    2011-09-01

    To minimize the formation of unwanted interfacial layers, thin interfacial layer (ZrCN layer) was deposited between TiN bottom electrode and ZrO2 dielectric in TiN/ZrO2/TiN capacitor. Carbon and nitrogen were also involved in the layer because ZrCN layer was thermally deposited using TEMAZ without any reactant. Electrical characteristics of TiN/ZrO2/TiN capacitor were improved by insertion of ZrCN layer. The oxidation of TiN bottom electrode was largely inhibited at TiN/ZrCN/ZrO2 structure compared to TiN/ZrO2 structure. While the sheet resistance of TiN/ZrCN/ZrO2 structure was constantly sustained with increasing ZrO2 thickness, the large increase of sheet resistance was observed in TiN/ZrO2 structure after 6 nm ZrO2 deposition. When ZrO2 films were deposited on ZrCN layer, the deposition rate of ZrO2 also increased. It is believed that ZrCN layer acted both as a protection layer of TiN oxidation and a seed layer of ZrO2 growth.

  6. Synthesis of MAX Phases in the Zr-Ti-Al-C System.

    PubMed

    Tunca, Bensu; Lapauw, Thomas; Karakulina, Olesia M; Batuk, Maria; Cabioc'h, Thierry; Hadermann, Joke; Delville, Rémi; Lambrinou, Konstantina; Vleugels, Jozef

    2017-03-20

    This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti) n+1 AlC n system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350-1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl 2 , ZrAl 3 , and Zr 2 Al 3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard's law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard's law around the (Zr 0.33 ,Ti 0.67 ) 3 Al 1.2 C 1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M 6 X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.

  7. Solution treatment-delayed zirconium-strengthening behavior in Ti-7.5Mo-xZr alloy system

    NASA Astrophysics Data System (ADS)

    Chern Lin, Jiin-Huey; Fu, Yen-Han; Chen, Yen-Chun; Peng, Yu-Po; Ju, Chien-Ping

    2018-01-01

    The present study was devoted to investigate and compare the Zr-strengthening behavior in as-cast (AC) and solution-treated (ST) Ti-7.5Mo-xZr alloys. The experimental results indicated that AC Ti-7.5Mo and AC Ti-7.5Mo-1Zr alloys substantially had an orthorhombic {α }\\prime\\prime phase with a fine, acicular morphology. The content of equi-axed β phase continued to increase with increased Zr content at the expense of {α }\\prime\\prime phase. The threshold Zr content for the formation of β phase in the ST Ti-7.5Mo-xZr alloys was apparently higher than that in the AC Ti-7.5Mo-xZr alloys. The β granular structure was revealed in ST Ti-7.5Mo-5Zr alloy, which increased with increased Zr content. Unlike AC Ti-7.5Mo-9Zr alloy, within each grain of ST Ti-7.5Mo-9Zr alloy were still observed a significant portion of {α }\\prime\\prime morphology. AC Ti-7.5Mo alloy had the lowest YS, lowest tensile modulus and highest elongation among all AC Ti-7.5Mo-xZr alloys. When Zr content increased, both YS and modulus significantly increased while the elongation significantly decreased. Compared to AC Ti-7.5Mo alloy, AC Ti-7.5Mo-9Zr alloy had almost double YS, indicating the effectiveness of Zr-induced strengthening in the AC Ti-7.5Mo-xZr alloys. Compared to AC Ti-7.5Mo, ST Ti-7.5Mo alloys had lower YS, UTS and tensile modulus with almost the same elongation. All the XRD, metallography and tensile test results consistently indicated that the presence of Zr could accelerate the formation of β phase and effectively strengthen the AC Ti-7.5Mo-xZr alloys. A phenomenon of delayed β formation and delayed strengthening was noted in the ST Ti-7.5Mo-xZr alloys, compared to the AC Ti-7.5Mo-xZr alloys.

  8. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  9. High-field superconductivity in the Nb-Ti-Zr ternary system

    NASA Astrophysics Data System (ADS)

    Ralls, K. M.; Rose, R. M.; Wulff, J.

    1980-06-01

    Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 °K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys.

  10. Effects of TiN coating on the corrosion of nanostructured Ti-30Ta-xZr alloys for dental implants

    NASA Astrophysics Data System (ADS)

    Kim, Won-Gi; Choe, Han-Cheol

    2012-01-01

    Electrochemical characteristics of a titanium nitride (TiN)-coated/nanotube-formed Ti-Ta-Zr alloy for biomaterials have been researched by using the magnetic sputter and electrochemical methods. Ti-30Ta-xZr (x = 3, 7 and 15 wt%) alloys were prepared by arc melting and heat treated for 24 h at 1000 °C in an argon atmosphere and then water quenching. The formation of oxide nanotubes was achieved by anodizing a Ti-30Ta-xZr alloy in H3PO4 electrolytes containing small amounts of fluoride ions at room temperature. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. The microstructure and morphology of nanotube arrays were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The TiN coatings were obtained by the radio-frequency (RF) magnetron sputtering technique. The depositions were performed from pure Ti targets on Ti-30Ta-xZr alloys substrates. The corrosion properties of the specimens were examined using potentiodynamic test in a 0.9% NaCl solution by using potentiostat. The microstructures of Ti-30Ta-xZr alloys were changed from an equiaxed to a needle-like structure with increasing Zr content. The interspace between the nanotubes was approximately 20, 80 and 200 nm for Zr contents of 3, 7 and 15 wt%, respectively. The corrosion resistance of the TiN-coated on the anodized Ti-30Ta-xZr alloys was higher than that of the untreated Ti alloys, indicating a better protective effect.

  11. Bone response to a novel Ti-Ta-Nb-Zr alloy.

    PubMed

    Stenlund, Patrik; Omar, Omar; Brohede, Ulrika; Norgren, Susanne; Norlindh, Birgitta; Johansson, Anna; Lausmaa, Jukka; Thomsen, Peter; Palmquist, Anders

    2015-07-01

    Commercially pure titanium (cp-Ti) is regarded as the state-of-the-art material for bone-anchored dental devices, whereas the mechanically stronger alloy (Ti-6Al-4V), made of titanium, aluminum (Al) and vanadium (V), is regarded as the material of choice for high-load applications. There is a call for the development of new alloys, not only to eliminate the potential toxic effect of Al and V but also to meet the challenges imposed on dental and maxillofacial reconstructive devices, for example. The present work evaluates a novel, dual-stage, acid-etched, Ti-Ta-Nb-Zr alloy implant, consisting of elements that create low toxicity, with the potential to promote osseointegration in vivo. The alloy implants (denoted Ti-Ta-Nb-Zr) were evaluated after 7 days and 28 days in a rat tibia model, with reference to commercially pure titanium grade 4 (denoted Ti). Analyses were performed with respect to removal torque, histomorphometry and gene expression. The Ti-Ta-Nb-Zr showed a significant increase in implant stability over time in contrast to the Ti. Further, the histological and gene expression analyses suggested faster healing around the Ti-Ta-Nb-Zr, as judged by the enhanced remodeling, and mineralization, of the early-formed woven bone and the multiple positive correlations between genes denoting inflammation, bone formation and remodeling. Based on the present experiments, it is concluded that the Ti-Ta-Nb-Zr alloy becomes osseointegrated to at least a similar degree to that of pure titanium implants. This alloy is therefore emerging as a novel implant material for clinical evaluation. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Refining As-cast β-Ti Grains Through ZrN Inoculation

    NASA Astrophysics Data System (ADS)

    Qiu, Dong; Zhang, Duyao; Easton, Mark A.; St John, David H.; Gibson, Mark A.

    2018-03-01

    The columnar-to-equiaxed transition and remarkable refinement of β-Ti grains occur in an as-cast Ti-13Mo alloy when a new grain refiner, ZrN, was inoculated at a nitrogen level as low as 0.4 wt pct. The grain refining effect is attributed to in situ-formed TiN particles that provide active nucleation sites and solute Zr that promotes constitutional supercooling. Reproducible orientation relationships were identified between TiN nucleants and β-Ti matrix, and well explained by the edge-to-edge matching model.

  13. As-Cast Icosashedral Quasicrystals in Ti-Zr-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Lee, Geun Woo; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2002-03-01

    Most Ti-based icosahedral quasicrystals (i-phase) obtained by rapid quenching from the melt are metastable and disordered. In contrast, the Ti-Zr-Ni i-phase prepared by low temperature annealing is stable and better ordered. This i-phase is formed by a solid-state transformation from C14 Laves phase and α (Ti/Zr) solid-solution phase. It has not been possible previously to grow this i-phase directly from the liquid. Here, the nucleation and growth of the i-phase from the liquid in as-cast Ti-Zr-Ni alloys is reported. Pentagonal growth ledges in as-cast Ti-Zr-Ni ingots are clearly observed. Transmission electron microscopy and x-ray diffraction studies confirm the phase identity. Differential scanning calorimetry measurements show an endothermic transformation from the i-phase to a phase mixture of the C14 Laves and solid-solution phases, demonstrating that this i-phase is also stable. The short time that the liquid remains in the Laves phase-forming-field and the higher nucleation rate of the i-phase, owing to the presumed similarity between the local atomic structures of the i-phase and liquid, allows the i-phase to nucleate and grow directly from the liquid. Container-less solidification studies using electrostatic levitation (ESL) techniques support this conclusion.

  14. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abadias, G.; Koutsokeras, L. E.; Dub, S. N.

    2010-07-15

    Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by eithermore » Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.« less

  15. Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

    PubMed

    Knipling, Keith E; Dunand, David C; Seidman, David N

    2007-12-01

    Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

  16. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  17. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  18. Intense visible light emission from stress-activated ZrO2:Ti

    NASA Astrophysics Data System (ADS)

    Akiyama, Morito; Xu, Chao-Nan; Nonaka, Kazuhiro

    2002-07-01

    We have investigated the luminescence phenomena from stress-activated ZrO2:Ti. The luminescence is clearly visible to the naked eye in the atmosphere. The luminescence center has been identified as the Ti4+ ion from spectra of the mechanoluminescence and also from photoluminescence studies of ZrO2:Ti. The mechanoluminescence intensity decreases on repetitive application of stress but recovers completely on irradiation with ultraviolet light. ZrO2 is an n-type semiconductor and has electron traps. It is suggested that the mechanoluminescence mechanism arises from the movement of dislocations and recombination between electrons and holes released from these traps which are associated with the Ti4+ centers.

  19. New FCC Mg–Zr and Mg–Zr–ti deuterides obtained by reactive milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, Matylda N., E-mail: matylda.guzik@ife.no; Deledda, Stefano; Sørby, Magnus H.

    2015-03-15

    Results for binary Mg–Zr and ternary Mg–Zr–Ti mixtures ball milled at room temperature under reactive deuterium atmosphere (5.6–6.7 MPa) are reported. X-ray and neutron powder diffraction combined with Rietveld refinements show that two new cubic phases were formed during milling. Mg{sub 0.40}Zr{sub 0.60}D{sub 1.78} and Mg{sub 0.40}Zr{sub 0.26}Ti{sub 0.34}D{sub 1.98} crystallize with disordered face centered cubic metal atom arrangements. Results of differential scanning calorimetry and termogravimetric measurements demonstrate that both deuterides desorb deuterium at lower temperatures than MgD{sub 2}, ZrD{sub 2} or TiD{sub 2}; 528 and 575 K in the Mg–Zr–D and Mg–Zr–Ti–D system, respectively. Interestingly, Mg{sub 0.40}Zr{sub 0.26}Ti{sub 0.34}D{submore » 1.98} stores deuterium reversibly at 673 K and 10 MPa of D{sub 2}. - Graphical abstract: High resolution SR-PXD patterns obtained for Mg{sub 0.40}Zr{sub 0.60}D{sub 1.78} and first time reported Mg{sub 0.40}Zr{sub 0.26}Ti{sub 0.34}D{sub 1.98}. - Highlights: • Synthesis and characterization of Mg{sub 0.40}Zr{sub 0.60}D{sub 1.78} and Mg{sub 0.40}Zr{sub 0.26}Ti{sub 0.34}D{sub 1.98}. • New deuterides obtained by milling under H{sub 2} gas pressure in the order of a few MPa. • Phases desorb deuterium at temperature lower than corresponding binary deuterides. • Mg{sub 0.40}Zr{sub 0.26}Ti{sub 0.34}D{sub 1.98} stores hydrogen reversibly at 673 K and 10 MPa of D{sub 2}.« less

  20. Composition dependences of crystal structure and electrical properties of epitaxial Pb(Zr,Ti)O3 films grown on Si and SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Okamoto, Shoji; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2016-10-01

    {100}-oriented Pb(Zr x ,Ti1- x )O3 (PZT) thin films of approximately 2 µm thickness and Zr/(Zr + Ti) ratios of 0.39-0.65 were epitaxially grown on (100)cSrRuO3//(100)SrTiO3 (STO) and (100)cSrRuO3//(100)cLaNiO3//(100)CeO2//(100)YSZ//(100)Si (Si) substrates having different thermal expansion coefficients by pulsed metal-organic chemical vapor deposition (MOCVD). The effects of Zr/(Zr + Ti) ratio and type of substrate on the crystal structure and dielectric, ferroelectric and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that both films changed from having a tetragonal symmetry to rhombohedral symmetry through the coexisting region with increasing Zr/(Zr + Ti) ratio. This region showed the Zr/(Zr + Ti) ratios of 0.45-0.59 for the films on the STO substrates that were wider than the films on the Si substrates. Saturation polarization values were minimum at approximately Zr/(Zr + Ti) = 0.50 for the films on the STO substrates, and no obvious Zr/(Zr + Ti) ratio dependence was detected in the films on the Si substrates. On the other hand, the maximum field-induced strain values measured by scanning force microscopy at approximately Zr/(Zr + Ti) = 0.50 at 100 kV/cm were about 0.5 and 0.1% in the films on the Si and STO, respectively.

  1. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganjeh, E., E-mail: navidganjehie@sina.kntu.ac.ir; Sarkhosh, H.; Bajgholi, M.E.

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni andmore » Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for

  2. Grain Refinement and Mechanical Properties of Cu–Cr–Zr Alloys with Different Nano-Sized TiCp Addition

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-01-01

    The TiCp/Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiCp/Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu–Cr–Zr alloys to fabricate the nano-sized TiCp-reinforced Cu–Cr–Zr composites. Results show that nano-sized TiCp can effectively refine the grain size of Cu–Cr–Zr alloys. The morphologies of grain in Cu–Cr–Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiCp. The grain size decreased from 82 to 28 μm with the nano-sized TiCp content. Compared with Cu–Cr–Zr alloys, the ultimate compressive strength (σUCS) and yield strength (σ0.2) of 4 wt% TiCp-reinforced Cu–Cr–Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu–Cr–Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiCp-reinforced Cu–Cr–Zr composites decreased with the increasing TiCp content under abrasive particles. The eletrical conductivity of Cu–Cr–Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu–Cr–Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively. PMID:28786937

  3. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    PubMed

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  4. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  5. First-principles study of (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Amoroso, Danila; Cano, Andrés; Ghosez, Philippe

    2018-05-01

    (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions are the building blocks of lead-free piezoelectric materials that attract a renewed interest. We investigate the properties of these systems by means of first-principles calculations, with a focus on the lattice dynamics and the competition between different ferroelectric phases. We first analyze the four parent compounds in order to compare their properties and their different tendency towards ferroelectricity. The core of our study is systematic characterization of the binary systems (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 within both the virtual crystal approximation and direct supercell calculations. In the case of Ca doping, we find a gradual transformation from B -site to A -site ferroelectricity due to steric effects that largely determines the behavior of the system. In the case of Zr doping, in contrast, the behavior is eventually dominated by cooperative Zr-Ti motions and the local electrostatics. In addition, our comparative study reveals that the specific microscopic physics of these solids sets severe limits to the applicability of the virtual crystal approximation for these systems.

  6. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-05-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  7. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-07-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  8. Dehydriding properties of Ti or/and Zr-doped sodium aluminum hydride prepared by ball-milling

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-Zhang; Chen, Li-Xin; Wang, Xin-Hua; Li, Shou-Quan; Hang, Zhou-Ming; Chen, Chang-Pin; Wang, Qi-Dong

    2007-12-01

    The NaAlH4 complex is attracting great attention for its potential applications in hydrogen-powered fuel-cell vehicles due to its high hydrogen storage capacity and suitable thermodynamic properties. However, its practicable hydrogen storage capacity presently obtained is less than the theoretical capacity (5.6 wt.%). To improve the hydrogen capacity, we chose metallic Ti or/and Zr powder as catalyst dopants, and prepared the sodium aluminum hydride by hydrogenation of ball-milled NaH/Al mixture containing 10 mol% dopants with different proportions of Ti and Zr, and then investigated the effects on their hydrogen storage (dehydriding) properties. The results showed that different catalyst dopants affected the dehydriding properties greatly. The catalysis of metal Ti as a catalyst dopant alone on dehydriding kinetics for the entire dehydrogenation process of ball-milled (NaH/Al) composite was higher than that of adopting Zr alone. The synergistic catalytic effect of Ti and Zr together as co-dopants on the dehydrogenation process of (NaH/Al) composite was higher than that using only Ti or Zr as dopant individually. The composite doped with proper proportion of Ti and Zr together (8 mol% Ti+ 2 mol% Zr) as co-dopants exhibited the highest dehydriding kinetic property and desorption capacity.

  9. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    PubMed

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  10. Effect of heat treatment on morphology evolution of Ti2Ni phase in Ti-Ni-Al-Zr alloy

    NASA Astrophysics Data System (ADS)

    Sheng, Liyuan; Yang, Yang; Xi, Tingfei

    2018-03-01

    The Ti6Al2Zr alloy with 15 wt.% Ni addition was prepared and then heat treated in the research. The microstructure of the alloy and evolution of Ti2Ni precipitate were investigated. The microstructure observations demonstrate that the Ni addition could promote the formation of eutectoid and eutectic structures in Ti-Al-Zr alloy. In the eutectoid structure, the ultrafine Ti2Ni fiber precipitates in the α-Ti matrix, but in the eutectic structure, the fine α-Ti phases precipitate in the Ti2Ni matrix. The heat treatment could change the morphology of Ti2Ni precipitates by thinning, fragmenting, merging and spherizing. In the alloy heat treated at and below 1073K, the coarsening of α-Ti precipitates in eutectic structure and Ti2Ni precipitates in eutectoid structure is the mainly characteristic. In the alloy heat treated above 1073K, the phase transformation of α to β phase is the main characteristic, which changes the morphology and amount of Ti2Ni phase by the solid solution of Ni. The phase transformation temperature of Ti-Ni-Al-Zr alloy is between 1073-1123K, which is increased compared with that of the Ti-Ni binary phase diagram.

  11. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    NASA Astrophysics Data System (ADS)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  12. Mechanical Characterisation and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants

    PubMed Central

    Jiménez-Garrudo, Antonio; Gil-Mur, Francisco Javier; Manero, José María; Punset-Fuste, Miquel; Chávarri-Prado, David; Diéguez-Pereira, Markel; Monticelli, Francesca

    2017-01-01

    The objective of the study is to characterise the mechanical properties of Ti-15Zr binary alloy dental implants and to describe their biomechanical behaviour as well as their osseointegration capacity compared with the conventional Ti-6Al-4V (TAV) alloy implants. The mechanical properties of Ti-15Zr binary alloy were characterised using Roxolid© implants (Straumann, Basel, Switzerland) via ultrasound. Their biomechanical behaviour was described via finite element analysis. Their osseointegration capacity was compared via an in vivo study performed on 12 adult rabbits. Young's modulus of the Roxolid© implant was around 103 GPa, and the Poisson coefficient was around 0.33. There were no significant differences in terms of Von Mises stress values at the implant and bone level between both alloys. Regarding deformation, the highest value was observed for Ti-15Zr implant, and the lowest value was observed for the cortical bone surrounding TAV implant, with no deformation differences at the bone level between both alloys. Histological analysis of the implants inserted in rabbits demonstrated higher BIC percentage for Ti-15Zr implants at 3 and 6 weeks. Ti-15Zr alloy showed elastic properties and biomechanical behaviours similar to TAV alloy, although Ti-15Zr implant had a greater BIC percentage after 3 and 6 weeks of osseointegration. PMID:29318142

  13. Effect of photocatalytic reduction of carbon dioxide by N-Zr co-doped nano TiO2.

    PubMed

    Zhang, Ru; Wang, Li; Kang, Zhuo; Li, Qiang; Pan, Huixian

    2017-11-01

    Modified sol-gel method was adopted to prepare TiO 2 , Zr-TiO 2 and N/Zr-TiO 2 composite catalyst. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunner- Emmet- Teller measurement and UV-Vis diffuse reflectance spectroscopy. And the photocatalytic performance toward CO 2 reduction was evaluated under ultraviolet light. The catalyst particles were demonstrated in the nanometer level size. When N and Zr are co-doped, on the one hand, Ti 4+ can be replaced by Zr 4  +, which leads to lattice distortion and inhibits electron-hole recombination. On the other hand, N enters into TiO 2 lattice gap to form O-Ti-N bond structure, and partial Ti 4+ are reduced to Ti 3+ . Compared with pristine TiO 2 , the specific surface area and the band gap of N/Zr-TiO 2 were improved and reduced, respectively. The N and Zr synergistically contribute to the obviously strengthened absorption intensity in visible region, as well as significantly improved photocatalytic activity. In the gas phase reactor, when the calcination temperature was 550°C, 0.125N/0.25Zr-TiO 2 composite performed the highest photocatalytic activity UV irradiation for 8 h, and the corresponding CH 4 yield was 11.837 µmol/g, which was 87.8% higher than that of pristine TiO 2 . For the visible light, the CH 4 yield was 9.003 µmol/g after 8 h irradiation, which was 83.9% higher than that of pristine TiO 2 .

  14. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    NASA Astrophysics Data System (ADS)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  15. Bio-corrosion and cytotoxicity studies on novel Zr 55Co 30Ti 15 and Cu 60Zr 20Ti 20 metallic glasses

    DOE PAGES

    Vincent, S.; Daiwile, A.; Devi, S. S.; ...

    2014-09-26

    Metallic glasses are a potential and compatible implant candidate for biomedical applications. In the present investigation, a comparative study between novel Zr 55Co 30Ti 15 and Cu 60Zr 20Ti 20 metallic glasses is carried out to evaluate in vitro biocompatibility using simulated body fluids. The bio-corrosion behavior of Zr- and Cu-based metallic glasses in different types of artificial body fluids such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution is evaluated using potentiodynamic polarization studies at a constant body temperature of 310.15 K (37 °C). Surface morphology of samples after bio-corrosion experimentsmore » was observed by scanning electron microscopy. In vitro cytotoxicity test on glassy alloys were performed using human osteosarcoma cell line as per 10993-5 guidelines from International Organization for Standardization. As a result, the comparative study between Zr- and Cu-based glassy alloys provides vital information about the effect of elemental composition on biocompatibility of metallic glasses.« less

  16. Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery.

    PubMed

    Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J

    2015-11-01

    The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.

  17. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Mao, Dongsen; Guo, Xiaoming; Yu, Jun

    2015-05-01

    The influence of TiO2, ZrO2, and TiO2-ZrO2 mixed oxide on the catalytic performance of CuO-ZnO catalyst in the methanol synthesis from CO2 hydrogenation was studied. The catalysts were prepared by oxalate co-precipitation method and characterized by TGA, N2 adsorption, XRD, reactive N2O adsorption, XPS, H2-TPR, H2-TPD, and CO2-TPD techniques. Characterization results reveal that all the additives improve the CuO dispersion in the catalyst body and increase the Cu surface area and adsorption capacities of CO2 and H2. The results of catalytic test reveal that the additives increase both the CO2 conversion and methanol selectivity, and TiO2-ZrO2 mixed oxide is more effective than single components of TiO2 or ZrO2. Moreover, the activity of methanol synthesis is correlated directly with CO2 adsorption capacity over the catalysts.

  18. Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamura, Naoto; Division of Ecosystem Research, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510; Mizoguchi, Takuma

    2014-02-15

    In this study, we focused on Nb and La substituted Pb(Zr, Ti)O{sub 3}: i.e., (Pb, La)(Zr, Ti, Nb)O{sub 3}. As for the samples, dependences of ferroelectric properties on La and Nb compositions were examined. In addition, the crystal structures were analyzed by the Rietveld method, and then a relationship between the metal compositions and the crystal structures were discussed. From P–E hysteresis loop measurements, it was found that the remanant polarization of Pb(Zr, Ti)O{sub 3} was increased by both the La and Nb substitutions although the heavy substitution of La had an undesirable effect. It was also indicated that themore » Curie temperature decreased with increasing La content. The Rietveld analysis using synchrotron X-ray diffraction patterns demonstrated that the structure distortion was relaxed by the La and Nb substitutions. Such a change in the crystals was well consistent with the harmful effects on the Curie temperature and the remanent polarization by the heavy La substitution. - Graphical abstract: Rietveld refinement pattern of 2 mol% PbSiO{sub 3}-added Pb{sub 0.95}La{sub 0.05}Zr{sub 0.50}Ti{sub 0.45}Nb{sub 0.05}O{sub 3} (synchrotron X-ray diffraction). Display Omitted - Highlights: • (Pb,La)(Zr,Ti,Nb)O{sub 3} were successfully synthesized. • Remanant polarization of Pb(Zr,Ti)O{sub 3} was improved by substitutions of La and Nb. • Crystal structures of (Pb,La)(Zr,Ti,Nb)O{sub 3} were refined and the distortions were estimated.« less

  19. Effects of Zr and Si on the Glass Forming Ability and Compressive Properties of Ti-Cu-Co-Sn Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Tan; Wu, Yidong; Si, Jiajia; Hui, Xidong

    2015-06-01

    To succeed in finding novel Ti-based bulk metallic glasses, which are free from Be, Ni, and noble metallic elements, a comprehensive study was performed on the effects of Zr and Si on the microstructural evolution, glass-forming ability (GFA), and mechanical properties of Ti46Cu44- x Zr x Co7Sn3 ( x = 0, 5, 10, 12.5, and 16 at. pct) and Ti46Cu31.5Zr12.5- x Co7Sn3Si x ( x = 0.5, 1, and 1.5 at. pct) alloys. It is shown that with the increase of Zr, the sequence of phase formation is β-Ti + α-Ti + (Ti, Zr)3Cu4 ⇒ β-Ti + α-Ti + TiCu ⇒ β-Ti + Ti2Cu + glass ⇒ glass ⇒ β-Ti + Ti2Cu + TiCuSn. The quinary Ti-Zr-Cu-Co-Sn alloy with 12.5 pct Zr exhibits the best GFA. The addition of 1 pct Si results in the improvement of the critical size of glassy rods up to 3 mm in diameter. The yield stress and Young's modulus of Z-series alloys increases, and the plastic strain decreases with the addition of Zr. The yield stress and ultimate compression stress of Ti46Zr11.5Cu31.5Co7Sn3Si1 glassy alloy reach 2477.9 and 2623.3 MPa, respectively. It was found that the addition of Si promotes the generation and multiplication of shear bands, resulting in certain plasticity in these kinds of glassy alloys.

  20. Growth of Pb(Ti,Zr)O 3 thin films by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Avrutin, V.; Liu, H. Y.; Izyumskaya, N.; Xiao, B.; Özgür, Ü.; Morkoç, H.

    2009-02-01

    Single-crystal Pb(Zr xTi 1-x)O 3 thin films have been grown on (0 0 1) SrTiO 3 and SrTiO 3:Nb substrates by molecular beam epitaxy using metal-organic source of Zr and two different sources of reactive oxygen—RF plasma and hydrogen-peroxide sources. The same growth modes and comparable structural properties were observed for the films grown with both oxygen sources, while the plasma source allowed higher growth rates. The films with x up to 0.4 were single phase, while attempts to increase x beyond gave rise to the ZrO 2 second phase. The effects of growth conditions on growth modes, Zr incorporation, and phase composition of the Pb(Zr xTi 1-x)O 3 films are discussed. Electrical and ferroelectric properties of the Pb(Zr xTi 1-x)O 3 films of ~100 nm in thickness grown on SrTiO 3:Nb were studied using current-voltage, capacitance-voltage, and polarization-field measurements. The single-phase films show low leakage currents and large breakdown fields, while the values of remanent polarization are low (around 5 μC/cm 2). It was found that, at high sweep fields, the contribution of the leakage current to the apparent values of remanent polarization can be large, even for the films with large electrical resistivity (˜10 8-10 9 Ω cm at an electric filed of 1 MV/cm). The measured dielectric constant ranges from 410 to 260 for Pb(Zr 0.33Ti 0.67)O 3 and from 313 to 213 for Pb(Zr 0.2Ti 0.8)O 3 in the frequency range from 100 to 1 MHz.

  1. Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kashkarov, E. B.; Nikitenkov, N. N.; Sutygina, A. N.; Bezmaternykh, A. O.; Kudiiarov, V. N.; Syrtanov, M. S.; Pryamushko, T. S.

    2018-02-01

    More than 60 years of operation of water-cooled reactors have shown that local or general critical hydrogen concentration is one of the basic limiting criteria of zirconium-based fuel element claddings. During the coolant radiolysis, released hydrogen penetrates and accumulates in zirconium alloys. Hydrogenation of zirconium alloys leads to degradation of their mechanical properties, hydride cracking and stress corrosion cracking. In this research the effect of titanium nitride (TiN) deposition on hydrogenation behavior of Ti-implanted Zr-1Nb alloy was described. Ti-implanted interlayer was fabricated by plasma immersion ion implantation (PIII) at the pulsed bias voltage of 1500 V to improve the adhesion of TiN and reduce hydrogen penetration into Zr-1Nb alloy. We conducted the comparative analysis on hydrogenation behavior of the Ti-implanted alloy with sputtered and evaporated TiN films by reactive dc magnetron sputtering (dcMS) and filtered cathodic vacuum arc deposition (FVAD), respectively. The crystalline structure and surface morphology were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental distribution was analyzed using glow-discharge optical emission spectroscopy (GD-OES). Hydrogenation was performed from gas atmosphere at 350 °C and 2 atm hydrogen pressure. The results revealed that TiN films as well as Ti implantation significantly reduce hydrogen absorption rate of Zr-1Nb alloy. The best performance to reduce the rate of hydrogen absorption is Ti-implanted layer with evaporated TiN film. Morphology of the films impacted hydrogen permeation through TiN films: the denser film the lower hydrogen permeation. The Ti-implanted interface plays an important role of hydrogen accumulation layer for trapping the penetrated hydrogen. No deterioration of adhesive properties of TiN films on Zr-1Nb alloy with Ti-implanted interface occurs under high-temperature hydrogen exposure. Thus, the fabrication of Ti

  2. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  3. A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC.

    PubMed

    Jiang, M; Zheng, J W; Xiao, H Y; Liu, Z J; Zu, X T

    2017-08-24

    ZrC and TiC have been proposed to be alternatives to SiC as fuel-cladding and structural materials in nuclear reactors due to their strong radiation tolerance and high thermal conductivity at high temperatures. To unravel how the presence of defects affects the thermo-physical properties under irradiation, first-principles calculations based on density function theory were carried out to investigate the mechanical and thermal properties of defective ZrC, TiC and SiC. As compared with the defective SiC, the ZrC and TiC always exhibit larger bulk modulus, smaller changes in the Young's and shear moduli, as well as better ductility. The total thermal conductivity of ZrC and TiC are much larger than that of SiC, implying that under radiation environment the ZrC and TiC will exhibit superior heat conduction ability than the SiC. One disadvantage for ZrC and TiC is that their Debye temperatures are generally lower than that of SiC. These results suggest that further improving the Debye temperature of ZrC and TiC will be more beneficial for their applications as fuel-cladding and structural materials in nuclear reactors.

  4. Surface Characterization of ZrO2/Zr Coating on Ti6Al4V and IN VITRO Evaluation of Corrosion Behavior and Biocompatibility

    NASA Astrophysics Data System (ADS)

    Wang, Ruoyun; Sun, Yonghua; He, Xiaojing; Gao, Yuee; Yao, Xiaohong

    Biocompatibility is crucial for implants. In recent years, numerous researches were conducted aiming to modify titanium alloys, which are the most extensively used materials in orthopedic fields. The application of zirconia in the biomedical field has recently been explored. In this study, the biological ZrO2 coating was synthesized on titaniumalloy (Ti6Al4V) substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation (MAO) in order to further improve the corrosion resistance and biocompatibility of Ti6Al4V alloys. The microstructures and phase constituents of the coatings were characterized by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the surface wettability was evaluated by contact angle measurements. The results show that ZrO2 coatings are porous with pore sizes less than 2μm and consist predominantly of the tetragonal ZrO2 (t-ZrO2) and cubic ZrO2(c-ZrO2) phase. Electrochemical tests indicate that the corrosion rate of Ti6Al4V substrates is appreciably reduced after surface treatment in the phosphate buffer saline (PBS). In addition, significantly improved cell adhesion and growth were observed from the ZrO2/Zr surface. Therefore, the hybrid approach of magnetron sputtering and MAO provides a surface modification for Ti6Al4V to achieve acceptable corrosion resistance and biocompatibility.

  5. Physical and electrical properties of SrTiO3 and SrZrO3

    NASA Astrophysics Data System (ADS)

    Fashren Muhamad, Norhizatol; Aina Maulat Osman, Rozana; Sobri Idris, Mohd; Yasin, Mohd Najib Mohd

    2017-11-01

    Perovskite type oxide strontium titanate (SrTiO3) and strontium zirconate (SrZrO3) ceramic powder has been synthesized using conventional solid state reaction method. The powders were mixed and ground undergone calcinations at 1400°C for 12 h and sintered at 1550°C for 5h. X-ray Diffraction exposes physical properties SrTiO3 which exhibit cubic phase (space group: pm-3m) at room temperature meanwhile SrZrO3 has Orthorhombic phase (space group: pnma). The electrical properties such as dielectric constant (ɛr), dielectric loss (tan δ), and conductivity (σ) were studied in variation temperature and frequency. High dielectric constant of SrTiO3 and SrZrO3 were observed at 10 kHz for both samples about 240 and 21 respectively at room temperature. The dielectric loss of SrTiO3 and SrZrO3 is very low loss value approximately 0.00076 and 0.67512 indicates very good dielectric.

  6. Microstructure, Surface Characterization, and Electrochemical Behavior of New Ti-Zr-Ta-Ag Alloy in Simulated Human Electrolyte

    NASA Astrophysics Data System (ADS)

    Vasilescu, Cora; Drob, Silviu Iulian; Osiceanu, Petre; Moreno, Jose Maria Calderon; Prodana, Mariana; Ionita, Daniela; Demetrescu, Ioana; Marcu, Maria; Popovici, Ion Alexandru; Vasilescu, Ecaterina

    2017-01-01

    A new Ti-20Zr-5Ta-2Ag alloy was elaborated and characterized regarding its microstructure, its native passive film composition and thickness, its surface wettability, its electrochemical behavior in Ringer solution of different pH values, and its ion release. The new alloy has a bi-phase, α + β, acicular, homogeneous microstructure (scanning electron microscopy (SEM)). Its native passive film (12-nm thicknesses) consists of the protective TiO2, ZrO2, and Ta2O5 oxides, Ti and Ta suboxides, and metallic Ag (X-ray photoelectron spectroscopy (XPS) data). The alloy possesses high hydrophilic properties. The main electrochemical parameters of the new alloy are superior to those of Ti as a result of the beneficial influence of Zr, Ta, and Ag alloying elements, which reinforce its native passive film. Electrochemical impedance spectroscopy (EIS) spectra in Ringer solutions for the new alloy displayed better values of impedances and phase angles, proving a more insulate passive film than that on the Ti surface. The main corrosion parameters for the new Ti-20Zr-5Ta-2Ag alloy are more favorable by about 25 to 38 times than those of Ti, confirming extremely resistant passive film. The new Ti-20Zr-5Ta-2Ag alloy releases into Ringer solution low quantities of Ti4+, Zr4+ metallic ions (inductively coupled plasma-mass spectroscopy (ICP-MS)). The Ag+ ions are released in low quantity, conferring to this alloy's low antibacterial activity. All experimental results show that the new Ti-20Zr-5Ta-2Ag alloy fulfills the requirements for biocompatibility, corrosion resistance, and antibacterial protection.

  7. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  8. Polarization Rotation in Ferroelectric Tricolor PbTiO3/SrTiO3/PbZr0.2Ti0.8O3 Superlattices.

    PubMed

    Lemée, Nathalie; Infante, Ingrid C; Hubault, Cécile; Boulle, Alexandre; Blanc, Nils; Boudet, Nathalie; Demange, Valérie; Karkut, Michael G

    2015-09-16

    In ferroelectric thin films, controlling the orientation of the polarization is a key element to controlling their physical properties. We use laboratory and synchrotron X-ray diffraction to investigate ferroelectric bicolor PbTiO3/PbZr0.2Ti0.8O3 and tricolor PbTiO3/SrTiO3/PbZr0.2Ti0.8O3 superlattices and to study the role of the SrTiO3 layers on the domain structure. In the tricolor superlattices, we demonstrate the existence of 180° ferroelectric stripe nanodomains, induced by the depolarization field produced by the SrTiO3 layers. Each ultrathin SrTiO3 layer modifies the electrostatic boundary conditions between the ferroelectric layers compared to the corresponding bicolor structures, leading to the suppression of the a/c polydomain states. Combined with the electrostatic effect, the tensile strain induced by PbZr0.2Ti0.8O3 in the PbTiO3 layers leads to polarization rotation in the system as evidenced by grazing incidence X-ray measurements. This polarization rotation is associated with the monoclinic Mc phase as revealed by the splitting of the (HHL) and (H0L) reciprocal lattice points. This work demonstrates that the tricolor paraelectric/ferroelectric superlattices constitute a tunable system to investigate the concomitant effects of strains and depolarizing fields. Our studies provide a pathway to stabilize a monoclinic symmetry in ferroelectric layers, which is of particular interest for the enhancement of the piezoelectric properties.

  9. The effect of C content on the mechanical properties of Ti-Zr coatings.

    PubMed

    Rodríguez-Hernández, M G; Jiménez, O; Alvarado-Hernández, F; Flores, M; Andrade, E; Canto, C E; Ávila, C; Espinoza-Beltrán, F

    2015-09-01

    In this study, Ti-Zr and Ti-Zr-C coatings were deposited at room temperature via pulsed-DC magnetron sputtering. A 70Ti-30Zr at% target and a 99.99% graphite plate were used to deposit samples. In order to modify C content, coatings were deposited at different target powers such as 50, 75 and 100 W. Changes on the structure, microstructure and mechanical properties due to C addition were studied. Results indicate that the as-deposited coatings were partly crystalline and that an increment on C content stabilized α' phase and inhibited the appearance of ω precipitates. Therefore, Ti-Zr-C alloys with C>1.9 at% showed only α' phase whereas the others alloys exhibited α'+ω structures. Hardness values from 12.94 to 34.31 GPa were obtained, whereas the elastic modulus was found between 181.84 and 298 GPa. Finally, a high elastic recovery ratio (0.69-0.87) was observed as a function of composition. The overall properties of these coatings were improved due to C content increment, martensitic α' phase and nanocrystalline grain size (10-16 nm). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  11. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    PubMed

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. High temperature phase decomposition in Ti{sub x}Zr{sub y}Al{sub z}N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, Hans; Pilemalm, Robert; Rogström, Lina

    2014-12-15

    Through a combination of theoretical and experimental observations we study the high temperature decomposition behavior of c-(Ti{sub x}Zr{sub y}Al{sub z}N) alloys. We show that for most concentrations the high formation energy of (ZrAl)N causes a strong tendency for spinodal decomposition between ZrN and AlN while other decompositions tendencies are suppressed. In addition we observe that entropic effects due to configurational disorder favor a formation of a stable Zr-rich (TiZr)N phase with increasing temperature. Our calculations also predict that at high temperatures a Zr rich (TiZrAl)N disordered phase should become more resistant against the spinodal decomposition despite its high and positivemore » formation energy due to the specific topology of the free energy surface at the relevant concentrations. Our experimental observations confirm this prediction by showing strong tendency towards decomposition in a Zr-poor sample while a Zr-rich alloy shows a greatly reduced decomposition rate, which is mostly attributable to binodal decomposition processes. This result highlights the importance of considering the second derivative of the free energy, in addition to its absolute value in predicting decomposition trends of thermodynamically unstable alloys.« less

  13. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    NASA Astrophysics Data System (ADS)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  14. Electrochemical corrosion, wear and cell behavior of ZrO2/TiO2 alloyed layer on Ti-6Al-4V.

    PubMed

    Li, Jianfang; He, Xiaojing; Zhang, Guannan; Hang, Ruiqiang; Huang, Xiaobo; Tang, Bin; Zhang, Xiangyu

    2018-06-01

    Ti-6Al-4V (TC4) has received increasing attention as biomaterial but also raised concerns about the long-term safety of releasing of metal ions and poor wear resistance. In this work, an ZrO 2 /TiO 2 alloyed layer was prepared on TC4 by plasma surface alloying with Zr and subsequently annealed in the air for improved corrosion and wear resistant. To assess the corrosion performance of the alloyed layer, the specimens were measured by open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid solution. The result shows that the ZrO 2 /TiO 2 alloyed layer exhibits strikingly high polarization resistance, wide passive region and very low current density, indicating the excellent corrosion resistance. The layer also displays significant improvement of wear resistance. Furthermore, the alloyed layer restricts cell adhesion and spreading. We infer that the ZrO 2 /TiO 2 alloyed layer might be potentially useful implanted devices such as biosensors, bioelectronics or drug delivery devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Thermal stability, adhesion and electrical studies on (Ti,Zr)N x thin films as low resistive diffusion barriers between Cu and Si

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Lin; Lai, Chih-Huang; Tsai, Po-Hao; Kuo, Yu-Lin; Lin, Jing-Cheng; Lee, Chiapyng

    2014-05-01

    In this study, we investigated the thermal stability, wettability, adhesion and reliability of (Ti,Zr)N x films used as the diffusion barrier between Cu and Si. (Ti,Zr)N x films were prepared by DC reactive magnetron sputtering from a Ti-5 at. % Zr alloy target in N2/Ar gas mixtures. A minimum film resistivity of 59.3 µω cm was obtained at an N2/Ar flow ratio of 2.75, which corresponds to the near stoichiometric composition (N/(Ti,Zr) ratio ˜0.95). The sheet resistance of Cu/(Ti,Zr)N0.95/Si was not significantly increased until annealing above 750°C, indicating good thermal stability. On the other hand, the adhesion energy between Cu and the (Ti,Zr)Nx film was reduced as the N/Ti ratio was increased. To obtain reliable performance on stress-induced-voiding (SIV) and electromigration (EM) tests, we proposed to use (Ti,Zr)/(Ti,Zr)N x /(Ti,Zr) tri-layers. We suggest that the interfacial adhesion between barrier and Cu plays an important role in reliability. The proposed tri-layer structure may be a promising candidate for a barrier, as it exhibits excellent reliability without increasing resistance.

  16. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts.

    PubMed

    Wang, Xinchen; Yu, Jimmy C; Chen, Yilin; Wu, Ling; Fu, Xianzhi

    2006-04-01

    Mesoporous nanocrystalline TiO2-xNx and TiO2-xNx/ZrO2 visible-light photocatalysts have been prepared by a sol-gel method. The photocatalysts were characterized by XRD, N2 adsorption-desorption, TEM, XPS, UV/Vis, and IR spectroscopy. The photocatalytic activity of the samples was evaluated by the decomposition of ethylene in air under visible light (lambda > 450 nm) illumination. Results revealed that nitrogen was doped into the lattice of TiO2 by the thermal treatment of NH3-adsorbed TiO2 hydrous gels, converting the TiO2 into a visible-light responsive catalyst. The introduction of ZrO2 into TiO2-xNx considerably inhibits the undesirable crystal growth during calcination. Consequently, the ZrO2-modified TiO2-xNx displays higher porosity, higher specific surface area, and an improved thermal stability over the corresponding unmodified TiO2-xNx samples.

  17. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in

  18. Efficiency enhancement of dye-sensitized solar cells by use of ZrO2-doped TiO2 nanofibers photoanode.

    PubMed

    Mohamed, Ibrahim M A; Dao, Van-Duong; Barakat, Nasser A M; Yasin, Ahmed S; Yousef, Ahmed; Choi, Ho-Suk

    2016-08-15

    Due to the good stability and convenient optical properties, TiO2 nanostructures still the prominent photoanode materials in the Dye Sensitized Solar Cells (DSCs). However, the well-known low bandgap energy and weak adsorption affinity for the dye distinctly constrain the wide application. This work discusses the impact of Zr-doping and nanofibrous morphology on the performance and physicochemical properties of TiO2. Zr-doped TiO2 nanofibers (NFs), with various zirconia content (0, 0.5, 1, 1.5 and 2wt%) were prepared by calcination of electrospun mats composed of polyvinyl acetate, titanium isopropoxyl and zirconium n-propoxyl. For all formulations, the results have shown that the prepared materials are continuous, randomly oriented, and good morphology nanofibers. The average diameter decreased from 353.85nm to 210.78nm after calcination without a considerable influence on the nanofibrous structure regardless the zirconia content. XRD result shows that there is no Rutile nor Brookite phases in the obtained material and the average crystallite size of the sample is affected by the presence of Zr-doping and changed from 23.01nm to 37.63nm for TiO2 and Zr-doped TiO2, respectively. Optical studies have shown Zr-doped TiO2 NFs have more absorbance in the visible region than that of pristine TiO2 NFs; the maximum absorbance is corresponding to the NFs having 1wt% zirconia. The improved spectra of Zr-doped TiO2 in the visible region is attributed to the heterostructure composition resulting from Zr-doping. The absorption bandgaps were calculated using Tauc model as 3.202 and 3.217 for pristine and Zr (1wt%)-doped TiO2 NFs, respectively. Furthermore, in Dye-sensitized Solar Cells, utilizing Zr (1wt%)-doped TiO2 nanofibers achieved higher efficiency of 4.51% compared to the 1.61% obtained from the pristine TiO2 NFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Zr doping effect with low-cost solid-state reaction method to synthesize submicron Li4Ti5O12 anode material

    NASA Astrophysics Data System (ADS)

    Seo, Inseok; Lee, Cheul-Ro; Kim, Jae-Kwang

    2017-09-01

    To improve the electrochemical properties, fine Zr-doping Li4Ti5O12 anode materials for rechargeable lithium batteries with a uniform particle size distribution were synthesized by a modified solid-state reaction using fine Li2CO3 and TiO2 (anatase) powders as precursors with a Li:Ti molar ratio of 4:5. The use of fine Li2CO3 and TiO2 (anatase) powders as precursors prevented the formation of ZrO2 at 0.1 mol Zr-doping. XRD analysis revealed that the substitution of Zr for Ti leads to the increase of lattice parameters, allowing improved Li diffusion. The discharge capacity retention increased slightly with Zr-doping and the 0.1 mol Zr-doped Li4Ti5O12 electrode achieved 99% retention of discharge capacity.

  20. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    PubMed

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  1. Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials

    NASA Astrophysics Data System (ADS)

    De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge

    2007-08-01

    Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.

  2. Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys

    NASA Astrophysics Data System (ADS)

    Pylypchuk, Ie V.; Petranovskaya, A. L.; Gorbyk, P. P.; Korduban, A. M.; Markovsky, P. E.; Ivasishin, O. M.

    2015-08-01

    A biomimetic approach for coating titanium-containing alloys with hydroxyapatite (HA) is reported in the article. Two types of Ti-containing alloys were chosen as an object for coating: Ti-6Al-4V (recommended for orthopedic application) and a novel highly biocompatible Ti-Zr-Nb alloy, with good mechanical compatibility due to a modulus that is more close to that of human bones (E ≈ 50 GPa instead of 110 GPa in Ti-6Al-4V). Coating process was carried out in a 10×-concentrated simulated body fluid (SBF)—synthetic analog of human body plasma. The effect of oxidized and carboxylated alloy surface on formation of biomimetic hydroxyapatite has been studied. By XRD, we found influence of thermal conditions on HA crystal formation and size. SEM images and Fourier transform infrared confirmed that hydroxyapatite with different morphology, crystallinity, and Ca/P ratio formed on metallic surfaces. X-ray photoelectron spectroscopy showed that in the Ti-6AL-4V sample the observed Ca/P ratio reach 0.97, whereas in the Ti-Zr-Nb sample the observed Ca/P ratio reach 1.15.

  3. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    NASA Astrophysics Data System (ADS)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-08-01

    Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H2SO4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO2 particles. The results obtained show that addition of ZrO2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO2 addition, combination of high hardness of Ti2Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.

  4. Alloying effects on structural and thermal behavior of Ti{sub 1-x}Zr{sub x}C: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Mamta, E-mail: mamta-physics@yahoo.co.in; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2016-05-06

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti{sub 1-x}Zr{sub x}C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  5. Wear Resistance Enhancement of Ti-6Al-4 V Alloy by Applying Zr-Modified Silicide Coatings

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Hu, Guangzhong; Tian, Jin; Tian, Wei; Xie, Wenling; Li, Xiulan

    2018-03-01

    Zr-modified silicide coatings were prepared on Ti-6Al-4 V alloy by pack cementation process to enhance its wear resistance. The microstructure and wear properties of the substrate and the coatings were comparatively investigated using GCr15 and Al2O3 as the counterparts under different sliding loads. The obtained Zr-modified silicide coating had a multilayer structure, consisting of a thick (Ti, X)Si2 (X represents Al, Zr and V elements) outer layer, a TiSi middle layer and a Ti5Si4 + Ti5Si3 inner layer. The micro-hardness of the coating was much higher than the substrate and displayed a decrease tendency from the coating surface to the interior. Sliding against either GCr15 or Al2O3 balls, the coatings showed superior anti-friction property to the Ti-6Al-4 V alloy, as confirmed by its much lower wear rate under each employed sliding condition.

  6. Effects of Fabrication Parameters on Interface of Zirconia and Ti-6Al-4V Joints Using Zr55Cu30Al10Ni5 Amorphous Filler

    NASA Astrophysics Data System (ADS)

    Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie

    2013-09-01

    ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.

  7. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  8. Pressure-dependent structure of the null-scattering alloy Ti 0.676 Zr 0.324

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeidler, Anita; Guthrie, Malcolm; Salmon, Philip S.

    2015-05-13

    The room temperature structure of the alloy Ti0.676Zr0.324Ti0.676Zr0.324 was measured by X-ray diffraction under compression at pressures up to ~30GPa. This alloy is used as a construction material in high pressure neutron-scattering research and has a mean coherent neutron scattering length of zero, that is, it is a so-called null-scattering alloy. A broad phase transition was observed from a hexagonal close-packed α-phase to a hexagonal ω-phase, which started at a pressure of ≲12GPa≲12GPa and was completed by ~25GPa. The data for the α-phase were fitted by using a third-order Birch–Murnaghan equation of state, giving an isothermal bulk modulus B0=87(4)GPaB0=87(4)GPa andmore » pressure derivative B'0=6.6(8)B0'=6.6(8). The results will help to ensure that accurate structural information can be gained from in situ high pressure neutron diffraction work on amorphous and liquid materials where the Ti0.676Zr0.324Ti0.676Zr0.324 alloy is used as a gasket material.« less

  9. Influence of Zr doping on structure and morphology of TiO2 nanorods prepared using hydrothermal method

    NASA Astrophysics Data System (ADS)

    Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi

    2018-04-01

    The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.

  10. First-principles quantum molecular dynamics study of Ti x Zr1-x N(111)/SiN y heterostructures and comparison with experimental results.

    PubMed

    Ivashchenko, Volodymyr; Veprek, Stan; Pogrebnjak, Alexander; Postolnyi, Bogdan

    2014-04-01

    The heterostructures of five monolayers B1-Ti x Zr 1- x N(111), x = 1.0, 0.6, 0.4 and 0.0 (where B1 is a NaCl-type structure) with one monolayer of a Si 3 N 4 -like Si 2 N 3 interfacial layer were investigated by means of first-principles quantum molecular dynamics and a structure optimization procedure using the Quantum ESPRESSO code. Slabs consisting of stoichiometric TiN and ZrN and random, as well as segregated, B1-Ti x Zr 1- x N(111) solutions were considered. The calculations of the B1-Ti x Zr 1- x N solid solutions, as well as of the heterostructures, showed that the pseudo-binary TiN-ZrN system exhibits a miscibility gap. The segregated heterostructures in which Zr atoms surround the Si y N z interface were found to be the most stable. For the Zr-rich heterostructures, the total energy of the random solid solution was lower compared to that of the segregated one, whereas for the Ti-rich heterostructures the opposite tendency was observed. Hard and super hard Zr-Ti-Si-N coatings with thicknesses from 2.8 to 3.5 μ m were obtained using a vacuum arc source with high frequency stimulation. The samples were annealed in a vacuum and in air at 1200 °C. Experimental investigations of Zr-Ti-N, Zr-Ti-Si-N and Ti-Si-N coatings with different Zr, Ti and Si concentrations were carried out for comparison with results obtained from Ti x Zr 1 - x N(111)/SiN y systems. During annealing, the hardness of the best series samples was increased from (39.6 ± 1.4) to 53.6 GPa, which seemed to indicate that a spinodal segregation along grain interfaces was finished. A maximum hardness of 40.8 GPa before and 55 GPa after annealing in air at 500 °C was observed for coatings with a concentration of elements of Si≽ (7-8) at.%, Ti ≽ 22 at.% and Zr ⩽ 70 at.%.

  11. Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure.

    PubMed

    Li, Yingtao; Yuan, Peng; Fu, Liping; Li, Rongrong; Gao, Xiaoping; Tao, Chunlan

    2015-10-02

    Diode-like volatile resistive switching as well as nonvolatile resistive switching behaviors in a Cu/ZrO₂/TiO₂/Ti stack are investigated. Depending on the current compliance during the electroforming process, either volatile resistive switching or nonvolatile resistive switching is observed. With a lower current compliance (<10 μA), the Cu/ZrO₂/TiO₂/Ti device exhibits diode-like volatile resistive switching with a rectifying ratio over 10(6). The permanent transition from volatile to nonvolatile resistive switching can be obtained by applying a higher current compliance of 100 μA. Furthermore, by using different reset voltages, the Cu/ZrO₂/TiO₂/Ti device exhibits multilevel memory characteristics with high uniformity. The coexistence of nonvolatile multilevel memory and diode-like volatile resistive switching behaviors in the same Cu/ZrO₂/TiO₂/Ti device opens areas of applications in high-density storage, logic circuits, neural networks, and passive crossbar memory selectors.

  12. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  13. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO{sub 2}-ZrO{sub 2} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Laxmi J., E-mail: laxmi-tomar86@yahoo.com; Bhatt, Piyush J.; Desai, Rahul K.

    TiO{sub 2}-ZrO{sub 2} and Zn doped TiO{sub 2}-ZrO{sub 2} nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X –ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO{sub 2}, TiO{sub 2}-ZrO{sub 2} and Zn doped TiO{sub 2}-ZrO{sub 2} nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphitemore » coated conducting glass plate was used as counter electrode. The I – V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO{sub 2}, TiO{sub 2}-ZrO{sub 2} and Zn doped TiO{sub 2}-ZrO{sub 2} nanocomposites were found 0.71%, 1.97% and 4.58% respectively.« less

  14. Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.

    PubMed

    Xue, Pengfei; Li, Yan; Li, Kangming; Zhang, Deyuan; Zhou, Chungen

    2015-05-01

    Microstructure, mechanical properties, superelasticity and biocompatibility of a Ti-19Zr-10Nb-1Fe alloy are investigated. X-ray diffraction spectroscopy and transmission electron microscopy observations show that the as-cast Ti-19Zr-10Nb-1Fe alloy is composed of α' and β phases, but only the β phase exists in the as-rolled and as-quenched alloys. The tensile stress-strain tests indicate that the as-quenched alloy exhibits a good combination of mechanical properties with a large elongation of 25%, a low Young's modulus of 59 GPa and a high ultimate tensile stress of 723 MPa. Superelastic recovery behavior is found in the as-quenched alloy during tensile tests, and the corresponding maximum of superelastic strain is 4.7% at the pre-strain of 6%. A superelastic recovery of 4% with high stability is achieved after 10 cyclic loading-unloading training processes. Potentiodynamic polarization and ion release measurements indicate that the as-quenched alloy shows a lower corrosion rate in Hank's solution and a much less ion release rate in 0.9% NaCl solution than those of the NiTi alloys. Cell culture results indicate that the osteoblasts' adhesion and proliferation are similar on both the Ti-19Zr-10Nb-1Fe and NiTi alloys. A better hemocompatibility is confirmed for the as-quenched Ti-19Zr-10Nb-1Fe alloy, attributed to more stable platelet adhesion and small activation degree, and a much lower hemolysis rate compared with the NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  16. Temperature-dependent local structural properties of redox Pt nanoparticles on TiO 2 and ZrO 2 supports

    DOE PAGES

    Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; ...

    2015-01-21

    This paper examined the local structural properties of Pt nanoparticles on SiO 2, TiO 2–SiO 2, and ZrO 2–SiO 2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H 2, and O 2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO 2–SiO 2 and ZrO 2–SiO 2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO 2more » supports. Contrary to the SiO 2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO 2–SiO 2 and ZrO 2–SiO 2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO 2 or ZrO 2 on the surface of SiO 2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less

  17. Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light.

    PubMed

    Huang, Chao; Ding, Yaping; Chen, Yingwen; Li, Peiwen; Zhu, Shemin; Shen, Shubao

    2017-10-01

    Zr-doped-TiO 2 loaded glass fiber (ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol-gel process. Zr 4+ can replace Ti 4+ in the TiO 2 lattice, which is conducive to forming the anatase phase and reducing the calcination temperature. The glass fiber carrier was responsible for better dispersion and loading of Zr-doped-TiO 2 particles, improving the applicability of the Zr-doped-TiO 2 . The ZT/GF photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis) and Barrett-Joyner-Halenda (BJH). The performance of photocatalysts with different loading was evaluated in formaldehyde degradation under visible light at room temperature. ZT/GF0.2 exhibited the highest activity, with a formaldehyde removal rate as high as 95.14% being observed, which is better than that of the photocatalyst particles alone. The stability of the catalyst was also tested, and ZT/GF exhibited excellent catalytic performance with 94.38% removal efficiency, even after seven uses. Copyright © 2017. Published by Elsevier B.V.

  18. The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution

    NASA Astrophysics Data System (ADS)

    Zhu, Wen; Li, Wenfang; Mu, Songlin; Yang, Yunyu; Zuo, Xi

    2016-10-01

    An environment-friendly titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating was prepared on aluminum alloy 6063 (AA6063). The epoxy powder coatings were applied on the AA6063 samples with/without Ti/Zr/V conversion coatings via electrostatic spraying. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The surface free energy components of AA6063 samples were measured by a static contact angle measuring device with Owens method. The adhesion properties of the epoxy coating on AA6063 treated with different conversion times were evaluated using a pull-off tester. The Ti/Zr/V conversion coating was mainly composed of metal oxide (TiO2, ZrO2, V2O5, Al2O3, etc.), metal fluoride (ZrF4, AlF3, etc.) and metal organic complex. The formation time of this conversion coating was reduced to 50 s. After such surface treatment, the samples' surface roughness was increased and the contact angle with water was decreased. Both the surface free energy and the work of adhesion were increased. The adhesion strength between the epoxy coating and AA6063 was enhanced significantly.

  19. C60 and U ion irradiation of Gd 2Ti xZr 2-xO 7 pyrochlore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiaming; Toulemonde, Marcel; Lang, Maik

    2015-08-01

    Gd 2Ti xZr 2-xO 7 (x = 0 to 2) pyrochlore was irradiated by 30 MeV C 60 clusters, which provide an extremely high ionizing energy density. Here, high-resolution transmission electron microscopy revealed a complex ion-track structure in Gd 2Ti 2O 7 and Gd 2TiZrO 7, consisting of an amorphous core and a shell of a disordered, defect-fluorite structure.

  20. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O3

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Lohaus, Christian; Reiser, Patrick; Dimesso, Lucangelo; Wang, Xiucai; Yang, Tongqing

    2017-06-01

    The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O3 is studied with photoelectron spectroscopy using interfaces with high work function RuO2 and low work function Sn-doped In2O3 (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O3 is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO3. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O3 should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  1. Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications

    NASA Astrophysics Data System (ADS)

    Lin, Jixing; Ozan, Sertan; Li, Yuncang; Ping, Dehai; Tong, Xian; Li, Guangyu; Wen, Cuie

    2016-11-01

    Titanium alloys are receiving increasing research interest for the development of metallic stent materials due to their excellent biocompatibility, corrosion resistance, non-magnetism and radiopacity. In this study, a new series of Ti-Ta-Hf-Zr (TTHZ) alloys including Ti-37Ta-26Hf-13Zr, Ti-40Ta-22Hf-11.7Zr and Ti-45Ta-18.4Hf-10Zr (wt.%) were designed using the d-electron theory combined with electron to atom ratio (e/a) and molybdenum equivalence (Moeq) approaches. The microstructure of the TTHZ alloys were investigated using optical microscopy, XRD, SEM and TEM and the mechanical properties were tested using a Vickers micro-indenter, compression and tensile testing machines. The cytocompatibility of the alloys was assessed using osteoblast-like cells in vitro. The as-cast TTHZ alloys consisted of primarily β and ω nanoparticles and their tensile strength, yield strength, Young’s modulus and elastic admissible strain were measured as being between 1000.7-1172.8 MPa, 1000.7-1132.2 MPa, 71.7-79.1 GPa and 1.32-1.58%, respectively. The compressive yield strength of the as-cast alloys ranged from 1137.0 to 1158.0 MPa. The TTHZ alloys exhibited excellent cytocompatibility as indicated by their high cell viability ratios, which were close to that of CP-Ti. The TTHZ alloys can be anticipated to be promising metallic stent materials by virtue of the unique combination of extraordinarily high elastic admissible strain, high mechanical strength and excellent biocompatibility.

  2. Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications

    PubMed Central

    Lin, Jixing; Ozan, Sertan; Li, Yuncang; Ping, Dehai; Tong, Xian; Li, Guangyu; Wen, Cuie

    2016-01-01

    Titanium alloys are receiving increasing research interest for the development of metallic stent materials due to their excellent biocompatibility, corrosion resistance, non-magnetism and radiopacity. In this study, a new series of Ti-Ta-Hf-Zr (TTHZ) alloys including Ti-37Ta-26Hf-13Zr, Ti-40Ta-22Hf-11.7Zr and Ti-45Ta-18.4Hf-10Zr (wt.%) were designed using the d-electron theory combined with electron to atom ratio (e/a) and molybdenum equivalence (Moeq) approaches. The microstructure of the TTHZ alloys were investigated using optical microscopy, XRD, SEM and TEM and the mechanical properties were tested using a Vickers micro-indenter, compression and tensile testing machines. The cytocompatibility of the alloys was assessed using osteoblast-like cells in vitro. The as-cast TTHZ alloys consisted of primarily β and ω nanoparticles and their tensile strength, yield strength, Young’s modulus and elastic admissible strain were measured as being between 1000.7–1172.8 MPa, 1000.7–1132.2 MPa, 71.7–79.1 GPa and 1.32–1.58%, respectively. The compressive yield strength of the as-cast alloys ranged from 1137.0 to 1158.0 MPa. The TTHZ alloys exhibited excellent cytocompatibility as indicated by their high cell viability ratios, which were close to that of CP-Ti. The TTHZ alloys can be anticipated to be promising metallic stent materials by virtue of the unique combination of extraordinarily high elastic admissible strain, high mechanical strength and excellent biocompatibility. PMID:27897215

  3. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants.

    PubMed

    Belver, C; Bedia, J; Rodriguez, J J

    2017-01-15

    Solar light-active Zr-doped TiO 2 nanoparticles were successfully immobilized on delaminated clay materials by a one-step sol-gel route. Fixing the amount of TiO 2 at 65wt.%, this work studies the influence of Zr loading (up to 2%) on the photocatalytic activity of the resulting Zr-doped TiO 2 /clay materials. The structural characterization demonstrates that all samples were formed by a delaminated clay with nanostructured anatase assembled on its surface. The Zr dopant was successfully incorporated into the anatase lattice, resulting in a slight deformation of the anatase crystal and the reduction of the band gap. These materials exhibit high surface area with a disordered mesoporous structure formed by TiO 2 particles (15-20nm) supported on a delaminated clay. They were tested in the solar photodegradation of antipyrine, usually used as an analgesic drug and selected as an example of emerging pollutant. High degradation rates have been obtained at low antipyrine concentrations and high solar irradiation intensities with the Zr-doped TiO 2 /clay catalyst, more effective than the undoped one. This work demonstrates the potential application of the synthesis method for preparing novel and efficient solar-light photocatalysts based on metal-doped anatase and a delaminated clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide

    NASA Astrophysics Data System (ADS)

    Mao, Dongsen; Lu, Guanzhong

    2007-02-01

    The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO 2-ZrO 2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO 2-ZrO 2 into a crystalline ZrTiO 4 compound, while a larger amount of boria (⩾8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO 4 units delay, while a build-up of trigonal BO 3 promote, the crystallization of amorphous TiO 2-ZrO 2 to form ZrTiO 4 crystals.

  5. Electronic structure of a laterally graded ZrO2-TiO2 film on Si(100) prepared by metal-organic chemical vapor deposition in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Richter, J. H.; Karlsson, P. G.; Sandell, A.

    2008-05-01

    A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.

  6. Preparation of ZrO II/nano-TiO II composite powder by sol-gel method

    NASA Astrophysics Data System (ADS)

    Baharvandi, H. R.; Mohammadi, E.; Abdizadeh, H.; Hadian, A. M.; Ehsani, N.

    2007-07-01

    The effects of concentration of TTIP, amount of distilled water, and calcination temperature on morphology and particle size distribution of ZrO II/nano-TiO II catalysts were investigated. Mixed ZrO II/nano-TiO II powders were prepared by a modified sol-gel method by varying the mole fraction of TTIP from 0.002 to 0.01, H IIO/TTIP fraction from 2 to 8, and various stirring time (2, 4, and 10 h). The prepared ZrO II/nano-TiO II powders have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and TG/DTA. Each oxide was calcined at the temperature between 110 and 1000°C. The results showed that the calcinations temperature has a pronounced effect on the phase formation and particle size of the calcined zirconium titanate (ZT) powders.

  7. Microstructure and Elevated Temperature Properties of a Refractory TaNbHfZrTi Alloy

    DTIC Science & Technology

    2012-01-24

    composition of the TaNbHfZrTi alloy produced by vacuum arc melting Composition Ta Nb Hf Zr Ti at.% 19.68 18.93 20.46 21.23 19.7 wt. % 30.04 14.84 30.82 16.34...metallic materials with higher melting points, such as refractory molybdenum (Mo) and niobium ( Nb ) alloys, are examined as alternatives by academic and...creep resistance are the key properties of these alloys, since considerable alloy softening generally occurs at tempera- tures above *0.5 0.6 Tm

  8. Single layer of MX3(M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics

    NASA Astrophysics Data System (ADS)

    Jin, Yingdi; Li, Xingxing; Yang, Jinlong

    A serial of two dimensional titanium and zirconium trichalcogenides nanosheets MX3 (M=Ti, Zr; X=S, Se, Te) are investigated based on first-principles calculations. The evaluated low cleavage energy indicates that stable two dimensional monolayers can be exfoliated from their bulk crystals in experiment. Electronic studies reveal very rich electronic properties in these monolayers, including metallic TiTe3 and ZrTe3, direct band gap semiconductor TiS3 and indirect band gap semiconductors TiSe3, ZrS3 and ZrSe3. The band gaps of all the semiconductors are between 0.57~1.90 eV, which implies their potential applications in nano-electronics. And the calculated effective masses demonstrate highly anisotropic conduction properties for all the semiconductors. Optically, TiS3 and TiSe3 monolayers exhibit good light absorption in the visible and near-infrared region respectively, indicating their potential applications in optical devices. In particular, the highly anisotropic optical absorption of TiS3 monolayer suggests it could be used in designing nano optical waveguide polarizers.

  9. Nanostructured microtubes based on TiO2 doped by Zr and Hf oxides with the anatase structure

    NASA Astrophysics Data System (ADS)

    Zheleznov, VV; Voit, EI; Sushkov, YV; Sarin, SA; Kuryavyi, VG; Opra, DP; Gnedenkov, SV; Sinebryukhov, SL; Sokolov, AA

    2016-01-01

    The nanostructured microtubes based on TiO2 have been prepared on the carbon fiber template using the sol-gel method. The microtubes consist of nanoparticles of metal oxides: TiO2/ZrO2 and TiO2/HfO2. The dependence of microtubes morphology and nanoparticles structure on the synthesis conditions has been studied using the methods of SEM, SAXS, and Raman spectroscopy. It has been demonstrated that at the stoichiometric ratio of up to 0.04 for Zr/Ti and up to 0.06 for Hf/Ti microtubes consist of uniform nanoparticles with the anatase structure. Along with further increase of the dopants content in the microtubes composition, nanoparticles acquire the core-shell structure. It has been suggested that nanoparticles have a core composed of the solid solutions Ti1-xZrxO2 or Ti1-xHfxO2 and a shell consisting of zirconium or hafnium titanate. The fabricated Zr- and Hf-doped TiO2 materials were investigated in view of their possible use as anode materials for Li-ion batteries. Charge- discharge measurements showed that the doped samples manifested significantly higher reversibility in comparison with the undoped TiO2. The method opens new prospects in synthesis of nanostructured materials for Li-ion batteries application.

  10. Oriented and ordered mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Luyi, E-mail: zhuly@sdu.edu.cn; Liu, Benxue; Qin, Weiwei, E-mail: jiuyuan.1001@163.com

    Graphical abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface area under higher temperatures were prepared by a simple EISA process. - Highlights: • The ZrO{sub 2}/TiO{sub 2} fibers were prepared by EISA process combined with steam heat-treatment. • The mesoporous ZrO{sub 2}/TiO{sub 2} fibers have well-organized linear and spring structure. • The fibers were composed of oval rod nanocrystals of ZrTiO{sub 4}. - Abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface areas under higher temperatures were prepared by a (simplemore » evaporation-induced assembly) EISA process. The preparation, microstructures and formation processes were characterized by Fourier transformation infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N{sub 2} adsorption–absorption measurements. The fibers take on pinstripe configuration which is very orderly along or perpendicular to the axial direction of the fibers. The diameters of the pinstripe are in the region of 200–400 nm and arranges regularly, which are composed of oval rod nanocrystals of ZrTiO{sub 4}.« less

  11. Fatigue in artificially layered Pb(Zr,Ti)O3 ferroelectric films

    NASA Astrophysics Data System (ADS)

    Jiang, A. Q.; Scott, J. F.; Dawber, M.; Wang, C.

    2002-12-01

    We have performed fatigue tests on lead zirconate titanate (PZT) multilayers having stacks of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 with repeated distances of 12 formula groups. The results are compared with single-layer n-type (0.5 at. % Ta-doped) PZT films. We conclude that fatigue is dominated by space-charge layers in each case, but that in the multilayer such space charge accumulates at the layer interfaces, rather than at the electrode-dielectric interface. The model, which includes both drift and diffusion, is quantitative and yields a rate-limiting mobility of 6.9±0.9×10-12 cm2/V s, in excellent agreement with the oxygen vacancy mobility for perovskite oxides obtained from Zafar et al.

  12. Preliminary Tests for Ti-Mo-Zr-Ta Alloys as Potential Biomaterials

    NASA Astrophysics Data System (ADS)

    Bălţatu, M. S.; Vizureanu, P.; Bălan, T.; Lohan, M.; Ţugui, C. A.

    2018-06-01

    Nowadays, there is a continuing concern for the research and development of alloys for medical and biomedical applications. In order to check the biocompatible character of a new Ti-Mo-Zr-Ta alloys, it is necessary to carry out preliminary laboratory tests to follow how a biomaterial surface would interact with the host. The paper presents tests for Ti-Mo-Zr-Ta alloys like contact angle and DSC test to identify biocompatible character. Contact angle measurement is an experimental technique used to assess the hydrophilic or hydrophobic character of surfaces by reference to the 90º contact angle value and to characterize the thermal behavior, for temperature range between 36.5-37.2ºC, interval which a biomaterial works inside the healthy human body, was used DSC test.

  13. Phase stability, magnetic, electronic, half-metallic and mechanical properties of a new equiatomic quaternary Heusler compound ZrRhTiIn: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Xing; Chen, Z. B.; Gao, Y. C.

    2018-05-01

    In this manuscript, we have studied the electronic, magnetic, half-metallic and mechanical properties of a new Zr-based equiatomic quaternary Heusler (EQH) compound, ZrRhTiIn using first-principles calculations. The generalized gradient approximation (GGA) calculation results imply that at its equilibrium lattice constant of 6.70 Å, ZrRhTiIn is a half-metallic material (HMM) with a considerable band gap (Ebg) of 0.530 eV and a spin-filter/half-metallic band-gap (EHM) of 0.080 eV in the minority-spin channel. For ZrRhTiIn, the formation energy of -2.738 eV and the cohesive energy of 21.38 eV indicate that it is a thermodynamically stable material according to theory. The minority-spin EHM arises from the hybridization among Zr-4d, Ti-3d and Rh-4d electrons. The calculated total magnetic moment of ZrRhTiIn is 2 μB, meeting the well-known Slater-Pauling rule Mt = Zt -18. Furthermore, uniform strain and tetragonal strain were applied in this work to examine the magneto-electronic and half-metallic behaviors of the ZrRhTiIn system. Finally, we show that ZrRhTiIn is mechanically stable, ductile and anisotropic.

  14. Zr-doped TiO2 as a thermostabilizer in plasmon-enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pasche, Anastasia; Grohe, Bernd; Mittler, Silvia; Charpentier, Paul A.

    2017-07-01

    Harvesting solar energy is a promising solution toward meeting the world's ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with tremendous potential for commercial application, but they are plagued by inefficiency due to their poor sunlight absorption. Plasmonic silver nanoparticles (AgNPs) have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance can cause thermal damage resulting in cell deterioration. Hence, the influence of Zr-doped TiO2 on the efficiency of plasmon-enhanced DSSCs was studied, showing that 5 mol.% Zr-doping of the photoactive TiO2 material can improve the photovoltaic performance of DSSCs by 44%. By examining three different DSSC designs, it became clear that the efficiency enhancing effect of Zr strongly depends on the proximity of the Zr-doped material to the plasmonic AgNPs.

  15. Structural and Kinetic Hydrogen Sorption Properties of Zr0.8Ti0.2Co Alloy Prepared by Ball Milling

    PubMed Central

    He, Hui; Tang, Tao; Huang, Zhiyong; Sang, Ge; Zhang, Guanghui; Ba, Jingwen; Liu, Meng

    2018-01-01

    The effects of ball milling on the hydrogen sorption kinetics and microstructure of Zr0.8Ti0.2Co have been systematically studied. Kinetic measurements show that the hydrogenation rate and amount of Zr0.8Ti0.2Co decrease with increasing the ball milling time. However, the dehydrogenation rate accelerates as the ball milling time increases. Meanwhile, the disproportionation of Zr0.8Ti0.2Co speeds up after ball milling and the disproportionation kinetics is clearly inclined to be linear with time at 500°C. It is found from X-ray powder diffraction (XRD) results that the lattice parameter of Zr0.8Ti0.2Co gradually decreases from 3.164 Å to 3.153 Å when the ball milling time extends from 0 h to 8 h, which is mainly responsible for the hydrogen absorption/desorption behaviors. In addition, scanning electron microscope (SEM) images demonstrate that the morphology of Zr0.8Ti0.2Co has obviously changed after ball milling, which is closely related to the hydrogen absorption kinetics. Besides, high-resolution transmission electron microscopy (HRTEM) images show that a large number of disordered microstructures including amorphous regions and defects exist after ball milling, which also play an important role in hydrogen sorption performances. This work will provide some insights into the principles of how to further improve the hydrogen sorption kinetics and disproportionation property of Zr0.8Ti0.2Co. PMID:29721128

  16. Fe-Al interface intermixing and the role of Ti, V, and Zr as a stabilizing interlayer at the interface

    NASA Astrophysics Data System (ADS)

    Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.; Nachimuthu, P.; Jiang, W.

    2009-03-01

    Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 Å and 41.1 Å for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (˜3 Å) for these sputtered metallic films.

  17. One-pot synthesis and optical properties of Eu3+-doped nanocrystalline TiO2 and ZrO2

    NASA Astrophysics Data System (ADS)

    Julián, Beatriz; Corberán, Rosa; Cordoncillo, Eloisa; Escribano, Purificación; Viana, Bruno; Sanchez, Clément

    2005-11-01

    A simple and versatile one-pot sol-gel synthesis of Eu3+-doped nanocrystalline TiO2 and ZrO2 nanomaterials is reported in this paper. It consists of the controlled crystallization of Eu3+-doped TiO2 or ZrO2 nanoparticles from an initial solution containing the metal alkoxide, the lanthanide precursor, a complexing agent and a non-complexing acid. The main interest is that it could be extended to different lanthanide ions and inorganic metal oxides to prepare other multifunctional nanomaterials. The characterization by XRD, HRTEM and SAED techniques showed that the TiO2 and ZrO2 crystallization takes place at very low temperatures (60 °C) and that the crystallite size can be tailored by modifying the synthetic conditions. The optical properties of the resulting materials were studied by emission spectra and decay measurements. Both Eu3+:TiO2 and Eu3+:ZrO2 samples exhibited long lifetime values after removing organic components (τ = 0.7 and 1.3 ms, respectively), but the Eu3+:ZrO2 system is specially promising for photonic applications since its τ value is longer than some reported for other inorganic or hybrid matrices in which Eu3+ ions are complexed. This behaviour has been explained through an effective dispersion of the lanthanide ions within the ZrO2 nanocrystals.

  18. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  19. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    PubMed Central

    2013-01-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051

  20. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors.

    PubMed

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-26

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  1. Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Kuan; Stennett, Martin C.; Corkhill, Claire L.; Hyatt, Neil C.

    2018-03-01

    Near single phase zirconolite ceramics, prototypically CaZrTi2O7, were fabricated by reactive spark plasma sintering (RSPS), from commercially available CaTiO3, ZrO2 and TiO2 reagents, after processing at 1200 °C for only 1 h. Ceramics were of theoretical density and formed with a controlled mean grain size of 1.9 ± 0.6 μm. The reducing conditions of RSPS afforded the presence of paramagnetic Ti3+, as demonstrated by EPR spectroscopy. Overall, this study demonstrates the potential for RSPS to be a disruptive technology for disposition of surplus separated plutonium stockpiles in ceramic wasteforms, given its inherent advantage of near net shape products and rapid throughput.

  2. Improving fatigue resistance of Pb(Zr,Ti)O3 thin films by using PbZrO3 buffer layers

    NASA Astrophysics Data System (ADS)

    Mensur Alkoy, Ebru; Uchiyama, Kiyoshi; Shiosaki, Tadashi; Alkoy, Sedat

    2006-05-01

    Ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin films with PbZrO3 (PZ) buffer layers were prepared on Pt(111)/Ti/SiO2/Si(100) substrates using a hybrid rf magnetron sputtering and sol-gel process. Texture of PZT films was found to depend on Pb content of PZ buffer layers. Buffered PZT films displayed comparable ferroelectric properties (2Pr=38-53 μC/cm2,2Ec=136-170 kV/cm) with unbuffered PZT. Asymmetric leakage current and fatigue behavior with superior fatigue resistance was observed in PZ buffered PZT compared to unbuffered films. PZ buffer layers were found to affect crystallization and texture of PZT, and act as a capacitive interface layer possibly blocking charge injection from electrodes.

  3. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys.

    PubMed

    Lin, Chia-Wei; Ju, Chien-Ping; Chern Lin, Jiin-Huey

    2005-06-01

    The purpose of the present study is to compare the high-cycle fatigue behavior of newly developed Ti-7.5Mo alloy with that of c.p. Ti, Ti-13Nb-13Zr and Ti-6Al-4V alloys in their as-cast state. Experimental results indicate that Ti-6Al-4V and c.p. Ti have higher stress-controlled fatigue resistance but lower strain-controlled fatigue resistance than Ti-7.5Mo and Ti-13Nb-13Zr. Among four materials Ti-7.5Mo demonstrates the best strain-controlled fatigue performance. The fracture surfaces of the present materials are comprised of three morphologically distinct zones: crack initiation zone, crack propagation zone, and the final-stage overload zone. The fatigue cracks almost always initiate from casting-induced surface/subsurface pores. A river pattern is observed in the propagation zone. In the overload zone dimples are typically observed. Three factors most significantly affecting the fatigue performance of the present materials are the presence of the casting-induced surface/subsurface pores; the location of the pores; and the inherent mechanical properties of the materials.

  4. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.

    PubMed

    Rao, X; Chu, C L; Zheng, Y Y

    2014-06-01

    Porous Ti-Nb-Zr alloys with different porosities from 6.06 to 62.8% are prepared by a two-step foaming powder metallurgy method using TiH2, Nb, and Zr powders together with 0 to 50wt% of NH4HCO3. The effects of the amounts of Nb and Zr as well as the sintering temperature (1473 to 1673K) on their phase composition, porosity, morphology, and mechanical characteristics are investigated. By controlling the porosity, Nb and Zr concentrations as well as the sintering temperature, porous Ti-Nb-Zr alloys with different mechanical properties can be obtained, for example, the hardness between 290 and 63HV, the compressive strength between 1530.5 and 73.4MPa, and the elastic modulus between 10.8 and 1.2GPa. The mechanical properties of the sintered porous Ti-Nb-Zr alloys can be tailored to match different requirements for the human bones and are thus potentially useful in the hard tissue implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Thickness dependent thermoelectric properties of SrTiO3/SrLaTiO3 and SrZrO3/SrLaTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Ishii, Masatoshi; Baniecki, John; Schafranek, Robert; Kerman, Kian; Kurihara, Kazuaki

    2013-03-01

    Thermoelectric power generators will be required for future sensor network systems. SrTiO3 (STO) is one candidate thermoelectric material due to its non-toxicity and comparable power factor to Bismuth telluride. The energy conversion efficiency of SrTiO3-based thermoelectric energy conversion elements has been reported to be enhanced by quantum size effects, such as the two dimensional (2D) electron gas in SrTiO3/SrTi0.8Nb0.2O3/SrTiO3. Nevertheless, a complete understanding of the mechanisms for the reported increase in efficiency are missing owing to a lack of understanding of the thickness dependence of the transport properties. In the talk, we will present a study of the thickness dependence of the transport properties of SrTiO3/SrLaTiO3 and SrZrO3/SrLaTiO3 heterostructures. The SrZrO3/SrLaTiO3 interface has a large conduction band off-set of 1.9 eV which can be utilized to confine electrons in a 2D quantum well. Characterization of the thermopower, conductivity, and Hall effect will be presented as a function of the SrLaTiO3 thickness down to a few unit cells and the implications of the thickness dependence of the transport properties on carrier confinement and increasing the efficiency STO-based 2DEG quantum well structures will be discussed.

  6. Thermal Evaporation Loss Measurements on Quasicrystal (Ti-Zr-Ni) and Glass Forming (Vit 106 and Vit 106a) Liquids

    NASA Astrophysics Data System (ADS)

    Blodgett, M. E.; Gangopadhyay, A. K.; Kelton, K. F.

    2015-04-01

    Thermal evaporation loss measurements made using the electrostatic levitation (ESL) technique for one binary Ti-Zr, two ternary Ti-Zr-Ni, and two glass-forming (Vit 106 and Vit 106a) alloy liquids are reported. The containerless environment enables measurements not only for the equilibrium liquids but also for the metastable supercooled liquids. The data follow the Langmuir equation when the activity coefficient of the solute atoms, a measure for the deviation from the ideal solution behavior, is taken into account. An estimate for the activity coefficient of Ni in the Ti-Zr liquid is made from these data, demonstrating the effectiveness of ESL for such measurements.

  7. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    PubMed

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  8. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    PubMed

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian

    2018-05-01

    A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.

  10. Microstructure characterization and phase transformation kinetic study of ball-milled m-ZrO 2-30 mol% a-TiO 2 mixture by Rietveld method

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Dutta, H.

    2005-05-01

    High-energy ball milling of monoclinic ZrO 2-30 mol% anatase TiO 2 mixture at different durations results in the formation of m-ZrO 2-a-TiO 2 solid solution from which the nucleation of nanocrystalline cubic (c) ZrO 2 polymorphic phase sets in. Post-annealing of 12 h ball-milled sample at different elevated temperatures for 1 h results in almost complete formation of c-ZrO 2 phase. Microstructure of the unmilled, all the ball milled and annealed samples has been characterized by Rietveld's X-ray powder structure refinement method. Particle size, rms lattice strain, change in lattice parameters and phase content of individual phases have been estimated from Rietveld analysis, and are utilized to interpret the results. In course of milling, (1 1 1) of cubic lattice became parallel to ( 1bar 1 1) plane of monoclinic lattice due to the orientation effect and cubic phase may have been formed on the (0 0 1) of the m-ZrO 2-a-TiO 2 solid solution lattice. A comparative study of microstructure and phase transformation kinetics of ZrO 2-10, 20 and 30 mol% a-TiO 2 ball-milled and post-annealed samples reveals that rate of phase transformation m→c-ZrO 2 increases with increasing a-TiO 2 concentration and ∼30 mol% of nanocrystalline c-ZrO 2 phase can be obtained within 4 h of milling time in the presence of 30 mol% of a-TiO 2. The post-annealing treatment at 773, 873 and 973 K for 1 h duration each reveals that rate of c-ZrO 2 formation with increasing temperature is retarded with increasing a-TiO 2 concentration but the amount of c-ZrO 2 becomes almost equal (∼95 mol%) at 973 K. It suggests that almost fully stabilized nanocrystalline c-ZrO 2 can be formed by adding a tetravalent solute to m-ZrO 2.

  11. Microstructural and Mechanical Characterization of Ti-12Mo-6Zr Biomaterials Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Daoush, Walid Mohamed Rashad Mohamed; Park, Hee Sup; Inam, Fawad; Lim, Byung Kyu; Hong, Soon Hyung

    2015-03-01

    Ti-12Mo-6Zr/Al2O3 (titanium biomaterial) was prepared by a powder metallurgy route using Spark Plasma Sintering (SPS). Ti, Mo, and Zr powders were mixed by wet milling with different content of alumina nanoparticles (up to 5 wt pct) as an oxide dispersion strengthening phase. Composite powder mixtures were SPSed at 1273 K (1000 °C) followed by heat treatment and quenching. Composite powders, sintered materials, and heat-treated materials were examined using optical and high-resolution electronic microscopy (scanning and transmission) and X-ray diffraction to characterize particle size, surface morphology, and phase identifications for each composition. All sintered materials were evaluated by measuring density, Vickers hardness, and tensile properties. Fully dense sintered materials were produced by SPS and mechanical properties were found to be improved by subsequent heat treatment. The tensile properties as well as the hardness were increased by increasing the content of Al2O3 nanoparticles in the Ti-12Mo-6Zr matrix.

  12. Comparisons of immersion and electrochemical properties of highly biocompatible Ti-15Zr-4Nb-4Ta alloy and other implantable metals for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Okazaki, Yoshimitsu; Nagata, Hiroyuki

    2012-12-01

    Metal release from implantable metals and the properties of oxide films formed on alloy surfaces were analyzed, focusing on the highly biocompatible Ti-15Zr-4Nb-4Ta alloy. The thickness and electrical resistance (Rp) of the oxide film on such an alloy were compared with those of other implantable metals. The quantity of metal released during a 1-week immersion test was considerably smaller for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy. The potential (E10) indicating a current density of 10 μA cm-2 estimated from the anodic polarization curve was significantly higher for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy and other metals. Moreover, the oxide film (4-7 nm thickness) formed on the Ti-15Zr-4Nb-4Ta surface is electrochemically robust. The oxide film mainly consisted of TiO2 with small amounts of ZrO2, Nb2O5 and Ta2O5 that made the film electrochemically stable. The Rp of Ti-15Zr-4Nb-4Ta was higher than that of Ti-6Al-4V, i.e. 0.9 Ω cm2 in 0.9% NaCl and 1.3 Ω cm2 in Eagle's medium. This Rp was approximately five-fold higher than that of stainless steel, which has a history of more than 40 years of clinical use in the human body. Ti-15Zr-4Nb-4Ta is a potential implant material for long-term clinical use. Moreover, E10 and Rp were found to be useful parameters for assessing biological safety.

  13. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  14. Obtaining and Mechanical Properties of Ti-Mo-Zr-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Bălţatu, M. S.; Vizureanu, P.; Geantă, V.; Nejneru, C.; Țugui, C. A.; Focşăneanu, S. C.

    2017-06-01

    Ti-based alloys are successfully used in the area of orthopedic biomaterials for their enhanced biocompatibility, good corrosion and mechanical properties. The most suitable metals as an alloying element for orthopedic biomaterials are zirconium, molybdenum and tantalum because are non toxic and have good properties. The paper purpose development of two alloys of Ti-Mo-Zr-Ta (TMZT) prepared by arc-melting with several mechanical properties determined by microindentation. The mechanical properties analyzed was Vickers hardness and dynamic elasticity modulus. The investigated alloys presents a low Young’s modulus, an important condition of biomaterials for preventing stress shielding phenomenon.

  15. Effect of structural evolution on mechanical properties of ZrO2 coated Ti-6Al-7Nb-biomedical application

    NASA Astrophysics Data System (ADS)

    Zalnezhad, E.

    2016-05-01

    Zirconia (ZrO2) nanotube arrays were fabricated by anodizing pure zirconium (Zr) coated Ti-6Al-7Nb in fluoride/glycerol electrolyte at a constant potential of 60 V for different times. Zr was deposited atop Ti-6Al-7Nb via a physical vapor deposition magnetron sputtering (PVDMS) technique. Structural investigations of coating were performed utilizing X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the morphology and microstructure of coatings. Unannealed ZrO2 nanotube arrays were amorphous. Monoclinic and tetragonal ZrO2 appeared when the coated substrates were heat treated at 450 °C and 650 °C, while monoclinic ZrO2 was found at 850 °C and 900 °C. Mechanical properties, including nanohardness and modulus of elasticity, were evaluated at different annealing temperatures using a nanoindentation test. The nanoindentation results show that the nanohardness and modulus of elasticity for Ti-6AL-7Nb increased by annealing ZrO2 coated substrate at 450 °C. The nanohardness and modulus of elasticity for coated substrate decreased with annealing temperatures of 650, 850, and 900 °C. At an annealing temperature of 900 °C, cracks in the ZrO2 thin film coating occurred. The highest nanohardness and elastic modulus values of 6.34 and 218 GPa were achieved at an annealing temperature of 450 °C.

  16. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  17. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part II. Solid-State Transformation of the Interdendritic B2 Phase

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Boettinger, W. J.; Newbury, D. E.; Young, K.; Chao, B.

    2010-08-01

    Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni-type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.

  18. AlGaN/GaN High Electron Mobility Transistor Grown and Fabricated on ZrTi Metallic Alloy Buffer Layers

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2017-09-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less

  19. Effect of Ce/Zr molar ratio on the performance of Cu–Ce{sub x}–Zr{sub 1−x}/TiO{sub 2} catalyst for selective catalytic reduction of NO{sub x} with NH{sub 3} in diesel exhaust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaoliang; Gong, Cairong, E-mail: gcr@tju.edu.cn; Lv, Gang

    2014-12-15

    Graphical abstract: The Cu–Ce{sub 0.25}–Zr{sub 0.75}/TiO{sub 2} catalyst exhibited excellent SCR activity at 165–450 °C within the range of exhaust temperatures of diesel engines. - Highlights: • Cu–Ce{sub x}–Zr{sub 1−x}/TiO{sub 2} catalysts were prepared by a wet impregnation method. • The property for NH{sub 3}-selective catalytic reduction of NO{sub x} were investigated. • The Ce/Zr molar ratio had effects on the performance of Cu–Ce–Zr/TiO{sub 2} catalysts. • The Cu–Ce{sub 0.25}–Zr{sub 0.75}/TiO{sub 2} sample exhibited 100% NO{sub x} conversion between 165 °C and 450 °C. • The factors that govern the activity enhancement were extensively investigated. - Abstract: Copper–cerium–zirconium catalysts loadedmore » on TiO{sub 2} prepared by a wet impregnation method were investigated for NH{sub 3}-selective catalytic reduction of NO{sub x}, aiming to study the effects of the Ce/Zr molar ratio on the performance of Cu–Ce–Zr/TiO{sub 2} catalysts. The Cu–Ce{sub 0.25}–Zr{sub 0.75}/TiO{sub 2} sample exhibited nearly 100% NO{sub x} conversion over a wide temperature range (165–450 °C), which is strikingly superior to that of Cu/TiO{sub 2} (210–389 °C) within the range of exhaust temperatures of diesel engines. The factors that govern the activity enhancement were extensively investigated by using a series of characterization techniques, namely X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction by hydrogen (H{sub 2}-TPR). The results showed that the addition of zirconium and/or cerium refined the copper dispersion, prevented copper crystallization and partially incorporated the copper ions into the zirconia (ceira) lattice, which led to enhance the redox abilities of Cu–Ce–Zr/TiO{sub 2} catalysts.« less

  20. Second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass.

    PubMed

    Cao, Q P; Li, J F; Zhang, P N; Horsewell, A; Jiang, J Z; Zhou, Y H

    2007-06-20

    The second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation is estimated to be about 2.46 kJ mol(-1) at 753 K, much smaller than the 61 kJ mol(-1) obtained assuming that it is a polymorphic transformation. It was revealed that the phase transformation occurs through a eutectic crystallization of Cu(51)Zr(14) and Cu(2)TiZr, having an effective activation energy of the order of 400 kJ mol(-1). The average Avrami exponent n is about 2.0, indicating that the crystallization is diffusion controlled.

  1. Development of High Strength Ni-Cu-Zr-Ti-Si-Sn In-Situ Bulk Metallic Glass Composites Reinforced by Hard B2 Phase

    NASA Astrophysics Data System (ADS)

    Park, Hyo Jin; Hong, Sung Hwan; Park, Hae Jin; Kim, Young Seok; Kim, Jeong Tae; Na, Young Sang; Lim, Ka Ram; Wang, Wei-Min; Kim, Ki Buem

    2018-03-01

    In the present study, the influence of atomic ratio of Zr to Ti on the microstructure and mechanical properties of Ni-Cu-Zr-Ti-Si-Sn alloys is investigated. The alloys were designed by fine replacement of Ti for Zr from Ni39Cu20Zr36-xTixSi2Sn3. The increase of Ti content enhances glass forming ability of the alloy by suppression of formation of (Ni, Cu)10(Zr, Ti)7 phase during solidification. With further increasing Ti content up to 24 at.%, the B2 phase is introduced in the amorphous matrix with a small amount of B19' phase from alloy melt. The bulk metallic glass composite containing B2 phase with a volume fraction of 10 vol% exhibits higher fracture strength ( 2.5 GPa) than that of monolithic bulk metallic glass ( 2.3 GPa). This improvement is associated to the individual mechanical characteristics of the B2 phase and amorphous matrix. The B2 phase exhibits higher hardness and modulus than those of amorphous matrix as well as effective stress accommodation up to the higher stress level than the yield strength of amorphous matrix. The large stress accommodation capacity of the hard B2 phase plays an important factor to improve the mechanical properties of in situ Ni-based bulk metallic glass composites.

  2. Porous TiO2-ZrO2 thin film formed by electrochemical technique to improve the biocompatibility of titanium alloy in physiological environment

    NASA Astrophysics Data System (ADS)

    Benea, L.; Dănăilă, E.; Ponthiaux, P.

    2017-02-01

    Porous Ti and Ti alloys have received increasing research interest for bone tissue engineering, especially for dental and orthopaedic implants because they provide cell ingrowths and vascularization, improving of adhesion and osseointegration. The tribocorrosion process is encountered in orthopaedic and dentistry applications, since it is known that the implants are often exposed to simultaneous chemical/electrochemical and mechanical stresses. The purpose of this study was to carry out a systematic investigation of the tribo-electrochemical performance of porous TiO2-ZrO2 thin film formed by anodization of Ti-10Zr alloy surface in an artificial saliva solution and to compare the resulted performance with that of the untreated Ti-10Zr alloy surface in order to be applied for biomedical use. The in situ electrochemical technique used for investigation of tribo-electrochemical degradation was the open circuit potential (OCP) measurement performed before, during and after sliding tests. The results presented herein show that controlled anodic oxidation method can significantly improve the tribocorrosion and friction performances of Ti-10Zr alloy surface intended for biomedical applications.

  3. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  4. Fatigue behaviour of boron free and boron containing heat treated Ti-13Zr-13Nb alloy for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumdar, P., E-mail: m.pallab@gmail.com; Singh, S.B.; Chakraborty, M.

    2010-12-15

    Fatigue behaviour of heat treated Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys for biomedical implants has been investigated by rotating bending test. It was found that fatigue strength of TZN and TZNB alloys is comparable with that of conventionally used biomedical titanium alloys. Addition of boron to TZN alloy deteriorates fatigue strength. - Research Highlights: {yields}The microstructure of the aged TZN consists of {alpha} phase in {beta} matrix. {yields}Addition of boron to TZN leads to the formation of dispersed acicular TiB. {yields}Presence of TiB deteriorates the fatigue strength of TZN alloy. {yields}Fatigue strength of aged TZN/TZNB alloys is comparable with biomedicalmore » Ti-alloys.« less

  5. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications

    PubMed Central

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin

    2018-01-01

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517

  6. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications.

    PubMed

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui

    2018-03-30

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.

  7. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2013-01-01

    Currently, nanometal oxides are used extensively in different industries such as medicine, cosmetics and food. The increased consumption of nanoparticles (NPs) leads the necessity to understand the fate of the nanoparticles in the environment. The present study focused on the ecotoxicological behaviour of bulk and nano ZrO2 (Zirconia) and TiO2 (Titania) particles on PGPR (plant growth promoting rhizobacteria), soil and its nutrient contents. The microbial susceptibility study showed that nano TiO2 had 13 +/- 0.9 mm (B. megaterium), 15 +/- 0.2 mm (P. fluorescens), 16 +/- 0.2 mm (A. vinelandii) and 12 +/- 0.3 mm (B. brevis) zones of inhibition. However, nano and bulk ZrO2 particles were non-toxic to PGPR. In addition, it was found that toxicity varied depends on the medium of reaction. The soil study showed that nano TiO2 was found to be highly toxic, whereas bulk TiO2 was less toxic towards soil bacterial populations at 1000 mg L(-1). In contrast, nano and bulk ZrO2 were found to be inert at 1000 mg L(-1). The observed zeta potential and hydrophobicity of TiO2 particles causes more toxic than ZrO2 in parallel with particle size. However, nano TiO2 decreases the microbial population as well as nutrient level of the soil but not zirconia. Our finding shows that the mechanism of toxicity depends on size, hydrophobic potential and zeta potential of the metal oxide particles. Thus, it is necessary to take safety measures during the disposal and use of such toxic nanoparticles in the soil to prevent their hazardous effects.

  8. Effect of atomic size on undercoolability of binary solid solution alloy liquids with Zr, Ti, and Hf using electrostatic levitation

    NASA Astrophysics Data System (ADS)

    Jeon, S.; Kang, D.-H.; Lee, Y. H.; Lee, S.; Lee, G. W.

    2016-11-01

    We investigate the relationship between the excess volume and undercoolability of Zr-Ti and Zr-Hf alloy liquids by using electrostatic levitation. Unlike in the case of Zr-Hf alloy liquids in which sizes of the constituent atoms are matched, a remarkable increase of undercoolability and negative excess volumes are observed in Zr-Ti alloy liquids as a function of their compositional ratios. In this work, size mismatch entropies for the liquids were obtained by calculating their hard sphere diameters, number densities, and packing fractions. We also show that the size mismatch entropy, which arises from the differences in atomic sizes of the constituent elements, plays an important role in determining the stabilities of metallic liquids.

  9. Histomorphometric and histologic evaluation of titanium-zirconium (aTiZr) implants with anodized surfaces.

    PubMed

    Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John

    2016-05-01

    The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.

  10. Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications

    NASA Astrophysics Data System (ADS)

    Lai, J. J.; Lin, Y. S.; Chang, C. H.; Wei, T. Y.; Huang, J. C.; Liao, Z. X.; Lin, C. H.; Chen, C. H.

    2018-01-01

    Tantalum (Ta) is considered as one of the most promising metal due to its high corrosion resistance, excellent biocompatibility and cell adhesion/in-growth capabilities. Although there are some researches exploring the biomedical aspects of Ta and Ta based alloys, systematic characterizations of newly developed Ta-based metallic glasses in bio-implant applications is still lacking. This study employs sputtering approach to produced thin-film Ti-based metallic glasses due to the high melting temperature of Ta (3020 °C). Two fully amorphous Ta-based metallic glasses composed of Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 are produced and experimentally characterized in terms of their mechanical properties, bio-corrosion properties, surface hydrophilic characteristics, and in-vitro cell viability and cells attachment tests. Compare to conventional pure Ti and Ta metals, the developed Ta-based metallic glasses exhibit higher hardness and lower modulus which are better match to the mechanical properties of bone. MTS assay results show that Ta-based metallic glasses show comparable cell viability and cell attachment rate compared to that of pure Ti and Ta surface in a 72 h in-vitro test.

  11. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  12. First-principles study of adsorption and diffusion of oxygen on surfaces of TiN, ZrN and HfN

    NASA Astrophysics Data System (ADS)

    Guo, Fangyu; Wang, Jianchuan; Du, Yong; Wang, Jiong; Shang, Shun-Li; Li, Songlin; Chen, Li

    2018-09-01

    Using first-principles calculations based on density functional theory, we systematically study the adsorption and diffusion behaviors of single oxygen (O) atom on the (0 0 1) surfaces of TiN, ZrN and HfN nitride coatings. The top of N site (top(N)) is the most energetic favorable site for O atom and followed by the hollow site for all the three nitrides. O atom tends to diffuse on the (0 0 1) surfaces of the nitrides from the top of transition metal top(TM) sites to a neighboring top(TM) sites by avoiding N sites. The adsorption of O on ZrN and HfN is more stable than that on TiN. Our findings could explain the experimental phenomenon that the oxide thickness of TiN is smaller than that of ZrN under the same oxidation conditions.

  13. Effects of shot-peening and atmospheric-pressure plasma on aesthetic improvement of Ti-Nb-Ta-Zr alloy for dental applications

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Suzuki, Yuu; Ito, Michiko; Yamada, Motoko; Matsutake, Sinpei; Takashima, Seigo; Sato, Hisashi; Watanabe, Yoshimi

    2018-01-01

    Ti and Ti alloys are widely used for biomedical applications such as artificial joints and dental devices because of their good mechanical properties and biochemical compatibility. However, dental devices made of Ti and Ti alloys do not have the same color as teeth, so they are inferior to ceramics and polymers in terms of aesthetic properties. In a previous study, Ti-29Nb-13Ta-4.6Zr was coated with a white Ti oxide layer by heat treatment to improve its aesthetic properties. Shot-peening is a severe plastic deformation process and can introduce a large shear strain on the peened surface. In this study, the effects of shot-peening and atmospheric-pressure plasma on Ti-29Nb-13Ta-4.6Zr were investigated to form a white layer on the surface for dental applications.

  14. Structural, Optical and Impedance Spectroscopic Characterizations of Nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr)

    NASA Astrophysics Data System (ADS)

    Sandeep, K.; Thomas, Jijimon K.; Solomon, Sam

    2018-04-01

    A nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr) system has been synthesized by a modified combustion technique. The cation-deficient calzirtite (Ca2Ti2Zr5O16) is found to be a tetragonal structure with the space group I4(1)/acd. The average size of the particle from the transmission electron microscopy image is estimated to be 23.30 nm and 20.16 nm for Ca2Ti2Zr5O16 and Ba2Ti2Zr5O16, respectively. The optical bandgap calculated using a Tauc plot is between 3.01 eV and 3.46 eV. Raman and Fourier transform infrared spectroscopy (FTIR) studies were carried out to confirm the phase purity of the sample. The scanning electron microscopy (SEM) image of a Ca2Ti2Zr5O16 sample sintered at 1360°C for 3 h shows minimum porosity with 96% of the theoretical density. The frequency-dependent dielectric study shows that the dielectric constant is maximized at low frequencies and decreases as the frequency increases. The Cole-Cole plot reveals that the material exhibits conduction due to the contributions of grain, grain boundary and electrode effects. The photoluminescence spectra of the samples were recorded and the transitions causing emission have been identified.

  15. Studies on corrosion resistance and bio-activity of plasma spray deposited hydroxylapatite (HA) based TiO2 and ZrO2 dispersed composite coatings on titanium alloy (Ti-6Al-4V) and the same after post spray heat treatment

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-10-01

    In the present study, the effect of plasma spray deposited hydroxylapatite (HA) based TiO2 dispersed (HA + 50 wt.% TiO2), coating and post spray heat treatment to be referred as HA-TiO2 (heat treated at 650 °C for 2 h) and ZrO2 dispersed (HA + 10 wt.% ZrO2), to be referred as HA-ZrO2 coating (heat treated at 750 °C for 2 h) on corrosion resistance and bioactivity of Ti-6Al-4V substrate has been undertaken. There is partial decomposition of HA to tri-calcium-phosphate (Ca3(PO4)2) and formation of CaTiO3 phase in HA-TiO2 coating and CaZrO3 phase in the HA-ZrO2 coating. Corrosion study in Hank's solution shows that there is shifting of corrosion potential (Ecorr) towards active potential (-1.1 V(SCE) for as-sprayed and post spray heat treated HA-TiO2 coating, -1.1 V(SCE) for as-sprayed HA-ZrO2 coating and -1 V(SCE) for HA-ZO2 coating after post spray heat treatment), and deterioration in pitting corrosion (Epit) resistance in as-sprayed coatings and the same after heat treatment (-0.7 V(SCE) for both HA-TiO2 and HA-ZrO2 coating as compared to as received substrate (-0.3 V(SCE)). The corrosion rate was increased for both the coatings with a maximum increase in HA-ZrO2 coating. Bioactivity test shows a higher degree of apatite deposition in as-sprayed coating and the same after heat treatment as compared to as received Ti-6Al-4V though the as-sprayed one showed a superior behavior.

  16. Processing Ti-25Ta-5Zr Bioalloy via Anodic Oxidation Procedure at High Voltage

    NASA Astrophysics Data System (ADS)

    Ionita, Daniela; Grecu, Mihaela; Dilea, Mirela; Cojocaru, Vasile Danut; Demetrescu, Ioana

    2011-12-01

    The current paper reports the processing of Ti-25Ta-5Zr bioalloy via anodic oxidation in NH4BF4 solution under constant potentiostatic conditions at high voltage to obtain more suitable properties for biomedical application. The maximum efficiency of the procedure is reached at highest applied voltage, when the corrosion rate in Hank's solution is decreased approxomately six times. The topography of the anodic layer has been studied using atomic force microscopy (AFM), and the results indicated that the anodic oxidation process increases the surface roughness. The AFM images indicated a different porosity for the anodized surfaces as well. After anodizing, the hydrophilic character of Ti-25Ta-5Zr samples has increased. A good correlation between corrosion rate obtained from potentiodynamic curves and corrosion rate from ions release analysis was obtained.

  17. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region.

    PubMed

    Huang, C H; Lai, J J; Wei, T Y; Chen, Y H; Wang, X; Kuan, S Y; Huang, J C

    2015-01-01

    The effects of the nanocrystalline phases on the bio-corrosion behavior of highly bio-friendly Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid were investigated, and the findings are compared with our previous observations from the Zr53Cu30Ni9Al8 metallic glasses. The Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods to result in different degrees of α-Ti nano-phases in the amorphous matrix. The nanocrystallized Ti42Zr40Si15Ta3 metallic glasses containing corrosion resistant α-Ti phases exhibited more promising bio-corrosion resistance, due to the superior pitting resistance. This is distinctly different from the previous case of the Zr53Cu30Ni9Al8 metallic glasses with the reactive Zr2Cu phases inducing serious galvanic corrosion and lower bio-corrosion resistance. Thus, whether the fully amorphous or partially crystallized metallic glass would exhibit better bio-corrosion resistance, the answer would depend on the crystallized phase nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of calcium pyrophosphate on microstructural evolution and in vitro biocompatibility of Ti-35Nb-7Zr composite by spark plasma sintering.

    PubMed

    Zhang, L; Tan, J; He, Z Y; Jiang, Y H

    2018-09-01

    β-type Ti-35Nb-7Zr alloy has attracted considerable attentions as a bone implant material. The alloy, however, has poor bioactivity, which difficult to form a strong osseointegration between the bone tissues. Combining Ti alloy with a bioactive and biodegradable ceramic has been of interest to researchers. But the large difference in physicochemical property of high-melting metal and ceramic elements would bring the manufacturing restriction. In this work, Ti-35Nb-7Zr-CPP composites were fabricated with mechanical alloy of Ti, Nb, Zr and Nano calcium pyrophosphate (CPP) powders mixture followed by spark plasma sintering (SPS) routes. The effect of CPP ceramic on microstructural evolution and in vitro biocompatibility were investigated. As the addition of CPP (10-30 wt%), ceramic elements spreading towards the matrix, the generated metal-ceramic bioactive phases CaTiO 3 are observed well consolidated with β-Ti matrix. With the CPP increasing, Ca and P atoms rapidly migrated to the β-Ti matrix to form granulated Ti 5 P 3 , which leads to the increasing porosity (10%-18%) in the composites. The results demonstrated that the favorable cell viability (the cell proliferation rates were higher than 100%) and growth inside the pores of the composites arise from the rough micro-porous surface and the release of bioactive metal-ceramic phase ions into the biological environment. The enhanced bioactivity and microstructural evolution behaviors of the Ti-35Nb-7Zr-CPP composites may provide a strategy for designing and fabricating multifunctional implants. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. In-plane orientation and composition dependences of crystal structure and electrical properties of {100}-oriented Pb(Zr,Ti)O3 films grown on (100) Si substrates by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okamoto, Shoji; Sankara Rama Krishnan, P. S.; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2017-10-01

    In-plane orientation-controlled Pb(Zr x ,Ti1- x )O3 (PZT) films with a thickness of approximately 2 µm and a Zr/(Zr + Ti) ratio of 0.39-0.65 were grown on (100) Si substrates by pulsed metal-organic chemical vapor deposition (MOCVD). In-plane-oriented epitaxial PZT films and in-plane random fiber-textured PZT films with {100} out-of-plane orientation were grown on (100)c SrRuO3//(100)c LaNiO3//(100) CeO2//(100) YSZ//(100) Si and (100)c SrRuO3/(100)c LaNiO3/(111) Pt/TiO2/SiO2/(100) Si substrates, respectively. The effects of Zr/(Zr + Ti) ratio and in-plane orientation on the crystal structure, dielectric, ferroelectric, and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that the epitaxial PZT films had a higher volume fraction of (100) orientation than the fiber-textured PZT films in the tetragonal Zr/(Zr + Ti) ratio region. A large difference was not detected between the epitaxial films and the fiber-textured films for Zr/(Zr + Ti) ratio dependence of the dielectric constant, and remanent polarization. However, in the rhombohedral phase region [Zr/(Zr + Ti) = 0.65], coercive field was found to be 1.5-fold different between the epitaxial and fiber-textured PZT films. The maximum field-induced strains measured at 0-100 kV/cm by scanning atomic force microscopy were obtained at approximately Zr/(Zr + Ti) = 0.50 and were about 0.5 and 0.3% for the epitaxial and fiber-textured PZT films, respectively.

  20. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2.

    PubMed

    Lucky, R A; Charpentier, P A

    2009-05-13

    In this study the thermal behavior of bimetallic ZrO(2)-TiO(2) (10/90 mol/mol) nanotubes are discussed which were synthesized via a sol-gel process in supercritical carbon dioxide (scCO(2)). The effects of calcination temperature on the morphology, phase structure, mean crystallite size, specific surface area and pore volume of the nanotubes were investigated by using a variety of physiochemical techniques. We report that SEM and TEM images showed that the nanotubular structure was preserved at up to 800 degrees C calcination temperature. When exposed to higher temperatures (900-1000 degrees C) the ZrO(2)-TiO(2) tubes deformed and the crystallites fused together, forming larger crystallites, and a bimetallic ZrTiO(4) species was detected. These results were further examined using TGA, FTIR, XRD and HRTEM analysis. The BET textural properties demonstrated that the presence of a small amount of Zr in the TiO(2) matrix inhibited the grain growth, stabilized the anatase phase and increased the thermal stability.

  1. Effect of Zr Doping on Structural and Ferroelectric Properties of Lead-Free Bi0.5(Na0.80K0.20)0.5TiO3 Films

    NASA Astrophysics Data System (ADS)

    Quan, Ngo Duc; Hung, Vu Ngoc; Dung, Dang Duc

    2017-10-01

    Environmentally friendly lead-free Bi0.5(Na0.80K0.20)0.5(Ti1- x Zr x )O3 (BNKT- xZr) ferroelectric films with Zr4+ doping concentration x in the range from 0 to 0.05 have been grown on Pt/Ti/SiO2/Si substrates via chemical solution deposition. The effects of Zr4+ substitution on the crystal structure and ferroelectric properties of the films were investigated. X-ray diffraction data revealed that the BNKT- xZr films possessed rhombohedral and tetragonal symmetries at a morphotropic phase boundary when a small amount of Zr4+ doping was added. P- E hysteresis loops typical of ferroelectric materials were observed for all compositions. Zr4+ substituted for Ti4+ in the BNKT- xZr films and remarkably enhanced the ferroelectric properties. The remanent ( P r) and maximum polarization ( P m) reached their highest values of 14.0 μC/cm2 and 35.7 μC/cm2, respectively, at x = 0.02. These values, which are equivalent to the highest P r and P m values in previous reports on lead-free films with different compositions, compare well with those of Pb(Zr,Ti)O3 (PZT) films. Therefore, BNKT- xZr films with optimal Zr4+ concentration could substitute for PZT films in lead-free piezo-microelectromechanical systems (MEMS) devices.

  2. Electrical and dielectric properties of ZnO and CeO{sub 2} doped ZrTi{sub 2}O{sub 6} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Aneesh; Thomas, Jijimon K.; John, Annamma

    2014-01-28

    Zirconium oxide (ZrO{sub 2}) and titanium dioxide (TiO{sub 2}) are the important catalyst supports, since it has acidic and basic properties. The intermediate phase zirconium titanate ZrTi{sub 2}O{sub 6}, which is a solid solution with Zr:Ti ratio 1:2 has outstanding dielectric properties. The effects of doping of ZnO and CeO{sub 2} on the dielectric and electrical properties of ZrTi{sub 2}O{sub 6} ceramic are investigated. On adding 0.5 wt% ZnO, the dielectric constant is increased but, on adding CeO{sub 2}, the dielectric constant is decreased. The bulk density of pure sample sintered at 1530 °C is 91% of theoretical density whilemore » that of the doped samples sintered at 1450 °C is more than 94% of theoretical density. Scanning electron micrographs reveal that the samples are well sintered with minimum porosity. The semicircle behavior in the Cole-Cole plots at room temperature reveals that the samples are good ionic conductor. The induced impedance is reduced for doped samples and this can be used as a material for electrolyte in Solid Oxide Fuel Cell.« less

  3. [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks

    PubMed Central

    2017-01-01

    Metal–organic frameworks (MOFs) based on Ti-oxo clusters (Ti-MOFs) represent a naturally self-assembled superlattice of TiO2 nanoparticles separated by designable organic linkers as antenna chromophores, epitomizing a promising platform for solar energy conversion. However, despite the vast, diverse, and well-developed Ti-cluster chemistry, only a scarce number of Ti-MOFs have been documented. The synthetic conditions of most Ti-based clusters are incompatible with those required for MOF crystallization, which has severely limited the development of Ti-MOFs. This challenge has been met herein by the discovery of the [Ti8Zr2O12(COO)16] cluster as a nearly ideal building unit for photoactive MOFs. A family of isoreticular photoactive MOFs were assembled, and their orbital alignments were fine-tuned by rational functionalization of organic linkers under computational guidance. These MOFs demonstrate high porosity, excellent chemical stability, tunable photoresponse, and good activity toward photocatalytic hydrogen evolution reactions. The discovery of the [Ti8Zr2O12(COO)16] cluster and the facile construction of photoactive MOFs from this cluster shall pave the way for the development of future Ti-MOF-based photocatalysts. PMID:29392182

  4. Thermomechanical processing of aluminum micro-alloyed with Sc, Zr, Ti, B, and C

    NASA Astrophysics Data System (ADS)

    McNamara, Cameron T.

    Critical exploration of the minimalistic high strength low alloy aluminum (HSLA-Al) paradigm is necessary for the continued development of advanced aluminum alloys. In this study, scandium (Sc) and zirconium (Zr) are examined as the main precipitation strengthening additions, while magnesium (Mg) is added to probe the synergistic effects of solution and precipitation hardening, as well as the grain refinement during solidification afforded by a moderate growth restriction factor. Further, pathways of recrystallization are explored in several potential HSLA-Al syste =ms sans Sc. Aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) grain refining master alloys are added to a series of Al-Zr alloys to examine both the reported Zr poisoning effect on grain size reduction and the impact on recrystallization resistance through the use of electron backscattered diffraction (EBSD) imaging. Results include an analysis of active strengthening mechanisms and advisement for both constitution and thermomechanical processing of HSLA-Al alloys for wrought or near-net shape cast components. The mechanisms of recrystallization are discussed for alloys which contain a bimodal distribution of particles, some of which act as nucleation sites for grain formation during annealing and others which restrict the growth of the newly formed grains.

  5. Effects of Zr, Ti, and Al Additions on Nonmetallic Inclusions and Impact Toughness of Cast Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Bizyukov, Pavel V.; Giese, Scott R.

    2017-04-01

    A microalloying of the low-carbon and low-alloy cast steel was conducted with Zr, Ti, and Al that were added to the steel in four combinations. After heat treatment, the samples were tested for impact toughness at room temperature using the Charpy method. The highest values of impact toughness were obtained in the group treated with Zr, while Zr-Ti and Zr-Ti-Al groups showed moderate toughness values; the lowest values were observed in the Zr-Al group. Difference among the treatment groups was observed in the fracture mechanisms, morphology, and area distribution of the inclusions. High toughness values achieved in the trials treated with zirconium corresponded with smooth ductile fracture. The metal treated with a combination of zirconium and titanium had a relatively small area occupied by inclusions, but its toughness was also moderate. Lowest impact toughness values corresponded with the larger area occupied by the inclusions in the trials treated with aluminum. Also, a connection between the solubility product [Al][N] and impact toughness was established. The study also provides a qualitative description and quantitative analysis of the nonmetallic inclusions formation as a result of microalloying treatment. The precipitation sequence of the inclusions was described based on the thermochemical calculations for the nonmetallic compounds discovered in the experimental steel. A description of the size distribution, morphology, and composition was conducted for the oxides, nitrides, sulfides, and multiphase particles.

  6. Electrochemical Characteristics of Cell Cultured Ti-Nb-Zr Alloys After Nano-Crystallized Si-HA Coating.

    PubMed

    Jeong, Yong-Hoon; Choe, Han-Cheol

    2015-01-01

    The aim of this study was to investigate the electrochemical characteristics of nano crystallized Si-HA coating on Ti-Nb-Zr alloy after human osteoblast like (HOB) cell attachment. The Ti-Nb-Zr alloy was manufactured with 35 wt.% of Nb and 10 wt.% of Zr by arc melting furnace to appropriate physical properties as biomaterials. The HA and Si-substituted coatings were prepared by electron-beam physical vapor deposition method with 0.5, 0.8 and 1.2 wt.% of Si contents, and nano aging treatment was performed 500 degrees C for 1 h. The characteristics of coating surface were analyzed by field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. To evaluate of cell attachment on cell cultured surface, the potentiodynamic test was performed on the surface using HOB cells. The results showed that the Si-HA coating surface showed higher tendency of cell attachment than that of single HA coating, corrosion resistance value was increased by dense of cell attachment.

  7. Electrode characteristics of nanocrystalline (Zr, Ti)(V, Cr, Ni) 2.41 compound

    NASA Astrophysics Data System (ADS)

    Majchrzycki, W.; Jurczyk, M.

    The electrochemical properties of nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 alloy, which has the hexagonal C14 type structure, have been investigated. This material has been prepared using mechanical alloying (MA) followed by annealing. The amorphous phase forms directly from the starting mixture of the elements, without other phase formation. Heating the MA samples at 1070 K for 0.5 h resulted in the creation of ordered alloy. This alloy was used as negative electrode for Ni-MH x battery. The electrochemical results show very little difference between the nanocrystalline and polycrystalline powders, as compared with the substantial difference between these and the amorphous powder. In the annealed nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 powders discharging capacities up to 150 mA h g -1 (at 160 mA g -1 discharging current) have been measured. The properties of nanocrystalline electrode were attributed to the structural characteristics of the compound caused by mechanical alloying.

  8. Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds

    NASA Astrophysics Data System (ADS)

    Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.

    2018-06-01

    First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.

  9. Preparation and Characterization of BaTiO3-PbZrTiO3 Coating for Pyroelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Raghavendra, R. M.; Praneeth, K. P. S. S.; Dutta, Soma

    2017-01-01

    Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3-(1 - x)PbZr0.52Ti0.48O3 (BT-PZT) solid solution. The developed BT-PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m-3 K-2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT-PZT system. The developed BT-PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.

  10. Investigation of static properties of medical alloys Ti-(20-30)Nb-(10-13)Ta-5Zr

    NASA Astrophysics Data System (ADS)

    Sergienko, K. V.; Sevost’yanov, M. A.; Konushkin, S. V.; Nasakina, E. O.; Baikin, A. S.; Shatova, L. A.; Kolmakov, A. G.

    2018-04-01

    In the work, static properties of TiNbTaZr titanium alloy were carried out. The search for a NiTi alloy replacement is necessary for medical products to eliminate the negative effects of nickel on the body. Conclusions are drawn about the adequacy of the mechanical properties of the test alloy for use in stent implants.

  11. Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi 2O 7)

    DOE PAGES

    Clark, Braeden M.; Sundaram, S. K.; Misture, Scott T.

    2017-07-19

    Compounds with the formulae CaZr 1–xCe xTi 2O 7 with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca 0.4Ce 0.4TiO 3) was stabilized duemore » to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi 2O 7 (cubic pyrochlore) formed as an intermediate phase during the transition. Lastly, our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the P O2 and the heat treatment temperature.« less

  12. Polymorphic Transitions in Cerium-Substituted Zirconolite (CaZrTi 2O 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Braeden M.; Sundaram, S. K.; Misture, Scott T.

    Compounds with the formulae CaZr 1–xCe xTi 2O 7 with x = 0.1–0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca 0.4Ce 0.4TiO 3) was stabilized duemore » to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi 2O 7 (cubic pyrochlore) formed as an intermediate phase during the transition. Lastly, our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the P O2 and the heat treatment temperature.« less

  13. Excellent glass forming ability and plasticity in high entropy Zr20Ti20Hf20M20Be20 (M = Cu, Ni, Co) alloys

    NASA Astrophysics Data System (ADS)

    Zong, Haitao; Geng, Chenchen; Kang, Chaoyang; Cao, Guohua; Bian, Linyan; Li, Lixin; Zhang, Baoqing; Li, Ming

    2018-03-01

    We reported here the studies of a series of Zr20Ti20Hf20M20Be20 (M = Cu, Ni and Co) quinary high entropy bulk metallic glasses. Glasses with critical diameters (Dc) of 3 mm, 8 mm and 5 mm, respectively has been successfully fabricated by copper mold casting. Strikingly, a plastic strain of 11.6% is achieved in the Zr20Ti20Hf20Cu20Be20 metallic glass. The dynamic fragility the Zr20Ti20Hf20Cu20Be20 alloy is determined from calorimetric measurements. The excellent plasticity is explained to be attributed to relatively higher fragility.

  14. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less

  15. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2016-09-21

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less

  16. Incorporating Small Fatigue Crack Growth in Probabilistic Life Prediction: Effect of Stress Ratio in Ti-6Al-2Sn-4Zr-6-Mo (Preprint)

    DTIC Science & Technology

    2012-08-01

    growth rates as well as the variability in the same, in the + titanium alloy, Ti-6Al-2Sn-4Zr-6Mo (Ti- 6 -2- 4 - 6 ) was studied at 260°C. A probabilistic...were obtained in a separate study on the effect of R on the small-crack growth regime in another + titanium alloy, Ti- 6 - 4 [32]. Given that crack...microstructure of Ti-6Al-2Sn-4Zr-6Mo (Ti- 6 -2- 4 - 6 ) at 260°C with particular emphasis on incorporating small-crack data into probabilistic life prediction

  17. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    PubMed

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  18. Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5ZrTi Alloy (Preprint)

    DTIC Science & Technology

    2011-10-01

    slightly enriched with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was...FCC phase was highly enriched with Cr and it was identified as a Laves C15 phase, ( Zr ,Ta)(Cr,Mo, Nb )2, with the lattice parameter a = 733.38 ± 0.18 pm...with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was enriched with Zr and Ti

  19. Investigation of the stability of glass-ceramic composites containing CeTi 2 O 6 and CaZrTi 2 O 7 after ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paknahad, Elham; Grosvenor, Andrew P.

    Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigatemore » the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.« less

  20. Investigation of the stability of glass-ceramic composites containing CeTi2O6 and CaZrTi2O7 after ion implantation

    NASA Astrophysics Data System (ADS)

    Paknahad, Elham; Grosvenor, Andrew P.

    2017-12-01

    Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigate the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.

  1. Synthesis and Characterization of Zr-BASED Amorphous and Crystalline Composite Coating on Ti Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Tang, D. M.; Zhang, D. C.; Peng, W.; Luo, Z. C.; Wu, X. Q.; Wang, Y. M.; Lin, J. G.

    2014-02-01

    A thin strip of a Zr-based alloy with a composition of Zr60Cu25Fe5Al10 (in atom percent) was used as a raw material, and the composite coatings containing Zr-based amorphous phase and crystallites on Ti substrate were fabricated by a one-step laser cladding method without protection. The microstructure, phase constitution, microhardness and wear properties of the coatings were investigated. The results indicate that the microstructure of the coatings is strongly dependent on the laser scanning speed under the conditions of the laser power of 1300 W and laser beam diameter of 6 mm, and the composite coating mainly containing amorphous phase with a small amount of the crystallites can be obtained at the laser scanning speed of 10 mm/s. The composite coating exhibits much higher microhardness than the pure Ti substrate, and thus it behaves superior wear resistance in comparison with the substrate.

  2. Impedance of (CoFeZr)0,559(PbZrTiO3)0,441 nanocomposite annealed in a tubular furnace

    NASA Astrophysics Data System (ADS)

    Boiko, Oleksandr

    2016-12-01

    The objective of the present research has been to determine the influence of annealing in tubular furnace on capacity of (CoFeZr)0,559(PbZrTiO3)0,441 nanocomposite produced by ion beam sputtering using combined argon and oxygen beam. The phase angle of the nanocomposite directly after preparing demonstrates negative values, which indicates the capacitive type of electrical conductivity of the material. The rapid increase of conductivity when frequency increases indicates hopping conductance in the material. The additional polarization of the nanocomposite occurs with its extinction in the area of high frequencies. The electrons relaxation time has been defined as of ca τ = 1,25×10-4 s. Annealing of nanocomposite sample x = 55.9 at.% at temperature Ta = 548 K causes phase angle obtains positive values in high frequency area, which indicates the change of conduction type from capacitive to inductive. The voltage resonance phenomenon occurs in the material. Annealing in temperature of Ta = 648 K causes changes of the nanomaterials capacity. The additional oxidization of CoFeZr metallic phase nanograins which provides to the potential barrier formation around potential wells (CoFeZr nanoparticles).

  3. Dynamic recrystallization behavior of a biomedical Ti-13Nb-13Zr alloy.

    PubMed

    Bobbili, Ravindranadh; Madhu, V

    2016-06-01

    The dynamic recrystallization (DRX) behavior of a biomedical titanium Ti-13Nb-13Zr alloy has been investigated using the high temperature compression tests under wide range of strain rates (0.001-1/s) and temperatures 900-1050°C. A constitutive equation represented as a function of temperature, strain rate and true strain is developed and the hot deformation apparent activation energy is calculated about 534kJ/mol. By considering the exponential relationship between work-hardening rate (θ) and stress, a new mathematical model was proposed for predicting flow stress up to the critical strain during hot deformation. The mathematical model for predicting flow stress up to the critical strain exhibits better consistency and accuracy. The DRX kinetic equation of Ti-13Nb-13Zr alloy is described as XDRX=1-exp[-0.32(Ɛ-ƐcƐ(*))(2.3)] . The DRX kinetic model was validated by microstructure observation. It was also found that the process of DRX was promoted by decreasing strain rate and increasing deformation temperature. Eventually, the continuous dynamic recrystallization (CDRX) was identified to be the DRX mechanism using transmission electron microscope (TEM). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Biocompatible low Young's modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal.

    PubMed

    Lee, S-H; Todai, M; Tane, M; Hagihara, K; Nakajima, H; Nakano, T

    2012-10-01

    The elastic anisotropy of the Ti-15Mo-5Zr-3Al (mass%) β-Ti alloy, an ISO certified biomedical material, was investigated using its single crystal. It was revealed that the Young's modulus exhibited pronounced anisotropy. The Young's modulus was reduced to 44.4GPa along the 〈100〉 direction in the Ti-15Mo-5Zr-3Al single crystal, that is comparable to that of human cortical bones. We determined the strategy that β-Ti alloys with extremely low moduli can be developed by reducing the electron-atom (e/a) ratio in alloys, and by suppressing the formation of the ω-phase at the same time. This new knowledge must lead to the development of "single crystalline β-Ti implant materials" as hard tissue replacements for reducing the stress shielding effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Enhanced electrical properties of SrBi4Ti4O15 ceramic with addition of ZrO2

    NASA Astrophysics Data System (ADS)

    Mamatha, B.; Rani, G. Neeraja; Shankar, J.

    2018-04-01

    Polycrystalline SrBi4Ti3.95Zr0.05O15 (SBZT) ceramic was prepared by solid-state double sintering method. It was characterized by X-Ray Diffraction (XRD) and Scanning Electron Micrograph (SEM). With the increased addition of ZrO2, the electrical properties as dielectric, ferroelectric and piezoelectric were studied. From XRD, single-phase formation with orthorhombic structure was identified by the increase of ZrO2. The remnant polarization (Pr) and dielectric constant was found to be increased with the increase of ZrO2. With the increase of ZrO2, Curie temperature (Tc) was found to be decreased. The planar electromechanical coupling coefficient (Kp = 0.57) and Piezoelectric coefficient (d33 = 18 pC/N) was found to be increased with the increase of ZrO2.

  6. First-Principles Study of the Jahn-Teller Distortion in the Ti1-XVXH2 and Zr1-XNbxH2 Alloys

    NASA Astrophysics Data System (ADS)

    Quijano, Ramiro; de Coss, Romeo; Singh, David

    2008-03-01

    The transition metal dihydrides TiH2 and ZrH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Electronic band structure calculations have shown that TiH2 and ZrH2 in the cubic phase display a very flat band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. In order to understand the role of band filling in controlling the structural instability of the transition metal dihydrides, we have performed a first-principles total energy study of the Ti1-XVxH2 and Zr1-xNbxH2 alloys. The calculations were performed using FP-LAPW method within the (DFT) and we use the GGA for exchange correlation functional energy. The critical concentration for which the Jahn-Teller effect is suppressed, was determined from the evolution of the tetragonal-cubic energy barrier. We discuss the electronic mechanism of the structural-instability, in terms of the band filling. From the obtained results we conclude that the tetragonal distortion in TiH2 and ZrH2 is not produced only by a Jahn-Teller Effect. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.

  7. Ab initio study for the IR spectroscopy of PbTiO3 and PbZrO3, primary blocks of PbZr1‑x Ti x O3

    NASA Astrophysics Data System (ADS)

    Peperstraete, Yoann; Amzallag, Emilie; Tétot, Robert; Roy, Pascale

    2018-05-01

    PbTiO3 (PT) and PbZrO3 (PZ) are the two primary blocks of the solid solution PbZr1‑x Ti x O3 (PZT). They can be modelled in different ways; but, in order to do comparable DFT calculations on PZT, with different values of x, one must find a unique method that can be used for both PT and PZ. In particular, we want to evaluate their vibrational properties to compare them with experimental data. Density functional theory (DFT) is used to perform structure geometry optimizations and electronic structure calculations, both on low- and high-temperature phase. Then, harmonic vibrational frequencies of their low-temperature phase are determined for transverse and longitudinal optical (TO & LO) phonons. Moreover, a detailed study of the eigenvectors shows that accurate calculations are necessary to correctly interpret and understand the IR spectra. In the end, the comparison of our theoretical results with previous experimental and theoretical data confirm the strong potential of the SOGGA (second-order generalized gradient approximation) functional to correctly describe PT, PZ and, hopefully, PZT; especially their structural and vibrational properties.

  8. Ferroelectric Polarization-Modulated Interfacial Fine Structures Involving Two-Dimensional Electron Gases in Pb(Zr,Ti)O3/LaAlO3/SrTiO3 Heterostructures.

    PubMed

    Wang, Shuangbao; Bai, Yuhang; Xie, Lin; Li, Chen; Key, Julian D; Wu, Di; Wang, Peng; Pan, Xiaoqing

    2018-01-10

    Interfacial fine structures of bare LaAlO 3 /SrTiO 3 (LAO/STO) heterostructures are compared with those of LAO/STO heterostructures capped with upward-polarized Pb(Zr 0.1 ,Ti 0.9 )O 3 (PZT up ) or downward-polarized Pb(Zr 0.5 ,Ti 0.5 )O 3 (PZT down ) overlayers by aberration-corrected scanning transmission electron microscopy experiments. By combining the acquired electron energy-loss spectroscopy mapping, we are able to directly observe electron transfer from Ti 4+ to Ti 3+ and ionic displacements at the interface of bare LAO/STO and PZT down /LAO/STO heterostructure unit cell by unit cell. No evidence of Ti 3+ is observed at the interface of the PZT up /LAO/STO samples. Furthermore, the confinement of the two-dimensional electron gas (2DEG) at the interface is determined by atomic-column spatial resolution. Compared with the bare LAO/STO interface, the 2DEG density at the LAO/STO interface is enhanced or depressed by the PZT down or PZT up overlayer, respectively. Our microscopy studies shed light on the mechanism of ferroelectric modulation of interfacial transport at polar/nonpolar oxide heterointerfaces, which may facilitate applications of these materials as nonvolatile memory.

  9. Alloying effect on the room temperature creep characteristics of a Ti-Zr-Be bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun

    2018-02-01

    The effect of alloying elements (e.g. Fe, Al, and Ni) on the room temperature creep behavior of a lightweight Ti41Zr25Be34 bulk metallic glass (BMG) was investigated via nanoindentation tests. The generalized Kelvin model was adopted to describe the creep curves. The strain rate sensitivity m has been derived as a measure of the creep resistance. The compliance spectrum and retardation spectrum were also derived. The results show that the creep resistance of Ti41Zr25Be34 alloy can be obviously improved with the addition of alloying elements, and the most effective element is found to be Al. The mechanism for enhancing the creep resistance was discussed in terms of the scale variation of the shear transformation zone induced by alloying.

  10. Microstructure and mechanical properties investigation of in situ TiB2 and ZrB2 reinforced Al-4Cu composites

    NASA Astrophysics Data System (ADS)

    Lutfi Anis, Ahmad; Ramli, Rosmamuhammadani; Darham, Widyani; Zakaria, Azlan; Talari, Mahesh Kumar

    2016-02-01

    Conventional Al-Cu alloys exhibit coarse grain structure leading to inferior mechanical properties in as-cast condition. Expensive thermo-mechanical treatments are needed to improve microstructure and corresponding mechanical properties. In situ Al-based composites were developed to improve mechanical properties by dispersion strengthening and grain refinement obtained by the presence of particulates in the melt during solidification. In this work Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 in situ composites were prepared by liquid casting method. XRD, electron microscopy and mechanical tests were performed on suitably sectioned and metallographically prepared surfaces to investigate the phase distribution, hardness and tensile properties. It was found that the reinforcement particles were segregated along the grain boundaries of Al dendrites. Tensile fracture morphology for both Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 were analyzed and compared to determine the fracture propagation mechanism in the composites. Al-4Cu-3ZrB2 in situ composites displayed higher strength and hardness compared to Al-4Cu-3TiB2 which could be ascribed to the stronger interfacial bonding between the Al dendrites and ZrB2 particulates as evidenced from fractographs.

  11. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    NASA Astrophysics Data System (ADS)

    Izquierdo, Javier; Bolat, Georgiana; Cimpoesu, Nicanor; Trinca, Lucia Carmen; Mareci, Daniel; Souto, Ricardo Manuel

    2016-11-01

    A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA-ZrO2) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer's solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA-ZrO2 coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA-ZrO2 coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  12. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    NASA Astrophysics Data System (ADS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  13. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  14. Effect of Zirconium Addition on Microstructure and Mechanical Property of TiC/Ti6A14V Composites

    NASA Astrophysics Data System (ADS)

    Ma, Xuliang; Wang, Xiang; Li, Li; Gai, Pengtao; Zhu, Chengwu

    TiC/Ti6A14V composites with different Zr additions were prepared successfully in a consumable vacuum arc furnace equipped with a water-cooled copper crucible and the effect of the Zr content on the microstructure and mechanical property of 15 vol.%TiC/Ti6A14V composites was investigated by XRD, SEM and hardness testing. The results show that when the level of Zr addition is less than 4 wt.%, the morphology of the primary TiC in the composites is dendrite, and the petal-shape, piece-shape or palpus-shape eutectic TiC separates out around the primary TiC. The average size of the primary TiC decreases and the amount of eutectic TiC increases gradually with increasing Zr content. The effects of Zr on morphology of the primary TiC weaken with further addition of Zr. And the hardness (HRC) of composites was obviously increased in the whole range of Zr addition. The refinement mechanism of Zr was attributed to the combined effects of increase in nucleation rate at the constitutionally supercooled zone ahead of the solidification front and reduction in growth rate.

  15. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.

    PubMed

    Fu, Jie; Kim, Hee Young; Miyazaki, Shuichi

    2017-01-01

    In this study a new superelastic Ti-18Zr-4.5Nb-3Sn-2Mo alloy was prepared by adding 2at% of Mo as a substitute for Nb to the Ti-18Zr-11Nb-3Sn alloy, and heat treatment at different temperatures was conducted. The temperature dependence of superelasticity and annealing texture was investigated. Texture showed a dependence of annealing temperature: the specimen annealed at 923K for 0.3ks exhibited {113} β <47¯1> β type texture which was similar to the deformation texture, while specimens annealed at 973, 1073K, and 1173K showed {001} β <110> β type recrystallization texture which was preferable for recovery strain. The largest recovery strain of 6.2%, which is the same level as that of the Ti-18Zr-11Nb-3Sn alloy, was obtained in the specimen annealed at 1173K for 0.3ks due to the well-developed {001} β <110> β type recrystallization texture. The Ti-18Zr-3Nb-3Sn-2Mo alloy presented a higher tensile strength compared with the Ti-18Zr-11Nb-3Sn alloy when heat treated at 1173K for 0.3ks, which was due to the solid solution strengthening effect of Mo. Annealing at 923K for 0.3ks was effective in obtaining a good combination of a high strength as 865MPa and a large recovery strain as 5.6%. The high recovery strain was due to the high stress at which the maximum recovery stain was obtained which was attributed to the small grain size formed at low annealing temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  17. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    NASA Astrophysics Data System (ADS)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  18. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    NASA Astrophysics Data System (ADS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.

    2015-08-01

    Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion

  19. Characterization and Evaluation of Ti-Zr-V Non-evaporable Getter Films Used in Vacuum Systems

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J.; Seraphim, R. M.; Ramirez, A. J.; Tabacniks, M. H.; Nascente, P. A. P.

    Among several methods used to obtain ultra-high vacuum (UHV) for particles accelerators chambers, it stands out the internal coating with metallic films capable of absorbing gases, called NEG (non-evaporable getter). Usually these materials are constituted by elements of great chemical reactivity and solubility (such as Ti, Zr, and V), at room temperature for oxygen and other gases typically found in UHV, such as H2, CO, and CO2. Gold and ternary Ti-Zr-V films were produced by magnetron sputtering, and their composition, structure, morphology, and aging characteristics were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission gun sc anning electronmicroscopy (FEG-SEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM). The comparison between the produced films and commercial samples indicated that the desirable characteristics depend on the nanometric structure of the films and that this structure is sensitive to the heat treatments.

  20. Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders.

    PubMed

    McManamon, Colm; Holmes, Justin D; Morris, Michael A

    2011-10-15

    This paper studies the photocatalytic degradation of phenol using zirconia-doped TiO(2) nanoparticles. ZrO(2) was chosen due to its promising results during preliminary studies. Particles smaller than 10nm were synthesised and doped with quantities of ZrO(2) ranging from 0.5 to 4% (molar metal content). Particles were calcined at different temperatures to alter the TiO(2) structure, from anatase to rutile, in order to provide an ideal ratio of the two phases. Powder X-ray diffraction (PXRD) analysis was used to examine the transformation between anatase and rutile. Degradation of phenol was carried out using a 40 W UV bulb at 365 nm and results were measured by UV-vis spectrometry. TEM images were obtained and show the particles exhibit a highly ordered structure. TiO(2) doped with 1% ZrO(2) (molar metal content) calcined at 700 °C proved to be the most efficient catalyst. This is due to an ideal anatase:rutlie ratio of 80:20, a large surface area and the existence of stable electron-hole pairs. ZrO(2) doping above the optimum loading acted as an electron-hole recombination centre for electron-hole pairs and reduced photocatalytic degradation. Synthesised photocatalysts compared favourably to the commercially available photocatalyst P25. The materials also demonstrated the ability to be recycled with similar results to those achieved on fresh material after 5 uses. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.

    PubMed

    Bandura, Andrei V; Evarestov, Robert A

    2014-02-15

    Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL-2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single-walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D(-2) law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single-wall components of the double-wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross-section of the external walls in the armchair-like double-wall nanotubes. Copyright © 2013 Wiley Periodicals, Inc.

  2. α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang

    2018-03-01

    This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.

  3. α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang

    2018-06-01

    This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.

  4. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun

    2016-07-18

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ωmore » transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.« less

  5. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  6. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications.

    PubMed

    Hua, Nengbin; Huang, Lu; Chen, Wenzhe; He, Wei; Zhang, Tao

    2014-11-01

    The present study designs and prepares Ni-free Zr60+xTi2.5Al10Fe12.5-xCu10Ag5 (at.%, x=0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr-Ti-Al-Fe-Cu-Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study

    DOE PAGES

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; ...

    2016-12-06

    A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew–Burke–Ernzerhof exchange–correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than $-$3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) ($-$1.78 eV to –0.66 eV). Adsorption energies, charge density difference plotsmore » and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C–C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C 2H 2 adsorption, surface carbon sites remain available, which are necessary for H 2 dissociation. Furthermore, these sites were occupied when C 2H 2 was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes.« less

  8. Large Energy Density, Excellent Thermal Stability, and High Cycling Endurance of Lead-Free BaZr0.2Ti0.8O3 Film Capacitors.

    PubMed

    Sun, Zixiong; Ma, Chunrui; Wang, Xi; Liu, Ming; Lu, Lu; Wu, Ming; Lou, Xiaojie; Wang, Hong; Jia, Chun-Lin

    2017-05-24

    A large energy storage density (ESD) of 30.4 J/cm 3 and high energy efficiency of 81.7% under an electrical field of 3 MV/cm was achieved at room temperature by the fabrication of environmentally friendly lead-free BaZr 0.2 Ti 0.8 O 3 epitaxial thin films on Nb-doped SrTiO 3 (001) substrates by using a radio-frequency magnetron sputtering system. Moreover, the BZT film capacitors exhibit great thermal stability of the ESD from 16.8 J/cm 3 to 14.0 J/cm 3 with efficiency of beyond 67.4% and high fatigue endurance (up to 10 6 cycles) in a wide temperature range from room temperature to 125 °C. Compared to other BaTiO 3 -based energy storage capacitor materials and even Pb-based systems, BaZr 0.2 Ti 0.8 O 3 thin film capacitors show either high ESD or great energy efficiency. All of these excellent results revealed that the BaZr 0.2 Ti 0.8 O 3 film capacitors have huge potential in the application of modern electronics, such as locomotive and pulse power, in harsh working environments.

  9. Solid state amorphization of metastable Al 0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy

    DOE PAGES

    Nagase, Takeshi; Takeuchi, Akira; Amiya, Kenji; ...

    2017-07-18

    Here, the phase stability of high entropy alloy (HEA), Al 0.5TiZrPdCuNi, under fast electron irradiation was studied by in-situ high voltage electron microscopy (HVEM). The initial phase of this alloy quenched from the melt was dependent on cooling rate. At high cooling rates an amorphous phase was obtained, whereas a body-centered cubic ( b.c.c.) phase were obtained at low cooling rates. By thermal crystallization of the amorphous phase b.c.c. phase nano-crystals were formed. Upon fast electron irradiation solid state amorphization (SSA) was observed in b.c.c. phase regardless of the initial microstructure (i.e., “coarse crystalline structure” or “nano-crystalline structure with grainmore » boundaries as a sink for point defects”). SSA behavior in the Al 0.5TiZrPdCuNi HEAs was investigated by in-situ transmission electron microscopy observations. Because the amorphization is very rarely achieved in a solid solution phase under fast electron irradiation in common metallic materials, this result suggests that the Al 0.5TiZrPdCuNi HEA from other common alloys and the other HEAs. The differences in phase stability against the irradiation between the Al 0.5TiZrPdCuNi HEA and the other HEAs were discussed. This is the first experimental evidence of SSA in HEAs stimulated by fast electron irradiation.« less

  10. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy

    PubMed Central

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-01-01

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr–Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy. PMID:28773345

  11. Synthesis and characterization of micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers by electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Furlan, R.; Ramos, I.; Santiago-Aviles, J. J.

    Micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers were synthesized from commercially available zirconium n-pro-poxide, titanium isopropoxide, and lead 2-ethylhexanoate. Using xylene as a solvent, they were mixed to form a precursor solution with a suitable viscosity for electrospinning. The solution was analyzed using thermo-gravimetric and differential thermal methods. Ultra-fine fibers and mats were electrostatically drawn from the precursor solution. The as-deposited materials were sintered for 2 h at 400, 500, 600, 700 and 800 °C, respectively. Sintered mats or fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Raman micro-spectrometry and scanning-probe microscopy (SPM). The SEM results revealed that the fibers had diameters varying from hundreds of nanometers to 10 μm. Using AES, the elements Pb, Zr, Ti and O, as well as residual C, were detected on the surface of the fibers. Raman and XRD spectra indicated that the precursors began to transform into the intermediate pyrochlore phase at 400 °C, followed by the perovskite Pb(Zr0.52Ti0.48)O3 phase above 600 °C. Scanning-probe microscopy (SPM), operated in the piezo-response imaging mode, revealed spontaneous polarization domains in the fibers, with diameters ranging from 100 to 500 nm.

  12. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    PubMed

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  13. Deposition And Characterization of (Ti,Zr)N Thin Films Grown Through PAPVD By The Pulsed Arc Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marulanda, D. M.; Trujillo, O.; Devia, A.

    The Plasma Assisted Physic Vapor Deposition (PAPVD) by the pulsed arc technique has been used for deposition of Titanium Zirconium Nitride (Ti,Zr)N coatings, using a segmented target of TiZr. The deposition was performed in a vacuum chamber with two faced electrodes (target and substrate) using nitrogen as working gas, and a power-controlled source used to produce the arc discharges. Films were deposited on stainless steel 304, and they were characterized using the X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), Energy Dispersion Spectroscopy (EDS) and Scanning Probe Microscopy (SPM) techniques. The XRD patterns show different planes in which the film grows.more » Through SPM, using Atomic Force Microscopy (AFM) and Lateral Force Microscopy (LFM) modes, a nanotribologic study of the thin film was made, determining hardness and friction coefficient.« less

  14. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada

    USGS Publications Warehouse

    Lowery, Claiborne L.E.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F.

    2006-01-01

    Zirconium and Hf are nearly identical geochemically, and therefore most of the crust maintains near-chondritic Zr/Hf ratios of ???35-40. By contrast, many high-silica rhyolites and granites have anomalously low Zr/Hf (15-30). As zircon is the primary reservoir for both Zr and Hf and preferentially incorporates Zr, crystallization of zircon controls Zr/ Hf, imprinting low Zr/Hf on coexisting melt. Thus, low Zr/Hf is a unique fingerprint of effective magmatic fractionation in the crust. Age and compositional zonation in zircons themselves provide a record of the thermal and compositional histories of magmatic systems. High Hf (low Zr/ Hf) in zircon zones demonstrates growth from fractionated melt, and Ti provides an estimate of temperature of crystallization (TTiZ) (Watson and Harrison, 2005). Whole-rock Zr/Hf and zircon zonation in the Spirit Mountain batholith, Nevada, document repeated fractionation and thermal fluctuations. Ratios of Zr/Hf are ???30-40 for cumulates and 18-30 for high-SiO2 granites. In zircons, Hf (and U) are inversely correlated with Ti, and concentrations indicate large fluctuations in melt composition and TTiZ (>100??C) for individual zircons. Such variations are consistent with field relations and ion-probe zircon geochronology that indicate a >1 million year history of repeated replenishment, fractionation, and extraction of melt from crystal mush to form the low Zr/Hf high-SiO2 zone. ?? 2006 The Mineralogical Society.

  15. Ferroelectric switching in epitaxial PbZr0.2Ti0.8O3/ZnO/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Salev, Pavel; Grigoriev, Alexei

    As a wide-bandgap semiconductor, ZnO has gained substantial interest due to its favorable properties including high electron mobility, strong room-temperature luminescence, etc. The main obstacle of its application is the lack of reproducible and low-resistivity p-type ZnO. P-type doping of ZnO through the interface charge injection, which can be achieved by the polarization switching of ferroelectric films, is a tempting solution. We explored ferroelectric switching behavior of PbZr0.2Ti0.8O3/ZnO/GaN heterostructures epitaxially grown on Sapphire substrates by RF sputtering. The electrical measurements of Pt/PbZr0.2Ti0.8O3/ZnO/GaN ferroelectric-semiconductor capacitors revealed unusual behavior that is a combination of polarization switching and a diode I-V characteristics.

  16. The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Khan, Asif Islam; Yu, Pu; Trassin, Morgan; Lee, Michelle J.; You, Long; Salahuddin, Sayeef

    2014-07-01

    We study the effects of strain relaxation on the dielectric properties of epitaxial 40 nm Pb(Zr0.2Ti0.8)TiO3 (PZT) films. A significant increase in the defect and dislocation density due to strain relaxation is observed in PZT films with tetragonality c/a < 1.07 grown on SrTiO3 (001) substrates, which results in significant frequency dispersion of the dielectric constant and strong Rayleigh type behavior in those samples. This combined structural-electrical study provides a framework for investigating strain relaxation in thin films and can provide useful insights into the mechanisms of fatigue in ferroelectric materials.

  17. Effect of Surface Modifications of Ti40Zr10Cu38Pd12 Bulk Metallic Glass and Ti-6Al-4V Alloy on Human Osteoblasts In Vitro Biocompatibility

    PubMed Central

    Blanquer, Andreu; Hynowska, Anna; Nogués, Carme; Ibáñez, Elena; Sort, Jordi; Baró, Maria Dolors; Özkale, Berna; Pané, Salvador; Pellicer, Eva

    2016-01-01

    The use of biocompatible materials, including bulk metallic glasses (BMGs), for tissue regeneration and transplantation is increasing. The good mechanical and corrosion properties of Ti40Zr10Cu38Pd12 BMG and its previously described biocompatibility makes it a potential candidate for medical applications. However, it is known that surface properties like topography might play an important role in regulating cell adhesion, proliferation and differentiation. Thus, in the present study, Ti40Zr10Cu38Pd12 BMG and Ti6-Al-4V alloy were surface-modified electrochemically (nanomesh) or physically (microscratched) to investigate the effect of material topography on human osteoblasts cells (Saos-2) adhesion, proliferation and differentiation. For comparative purposes, the effect of mirror-like polished surfaces was also studied. Electrochemical treatments led to a highly interconnected hierarchical porous structure rich in oxides, which have been described to improve corrosion resistance, whereas microscratched surfaces showed a groove pattern with parallel trenches. Cell viability was higher than 96% for the three topographies tested and for both alloy compositions. In all cases, cells were able to adhere, proliferate and differentiate on the alloys, hence indicating that surface topography plays a minor role on these processes, although a clear cell orientation was observed on microscratched surfaces. Overall, our results provide further evidence that Ti40Zr10Cu38Pd12 BMG is an excellent candidate, in the present two topographies, for bone repair purposes. PMID:27243628

  18. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-24

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  19. Effect of two-stage sintering on dielectric properties of BaTi0.9Zr0.1O3 ceramics

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Rani, Renu; Kumar, Parveen; Juneja, J. K.; Raina, K. K.; Prakash, Chandra

    2011-09-01

    The effect of two-stage sintering on the dielectric properties of BaTi0.9Zr0.1O3 ceramics prepared by solid state route was investigated and is presented here. It has been found that under suitable two-stage sintering conditions, dense BaTi0.9Zr0.1O3 ceramics with improved electrical properties can be synthesized. The density was found to have a value of 5.49 g cc-1 for normally sintered samples, whereas in the case of the two-stage sintered sample it was 5.85 g cc-1. Dielectric measurements were done as a function of frequency and temperature. A small decrease in the Curie temperature was observed with modification in dielectric loss for two-stage sintered ceramic samples.

  20. Influence of Carbon interstitials to Ti1-xMexN (Me = Zr, Al, Cr) coatings by pulsed laser ablation on wear resistance

    NASA Astrophysics Data System (ADS)

    Jeon, Seol; Hong, Eunpyo; Kwon, Se-Hun; Lee, Heesoo

    2018-06-01

    The wear resistance of Ti1-xMexN (Me = Zr, Al, Cr) coatings by the laser carburization process was investigated in terms of local atomic structural changes. The repeated pulsed laser ablation was performed to the Ti1-xMexN coating surfaces after Graphite paste was covered. The friction coefficients of the coating specimens were decreased from ∼0.7 to 0.2, and the formation of cracks and debris was suppressed by implementing the laser ablation process. ToF-SIMS depth profiles showed that the laser carburization helps Carbon penetrate into the coating layer as deep as ∼20 nm below its surface. XPS and XAFS analyses revealed that the improvement of the wear resistance of the coatings was achieved not by formation of TiC or ZrC lattices on the coatings surfaces but by Carbon interstitials to the Ti1-xMexN lattices.

  1. Evidence for the antiferromagnetic ground state of Zr2TiAl: a first-principles study

    NASA Astrophysics Data System (ADS)

    Sreenivasa Reddy, P. V.; Kanchana, V.; Vaitheeswaran, G.; Ruban, Andrei V.; Christensen, N. E.

    2017-07-01

    A detailed study on the ternary Zr-based intermetallic compound Zr2TiAl has been carried out using first-principles electronic structure calculations. From the total energy calculations, we find an antiferromagnetic L11-like (AFM) phase with alternating (1 1 1) spin-up and spin-down layers to be a stable phase among some others with magnetic moment on Ti being 1.22 {μ\\text{B}} . The calculated magnetic exchange interaction parameters of the Heisenberg Hamiltonian and subsequent Heisenberg Monte Carlo simulations confirm that this phase is the magnetic ground structure with Néel temperature between 30 and 100 K. The phonon dispersion relations further confirm the stability of the magnetic phase while the non-magnetic phase is found to have imaginary phonon modes and the same is also found from the calculated elastic constants. The magnetic moment of Ti is found to decrease under pressure eventually driving the system to the non-magnetic phase at around 46 GPa, where the phonon modes are found to be positive indicating stability of the non-magnetic phase. A continuous change in the band structure under compression leads to the corresponding change of the Fermi surface topology and electronic topological transitions (ETT) in both majority and minority spin cases, which are also evident from the calculated elastic constants and density of state calculations for the material under compression.

  2. Role of Hf on Phase Formation in Ti45Zr(38-x)Hf(x)Ni17 Liquids and Solids

    NASA Technical Reports Server (NTRS)

    Wessels, V.; Sahu, K. K.; Gangopadhyay, A. K.; Huett, V. T.; Canepari, S.; Goldman, A. I.; Hyers, R. W.; Kramer, M. J.; Rogers, J. R.; Kelton, K. F.; hide

    2008-01-01

    Hafnium and zirconium are very similar, with almost identical sizes and chemical bonding characteristics. However, they behave differently when alloyed with Ti and Ni. A sharp phase formation boundary near 18-21 at.% Hf is observed in rapidly-quenched and as-cast Ti45Zr38-xHfxNi17 alloys. Rapidly-quenched samples that contain less than 18 at.% Hf form the icosahedral quasicrystal phase, whiles samples containing more than 21 at.% form the 3/2 rational approximant phase. In cast alloys, a C14 structure is observed for alloys with Hf lower than the boundary concentration, while a large-cell (11.93 ) FCC Ti2Ni-type structure is found in alloys with Hf concentrations above the boundary. To better understand the role of Hf on phase formation, the structural evolution with supercooling and the solidification behavior of liquid Ti45Zr38-xHfxNi17 alloys (x=0, 12, 18, 21, 38) were studied using the Beamline Electrostatic Levitation (BESL) technique using 125keV x-rays on the 6ID-D beamline at the Advanced Photon Source, Argonne National Laboratory. For all liquids primary crystallization was to a BCC solid solution phase; interestly, an increase in Hf concentration leads to a decrease in the BCC lattice parameter in spite of the chemical similarity between Zr and Hf. A Reitveld analysis confirmed that as in the cast alloys, the secondary phase that formed was the C14 below the phase formation boundary and a Ti2Ni-type structure at higher Hf concentrations. Both the liquidus temperature and the reduced undercooling change sharply on traversing the phase formation boundary concentration, suggesting a change in the liquid structure. Structural information from a Honeycutt-Anderson index analysis of reverse Monte Carlo fits to the S(q) liquid data will be presented to address this issue.

  3. Regulation of depletion layer width in Pb(Zr,Ti)O3/Nb:SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Jie Wang, Zhan; Cui, Jian Zhong; Zhang, Zhi Dong

    2018-05-01

    Improving the tunability of depletion layer width (DLW) in ferroelectric/semiconductor heterostructures is important for the performance of some devices. In this work, 200-nm-thick Pb(Zr0.4Ti0.6)O3 (PZT) films were deposited on different Nb-doped SrTiO3 (NSTO) substrates, and the tunability of DLW at PZT/NSTO interfaces were studied. Our results showed that the maximum tunability of the DLW was achieved at the NSTO substrate with 0.5 wt% Nb. On the basis of the modified capacitance model and the ferroelectric semiconductor theory, we suggest that the tunability of the DLW in PZT/NSTO heterostructures can be attributed to a delicate balance of the depletion layer charge and the ferroelectric polarization charge. Therefore, the performance of some devices related to the tunability of DLW in ferroelectric/semiconductor heterostructures can be improved by modulating the doping concentration in semiconducting electrode materials.

  4. Electrical and structural properties of group-4 transition-metal nitride (TiN, ZrN, and HfN) contacts on Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Keisuke; Nakashima, Hiroshi, E-mail: nakasima@astec.kyushu-u.ac.jp; Noguchi, Ryutaro

    2015-09-21

    Electrical and structural properties were investigated for group-4 transition-metal nitride contacts on Ge (TiN/Ge, ZrN/Ge, and HfN/Ge), which were prepared by direct sputter depositions using nitride targets. These contacts could alleviate the intrinsic Fermi-level pinning (FLP) position toward the conduction band edge. It was revealed that this phenomenon is induced by an amorphous interlayer (a-IL) containing nitrogen atoms at the nitride/Ge interfaces. The strength of FLP alleviation positively depended on the thickness of a-IL. TiN/Ge and ZrN/Ge contacts with ∼2 nm-thick a-ILs showed strong FLP alleviations with hole barrier heights (Φ{sub BP}) in the range of 0.52–56 eV, and a HfN/Ge contactmore » with an ∼1 nm-thick a-IL showed a weaker one with a Φ{sub BP} of 0.39 eV. However, TaN/Ge contact without a-IL did not show such FLP alleviation. Based on the results of depth distributions for respective elements, we discussed the formation kinetics of a-ILs at TiN/Ge and ZrN/Ge interfaces. Finally, we proposed an interfacial dipole model to explain the FLP alleviation.« less

  5. The improvement of retention time of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (ZrO2)-semiconductor transistors and capacitors by leakage current reduction using surface treatment

    NASA Astrophysics Data System (ADS)

    Shih, Wen-Chieh; Kang, Kun-Yung; Lee, Joseph Ya-Min

    2007-11-01

    Metal-ferroelectric-insulator-semiconductor transistors (MFISFETs) and capacitors with the structure of Al /Pb (Zr0.53,Ti0.47) O3/ZrO2/Si were fabricated. The wafers were pretreated with H2O2 before ZrO2 deposition and/or post-treated with HCl after ZrO2 deposition. The leakage current density at 5V is reduced from 10-1to5×10-6A /cm2. The subthreshold slope was improved to 91mV/decade. The MFISFETs maintain a threshold voltage window of about 1.1V after an elapsed time of 3000s. The mobility is 267cm2/Vs. The improvements are most likely due to the reduction of interfacial layer thickness and the interface states at the ZrO2/Si interface.

  6. Comparison of bio-mineralization behavior of Ti-6Al-4V-1Nb and Zr-1Nb nano-tubes formed by anodization

    NASA Astrophysics Data System (ADS)

    Choi, Yong; Hong, Sun I.

    2014-12-01

    Nano-tubes of titanium and zirconium alloys like Ti-6Al-4V-1Nb and Zr-1Nb were prepared by anodization followed by coating with hydroxylapatite (HA) and their bio-mineralization behaviors were compared to develop a bio-compatible material for implants in orthopedics, dentistry and cardiology. Ti-6Al-4V-1Nb weight gain in a simulated body solution increased gradually. The bigger tube diameter was, the heavier HA was deposited. Surface roughness of both alloys increased highly with the increasing diameter of nano-tube. Their surface roughness decreased by HA deposition due to the removal of the empty space of the nano-tubes. Zr-1Nb alloy had faster growth of nano-tubes layers more than Ti-6Al-4V-1Nb alloy.

  7. A-site- and/or B-site-modified PbZrTiO3 materials and (Pb, Sr, Ca, Ba, Mg) (Zr, Ti, Nb, Ta)O3 films having utility in ferroelectric random access memories and high performance thin film microactuators

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2001-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  8. High-temperature Mechanical Properties and Microstructure of ZrTiHfNbMox (x=0.5, 1.0, 1.5) Refractory High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.

  9. Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki

    2017-12-01

    To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was < 1% and a large irrecoverable strain was obtained. The shape recovery was explained by the austenite strength. The training effect was also investigated.

  10. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.

    PubMed

    Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran

    2016-10-01

    The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. DFT investigation of electronic structures and magnetic properties of halides family MeHal3 (Me=Ti, Mo,Zr,Nb, Ru, Hal=Cl,Br,I) one dimensional structures

    NASA Astrophysics Data System (ADS)

    Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.

    2017-10-01

    Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.

  12. [Selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalysts].

    PubMed

    Sun, Hong; Quan, Xie; Zhang, Yao-bin; Zhao, Ya-zhi

    2008-06-01

    Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst was prepared by sol-gel and impregnation. Furthermore, selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst with propylene under lean burn condition was studied. The effects of the concentration of tetra-n-butyl titanate and dipcoat cycles on TiO2 washcoat were studied by SEM, and the effects of Pd concentration, O2 concentration and gas velocity on catalytic activity were investigated. The experimental results showed that the TiO2 washcoat on wire-mesh support is even and crack-free when the support is impregnated in 20.0% tetra- n-butyl titanate sol for 2 cycles. The NOx conversion decreases with Pd concentration increase. When Pd concentration is 0.23%, NOx conversion is highest. NOx conversion increases with oxygen concentration increase in the range of 1.5%-6.0%. However, when oxygen concentration is higher than 6.0%, NOx conversion decreases with increasing oxygen concentration. The NOx conversion decreases with gas velocity increase and its effect is severer at high temperature than low temperature.

  13. In vitro bio-functional performances of the novel superelastic beta-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy.

    PubMed

    Ion, Raluca; Gordin, Doina-Margareta; Mitran, Valentina; Osiceanu, Petre; Dinescu, Sorina; Gloriant, Thierry; Cimpean, Anisoara

    2014-02-01

    The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling. In this work, a new β-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy with a Young's modulus of approximately 50 GPa was designed and characterized. The behavior of MC3T3-E1 pre-osteoblasts on the new alloy, including adhesion, proliferation and differentiation, was evaluated by examining the cytoskeleton, focal adhesion formation, metabolic activity and extracellular matrix mineralization. Results indicated that the pre-osteoblast cells exhibited a similar degree of attachment and growth on Ti-23Nb-0.7Ta-2Zr-0.5N and Ti-6Al-4V. However, the novel alloy proved to be significantly more efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells than Ti-6Al-4V control. Further, the analysis of RAW 264.7 macrophages cytokine gene and protein expression indicated no significant inflammatory response. Collectively, these findings suggest that the Ti-23Nb-0.7Ta-2Zr-0.5N alloy, which has an increased mechanical biocompatibility with bone, allows a better osteogenic differentiation of osteoblast precursor cells than Ti-6Al-4V and holds great potential for future clinical prosthetic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production.

    PubMed

    Chiu, Yi-Hsuan; Lai, Ting-Hsuan; Chen, Chun-Yi; Hsieh, Ping-Yen; Ozasa, Kazunari; Niinomi, Mitsuo; Okada, Kiyoshi; Chang, Tso-Fu Mark; Matsushita, Nobuhiro; Sone, Masato; Hsu, Yung-Jung

    2018-05-01

    Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO 2 photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO 2 , with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge-transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO 2 originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.

  15. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid

    PubMed Central

    Kumar, Madhan; Drew, Robin; Al-Aqeeli, Nasser

    2017-01-01

    The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF). The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscope). The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy). The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO4)2 compound (precursor of hydroxyapatite) deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material. PMID:29280956

  16. Creating Two-Dimensional Electron Gas in Nonpolar/Nonpolar Oxide Interface via Polarization Discontinuity: First-Principles Analysis of CaZrO3/SrTiO3 Heterostructure.

    PubMed

    Nazir, Safdar; Cheng, Jianli; Yang, Kesong

    2016-01-13

    We studied strain-induced polarization and resulting conductivity in the nonpolar/nonpolar CaZrO3/SrTiO3 (CZO/STO) heterostructure (HS) system by means of first-principles electronic structure calculations. By modeling four types of CZO/STO HS-based slab systems, i.e., TiO2/CaO and SrO/ZrO2 interface models with CaO and ZrO2 surface terminations in each model separately, we found that the lattice-mismatch-induced compressive strain leads to a strong polarization in the CZO film and that as the CZO film thickness increases there exists an insulator-to-metal transition. The polarization direction and critical thickness of the CZO film for forming interfacial metallic states depend on the surface termination of CZO film in both types of interface models. In the TiO2/CaO and SrO/ZrO2 interface models with CaO surface termination, the strong polarization drives the charge transfer from the CZO film to the first few TiO2 layers in the STO substrate, leading to the formation of two-dimensional electron gas (2DEG) at the interface. In the HS models with ZrO2 surface termination, two polarization domains with opposite directions are in the CZO film, which results in the charge transfer from the middle CZO layer to the interface and surface, respectively, leading to the coexistence of the 2DEG on the interface and the two-dimensional hole gas (2DHG) at the middle CZO layer. These findings open a new avenue to achieve 2DEG (2DHG) in perovskite-based HS systems via polarization discontinuity.

  17. Local structural behavior of PbZr0.5Ti0.5O3 during electric field application via in situ pair distribution function study

    NASA Astrophysics Data System (ADS)

    Zhao, Changhao; Hou, Dong; Chung, Ching-Chang; Yu, Yingying; Liu, Wenfeng; Li, Shengtao; Jones, Jacob L.

    2017-11-01

    The local structural behavior of PbZr0.5Ti0.5O3 (PZT 50/50) ceramics during application of an electric field was investigated using pair distribution function (PDF) analysis. In situ synchrotron total scattering was conducted, and the PDFs were calculated from the Fourier transform of the total scattering data. The PDF refinement of the zero-field data suggests a local-structure model with [001] Ti-displacement and negligible Zr-displacement. The directional PDFs at different field amplitudes indicate the bond-length distribution of the nearest Pb-B (B = Zr/Ti) pair changes significantly with the field. The radial distribution functions (RDFs) of a model for polarization rotation were calculated. The calculated and the experimental RDFs are consistent. This result suggests the changes in Pb-B bond-length distribution could be dominantly caused by polarization rotation. Peak fitting of the experimental RDFs was also conducted. The peak position trends with increasing field are mostly in agreement with the calculation result of the polarization rotation model. The area ratio of the peaks in the experimental RDFs also changed with field amplitude, indicating that Zr atoms have a detectable displacement driven by the electric field. Our study provides an experimental observation of the behaviors of PZT 50/50 under field at a local scale which supports the polarization rotation mechanism.

  18. Continuous production of granular or powder Ti, Zr and Hf or their alloy products

    DOEpatents

    White, Jack C.; Oden, Laurance L.

    1993-01-01

    A continuous process for producing a granular metal selected from the group consisting of Ti, Zr or Hf under conditions that provide orderly growth of the metal free of halide inclusions comprising: a) dissolving a reducing metal selected from the group consisting of Na, Mg, Li or K in their respective halide salts to produce a reducing molten salt stream; b) preparing a second molten salt stream containing the halide salt of Ti, Zr or Hf; c) mixing and reacting the two molten streams of steps a) and b) in a continuous stirred tank reactor; d) wherein steps a) through c) are conducted at a temperature range of from about 800.degree. C. to about 1100.degree. C. so that a weight percent of equilibrium solubility of the reducing metal in its respective halide salt varies from about 1.6 weight percent at about 900.degree. C. to about 14.4 weight percent at about 1062.degree. C.; and wherein a range of concentration of the halide salt of Ti, Zn or Hf in molten halides of Na, Mg, Li or K is from about 1 to about 5 times the concentration of Na, Mg, Li or K; e) placing the reacted molten stream from step c) in a solid-liquid separator to recover an impure granular metal product by decantation, centrifugation, or filtration; and f) removing residual halide salt impurity by vacuum evaporator or inert gas sweep at temperatures from about 850.degree. C. to 1000.degree. C. or cooling the impure granular metal product to ambient temperature and water leaching off the residual metal halide salt.

  19. Nominal Versus Local Shot-Peening Effects on Fatigue Lifetime in Ti-6Al-2Sn-4Zr-6Mo at Elevated Temperature (Preprint)

    DTIC Science & Technology

    2008-09-01

    this study was the α+β titanium alloy, Ti- 6 -2- 4 - 6 , in the duplex microstructural condition. Two variants of the microstructure, which differed...condition, at a given stress level and temperature in the turbine engine alloy, Ti-6Al-2Sn-4Zr-6Mo (Ti- 6 -2- 4 - 6 ). The experimental conditions were chosen to...LSG surface. Fig. 1: Microstructures of the Ti- 6 -2- 4 - 6 alloy considered in the study; (a) Microstructure A and (b) Microstructure

  20. Antibacterial and Tribological Performance of Carbonitride Coatings Doped with W, Ti, Zr, or Cr Deposited on AISI 316L Stainless Steel

    PubMed Central

    Yao, Sun-Hui; Su, Yen-Liang; Lai, Yu-Cheng

    2017-01-01

    Carbonitride (CNx) coatings have existed for several decades but are not well understood. Related studies have indicated that CNx coatings exhibit behaviors comparable to diamond-like carbon (DLC) coatings. Metal-doped CNx coatings are expected to show superior performance to single CNx coatings. In this study, a CNx coating and a group of CNx coatings with 6 at. % metal doping (W, Ti, Zr, or Cr) were prepared on biograde AISI 316L stainless steel (SS316L) substrates, and they were then characterized and studied for antibacterial and wear performance. The microstructure, constituent phase, nanohardness, adhesion, surface roughness, and contact angle were evaluated. The antimicrobial test used Staphylococcus aureus and followed the Japanese Industrial Standard JIS Z 2801:2010. Finally, the wear behavior was assessed. The results showed that the CNx coating was a composite of amorphous CNx and amorphous C structures. The metal doping caused crystalline metal carbides/nitrides to form in the CNx coatings, which weakened their overall integrity. All the coatings showed antimicrobial ability for the SS316L samples. The CNx-Zr coating, the surface of which had the highest hydrophilicity, produced the best antibacterial performance. However, the CNx-Zr coating showed lower wear resistance than the CNx-W and CNx-Ti coatings. The CNx-Ti coating with a highly hydrophilic surface exhibited the lowest antibacterial ability. PMID:29039782

  1. Nominal vs Local Shot-Peening Effects on Fatigue Lifetime in Ti-6Al-2Sn-4Zr-6Mo at Elevated Temperature

    DTIC Science & Technology

    2009-11-01

    PROCEDURE A. Material The materia l in this study was tbe IX + /1 titanium aUoy. Ti- 6 -2- 4 - 6 . in the duplex microstructural condition. Two y,;riants of the...ress level and temperature in the turbine engine alloy Ti-6AI-2Sn-4Zr- 6Mo (Ti- 6 -2- 4 - 6 ). The experimental conditions were chosen to target a regime...defects. which are produced during SP by thermally activated pro- cesses.II~.~1J A detailed discussion of these relaxation elTects in Ti- 6 -2- 4 - 6 is

  2. The CVD ZrB2 as a selective solar absorber

    NASA Astrophysics Data System (ADS)

    Randich, E.; Allred, D. D.

    Coatings of ZrB2 and TiB2 for photothermal solar absorber applications were prepared using chemical vapor deposition (CVD) techniques. Oxidation tests suggest a maximum temperature limit for air exposure of 600 K for TiB2 and 800 K for Z4B2. Both materials exhibit innate spectral selectivity with emittance at 375 K ranging from 0.06 to 0.09 and solar absorptance for ZrB2 ranging from 0.67 to 0.77 and solar absorptance for TiB2 ranging from 0.46 to 0.58. ZrB2 has better solar selectivity and more desirable oxidation behavior than TiB2. A 0.071 micrometer antireflection coating of Si3N4 deposited on the ZrB2 coating leads to an increase in absorptance from 0.77 to 0.93, while the emittance remains unchanged.

  3. Multifunctional Beta Ti Alloy with Improved Specific Strength

    NASA Astrophysics Data System (ADS)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  4. Influence of boron addition to Ti-13Zr-13Nb alloy on MG63 osteoblast cell viability and protein adsorption.

    PubMed

    Majumdar, P; Singh, S B; Dhara, S; Chakraborty, M

    2015-01-01

    Cell proliferation, cell morphology and protein adsorption on near β-type Ti-13Zr-13Nb (TZN) alloy and Ti-13Zr-13Nb-0.5B (TZNB) composite have been investigated and compared to evaluate the effect of boron addition which has been added to the Ti alloy to improve their poor tribological properties by forming in situ TiB precipitates. MG63 cell proliferation on substrates with different chemistry but the same topography was compared. The MTT assay test showed that the cell viability on the TZN alloy was higher than the boron containing TZNB composite after 36 h of incubation and the difference was pronounced after 7 days. However, both the materials showed substantially higher cell attachment than the control (polystyrene). For the same period of incubation in fetal bovine serum (FBS), the amount of protein adsorbed on the surface of boron free TZN samples was higher than that in the case of boron containing TZNB composite. The presence of boron in the TZN alloy influenced protein adsorption and cell response and they are lower in TZNB than in TZN as a result of the associated difference in chemical characteristics. Copyright © 2014. Published by Elsevier B.V.

  5. Electronic structure and bonding interactions in Ba1- x Sr x Zr0.1Ti0.9O3 ceramics

    NASA Astrophysics Data System (ADS)

    Mangaiyarkkarasi, Jegannathan; Sasikumar, Subramanian; Saravanan, Olai Vasu; Saravanan, Ramachandran

    2017-06-01

    An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1- x Sr x Zr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.

  6. Coexistent three-component and two-component Weyl phonons in TiS, ZrSe, and HfTe

    NASA Astrophysics Data System (ADS)

    Li, Jiangxu; Xie, Qing; Ullah, Sami; Li, Ronghan; Ma, Hui; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2018-02-01

    In analogy to various fermions of electrons in topological semimetals, topological mechanical states with two types of bosons, Dirac and Weyl bosons, were reported in some macroscopic systems of kHz frequency, and those with a type of doubly-Weyl phonons in atomic vibrational framework of THz frequency of solid crystals were recently predicted. Here, through first-principles calculations, we have reported that the phonon spectra of the WC-type TiS, ZrSe, and HfTe commonly host the unique triply degenerate nodal points (TDNPs) and single two-component Weyl points (WPs) in THz frequency. Quasiparticle excitations near TDNPs of phonons are three-component bosons, beyond the conventional and known classifications of Dirac, Weyl, and doubly-Weyl phonons. Moreover, we have found that both TiS and ZrSe have five pairs of type-I Weyl phonons and a pair of type-II Weyl phonons, whereas HfTe only has four pairs of type-I Weyl phonons. They carry nonzero topological charges. On the (10 1 ¯0 ) crystal surfaces, we observe topological protected surface arc states connecting two WPs with opposite charges, which host modes that propagate nearly in one direction on the surface.

  7. Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold

    PubMed Central

    Lalisse, Adrien; Tessier, Gilles; Plain, Jérome; Baffou, Guillaume

    2016-01-01

    Metal nitrides have been proposed to replace noble metals in plasmonics for some specific applications. In particular, while titanium nitride (TiN) and zirconium nitride (ZrN) possess localized plasmon resonances very similar to gold in magnitude and wavelength, they benefit from a much higher sustainability to temperature. For this reason, they are foreseen as ideal candidates for applications in nanoplasmonics that require high material temperature under operation, such as heat assisted magnetic recording (HAMR) or thermophotovoltaics. This article presents a detailed investigation of the plasmonic properties of TiN and ZrN nanoparticles in comparison with gold nanoparticles, as a function of the nanoparticle morphology. As a main result, metal nitrides are shown to be poor near-field enhancers compared to gold, no matter the nanoparticle morphology and wavelength. The best efficiencies of metal nitrides as compared to gold in term of near-field enhancement are obtained for small and spherical nanoparticles, and they do not exceed 60%. Nanoparticle enlargements or asymmetries are detrimental. These results mitigate the utility of metal nitrides for high-temperature applications such as HAMR, despite their high temperature sustainability. Nevertheless, at resonance, metal nitrides behave as efficient nanosources of heat and could be relevant for applications in thermoplasmonics, where heat generation is not detrimental but desired. PMID:27934890

  8. Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold.

    PubMed

    Lalisse, Adrien; Tessier, Gilles; Plain, Jérome; Baffou, Guillaume

    2016-12-09

    Metal nitrides have been proposed to replace noble metals in plasmonics for some specific applications. In particular, while titanium nitride (TiN) and zirconium nitride (ZrN) possess localized plasmon resonances very similar to gold in magnitude and wavelength, they benefit from a much higher sustainability to temperature. For this reason, they are foreseen as ideal candidates for applications in nanoplasmonics that require high material temperature under operation, such as heat assisted magnetic recording (HAMR) or thermophotovoltaics. This article presents a detailed investigation of the plasmonic properties of TiN and ZrN nanoparticles in comparison with gold nanoparticles, as a function of the nanoparticle morphology. As a main result, metal nitrides are shown to be poor near-field enhancers compared to gold, no matter the nanoparticle morphology and wavelength. The best efficiencies of metal nitrides as compared to gold in term of near-field enhancement are obtained for small and spherical nanoparticles, and they do not exceed 60%. Nanoparticle enlargements or asymmetries are detrimental. These results mitigate the utility of metal nitrides for high-temperature applications such as HAMR, despite their high temperature sustainability. Nevertheless, at resonance, metal nitrides behave as efficient nanosources of heat and could be relevant for applications in thermoplasmonics, where heat generation is not detrimental but desired.

  9. A Liquid-Liquid Transition in an Undercooled Ti-Zr-Ni Liquid

    NASA Technical Reports Server (NTRS)

    Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.

    2003-01-01

    If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, TI, finally freezing into a glass below a characteristic temperature called the glass transition temperature, T,. In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of HzO and Si4. Such phase transitions have been predicted in some stable liquids, i.e. above TI at atmospheric pressure, for Si02 and BeF;, but these have not been verified experimentally. They have been observed in liquids of P7, Sis and C9, but only under high pressure. All of these transitions are driven by an anomalous density change, i.e. change in local structure, with temperature or pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity liquid that is not driven by an anomalous density change, but by an approach to a constant configuration state. A maximum in the specific heat at constant pressure, similar to what is normally observed near T,, is reported here for undercooled low viscosity liquids of quasicrystal- forming Ti-Zr-Ni alloys. that includes cooperativity, by incorporating a temperature dependent excitation energy fits the data well, signaling a phase transition.

  10. Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques.

    PubMed

    Secchi, Valeria; Franchi, Stefano; Santi, Marta; Vladescu, Alina; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Dettin, Monica; Zamuner, Annj; Iucci, Giovanna; Battocchio, Chiara

    2018-03-07

    In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH₂ that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5-200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.

  11. Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques

    PubMed Central

    Franchi, Stefano; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Zamuner, Annj

    2018-01-01

    In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5–200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization. PMID:29518968

  12. Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Juma, A.; Oja Acik, I.; Oluwabi, A. T.; Mere, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2016-11-01

    Chemical spray pyrolysis (CSP) is a flexible deposition technique that allows for mixing of the precursor solutions in different proportions suitable for doping thin films. The CSP method was used to dope TiO2 thin films with Zr by adding zirconium(IV) acetylacetonate into a solution of titanium(IV) isopropoxide in ethanol stabilized by acetylacetone at [Zr]/[Ti] of 0, 5, 10 and 20 at%. The Zr-doped TiO2 thin films were uniform and homogeneous showing much smaller grains than the undoped TiO2 films. Zr stabilized the anatase phase to temperatures above 800 °C depending on Zr concentration in the spray solution. The concentration of Zr determined by XPS was 6.4 at% for the thin film deposited from the 20 at% solution. According to AFM studies, Zr doping decreased the root mean square roughness of TiO2 film from 5.9 to 1.1 nm. An XRD study of samples with the highest Zr amount showed the ZrTiO4 phase started forming after annealing at 800 °C. The optical band gap for TiO2 decreased from 3.3 eV to 3.0 eV after annealing at 800 °C but for the TiO2:Zr(20) film it remained at 3.4 eV. The dielectric constant increased by more than four times with Zr-doping and this was associated with the change in the bond formations caused by substitution of Ti by Zr in the lattice.

  13. Corrosion resistance of new beta type titanium alloy, Ti-29Nb-13Ta-4.6Zr in artificial saliva solution

    NASA Astrophysics Data System (ADS)

    Gunawarman; Giatmana, D. D.; Ilhamdi; Affi, J.; Fonna, S.; Niinomi, M.; Nakai, M.

    2018-05-01

    The corrosion resistance of Ti-29Nb-13Ta-4.6Zr (TNTZ) and Ti-6Al-4V alloys in oral cavity environment were studied by investigating its corrosion rate in artificial saliva solution. Corrosion measurement was conducted in 600 ml solution of Fusayama-Meyer artificial saliva containing 0.4g NaCl, 0.4g KCl, 0.795g CaCl2.2H2O, 0.69g NaH2PO4, and 1 g urea using a potentiostat controlled by a personal computer. The solution was maintained at pH 5.2 and controlled the temperature of 37°C to imitate oral cavity condition. After corrosion test, specimen surfaces were examined by SEM and EDX. The results show that the average corrosion rate of TNTZ and Ti-6Al-4V is 4,5×10-9 mmy-1 and 6,4×10-8 mmy-1, respectively, indicating that the corrosion resistance of TNTZ is slightly better than Ti-6Al-4V. This is suggested mainly due to the formation of multiple layers of Ti, Nb and Zr oxides in the surface of TNTZ. However, the formation of micro-pitting corrosion is more severe in TNTZ as compared to that of Ti-6Al-4V. The intense pitting corrosion in TNTZ is found strongly corresponded to its high impurities content and wide elemental segregation. It is recommended, therefore, a longer homogenizing process is required in TNTZ for reducing pitting corrosion attack. However, the details of corrosion mechanism are needed to be explored further.

  14. Design of Heusler Precipitation Strengthened NiTi- and PdTi-Base SMAs for Cyclic Performance

    NASA Astrophysics Data System (ADS)

    Frankel, Dana J.; Olson, Gregory B.

    2015-06-01

    For a wide range of actuation applications, the performance of NiTi-based shape memory alloys is limited by cyclic instability associated with accommodation slip. For medical applications, low-Ni compositions are also desirable. Increasing yield strength via precipitation of a coherent nanoscale Ni2TiAl-type Heusler phase from a supersaturated B2 matrix is an effective approach for eliminating slip in order to improve the stability of the functional response and increase the structural fatigue life. Quaternary additions that partition into the L21 Heusler phase, such as Zr or Pd, are favorable for reducing interphase misfit and maintaining coherency during aging. Phase relations and precipitation kinetics in quaternary Ni(TiZrAl), low-Ni (PdNi)(TiAl), and Ni-free (PdFe)(TiAl) systems are summarized from TEM and atom probe tomography data in the literature. Strengthening behavior during isothermal aging is compared in the NiTiZrAl and PdNiTiAl systems, and recent work characterizing a high-strength, low-Ni "Hybrid" (PdNi)(TiZrAl) alloy is presented. A systems design approach is taken in which an optimal microstructure for peak strengthening is identified while other property objectives such as transformation temperature, misfit, radiopacity, and biocompatibility are satisfied.

  15. Containerless Measurement of Thermophysical Properties of Ti-Zr-Ni Alloys

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Bradshaw, Richard C.; Rogers, Jan C.; Rathz, Thomas J.; Lee, Geun W.; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2004-01-01

    The surface tension, viscosity, density, and thermal expansion of Ti-Zr-Ni alloys were measured for a number of compositions by electrostatic levitation methods. Containerless methods greatly reduce heterogeneous nucleation, increasing access to the undercooled liquid regime at finite cooling rates. The density and thermal expansion are measured optically, while the surface tension and viscosity are measured by the oscillating drop method. The measured alloys include compositions which form a metastable quasicrystal phase from the undercooled liquid, and alloys close to the composition of several multi-component bulk metallic glass-forming alloys. Measurements of surface tension show behavior typical of transition metals at high temperature, but a sudden decrease in the deeply undercooled liquid for alloys near the quasicrystal-forming composition range, but not for compositions which form the solid-solution phase first.

  16. Ferroelectric and reliability properties of metal-organic chemical vapor deposited Pb(Zr0.15Ti0.85)O3 thin films grown in the self-regulation process window

    NASA Astrophysics Data System (ADS)

    Zhao, Jin Shi; Lee, Hyun Ju; Sim, Joon Seop; Lee, Keun; Hwang, Cheol Seong

    2006-04-01

    Ferroelectric reliability of Pb(Zr0.15Ti0.85)O3 films grown by metal-organic chemical vapor deposition at 570°C on an Ir electrode in the self-regulation process window [constant Pb concentration irrespective of the precursor input ratio (Pb /(Zr+Ti), PIR)] was studied. Although the Pb composition and crystallinity of the films grown under different PIR were almost identical, the film grown under a PIR which was near the center of the process window showed the best ferroelectric performance. X-ray photoelectron spectroscopy showed that the films grown at lower and higher PIR have residual ZrO2 and metallic Pb, respectively, which resulted in reduced remanent polarization and reliability.

  17. Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids

    PubMed Central

    González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.

    2017-01-01

    The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681

  18. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

    PubMed Central

    Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.

    2016-01-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 − 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 −CoFe2O4 bulk composites with similar content of the ferrite phase. PMID:27555563

  19. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.

    2016-08-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 - 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 -CoFe2O4 bulk composites with similar content of the ferrite phase.

  20. In Situ Synchrotron Radiation X-ray Diffraction Study on Phase and Oxide Growth during a High Temperature Cycle of a NiTi-20 at.% Zr High Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Van Doren, Brian; Young, Marcus L.

    2018-03-01

    Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.

  1. In Situ Synchrotron Radiation X-ray Diffraction Study on Phase and Oxide Growth during a High Temperature Cycle of a NiTi-20 at.% Zr High Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Van Doren, Brian; Young, Marcus L.

    2018-02-01

    Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.

  2. Effects of firing schedule on solubility limits and transport properties of ZrO 2-TiO 2-Y 2O 3 fluorites

    NASA Astrophysics Data System (ADS)

    Fagg, D. P.; Frade, J. R.; Mogensen, M.; Irvine, J. T. S.

    2007-08-01

    The low Y/high Zr edge of the cubic defect fluorite solid solution in the system ZrO 2-TiO 2-Y 2O 3 in air is reassessed, as it is these compositions which have been suggested to offer the highest levels of mixed conductivity. Vegard's law is obeyed for values of x which lie within the cubic defect fluorite phase in Zr 1-x-yY yTi xO 2-δ for values of y=0.2 and 0.25. Measured lattice parameters show good agreement with those calculated from the Kim relation. Deviation from Vegard's law places the limit of the solid solution at x=0.18 and 0.20 for values of y=0.2 and 0.25, respectively, at 1500 °C. Discrepancies in current literature data can be shown to be due to differences in firing schedule such as slight temperature fluctuations and/or different cooling rates. A high level of care of sintering temperature and cooling profile is essential to form the most promising single-phase materials which contain maximum Ti-contents with low Y-contents. Contraction of the phase limit as a result of poor synthesis control leads to erroneously high values of bulk ionic conductivity while values of electronic conductivity are shown to be less affected.

  3. Role of A-site Ca and B-site Zr substitution in BaTiO3 lead-free compounds: Combined experimental and first principles density functional theoretical studies

    NASA Astrophysics Data System (ADS)

    Keswani, Bhavna C.; Saraf, Deepashri; Patil, S. I.; Kshirsagar, Anjali; James, A. R.; Kolekar, Y. D.; Ramana, C. V.

    2018-05-01

    We report on the combined experimental and theoretical simulation results of lead-free ferroelectrics, Ba(1-x)CaxTiO3 (x = 0.0-0.3) and BaTi(1-y)ZryO3 (y = 0.0-0.2), synthesized by standard solid state reaction method. First principles density functional calculations are used to investigate the electronic structure, dynamical charges, and spontaneous polarization of these compounds. In addition, the structural, ferroelectric, piezoelectric, and dielectric properties are studied using extensive experiments. The X-ray diffraction and temperature dependent Raman spectroscopy studies indicate that the calcium (Ca) substituted compositions exhibit a single phase crystal structure, while zirconium (Zr) substituted compositions are biphasic. The scanning electron micrographs reveal the uniform and highly dense microstructure. The presence of polarization-electric field and strain-electric field hysteresis loops confirms the ferroelectric and piezoelectric nature of all the compositions. Our results demonstrate higher values for polarization, percentage strain, piezoelectric coefficients, and electrostrictive coefficient compared to those existing in the literature. For smaller substitutions of Ca and Zr in BaTiO3, a direct piezoelectric coefficient (d33) is enhanced, while the highest d33 value (˜300 pC/N) is observed for BaTi0.96Zr0.04O3 due to the biphasic ferroelectric behavior. Calculation of Born effective charges indicates that doping with Ca or Zr increases the dynamical charges on Ti as well as on O and decreases the dynamical charge on Ba. An increase in the dynamical charges on Ti and O is ascribed to the increase in covalency of Ti-O bond that reduces the polarizability of the crystal. A broader range of temperatures is demonstrated to realize the stable phase in the Ca substituted compounds. The results indicate enhancement in the temperature range of applicability of these compounds for device applications. The combined theoretical and experimental study is

  4. Electrical characterization of Mn doped-(Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, A.; Materials Research Laboratory, Institute of Physics & Electronics, University of Peshawar, 25120; Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD

    2015-12-15

    Highlights: • Solid state processing of the (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. • Mn incorporated on the Ti-site into the host lattice of (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3}. • NTCR behavior was observed in the sintered samples. - Abstract: (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} (x = 0.00, 0.013, 0.015 and 0.05) ceramics were prepared by solid state sintering route at the 1500 °C for 6 h in air. Effect of Mn substitution on the structure of Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} perovskite was investigated systematically. Dielectric and impedancemore » spectroscopic studies were conducted to understand the electronic microstructure of the Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. Sample with x = 0.05 showed the highest dielectric constant (ϵ{sub r} = 1826) and low dielectric loss (tanδ = 0.001) at 10 kHz, around the room temperature, while the sample with x = 0.00 showed good microwave (MW) dielectric properties (Qf{sub o} = 838 and ϵ{sub r} = 550). The impedance spectroscopic analysis confirmed the electrical homogeneity of the samples with x = 0.013, 0.015 and 0.05, where grain boundaries dominated the conduction mechanism. Similarly, the sample with x = 0.00 was found to possess both grain boundary and bulk resistive contributions.« less

  5. Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides.

    PubMed

    Florez, Elizabeth; Viñes, Francesc; Rodriguez, Jose A; Illas, Francesc

    2009-06-28

    The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides.

  6. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density.

    PubMed

    Populoh, Sascha; Brunko, Oliver C; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-03-27

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm² and a maximum volumetric power density of 700 mW/cm³. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected.

  7. Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces

    DOE PAGES

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; ...

    2016-05-31

    A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal likemore » Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp 2 to sp 3 with an elongation (0.16–0.31 Å) of the C=C bond. As a result, on the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis.« less

  8. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    Atomistic modeling of the site substitution behavior of Pd in NiTi (J. Alloys and Comp. (2004), in press) has been extended to examine the behavior of several other alloying additions, namely, Fe, Pt, Au, Al, Cu, Zr and Hf in this important shape memory alloy. It was found that all elements, to a varying degree, displayed absolute preference for available sites in the deficient sublattice. How- ever, the energetics of the different substitutional schemes, coupled with large scale simulations indicate that the general trend in all cases is for the ternary addition to want to form stronger ordered structures with Ti.

  9. Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Kim, D. M.; Eom, C. B.; Nagarajan, V.; Ouyang, J.; Ramesh, R.; Vaithyanathan, V.; Schlom, D. G.

    2006-04-01

    We report the structural and longitudinal piezoelectric responses (d33) of epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) films on (001) SrTiO3 and Si substrates in the thickness range of 40nm -4μm. With increasing film thickness the tetragonality of PZT was reduced. The increase in d33 value with increasing film thicknesses was attributed to the reduction of substrate constraints and softening of PZT due to reduced tetragonality. The d33 values of PZT films on Si substrates (˜330pm/V) are higher than those on SrTiO3 substrates (˜200pm /V). The epitaxial PZT films on silicon will lead to the fabrication of high performance piezoelectric microelectromechanical devices.

  10. Influence of Zr substitution on the stabilization of ThMn{sub 12}-type (Nd{sub 1−α}Zr{sub α})(Fe{sub 0.75}Co{sub 0.25}){sub 11.25}Ti{sub 0.75}N{sub 1.2−1.4} (α = 0–0.3) compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, N.; Yano, M.; Kato, A.

    2016-05-15

    The influence of Zr substitution in ThMn{sub 12} compounds was investigated using strip casting alloys. It was found that Zr substitution stabilized (Nd{sub 1−α}Zr{sub α})(Fe{sub 0.75}Co{sub 0.25}){sub 11.25}Ti{sub 0.75}N{sub 1.2−1.4} (α = 0–0.3) compounds. Specifically, a reduction in the lattice constant along the a-axis was observed. Energy-dispersive X-ray spectroscopy mapping combined with Cs-corrected scanning transmission electron microscopy indicated that Zr atoms preferentially occupied Nd 2a sites. Both the magnetic anisotropy field and saturation polarization were maximum at Zr substitution ratio α = 0.1. The (Nd{sub 1−α}Zr{sub α})(Fe{sub 0.75}Co{sub 0.25}){sub 11.25}Ti{sub 0.75}N{sub 1.2−1.4} (α = 0–0.3) compounds displayed higher saturation polarizationmore » than Nd{sub 2}Fe{sub 14}B at high temperatures.« less

  11. Chemistry of surface nanostructures in lead precursor-rich PbZr0.52Ti0.48O3 sol-gel films

    NASA Astrophysics Data System (ADS)

    Gueye, I.; Le Rhun, G.; Gergaud, P.; Renault, O.; Defay, E.; Barrett, N.

    2016-02-01

    We present a study of the chemistry of the nanostructured phase at the surface of lead zirconium titanate PbZr0.52Ti0.48O3 (PZT) films synthesized by sol-gel method. In sol-gel synthesis, excess lead precursor is used to maintain the target stoichiometry. Surface nanostructures appear at 10% excess whereas 30% excess inhibits their formation. Using the surface-sensitive, quantitative X-ray photoelectron spectroscopy and glancing angle X-ray diffraction we have shown that the chemical composition of the nanostructures is ZrO1.82-1.89 rather than pyrochlore often described in the literature. The presence of a possibly discontinuous layer of wide band gap ZrO1.82-1.89 could be of importance in determining the electrical properties of PZT-based metal-insulator-metal heterostructures.

  12. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part I. Dendritic Solidification Structure

    NASA Astrophysics Data System (ADS)

    Boettinger, W. J.; Newbury, D. E.; Wang, K.; Bendersky, L. A.; Chiu, C.; Kattner, U. R.; Young, K.; Chao, B.

    2010-08-01

    The solidification microstructures of three nine-element Zr-Ni-based AB2 type C14/C15 Laves hydrogen storage alloys are determined. The selected compositions represent a class of alloys being examined for usage as an MH electrode in nickel metal-hydride batteries that often have their best properties in the cast state. Solidification is accomplished by dendritic growth of hexagonal C14 Laves phase, peritectic solidification of cubic C15 Laves phase, and formation of cubic B2 phase in the interdendritic regions. The B2 phase decomposes in the solid state into a complex multivariate platelike structure containing Zr-Ni-rich intermetallics. The observed sequence C14/C15 upon solidification agrees with predictions using effective compositions and thermodynamic assessments of the ternary systems, Ni-Cr-Zr and Cr-Ti-Zr. Experimentally, the closeness of the compositions of the C14 and C15 phases required the use of compositional mapping with an energy dispersive detector capable of processing a very high X-ray flux to locate regions in the microstructure for quantitative composition measurement and transmission electron microscope examination.

  13. Effect of Laser Powder Bed Fusion Parameters on the Microstructure and Texture Development in Superelastic Ti-18Zr-14Nb Alloy

    NASA Astrophysics Data System (ADS)

    Kreitcberg, A.; Brailovski, V.; Sheremetyev, V.; Prokoshkin, S.

    2017-12-01

    The effect of different laser powder bed fusion (L-PBF) parameters on the phase composition, microstructure, and crystallographic texture of Ti-18Zr-14Nb alloy was studied. Two levels of laser power, scanning speed, and hatching space were used, while the layer thickness was kept constant. The resulting volume energy density was ranged from 20 to 60 J/mm3, and the build rate, from 12 to 36 cm3/h. The manufactured coupons were analyzed by X-ray diffractometry, transmission, and scanning electron microscopy. It was found that the greater influence observed on the microstructure and texture development was caused by the value of laser power, while the lowest, by that of hatching space. Based on the results obtained, the processing optimization strategy aimed at improving the density, superelastic, and fatigue properties of the L-PBF manufactured Ti-18Zr-14Nb alloy was proposed.

  14. Ti12.5Zr21V10Cr8.5MnxCo1.5Ni46.5-x AB2-type metal hydride alloys for electrochemical storage application: Part 1. Structural characteristics

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Levin, I.; Newbury, D.; Young, K.; Chao, B.; Creuziger, A.

    2012-11-01

    The microstructures of a series of AB2-based metal hydride alloys (Ti12.5Zr21V10Cr8.5MnxCo1.5Ni46.5-x) designed to have different fractions of non-Laves secondary phases were studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, and electron backscatter diffraction. The results indicate that the alloys contain a majority of hydrogen storage Laves phases and a minority of fine-structured non-Laves phases. Formation of the phases is accomplished by dendritic growth of a hexagonal C14 Laves phase. The C14 phase is followed by either a peritectic solidification of a cubic C15 Laves phase (low Mn containing alloys) or a C14 phase of different composition (high Mn containing alloys), and finally a B2 phase formed in the interdendritic regions (IDR). The interdendritic regions may then undergo further solid-state transformation into Zr7Ni10-type, Zr9Ni11-type and TiNi-type phases. As the Mn content in the alloy increases, the fraction of the C14 phase increases, whereas the fraction of C15 decreases. In the IDRs when the alloy's Mn content increases the Zr9Ni11 phases and Zr7Ni10 phase fraction first increases and then decreases, while the TiNi-based phase fraction first increases and then stabilized at 0.02. IDR compositions can be generally expressed as (Ti,Zr,V,Cr,Mn,Co)50Ni50, which accounted for 7-10% of the overall alloy volume fraction.

  15. Structure and functional properties of TiNiZr surface layers obtained by high-velocity oxygen fuel spraying

    NASA Astrophysics Data System (ADS)

    Rusinov, P. O.; Blednova, Zh M.; Borovets, O. I.

    2017-05-01

    The authors studied a complex method of surface modification of steels for materials with shape memory effect (SME) Ti-Ni-Zr with a high-velocity oxygen-fuel spraying (HVOF) of mechanically activated (MA) powder in a protective medium. We assessed the functional properties and X-ray diffraction studies, which showed that the formation of surface layers according to the developed technology ensures the manifestation of the shape memory effect.

  16. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density

    PubMed Central

    Populoh, Sascha; Brunko, Oliver C.; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-01-01

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm2 and a maximum volumetric power density of 700 mW/cm3. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected. PMID:28809212

  17. Electron-stimulated desorption from polished and vacuum fired 316LN stainless steel coated with Ti-Zr-Hf-V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk; Valizadeh, Reza; Hogan, Benjamin T.

    2014-11-01

    In this study, two identical 316LN stainless steel tubular samples, which had previously been polished and vacuum-fired and then used for the electron-stimulated desorption (ESD) experiments, were coated with Ti-Zr-Hf-V with different morphologies: columnar and dense. ESD measurement results after nonevaporable getter (NEG) activation to 150, 180, 250, and 350 °C indicated that the values for the ESD yields are significantly (2–20 times) lower than the data from our previous study with similar coatings on nonvacuum-fired samples. Based on these results, the lowest pressure and best long-term performance in particle accelerators will be achieved with a vacuum-fired vacuum chamber coated withmore » dense Ti-Zr-Hf-V coating activated at 180 °C. This is likely due to the following facts: after NEG activation, the hydrogen concentration inside the NEG was lower than in the bulk stainless steel substrate; the NEG coating created a barrier for gas diffusion from the sample bulk to vacuum; the dense NEG coating performed better as a barrier than the columnar NEG coating.« less

  18. Shock Compression of the New 47Zr45Ti5Al3V Alloys up to 200 GPa

    NASA Astrophysics Data System (ADS)

    Zhang, Pin-Liang; Gong, Zi-Zheng; Ji, Guang-Fu; Wang, Qing-Song; Song, Zhen-Fei; Cao, Yan; Wang, Xiang

    2013-06-01

    Shock compression experiments on a new kind of 47Zr45Ti5Al3V alloys at pressures between 28 and 200 GPa are performed using a two-stage light gas gun. The Hugoniot data are obtained by combining the impedance-match method and the electrical probe technique. The relationship between the shock wave velocity Us and particle velocity up can be described linearly by Us = 4.324(±0.035) + 1.177(±0.012)up. No obvious evidence of phase transition is found in the shock compression pressure range. The calculated Us - up relationship obtained from the additive principle is different from the experimental data, indicating that the α → β phase transition occurs below 28 GPa. The Grüneisen parameter γ obtained from the experimental data can be expressed by γ = 1.277(ρ0/ρ). The zero-pressure bulk modulus B0s = 97.96 GPa and its pressure derivative B'0s = 3.68. The P—V—T equation of state for 47Zr45Ti5Al3V is given using the Vinet equation of state to describe the cold curve and the Debye model for the thermal contributions.

  19. Polarization induced self-doping in epitaxial Pb(Zr0.20Ti0.80)O3 thin films

    PubMed Central

    Pintilie, Lucian; Ghica, Corneliu; Teodorescu, Cristian Mihail; Pintilie, Ioana; Chirila, Cristina; Pasuk, Iuliana; Trupina, Lucian; Hrib, Luminita; Boni, Andra Georgia; Georgiana Apostol, Nicoleta; Abramiuc, Laura Elena; Negrea, Raluca; Stefan, Mariana; Ghica, Daniela

    2015-01-01

    The compensation of the depolarization field in ferroelectric layers requires the presence of a suitable amount of charges able to follow any variation of the ferroelectric polarization. These can be free carriers or charged defects located in the ferroelectric material or free carriers coming from the electrodes. Here we show that a self-doping phenomenon occurs in epitaxial, tetragonal ferroelectric films of Pb(Zr0.2Ti0.8)O3, consisting in generation of point defects (vacancies) acting as donors/acceptors. These are introducing free carriers that partly compensate the depolarization field occurring in the film. It is found that the concentration of the free carriers introduced by self-doping increases with decreasing the thickness of the ferroelectric layer, reaching values of the order of 1026 m−3 for 10 nm thick films. One the other hand, microscopic investigations show that, for thicknesses higher than 50 nm, the 2O/(Ti+Zr+Pb) atomic ratio increases with the thickness of the layers. These results suggest that the ratio between the oxygen and cation vacancies varies with the thickness of the layer in such a way that the net free carrier density is sufficient to efficiently compensate the depolarization field and to preserve the outward direction of the polarization. PMID:26446442

  20. Researches on Tie Rod Ends Lubricated by Grease with TiO2 and ZrO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wozniak, Marek; Siczek, Krzysztof; Kubiak, Przemysław; Jozwiak, Piotr; Siczek, Krystian

    2018-05-01

    The nanoparticles of some materials can be used successfully to improve tribological properties through decreasing both wear and friction borne out of contact between the contact surfaces of elements in different devices, particularly vehicles. Nanoparticles of TiO2 and ZrO2 were chosen as additives to the lithium grease lubricating the contact surfaces in tie rod ends. The object of study was the steel ball – the component of the tie rod end – mating with the polymer insert and lubricated with the pure lithium grease or containing the addition of pure TiO2, pure ZrO2 nanoparticles, with a 1%wt. Studies on friction were carried out using the tester allowing cyclical rotational motion and different loading of contact. Wear was investigated by driving a car, whose tie rod ends were analysed, on a fixed ‘eight’-shape track and with a fixed velocity pattern. The aim of the study was to obtain the values and waveforms of friction moment and wear versus cycles, loading and composition of lubricating grease. The waveforms of friction coefficient were obtained using the FEM model of the analysed contact zone. Based on the obtained waveforms, recommendations for the composition of additives for lithium grease were made.

  1. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  2. Highly c-axis-oriented monocrystalline Pb(Zr, Ti)O₃ thin films on si wafer prepared by fast cooling immediately after sputter deposition.

    PubMed

    Yoshida, Shinya; Hanzawa, Hiroaki; Wasa, Kiyotaka; Esashi, Masayoshi; Tanaka, Shuji

    2014-09-01

    We successfully developed sputter deposition technology to obtain a highly c-axis-oriented monocrystalline Pb(Zr, Ti)O3 (PZT) thin film on a Si wafer by fast cooling (~-180°C/min) of the substrate after deposition. The c-axis orientation ratio of a fast-cooled film was about 90%, whereas that of a slow-cooled (~-40°C/min) film was only 10%. The c-axis-oriented monocrystalline Pb(Zr0.5, Ti0.5)O3 films showed reasonably large piezoelectric coefficients, e(31,f) = ~-11 C/m(2), with remarkably small dielectric constants, ϵ(r) = ~220. As a result, an excellent figure of merit (FOM) was obtained for piezoelectric microelectromechanical systems (MEMS) such as a piezoelectric gyroscope. This c-axis orientation technology on Si will extend industrial applications of PZT-based thin films and contribute further to the development of piezoelectric MEMS.

  3. Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films.

    PubMed

    Guyonnet, Jill; Gaponenko, Iaroslav; Gariglio, Stefano; Paruch, Patrycja

    2011-12-01

    Domain wall conduction in insulating Pb(Zr(0.2) Ti(0.8))O(3) thin films is demonstrated. The observed electrical conduction currents can be clearly differentiated from displacement currents associated with ferroelectric polarization switching. The domain wall conduction, nonlinear and highly asymmetric due to the specific local probe measurement geometry, shows thermal activation at high temperatures, and high stability over time. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrical transport through Pb(Zr,Ti)O3 p-n and p-p heterostructures modulated by bound charges at a ferroelectric surface: Ferroelectric p-n diode

    NASA Astrophysics Data System (ADS)

    Watanabe, Yukio

    1999-05-01

    Current through (Pb,La)(Zr,Ti)O3 ferroelectrics on perovskite semiconductors is found to exhibit diode characteristics of which polarity is universally determined by the carrier conduction-type semiconductors. A persisting highly reproducible resistance modulation by a dc voltage, which has a short retention, is observed and is ascribed to a band bending of the ferroelectric by the formation of charged traps. This interpretation is consistent with a large relaxation current observed at a low voltage. On the other hand, a reproducible resistance modulation by a pulse voltage, which has a long retention, is observed in metal/(Pb,La)(Zr,Ti)O3/SrTiO3:Nb but not in metal/(Pb,La)(Zr,Ti)O3/(La,Sr)2CuO4 and is attributed to a possible band bending due to the spontaneous polarization (P) switching. The observed current voltage (IV) characteristics, the polarity dependence, the relaxation, and the modulation are explicable, if we assume a p-n or a p-p junction at the ferroelectric semiconductor interface (p: hole conduction type, n: electron conduction type). The analysis suggests that an intrinsically inhomogeneous P (∇P) near the ferroelectric/metal interface is likely very weak or existing in a very thin layer, when a reaction of the metal with the ferroelectric is eliminated. Additionally, the various aspects of transport through ferroelectrics are explained as a transport in the carrier depleted region.

  5. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyani, Ajay Kumar; Brajesh, Kumar; Ranjan, Rajeev, E-mail: rajeev@materials.iisc.ernet.in

    2014-06-23

    The effect of Zr, Hf, and Sn in BaTiO{sub 3} has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2 mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d{sub 33}), with Sn modification exhibiting the highest value ∼425 pC/N.

  6. Biological Behaviour and Enhanced Anticorrosive Performance of the Nitrided Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    PubMed Central

    Osiceanu, Petre; Gloriant, Thierry

    2015-01-01

    The influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term osteoblast response. XPS analysis showed that the nitriding treatment strongly influenced the composition (nitrides and oxynitrides) and surface properties both of the substrate and of the bulk alloy. SEM images revealed that the nitrided surface appears as a similar dotted pattern caused by the formation of N-rich domains coexisting with less nitrided domains, while before treatment only topographical features could be observed. All the electrochemical results confirmed the high chemical stability of the nitride and oxynitride coating and the superiority of the applied treatment. The values of the corrosion parameters ascertained the excellent corrosion resistance of the coated alloy in the real functional conditions from the human body. Cell culture experiments with MG63 osteoblasts demonstrated that the studied biomaterials do not elicit any toxic effects and support cell adhesion and enhanced cell proliferation. Altogether, these data indicate that the nitrided Ti-23Nb-0.7Ta-2Zr-0.5N alloy is the most suitable substrate for application in bone implantology. PMID:26583096

  7. Effective work function engineering for a TiN/XO(X = La, Zr, Al)/SiO{sub 2} stack structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongjin, E-mail: dongjin0710.lee@samsung.com; Lee, Jieun; Jung, Kyoungho

    In this study, we demonstrated that work function engineering is possible over a wide range (+200 mV to −430 mV) in a TiN/XO (X = La, Zr, or Al)/SiO{sub 2} stack structures. From ab initio simulations, we selected the optimal material for the work function engineering. The work function engineering mechanism was described by metal diffusion into the TiN film and silicate formation in the TiN/SiO{sub 2} interface. The metal doping and the silicate formation were confirmed by transmission electron microscopy and energy dispersive spectroscopy line profiling, respectively. In addition, the amount of doped metal in the TiN film depended on the thickness ofmore » the insertion layer XO. From the work function engineering technique, which can control a variety of threshold voltages (Vth), an improvement in transistors with different V{sub th} values in the TiN/XO/SiO{sub 2} stack structures is expected.« less

  8. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget

    NASA Astrophysics Data System (ADS)

    Kim, Si Joon; Narayan, Dushyant; Lee, Jae-Gil; Mohan, Jaidah; Lee, Joy S.; Lee, Jaebeom; Kim, Harrison S.; Byun, Young-Chul; Lucero, Antonio T.; Young, Chadwin D.; Summerfelt, Scott R.; San, Tamer; Colombo, Luigi; Kim, Jiyoung

    2017-12-01

    We report on atomic layer deposited Hf0.5Zr0.5O2 (HZO)-based capacitors which exhibit excellent ferroelectric (FE) characteristics featuring a large switching polarization (45 μC/cm2) and a low FE saturation voltage (˜1.5 V) as extracted from pulse write/read measurements. The large FE polarization in HZO is achieved by the formation of a non-centrosymmetric orthorhombic phase, which is enabled by the TiN top electrode (TE) having a thickness of at least 90 nm. The TiN films are deposited at room temperature and annealed at 400 °C in an inert environment for at least 1 min in a rapid thermal annealing system. The room-temperature deposited TiN TE acts as a tensile stressor on the HZO film during the annealing process. The stress-inducing TiN TE is shown to inhibit the formation of the monoclinic phase during HZO crystallization, forming an orthorhombic phase that generates a large FE polarization, even at low process temperatures.

  9. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.

    2017-11-01

    Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

  10. Homogeneity of Pb(Zr ,Ti)O3 thin films by chemical solution deposition: Extended x-ray absorption fine structure spectroscopy study of zirconium local environment

    NASA Astrophysics Data System (ADS)

    Malic, Barbara; Arcon, Iztok; Kodre, Alojz; Kosec, Marija

    2006-09-01

    Sols for Pb(Zr0.53Ti0.47)O3 (PZT) thin films were prepared by 2-methoxyethanol route from lead acetate, titanium n-propoxide, and zirconium n-propoxide, the latter either unmodified or modified with acetylacetone or acetic acid in a 2/1 molar ratio and deposited on sapphire (0001). By Zr K-edge extended x-ray absorption fine structure (EXAFS) spectroscopy, the structural changes in the Zr local environment, induced by the addition of the two modifiers, were followed from the synthesis of the PZT sol to the transition to the amorphous film. In the unmodified PZT sol segregation of Zr species occurs from the original dimers present in the Zr propoxide solution in 2-methoxyethanol. The immediate neighborhood of Zr atoms changes markedly at the transition from the sol to the amorphous film: the local structure around Zr atoms is similar to the one found in tetragonal zirconia particles. The modification of Zr propoxide with acetylacetone in 2-methoxyethanol results in Zr monomers. In PZT sol, clustering of Zr species is observed continuing into the amorphous film. By modification with acetic acid the original dimeric structure of the Zr precursor is retained in the PZT sol and further in the amorphous film. Selective modification of Zr propoxide with acetic acid therefore results in a more homogeneous distribution of Zr atoms in the PZT sol and amorphous film than in both as-received and acetylacetone-modified Zr propoxide.

  11. Simplified ZrTiO x -based RRAM cell structure with rectifying characteristics by integrating Ni/n + -Si diode.

    PubMed

    Lin, Chia-Chun; Wu, Yung-Hsien; Chang, You-Tai; Sun, Cherng-En

    2014-01-01

    A simplified one-diode one-resistor (1D1R) resistive switching memory cell that uses only four layers of TaN/ZrTiO x /Ni/n(+)-Si was proposed to suppress sneak current where TaN/ZrTiO x /Ni can be regarded as a resistive-switching random access memory (RRAM) device while Ni/n(+)-Si acts as an Schottky diode. This is the first RRAM cell structure that employs metal/semiconductor Schottky diode for current rectifying. The 1D1R cell exhibits bipolar switching behavior with SET/RESET voltage close to 1 V without requiring a forming process. More importantly, the cell shows tight resistance distribution for different states, significantly rectifying characteristics with forward/reverse current ratio higher than 10(3) and a resistance ratio larger than 10(3) between two states. Furthermore, the cell also displays desirable reliability performance in terms of long data retention time of up to 10(4) s and robust endurance of 10(5) cycles. Based on the promising characteristics, the four-layer 1D1R structure holds the great potential for next-generation nonvolatile memory technology.

  12. Structural and magnetically enhanced ferroelectric properties of Nd3+ and Fe3+ substituted Pb(Zr0.45Ti0.55)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Kaur, Randeep; Singh, Anupinder

    2018-05-01

    The influence of Nd3+ and Fe3+ substitution on Pb(Zr0.45Ti0.55)O3 composition prepared via solid state reaction route have been studied. The structural evolution was investigated using an X-ray diffraction (XRD). Non perovskite Pb2Ti2O7, ZrO2 and PbO phases were observed along with the rhombohedral phase. The SEM micrograph shows the surface morphology of the samples. The density of the sample was calculated by using Archimedes principle and found to be 8.45g/cm3. The magnetic data depicts the presence of both the ferromagnetic as well as antiferromagnetic character in the solid solution. In ferroelectric studies, the values of remnant polarization (Pr) and coercive field (Ec) enhanced from 2.60 μC/cm2 - 3.44 µC/cm2 and 15.82kV/cm - 22.91kV/cm respectively.

  13. Photonic band gap in (Pb,La)(Zr,Ti)O3 inverse opals

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhou, Ji; Hao, Lifeng; Hu, Wei; Zong, Ruilong; Cai, Minmin; Fu, Min; Gui, Zhilun; Li, Longtu; Li, Qi

    2003-05-01

    (Pb,La)(Zr,Ti)O3 (PLZT) inverse opal photonic crystals were synthesized by a process of self-assembly in combination with a sol-gel technique. In this process, PLZT precursors were infiltrated into the interstices of the opal template assembled by monodisperse submicron polystyrene spheres, and then gelled in a humid environment. Polystyrene template was removed by calcining the specimen at a final temperature of 700 °C accompanied with the crystallization of perovskite phase in PLZT inverse opal network. Scanning electron microscope images show that the inverse opals possess a fcc structure with a lattice constant of 250 nm. A wide photonic band gap in the visible range is observed from transmission spectra of the sample. Such PLZT inverse opals as photonic crystals should be of importance in device applications.

  14. 3D surface topography study of the biofunctionalized nanocrystalline Ti-6Zr-4Nb/Ca-P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Jurczyk, M.U.

    2012-08-15

    In this work surface of the sintered Ti-6Zr-4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H{sub 3}PO{sub 4} + 2%HF electrolyte at 10 V for 30 min. Next the calcium-phosphate (Ca-P) layer was deposited, onto the formed porous surface, using cathodic potential - 5 V kept for 60 min in 0.042 M Ca(NO{sub 3}){sub 2} + 0.025 M (NH{sub 4}){sub 2}HPO{sub 4} + 0.1 M HCl electrolyte. The deposited Ca-P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normalmore » human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Ti-6Zr-4Nb/Ca-P material was produced for hard tissue implant applications. Black-Right-Pointing-Pointer Calcium-phosphate results in surface biofunctionalization. Black-Right-Pointing-Pointer The biofunctionalized surface shows good in-vitro behavior.« less

  15. Structural and electrical properties of Pb(Zr ,Ti)O3 grown on (0001) GaN using a double PbTiO3/PbO bridge layer

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Gu, Xing; Izyumskaya, Natalia; Avrutin, Vitaliy; Xie, Jinqiao; Liu, Huiyong; Morkoç, Hadis

    2007-10-01

    Pb(Zr0.52Ti0.48)O3 films were deposited by rf magnetron sputtering on silicon-doped GaN(0001)/c-sapphire with a PbTiO3/PbO oxide bridge layer grown by molecular beam epitaxy. X-ray diffraction data showed the highly (111)-oriented perovskite phase in lead zirconate titanate (PZT) films with PbTiO3/PbO bridge layers, compared to the pyrochlore phase grown directly on GaN. The in-plane epitaxial relationships were found from x-ray pole figures to be PZT[112¯]‖GaN[11¯00] and PZT[11¯0]‖GaN[112¯0]. The polarization-electric field measurements revealed the ferroelectric behavior with remanent polarization of 30-40μC /cm2 and asymmetric hysteresis loops due to the depletion layer formed in GaN under reverse bias which resulted in a high negative coercive electric field (950kV/cm).

  16. High temperature dielectrics and defect characteristic of (Nb, Mn, Zr) modified 0.4(Ba0.8Ca0.2)TiO3 - 0.6Bi(Mg0.5Ti0.5)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ren, Shaokai; Chen, Zhi; Yan, Tianxiang; Han, Feifei; Kuang, Xiaojun; Fang, Liang; Liu, Laijun

    2018-07-01

    Transition elements Nb, Mn and Zr were selected to substitute Ti of 0.4(Ba0.8Ca0.2)TiO3 -0.6Bi(Mg0.5Ti0.5)O3 (BCT-BMT) ceramic in order to extend its operation temperature and decrease its dielectric loss for the application of high-temperature capacitors. Nb and Mn play an opposite role on the defect compensation, decreasing and increasing the concentration of oxygen vacancies, respectively. The temperature of the maximum relative permittivity, Tm, decreases from 140 °C to 90 °C for the Nb and Zr modified BCT-BMT ceramics. The permittivity (εr) peak of the former exhibits a broad and stable relative permittivity ∼600 (±5% variation) from 50 °C to 520 °C with the dielectric loss ≤0.02 from 60 °C to 440 °C (1 kHz). The modified Curie-Weiss law indicates that the doping elements result in an enhancement of diffuse phase transition. Activation energies of relaxation frequency and conduction of the samples were characterized by the impedance spectroscopy. A clear relationship between the magnitude of activation energy and the concentration of oxygen vacancies was revealed.

  17. Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5TiZr Alloy (Postprint)

    DTIC Science & Technology

    2014-04-01

    vacuum arc melting. To close shrinkage porosity, it was hot isostatically pressed (HIPd) at T = 1723K and P = 207MPa for 3 h. In both as-solidified and...and 1473 K in a computer-controlled Instron (Instron, Norwood, MA) mechanical testing machine out- fitted with a Brew vacuum furnace and silicon...temperature. For Zr and Ti, the parameter a was extrapolated from elevated temperatures [8]. The calculated ( Calc ) values of the lattice parameter of

  18. Microscopic origins of the large piezoelectricity of leadfree (Ba,Ca)(Zr,Ti)O3

    NASA Astrophysics Data System (ADS)

    Nahas, Yousra; Akbarzadeh, Alireza; Prokhorenko, Sergei; Prosandeev, Sergey; Walter, Raymond; Kornev, Igor; Íñiguez, Jorge; Bellaiche, L.

    2017-06-01

    In light of directives around the world to eliminate toxic materials in various technologies, finding lead-free materials with high piezoelectric responses constitutes an important current scientific goal. As such, the recent discovery of a large electromechanical conversion near room temperature in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 compounds has directed attention to understanding its origin. Here, we report the development of a large-scale atomistic scheme providing a microscopic insight into this technologically promising material. We find that its high piezoelectricity originates from the existence of large fluctuations of polarization in the orthorhombic state arising from the combination of a flat free-energy landscape, a fragmented local structure, and the narrow temperature window around room temperature at which this orthorhombic phase is the equilibrium state. In addition to deepening the current knowledge on piezoelectricity, these findings have the potential to guide the design of other lead-free materials with large electromechanical responses.

  19. Temperature dependences of the electromechanical and electrocaloric properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Maiwa, Hiroshi

    2017-10-01

    The electrocaloric properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 ceramics (BZT and BST, respectively) were investigated by the indirect estimation and direct measurement of temperature-electric field (T-E) hysteresis loops. The measured T-E loops had shapes similar to those of the strain-electric field (s-E) loops. The measured temperature changes (ΔTs) at around 30 °C of the BZT ceramics sintered at 1450 °C and BST ceramics sintered at 1600 °C upon the release of the electric field from 30 kV/cm to 0 were 0.34 and 0.57 K, respectively. The temperature dependences of the electromechanical and electrocaloric properties were investigated. The BZT ceramics sintered at 1450 °C exhibited the largest electromechanical and electrocaloric properties at around 30 °C, which corresponds to the phase transition temperature. BST is more temperature dependent than BZT. BST ceramics sintered at 1600 °C exhibited the largest electromechanical and electrocaloric properties at around 29 °C, which is about 10 °C higher than the phase transition temperature.

  20. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.

    PubMed

    Yang, Xueyuan; Hutchinson, Christopher R

    2016-09-15

    Titanium alloys are popular metallic implant materials for use in total hip replacements. Although, α+β titanium alloys such as Ti-6Al-4V have been the most commonly used alloys, the high Young's modulus (∼110GPa) leads to an undesirable stress shielding effect. An alternative is to use β titanium alloys that exhibit a significantly lower Young's modulus (∼70GPa). Femoral stems made of a β titanium alloy known as TMZF (Ti-12Mo-6Zr-2Fe (wt.%)) have been used as part of modular hip replacements since the early 2000's but these were recalled in 2011 by the US Food & Drug Administration (FDA) due to unacceptable levels of 'wear debris'. The wear was caused by small relative movement of the stem and neck at the junction where they fit together in the modular hip replacement design. In this study, the corrosion and wear properties of the TMZF alloy were investigated in simulated body fluid to identify the reason for the wear debris generation. Ti64 was used as a control for comparison. It is shown that the interaction between the surfaces of Ti64 and TMZF with simulated body fluid is very similar, both from the point of view of the products formed and the kinetics of the reaction. The dry wear behaviour of TMZF is also close to that of Ti64 and consistent with expectations based on Archard's law for abrasive wear. However, wear of Ti64 and TMZF in simulated body fluid show contrasting behaviours. A type of time-dependent wear test is used to examine the synergy between corrosion and wear of TMZF and Ti64. It is shown that the wear of TMZF accelerated rapidly in SBF whereas that of Ti64 is reduced. The critical role of the strain hardening capacity of the two materials and its role in helping the surface resist abrasion by hydroxyapatite particles formed as a result of the reaction with the SBF is discussed and recommendations are made for modifications that could be made to the TMZF alloy to improve the corrosion-wear response. TMZF is a low modulus β-Ti alloy

  1. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    NASA Astrophysics Data System (ADS)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  2. Effect of Thermal Treatments on Ni-Mn-Ga and Ni-Rich Ni-Ti-Hf/Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.

    2015-11-01

    Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.

  3. Electrical properties and phase transition of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruea-In, C.; Rujijanagul, G., E-mail: rujijanagul@yahoo.com

    2015-09-15

    Highlights: • Properties of of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics were investigated. • Small amount of dopant produced a large change in dielectric and phase transition. • A phase diagram of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics was proposed. • Dielectric tunability increased with increasing x concentration. - Abstract: In this work, properties of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics with 0.00≤ x ≤0.07 were investigated. The ceramics were fabricated by a solid state reaction technique. X-ray diffraction analysis indicated that all samples exhibited single phase perovskite. Examination of themore » dielectric spectra revealed that the Fe and Ta additives promoted a diffuse phase transition, and the two phase transition temperatures, as observed in the dielectric curve of pure Ba(Zr{sub 0.05}Ti{sub 0.95})O{sub 3}, merged into a single phase transition temperature for higher x concentrations. The transformation was confirmed by ferroelectric measurements. In addition, the doped ceramics exhibited high relative dielectric tunability, especially for higher x concentration samples.« less

  4. Microstructure and mechanical properties of the NiNbZrTiAl amorphous alloys with 10 and 25 at.% Nb content.

    PubMed

    Czeppe, T; Ochin, P; Sypień, A; Major, L

    2010-03-01

    The results of investigation of two different Ni-based glasses with compositions Ni(58)Nb(10)Zr(13)Ti(12)Al(7) and Ni(58)Nb(25)Zr(8)Ti(6)Al(3) are presented. The structure of the melt spun ribbons was amorphous. The supercooled liquid range decreased and primary crystallization temperature increased with increasing Nb content while the parameter T(g)/T(m) slightly increased. The crystallization process proceeded in a different way. The ribbon containing 10 at.% Nb showed typical primary crystallization of the 50 nm grains of the NiTi(Nb) cubic phase; the ribbon containing 25 at.% of Nb revealed high thermal stability of the amorphous phase, which crystallized only in a small amount in the range of primary crystallization, preserving large fraction of the amorphous phase even high above the end of the crystallization. The tensile load-displacement curves were also different. In both cases, the ribbons revealed quite a large range of the plastic elongation. The ribbon containing 10% Nb showed stress relaxation and was maximally elongated up to 0.6. The ribbon with 25 at.% Nb revealed a hardening effect and the slightly smaller maximal elongation following it. The microstructure of the deformed specimens showed deformation bands parallel to the tensile axis, microcracks formation along shear bands and river-like pattern at the fracture surfaces. In both cases, high resolution electron microscope did not reveal any crystallization after deformation.

  5. Effect of structural in-depth heterogeneities on electrical properties of Pb(Zr0.52Ti0.48) O3 thin films as revealed by nano-beam X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vaxelaire, N.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Alvarez-Murga, M.; Vaughan, G. B. M.; Defay, E.; Gergaud, P.

    2016-09-01

    A direct quantification of a structural in-depth composition in the lead zirconate titanate Pb(Zr,Ti)O3 thin films of morphotropic composition has been conducted using the newly available X-ray nano-pencil beam (i.e., beam size of 100 nm × 1 μm) diffraction approach. We tested two samples with different Zr/Ti chemical gradients. Here, we demonstrate the presence of a significant microstructural gradient between the rhombohedral and tetragonal phases through PbZrxTi1-xO3 (PZT) films with a 100 nm in-depth resolution. The phase gradient extends over around 350 nm, and it is repeated through the PZT film three times, which corresponds to the number of thermal annealings. Moreover, this microstructural gradient is in agreement with the Zr/Ti chemical gradient observed by the secondary ion mass spectroscopy (SIMS). Indeed, the quantity of tetragonal phases rises in the Ti-rich zones as revealed by SIMS, and the quantity of rhombohedral phases rises in the Zr-rich zones. We also demonstrated a huge difference in the in-depth phase variation between the two tested samples. The gradient free sample still contains 4.7% of phase variation through the film and the amplified gradient contains 9.6% of phase variation through the film. Knowing that the gradient free sample shows better electric and piezoelectric coefficients, one can draw a correlation between the chemical composition, crystallographic homogeneity, and electro-mechanical properties of the film. The more close the film is to the morphotropic composition and the more it is crystallographically homogeneous, the higher the piezoelectric coefficients of the PZT are. Finally, the adequate knowledge of phase variation and its relation to the fabrication technique are crucial for the enhancement of the PZT electro-mechanical properties. Our methodology and findings open up new perspectives in establishing a relevant quantitative feedback to reach an ultimate electro-mechanical coupling in the sol-gel PZT thin films.

  6. TiO2, SiO2 and ZrO2 Nanoparticles Synergistically Provoke Cellular Oxidative Damage in Freshwater Microalgae

    PubMed Central

    Liu, Yinghan; Ye, Nan; Fang, Hao; Wang, Degao

    2018-01-01

    Metal-based nanoparticles (NPs) are the most widely used engineered nanomaterials. The individual toxicities of metal-based NPs have been plentifully studied. However, the mixture toxicity of multiple NP systems (n ≥ 3) remains much less understood. Herein, the toxicity of titanium dioxide (TiO2) nanoparticles (NPs), silicon dioxide (SiO2) NPs and zirconium dioxide (ZrO2) NPs to unicellular freshwater algae Scenedesmus obliquus was investigated individually and in binary and ternary combination. Results show that the ternary combination systems of TiO2, SiO2 and ZrO2 NPs at a mixture concentration of 1 mg/L significantly enhanced mitochondrial membrane potential and intracellular reactive oxygen species level in the algae. Moreover, the ternary NP systems remarkably increased the activity of the antioxidant defense enzymes superoxide dismutase and catalase, together with an increase in lipid peroxidation products and small molecule metabolites. Furthermore, the observation of superficial structures of S. obliquus revealed obvious oxidative damage induced by the ternary mixtures. Taken together, the ternary NP systems exerted more severe oxidative stress in the algae than the individual and the binary NP systems. Thus, our findings highlight the importance of the assessment of the synergistic toxicity of multi-nanomaterial systems. PMID:29419775

  7. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. First-principles study of the α-ω phase transformation in Ti and Zr coupled to slip modes

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Bronkhorst, Curt A.; Lookman, Turab

    2018-01-01

    We present first-principles density functional theory calculations to study the α-ω phase transformation in Ti and Zr and its coupling to slip modes of the two phases. We first investigate the relative energetics of all possible slip systems in the α and ω phases to predict the dominant slip system that is activated during a plastic deformation under an arbitrary load. Using this and the crystallographic orientation relationships between α and ω phases, we construct low energy α/ω interfaces and study the energetics of the slip system at the interface between α and ω to compare to the slip systems in the bulk phases. We find that for a particular crystallographic orientation relationship, where (basal) α∥(prismatic-II)ω , and [a] α∥[c] ω , the slip at the interface is preferred compared to its bulk counterparts. This implies that the plastically deformed α/ω phase with this orientation relationship prefers to retain the interface (or coexisting phases) than transforming back to the pure phase after unloading. This is consistent with the observation that the ω-phase is retained in samples loaded in flyer plate experiments or under high-pressure torsion. Furthermore, calculation of the energy barrier for α to ω phase transformation as a function of glide at the α/ω interface shows significant coupling between the α-ω phase transformation and slip modes in Ti and Zr.

  9. Enhanced Dielectric Nonlinearity in Epitaxial Pb(0.92)La(0.08)Zr(0.52)Ti(0.48)O(3)

    DTIC Science & Technology

    2014-04-23

    storage capacitors, electro-mechanical, or photo- mechanical transducers, etc.1–3 Among them, Lead zirconate titanate system ( PZT ), which exhibits...and at the interfaces between PZT and electro- des. Recently, lanthanum doped PZT with different Zr/Ti ra- tio, such as 65/35, 53/47, or 20/80, has...been investigated, since it can effectively reduce oxygen vacancy, decrease leakage current, and lower the fatigue and domain pinning.8–10 In general

  10. Ultimate scaling of TiN/ZrO2/TiN capacitors: Leakage currents and limitations due to electrode roughness

    NASA Astrophysics Data System (ADS)

    Jegert, Gunther; Kersch, Alfred; Weinreich, Wenke; Lugli, Paolo

    2011-01-01

    In this paper, we investigate the influence of electrode roughness on the leakage current in TiN/high-κ ZrO2/TiN (TZT) thin-film capacitors which are used in dynamic random access memory cells. Based on a microscopic transport model, which is expanded to incorporate electrode roughness, we assess the ultimate scaling potential of TZT capacitors in terms of equivalent oxide thickness, film smoothness, thickness fluctuations, defect density and distribution, and conduction band offset (CBO). The model is based on three-dimensional, fully self-consistent, kinetic Monte Carlo transport simulations. Tunneling transport in the bandgap of the dielectric is treated, which includes defect-assisted transport mechanisms. Electrode roughness is described in the framework of fractal geometry. While the short-range roughness of the electrodes is found not to influence significantly the leakage current, thickness fluctuations of the dielectric have a major impact. For thinner dielectric films they cause a transformation of the dominant transport mechanism from Poole-Frenkel conduction to trap-assisted tunneling. Consequently, the sensitivity of the leakage current on electrode roughness drastically increases on downscaling. Based on the simulations, optimization of the CBO is suggested as the most viable strategy to extend the scalability of TZT capacitors over the next chip generations.

  11. Phase stability and photocatalytic activity of Zr-doped anatase synthesized in miniemulsion

    NASA Astrophysics Data System (ADS)

    Schiller, Renate; Weiss, Clemens K.; Landfester, Katharina

    2010-10-01

    A series of mesoporous anatase-type TiO2 doped with zirconium (0-50 mol% Zr) was synthesized by combining the sol-gel process with the inverse miniemulsion technique. Nanoparticles between 100 and 300 nm were directly prepared from acidic precursor solutions of titanium glycolate (EGMT) and zirconium isopropoxide. The miniemulsion technique is a simple and convenient method to synthesize nanoparticles of homogeneous size because the reactions (here hydrolysis and condensation) take place in the confined space of nanodroplets (several hundreds of nanometres) and therefore in a highly controlled manner. For low doping levels (0-7.1 mol% Zr), ZrxTi1 - xO2 solid solutions were formed where Zr was uniformly dispersed into the anatase framework. For higher amounts of zirconium (Zr >= 7.1 mol%), the crystallization of zirconium titanate (ZrTiO4) occurred at a low temperature of 650 °C and it was obtained as a pure material for 47.4 mol% <= Zr <= 50 mol%. The influence of the amount of zirconium on the crystallinity, crystallite size, phase composition and stability, morphology and specific surface area was investigated. For the characterization transmission electron microscopy (TEM), x-ray diffraction (XRD), nitrogen sorption (BET) and inductively coupled plasma-optical emission spectrometry (ICP-OES) were used. The photocatalytic activity of the crystalline mixed oxides (0-9.4 mol% Zr) was examined for the degradation of methylene blue under UV irradiation.

  12. Emission study on the gamma-ray irradiation effects on the ferroelectric Pb(Zr,Ti)O3 thin films

    NASA Astrophysics Data System (ADS)

    Lee, Yunsang; Lim, Junwhi; Yang, Sun A.; Bu, S. D.

    We investigated the photoluminescence of the gammy-ray irradiated Pb(Zr,Ti)O3 (PZT) thin films with the various total doses up to 1000 kGy. The PZT thin films were prepared on the Pt/Ti/SiO2/Si substrates by using a sol-gel method with a spin-coating process. It was found that the visible emission emerges near 550 nm with the gamma-ray irradiation. The intensity of the emission increased with the increasing dose amount. The spectral feature of the gamma-ray induced emission was quite narrow, which was distinguished from that formed by normal defects such as oxygen vacancy. We suggest that the gamma-ray irradiation should generate a specific type of defect state inside the PZT films, which could be detected by the low temperature photoluminescence spectroscopy.

  13. Reversible pyroelectric and photogalvanic current in epitaxial Pb(Zr0.52Ti0.48)O3 thin films

    NASA Astrophysics Data System (ADS)

    Lee, J.; Esayan, S.; Prohaska, J.; Safari, A.

    1994-01-01

    The pyroelectric and photogalvanic effects have been studied in epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) thin films. Photoinduced currents, which were completely reversible by electrical voltage, were observed. The photoinduced currents exhibited transient and steady state components. The transient component, in turn, consisted of two components with fast (<1 s) and slow (˜hours) relaxation times. The mechanisms of the photoinduced currents in PZT films and their possible applications in nondestructive readout ferroelectric memory are discussed.

  14. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping

    2017-06-01

    Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.

  15. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    PubMed

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO 2 by sol-gel method to prepare Ins/ZrP@TiO 2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO 2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO 2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO 2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO 2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO 2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO 2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO 2 -coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  16. Low symmetry phase in Pb(Zr0.52Ti0.48)O3 epitaxial thin films with enhanced ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Yan, Li; Li, Jiefang; Cao, Hu; Viehland, D.

    2006-12-01

    The authors report the structural and ferroelectric properties of Pb(Zr0.52Ti0.48)O3 (PZT) epitaxial thin films grown on (001), (110), and (111) SrRuO3/SrTiO3 substrates by pulsed laser deposition. A monoclinic C (Mc) phase has been found for (101) films, whereas (001) and (111) ones were tetragonal (T ) and rhombohedral (R), respectively. The authors find that the ferroelectric polarization of the Mc phase is higher than that in either the T or R ones. These results are consistent with predictions (i) of epitaxial phase diagrams and (ii) that the enhanced ferroelectric properties of morphotropic phase boundary PZT are related to a low symmetry monoclinic phase.

  17. Zr doped anatase supported reticulated ceramic foams for photocatalytic water purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plesch, G., E-mail: plesch@fns.uniba.sk; Vargová, M.; Vogt, U.F.

    2012-07-15

    Highlights: ► Thick photocatalytic anatase films on macroporous reticulated ceramic foams. ► Alumina and alumina–mullite macroporous reticulated foams as photocatalyst support. ► Zr doping significantly improves the TiO{sub 2} film activity in phenol photomineralization. ► Comparison of photocatalytic activity of thick films and powder suspensions. -- Abstract: Titanium dioxide films were deposited on macroporous reticulated Al{sub 2}O{sub 3} and alumina–mullite foams with pore sizes of 15 ppi (pores per inch). Coatings were prepared from suspensions of precursor powders of Aeroxide{sup ®} P25 nanopowder and precipitated TiO{sub 2} by using a dip coating process. The TiO{sub 2} forms films with amore » thickness of ∼2–20 μm. The photocatalytic activity was characterized as the mineralization rate of an aqueous phenol solution under UVA irradiation by the TOC technique. Precipitated TiO{sub 2} films have nearly the same photocatalytic activity as a titania suspension, in which powder aggregates have a size comparable with the thickness of the films. Samples made of Aeroxide{sup ®} P25 nanopowder, in which the size of aggregates is ∼0.1 μm show higher efficiency of photodecomposition in suspensions with films. The doping of precipitated anatase with Zr(IV) in the atomic ratio Zr/Ti = 0.008 significantly improves the photocatalytic activity of the foam supported titania. Zr doped anatase films show better performance as the films prepared only from Aeroxide{sup ®} P25 nanopowder.« less

  18. Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2 and HfH2: a first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quijano, Ramiro; DeCoss, Romeo; Singh, David J

    2009-01-01

    The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} are studied by means of highly accurate first-principles total-energy calculations. For HfH{sub 2}, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreementmore » with the experimental observations. The band structure of TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, {Lambda}?L and {Lambda}?K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH{sub 2} the spin-orbit coupling lifts the degeneracy of the partially filled bands in the {Lambda}?L path, while the van Hove singularity in the {Lambda}?K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the {Lambda}?L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed.« less

  19. Electrical response of Pt/Ru/PbZr0.52Ti0.48O3/Pt capacitor as function of lead precursor excess

    NASA Astrophysics Data System (ADS)

    Gueye, Ibrahima; Le Rhun, Gwenael; Renault, Olivier; Defay, Emmanuel; Barrett, Nicholas

    2017-11-01

    We investigated the influence of the surface microstructure and chemistry of sol-gel grown PbZr0.52Ti0.48O3 (PZT) on the electrical performance of PZT-based metal-insulator-metal (MIM) capacitors as a function of Pb precursor excess. Using surface-sensitive, quantitative X-ray photoelectron spectroscopy and scanning electron microscopy, we confirm the presence of ZrOx surface phase. Low Pb excess gives rise to a discontinuous layer of ZrOx on a (100) textured PZT film with a wide band gap reducing the capacitance of PZT-based MIMs whereas the breakdown field is enhanced. At high Pb excess, the nanostructures disappear while the PZT grain size increases and the film texture becomes (111). Concomitantly, the capacitance density is enhanced by 8.7%, and both the loss tangent and breakdown field are reduced by 20 and 25%, respectively. The role of the low permittivity, dielectric interface layer on capacitance and breakdown is discussed.

  20. Corrosion behavior and pitting susceptibility of in-situ Ti-based metallic glass matrix composites in 3.5 wt.% NaCl solutions

    NASA Astrophysics Data System (ADS)

    Xu, K. K.; Lan, A. D.; Yang, H. J.; Han, P. D.; Qiao, J. W.

    2017-11-01

    The Ti62Zr12V13Cu4Be9, Ti58Zr16V10Cu4Be12, Ti46Zr20V12Cu5Be17, and Ti40Zr24V12Cu5Be19 metallic glass matrix composites (MGMCs) were prepared by copper mould casting. The corrosion resistance and the pitting susceptibility of Ti-based MGMCs were tested on their cross-sectional areas in 3.5 wt.% NaCl solutions by potentiodynamic polarization measurements. The composites with lower Ti contents (Ti40Zr24V12Cu5Be19 and Ti46Zr20V12Cu5Be17) exhibit a low resistance to the chloride induced pitting and local corrosion. The preferential dissolution of amorphous matrix is explained by the high chemical reactivity of beryllium element compared to that of stable dendrites and by the detected lower Ti and V contents. However, fairly good passivity was found in the composite with higher Ti contents (Ti62Zr12V13Cu4Be9). XPS measurements revealed that protective Ti-enriched oxide film was formed on the composite surface, additionally, lower content of beryllium element in amorphous matrix hinder the selective corrosion of amorphous matrix. The assessment of experimental observation leads to a proposed corrosion mechanism involving selective dissolution of amorphous matrix and chloride induced pitting process.

  1. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C.

    PubMed

    Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping

    2017-06-14

    Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr 0.8 Ti 0.2 C 0.74 B 0.26 ) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.

  2. Relationships between microstructure and mechanical properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.; Wu, G. Q.; Huang, Z.

    2018-03-01

    Through a statistical, quantitative analysis on microstructure of Ti-5Al-5Mo-5V-3Cr-1Zr (Ti55531) alloy, the relationships between microstructure and mechanical properties and heat treatment temperatures were investigated. The results show that in Widmanstätten structure, the size of β grain is greatly increased with increasing annealing temperature. Static toughness is related to grain boundary alpha phase discontinuity, the tensile strength is related to acicular alpha phase interface length and acicular alpha phase proportion. In duplex microstructure, the tensile strength is related to the equiaxed alpha proportion. Elongation, static toughness and crack forming work are related to the equiaxed alpha proportion and negatively related to secondary phase proportion. The microstructure can be described quantitatively and the mechanical properties can be predicted by analysis of microstructure.

  3. Fabrication of piezoelectric ceramic fibers by extrusion of Pb(Zr, Ti)O3 powder and Pb(Zr, Ti)O3 sol mixture

    NASA Astrophysics Data System (ADS)

    Qiu, Jinhao; Tani, Junji; Kobayashi, Yoshimasa; Um, Tae Young; Takahashi, Hirofumi

    2003-06-01

    In this study, Pb(Zr, Ti)O3 (PZT) piezoelectric ceramic fibers were fabricated by extrusion from a mixture of PZT powder and PZT sol. The added PZT sol in this study played the role of a binder; the sol changed into crystalline PZT during sintering, and removal of additives before sintering was not required. To obtain the required PZT fibers, the sol viscosity adjustment condition, the mixture ratio of powder and sol for fiber extrusion, and the sintering condition for obtaining polycrystalline fibers were investigated. The PZT precursor solution was synthesized from lead acetate trihydrate, zirconium n-propoxide, and titanium isopropoxide by reflux at 120 °C for 3 h with 2-methoxyethanol. The appropriate adjustment of the spinnable sol was achieved by the addition of acetic acid to suppress the hydrolysis reaction and by curing the sol at 80 °C to promote the condensation of the sol. Green fibers with diameters of about 300µm were successfully extruded from the mixture of PZT powder and sol (powder:sol = 5- 8:1, molar ratio). The extruded fibers, sintered at 1200 °C, had a microstructure with 2- 6µm grains and had no pores or cracks. From the results of displacement behavior measurements, the PZT fibers fabricated by firing at 1200 °C in this study were considered to have the desired piezoelectric properties.

  4. Energy efficient microwave synthesis of mesoporous Ce 0.5M 0.5O 2 (Ti, Zr, Hf) nanoparticles for low temperature CO oxidation in an ionic liquid – a comparative study

    DOE PAGES

    Alammar, Tarek; Chow, Ying -Kit; Mudring, Anja -Verena

    2014-11-19

    Ce 0.5M 0.5O 2 (M = Ti, Zr, Hf) nanoparticles have been successfully synthesized by microwave irradiation in the ionic liquid [C 4mim][Tf 2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide). The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N 2–adsorption measurements. XRD and Raman spectroscopy analyses confirmed the formation of solid solutions with cubic fluorite structure. The catalytic activities of the Ce 0.5M 0.5O 2 (M = Ti, Zr, Hf) nanoparticles were investigated in the low-temperature oxidation of CO. Ce 0.5Zr 0.5O 2 nanospheresmore » exhibit the best performance (100% conversion at 350 °C), followed by Ce 0.5Hf 0.5O 2 (55% conversion at 360 °C) and Ce 0.5Ti 0.5O 2 (11% conversion at 350 °C). Heating the as-prepared Ce 0.5Zr 0.5O 2 to 600 °C for extended time leads to a decrease in surface area and, as expected decreased catalytic activity. Depending on the ionic liquid the obtained Ce 0.5Zr 0.5O 2 exhibits different morphologies, varying from nano-spheres in [C 4mim][Tf 2N] and [P 66614][Tf 2N] (P 66614 = trishexyltetradecylphosphonium) to sheet-like assemblies in [C 3mimOH][Tf 2N] (C 3mimOH = 1-(3-hydroxypropyl)-3-methylimidazolium). As a result, the microwave synthesis superiority to other heating methods like sonochemical synthesis and conventional heating was proven by comparative experiments where the catalytic activity of Ce 0.5Zr 0.5O 2 obtained by alternate methods such as conventional heating was found to be poorer than that of the microwave-synthesised material.« less

  5. Zr diffusion in titanite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2006-11-01

    Chemical diffusion of Zr under anhydrous, pO2-buffered conditions has been measured in natural titanite. The source of diffusant was either zircon powder or a ZrO2-Al2O3-titanite mixture. Experiments were run in sealed silica glass capsules with solid buffers (to buffer at NNO or QFM). Rutherford Backscattering Spectrometry (RBS) was used to measure diffusion profiles. The following Arrhenius parameters were obtained for Zr diffusion parallel to c over the temperature range 753-1,100°C under NNO-buffered conditions: D Zr = 5.33 × 10-7 exp(-325 ± 30 kJ mol-1/RT) m2 s-1 Diffusivities are similar for experiments buffered at QFM. These data suggest that titanite should be moderately retentive of Zr chemical signatures, with diffusivities slower than those for O and Pb in titanite, but faster than those for Sr and the REE. When applied in evaluation of the relative robustness of the recently developed Zr-in-titanite geothermometer (Hayden and Watson, Abstract, 16th V.M. Goldschmidt Conference 2006), these findings suggest that Zr concentrations in titanite will be less likely to be affected by later thermal disturbance than the geothermometer based on Zr concentrations in rutile (Zack et al. in Contrib Mineral Petrol 148:471-488, 2004; Watson et al. in Contrib Mineral. Petrol, 2006), but much less resistant to diffusional alteration subsequent to crystallization than the Ti-in-Zircon geothermometer (Watson and Harrison in Science 308:841-844, 2005).

  6. Tunneling STM/STS and break-junction spectroscopy of the layered nitro-chloride superconductors MNCl (M = Ti, Hf, Zr)

    NASA Astrophysics Data System (ADS)

    Ekino, Toshikazu; Sugimoto, Akira; Gabovich, Alexander M.; Zheng, Zhanfeng; Zhang, Shuai; Yamanaka, Shoji

    2014-05-01

    The layered superconductors β-MNCl with the critical temperatures Tc = 14 K (M = Zr) - 25 K (M = Hf) were investigated by means of scanning-tunneling microscopy/spectroscopy and break-junction tunneling spectroscopy. The STM/STS was used to investigate the surface electronic structures in nanometer length scale, while the BJTS was employed to precisely determine the gap characteristics. Both techniques consistently clarified the unusually large size of the superconducting gap. Wide gap distributions with large-scale maximum gap values were also revealed in α-KyTiNCl with a different crystal structure.

  7. Enhancement of Oxidative Desulfurization Performance over UiO-66(Zr) by Titanium Ion Exchange.

    PubMed

    Ye, Gan; Qi, Hui; Li, Xiaolin; Leng, Kunyue; Sun, Yinyong; Xu, Wei

    2017-07-19

    Oxidative desulfurization is considered to be one of the most promising methods for producing ultra-low-sulfur fuels because it can effectively remove refractory sulfur-containing aromatic compounds under mild conditions. In this work, the oxidative desulfurization performance over UiO-66(Zr) is greatly enhanced by Ti ion exchange. This strategy is not only efficient for UiO-66(Zr) with crystal defects but also for UiO-66(Zr) with high crystallinity. In particular, the performance of UiO-66(Zr) with high crystallinity in the oxidative desulfurization of dibenzothiophene can be improved more than 11-fold, which can be mainly attributed to the introduction of active Ti sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Specific features of the inverse magnetoelectric effect in two-layered Tb0.12Dy0.2Fe0.68-PbZr0.53Ti0.47O3 composites

    NASA Astrophysics Data System (ADS)

    Kalgin, A. V.; Gridnev, S. A.; Gribe, Z. H.

    2014-07-01

    The two-layered Tb0.12Dy0.2Fe0.68-PbZr0.53Ti0.47O3 magnetoelectric composites have been prepared by the deposition of ferromagnetic layers of different thicknesses from a thoroughly mixed Tb0.12Dy0.2Fe0.68 ferromagnetic powder and an epoxy glue on preliminarily polarized PbZr0.53Ti0.47O3 piezoelectric layers. The dependences of the inverse magnetoelectric effect on the frequency and strength of an electric field, the strength of a constant magnetic field, the thickness of a ferromagnetic layer, the average size of Tb0.12Dy0.2Fe0.68 grains in the ferromagnetic layer, and the temperature have been determined. Conditions for the maximum magnetoelectric response have been established.

  9. Dielectric Studies of Samarium Modified (Pb)(Zr, Ti, Fe, Nb)O3 Ceramic System

    NASA Astrophysics Data System (ADS)

    Singh, Pratibha; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    Here we report the investigations on Sm-substituted PZTFN (Pb1-xSmxZr0.588Ti0.392Fe0.01Nb0.01O3) (where x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) polycrystalline solid solutions fabricated by solid-state reaction method. XRD analysis shows all the samples to be single phase with tetragonal structure. Dielectric measurements were carried out in the temperature range 30°C-400°C at different frequencies in the range 100 Hz to 100 kHz. From the temperature variation of dielectric constant (ɛ), Curie temperature (TC) was determined which was found to decrease with increasing x. The room temperature dielectric constant (ɛRT) initially increases with increasing x and then starts decreasing. Dielectric loss improves with Sm-doping.

  10. Microstructure and mechanical properties of a newly developed low Young's modulus Ti-15Zr-5Cr-2Al biomedical alloy.

    PubMed

    Wang, Pan; Wu, Lihong; Feng, Yan; Bai, Jiaming; Zhang, Baicheng; Song, Jie; Guan, Shaokang

    2017-03-01

    The Ti-15Zr-5Cr-2Al alloy has been developed and various heat treatments have been investigated to develop new biomedical materials. It is found that the heat treatment conditions strongly affect the phase constitutions and mechanical properties. The as-cast specimen is comprised of β phase and a small fraction of α phase, which is attributed to the suppression of ω phase caused by adding Al. A high yield strength of 1148±36MPa and moderate Young's modulus of 96±3GPa are obtained in the as-cast specimen. Besides the β phase and α phase, ω phase is also detected in the air cooled and liquid nitrogen quenched specimens, which increases the Young's modulus and lowers the ductility. In contrast, only β phase is detected after ice water quenching. The ice water quenched specimen exhibits a good combination of mechanical properties with a high microhardness of 302±10HV, a large plastic strain of 23±2%, a low Young's modulus of 58±4GPa, a moderate yield strength of 625±32MPa and a high compressive strength of 1880±59MPa. Moreover, the elastic energies of the ice water quenched specimen (3.22MJ/m 3 ) and as-cast specimen (6.86MJ/m 3 ) are higher than that of c.p. Ti (1.25MJ/m 3 ). These results demonstrate that as-cast and ice water quenched Ti-15Zr-5Cr-2Al alloys with a superior combination of mechanical properties are potential materials for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mn-Doped CaBi4Ti4O15/Pb(Zr,Ti)O3 Ultrasonic Transducers for Continuous Monitoring at Elevated Temperatures

    PubMed Central

    Kibe, Taiga; Nagata, Hajime

    2017-01-01

    Continuous ultrasonic in-situ monitoring for industrial applications is difficult owing to the high operating temperatures in industrial fields. It is expected that ultrasonic transducers consisting of a CaBi4Ti4O15(CBT)/Pb(Zr,Ti)O3(PZT) sol-gel composite could be one solution for ultrasonic nondestructive testing (NDT) above 500 °C because no couplant is required and CBT has a high Curie temperature. To verify the high temperature durability, CBT/PZT sol-gel composite films were fabricated on titanium substrates by spray coating, and the CBT/PZT samples were tested in a furnace at various temperatures. Reflected echoes with a high signal-to-noise ratio were observed up to 600 °C. A thermal cycle test was conducted from room temperature to 600 °C, and no significant deterioration was found after the second thermal cycle. To investigate the long-term high-temperature durability, a CBT/PZT ultrasonic transducer was tested in the furnace at 600 °C for 36 h. Ultrasonic responses were recorded every 3 h, and the sensitivity and signal-to-noise ratio were stable throughout the experiment. PMID:29186910

  12. Structural, vibrational and dielectric studies of (0.95)Pb(Zr{sub x}Ti{sub 1−x})O{sub 3}-(0.05)BiFeO{sub 3} nanoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Subhash, E-mail: rk.dwivedi@jiit.ac.in; Singh, Vikash, E-mail: rk.dwivedi@jiit.ac.in; Dwivedi, R. K., E-mail: rk.dwivedi@jiit.ac.in

    2014-04-24

    (0.95)Pb(Zr{sub x}Ti{sub 1−x})O{sub 3}-(0.05)BiFeO{sub 3} nanoceramics with x=0.51, 0.53 and 0.55 were synthesized by sol-gel route. Rietveld refined X-ray powder diffraction pattern of the samples confirm the single phase formation of compounds with tetragonal structure (P4mm). FT-IR studies revealed that slight shift of phonon modes towards the lower wave number and increase in the bond length with increasing Zr{sup 4+} concentration. Room temperature dielectric properties of system revealed that relaxor characteristics of these samples. Ferroelectric hysteresis curve shows the decrease in polarization values with Zr concentration.

  13. Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors

    NASA Astrophysics Data System (ADS)

    Lee, J.; Johnson, L.; Safari, A.; Ramesh, R.; Sands, T.; Gilchrist, H.; Keramidas, V. G.

    1993-07-01

    Pb(Zr(0.52)Ti(0.48))O3 (PZT)/Y1Ba2Cu3O(x) (YBCO) heterostructures were grown by pulsed laser deposition, in which PZT films were epitaxial, highly oriented, or polycrystalline. These PZT films were obtained by varying the deposition temperature from 550 to 760 C or by using various substrates such as SrTiO3 (100), MgO (100), and r-plane sapphire. PZT films with Pt top electrodes exhibited large fatigue with 35-50 percent loss of the remanent polarization after 10 exp 9 cycles, depending on the crystalline quality. Polycrystalline films showed better fatigue resistance than epitaxial or highly oriented films. However, PZT films with both top and bottom YBCO electrodes had significantly improved fatigue resistance for both epitaxial and polycrystalline films. Electrode material seems to be a more important parameter in fatigue than the crystalline quality of the PZT films.

  14. The evolution of helium from aged Zr tritides: A thermal helium desorption spectrometry study

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Huang, G.; Chen, M.; Zhou, X. S.; Liu, J. H.; Peng, S. M.; Ding, W.; Wang, H. F.; Shi, L. Q.

    2018-02-01

    The evolution of He from Zr-tritides was investigated for aging times up to about 6.5 years using analytical thermal helium desorption spectrometry (THDS). Zr films were deposited onto Mo substrates and then converted into Zr-tritides (ZrT1.70∼1.95) inside a tritiding apparatus loaded with pure tritium gas. During aging, there are at least five forms of He in Zr-tritides, and more than 99% of He atoms are in the form of He bubbles. The isolated He bubbles in lattices begin to link with each other when the He/Zr atom ratio reaches about 0.21, and are connected to grain boundaries or dislocation networks at He concentration of He/Zr ≈ 0.26. An interconnected system of channels decorated by bubbles evolves from the network dislocations, dislocation loops and internal boundaries. These He filled networks are formed completely when the He/Zr atom ratio is about 0.38. Once the He/Zr reached about 0.45, the networks of He bubble penetrate to the film surface and He begins an "accelerated release". This critical ratio of He to Zr for He accelerated release is much greater than that found previously for Ti-tritides (0.23-0.30). The difference of He retention in Zr-tritides and Ti-tritides was also discussed in this paper.

  15. Corrosion and wear properties of laser surface modified NiTi with Mo and ZrO 2

    NASA Astrophysics Data System (ADS)

    Ng, K. W.; Man, H. C.; Yue, T. M.

    2008-08-01

    Because of its biocompatibility, superelasticity and shape memory characteristics, NiTi alloys have been gaining immense interest in the medical field. However, there is still concern on the corrosion resistance of this alloy if it is going to be implanted in the human body for a long time. Titanium is not toxic but nickel is carcinogenic and is implicated in various reactions including allergic response and degeneration of muscle tissue. Debris from wear and the subsequent release of Ni + ions due to corrosion in the body system are fatal issues for long-term application of this alloy in the human body. This paper reports the corrosion and wear properties of laser surface modified NiTi using Mo and ZrO 2 as surface alloying elements, respectively. The modified layers which are free from microcracks and porosity, act as both physical barrier to nickel release and enhance the bulk properties, such as hardness, wear resistance, and corrosion resistance. The electrochemical performance of the surface modified alloy was studied in Hanks' solution. Electrochemical impedance spectroscopy was measured.

  16. Microhardness and lattice parameter calibrations of the oxygen solid solutions of unalloyed alpha-titanium and Ti-6Al-2Sn-4Zr-2Mo

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Shenoy, R. N.; Unnam, J.

    1987-01-01

    Standards were prepared for calibrating microanalyses of dissolved oxygen in unalloyed alpha-Ti and Ti-6Al-2Sn-4Zr-2Mo. Foils of both of these materials were homogenized for 120 hours in vacuum at 871 C following short exposures to the ambient atmosphere at 854 C that had partially oxidized the foils. The variation of Knoop microhardness with oxygen content was calibrated for both materials using 15-g and 5-g indentor loads. The unit-cell lattice parameters were calibrated for the unalloyed alpha-Ti. Example analyses demonstrate the usefulness of these calibrations and support an explanation of an anomaly in the lattice parameter variation. The results of the calibrations have been tabulated and summarized using predictive equations.

  17. Influence of hydroxyapatite on the corrosion resistance of the Ti-13Nb-13Zr alloy.

    PubMed

    Duarte, Laís T; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2009-05-01

    Electrochemical analyses on the biocompatible alloy Ti-13Nb-13Zr wt% in an electrolyte simulating physiological medium (PBS solution) are reported. Hydroxyapatite (HA) films were obtained on the alloy by electrodeposition at constant cathodic current. Samples of the alloy covered with an anodic-oxide film or an anodic-oxide/HA film were analyzed by open circuit potential and electrochemical impedance spectroscopy measurements during 180 days in the PBS electrolyte. Analyses of the open-circuit potential (E (oc)) values indicated that the oxide/HA film presents better protection characteristics than the oxide only. This behavior was corroborated by the higher film resistances obtained from impedance data, indicating that, besides improving the alloy osteointegration, the hydroxyapatite film may also increase the corrosion protection of the biomaterial.

  18. The formation mechanisms of surface nanocrystallites in β-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Cui, Wenfang; Song, Xiu; Zhou, Lian

    2015-08-01

    A nanostructured surface layer was successfully performed on a biomedical β-type TiNbZrFe alloy by surface mechanical attrition treatment (SMAT). The results reveal that the surface layer along the depth from treated surface to strain-free matrix could be divided into an outer nanocrystalline layer (0-30 μm), a high-density dislocation region (30-200 μm) and an inner region with low-density dislocations and twins (200-700 μm) when the surface was treated for 60 min. The microhardness of the surface layer is enhanced and increases with increasing treatment time. Although the {1 1 2} <1 1 1> twin coordinates the deformations with dislocations, this coordination only occurs in the low strain area and cannot affect the nanocrystalline formation. The self-nanocrystallization of TiNbZrFe alloy is mainly attributed to dislocation movements. First, the dislocations start to move and easily form dislocation bands along certain crystal directions; then, multiple slips of dislocations gradually form dislocation tangles; after that, high-density dislocation tangles increases, which divides primary grains into many small domain areas. As high strain energies accumulate on the interfaces among these areas, the lattice rotation can be driven between the adjacent small domain areas, finally resulting in a large number of nanocrystalline regions with low or large angle grain boundaries.

  19. Transition between strong and weak topological insulator in ZrTe5 and HfTe5

    NASA Astrophysics Data System (ADS)

    Fan, Zongjian; Liang, Qi-Feng; Chen, Y. B.; Yao, Shu-Hua; Zhou, Jian

    2017-04-01

    ZrTe5 and HfTe5 have attracted increasingly attention recently since the theoretical prediction of being topological insulators (TIs). However, subsequent works show many contradictions about their topolog-ical nature. Three possible phases, i.e. strong TI, weak TI, and Dirac semi-metal, have been observed in different experiments until now. Essentially whether ZrTe5 or HfTe5 has a band gap or not is still a question. Here, we present detailed first-principles calculations on the electronic and topological prop-erties of ZrTe5 and HfTe5 on variant volumes and clearly demonstrate the topological phase transition from a strong TI, going through an intermediate Dirac semi-metal state, then to a weak TI when the crystal expands. Our work might give a unified explain about the divergent experimental results and propose the crucial clue to further experiments to elucidate the topological nature of these materials.

  20. Cellular response of osteoblasts to low modulus Ti-24Nb-4Zr-8Sn alloy mesh structure.

    PubMed

    Nune, K C; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-03-01

    Titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) are widely used for implants, which are characterized by high elastic modulus (∼110 GPa) with (α + β) structure and that may induce undesirable stress shielding effect and immune responses associated with the presence of toxic elements. In this regard, we have combined the attributes of a new alloy design and the concept of additive manufacturing to fabricate 3D scaffolds with an interconnected porous structure. The new alloy is a β-type Ti-24Nb-4Zr-8Sn (Ti2448) alloy with significantly reduced modulus. In the present study, we explore the biological response of electron beam melted low modulus Ti2448 alloy porous mesh structure through the elucidation of bioactivity and osteoblast functions. The cellular activity was explored in terms of cell-to-cell communication involving proliferation, spreading, synthesis of extracellular and intracellular proteins, differentiation, and mineralization. The formation of fine apatite-like crystals on the surface during immersion test in simulated body fluid confirmed the bioactivity of the scaffold surface, which provided the favorable osteogenic microenvironment for cell-material interaction. The combination of unique surface chemistry and interconnected porous architecture provided the desired pathway for supply of nutrients and oxygen to cells and a favorable osteogenic micro-environment for incorporation (on-growth and in-growth) of osteoblasts. The proliferation and differentiation of pre-osteoblasts and their ability to form a well mineralized bone-like extracellular matrix (ECM) by secreting bone markers (ALP, calcium, etc.) over the struts of the scaffold point toward the determining role of unique surface chemistry and 3D architecture of the Ti2448 alloy mesh structure in modulating osteoblasts functions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 859-870, 2017. © 2016 Wiley Periodicals, Inc.

  1. Characterization of Ceramic Plasma-Sprayed Coatings, and Interaction Studies Between U-Zr Fuel and Ceramic Coated Interface at an Elevated Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ki Hwan Kim; Chong Tak Lee; R. S. Fielding

    2011-08-01

    Candidate coating materials for re-usable metallic nuclear fuel crucibles, HfN, TiC, ZrC, and Y2O3, were plasma-sprayed onto niobium substrates. The coating microstructure and the thermal cycling behavior were characterized, and U-Zr melt interaction studies carried out. The Y2O3 coating layer had a uniform thickness and was well consolidated with a few small pores scattered throughout. While the HfN coating was not well consolidated with a considerable amount of porosity, but showed somewhat uniform thickness. Thermal cycling tests on the HfN, TiC, ZrC, and Y2O3 coatings showed good cycling characteristics with no interconnected cracks forming even after 20 cycles. Interaction studiesmore » done on the coated samples by dipping into a U-20wt.%Zr melt indicated that HfN and Y2O3 did not form significant reaction layers between the melt and the coating while the TiC and the ZrC coatings were significantly degraded. Y2O3 exhibited the most promising performance among HfN, TiC, ZrC, and Y2O3 coatings.« less

  2. Giant Negative Electrocaloric Effect in (Pb,La)(Zr,Sn,Ti)O3 Antiferroelectrics Near Room Temperature.

    PubMed

    Zhuo, Fangping; Li, Qiang; Gao, Jinghan; Ji, Yongjie; Yan, Qingfeng; Zhang, Yiling; Wu, Hong-Hui; Xi, Xiao-Qing; Chu, Xiangcheng; Cao, Wenwu

    2018-04-11

    (Pb 0.97 La 0.02 )(Zr x Sn 0.94- x Ti 0.06 )O 3 (PLZST) antiferroelectric ceramics with x = 0.75-0.90 have been fabricated and found to be a novel electrocaloric material system with a giant negative electrocaloric effect (Δ T = -11.5 K) and a large electrocaloric strength (|Δ T/Δ E| = 0.105 K cm kV -1 ) near room temperature. Additionally, the PLZST antiferroelectric ceramic also exhibits a large positive electrocaloric effect around the Curie temperature. The giant negative effect and the coexistence of both positive and negative electrocaloric effects in one material indicate a promising possibility to develop mid- to large-scale solid-state cooling devices with high efficiency.

  3. Effect of LID (Registered) processing on the microstructure and mechanical properties of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo titanium foil-gauge materials

    NASA Technical Reports Server (NTRS)

    Balckburn, Linda B.

    1987-01-01

    A study was undertaken to determine the mechanical properties and microstructures resulting from Liquid Interface Diffusion (LID -Registered) processing of foil-gauge specimens of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo coated with varying amounts of LID material. In addition, the effects of various elevated temperature exposures on the concentration profiles of the LID alloying elements were investigated, using specimens with a narrow strip of LID material applied to the surface. Room and elevated temperature tensile properties were determined for both coated and uncoated specimens. Optical microscopy was used to examine alloy microstructures, and scanning electron microscopy to examine fracture surface morphologies. The chemical concentration profiles of the strip-coated specimens were determined with an electron microprobe.

  4. Improvement of glass-forming ability and phase separation in Cu Ti-rich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, E S; Chang, H J; Kim, D H

    2010-01-01

    Present study reports improvement of glass-forming ability (GFA) and phase separation in Cu Ti-rich Cu Ti Zr Ni Si bulk metallic glasses (BMGs) by tailoring the constituent elements. The MA of metalloid element, Sn having relatively large negative enthalpy of mixing can lead to improve GFA (up to 8mm in diameter) as well as thermal stability (up toTx = 48K) by optimizing the substitution element. And the addition of elements having relatively large positive enthalpy of mixing (partial substitution of Zr or Ti with Y) can lead to the liquid state phase separation in Cu Ti Sn Zr Ni Simore » BMG, although the addition lead to drastic deterioration of the GFA.« less

  5. [Effects of magnetron sputtered ZrN on the bonding strength of titanium porcelain].

    PubMed

    Zhou, Shu; Zhang, Wen-yan; Guang, Han-bing; Xia, Yang; Zhang, Fei-min

    2009-04-01

    To investigate the effect of magnetron sputtered ZrN on the bonding strength between a low-fusing porcelain (Ti/Vita titankeramik system) and commercially pure cast titanium. Sixteen specimens were randomly assigned to test group and control group (n=8). The control group received no surface treated. Magnetron sputtered ZrN film was deposited on the surface of specimens in the test group. Then the sixteen titanium-porcelain specimens were prepared in a rectangular shape and went through three-point bending test on a universal test machine. The bond strength of Ti/porcelain was recorded. The phase composition of the specimens was analyzed using X-ray diffraction (XRD). The interface at titanium and porcelain and the titanium surface after debonding were observed with a scanning electron microscopy (SEM) and analyzed using energy depressive spectrum (EDS). New phase of ZrN was found with XRD in the test group. Statistical analysis showed higher bond strength following ZrN surface treatment in the test group [(45.991+/-0.648) MPa] than that in the control group [(29.483+/-1.007) MPa] (P=0.000). Bonded ceramic could be observed in test group, the amount of bonded ceramic was more than that in the control group. No obvious bonded ceramic in control group was found. Magnetron sputtered ZrN can improve bond strength of Ti/Vita titankeramik system significantly.

  6. Kinetics of Glass Transition and Crystallization of a Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 Bulk Metallic Glass with High Mixing Entropy

    NASA Astrophysics Data System (ADS)

    Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun

    2018-04-01

    The kinetics of glass transition and crystallization of a novel Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 bulk metallic glass (BMG) with high mixing entropy have been studied by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The continuous DSC curves show five stages of crystallization at lower heating rates (≤ 20 K/min). The activation energies of glass transition were determined by Moynihan and Kissinger methods, while the activation energies of crystallization were calculated utilizing Kissinger, Ozawa, and Boswell models. The crystalline phases corresponding to each crystallization step have been found out. The kinetic fragility of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG has also been evaluated. Based on the isothermal DSC curves, the Avrami exponent, evaluated from the Johnson-Mehl-Avrami equation, has been analyzed in detail. The current study reveals that the crystallization behavior of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG exhibits characteristics of both the high entropy BMGs and traditional BMGs with a single principal element, leading to its high glass-forming ability.

  7. Self-propagating plus quick pressing synthesis and characterizations of Gd2-xNdxTi1.3Zr0.7O7 (0 ≤ x ≤ 1.4) pyrochlores

    NASA Astrophysics Data System (ADS)

    He, Zongsheng; Zhang, Kuibao; Peng, Le; Zhao, Wenwen; Xue, Jiali; Zhang, Haibin

    2018-06-01

    Synroc is recognized as an ideal matrice for the immobilization of high-level radioactive waste (HLW). In this study, the Synroc mineral of pyrochlore was employed as host phase for the immobilization of Nd2O3, which was selected as surrogate of trivalent actinide nuclides. Gd2-xNdxTi1.3Zr0.7O7/Cu composites were rapidly synthesized by self-propagating high-temperature synthesis plus quick pressing (SHS/QP) using CuO as the oxidant and Ti as the reductant. The result shows that the Nd2O3 doped reactions could be ignited as x ≤ 1.4 and Gd2-xNdxTi1.3Zr0.7O7 pyrochlores were successfully prepared with Cu as the secondary phase. The synthesized pyrochlore-based waste form exhibits density of 4.93 g/cm3 and Vickers hardness of 14.90 GPa, as well as promising aqueous durability. The LRGd and LRNd value of the x = 1.4 sample are as low as 3.28 × 10-5 and 2.27 × 10-5 g m-2·d-1 after 42 days leaching.

  8. Giant negative electrocaloric effect in PbZrO3/0.88BaTiO3-0.12Bi(Mg1/2,Ti1/2)O3 multilayered composite ferroelectric thin film for solid-state refrigeration

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, J. B.; Zhong, X. L.; Li, B.; Zhang, Y.; Jin, C.; Zheng, D. F.; Meng, X. J.

    2017-11-01

    A giant negative electrocaloric (EC) effect in a PbZrO3/(0.88BaTiO3-0.12 Bi(Mg1/2,Ti1/2)O3) (PZ/(BT-BMT)) multilayered composite ferroelectric (MCFE) thin film which is grown on Pt(111)/Ti/SiO2/Si(100) substrates by the sol-gel method is investigated in this work. The negative EC effect in the PZ/(BMT-BT) MCFE thin film is greatly higher than that in the PZ AFE thin film with an adiabatic temperature change (ATC) ΔT = 1.5 K. The ATC ΔT of the PZ/(BMT-BT) MCFE thin film is -32 K under the applied electric field change ΔE = 1151 kV/cm. The result is conducive to enhance the EC refrigeration efficiency greatly.

  9. Combinatorial Investigation of ZrO2-Based Dielectric Materials for Dynamic Random-Access Memory Capacitors

    NASA Astrophysics Data System (ADS)

    Kiyota, Yuji; Itaka, Kenji; Iwashita, Yuta; Adachi, Tetsuya; Chikyow, Toyohiro; Ogura, Atsushi

    2011-06-01

    We investigated zirconia (ZrO2)-based material libraries in search of new dielectric materials for dynamic random-access memory (DRAM) by combinatorial-pulsed laser deposition (combi-PLD). We found that the substitution of yttrium (Y) to Zr sites in the ZrO2 system suppressed the leakage current effectively. The metal-insulator-metal (MIM) capacitor property of this system showed a leakage current density of less than 5×10-7 A/cm2 and the dielectric constant was 20. Moreover, the addition of titanium (Ti) or tantalum (Ta) to this system caused the dielectric constant to increase to ˜25 within the allowed leakage level of 5×10-7 A/cm2. Therefore, Zr-Y-Ti-O and Zr-Y-Ta-O systems have good potentials for use as new materials with high dielectric constants of DRAM capacitors instead of silicon dioxides (SiO2).

  10. Controllable piezoelectricity of Pb(Zr0.2Ti0.8)O3 film via in situ misfit strain

    NASA Astrophysics Data System (ADS)

    Lee, Hyeon Jun; Guo, Er-Jia; Kwak, Jeong Hun; Hwang, Seung Hyun; Dörr, Kathrin; Lee, Jun Hee; Young Jo, Ji

    2017-01-01

    The tetragonality (c/a) of a PbZr0.2Ti0.8O3 (PZT) thin film on La0.7Sr0.3MnO3/ 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Our results demonstrate that the tetragonality of the PZT thin film plays a critical role in determining d33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.

  11. Chemical solution-deposited PbZr 0.53 Ti 0.47 O3 on La 0.5 Sr 0.5 Co O3. SIMS investigation of the effect of different precursor additives on the layer structure.

    PubMed

    Pollak, C; Malic, B; Kosec, M; Javoric, S; Hutter, H

    2002-10-01

    Chemical solution-deposited thin films of PbZr(0.53)Ti(0.47)O(3)/La(0.5)Sr(0.5)CoO(3) on Pt/TiO(2)/SiO(2)/Si substrates have been investigated by dynamic SIMS. The PbZr(0.53)Ti(0.47)O(3) (PZT) is intended to serve as a ferroelectric layer for microelectronic or microelectromechanical applications; conducting La(0.5)Sr(0.5)CoO(3) (LSCO) is a buffer layer intended to eliminate fatigue effects which usually occur at the Pt/PZT interface. Depth profiles of the main components were obtained and revealed that significant diffusion occurred during the deposition and crystallisation processes. Two types of sample, with different thickness of PZT and different types of poly(vinyl alcohol) (PVA) added to the LSCO precursor, were investigated.

  12. Ferroelectric, elastic, piezoelectric, and dielectric properties of Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3 Pb-free ceramics

    NASA Astrophysics Data System (ADS)

    Yuan, Ruihao; Xue, Deqing; Zhou, Yumei; Ding, Xiangdong; Sun, Jun; Xue, Dezhen

    2017-07-01

    We designed and synthesized a pseudo-binary Pb-free system, Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3, by combining a rhombohedral end (with only cubic to rhombohedral ferroelectric phase transition) and a tetragonal end (with only cubic to tetragonal ferroelectric phase transition). The established composition-temperature phase diagram is characterized by a tricritical point type morphotropic phase boundary (MPB), and the MPB composition has better ferroelectric, piezoelectric, and dielectric properties than the compositions deviating from MPB. Moreover, a full set of material constants (including elastic stiffness constants, elastic compliance constants, piezoelectric constants, dielectric constants, and electromechanical coupling factors) of the MPB composition are determined using a resonance method. The good piezoelectric performance of the MPB composition can be ascribed to the high dielectric constants, elastic softening, and large electromechanical coupling factor.

  13. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2016-08-01

    The focus of this investigation is to evaluate the phytotoxicity of selected metal oxide nanoparticles and microparticles as a function of maize seed germination and root elongation under different growth conditions (Petri plate, cotton and soil). The results of seed germination and root elongation experiments reveal that all the growth conditions show almost similar results. Alumina (Al2O3) and titania (TiO2) nanoparticles significantly reduce the germination percentage, whereas silica (SiO2) nanoparticles and microparticles enhance the same. The results of nanoparticles and microparticles of zirconia (ZrO2) are found to be same as those of controls. Root elongation is enhanced by SiO2 nanoparticles and microparticles treatment, whereas inhibition is observed with Al2O3 and TiO2 nanoparticles and microparticles. The X-ray fluorescence spectrometry data of the treated and control seed samples show that seeds uptake SiO2 particles to a greater extent followed by TiO2, Al2O3 and ZrO2. In addition, the uptake of nanoparticles is found to be greater than that of microparticles. Thus, the tested metal oxides penetrated seeds at the nanoscale as compared with the microscale. This study clarifies phytotoxicity of nanoparticles treated in different growth substrates and highlights the impact of nanoparticles on environment and agricultural systems.

  14. Effects of Er3+ and Pr3+ Substitution on Structural, Dielectric, Ferroelectric and Photoluminescence Properties of the BaTi0.9Zr0.1O3 Ceramic

    NASA Astrophysics Data System (ADS)

    Zouari, I.; Sassi, Z.; Seveyrat, L.; Perrin, V.; Zghal, S.; Abdelmoula, N.; Lebrun, L.; Khemakhem, H.

    2017-07-01

    BaTi0.9Zr0.1O3 (BZT), Ba1- x Ln2 x/3□ x/3Ti0.9Zr0.1O3 (with x = 0.5% mol and Ln = Er3+) (BZT-Er) and Ba1- x Ln2 x/3□ x/3Ti0.9Zr0.1O3 (with x = 0.5% mol and Ln = Pr3+) (BZT-Pr) were prepared via the conventional solid-state reaction method. X-ray diffraction showed that all these ceramics were in the single perovskite phase at room temperature (RT). The temperature dependence of dielectric behavior was investigated in the temperature range 25-225°C and exhibited a classical ferroelectric behavior. A slight decrease of the Curie temperature ( T C) with Pr3+ and Er3+ substitution was observed in addition to an increase in the maximum dielectric permittivity ( \\varepsilon_{r {max} }^' }} ) of about 40% for the BZT-Er. At RT, the ferroelectric and piezoelectric coefficients were decreased for BZT-Pr, but were maintained for BZT-Er with a piezoelectric coefficient ( d 33) of 185 pC/N, a planar electromechanical coupling factor of 30%, and a remanent polarization of 11.6 μC/cm2. The Raman bands as a function of temperature confirmed the paraelectric-ferroelectric phase transition of all those ceramics. The photoluminescence spectra showed that strong red (615 nm and 645 nm) and bright green (523 nm and 545 nm) emission bands were obtained, under excitation by laser at 488 nm at RT, for BZT-Pr and BZT-Er, respectively. These multifunctional materials showed a significant technological promise in coupling device applications.

  15. Mechanism of rectification and two-type bipolar resistance switching behaviors of Pt /Pb(Zr0.52Ti0.48)O3 /Nb:SrTiO3

    NASA Astrophysics Data System (ADS)

    Liu, W. W.; Jia, C. H.; Zhang, Q.; Zhang, W. F.

    2015-12-01

    Epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) films have been grown on Nb:SrTiO3 (NSTO) (1 0 0) substrates. The films are a tetragonal perovskite phase with good density and homogeneity. Rectification behavior and two types of bipolar resistance switching (BRS) have been observed in the Pt/PZT/NSTO device. It exhibits rectification below 3 V. According to piezo force microscopy analysis, PZT film has a multidomain structure below 8 V and the device shows abnormal BRS between 3 V and 8 V. When the voltage increases above 8 V, the polarization of the PZT film tends to saturation and it becomes single domain and displays normal BRS behavior. In addition, the device demonstrates good retention and anti-fatigue properties. The transition from abnormal bipolar to normal bipolar behavior caused by ferroelectric polarization can broaden device applications and enable large flexibility in terms of memory architecture.

  16. Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy

    NASA Astrophysics Data System (ADS)

    Nocivin, Anna; Cinca, Ion; Raducanu, Doina; Cojocaru, Vasile Danut; Popovici, Ion Alexandru

    2017-08-01

    A new Gum-type alloy (Ti-Nb-Zr-Fe-O) in which Fe is used instead of Ta was subjected to a particular thermomechanical processing scheme to assess whether its mechanical characteristics (fine β-grains with high strength and low modulus) render it suitable as a biomedical implant material. After a homogenization treatment followed by cold-rolling with 50% reduction, the specimens were subjected to one of three different recrystallization treatments at 1073, 1173, and 1273 K. The structural and mechanical properties of all of the treated specimens were analyzed. The mechanical characterization included tensile tests, microhardness determinations, and fractography by scanning electron microscopy. The possible deformation mechanisms were discussed using the \\overline {Bo} - \\overline {Md} diagram. By correlating all of the experimental results, we concluded that the most promising processing variant corresponds to recrystallization at 1073 K, which can provide suitable mechanical characteristics for this type of alloys: high yield and ultimate tensile strengths (1038 and 1083 MPa, respectively), a low modulus of elasticity (62 GPa), and fine crystalline grain size (approximately 50 μm).

  17. FAST TRACK COMMUNICATION: Deposition temperature effect on electrical properties and interface of high-k ZrO2 capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hyung; Ignatova, Velislava A.; Heitmann, Johannes; Oberbeck, Lars

    2008-09-01

    The electrical characteristics, i.e. leakage current and capacitance, of ZrO2 based metal-insulator-metal structures, grown at 225, 250 and 275 °C by atomic layer deposition, were studied. The lowest leakage current was obtained at 250 °C deposition temperature, while the highest dielectric constant (k ~ 43) was measured for the samples grown at 275 °C, most probably due to the formation of tetragonal/cubic phases in the ZrO2 layer. We have shown that the main leakage current of these ZrO2 capacitors is governed by the Poole-Frenkel conduction mechanism. It was observed by x-ray photoelectron spectroscopy depth profiling that at 275 °C deposition temperature the oxygen content at and beyond the ZrO2/TiN interface is higher than at lower deposition temperatures, most probably due to oxygen inter-diffusion towards the electrode layer, forming a mixed TiN-TiOxNy interface layer. At and above 275 °C the ZrO2 layer changes its structure and becomes crystalline as proven by XRD analysis.

  18. Study of low-modulus biomedical β Ti-Nb-Zr alloys based on single-crystal elastic constants modeling.

    PubMed

    Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin

    2016-09-01

    CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Flexible tensile strain sensor based on lead-free 0.5Ba (Ti0.8Zr0.2) O3-0.5(Ba0.7Ca0.3) TiO3 piezoelectric nanofibers

    NASA Astrophysics Data System (ADS)

    Xing, Lindong; Zhu, Ruijian; Wang, Zengmei; Wang, Fengxia; Kimura, Hideo

    2017-09-01

    Here, we report our study results of a flexible piezoelectric tensile strain sensor which is fabricated by synthesizing 0.5Ba (Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3) TiO3 (0.5BZT-0.5BCT) nanofibers via an electrospinning process. Our nanofibers show an ultrahigh d33 of 275 pm V-1. 0.5BZT-0.5BCT nanofibers and MW-CNTs are dispersed in polydimethylsiloxane (PDMS) to fabricate a highly stretchable and flexible tensile sensor, and the multiple roles of the MW-CNTs are probed and demonstrated. This nanofiber-based piezoelectric tensile strain sensor shows great resolution and sensitivity under external mechanical deformation. It is suitable for applications in complex environments.

  20. Optical and vibrational spectroscopy of Ba0.85Ca0.15Zr0.1Ti0.9O3 modified lithium borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Viswanath, Pamarti; Prashanth, Sadhu Sai Pavan; Molli, Muralikrishna; Wicram, Jaschin Prem; Sai Muthukumar, V.

    2018-04-01

    Glass ceramics are excellent replacement for single crystalline materials which are expensive and difficult to fabricate. In this context, we have attempted to fabricate glass nanocomposites comprising of Lithium Borate glass matrix embedded with lead free ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT). Both of these functional materials are known to exhibit excellent ferroelectric behavior and are currently explored for various device applications. We have prepared these novel glass nanocomposite using melt-quenching techniquein various chemical composition involving different molar ratio. x(Ba0.85Ca0.15Zr0.1Ti0.9O3)-(1-x)(Li2O.2B2O3) where (x=0.1,0.2,0.3,0.4). The as-quenched samples exhibited amorphous nature as revealed by X-ray Diffraction studies. With the increase in BCZT content we have observed significant alteration in optical bandgap and Urbach energy. The tailoring of optical properties by tuning the structure was probed by Raman vibrational spectroscopy which confirmed the dominant role played by BCZT as a network modifier in these borate glasses. Concomitantly, these glass nanocomposites were found to be excellent UV absorbers.

  1. Evolution of microstructural defects of TiO2 nanocrystals by Zr4+ or/and Ge4+ doping lead to high disinfection efficiency for CWAs

    NASA Astrophysics Data System (ADS)

    Shen, Zhong; Zhong, Jin-Yi; Chai, Na-Na; He, Xin; Zang, Jian-Zheng; Xu, Hui; Han, Xiao-Yuan; Zhang, Peng

    2017-06-01

    Zr4+, Ge4+ doped and co-doped TiO2 nanoparticles were prepared by a 'one-pot' homogeneous precipitation method. The photocatalytic reaction kinetics of DMMP and the disinfection efficiency of HD, GD and VX on the samples were investigated. By means of a variety of characterization methods, especially the positron annihilation lifetime spectroscopy, the changes in structure and property of TiO2 across doping were studied. The results show that the reasonable engineering design of novel photocatalysts in the field of CWAs decontamination can be realized by adjusting the bulk-to-surface defects ratio, except for crystal structure, specific surface area, pore size distribution and light utilization.

  2. Crystalline ZrTiO{sub 4} gated p-metal–oxide–semiconductor field effect transistors with sub-nm equivalent oxide thickness featuring good electrical characteristics and reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chao-Yi; Hsieh, Ching-Heng; Lee, Ching-Wei

    2015-02-02

    ZrTiO{sub 4} crystallized in orthorhombic (o-) phase was stacked with an amorphous Yb{sub 2}O{sub 3} interfacial layer as the gate dielectric for Si-based p-MOSFETs. With thermal annealing after gate electrode, the gate stack with equivalent oxide thickness (EOT) of 0.82 nm achieves high dielectric quality by showing a low interface trap density (D{sub it}) of 2.75 × 10{sup 11 }cm{sup −2}eV{sup −1} near the midgap and low oxide traps. Crystallization of ZrTiO{sub 4} and post metal annealing are also proven to introduce very limited amount of metal induced gap states or interfacial dipole. The p-MOSFETs exhibit good sub-threshold swing of 75 mV/dec which is ascribedmore » to the low D{sub it} value and small EOT. Owing to the Y{sub 2}O{sub 3} interfacial layer and smooth interface with Si substrate that, respectively, suppress phonon and surface roughness scattering, the p-MOSFETs also display high hole mobility of 49 cm{sup 2}/V-s at 1 MV/cm. In addition, I{sub on}/I{sub off} ratio larger than 10{sup 6} is also observed. From the reliability evaluation by negative bias temperature instability test, after stressing with an electric field of −10 MV/cm at 85 °C for 1000 s, satisfactory threshold voltage shift of 12 mV and sub-threshold swing degradation of 3% were obtained. With these promising characteristics, the Yb{sub 2}O{sub 3}/o-ZrTiO{sub 4} gate stack holds the great potential for next-generation electronics.« less

  3. Calcium hydride synthesis of Ti-Nb-based alloy powders

    NASA Astrophysics Data System (ADS)

    Kasimtsev, A. V.; Shuitsev, A. V.; Yudin, S. N.; Levinskii, Yu. V.; Sviridova, T. A.; Alpatov, A. V.; Novosvetlova, E. E.

    2017-09-01

    The metallothermic (calcium hydride) synthesis of Ti-Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) alloys. The physicochemical and technological properties of the Ti-22Nb-6Ta and Ti-22Nb-6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.

  4. Electrocaloric effects in the lead-free Ba (Zr ,Ti )O3 relaxor ferroelectric from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhijun; Prokhorenko, Sergei; Prosandeev, Sergey; Nahas, Y.; Wang, D.; Íñiguez, Jorge; Defay, E.; Bellaiche, L.

    2017-07-01

    Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free Ba (Zr0.5Ti0.5)O3 (BZT) relaxor ferroelectric. We find that the EC coefficient varies nonmonotonically with the field at any temperature, presenting a maximum that can be traced back to the behavior of BZT's polar nanoregions. We also introduce a simple Landau-based model that reproduces the EC behavior of BZT as a function of field and temperature, and which is directly applicable to other compounds. Finally, we confirm that, for low temperatures (i.e., in nonergodic conditions), the usual indirect approach to measure the EC response provides an estimate that differs quantitatively from a direct evaluation of the field-induced temperature change.

  5. Enhanced Piezoelectric Response in HybridPerovskite via Interfacing with Ferroelectric Pb(Zr,Ti)O3

    NASA Astrophysics Data System (ADS)

    Song, Jingfeng; Xiao, Zhiyong; Chen, Bo; Prockish, Spencer; Chen, Xuegang; Wang, Dong; Huang, Jinsong; Hong, Xia

    In this work, we have carried out a comprehensive study of the piezoelectric properties of polycrystalline hybrid perovskite CH3NH3PbI3 (MAPbI3) thin films on two types of substrates. We spin coated 20-100 nm MAPbI3 thin films on gold and ferroelectric Pb(Zr,Ti)O3 (PZT), and characterized their piezoelectric coefficient d33 using piezoresponse force microscopy (PFM). The MAPbI3 thin films on gold showed a d33 of 0.4 pm/V. The epitaxial PZT films ( 50 nm) were deposited on (La,Sr)MnO3/SrTiO3 substrates, with polarization uniformly oriented in the up direction. For MAPbI3 films on PZT, there are regions showing clear PFM phase response, suggesting that MAPbI3 is polar with out-of-plane polarization. The PFM amplitude image of MAPbI3 indicated the existence of both constructive and destructive piezoresponse with that of PZT. The extracted d33is4 pm/V, 10-fold higher than that on gold. The enhanced piezoresponse is attributed to the dipole-dipole interaction between MAPbI3 and PZT. Our study points to an effective route to engineer the piezoelectric properties MAPbI3 for applications such as mechanical actuators and energy harvesting.

  6. Barrier heights, polarization switching, and electrical fatigue in Pb(Zr,Ti)O3 ceramics with different electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Schafranek, Robert; Wachau, André; Zhukov, Sergey; Glaum, Julia; Granzow, Torsten; von Seggern, Heinz; Klein, Andreas

    2010-11-01

    The influence of Pt, tin-doped In2O3, and RuO2 electrodes on the electrical fatigue of bulk ceramic Pb(Zr,Ti)O3 (PZT) has been studied. Schottky barrier heights at the ferroelectric/electrode interfaces vary by more than one electronvolt for different electrode materials and do not depend on crystallographic orientation of the interface. Despite different barrier heights, hysteresis loops of polarization, strain, permittivity, and piezoelectric constant and the switching kinetics are identical for all electrodes. A 20% reduction in polarization after 106 bipolar cycles is observed for all the samples. In contrast to PZT thin films, the loss of remanent polarization with bipolar switching cycles does not significantly depend on the electrode material.

  7. The Effect of Element Substitution on Ti-in-Zircon Geothermometry in Volcanic Zircons from Mount Pinatubo, Philippines

    NASA Astrophysics Data System (ADS)

    Lee, S. L.; Hattori, K.

    2017-12-01

    Despite the extensive application of the Ti-in-zircon geothermometer, its accuracy in natural systems remains uncertain. In order to investigate the parameters contributing to Ti in zircon, we examined zircons from dacitic eruption products of Mount Pinatubo, Philippines, from the Pliocene (>2.5-2.7 Ma), 35000BP and 1991AD. All samples are unaltered and quenched from magmas at 790-825°C (Fe-Ti-oxide thermometry). Furthermore, the magma conditions of 1991 samples are well characterized: 780°C (cummingtonite rims on hornblende, Fe-Ti-oxide thermometry), 2 kbar pressure, 5.5-6.5 wt.% H2O and fO2 of NNO+1.6. Calculated zircon saturation temperatures are 760, 744 and 738°C (oldest to youngest). Zircon Ti concentrations are low (2.0-8.8 ppm), show positive covariation with U (35.6-639 ppm), Th (18.7-696 ppm), ∑REE (237-1310 ppm) and Y (247-1770 ppm), and negative covariation with Hf (7610-12000 ppm). The Ti-in-zircon geothermometer by Ferry and Watson (2007) yields mean temperatures of 690, 666 and 663°C (oldest to youngest), using TiO2 activity=0.6, SiO2 activity=1 and -40°C pressure correction. Therefore, temperatures calculated using this method are underestimated by >100°C. We suggest that elements in the Zr site impact the substitution of Ti in the Si site of zircon. Ti shows a positive covariation with Zr/Hf (37.0-57.3, r2=0.551). The ionic radius of Hf4+ is smaller than Zr4+, whereas cations like U4+, Th4+, REE3+ and Y3+ are larger. The departure from the ideal crystal configuration is evaluated using the parameter Zr/(Hf-x), whereby x=U4+, Th4+, ∑REE and Y3+. Ti contents are more strongly correlated with the parameter than Zr/Hf (r2=0.559, 0.565, 0.608, 0.616; respectively). This suggests that large cations replacing Zr strain the lattice, reducing the amount of Ti incorporated into zircon. This further suggests that ZrSiO4 activity is less than 1 in natural rocks, resulting in the systematic underestimation of Ti-in-zircon temperatures.

  8. TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations

    NASA Astrophysics Data System (ADS)

    Thomas, Jay B.; Watson, E. Bruce; Spear, Frank S.; Wark, D. A.

    2015-03-01

    Several studies have reported the P- T dependencies of Ti-in-quartz solubility, and there is close agreement among three of the four experimental calibrations. New experiments were conducted in the present study to identify potential experimental disequilibrium, and to determine which Ti-in-quartz solubility calibration is most accurate. Crystals of quartz, rutile and zircon were grown from SiO2-, TiO2-, and ZrSiO4-saturated aqueous fluids in an initial synthesis experiment at 925 °C and 10 kbar in a piston-cylinder apparatus. A range of quartz crystal sizes was produced in this experiment; both large and small examples were analyzed by electron microprobe to determine whether Ti concentrations are correlated with crystal size. Cathodoluminescence images and EPMA measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the synthesis experiment is 392 ± 1 ppmw Ti, which is within 95 % confidence interval of data from the 10 kbar isobar of Wark and Watson (Contrib Mineral Petrol 152:743-754, 2006) and Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010). As a cross-check on the Ti-in-quartz calibration, we also measured the concentration of Zr in rutile from the synthesis experiment. The average Zr-in-rutile concentration is 4337 ± 32 ppmw Zr, which is also within the 95 % confidence interval of the Zr-in-rutile solubility calibration of Ferry and Watson (Contrib Mineral Petrol 154:429-437, 2007). The P- T dependencies of Ti solubility in quartz and Zr solubility in rutile were applied as a thermobarometer to the experimental sample. The average Ti-in-quartz isopleth calculated from the calibration of Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010) and the average Zr-in-rutile isopleth calculated from the calibration of Tomkins et al. (J Metamorph Geol 25:703-713, 2007) cross at 9.5 kbar and 920 °C, which is in excellent

  9. Electrical Characteristics and Preparation of Nanostructured Pb(Zr0.5Ti0.5)O3 Films by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Horng-Show; Chen, Mi; Hotta, Yoichi; Kawai, Tomoji

    2007-07-01

    Nanostructured thin films of Pb(Zr0.5Ti0.5)O3 on Pt (1000 Å)/Ti (100 Å)/SiO2 (2000 Å)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Lead nitrate, zirconium nitrate and titanium isopropoxide are used as starting material with ethylene glycol as solvent. The crystal structure of the as-sprayed films are transformed from the amorphous, pyrochlore and multiple phases of pyrochlore and perovskite to the single phase of perovskite as the annealing temperature is increased up to 500 °C. For the formation of single phase perovskite, excess lead of 10 mol % is required to compensate the loss of lead during the processing of the primitive films. The physical characteristics of the resultant films show the dielectric constant (\\varepsilonr) of 400, remanent polarization (2Pr) of 30.0 μC/cm2 and coercive field (2Ec) of 70.0 kV/cm, respectively.

  10. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    NASA Astrophysics Data System (ADS)

    Bayraktar, M.; Chopra, A.; Bijkerk, F.; Rijnders, G.

    2014-09-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In this article, we report on epitaxial growth of PZT films with (100)- and (110)-orientation achieved by utilizing Ca2Nb3O10 (CNO) and Ti0.87O2 (TO) nanosheets as crystalline buffer layers. Fatigue measurements demonstrated stable ferroelectric properties of these films up to 5 × 109 cycles. (100)-oriented PZT films on CNO nanosheets show a large remnant polarization of 21 μC/cm2 that is the highest remnant polarization value compared to (110)-oriented and polycrystalline films reported in this work. A piezoelectric response of 98 pm/V is observed for (100)-oriented PZT film which is higher than the values reported in the literature on Si substrates.

  11. Ferroelectricity emerging in strained (111)-textured ZrO{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Zhen, E-mail: a0082709@u.nus.edu, E-mail: msecj@nus.edu.sg; Deng, Jinyu; Liu, Ziyan

    2016-01-04

    (Anti-)ferroelectricity in complementary metal-oxide-semiconductor (CMOS)-compatible binary oxides have attracted considerable research interest recently. Here, we show that by using substrate-induced strain, the orthorhombic phase and the desired ferroelectricity could be achieved in ZrO{sub 2} thin films. Our theoretical analyses suggest that the strain imposed on the ZrO{sub 2} (111) film by the TiN/MgO (001) substrate would energetically favor the tetragonal (t) and orthorhombic (o) phases over the monoclinic (m) phase of ZrO{sub 2}, and the compressive strain along certain 〈11-2〉 directions may further stabilize the o-phase. Experimentally ZrO{sub 2} thin films are sputtered onto the MgO (001) substrates buffered bymore » epitaxial TiN layers. ZrO{sub 2} thin films exhibit t- and o-phases, which are highly (111)-textured and strained, as evidenced by X-ray diffraction and transmission electron microscopy. Both polarization-electric field (P-E) loops and corresponding current responses to voltage stimulations measured with appropriate applied fields reveal the ferroelectric sub-loop behavior of the ZrO{sub 2} films at certain thicknesses, confirming that the ferroelectric o-phase has been developed in the strained (111)-textured ZrO{sub 2} films. However, further increasing the applied field leads to the disappearance of ferroelectric hysteresis, the possible reasons of which are discussed.« less

  12. On the Effects of Hot Forging and Hot Rolling on the Microstructural Development and Mechanical Response of a Biocompatible Ti Alloy

    PubMed Central

    Okazaki, Yoshimitsu

    2012-01-01

    Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.

  13. B Removal by Zr Addition in Electromagnetic Solidification Refinement of Si with Si-Al Melt

    NASA Astrophysics Data System (ADS)

    Lei, Yun; Ma, Wenhui; Sun, Luen; Dai, Yongnian; Morita, Kazuki

    2016-02-01

    This study investigated a new process of enhancing B removal by adding small amounts of Zr in the electromagnetic solidification refinement of Si with Si-Al melt. B in Si was removed by as much as 97.2 pct by adding less than 1057 ppma Zr, and the added Zr was removed by as much as 99.7 pct. In addition, Zr is more effective in enhancing B removal than Ti in the same electromagnetic solidification refining process.

  14. Optical evidence for the effect of gamma-ray irradiation on ferroelectric Pb(Zr0.52Ti0.48)O3 thin films

    NASA Astrophysics Data System (ADS)

    Lim, Junhwi; Lee, Y. S.; Yang, Sun A.; Bu, Sang Don

    2016-06-01

    We investigated the visible emission property of Pb(Zr,Ti)O3 (PZT) thin films irradiated with gammy-ray (γ-ray) irradiated at various total doses up to 1000 kGy. The PZT thin films were prepared on Pt/Ti/SiO2/Si substrates by using a sol-gel method with a spin-coating process. The visible emission was found to emerge near 550 nm upon γ-ray irradiation, and the intensity of the emission increased with increasing dose. The spectrum of the γ-ray-induced emission was quite narrow, which was quite different from that due to normal defects such as oxygen vacancies. We suggest that the γ-ray irradiation generates inside the PZT films a specific type of defect state that can be detected by using low-temperature photoluminescence spectroscopy.

  15. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    NASA Astrophysics Data System (ADS)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  16. Controllable piezoelectricity of Pb(Zr 0.2Ti 0.8)O 3 film via in situ misfit strain

    DOE PAGES

    Lee, Hyeon Jun; Guo, Er-Jia; Martin Luther Univ. of Halle-Wittenberg, Halle; ...

    2017-01-18

    In this paper, the tetragonality (c/a) of a PbZr 0.2Ti 0.8O 3 (PZT) thin film on La 0.7Sr 0.3MnO 3/0.72Pb(Mg 1/3Nb 2/3)O 3-0.28PbTiO 3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d 33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Finally, our results demonstrate that the tetragonality of the PZT thin film plays a critical role inmore » determining d 33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.« less

  17. Controllable piezoelectricity of Pb(Zr 0.2Ti 0.8)O 3 film via in situ misfit strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyeon Jun; Guo, Er-Jia; Martin Luther Univ. of Halle-Wittenberg, Halle

    In this paper, the tetragonality (c/a) of a PbZr 0.2Ti 0.8O 3 (PZT) thin film on La 0.7Sr 0.3MnO 3/0.72Pb(Mg 1/3Nb 2/3)O 3-0.28PbTiO 3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d 33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Finally, our results demonstrate that the tetragonality of the PZT thin film plays a critical role inmore » determining d 33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.« less

  18. Domain structures and local switching in lead-free piezoceramics Ba0.85Ca0.15Ti0.90Zr0.10O3

    NASA Astrophysics Data System (ADS)

    Turygin, A. P.; Neradovskiy, M. M.; Naumova, N. A.; Zayats, D. V.; Coondoo, I.; Kholkin, A. L.; Shur, V. Ya.

    2015-08-01

    Lead-free piezoelectrics are becoming increasingly important in view of environmental problems of currently used lead-based perovskites such as lead zirconate titanate (PZT). One of the recent candidates for PZT replacement, solid solutions of BaZr0.2Ti0.8O3 and Ba0.7Ca0.3TiO3, are investigated in this work by piezoresponse force microscopy. Coexistence of the tetragonal and rhombohedral phases in this material is observed, which probably gives rise to easy polarization switching due to multiple domain states. The period of observed domain lamella scales with the grain size obeying well-known square root dependence characteristic of BaTiO3 ceramics. Domain switching and relaxation are investigated at the nanoscale as a function of the applied voltage and duration of the applied voltage pulses. The observed distortion of piezoresponse hysteresis loops near grain boundaries is attested to the increased concentration of defects. Nanoscale piezoelectric properties of these materials are discussed.

  19. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Cho, Kyung-Hoon; Maurya, Deepam; Kumar, Amit; Kalinin, Sergei; Khachaturyan, Armen; Priya, Shashank

    2013-01-01

    Pb(Zr,Ti)O3 (PZT) based compositions have been challenging to texture or grow in a single crystal form due to the incongruent melting point of ZrO2. Here we demonstrate the method for achieving 90% textured PZT-based ceramics and further show that it can provide highest known energy density in piezoelectric materials through enhancement of piezoelectric charge and voltage coefficients (d and g). Our method provides more than ˜5× increase in the ratio d(textured)/d(random). A giant magnitude of d.g coefficient with value of 59 000 × 10-15 m2 N-1 (comparable to that of the single crystal counterpart and 359% higher than that of the best commercial compositions) was obtained.

  20. Electrochemical Characterization of a Low Modulus Ti-35.5Nb-7.3Zr-5.7Ta Alloy in a Simulated Body Fluid Using Eis for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhola, R.; Bhola, S. M.; Mishra, B.; Ayers, R. A.; Olson, D. L.

    2011-06-01

    Electrochemical characterization of the low modulus Ti-35.5Nb-7.3Zr-5.7Ta beta alloy (TNZT) has been performed in phosphate buffer saline solution at 37 °C using the non destructive electrochemical impedance spectroscopy technique. Measurements were performed at various immersion intervals at the open circuit potential (OCP), which was also monitored with time. Results obtained for TNZT alloy have been compared with those for the commercially used Ti-6Al-4V mixed alloy (Ti64) and the commercially pure titanium (Ti2) alpha alloy. Potentiodynamic polarization was performed to supplement the data obtained from EIS analysis. The TNZT alloy exhibits a two time constant impedance response, whereas the Ti64 and Ti2 alloys display a one time constant behavior. Human fetal osteoblast cells show a better adhesion and a higher cell count for the TNZT alloy compared to the other two alloys. The present investigation is an effort to understand the correlation between the electrochemical, morphological and cellular characteristics of titanium alloys to qualify them for implant applications.

  1. Ferroelectric properties of Pb(Zr,Ti)O3 films under ion-beam induced strain

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Kun; Nastasi, Michael

    2012-11-01

    The influence of an ion-beam induced biaxial stress on the ferroelectric and dielectric properties of Pb(Zr,Ti)O3 (PZT) films is investigated using the ion beam process as a novel approach to control external stress. Tensile stress is observed to decrease the polarization, permittivity, and ferroelectric fatigue resistance of the PZT films whose structure is monoclinic. However, a compressive stress increases all of them in monoclinic PZT films. The dependence of the permittivity on stress is found not to follow the phenomenological theory relating external forces to intrinsic properties of ferroelectric materials. Changes in the ferroelectric and dielectric properties indicate that the application of a biaxial stress modulates both extrinsic and intrinsic properties of PZT films. Different degrees of dielectric non-linearity suggests the density and mobility of non-180o domain walls, and the domain switching can be controlled by an applied biaxial stress and thereby influence the ferroelectric and dielectric properties.

  2. Dielectric properties of PVDF/0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 composites

    NASA Astrophysics Data System (ADS)

    Pandey, Bablu K.; Chandra, K. P.; Kolte, Jayant; Kulkarni, A. R.; Jayaswal, S. K.; Prasad, K.

    2018-05-01

    Ceramic powder of 0.50(Ba0.7Ca0.3)TiO3-0.50Ba(Zr0.2Ti0.8)O3(BCZT50) at morphotropic phase boundary composition was prepared usingsolid-statesynthesis technique followed by extensive high energy ball milling. The crystal symmetry, space group and unit cell dimensions were determined from the X-raydiffraction data of BCZT50 using FullProf software andthe average crystallite size was estimated using Williamson-Hall approach. FTIR spectra confirmed the formation of perovskite type solid solutions. The prepared ceramic powder was utilized to prepare lead-free (1- x)PVDF/xBCZT50 ceramic-polymer composites with x = 0.025, 0.05, 0.10, 0.15, 0.20, 0.25 were prepared using melt- mixing technique. The distribution of BCZT50 particles in the PVDF matrix were examined using anoptical microscope. Filler concentration dependent real and imaginary parts of dielectric constant data followed exponential growth types of variation. The low value of tanδ(˜10-2) can be advantageous forsensing/detectionapplications.

  3. Resistance switching mode transformation in SrRuO3/Cr-doped SrZrO3/Pt frameworks via a thermally activated Ti out-diffusion process

    PubMed Central

    Jo, Yongcheol; Jung, Kyooho; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Hong, Jinpyo; Lee, Jeon-Kook; Im, Hyunsik

    2014-01-01

    This work reports on a mechanism for irreversible resistive switching (RS) transformation from bipolar to unipolar RS behavior in SrRuO3 (SRO)/Cr-doped SrZrO3 (SZO:Cr)/Pt capacitor structures prepared on a Ti/SiO2/Si substrate. Counter-clockwise bipolar RS memory current-voltage (I–V) characteristics are observed within the RS voltage window of −2.5 to +1.9 V, with good endurance and retention properties. As the bias voltage increases further beyond 4 V under a forward bias, a forming process occurs resulting in irreversible RS mode transformation from bipolar to unipolar mode. This switching mode transformation is a direct consequence of thermally activated Ti out-diffusion from a Ti adhesion layer. Transition metal Ti effectively out-diffuses through the loose Pt electrode layer at high substrate temperatures, leading to the unintended formation of a thin titanium oxide (TiOx where x < 2) layer between the Pt electrode and the SZO:Cr layer as well as additional Ti atoms in the SZO:Cr layer. Cross-sectional scanning electron microscopy, transmission electron microscopy and Auger electron spectroscopy depth-profile measurements provided apparent evidence of the Ti out-diffusion phenomenon. We propose that the out-diffusion-induced additional Ti atoms in the SZO:Cr layer contributes to the creation of the metallic filamentary channels. PMID:25483325

  4. Electrical properties and x-ray photoelectron spectroscopy studies of Bi(Zn0.5Ti0.5)O3 doped Pb(Zr0.4Ti0.6)O3 thin films

    NASA Astrophysics Data System (ADS)

    Tang, M. H.; Zhang, J.; Xu, X. L.; Funakubo, H.; Sugiyama, Y.; Ishiwara, H.; Li, J.

    2010-10-01

    (1-x)Pb(Zr0.4,Ti0.6)O3-(x)Bi(Zn0.5,Ti0.5)O3 (PZT-BZT) (x =0, 0.03, 0.05, 0.08, and 0.1) films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by chemical solution deposition using spin-coating. All samples showed highly (111) oriented perovskite phase and no other phase was observed. The ferroelectric properties of PZT-BZT films were systematically investigated as a function of the content x of the BZT solution. It is found that BZT doping in PZT films could greatly enhance the remnant polarization (Pr), as well as improve the fatigue property. In a 3 wt % BZT-doped PZT film, the 2Pr and the coercive field (Ec) are 90 μC/cm2 and 95 kV/cm at 10 kHz, respectively, at an electric field of 500 kV/cm, and the leakage current density is less than 1×10-7 A/cm2. The impact of BZT doping on the structure of PZT has been investigated by x-ray photoelectron spectroscopy.

  5. TEM analysis of irradiation-induced interaction layers in coated UMo/X/Al trilayer systems (X= Ti, Nb, Zr, and Mo)

    NASA Astrophysics Data System (ADS)

    Chiang, H.-Y.; Wiss, T.; Park, S.-H.; Dieste-Blanco, O.; Petry, W.

    2018-02-01

    Uranium-molybdenum (UMo) alloy powder embedded in an Al matrix is considered as a promising candidate for fuel conversion of research reactors. A modified system with a diffusion barrier X as coating, UMo/X/Al trilayer (X = Ti, Zr, Nb, and Mo), has been investigated to suppress interdiffusion between UMo and the Al matrix. The trilayer systems were tested by swift heavy ion irradiation, the thereby created interaction zone has been analyzed by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX). Detailed structural characterization are presented and compared to earlier μ-XRD analysis.

  6. Direct observation of fatigue in epitaxially grown Pb(Zr,Ti)O3 thin films using second harmonic piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.

    2011-08-01

    Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.

  7. Structure and mechanical properties of coatings fabricated by nonvacuum electron beam cladding of Ti-Ta-Zr powder mixtures

    NASA Astrophysics Data System (ADS)

    Samoylenko, Vitaliy V.; Lenivtseva, Olga G.; Polyakov, Igor A.; Laptev, Ilya S.

    2015-10-01

    In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of cladded layers to the substrate, which exceeded cp-titanium strength characteristics.

  8. The Study of Complex (Ti, Zr, Cs) Nanopowder Influencing the Effective Ionization Potential of Arc Discharge When Mma Welding

    NASA Astrophysics Data System (ADS)

    Sapozhkov, S. B.; Burakova, E. M.

    2016-08-01

    Strength is one of the most important characteristics of a weld joint. Mechanical properties of a weld metal can be improved in a variety of ways. One of the possibilities is to add a nanopowder to the weld metal. Authors of the paper suggest changing the production process of MMA welding electrodes via adding nanopowder Ti, Zr, Cs to electrode components through liquid glass. Theoretical research into the nanopowder influence on the effective ionization potential (Ueff) of welding arc discharge is also necessitated. These measures support arcing stability, improve strength of a weld joint, as the consequence, ensure quality enhancing of a weld joint and the structure on the whole.

  9. Deformation Mechanisms and Biocompatibility of the Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    NASA Astrophysics Data System (ADS)

    Castany, P.; Gordin, D. M.; Drob, S. I.; Vasilescu, C.; Mitran, V.; Cimpean, A.; Gloriant, T.

    2016-03-01

    In this study, we have synthesized a new Ti-23Nb-0.7Ta-2Zr-0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.

  10. Domain structure sequence in ferroelectric Pb(Zr0.2Ti0.8)O3 thin film on MgO

    NASA Astrophysics Data System (ADS)

    Janolin, Pierre-Eymeric; Fraisse, Bernard; Dkhil, Brahim; Le Marrec, Françoise; Ringgaard, Erling

    2007-04-01

    The structural evolution of a polydomain ferroelectric Pb(Zr0.2Ti0.8)O3 film was studied by temperature-dependent x-ray diffraction. Two critical temperatures were evidenced: T*=740K, corresponding to a change in the domain structure (a /c/a/c to a1/a2/a1/a2), and TCfilm=825K, where the film undergoes a ferroelectric-paraelectric phase transition. The film remains tetragonal on the whole range of temperature investigated. The evolutions of the domain structure and lattice parameters were found to be in very good agreement with the calculated domain stability map and theoretical temperature-misfit strain phase diagram, respectively.

  11. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular responses.

    PubMed

    Li, Jing; Shi, Ling-ling; Zhu, Zhen-dong; He, Qiang; Ai, Hong-jun; Xu, Jian

    2013-05-01

    In comparison with titanium and its alloys, Zr61Ti2Cu25Al12 (ZT1) bulk metallic glass (BMG) manifests a good combination of high strength, high fracture toughness and lower Young's modulus. To examine its biocompatibility required for potential use in dental implants, this BMG was used as a cell growth subtract for three types of cell lines, L929 fibroblasts, human umbilical vein endothelial cells (HUVEC), and osteoblast-like MG63 cells. For a comparison, these cell lines were in parallel cultured and grown also on commercially pure titanium (CP-Ti) and Ti6-Al4-V alloy (Ti64). Cellular responses on the three metals, including adhesion, morphology and viability, were characterized using the SEM visualization and CCK-8 assay. Furthermore, real-time RT-PCR was used to measure the activity of integrin β, alkaline phosphatase (ALP) and type I collagen (COL I) in adherent MG63 cells. As indicated, in all cases of three cell lines, no significant differences in the initial attachment and viability/proliferation were found between ZT1, CP-Ti, and Ti64 until 5d of incubation period. It means that the biocompatibility in cellular response for ZT1 BMG is comparable to Ti and its alloys. For gene expression of integrin β, ALP and COL I, mRNA level from osteoblast cells grown on ZT1 substrates is significantly higher than that on the CP-Ti and Ti64. It suggests that the adhesion and differentiation of osteoblasts grown on ZT1 are even superior to those on the CP-Ti and Ti64 alloy, then promoting bone formation. The good biocompatibility of ZT1 BMG is associated with the formation of zirconium oxide layer on the surface and good corrosion-resistance in physiological environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Structural, Dielectric, and Electrical Properties of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3

    NASA Astrophysics Data System (ADS)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.

    2015-12-01

    Polycrystalline samples of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3 (BPFZTO) with x = 0.0, 0.2, 0.3, and 0.4 were prepared by high-temperature solid-state reaction. Preliminary structural analysis of calcined powders of the materials by use of x-ray powder diffraction confirmed formation of single-phase systems with the tetragonal structure. Room-temperature scanning electron micrographs of the samples revealed uniform distribution of grains of low porosity and different dimensions on the surface of the samples. The frequency-temperature dependence of dielectric and electric properties was studied by use of dielectric and complex impedance spectroscopy over a wide range of frequency (1 kHz to 1 MHz) at different temperatures (25-500°C). The dielectric constant of BiFeO3 (BFO) was enhanced by substitution with Pb(Zr0.5Ti0.5)O3 (PZT) whereas the dielectric loss of the BPFZTO compounds decreased with increasing PZT content. A significant contribution of both grains and grain boundaries to the electrical response of the materials was observed. The frequency-dependence of the ac conductivity of BPFZTO followed Jonscher's power law. Negative temperature coefficient of resistance behavior was observed for all the BPFZTO samples. Conductivity by thermally excited charge carriers and oxygen vacancies in the materials was believed to be of the Arrhenius-type.

  13. Effect of Atomic Layer Depositions (ALD)-Deposited Titanium Oxide (TiO2) Thickness on the Performance of Zr40Cu35Al15Ni10 (ZCAN)/TiO2/Indium (In)-Based Resistive Random Access Memory (RRAM) Structures

    DTIC Science & Technology

    2015-08-01

    metal structures, memristors, resistive random access memory, RRAM, titanium dioxide, Zr40Cu35Al15Ni10, ZCAN, resistive memory, tunnel junction 16...TiO2 thickness ........................6 1 1. Introduction Resistive-switching memory elements based on metal-insulator-metal (MIM) diodes ...have attracted great interest due to their potential as components for simple, inexpensive, and high-density non-volatile storage devices. MIM diodes

  14. Interface Magnetoelectric Coupling in Co/Pb(Zr,Ti)O3.

    PubMed

    Vlašín, Ondřej; Jarrier, Romain; Arras, Rémi; Calmels, Lionel; Warot-Fonrose, Bénédicte; Marcelot, Cécile; Jamet, Matthieu; Ohresser, Philippe; Scheurer, Fabrice; Hertel, Riccardo; Herranz, Gervasi; Cherifi-Hertel, Salia

    2016-03-23

    Magnetoelectric coupling at multiferroic interfaces is a promising route toward the nonvolatile electric-field control of magnetization. Here, we use optical measurements to study the static and dynamic variations of the interface magnetization induced by an electric field in Co/PbZr0.2Ti0.8O3 (Co/PZT) bilayers at room temperature. The measurements allow us to identify different coupling mechanisms. We further investigate the local electronic and magnetic structure of the interface by means of transmission electron microscopy, soft X-ray magnetic circular dichroism, and density functional theory to corroborate the coupling mechanism. The measurements demonstrate a mixed linear and quadratic optical response to the electric field, which results from a magneto-electro-optical effect. We propose a decomposition method of the optical signal to discriminate between different components involved in the electric field-induced polarization rotation of the reflected light. This allows us to extract a signal that we can ascribe to interface magnetoelectric coupling. The associated surface magnetization exhibits a clear hysteretic variation of odd symmetry with respect to the electric field and nonzero remanence. The interface coupling is remarkably stable over a wide frequency range (1-50 kHz), and the application of a bias magnetic field is not necessary for the coupling to occur. These results show the potential of exploiting interface coupling with the prospect of optimizing the performance of magnetoelectric memory devices in terms of stability, as well as fast and dissipationless operation.

  15. Modulation-Doped SrTiO3/SrTi1-xZrxO3 Heterostructures

    NASA Astrophysics Data System (ADS)

    Kajdos, Adam Paul

    surface reconstruction from (1x1) to (2x1) to c(4x4) is correlated with a change from mixed SrO/TiO2 to pure TiO2 surface termination. It is argued that optimal cation stoichiometry is achieved for growth conditions within the XRD-defined growth window that result in a c(4x4) surface lattice. The development of a doped perovskite oxide semiconductor with a suitable conduction band offset is then discussed as the next necessary step towards realizing modulation-doped heterostructures. The SrTixZr1-x O3 solid solution is investigated for this purpose, with a focus on optimizing cation stoichiometry to allow for controlled doping. In particular, the hybrid MBE growth of SrTixZr1-xO3 thin films is explored using a metal-organic precursor for Zr, zirconium tert-butoxide (ZTB). The successful generation of 2DEGs by modulation doping of SrTiO3 is then demonstrated in SrTiO3/La:SrTi0.95Zr0.05O 3 heterostructures, and the electronic structure is studied by Shubnikov-de Haas analysis using multiple-subband models.

  16. Research Update: Enhancement of figure of merit for energy-harvesters based on free-standing epitaxial Pb(Zr0.52Ti0.48)0.99Nb0.01O3 thin-film cantilevers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh D.; Houwman, Evert; Dekkers, Matthijn; Schlom, Darrell; Rijnders, Guus

    2017-07-01

    All-oxide free-standing cantilevers were fabricated with epitaxial (001)-oriented Pb(Zr0.52Ti0.48)O3 (PZT) and Pb(Zr0.52Ti0.48)0.99Nb0.01O3 (PNZT) as piezoelectric layers and SrRuO3 electrodes. The ferroelectric and piezoelectric hysteresis loops were measured. From the zero-bias values, the figure-of-merits (FOMs) for piezoelectric energy harvesting systems were calculated. For the PNZT cantilever, an extremely large value FOM = 55 GPa was obtained. This very high value is due to the large shifts of the hysteresis loops such that the zero-bias piezoelectric coefficient e31f is maximum and the zero-bias dielectric constant is strongly reduced compared to the value in the undoped PZT device. The results show that by engineering the self-bias field the energy-harvesting properties of piezoelectric systems can be increased significantly.

  17. Epitaxial growth and properties of YBa2Cu3O(x)-Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) trilayer structure by laser ablation

    NASA Astrophysics Data System (ADS)

    Boikov, Iu. A.; Esaian, S. K.; Ivanov, Z. G.; Brorsson, G.; Claeson, T.; Lee, J.; Safari, A.

    1992-08-01

    YBa2Cu3O(x)Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) multilayer structure has been grown on SrTiO3 and Al2O3 substrates using laser ablation. The deposition conditions for the growth of trilayers and their properties are studied in this investigation. Scanning electron microscope images and X-ray diffraction analyses indicate that all the constituent films in the trilayer grow epitaxially on SrTiO3 and were highly oriented on Al2O3. Transport measurements on these multilayers show that top YBa2Cu3O(x) films have good superconducting properties.

  18. Dielectric relaxation analysis of Pb(Zr{sub 0.54},Ti{sub 0.46})O{sub 3} thin films: Electric field dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponchel, F., E-mail: freddy.ponchel@univ-valenciennes.fr; Rémiens, D.; Sama, N.

    2014-12-28

    350 nm-thick Perovskite PbZr{sub 0.54}Ti{sub 0.46}O{sub 3} (PZT) thin films were deposited on Al{sub 2}O{sub 3} substrates by sputtering with and without an additional 10-nm-thick TiO{sub x} buffer layer. X-ray diffraction patterns showed that in presence of TiO{sub x} buffer layer, PZT film was highly oriented along the (111) direction film, whereas the unbuffered, counterpart was polycrystalline. A full wave electromagnetic analysis using a vector finite element method was performed to determine the tunability and the complex permittivity up to 67 GHz. A comparison between the electromagnetic analysis and Cole-Cole relaxation model was proposed. Through an original study of the relaxation timemore » as a function of the electric field, values, such as 2 ps and 0.6 ps, were estimated for E{sub DC} = 0 kV/cm and 235 kV/cm, respectively, and in both cases (111)-PZT and polycrystalline-PZT. The distribution of relaxation times is found to be larger for (111)-PZT film, which is probably related to the film microstructure.« less

  19. Photovoltaic effect of ferroelectric Pb(Zr0.52,Ti0.48)O3 deposited on SrTiO3 buffered n-GaAs by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhou, Yunxia; Zhu, Jun; Liu, Xingpeng; Wu, Zhipeng

    Ferroelectric Pb(Zr0.52,Ti0.48)O3(PZT) thin film was grown on n-type GaAs (001) substrate with SrTiO3 (STO) buffer layer by laser molecular beam epitaxy (L-MBE). The epitaxial process of the STO was in situ monitored by reflection high-energy electron diffraction (RHEED). The crystallographical growth orientation relationship was revealed to be (002) 〈100〉 PZT//(002) 〈100〉 STO//(001) 〈110〉 GaAs by RHEED and X-ray diffraction (XRD). It was found that a small lattice mismatch between PZT and GaAs with a 45∘ in-plane rotation relationship can be formed by inserting of a buffer layer STO. Besides, the enhanced electrical properties of the heterostructure were obtained with the short-circuit photocurrent increased to 52mA/cm2 and the better power conversation efficiency increased by 20% under AM1.5G (100mW/cm2) illumination. The work could provide a way for the application of this kind of heterostructure with high photocurrent response in optoelectronic thin film devices.

  20. On the optimum processing conditions of Pb(Zr x Ti1-x )O3: revealing the mechanisms to increase the piezoelectric coefficients up to 1100 pm V-1

    NASA Astrophysics Data System (ADS)

    Zeibekis, M.; Vertsioti, G.; Stamopoulos, D.

    2016-03-01

    The ferroelectric compound family Pb(Zr x Ti1-x )O3 (PZT) is one of the most investigated and widely used piezoelectric materials. Optimization of the piezoelectric coefficients is observed for x ~ 0.52 (Pb(Zr0.52Ti0.48)O3) and is further promoted by the increase of grain size (GS). However, in some cases the piezoelectric properties of Pb(Zr0.52Ti0.48)O3 deteriorate upon processing due to the decrease of density, ρ, that is mostly ascribed to the appearance of byproduct phases. In the present study we discuss the influence of the processing conditions on the piezoelectric properties for polycrystalline Pb(Zr0.52Ti0.48)O3, specifically focusing on the sintering temperature, 1100 °C  ⩽  T sin  ⩽  1250 °C. To this end, we use atomic force microscopy (AFM), Archimedes’ method, x-ray diffraction (XRD) and a newly introduced local technique, based on a conventional optical microscope, which is further developed here to accommodate non-clamped specimens. The data obtained via this technique in the regime of relatively high electric fields evidence that the absolute piezoelectric coefficients, |d zi | (i  =  x, y) show a non-monotonic behavior with an unexpectedly high maximum value |d zi | ~ 1100 pm V-1 at T sin  =  1180 °C. These features are accompanied by a progressive increase of coercivity, reaching maximum value E C,i ~ 4.5-5.0 kV cm-1 (i  =  x, y) at T sin  =  1250 °C. To explain these findings, the |d zi | coefficients are compared with the microstructure and compositional information, coming from AFM, Archimedes’ method and XRD data. We conclude that the significantly high |d zi | values observed for samples prepared at T sin  =  1180 °C are motivated by the increase of mean GS, , while for T sin  >  1180 °C the decrease of density, ρ, ascribed to the appearance of byproduct phases, dominates and deteriorates |d zi |. These experimental results on |d zi |(T sin) are reliably

  1. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  2. Fine-grained BaZr0.2Ti0.8O3 thin films for tunable device applications

    NASA Astrophysics Data System (ADS)

    Ying, Z.; Yun, P.; Wang, D. Y.; Zhou, X. Y.; Song, Z. T.; Feng, S. L.; Wang, Y.; Chan, H. L. W.

    2007-04-01

    A study of the structure and in-plane dielectric properties of BaZr0.2Ti0.8O3 thin film epitaxially grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 (001) single-crystal substrates through pulsed-laser deposition has been carried out. X-ray diffraction measurements revealed a good crystallinity and tensile in-plane stress in the film. Fine grains with an average size of ˜20 nm were observed using atomic force microscopy. Curie temperature of the film was found to be ˜120 °C, which is 100 °C higher than that of the ceramic. Butterfly-shaped C-V curve confirmed the in-plane ferroelectric state in the film. A large dielectric tunability of ˜50% was found in the film.

  3. Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation

    NASA Astrophysics Data System (ADS)

    Fang, Qihong; Yi, Ming; Li, Jia; Liu, Bin; Huang, Zaiwang

    2018-06-01

    The deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass (HE-BMG) during the nanoindentation are presented via the large-scale molecular dynamics (MD) simulations. The indentation tests are carried out using spherical rigid indenter to investigate the microstructural evolution on the mechanical properties of HE-BMGs in terms of shear strain, indentation force, and surface morphology as well as radial distribution function (RDF). Based on the Hertzian fitting the load-displacement curve, HE-BMG Cu29Zr32Ti15Al5Ni19 has the Young's modulus of 93.1 GPa and hardness of 8.8 GPa. The indentation force requiring for the continual increasing contacted area between the indenter and the substrate goes up with the increasing of indentation depth. In addition, the symmetrical distribution of atomic displacement reveals the isotropic of HE-BMG after the indentation treatment. In the deformation region, the Al element would lead to the serious fluctuation in the first peak of RDF, which is much stronger than the other elements. The severe distortion from the atomic size difference maybe reduce the activation energy to the occurrence of shear deformation in HE-BMG, leading to the transition from brittle to ductile observed by the whole sliding of the local atom group. Through the indentation load-displacement curves at various temperatures, the softening of HE-BMG at high temperatures is in qualitative agreement with the experimental findings. Moreover, this effective strategy is used to accelerate the discovery of excellent mechanical properties of HE-BMGs by means of MD simulation, as well as understand the fundamental nanoindentation response of HE-BMGs.

  4. Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/44Sc generator system.

    PubMed

    Radchenko, V; Meyer, C A L; Engle, J W; Naranjo, C M; Unc, G A; Mastren, T; Brugh, M; Birnbaum, E R; John, K D; Nortier, F M; Fassbender, M E

    2016-12-16

    Scandium-44g (half-life 3.97h [1]) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18 F, due to its favorable decay parameters. One source of 44g Sc is the long-lived parent nuclide 44 Ti (half-life 60.0 a). A 44 Ti/ 44g Sc generator would have the ability to provide radionuclidically pure 44g Sc on a daily basis. The production of 44 Ti via the 45 Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44 Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems based on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Results indicate that ZR resin in HCl media represents an effective 44 Ti/ 44g Sc separation system. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/ 44Sc generator system

    DOE PAGES

    Radchenko, Valery; Meyer, Catherine Anne Louise; Engle, Jonathan Ward; ...

    2016-11-24

    Scandium-44 g (half-life 3.97 h) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18F, due to its favorable decay parameters. One source of 44gSc is the long-lived parent nuclide 44Ti (half-life 60.0 a). A 44Ti/ 44gSc generator would have the ability to provide radionuclidically pure 44gSc on a daily basis. The production of 44Ti via the 45Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems basedmore » on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Lastly, results indicate that ZR resin in HCl media represents an effective 44Ti/ 44gSc separation system.« less

  6. Nano-embossing technology on ferroelectric thin film Pb(Zr0.3,Ti0.7)O3 for multi-bit storage application

    PubMed Central

    2011-01-01

    In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7)O3 (PZT)] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM) and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data. PMID:21794156

  7. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Li, G. P.; Cheng, G. M.; Li, Y. L.; Yang, K.

    2009-02-01

    Ti-22.4Nb-0.73Ta-2.0Zr-1.34O (at. %) alloy after cold compression to ˜5.2% strain was investigated. The alloy exhibited multiple plastic deformation mechanisms, including the stress-induced α″ martensitic (SIM α″) and ω phase transformations, 1/2⟨111⟩ dislocations slipping on the {112}β planes as well as {332}⟨113⟩β and {112}⟨111⟩β twinning, which have not previously been reported to coexist in a titanium alloy. It was also found that β phase with the {200} planes vertical to the compression direction was almost completely consumed away by a β →SIM α″ transformation, and a (100) texture of SIM α″ formed.

  8. Positron annihilation studies of vacancy related defects in ceramic and thin film Pb(Zr,Ti)O3 materials

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Krishnan, A.; Umlor, M. T.; Lynn, K. G.; Warren, W. L.; Dimos, D.; Tuttle, B. A.

    Preliminary positron annihilation studies of ceramic and thin film Pb(Zr,Ti)O3 (PZT) materials have been completed. This paper examines effects of processing conditions on vacancy related defects. Positron lifetime measurements on bulk PLZT plates showed an increase in positron trapping to a defect state with increasing grain size consistent with trapping to lead vacancy related defects formed through lead oxide loss during processing. Variable energy positron beam measurements were completed on bulk PLZT plates, sol-gel PZT thin films, and laser ablated PLZT thin films. Films processed in a reduced oxygen atmosphere were found to give a higher S-parameter, due to an increase in concentration of neutral or negatively charged vacancy type defects, compared with material processed in an oxidizing ambient.

  9. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications.

    PubMed

    Sheremetyev, V; Brailovski, V; Prokoshkin, S; Inaekyan, K; Dubinskiy, S

    2016-01-01

    Ti-22Nb-6Zr (at.%) alloy with different processing-induced microstructures (highly-dislocated partially recovered substructure, polygonized nanosubgrained (NSS) dislocation substructure, and recrystallized structure) was subjected to strain-controlled tension-tension fatigue testing in the 0.2...1.5% strain range (run-out at 10^6 cycles). The NSS alloy obtained after cold-rolling with 0.3 true strain and post-deformation annealing at 600 °C showed the lowest Young's modulus and globally superior fatigue performance due to the involvement of reversible stress-induced martensitic transformation in the deformation process. This NSS structure appears to be suitable for biomedical applications with an extended variation range of loading conditions (orthopedic implants). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    PubMed Central

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-01-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials. PMID:27803330

  11. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor.

    PubMed

    von Rohr, Fabian; Winiarski, Michał J; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-11-15

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

  12. Phase transformations, anisotropic pyroelectric energy harvesting and electrocaloric properties of (Pb,La)(Zr,Sn,Ti)O3 single crystals.

    PubMed

    Zhuo, Fangping; Li, Qiang; Gao, Jinghan; Yan, Qingfeng; Zhang, Yiling; Xi, Xiaoqing; Chu, Xiangcheng

    2017-05-31

    (Pb,La)(Zr,Sn,Ti)O 3 (PLZST) single crystals with their chemical composition located at the tetragonal antiferroelectric region are grown via the flux method in a PbO-PbF 2 -B 2 O 3 mixture. Segregation of the Ti 4+ component in the as-grown crystals is observed due to the strong affinity between the oxygen anion and Ti 4+ ions. The critical electric field of the antiferroelectric to ferroelectric phase transition is determined to be about 0.5 kV mm -1 . The electric field induced ferroelectric phase transforms back into the antiferroelectric phase at a depolarization temperature of 125 °C. Anisotropy of the harvested energy density and electrocaloric behaviors are achieved for the [100], [110] and [111]-oriented PLZST crystals. Based on the thermodynamic theory approach, all the abovementioned behaviors originate from the anisotropic total entropy change. Enhanced electrocaloric strength (0.3 K mm kV -1 ) and the harvested energy density of 0.62 J cm -3 are obtained in the [111]-oriented PLZST crystals. Our results demonstrate the competence of PLZST single crystals for cooling devices and pyroelectric energy harvesting and provide new opportunities to improve energy harvesting density and electrocaloric properties via the anisotropic structural layout, which make the PLZST crystals attractive for solid state cooling devices and energy conversion technologies.

  13. Interesting properties of ferroelectric Pb(Zr0.5Ti0.5)O3 nanotube array embedded in matrix medium

    NASA Astrophysics Data System (ADS)

    Adhikari, Rajendra; Fu, Huaxiang

    2013-07-01

    Finite-temperature first-principles based simulations are used to determine the structural and polarization properties of ferroelectric Pb(Zr0.5Ti0.5)O3 (PZT) nanotube array embedded in matrix medium of different ferroelectric strengths. Various interesting properties are found, including (i) that the system can behave either 3D-like, or 2D-like, or 1D-like; and (ii) the existence of an unusual structural phase in which 180° stripe domain coexists with vortex. Furthermore, we show in PZT tube array that a vortex phase can spontaneously transform into a ferroelectric phase of polarization by temperature alone, without applying external electric fields. Microscopic insights for understanding these properties are provided.

  14. Impedance spectroscopy studies on lead free Ba1-xMgx(Ti0.9Zr0.1)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ben Moumen, S.; Neqali, A.; Asbani, B.; Mezzane, D.; Amjoud, M.; Choukri, E.; Gagou, Y.; El Marssi, M.; Luk'yanchuk, Igor A.

    2018-06-01

    Ba1-xMgx(Ti0.9Zr0.1)O3 (x = 0.01 and 0.02) ceramics were prepared using the conventional solid state reaction. Rietveld refinement performed on X-ray diffraction patterns indicates that the samples are tetragonal crystal structure with P4mm space group. By increasing Mg content from 1 to 2% the unit cell volume decreased. Likewise, the grains size is greatly reduced from 10 μm to 4 μm. The temperature dependence of dielectric constants at different frequencies exhibited typical relaxor ferroelectric characteristic, with sensitive dependence in frequency and temperature for ac conductivity. The obtained activation energy values were correlated to the proposed conduction mechanisms.

  15. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders

    DOEpatents

    Boyle, Timothy J.

    1999-01-01

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.

  16. Structure and electrical properties of <001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Ye, S. K.; Fuh, J. Y. H.; Lu, L.

    2012-06-01

    <001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) lead-free piezoelectric ceramics were prepared by templated-grain growth method using BaTiO3 as template. The degree of orientation and the microstructure of the ceramics with different amount of template were investigated. The electrical properties of the textured-ceramics in the optimized condition were dramatically enhanced compared with randomly-oriented BCTZ ceramics. The textured BCTZ ceramics showed high piezoelectric constants d33 = 470 pC/N and d31 = -170 pC/N, and high electromechanical coupling factors kp = 44% and k31 = 22%. In addition, the Curie point of the textured ceramics revealed an increase with the template content.

  17. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  18. Internal friction in particulate composites of (x)Mn0.4Zn0.6Fe2O4 –(1-x)PbZr0.53Ti0.47O3 in the vicinity of the structural phase transition temperatures

    NASA Astrophysics Data System (ADS)

    Kalgin, A. V.; Gridnev, S. A.

    2018-03-01

    The internal friction in particulate ceramic composites of (x)Mn0.4Zn0.6Fe2O4 –(1-x)PbZr0.53Ti0.47O3 (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.6) in the vicinity of the phase transition temperatures was studied. We observed the influence of the composite composition on the exponent that characterizes a temperature dependence of the internal friction near the ferroelectric Curie point. The reason for this influence is shown to be the doping of the PbZr0.53Ti0.47O3 ferroelectric phase with atoms of the Mn04Zn0.6Fe2O4 ferrite phase that occurs during high- temperature sintering of composite samples.

  19. [Scanning electron microscopy observation of the growth of osteoblasts on Ti-24Nb-4Zr-8Sn modified by micro-arc oxidation and alkali-heat treatment and implant-bone interface].

    PubMed

    Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui

    2011-01-01

    To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.

  20. Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    NASA Technical Reports Server (NTRS)

    Baron, N.; Fink, C. L.; Christensen, P. R.; Nickels, J.; Torsteinsen, T.

    1972-01-01

    The structures of Zr-93 and Zr-91 were studied by the stripping reaction Zr-92(d,p)Zr-93 and the pick-up reaction Zr-92(d,t)Zr-91 using 13 MeV incident deuterons. The reaction product particles were detected by counter telescope. Typical spectra from the reactions were analyzed by a nonlinear least squares peak fitting program which included a background search. Spin and parity assignments to observed excited levels were made by comparing experimental angular distributions with distorted wave Born approximation calculations.

  1. The effect of ZrO2 and TiO 2 on solubility and strength of apatite-mullite glass-ceramics for dental applications.

    PubMed

    Fathi, Hawa M; Miller, Cheryl; Stokes, Christopher; Johnson, Anthony

    2014-03-01

    The effect of ZrO2 and TiO2 on the chemical and mechanical properties of apatite-mullite glass-ceramics was investigated after sample preparation according to the ISO (2768:2008) recommendations for dental ceramics. All materials were characterized using differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. X-ray fluorescence spectroscopy was used to determine the concentrations of elements present in all materials produced. The chemical solubility test and the biaxial flexural strength (BFS) test were then carried out on all the samples. The best solubility value of 242 ± 61 μg/cm(2) was obtained when HG1T was heat-treated for 1 h at the glass transition temperature plus 20 °C (Tg + 20 °C) followed by 5 h at 1200 °C. The highest BFS value of 174 ± 38 MPa was achieved when HG1Z and HG1Z+T were heat-treated for 1 h at the Tg + 20 °C followed by 7 h at 1200 °C. The present study has demonstrated that the addition of TiO2 to the reference composition showed promise in both the glass and heat-treated samples. However, ZrO2 is an effective agent for developing the solubility or the mechanical properties of an apatite-mullite glass-ceramic separately but does not improve the solubility and the BFS simultaneously.

  2. Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yusuke; Niinomi, Mitsuo; Nakai, Masaaki; Tsutsumi, Harumi; Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao

    2012-12-01

    Micro-arc oxidation (MAO) was performed on a β-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) in this study to improve its bioactivity in a body fluid and its hard-tissue compatibility. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate and magnesium acetate was characterized using various surface analyses. The oxide layer was mainly composed of two types of TiO2 (rutile and anatase), and it also contained Ca, P, and Mg, which were incorporated from the electrolyte during the treatment. The calcium phosphate formation on the surface of the specimens after immersion in Hanks' solution was evaluated to determine the bioactivity of TNTZ with and without MAO treatment. As a result, thick calcium phosphate layers formed on the TNTZ specimen that underwent MAO treatment, whereas only a small amount of precipitate was observed on TNTZ without treatment. Thus, the MAO treatment is a promising method to improve the bioactivity and hard-tissue compatibility of TNTZ.

  3. A-site stoichiometry and piezoelectric response in thin film PbZr 1-xTi xO 3

    DOE PAGES

    Marincel, Dan; Jesse, Stephen; Belianinov, Alex; ...

    2015-05-29

    Lead zirconate titanate (PZT) films with Zr/Ti ratios of 52/48 and 30/70 annealed at varying partial pressures of PbO within the perovskite phase field exhibited permittivities of 1150 and 600, respectively, with loss tangents of 0.02. Many of the functional properties, including the permittivity, piezoelectricity as indicated via the Rayleigh coefficients, and the aging rates were found to be weakly dependent of the lead content in the single phase field. Minor polarization electric field hysteresis loops and piezoelectric coefficient e 31,f values after a hot poling process suggest that the point defect helps stabilize the aligned domain states. Measurements ofmore » the local nonlinear response show an increased low response cluster size with decreasing PbO content, indicating that PbO deficiency acts to reduce domain wall motion where it is already low« less

  4. Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O3 antiferroelectric bulk ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Xuefeng; Liu, Zhen; Xu, Chenhong; Cao, Fei; Wang, Genshui; Dong, Xianlin

    2016-05-01

    The dielectric and energy-storage properties of Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]0.98O3 (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T0, TC, T2 are obtained from the dielectric temperature spectrum. At different temperature regions (below T0, between T0 and TC, and above TC), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reach their peak values at ˜T0. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.

  5. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    NASA Astrophysics Data System (ADS)

    Jensen, Jacob

    High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the

  6. Properties and Degradation of Polarization Reversal of Soft BaTiO3 Ceramics for Ferroelectric Thin-Film Devices

    NASA Astrophysics Data System (ADS)

    Thongrueng, Jirawat; Tsuchiya, Toshio; Masuda, Yoichiro; Fujita, Shigetaka; Nagata, Kunihiro

    1999-09-01

    Soft BaTiO3 ceramics having a very low coercive field of 65 V/mm were prepared by substituting 9 mol% Hf Zr for the Ti-site of BaTiO3, for applications to ferroelectric thin-film devices. Electrical properties of the soft BaTiO3 ceramics were measured and compared with those of normal BaTiO3 ceramics. By substituting Hf Zr for Ti-site, the phase transition temperatures were controlled, and we could select the preferred crystal structure from the tetragonal, orthorhombic and rhombohedral phases at room temperature. In addition, the preparation and characterization of the soft BaTiO3 thin-films using a sol-gel process were carried out.

  7. Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light.

    PubMed

    Alhussein, Akram; Achache, Sofiane; Deturche, Regis; Sanchette, Frederic; Pulgarin, Cesar; Kiwi, John; Rtimi, Sami

    2017-04-01

    This article presents the evidence for the significant effect of copper accelerating the bacterial inactivation on Ti-Nb-Ta-Zr (TNTZ) sputtered films on glass up to a Cu content of 8.3 at.%. These films were deposited by dc magnetron co-sputtering of an alloy target Ti-23Nb-0.7Ta-2Zr (at.%) and a Cu target. The fastest bacterial inactivation of E. coli on this later TNTZ-Cu surface proceeded within ∼75min. The films deposited by magnetron sputtering are chemically homogenous. The film roughness evaluated by atomic force spectroscopy (AFM) on the TNTZ-Cu 8.3 at.% Cu sample presented an RMS-value of 20.1nm being the highest RMS of any Cu-sputtered TNTZ sample. The implication of the RMS value found for this sample leading to the fastest interfacial bacterial inactivation kinetics is also discussed. Values for the Young's modulus and hardness are reported for the TNTZ films in the presence of various Cu-contents. Evaluation of the bacterial inactivation kinetics of E. coli under low intensity actinic hospital light and in the dark was carried out. The stable repetitive bacterial inactivation was consistent with the extremely low Cu-ion release from the samples of 0.4 ppb. Evidence is presented by the bacterial inactivation dependence on the applied light intensity for the intervention of Cu as semiconductor CuO during the bacterial inactivation at the TNTZ-Cu interface. The mechanism of CuO-intervention under light is suggested based on the pH/and potential changes registered during bacterial disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    DOE PAGES

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; ...

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG.more » The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.« less

  9. Correlative characterization of primary Al{sub 3}(Sc,Zr) phase in an Al–Zn–Mg based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.H., E-mail: jie-hua.li@hotmail.com; Wiessner, M.; Albu, M.

    2015-04-15

    Three-dimensional electron backscatter diffraction, focused ion beam, transmission electron microscopy and energy filtered transmission electron microscopy were employed to investigate the structural information of primary Al{sub 3}(Sc,Zr) phase, i.e. size, shape, element distribution and orientation relationship with the α-Al matrix. It was found that (i) most primary Al{sub 3}(Sc,Zr) phases have a cubic three-dimensional morphology, with a size of about 6–10 μm, (ii) most primary Al{sub 3}(Sc,Zr) phases are located within the α-Al matrix, and exhibit a cube to cube orientation relationship with the α-Al matrix, and (iii) a layer by layer growth was observed within primary Al{sub 3}(Sc,Zr) phases.more » Al, Cu, Si and Fe are enriched in the α-Al matrix between the layers of cellular eutectic Al{sub 3}(Sc,Zr) phase, while Sc, Ti and Zr are enriched in small Al{sub 3}(Sc,Zr) phases. A peritectic reaction and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed to interpret the observed layer by layer growth. This paper demonstrates that the presence of impurities (Fe, Si, Cu, Ti) in the diffusion field surrounding the growing Al{sub 3}(Sc,Zr) particle enhances the heterogeneous nucleation of Al{sub 3}(Sc,Zr) phases. - Highlights: • Most fine cubic primary Al{sub 3}(Sc,Zr) phases were observed within the α-Al matrix. • A layer by layer growth within primary Al{sub 3}(Sc,Zr) phase was observed. • A peritectic and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed. • Impurities in diffusion fields enhance heterogeneous nucleation of Al{sub 3}(Sc,Zr)« less

  10. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  11. Fatigue mechanism verified using photovoltaic properties of Pb(Zr0.52Ti0.48)O3 thin films

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Li, Wei; Li, Junning; Wang, Shaolan; Li, Yaqi; Peng, Biaolin; Huang, Haitao; Lou, Xiaojie

    2017-03-01

    The photovoltaic effect and its evolution during electrical fatigue in Pb(Zr0.52Ti0.48)O3 (PZT) thin films have been investigated. It is found that the photovoltaic effect of the as-grown PZT thin film is highly affected by the asymmetric Schottky barriers, which can be tuned by applying an external electric field. During fatigue processes, both open-circuit voltage (Voc) and short-circuit current (Jsc) decrease considerably with the increase of the number of electrical cycles. This phenomenon could be ascribed to the degradation of the interfacial layer between the thin film and the electrode induced by highly energetic charge carriers injected from the electrode during bipolar cycling. Our work sheds light on the physical mechanism of both ferroelectric photovoltaics and polarization fatigue in thin-film ferroelectrics.

  12. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE PAGES

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; ...

    2016-11-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  13. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.

  14. Characterization of oxygen vacancies and their migration in Ba-doped Pb(Zr0.52Ti0.48)O3 ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhang, M. F.; Wang, Y.; Wang, K. F.; Zhu, J. S.; Liu, J.-M.

    2009-03-01

    We investigate in detail the migration kinetics of oxygen vacancies (OVs) in Ba-doped Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectrics by complex impedance spectroscopy. The temperature dependent dc-electrical conductivity σdc suggests that Ba doping into PZT can lower significantly the density of OVs, leading to the distinctly decreased σdc and slightly enhanced activation energy U for the migration of OVs, thus benefiting the polarization fatigue resistance. Furthermore, the polarization fluctuation induced by the relaxation of OVs is reduced by the Ba doping. The Cole-Cole fitting to the dielectric loss manifests strong correlation among OVs, and the migration of OVs appears to be a collective behavior.

  15. Sub-kT/q subthreshold slope p-metal-oxide-semiconductor field-effect transistors with single-grained Pb(Zr,Ti)O3 featuring a highly reliable negative capacitance

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Joo, Seung Ki

    2016-03-01

    A reliable on/off switching with an sub-kT/q subthreshold slope (38 mV/dec at room temperature) is experimentally demonstrated with using selectively nucleated laterally crystallized single-grain Pb(Zr,Ti)O3 (PZT) ferroelectric and ZrTiO4 paraelectric thin-film. The combination of ferroelectric and paraelectric thin-film is enabled to form a negative capacitance (NC) at the weak inversion region. However, the PZT grain-boundary easily degrades the NC properties after switching the on/off more than 108 times. It is found that the polarization of PZT is diminished from the path of grain-boundary. Here, we effectively suppress the degradation of NC MOS-FET which did not showed any fatigue even after 108 on/off switching. At the request of the authors this article is retracted due to duplication of figures and significant overlap with other publications by the authors and because of concerns about the accuracy of the description of the devices and materials from which the reported results were obtained. The authors recognize that these represent serious errors and sincerely apologize for any inconvenience they may have caused. The article is retracted from the scientific record with effect from 17 February 2017.

  16. Unique dielectric tunability of Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 antiferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spreitzer, Matjaž; Suvorov, Danilo; Chen, Xiang Ming

    2016-08-01

    The tunable dielectric properties of Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 antiferroelectric ceramics were investigated, and high relative tunability of 49% was obtained at 25 °C under a low bias electric field of 50 kV/cm. Abrupt changes and a significant hysteresis in dielectric constant and dielectric loss against bias electric field were observed, which are very different from the previously reported antiferroelectric materials. The unique dielectric tunability is attributed to the square-shaped double hysteresis loop and indicates the possible applications in some special tunable devices, such as an electrically-controlled switch. Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 ceramics also exhibit unique dielectric tunability at -5 °C. Abrupt changes in dielectric constant and dielectric loss were observed when the bias electric field increased to 31 kV/cm for the fresh sample, which is similar to the antiferroelectric-like dielectric tunability at 25 °C. However, the dielectric tunability was ferroelectric-like in the following measurement. This response is consistent with the hysteresis loop and can be explained by the electric field-assisted irreversible antiferroelectric-ferroelectric phase transition.

  17. Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition.

    PubMed

    Daubert, James S; Hill, Grant T; Gotsch, Hannah N; Gremaud, Antoine P; Ovental, Jennifer S; Williams, Philip S; Oldham, Christopher J; Parsons, Gregory N

    2017-02-01

    Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al 2 O 3 , TiO 2 , ZnO, HfO 2 , and ZrO 2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al 2 O 3 or HfO 2 provided the highest level of initial corrosion protection, but films of HfO 2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO 2 or ZrO 2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.

  18. Double and Triple Si-H-M Bridge Bonds: Matrix Infrared Spectra and Theoretical Calculations for Reaction Products of Silane with Ti, Zr, and Hf Atoms.

    PubMed

    Xu, Bing; Shi, Peipei; Huang, Tengfei; Wang, Xuefeng; Andrews, Lester

    2017-05-25

    Infrared spectra of matrix isolated dibridged Si(μ-H) 2 MH 2 and tribridged Si(μ-H) 3 MH molecules (M = Zr and Hf) were observed following the laser-ablated metal atom reactions with SiH 4 during condensation in excess argon and neon, but only the latter species was observed with titanium. Assignments of the major vibrational modes, which included terminal MH, MH 2 and hydrogen bridge Si-H-M stretching modes, were confirmed by the appropriate SiD 4 isotopic shifts and density functional vibrational frequency calculations (B3LYP and BPW91). The Si-H-M hydrogen bridge bond is calculated as weak covalent interaction and compared with the C-H···M agostic interaction in terms of electron localization function (ELF) analysis and noncovalent interaction index (NCI) calculations. Furthermore, the different products of Ti, Zr, and Hf reactions with SiH 4 are discussed in detail.

  19. Low-Temperature Preparation of (111)-oriented Pb(Zr,Ti)O3 Films Using Lattice-Matched (111)SrRuO3/Pt Bottom Electrode by Metal-Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi

    2009-04-01

    Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.

  20. Microstructure and Texture Evolutions of Biomedical Ti-13Nb-13Zr Alloy Processed by Hydrostatic Extrusion

    NASA Astrophysics Data System (ADS)

    Ozaltin, K.; Panigrahi, A.; Chrominski, W.; Bulutsuz, A. G.; Kulczyk, M.; Zehetbauer, M. J.; Lewandowska, M.

    2017-11-01

    A biomedical β-type Ti-13Nb-13Zr (TNZ) (wt pct) ternary alloy was subjected to severe plastic deformation by means of hydrostatic extrusion (HE) at room temperature without intermediate annealing. Its effect on microstructure, mechanical properties, phase transformations, and texture was investigated by light and electron microscopy, mechanical tests (Vickers microhardness and tensile tests), and XRD analysis. Microstructural investigations by light microscope and transmission electron microscope showed that, after HE, significant grain refinement took place, also reaching high dislocation densities. Increases in strength up to 50 pct occurred, although the elongation to fracture left after HE was almost 9 pct. Furthermore, Young's modulus of HE-processed samples showed slightly lower values than the initial state due to texture. Such mechanical properties combined with lower Young's modulus are favorable for medical applications. Phase transformation analyses demonstrated that both initial and extruded samples consist of α' and β phases but that the phase fraction of α' was slightly higher after two stages of HE.

  1. Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE)

    NASA Astrophysics Data System (ADS)

    Aravindan, V.; Vickraman, P.

    2007-11-01

    A novel type of lithium bis(oxalato)borate (LiBOB) synthesized by the solid-state reaction method has been presented. LiBOB composite polymer electrolytes (CPE) prepared with dispersions of TIO2/ZrO2with various concentrations into the host blend matrices of poly(vinylidenefluoride) (PVdF)-poly(vinylchloride) (PVC) are investigated by scanning electron microscopy, x-ray diffraction (XRD) and ac impedance measurements. The plasticizing agent selected for the present study is a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) for the phase separated morphology of the studied polymers. The impedance studies on CPE membranes identify that membranes, with 2.5 wt% of fillers, have enhanced conductivities of 5.43 × 10-4 S cm-1 and 4.38 × 10-4 S cm-1, respectively, for TiO2 and ZrO2 at ambient temperature. The XRD investigations confirm that the membranes with filler levels exceeding the limit of 2.5 wt% show a gradual increase in the degree of crystallinity, rendering them less conducting. The activation energy calculations also highlight variations in conductivities of all the membranes.

  2. Effect of residual stress on energy storage property in PbZrO3 antiferroelectric thin films with different orientations

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Remiens, Denis; Costecalde, Jean; Chen, Ying; Dong, Xianlin; Wang, Genshui

    2013-10-01

    The effect of residual stress on energy storage property was investigated for a series of PbZrO3 thin films on SrTiO3 and Si substrates. Compressive or tensile residual stress influences the critical electric field EA for the ferroelectric-to-antiferroelectric phase transition, thus for films with (110)/(101) orientation, energy density W of films on SrTiO3 is 38% larger than films on Si; in contrast, (001)-oriented PbZrO3 films on SrTiO3 show slightly smaller W compared to films on Si. We conclude that the different responses of W to stress are related to the different constrain states in films with different orientations.

  3. History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Johnson, William L.

    2000-07-01

    The crystallization of Zr41Ti14Cu12Ni10Be23 (Vit 1) melts during constant heating is investigated. (Vit 1) melts are cooled with different rates into the amorphous state and the crystallization temperature upon subsequent heating is studied. In addition, Vit 1 melts are cooled using a constant rate to different temperatures and subsequently heated from this temperature with a constant rate. We investigate the influence of the temperature to which the melt was cooled on the crystallization temperature measured upon heating. In both cases the onset temperature of crystallization shows strong history dependence. This can be explained by an accumulating process during cooling and heating. An attempt is made to consider this process in a simple model by steady state nucleation and subsequent growth of the nuclei which results in different crystallization kinetics during cooling or heating. Calculations show qualitative agreement with the experimental results. However, calculated and experimental results differ quantitatively. This difference can be explained by a decomposition process leading to a nonsteady nucleation rate which continuously increases with decreasing temperature.

  4. Evaluation of Ti-Zr-V (NEG) Thin Films for their pumping speed and pumping Capacity

    NASA Astrophysics Data System (ADS)

    Bansod, Tripti; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Shukla, S. K.

    2012-11-01

    Deposition of NEG thin films onto the interior walls of the vacuum chambers is an advanced technique to convert a vacuum chamber from a gas source to an effective pump. These films offer considerably large pumping speed for reactive gases like CO, H2 etc. A UHV compatible pumping speed measurement system was developed in-house to measure the pumping speed of NEG coated chambers. To inject the fixed quantity of CO and H2 gas in pumping speed measurement set-up a calibrated leak was also developed. Stainless steel chambers were sputter coated with thin film of Ti-Zr-V getter material using varied parameters for different compositions and thickness. Pumping capacity which is a function of sorbed gas quantities was also studied at various activation temperatures. In order to optimize the activation temperature for maximum pumping speed for CO and H2, pumping speeds were measured at room temperature after activation at different temperatures. The experimental system detail, pumping performance of the NEG film at various activation temperatures and RGA analysis are presented.

  5. Vibrational micro-energy harvesters utilizing Nb-doped Pb(Zr,Ti)O3 films on stainless steel substrates

    NASA Astrophysics Data System (ADS)

    Van Minh, L.; Sano, T.; Fujii, T.; Kuwano, H.

    2016-11-01

    This work presents the micromachined energy harvesters using Nb-doped Pb(Zr,Ti)O3 (PNZT) films grown directly on the stainless steel substrates (SUS430). Piezoelectric materials on metallic substrates have been attracted to practical and robust energy harvesters. Nb-doped PZT films with (001)-preferred orientation grown on SUS substrates provided excellent properties for energy harvesting - high piezoelectric coefficient (e 31 = -10.6 C/m2) and low dielectric permittivity (ɛr = 373). The PNZT-based micro-energy harvester comprising a cantilever of 1.7 mm× 5 mm × 0.05 mm and a proof mass of 3 mm× 5 mm × 47 mm achieved the normalized power density (NPD) of 2.87 mW.g-2.cm-3. It is the highest performance among the published SUS-based energy harvesters, being closer to the best Si- based energy harvesters.

  6. Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75-xTixZr0.25NiSn0.99Sb0.01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Giri; Dahal, Tulashi; Chen, Shuo

    The effect of titanium (Ti) substitution for hafnium (Hf) on thermoelectric properties of (Hf, Zr)-based n-type half-Heuslers: Hf 0.75-xTi xZr 0.25NiSn 0.99Sb 0.01, has been studied. The samples are made by arc melting followed by ball milling and hot pressing via the nanostructuring approach. A peak thermoelectric figure-of-merit (ZT) of ~1.0 is achieved at 500 °C in samples with a composition of Hf 0.5Zr 0.25Ti 0.25NiSn 0.99Sb 0.01 due to a slight increase in carrier concentration and also a lower thermal conductivity caused by Ti. TheZT values below 500 °C of hot pressed Hf 0.5Zr 0.25Ti 0.25NiSn 0.99Sb 0.01 samplesmore » are significantly higher than those of the same way prepared Hf 0.75Zr 0.25NiSn 0.99Sb 0.01samples at each temperature, which are very much desired for mid-range temperature applications such as waste heat recovery in automobiles.« less

  7. Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, Zhi; Zhou, Jing; Chen, Wen; Shen, Jie; Yang, Huimin; Zhang, Shisai; Liu, Yueli

    2016-12-01

    In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared via sol-gel method. The effects of Ba(Mg1/3Ta2/3)O3 (BMT) buffer layer on the temperature dependence and dielectric tunability properties of PZT thin films were studied. As the thickness of BMT buffer layer increases, the tan δ and tunability of PZT thin films decrease while tunability still maintains above 10%. This result shows that BMT buffer layer can improve the dielectric tunability properties of PZT thin films. Furthermore, the temperature coefficient of the dielectric constant decreases from 2333.4 to 906.9 ppm/°C with the thickness of BMT buffer layer increasing in the range from 25 to 205 °C, indicating that BMT buffer layer can improve the temperature stability of PZT thin films. Therefore, BMT buffer layer plays a critical role in improving temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films.

  8. Phenol-photodegradation on ZrO2. Enhancement by semiconductors.

    PubMed

    Karunakaran, C; Dhanalakshmi, R; Gomathisankar, P

    2012-06-15

    On illumination with light of wavelength 365 nm phenol undergoes degradation on the surface of ZrO(2). The rate of degradation enhances linearly with the concentration of phenol and also the light intensity but decreases with increase of pH. The photonic efficiency of degradation is higher with illumination at 254 nm than with 365 nm. The diffuse reflectance spectral study suggests phenol-sensitized activation of ZrO(2) with 365 nm light. TiO(2), Fe(2)O(3), CuO, ZnO, ZnS, Nb(2)O(5) and CdO particles enhance the photodegradation on ZrO(2), indicating inter-particle charge-transfer. Determination of size of the particles under suspension, by light scattering technique, shows agglomeration of particles supporting the proposition of charge-transfer between particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Strength design of Zr(x)Ti(x)Hf(x)Nb(x)Mo(x) alloys based on empirical electron theory of solids and molecules

    NASA Astrophysics Data System (ADS)

    Li, Y. K.; Chen, Y. W.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    In this paper, the valence electron structure parameters of Zr(x)Ti(x)Hf(x)Nb(x)Mo(x) alloys were calculated based on the empirical electron theory of solids and molecules (EET), and their performance through these parameters were predicted. Subsequently, the alloys with special valence electron structure parameters were prepared byarc melting. The hardness and high-temperature mechanical properties were analyzed to verify the prediction. Research shows that the influence of shared electron number nA on the strongest bond determines the strength of these alloys and the experiments are consistent with the theoretical prediction.

  10. Dielectric studies of (x) NiFe2O4 + (1 - x) BaTi0.9Zr0.1O3 (where x = 0, 0.25, 0.50, 0.75 and 1)

    NASA Astrophysics Data System (ADS)

    Wadhwani, Kiran; Srivastava, Subodh; Mathur, Shubhra

    2018-05-01

    We present the room temperature dielectric studies of the samples in the series (x) NiFe2O4 + (1-x) BaTi0.9Zr0.1O3 (where x = 0, 0.25, 0.50, 0.75 and 1) containing nickel ferrite and Zr substituted barium titanate as the ferroelectric phase and their magnetoelectric (ME) composites in mixed in different molar ratios. Solid state diffusion has been used for the synthesis of samples. Powder X-ray diffraction (XRD) confirms the formation of ferrite and ferroelectric phases and their presence in all three composites with no impurity traces. Room temperature dielectric measurements have been made as a function of frequency (ranging from 100 Hz to 1 MHz).

  11. Influence of Pb and La contents on the lattice configuration of La-substituted Pb(Zr,Ti)O3 films fabricated by CSD method.

    PubMed

    Shima, Hiromi; Nishida, Ken; Funakubo, Hiroshi; Iijima, Takashi; Katoda, Takashi; Naganuma, Hiroshi; Okamura, Soichiro

    2009-04-01

    The influence of Pb and La contents on the lattice configuration in La-substituted Pb(Zr0(.65),Ti0(.35))O3 (La- PZT) films was systematically investigated. La-PZT films with various La and Pb contents were fabricated on Pt/Ti/SiO(2)/Si substrates by chemical solution deposition (CSD). In the La- PZT films with a Pb content ratio of 125% relative to a stoichiometric value, La ions were substituted for not only A-site ions but also B-site ions at La contents greater than 3 mol%. La substitution for B-site seems to cause larger reduction of the unit cell size. In addition, we found that in the La-PZT films with a La content of 3 mol%, the Pb content of 116 mol% (120% relative to a stoichiometric value) was optimum from the viewpoint of site occupancy. This indicates that excess Pb prevented the A-site substitution of La ions.

  12. Effects of Cr-N-ZrO 2 seed layer formed on glass substrates for longitudinal recording media

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroyuki; Djayaprawira, David D.; Takahashi, Yoshio; Ishikawa, Akira; Ono, Toshinori; Yahisa, Yotsuo

    1999-03-01

    Effects of Cr-N-ZrO 2 seed layer deposited on glass substrates before the deposition of C/Co-Cr-Pt/Cr-Ti layers for longitudinal recording media have been investigated. The product of v and Is, the activation volume and the saturation magnetization per unit volume, media noise Nd and S0/ Nd, which is the half value of peak-to-peak output voltage of an isolated pulse over Nd at 11.8 kFC/mm, are evaluated. We find that vIs is decreased by adding N and ZrO 2 to Cr seed layer. Nd is reduced as vIs decreases by adding nitrogen to the Cr seed layer. This is mainly due to the decreased grain sizes of both Cr-Ti underlayer and Co-Cr-Pt magnetic layer. The Nd is further reduced by the addition of ZrO 2 to the Cr-N seed layer. Highest S0/ Nd is achieved for the media with Cr-N-ZrO 2 seed layer. On the other hand, the media with Cr-ZrO 2 seed layer deposited without nitrogen show the higher Nd. Therefore the decrease of the grain size by addition of nitrogen into Ar is essential to reduce Nd, and the ZrO 2 addition to the Cr-N seed layer seems to enhance the effect of grain size reduction by nitrogen addition.

  13. Stoichiometry determination of (Pb,La)(Zr,Ti)O3-type nano-crystalline ferroelectric ceramics by wavelength-dispersive X-ray fluorescence spectrometry.

    PubMed

    Sitko, Rafał; Zawisza, Beata; Kita, Andrzej; Płońska, Małgorzata

    2006-07-01

    Analysis of small samples of lanthanum-doped lead zirconate titanate (PLZT) by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) is presented. The powdered material in ca. 30 mg was suspended in water and collected on the membrane filter. The pure oxide standards (PbO, La2O3, ZrO2 and TiO2) were used for calibration. The matrix effects were corrected using a theoretical influence coefficients algorithm for intermediate-thickness specimens. The results from XRF method were compared with the results from the inductively coupled plasma optical emission spectrometry (ICP-OES). Agreement between XRF and ICP-OES analysis was satisfactory and indicates the usefulness of XRF method for stoichiometry determination of PLZT.

  14. Crystal orientation dependence of the dielectric properties for epitaxial BaZr0.15Ti0.85O3 thin films

    NASA Astrophysics Data System (ADS)

    Miao, J.; Yuan, J.; Wu, H.; Yang, S. B.; Xu, B.; Cao, L. X.; Zhao, B. R.

    2007-01-01

    Epitaxial Ba0.15Zr0.85TiO3 (BZT) ferroelectric thin films with (001), (011), and (111) orientations were, respectively, grown on La0.67Sr0.33MnO3 (LSMO) buffered LaAlO3 substrates by pulsed laser deposition method. The dc electric-field dependence of permittivity and dielectric loss of (001)-, (011)-, and (111)-oriented BZT/LSMO heterostructures obeys the Johnson formula, and the ac electric-field dependence of that obeys the Rayleigh law under the subswitching field region. The anisotropic dielectric properties are attributed to the higher mobility of the charge carriers, the concentration of mobile interfacial domain walls, and boundaries in the (111)-oriental films than in the (110)- and (100)-oriented films.

  15. Plastic deformation behaviors of Ni- and Zr-based bulk metallic glasses subjected to nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weizhong, Liang, E-mail: wzliang1966@126.com; Zhiliang, Ning; Zhenqian, Dang

    2013-12-15

    Plastic deformation behaviors of Ni{sub 42}Ti{sub 20}Zr{sub 21.5}Al{sub 8}Cu{sub 5}Si{sub 3.5} and Zr{sub 51}Ti{sub 5}Ni{sub 10}Cu{sub 25}Al{sub 9} bulk metallic glasses at room temperature were studied by nanoindentation testing and atomic force microscopy under equivalent indentation experimental conditions. The different chemical composition of these two bulk metallic glasses produced variant tendencies for displacement serrated flow to occur during the loading process. The nanoindentation strain rate was calculated as a function of indentation displacement in order to verify the occurrence of displacement serrated flow at different loading rates. Atomic force microscopy revealed decreasing numbers of discrete shear bands around the indentationmore » sites as loading rates increased from 0.025 to 2.5 mNs{sup −1}. Variations in plastic deformation behaviors between Ni and Zr-based glasses materials can be explained by the different metastable microstructures and thermal stabilities of the two materials. The mechanism governing plastic deformation of these metallic glasses was analyzed in terms of an established model of the shear transformation zone. - Highlights: • Plastic deformation of Ni- and Zr-based BMG is studied under identical conditions • Zr-based BMG undergoes a greater extent of plastic deformation than Ni-based BMG • Nanoindentation strain rate is studied to clarify variation in plastic deformation • Metastable microstructure, thermal stability affect BMG plastic deformation.« less

  16. Bizarre dielectric anomalies in magnetoelectric composites of CoFe2O4 and BaTi0.9Zr0.1O3

    NASA Astrophysics Data System (ADS)

    Mathur, Shubhra; Srivastava, Subodh; Surve, Sachin; Wadhwani, Kiran; Singh Rajaura, Rajveer; Dolia, S. N.

    2017-12-01

    The magnetoelectric (ME) composites containing cobalt ferrite as the magnetic phase and Zr substituted (10 atomic % occupancy) barium titanate as the ferroelectric counterpart having the general formula (x) CoFe2O4  +  (1  -  x) BaTi0.9Zr0.1O3 (where x  =  0, 0.25, 0.50, 0.75 and 1) have been synthesised by the conventional solid state diffusion route. Powder x-ray diffraction of thus prepared materials confirms the presence of ferrite and ferroelectric phases and their concurrent existence in all three composites without showing traces of any superfluous phase. Dielectric measurements have been recorded as a function of frequency (ranging from 100 Hz to 1 MHz) at room temperature and temperature (from 325 K up to a maximum of 825 K). In composites, relative permittivity and loss tangent curves with variable temperature show upsurge of bizarre anomalies which can be associated to the defect modes existing in the form of oxygen ion vacancies rather than ascribing it to the benchmark ferro to paraeletric transition.

  17. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Malakooti, Mohammad H; Tang, Haixiong; Sodano, Henry A

    2016-03-07

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 ± 5 pm V(-1). Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  18. A-SITE-AND/OR B-SITE-MODIFIED PBZRTIO3 MATERIALS AND (PB, SR, CA, BA, MG) (ZR, TI,NB, TA)O3 FILMS HAVING UTILITY IN FERROELECTRIC RANDOM ACCESS MEMORIES AND HIGH PERFORMANCE THIN FILM MICROACTUATORS

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2004-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  19. Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr 0.2 Ti 0.8)O3 films.

    PubMed

    Pantel, Daniel; Goetze, Silvana; Hesse, Dietrich; Alexe, Marin

    2011-07-26

    Spontaneous polarization of ferroelectric materials has been for a long time proposed as binary information support, but it suffers so far from destructive readout. A nondestructive resistive readout of the ferroelectric polarization state in a metal-ferroelectric-metal capacitor would thus be advantageous for data storage applications. Combing conducting force microscopy and piezoelectric force microscopy, we unambiguously show that ferroelectric polarization direction and resistance state are correlated for epitaxial ferroelectric Pb(Zr(0.2)Ti(0.8))O(3) nanoscale capacitors prepared by self-assembly methods. For intermediate ferroelectric layer thickness (∼9 nm) sandwiched between copper and La(0.7)Sr(0.3)MnO(3) electrodes we achieved giant electroresistance with a resistance ratio of >1500 and high switching current densities (>10 A/cm(2)) necessary for effective resistive readout. The present approach uses metal-ferroelectric-metal devices at room temperature and, therefore, significantly advances the use of ferroelectric-based resistive switching.

  20. Robocast Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} Ceramic Monoliths and Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TUTTLE,BRUCE A.; SMAY,JAMES E.; CESARANO III,JOSEPH

    2000-07-18

    Robocasting, a computer controlled slurry deposition technique, was used to fabricate ceramic monoliths and composites of chemically prepared Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} (PZT 95/5) ceramics. Densities and electrical properties of the robocast samples were equivalent to those obtained for cold isostatically pressed (CIP) parts formed at 200 MPa. Robocast composites consisting of alternate layers of the following sintered densities: (93.9%--96.1%--93.9%), were fabricated using different levels of organic pore former additions. Modification from a single to a multiple material deposition robocaster was essential to the fabrication of composites that could withstand repeated cycles of saturated polarization switching under 30 kV/cm fields.more » Further, these composites withstood 500 MPa hydrostatic pressure induced poled ferroelectric (FE) to antiferroelectric (AFE) phase transformation during which strain differences on the order of 0.8% occurred between composite elements.« less

  1. Investigation of structural, ferroelectric, piezoelectric and dielectric properties of Ba0.92Ca0.08TiO3-BaTi0.96Zr0.04O3 lead-free electroceramics

    NASA Astrophysics Data System (ADS)

    Keswani, Bhavna C.; Patil, S. I.; Kolekar, Y. D.

    2018-04-01

    Lead free ferroelectric with composition 0.55Ba0.92Ca0.08TiO3-0.45BaTi0.96Zr0.04O3 (BCT8-BZT4) was synthesized by solid state reaction method and investigated their structural, ferroelectric, piezoelectric and dielectric properties. X-ray diffraction analysis shows that BCT8-BZT4 ceramic possess both tetragonal (space group P4mm) and orthorhombic (space group Amm2) crystal structure which was further confirmed from Raman spectra spectroscopy. The micronized grains were observed from scanning electron micrographs while the presence of polarization-electric field hysteresis loop confirms ferroelectric nature of BCT8-BZT4 ceramic. Higher values of maximum polarization (Pmax = 22.27 μC/cm2), remnant polarization (Pr = 11.61 μC/cm2), coercive electric field (Ec = 4.77 kV/cm) and direct piezoelectric coefficient (d33) approximately 185 pC/N were observed. The real part of dielectric constant with frequency shows the usual dielectric dispersion behaviour at RT. The observed properties show that the lead free BCT8-BZT4 ceramic is suitable for ferroelectric memory device, piezoelectric sensor, capacitor, etc. applications.

  2. Dielectric and piezoelectric properties of lead-free Ba0.85Ca0.15Ti0.9-xZr0.1CuxO3 ceramics synthesized by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Hunpratub, Sitchai; Phokha, Sumalin; Maensiri, Santi; Chindaprasirt, Prinya

    2016-04-01

    Ba0.85Ca0.15Ti0.9Zr0.1-xCuxO3 (BCTZC) nanopowders were synthesized using a hydrothermal method after which they were pressed into discs and sintered in air at 1300 °C for 3 h to form ceramic samples. The phase and microstructure of the powder and ceramic samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the ceramic samples exhibited a tetragonal structure and that CuO, BaZrO3 or CaTiO3 impurity phases, which had been present in the powder samples, were not observed. The average grain sizes in the ceramic samples were found to be 17.0, 16.1, 20.0, 18.1 and 19.6 μm for Cu mole fractions x of 0.002, 0.004, 0.006, 0.008 and 0.01, respectively. The dielectric constants, ferroelectric hysteresis loops and piezoelectric charge coefficients of the BCZTC ceramic samples were also investigated. Optimum values for the relative dielectric constant (ɛ‧), tan δ and piezoelectric charge coefficient (d33) of the samples were 3830, 0.03 and 306 pC/N, respectively, in the Cu mole fraction samples with x = 0.002.

  3. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial. (c) 2005 Wiley Periodicals, Inc.

  4. 125Te NMR shielding and optoelectronic spectra in XTe3O8 (X = Ti, Zr, Sn and Hf) compounds: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Bashi, M.; Rahnamaye Aliabad, H. A.; Mowlavi, A. A.; Ahmad, Iftikhar

    2017-11-01

    We have calculated the NMR shielding, structural properties and optoelectronic spectra of XTe3O8 (X = Ti, Zr, Sn and Hf) compounds. The full potential linearized augmented plane wave (FP-LAPW) method and the modified Becke-Johnson (mBJ) are used by density functional theory schemes. The calculated shielding and measured shifts are arranged in a straight line and the tensors of magnetic shielding have a low symmetry and the shielding along the x direction is greater than the y and z directions. Obtained results show that the X ions have the most important influence on the 125Te chemical shift. Calculated chemical shielding components (σii) decrease from Ti to Sn then increases from Sn to Hf so that these behaviors are vice versa for 125Te isotropic chemical shift (δiso). Density of states spectra show that the X-p and d states play key role in the optical and NMR calculations. Optical results illustrate that there is a direct relation between the chemical shielding components for Te atom and the static dielectric function, refractive index and Plasmon energies.

  5. The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO3/3Y-TZP Composites

    PubMed Central

    Li, Jing; Cui, Bencang; Wang, Huining; Lin, Yuanhua; Deng, Xuliang; Li, Ming; Nan, Cewen

    2016-01-01

    Composite ceramics BaTiO3/3Y-TZP containing 0 mol %, 3 mol %, 5 mol %, 7 mol %, and 10 mol % BaTiO3 have been prepared by conventional sintering and spark-plasma sintering (SPS), respectively. Analysis of the XRD patterns and Raman spectra reveal that the phase composition of t-ZrO2, m-ZrO2, and BaTiO3 has been obtained. Our results indicate that SPS can be effective for the decrease in grain size and porosity compared with conventional sintering, which results in a lower concentration of m-ZrO2 and residual stress. Therefore, the fracture toughness is enhanced by the BaTiO3 phase through the SPS technique, while the behavior was impaired by the piezoelectric second phase through conventional sintering. PMID:28773445

  6. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    NASA Astrophysics Data System (ADS)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  7. Porous Ba0.85Ca0.15Zr0.1Ti0.9O3 Ceramics for Pyroelectric Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Moolchand; Singh, V. P.; Singh, Shatrughan; Azad, Puneet; Ilahi, Bouraoui; Madhar, Niyaz Ahamad

    2018-05-01

    Porous Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ferroelectric ceramics were fabricated using a solid-state reaction consisting of BCZT and poly(methyl methacrylate)(PMMA) (2%, 4%, 8% and 10% by wt.%) as a pore former. By increasing the PMMA content from 0% to 10%, porosity increased from 8% to 29%. It was found that the dielectric constant (ɛ r ) decreased and the dielectric loss (tanδ) increased with increasing porosity. At 29% porosity, ɛ r of the BCZT was found to decrease more, from 3481 to 1117 at 5 kHz and at room temperature. The dielectric constant and volume-specific heat capacity decreased with the increase in porosity which ultimately improved the pyroelectric figure-of-merits (FOMs). Further, the pyroelectric FOMs were estimated and found to be improved at optimum porosity.

  8. Frequency Invariability of (Pb,La)(Zr,Ti)O₃ Antiferroelectric Thick-Film Micro-Cantilevers.

    PubMed

    An, Kun; Jin, Xuechen; Meng, Jiang; Li, Xiao; Ren, Yifeng

    2018-05-13

    Micro-electromechanical systems comprising antiferroelectric layers can offer both actuation and transduction to integrated technologies. Micro-cantilevers based on the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT) antiferroelectric thick film are fabricated by the micro-nano manufacturing process, to utilize the effect of phase transition induced strain and sharp phase switch of antiferroelectric materials. When micro-cantilevers made of antiferroelectric thick films were driven by sweep voltages, there were two resonant peaks corresponding to the natural frequency shift from 27.8 to 27.0 kHz, before and after phase transition. This is the compensation principle for the PLZT micro-cantilever to tune the natural frequency by the amplitude modulation of driving voltage, rather than of frequency modulation. Considering the natural frequency shift about 0.8 kHz and the frequency tuning ability about 156 Hz/V before the phase transition, this can compensate the frequency shift caused by increasing temperature by tuning only the amplitude of driving voltage, when the ultrasonic micro-transducer made of antiferroelectric thick films works for such a long period. Therefore, antiferroelectric thick films with hetero-structures incorporated into PLZT micro-cantilevers not only require a lower driving voltage (no more than 40 V) than rival bulk piezoelectric ceramics, but also exhibit better performance of frequency invariability, based on the amplitude modulation.

  9. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application.

    PubMed

    Kalita, Himani; Pal, Pallabi; Dhara, Santanu; Pathak, Amita

    2017-02-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness=262.4MPa; elastic modulus=5800MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Average and local atomic-scale structure in BaZrxTi(1-x)O3 (x = 0. 10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy.

    PubMed

    Buscaglia, Vincenzo; Tripathi, Saurabh; Petkov, Valeri; Dapiaggi, Monica; Deluca, Marco; Gajović, Andreja; Ren, Yang

    2014-02-12

    High-resolution x-ray diffraction (XRD), Raman spectroscopy and total scattering XRD coupled to atomic pair distribution function (PDF) analysis studies of the atomic-scale structure of archetypal BaZrxTi(1-x)O3 (x = 0.10, 0.20, 0.40) ceramics are presented over a wide temperature range (100-450 K). For x = 0.1 and 0.2 the results reveal, well above the Curie temperature, the presence of Ti-rich polar clusters which are precursors of a long-range ferroelectric order observed below TC. Polar nanoregions (PNRs) and relaxor behaviour are observed over the whole temperature range for x = 0.4. Irrespective of ceramic composition, the polar clusters are due to locally correlated off-centre displacement of Zr/Ti cations compatible with local rhombohedral symmetry. Formation of Zr-rich clusters is indicated by Raman spectroscopy for all compositions. Considering the isovalent substitution of Ti with Zr in BaZrxTi1-xO3, the mechanism of formation and growth of the PNRs is not due to charge ordering and random fields, but rather to a reduction of the local strain promoted by the large difference in ion size between Zr(4+) and Ti(4+). As a result, non-polar or weakly polar Zr-rich clusters and polar Ti-rich clusters are randomly distributed in a paraelectric lattice and the long-range ferroelectric order is disrupted with increasing Zr concentration.

  11. Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure.

    PubMed

    Salamat, Ashkan; McMillan, Paul F; Firth, Steven; Woodhead, Katherine; Hector, Andrew L; Garbarino, Gaston; Stennett, Martin C; Hyatt, Neil C

    2013-02-04

    There is interest in identifying novel materials for use in radioactive waste applications and studying their behavior under high pressure conditions. The mineral zirconolite (CaZrTi(2)O(7)) exists naturally in trace amounts in diamond-bearing deep-seated metamorphic/igneous environments, and it is also identified as a potential ceramic phase for radionuclide sequestration. However, it has been shown to undergo radiation-induced metamictization resulting in amorphous forms. In this study we probed the high pressure structural properties of this pyrochlore-like structure to study its phase transformations and possible amorphization behavior. Combined synchrotron X-ray diffraction and Raman spectroscopy studies reveal a series of high pressure phase transformations. Starting from the ambient pressure monoclinic structure, an intermediate phase with P2(1)/m symmetry is produced above 15.6 GPa via a first order transformation resulting in a wide coexistence range. Upon compression to above 56 GPa a disordered metastable phase III with a cotunnite-related structure appears that is recoverable to ambient conditions. We examine the similarity between the zirconolite behavior and the structural evolution of analogous pyrochlore systems under pressure.

  12. ac conductivity in Gd doped Pb(Zr0.53Ti0.47)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Portelles, J.; Almodovar, N. S.; Fuentes, J.; Raymond, O.; Heiras, J.; Siqueiros, J. M.

    2008-10-01

    This study is focused in the conduction processes taking place in 0.6 wt % Gd doped lead zirconate titanate samples PbZr0.53Ti0.47O3:Gd (PZT53/47:Gd) in the vicinity of the morphotropic phase boundary. Doped samples show very large dielectric permittivity with respect to that of undoped ones near the transition temperature. The frequency dependent ac conductivity of PZT53/47:Gd ceramics was studied in the 30-450 °C temperature range. X-ray diffraction analyses indicate the incorporation of Gd atoms to the structure. The changes in the dielectric properties as functions of temperature of the doped samples are taken as additional evidence of the incorporation of Gd into the crystal structure. Gd acts as donor center promoting extrinsic n-type conduction. The ac conductivity behavior obeys Jonscher universal relation in the 100 Hz-1 MHz frequency range for temperatures between 30 and 300 °C. The measured conductivity values for Gd doped PZT53/47 are higher than those of pure PZT53/47. According to the correlated barrier hopping model, the preponderant conduction mechanism in the frequency-temperature response was recognized as small polarons hopping mechanism.

  13. Polarization imprint effects on the photovoltaic effect in Pb(Zr,Ti)O3 thin films

    NASA Astrophysics Data System (ADS)

    Tan, Zhengwei; Tian, Junjiang; Fan, Zhen; Lu, Zengxing; Zhang, Luyong; Zheng, Dongfeng; Wang, Yadong; Chen, Deyang; Qin, Minghui; Zeng, Min; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming

    2018-04-01

    The polarization imprint along with the photovoltaic (PV) effect has been studied in Pt/Pb(Zr0.3Ti0.7)O3/SrRuO3 ferroelectric capacitors. It is shown that the positive DC poling induces the imprint with a downward direction whereas the negative DC poling suppresses the imprint (i.e., rejuvenation). In the polarization up state, the imprinted capacitor exhibits degraded PV properties compared with the rejuvenated one. This may be because the imprint reduces the number of upward domains, thus lowering the driving force for the PV effect. In the polarization down state, however, the rejuvenated capacitor enters the imprinted state spontaneously. This rejuvenation-to-imprint transition can be further aggravated by applying positive voltages and ultraviolet illumination. It is proposed that the domain pinning/depinning, which are associated with the oxygen vacancies and trapped electrons modulated by polarization, voltage, and illumination, may be responsible for the polarization imprint and rejuvenation. Our study therefore sheds light on the correlation between the polarization imprint and the PV effect in the ferroelectrics and also provides some viable suggestions to address the imprint-induced degradation of PV performance.

  14. Microstructure and hydrogenation properties of a melt-spun non-stoichiometric Zr-based Laves phase alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Yunlong; Li, Jinshan

    2016-01-15

    Alloy with composition of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} off normal stoichiometric proportion is selected to investigate the effect of defects introduced by non-stoichiometry on hydrogenation kinetics of Zr–Ti–V Laves phase alloys. Microstructure and phase constituent of melt-spun ribbons have been investigated in this work. The activation process, hydrogenation kinetics, thermodynamics characteristics and hydride phase constituent of as-cast alloy and melt-spun ribbons are also compared. Comparing with the as-cast alloy, the dominant Laves phase ZrV{sub 2} is preserved, V-BCC phase is reduced and α-Zr phase is replaced by a small amount of Zr{sub 3}V{sub 3}O phase in melt-spun ribbons. Melt-spun ribbonsmore » exhibit easy activation and fast initial hydrogen absorption on account of the increased specific surface area. However, the decrease in unit cell volume of the dominant phase leads to the decrease in hydrogen absorption capacity. Melt-spinning technique raises the equilibrium pressure and decreases the stability of hydride due to the decrease of unit cell volume and the elimination of α-Zr phase, respectively. Melt-spun ribbons with fine grains show improved hydrogen absorption kinetics comparing with that of the as-cast alloy. Meanwhile, the prevalent micro twins observed within melt-spun ribbons are believed to account for the improved hydrogen absorption kinetics. - Highlights: • Role of defects on hydrogenation kinetics of Zr-based alloys is proposed. • Microstructure and hydrogenation properties of as-cast/melt-spun alloy are compared. • Melt-spinning technique improves the hydrogenation kinetics of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} alloy. • Refined grains and twin defects account for improved hydrogen absorption kinetics.« less

  15. Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75-xTixZr0.25NiSn0.99Sb0.01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Giri; Dahal, Tulashi; Chen, Shuo

    The effect of titanium (Ti) substitution for hafnium (Hf) on thermoelectric properties of (Hf, Zr)-based n-type half-Heuslers: Hf0.75-xTixZr0.25NiSn0.99Sb0.01, has been studied. The samples are made by arc melting followed by ball milling and hot pressing via the nanostructuring approach. A peak thermoelectric figure-of-merit (ZT) of ~1.0 is achieved at 500 °C in samples with a composition of Hf0.5Zr0.25Ti0.25NiSn0.99Sb0.01 due to a slight increase in carrier concentration and also a lower thermal conductivity caused by Ti. The ZT values below 500 °C of hot pressed Hf0.5Zr0.25Ti0.25NiSn0.99Sb0.01 samples are significantly higher than those of the same way prepared Hf0.75Zr0.25NiSn0.99Sb0.01 samples at eachmore » temperature, which are very much desired for mid-range temperature applications such as waste heat recovery in automobiles.« less

  16. Favorable Concurrence of Static and Dynamic Phenomena at the Morphotropic Phase Boundary of x BiNi0.5Zr0.5O3-(1 -x )PbTiO3

    NASA Astrophysics Data System (ADS)

    Datta, K.; Neder, R. B.; Chen, J.; Neuefeind, J. C.; Mihailova, B.

    2017-11-01

    We reveal that concurrent events of inherent entropy boosting and increased synchronization between A - and B -site cation vibrations of an A B O3 -type perovskite structure give rise to a larger piezoelectric response in a ferroelectric system at its morphotropic phase boundary (MPB). It is further evident that the superior piezoelectric properties of x BiNi0.5Zr0.5O3-(1 -x )PbTiO3 in comparison to x BiNi0.5Ti0.5O3-(1 -x )PbTiO3 are due to the absolute flattening of the local potentials for all ferroelectrically active cations with a higher spontaneous polarization at the MPB. These distinctive features are discovered from the analyses of neutron pair distribution functions and Raman scattering data at ambient conditions, which are particularly sensitive to mesoscopic-scale structural correlations. Altogether this uncovers more fundamental structure-property connections for ferroelectric systems exhibiting a MPB, and thereby has a critical impact in contriving efficient novel materials.

  17. The enhancing performance of (Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.90}Zr{sub 0.10})O{sub 3} ceramics by tuning anatase–rutile phase structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Xiaolian, E-mail: chaoxl@snnu.edu.cn; Wang, Juanjuan; Wang, Zhongming

    2016-04-15

    Graphical abstract: Titanium dioxide (TiO{sub 2}) with different phase structure had interesting influence on the crystal structure, microstructure, the sintering temperature and electrical properties. - Highlights: • BCZT ceramics were prepared using either anatase or rutile structures as Ti source. • Orthorhombic and tetragonal mixture structure was exhibited by adjusting Ti source. • The optimal properties were observed in BCZT ceramics with rutile titanium dioxide. - Abstract: To research effect of raw materials TiO{sub 2} with the phase structures on the crystal structure, microstructure and electrical properties of lead-free (Ba{sub 0.85}Ca{sub 0.15})(Ti{sub 0.90}Zr{sub 0.10})O{sub 3} (BCZT) ceramics, BCZT ceramics usingmore » either anatase or rutile as Ti source were synthesized by solid-state reaction. Titanium dioxide (TiO{sub 2}) with anatase/rutile phase structures had interesting influence on the crystal structure, microstructure and the sintering temperature by the X-ray diffraction and SEM, which also played an important role in improved electrical properties. The BCZT ceramics with rutile titanium dioxide demonstrated optimal piezoelectric and dielectric properties: d{sub 33} = 590 pC/N, k{sub p} = 0.46, ε{sub r} = 2810, tanδ = 0.014 and T{sub c} = 91 °C, which was obviously superior to BCZT ceramics with anatase titanium dioxide.« less

  18. Comparison of microstructure and magnetic properties of gas-atomized and melt-spun MRE-Fe-Co-M-B (MRE=Y+Dy+Nd,M=Zr+TiC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, W.; Wu, Y. Q.; Dennis, K. W.

    2007-05-01

    An MRE{sub 2}(Fe,Co){sub 14}B alloy with Zr substitution and TiC addition was systematically studied. It was found by means of X-ray diffraction, transmission electron microscopy (TEM) and magnetic measurements that the combination of Zr substitution and TiC addition yields adequate microstructural control in both gas atomization (GA) and melt spinning (MS) techniques. For MS ribbons, an H{sub cj} of 11.7 kOe and (BH){sub max} of 11.9 MGOe at 27 degree sign C were obtained in the ribbons spun at 16 m/s and annealed at 700 degree sign C for 15 min. For GA powders, an H{sub cj} of 9.1 kOemore » and (BH){sub max} of 9.2 MGOe at 27 degree sign C were obtained in 20-25 {mu}m GA powder annealed at 700 degree sign C for 15 min. The temperature coefficients of B{sub r} and H{sub cj} are 0.06 and 0.36%/ degree sign C for the MS ribbon and 0.09 and 0.4%/ degree sign C for the GA powder in the temperature range of 27-100 degree sign C, respectively. TEM images revealed that the MS ribbon consists of a fine and uniform microstructure with an average size of 30 nm, while the GA spherical powder consists of an interior coarsened microstructure with a grain size of 80 nm and a rim area with a grain size of 10 nm.« less

  19. A Novel Liquid-Liquid Transition in Undercooled Ti-Zr-Ni Liquids

    NASA Technical Reports Server (NTRS)

    Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Bradshaw, R. C.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.

    2004-01-01

    If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, T(sub l), finally 'freezing' into a glass below a characteristic temperature called the glass transition temperature, T(sub g). In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of H2O and Si. Such phase transitions have been predicted in some stable liquids, ie. above T(sub l) at atmospheric pressure, for SiO2 and BeF2, but these have not been verified experimentally. They have been observed in liquids of P, Si and C, but only under high pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity metallic liquid that is driven by an approach to a constant entropy configuration state and correlated with a growing icosahedral order in the liquid. A maximum in the specific heat at constant pressure, similar to what is normally observed near T(sub g), is reported for undercooled liquids of quasicrystal-forming Ti-Zr-Ni alloys. A two-state excitation model that includes cooperativity by incorporating a temperature-dependent excitation energy, fits the specific heat data well, signaling a phase transition. An inflection in the liquid density with decreasing temperature instead of a discontinuity indicates that this is not a typical first order phase transition; it could be a weakly first order or higher order transition. While showing many similarities to a glass transition, this liquid-liquid phase transition occurs in a mobile liquid, making it novel.

  20. A Comparison of the Behaviour of AlTiB and AlTiC Grain Refiners

    NASA Astrophysics Data System (ADS)

    Schneider, W.; Kearns, M. A.; McGarry, M. J.; Whitehead, A. J.

    AlTiC master alloys present a new alternative to AlTiB grain refiners which have enjoyed pre-eminence in cast houses for several decades. Recent investigations have shown that, under defined casting conditions, AlTiC is a more efficient grain refiner than AlTiB, is less prone to agglomeration and is more resistant to poisoning by Zr, Cr. Moreover it is observed that there are differences in the mechanism of grain refinement for the different alloys. This paper describes the influence of melt temperature and addition rate on the performance of both types of grain refiner in DC casting tests on different wrought alloys. Furthermore the effects of combined additions of the grain refiners and the recycling behaviour of the treated alloys are presented. Results are compared with laboratory test data. Finally, mechanisms of grain refinement are discussed which are consistent with the observed differences in behaviour with AlTiC and AlTiB.

  1. Hysteretic Characteristics of Pulsed Laser Deposited 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3/ZnO Bilayers.

    PubMed

    Silva, J P B; Wang, J; Koster, G; Rijnders, G; Negrea, R F; Ghica, C; Sekhar, K C; Moreira, J Agostinho; Gomes, M J M

    2018-05-02

    In the present work, we study the hysteretic behavior in the electric-field-dependent capacitance and the current characteristics of 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BCZT)/ZnO bilayers deposited on 0.7 wt % Nb-doped (001)-SrTiO 3 (Nb:STO) substrates in a metal-ferroelectric-semiconductor (MFS) configuration. The X-ray diffraction measurements show that the BCZT and ZnO layers are highly oriented along the c-axis and have a single perovskite and wurtzite phases, respectively, whereas high-resolution transmission electron microscopy revealed very sharp Nb:STO/BCZT/ZnO interfaces. The capacitance-electric field ( C- E) characteristics of the bilayers exhibit a memory window of 47 kV/cm and a capacitance decrease of 22%, at a negative bias. The later result is explained by the formation of a depletion region in the ZnO layer. Moreover, an unusual resistive switching (RS) behavior is observed in the BCZT films, where the RS ratio can be 500 times enhanced in the BCZT/ZnO bilayers. The RS enhancement can be understood by the barrier potential profile modulation at the depletion region, in the BCZT/ZnO junction, via ferroelectric polarization switching of the BCZT layer. This work builds a bridge between the hysteretic behavior observed either in the C- E and current-electric field characteristics on a MFS structure.

  2. Zr and Hf diffusion in rutile

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Manchester, J.; Watson, E. B.

    2007-09-01

    Chemical diffusion of Zr and Hf under anhydrous conditions has been measured in synthetic and natural rutile. The sources of diffusant used were hafnon or zircon powders or a hafnon-rutile mixture. Experiments were run in crimped Pt capsules in air, or in sealed silica glass capsules with solid buffers (to buffer at NNO or QFM). Rutherford Backscattering Spectrometry (RBS) was used to measure Zr and Hf diffusion profiles. From these measurements, the following Arrhenius relations were obtained: For Zr diffusion parallel to c, over the temperature range 750-1100 °C DZr¦c = 9.8 × 10 - 15 exp(- 170 ± 30 kJ mol - 1 /RT) m 2 s - 1 For Hf diffusion parallel to c, over the temperature range 800-1000 °C DHf¦c = 9.1 × 10 - 15 exp(- 169 ± 36 kJ mol - 1 /RT) m 2 s - 1 For Hf diffusion normal to c, over the temperature range 750-1050 °C DHf⊥c = 2.5 × 10 - 12 exp(- 227 ± 62 kJ mol - 1 /RT) m 2 s - 1 . Diffusivities for experiments buffered at QFM and NNO are similar to those run in air. Diffusivities in synthetic and natural rutile are likewise similar, indicating that these findings can be applied directly in determining Zr diffusivities in rutile in natural systems. These data indicate that rutile should be moderately retentive of Zr chemical signatures, with Zr diffusivities within an order of magnitude of those for Pb in rutile over most geologic conditions. When applied in evaluation of the relative robustness of the recently developed Zr-in-rutile geothermometer [T. Zack, R. Moraes, A. Kronz, Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer, Contributions to Mineralogy and Petrology 148 (2004) 471-488., E.B. Watson, D.A. Wark, J.B. Thomas, Crystallization thermometers for zircon and rutile, Contributions to Mineralogy and Petrology 151 (2006) 413-433.], these findings suggest that Zr concentrations in rutile will be somewhat more likely to be affected by later thermal disturbance than the geothermometer based on Zr

  3. Piezoelectric characterization of Pb(Zr,Ti)O3 thin films deposited on metal foil substrates by dip coating

    NASA Astrophysics Data System (ADS)

    Hida, Hirotaka; Hamamura, Tomohiro; Nishi, Takahito; Tan, Goon; Umegaki, Toshihito; Kanno, Isaku

    2017-10-01

    We fabricated the piezoelectric bimorphs composed of Pb(Zr,Ti)O3 (PZT) thin films on metal foil substrates. To efficiently inexpensively manufacture piezoelectric bimorphs with high flexibility, 1.2-µm-thick PZT thin films were directly deposited on both surfaces of 10- and 20-µm-thick bare stainless-steel (SS) foil substrates by dip coating with a sol-gel solution. We confirmed that the PZT thin films deposited on the SS foil substrates at 500 °C or above have polycrystalline perovskite structures and the measured relative dielectric constant and dielectric loss were 323-420 and 0.12-0.17, respectively. The PZT bimorphs were demonstrated by comparing the displacements of the cantilever specimens driven by single- and double-side PZT thin films on the SS foil substrates under the same applied voltage. We characterized the piezoelectric properties of the PZT bimorphs and the calculated their piezoelectric coefficient |e 31,f| to be 0.3-0.7 C/m2.

  4. Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O{sub 3} antiferroelectric bulk ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xuefeng; Liu, Zhen; Xu, Chenhong

    2016-05-15

    The dielectric and energy-storage properties of Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.60}Sn{sub 0.40}){sub 0.95}Ti{sub 0.05}]{sub 0.98}O{sub 3} (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T{sub 0}, T{sub C}, T{sub 2} are obtained from the dielectric temperature spectrum. At different temperature regions (below T{sub 0}, between T{sub 0} and T{sub C}, and above T{sub C}), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reachmore » their peak values at ∼T{sub 0}. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.« less

  5. Structural, dielectric and magnetic studies of (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Giridharan, N. V.; Chaudhuri, Arka; Sankarappa, T.

    2016-05-01

    The Magneto-electric composites (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 (x=15%,30%,45%) were synthesized by sintering mixtures of highly ferroelectric Ba0.8Zr0.2TiO3 (BZT) and highly magneto-strictive component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The magnetic properties of synthesized composites were analyzed using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.

  6. The electrochemical Evaluation of a Zr-Based Bulk Metallic Glass in a Phosphate-Buffered Saline Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, M. L.; Buchanan, R. A.; Leon, R. V.

    2005-01-01

    Bulk metallic glasses (BMGs) represent an emerging class of materials with an amorphous structure and a unique combination of properties. The objectives of this investigation were to define the electrochemical behavior of a specific Zr-based BMG alloy in a physiologically relevant environment and to compare these properties to standard, crystalline biomaterials as well as other Zr-based BMG compositions. Cyclic-anodic-polarization studies were conducted with a Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10.0}Ti{sub 5.0} (at %) BMG in a phosphate-buffered saline electrolyte with a physiologically relevant oxygen content at 37 C. The results were compared to three common, crystalline biomaterials: CoCrMo, 316L stainless steel,more » and Ti-6Al-4V. The BMG alloy was found to have a lower corrosion penetration rate (CPR), as compared to the 316L stainless steel, and an equivalent CPR, as compared to the CoCrMo and Ti-6Al-4V alloys. Furthermore, the BMG alloy demonstrated better localized corrosion resistance than the 316L stainless steel. However, the localized corrosion resistance of the BMG alloy was not as high as those of the CoCrMo and Ti-6Al-4V alloys in the tested environment. The excellent electrochemical properties demonstrated by the BMG alloy are combined with a low modulus and unparalleled strength. This unique combination of properties dramatically demonstrates the potential for amorphous alloys as a new generation of biomaterials.« less

  7. Low Fatigue in Epitaxial Pb(Zr0.2Ti0.8)O3 on Si Substrates with LaNiO3 Electrodes by RF Sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Kryder, Mark H.

    2009-09-01

    Epitaxial PZT (001) thin films with a LaNiO3 bottom electrode were deposited by radio-frequency (RF) sputtering onto Si(001) single-crystal substrates with SrTiO3/TiN buffer layers. Pb(Zr0.2Ti0.8)O3 (PZT) samples were shown to consist of a single perovskite phase and to have an (001) orientation. The orientation relationship was determined to be PZT(001)[110]∥LaNiO3(001)[110]∥SrTiO3 (001)[110]∥TiN(001)[110]∥Si(001)[110]. Atomic force microscope (AFM) measurements showed the PZT films to have smooth surfaces with a roughness of 1.15 nm. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). Electrical measurements were conducted using both Pt and LaNiO3 as top electrodes. The measured remanent polarization P r and coercive field E c of the PZT thin film with Pt top electrodes were 23 μC/cm2 and 75 kV/cm, and were 25 μC/cm2 and 60 kV/cm for the PZT film with LaNiO3 top electrodes. No obvious fatigue after 1010 switching cycles indicated good electrical endurance of the PZT films using LaNiO3 electrodes, compared with the PZT film with Pt top electrodes showing a significant polarization loss after 108 cycles. These PZT films with LaNiO3 electrodes could be potential recording media for probe-based high-density data storage.

  8. Mechanical properties of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass with different geometric confinements

    NASA Astrophysics Data System (ADS)

    Zhang, Changqin; Zhang, Haifeng; Sun, Qilei; Liu, Kegao

    2018-03-01

    Zr41.2Ti13.8Ni10Cu12.5Be22.5 (Vit 1) bulk metallic glass with Cu sleeves at different positions was prepared by the Cu mold casting method, and the effects of different geometric confinements offered by Cu sleeves on the mechanical properties of Vit 1 were investigated. It was found that the mechanical properties were prominently influenced by different geometric confinements and the plasticity could be modified by optimizing the positions of Cu sleeves. The results revealed that shear band initiation and propagation could be efficiently intervened by changing the radial boundary restraints, which led to quite different mechanical behaviors.

  9. Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Santosh K.; Misra, D.

    2011-01-31

    Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less

  10. Phase transition behaviours near the triple point for Pb-free (1 - x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics

    NASA Astrophysics Data System (ADS)

    Gao, Jinghui; Dai, Ye; Hu, Xinghao; Ke, Xiaoqin; Zhong, Lisheng; Li, Shengtao; Zhang, Lixue; Wang, Yu; Wang, Dong; Wang, Yan; Liu, Yongbin; Xiao, Hu; Ren, Xiaobing

    2016-08-01

    The reason for the large electromechanical response in Pb-free piezoceramic Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 (BZT-BCT) still remains controversial, and a central issue is whether or not the multi-phase-coexisting point (triple point) in the phase diagram is a thermodynamic tricritical point. In this letter, we study the phase transition behaviour for the ferro-para transitions of BZT-BCT specimens in the vicinity of a triple point. Our results show that latent heat and thermal hysteresis approach zero, while the permittivity peak value is maximized close to the triple-point composition, which suggests that the triple point exhibits nearly tricritical transition behaviours in the BZT-BCT system. Further, the TEM result shows that the domain width is minimized with composition approaching the triple point, which indicates a reduction of the domain wall energy possibly relevant to the tricriticality of the triple point. A sixth-order Landau energy modeling shows that the triple tricritical point provides a free-energy state of near-vanishing polarization anisotropy and thus enhances the piezoelectric response for such a material system.

  11. Temperature induced phase transformations and negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal

    NASA Astrophysics Data System (ADS)

    Zhuo, Fangping; Li, Qiang; Yan, Qingfeng; Zhang, Yiling; Wu, Hong-Hui; Xi, Xiaoqing; Chu, Xiangcheng; Cao, Wenwu

    2017-10-01

    Temperature induced phase transitions and electrocaloric effect (ECE) of (Pb,La)(Zr,Sn,Ti)O3 (PLZST) single crystals have been comprehensively studied. Based on the in situ evolution of domain structures and dielectric properties of the PLZST crystals, the phase transitions during heating are in the sequence of orthorhombic antiferroelectric → rhombohedral ferroelectric → cubic paraelectric. Coexistence of the negative and positive ECEs has been achieved in the PLZST single crystals. A negative ECE value of -1.26 °C and enhanced electrocaloric strength of -0.21 K mm/kV near the Curie temperature have been obtained. A modified Landau model gives a satisfactory description of the experimentally observed unusual ECE. Moreover, a temperature-electric field phase diagram is also established based on theoretical analysis. Our results will help people understand better the electrocaloric family, particularly on the negative and/or positive effect in antiferroelectrics and ferroelectrics.

  12. Tribological Performance of Duplex-Annealed Ti-6Al-2Sn-4Zr-2Mo Titanium Alloy at Elevated Temperatures Under Dry Sliding Condition

    NASA Astrophysics Data System (ADS)

    Heilig, Sebastian; Ramezani, Maziar; Neitzert, Thomas; Liewald, Mathias

    2018-03-01

    Ti-6Al-2Sn-4Zr-2Mo (Ti-6-2-4-2) is a typical near-α titanium alloy developed for high-temperature applications. It offers numerous enhanced properties like an outstanding strength-to-weight ratio, a low Young's modulus and exceptional creep and corrosion resistance. On the other hand, titanium alloys are known for their weak resistance to wear. Ti-6-2-4-2 is mainly applied in aero engine component parts, which are exposed to temperatures up to 565 °C. Through an increasing demand on efficiency, engine components are exposed to higher combustion pressures and temperatures. Elevated temperature tribology tests were conducted on a pin-on-disk tribometer equipped with a heating chamber. The tests were carried out under dry conditions with a constant sliding distance of 600 m with a speed of 0.16 m/s at the ball point. The sliding partner was AISI E52100 steel ball with the hardness of 58HRC. The varied input variables are normal load and temperature. It can be concluded that the coefficient of friction (CoF) increases with increasing temperature, while the wear rate decreases to its minimum at 600 °C due to increasing adhesion and oxidation mechanisms. Wear track observations using a scanning electron microscope (SEM) including energy-dispersive x-ray spectroscopy (EDS) were used to determine the occurring wear mechanisms.

  13. Control of La-doped Pb(Zr,Ti)O3 crystalline orientation and its influence on the properties of ferroelectric random access memory

    NASA Astrophysics Data System (ADS)

    Wang, Wensheng; Nomura, Kenji; Yamaguchi, Hideshi; Nakamura, Ko; Eshita, Takashi; Ozawa, Soichiro; Takai, Kazuaki; Mihara, Satoru; Hikosaka, Yukinobu; Hamada, Makoto; Kataoka, Yuji

    2017-10-01

    We investigated the crystallization mechanisms of sputter-deposited La-doped Pb(Zr,Ti)O3 (PLZT) on a Pt/Ti metal stack in the postdeposition annealing (PDA) at 600 °C in O2-mixed Ar ambient. As-deposited amorphous PLZT generally transforms to a perovskite phase over 550 °C through a metastable pyrochlore phase during the PDA. We found that the O2 content of the PDA ambient crucially affects the pyrochlore-perovskite transformation (PPT) speed. While an O2 content much higher than 2% of the PDA ambient suppresses PPT, an O2 content much lower than 2% enhances PPT. An O2 content around of 2% of the PDA suppresses PPT near the surface of PLZT and simultaneously keeps PPT fast in the inner regions of PLZT in the pyrochlore phase because of the O2 diffusion limit from the PLZT surface, eventually resulting in almost only the growth of highly {111} oriented columnar PLZT on Pt, which reveals better electric properties than those obtained by the PDA with the ambient of O2 contents much higher or lower than 2%.

  14. Investigation of ZrO x /ZrC-ZrN/Zr thin-film structural evolution and their degradation using X-ray diffraction and Raman spectrometry

    NASA Astrophysics Data System (ADS)

    Usmani, B.; Vijay, V.; Chhibber, R.; Dixit, A.

    2016-11-01

    The thin-film structures of DC/FR magnetron-sputtered ZrO x /ZrC-ZrN/Zr tandem solar-selective coatings are investigated using X-ray diffraction and room-temperature Raman spectroscopic measurements. These studies suggest that the major contribution is coming from h-ZrN0.28, c-ZrC, h-Zr3C2 crystallographic phases in ZrN-ZrC absorber layer, in conjunction with mixed ZrO x crystallographic phases. The change in structure for thermally annealed samples has been examined and observed that cubic and hexagonal ZrO x phase converted partially into tetragonal and monoclinic ZrO x phases, whereas hexagonal and cubic ZrN phases, from absorber layer, have not been observed for these thermally treated samples in air. These studies suggest that thermal treatment may lead to the loss of ZrN phase in absorber, degrading the thermal response for the desired wavelength range in open ambient conditions in contrast to vacuum conditions.

  15. Data on processing of Ti-25Nb-25Zr β-titanium alloys via powder metallurgy route: Methodology, microstructure and mechanical properties.

    PubMed

    Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z

    2018-04-01

    The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.

  16. Battery voltage-balancing applications of disk-type radial mode Pb(ZrTi)O3 ceramic resonator

    NASA Astrophysics Data System (ADS)

    Thenathayalan, Daniel; Lee, Chun-gu; Park, Joung-hu

    2017-10-01

    In this paper, we propose a novel technique to build a charge-balancing circuit for series-connected battery strings using various kinds of disk-type ceramic Pb(ZrTi)O3 piezoelectric resonators (PRs). The use of PRs replaces the whole external battery voltage-balancer circuit, which consists mainly of a bulky magnetic element. The proposed technique is validated using different ceramic PRs and the results are analyzed in terms of their physical properties. A series-connected battery string with a voltage rating of 61.5 V is set as a hardware prototype under test, then the power transfer efficiency of the system is measured at different imbalance voltages. The performance of the proposed battery voltage-balancer circuit employed with a PR is also validated through hardware implementation. Furthermore, the temperature distribution image of the PR is obtained to compare power transfer efficiency and thermal stress under different operating conditions. The test results show that the battery voltage-balancer circuit can be successfully implemented using PRs with the maximum power conversion efficiency of over 96% for energy storage systems.

  17. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    PubMed

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (< or = 0.03 ppm). The new Ti-15%Zr-4%Nb-4%Ta-0.2%Pd alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  18. Thickness and Nb-doping effects on ferro- and piezoelectric properties of highly a-axis-oriented Nb-doped Pb(Zr0.3Ti0.7)O3 films

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Xiang; Ruangchalermwong, C.; Li, Jing-Feng

    2008-09-01

    Tetragonal Nb-doped Pb(Zr0.3Ti0.7)O3 (PNZT) films with a lead oxide seeding layer were deposited on the Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel processing. The as-grown PNZT films with thicknesses ranging from about 0.08 to 0.78 μm show highly a-axis preferential orientation, and their ferroelectric and piezoelectric properties improved with increasing film thickness. Due to the combined effects of Nb doping and a-axis texturing as well as reduced substrate constraint, a high d33 constant up to 196 pm/V was obtained for PNZT film at 0.78 μm in addition to a large remnant polarization of 69 μC/cm2. This well a-axis-oriented PNZT films on platinized Si with a high piezoresponse are suitable for the fabrication of microelectromechanical devices.

  19. STUDY OF BIFERROIC PROPERTIES IN THE La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 COMPLEX PEROVSKITE

    NASA Astrophysics Data System (ADS)

    Cardona-Vásquez, J. A.; Gómez, M. E.; Landínez-Téllez, D. A.; Roa-Rojas, J.

    2013-10-01

    In this paper, details of synthesis and structural, morphological, electrical, and magnetic characterization of the new La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 multiferroic complex perovskite are reported. Mixtures with 50% mass of ferromagnetic lanthanum calcium manganite La0.67Ca0.33MnO3 and ferroelectric barium-lanthanum zirconate titanate Ba0.9La0.067Ti0.91Zr0.09 O3 were prepared by the solid state reaction technique. Patterns of X-ray diffraction showed that the materials have reacted resulting in a new perovskite-like structure with tetragonal symmetry, space group P4mm(#99). The structure of the material was refined using the Rietveld method through the GSAS code. ZFC and FC magnetization curves show the occurrence of two phase transitions at 42.25 K and 203.9 K which have been associated with two different magnetic regimes. Hysteresis curves measured confirm that the relationship between the applied field and the magnetization does not evidence a linear behavior. These curves also show that in the low temperature regime the magnetic memory of the material is greater than in the high temperature region. AC impedance as a function of temperature measurements show the same two regions observed in the magnetization curves. The ferroelectric behavior with relative permittivity of 153.12 is observed by polarization curves performed at room temperature in the synthesized materials.

  20. Effect of CaRuO3 interlayer on the dielectric properties of Ba(Zr ,Ti)O3 thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tang, X. G.; Tian, H. Y.; Wang, J.; Wong, K. H.; Chan, H. L. W.

    2006-10-01

    Ba(Zr0.2Ti0.8)O3 (BZT) thin films on Pt(111)/Ti /SiO2/Si(100) substrates without and with CaRuO3 (CRO) buffer layer were fabricated at 650°C in situ by pulsed laser deposition. The BZT thin films showed a dense morphology, many clusters are found on the surface images of BZT/Pt films, which are composed by nanosized grains of 25-35nm; the average grain size of BZT/CRO films is about 80nm, which lager than that of BZT/Pt thin film. The dielectric constants and dissipation factors of BZT/Pt and BZT/CRO thin films were 392 and 0.019 and 479 and 0.021 at 1MHz, respectively. The dielectric constant of BZT/Pt and BZT/CRO thin films changes significantly with applied dc bias field and has high tunabilities and figures of merit of ˜70% and 37 and 75% and 36, respectively, under an applied field of 400kV /cm. The possible microstructural background responsible for the high dielectric constant and tunability was discussed.

  1. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    PubMed Central

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  2. Synthesis and piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3-xSr2ZrTiO6 ceramics

    NASA Astrophysics Data System (ADS)

    Onishi, Ryo; Ogawa, Hirotaka; Iida, Daiki; Kan, Akinori

    2017-10-01

    The effects of Sr2ZrTiO6 (SZT) addition on the piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT)-xSZT ceramics were characterized in this study. The X-ray powder diffraction (XRPD) profiles and Raman spectra of the ceramics in the composition range of 0-0.02 implies the presence of morphotropic phase boundary (MPB) which consists of the rhombohedral and tetragonal phases. Moreover, the temperature dependence of dielectric loss indicated a presence of the ferroelectric-relaxor transition temperature (T F-R) of around 75 °C for x = 0.005 and the temperature dependence shifted to a lower temperature at x = 0.01. The temperature dependence of the P-E hysteresis loop of the ceramics at the compositions of x = 0.005-0.02 showed pinched hysteresis loops above T F-R. Regarding the piezoelectric constant (d 33), it was increased by SZT addition in the MPB region (x = 0-0.01) and the highest d 33 of 202 pC/N was obtained at the composition of x = 0.0025. The S-E unipolar loop was also evaluated, the strain of the ceramic increased up to x = 0.02; and the highest d33* = 436 pm/V was obtained at the composition of x = 0.02.

  3. Strain and in-plane orientation effects on the ferroelectricity of (111)-oriented tetragonal Pb(Zr0.35Ti0.65)O3 thin films prepared by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kuwabara, Hiroki; Menou, Nicolas; Funakubo, Hiroshi

    2007-05-01

    The growth and characterization of epitaxial (111)-oriented Pb(Zr0.35Ti0.65)O3 films deposited by metal organic chemical vapor deposition on (100)-oriented silicon substrates [(111)SrRuO3‖(111)Pt ‖(100)yttria-stabilizedzirconia‖(100)Si] are reported. The orientation, microstructure, and electric properties of these films are compared to those of fiber-textured highly (111)-oriented lead zirconate titanate (PZT) films deposited on (111)SrRuO3/(111)Pt/TiOx/SiO2/(100)Si substrates and epitaxial (111)-oriented PZT films deposited on (111)SrRuO3‖(111)SrTiO3 substrates. The ferroelectric properties of these films are not drastically influenced by the in-plane orientation of the film and by the strain state imposed by the underlying substrate. These results support the use of fiber-textured highly (111)-oriented films in highly stable ferroelectric capacitors.

  4. Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy

    NASA Astrophysics Data System (ADS)

    Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah

    2016-03-01

    In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.

  5. Adsorption effect on the formation of conductive path in defective TiO2: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Wenshi; Qin, Han; Yang, Jianfeng; Mao, Ling-Feng

    2017-10-01

    Although the metal/TiO2/metal junctions providing resistive switching properties have attracted lots of attention in recent decades, revealing the atomic-nature of conductive path in TiO2 active layer remains a critical challenge. Here the effects of metal adsorption on defective TiO2(1 1 0) surface are theoretically investigated via ab initio calculations. The dependence of the conductive path on the adsorption of Ti/Zr/Cu/Pt/O atoms above a lattice Ti-ion in (1 1 0) plane and at 〈1 1 0〉 direction of the defective TiO2(0 0 1) surface are compared. It is found that Ti adsorptions in both sites give larger contributions to the presence of conductive path with more stability and larger transport coefficients at Fermi level, whereas the O adsorptions at both sites fail to produce conductive path. Moreover, the adsorptions of Zr/Cu/Pt atoms reduce the existence possibility of conductive path, especially absorbed above the lattice Ti-ion at 〈1 1 0〉 direction. Thus, it is helpful to clarify the interaction of the metal electrode and oxide layer in resistive random access memory.

  6. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    NASA Astrophysics Data System (ADS)

    Shen, H. H.; Liu, L.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.

    2016-12-01

    The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  7. Fluorite transition metal hydride induced destabilization of the MgH2 system in MgH2/TMH2 multilayers ( TM=Sc , Ti, V, Cr, Y, Zr, Nb, La, Hf)

    NASA Astrophysics Data System (ADS)

    Tao, S. X.; Notten, P. H. L.; van Santen, R. A.; Jansen, A. P. J.

    2010-09-01

    The structural changes in MgH2 induced by contact with fluorite transition metal hydrides ( TMH2 , TM=Sc , Ti, V, Cr, Y, Zr, Nb, La, Hf) have been studied using density-functional theory calculations. Models of MgH2(rutile)/TiH2(fluorite) and MgH2(fluorite)/TiH2(fluorite) multilayers with different Mg:TM ratios have been designed. With a fixed thickness of the TMH2 layer, structure transformation of MgH2 from rutile to fluorite occurs with a decrease in thickness of the MgH2 layer. The hydrogen desorption energy from the fluorite MgH2 layer in the multilayers is significantly lower than that of the bulk rutile MgH2 . The structural deformation of the MgH2 layer due to the strain induced by TMH2 is found to be responsible for the destabilization of the Mg-H bond: the more structural deformation, the more destabilization of the Mg-H. Our results provide an important insight for the development of new hydrogen-storage materials with desirable thermodynamic properties.

  8. Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr

    NASA Astrophysics Data System (ADS)

    Liu, Jian-hua; Zhan, Zhong-wei; Yu, Mei; Li, Song-mei

    2013-01-01

    The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 °C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (Kads) and free energy of adsorption process (ΔGads) were calculated to elaborate the mechanism of GTMS adsorption.

  9. Structural, microstructural, dielectric and ferroelectric properties of lead free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic

    NASA Astrophysics Data System (ADS)

    Sharma, Sarita; Sharma, Hakikat; Negi, N. S.

    2018-05-01

    Lead free Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ) ceramic has been synthesized by sol-gel method. Properties of material are studied at different sintering temperatures for 5 hours. Structural and microstructural properties are analyzed by using X-ray diffractrometer (XRD) and scanning electron microscopy (SEM) at annealing temperature of 850°C and 1050°C XRD pattern confirm the perovskite structure of the material without any unwanted phases crystalinity increased with increase of sintering temperature so as roughness and porosity is decreased as shown by SEM micrographs. There is large improvement in density with rise of sintering temperature which also leads to drastic change in ferroelectric and dielectric properties.

  10. Ferroelectric Schottky diode behavior from a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta structure

    NASA Astrophysics Data System (ADS)

    Pintilie, Lucian; Stancu, Viorica; Trupina, L.; Pintilie, Ioana

    2010-08-01

    A single ferroelectric Schottky diode was obtained on a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta (SRO-PZT20/80-Ta) structure in which the SRO-PZT20/80 interface is the rectifying contact and the PZT20/80-Ta interface behaves as a quasiohmic contact. Both the capacitance-voltage (C-V) and the current-voltage (I-V) characteristics show the memory effect due to the ferroelectric polarization. However, retention studies had revealed that only the “down” orientation of ferroelectric polarization is stable in time (polarization oriented from top to bottom contact). The analysis of the experimental results suggests that the PZT20/80 is n type and that the stable orientation of polarization is related to the presence of a depletion region at the SRO-PZT20/80 Schottky interface.

  11. Refining the phase diagram of Pb{sub 1−x}La{sub x}(Zr{sub 0.9}Ti{sub 0.1}){sub 1−x/4}O{sub 3} ceramics by structural, dielectric, and anelastic spectroscopy investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craciun, F., E-mail: Floriana.Craciun@isc.cnr.it; Cordero, F.; Ciuchi, I. V.

    2015-05-14

    We present the results of dielectric and anelastic spectroscopy measurements, together with X-ray diffraction investigations, which allow us to establish more precisely the phase diagram of Pb{sub 1−x}La{sub x}(Zr{sub 0.9}Ti{sub 0.1}){sub 1−x/4}O{sub 3} (PLZT x/90/10) in the compositional range around the AFE/FE phase boundary (0 < x < 0.04). From structural analysis and polarization-electric field measurements, we have found that the ground state of PLZT samples with x < 0.025 is rhombohedral R3c, while samples with x > 0.032 are antiferroelectric with orthorhombic Pbam structure. In-between, for compositions with 0.025 ≤ x ≤ 0.032, a coexistence of the AFE/FE phases is evidenced. The use of complementary dielectric and anelastic techniques allows tomore » follow the phase transitions shifts throughout all the interesting composition range and to construct the temperature-composition phase diagram. The tilt instability line, separating the R3c and R3m low and high temperature phases, has been evidenced. Moreover, the new transition, associated with the onset of disordered tilting preceding the long range order of the R3c phase, previously found in Zr-rich Pb(Zr,Ti)O{sub 3}, is confirmed in rhombohedral PLZT x/90/10 compositions.« less

  12. Effect of sputtering atmosphere on the characteristics of ZrOx resistive switching memory

    NASA Astrophysics Data System (ADS)

    He, Pin; Ye, Cong; Wu, Jiaji; Wei, Wei; Wei, Xiaodi; Wang, Hao; Zhang, Rulin; Zhang, Li; Xia, Qing; Wang, Hanbin

    2017-05-01

    A ZrOx switching layer with different oxygen content for TiN/ZrOx/Pt resistive switching (RS) memory was prepared by magnetron sputtering in different atmospheres such as N2/Ar mixture, O2/Ar mixture as well as pure Ar. The morphology, structure and RS characteristics were systemically investigated and it was found that the RS performance is highly dependent on the sputtering atmosphere. For the memory device sputtered in N2/Ar mixture, with 8.06% nitrogen content in the ZrOx switching layer, the highest uniformity with smallest distribution of V set and high resistance states (HRS)/low resistance states (LRS) values were achieved. By analyzing the current conduction mechanisms combined with possible RS mechanisms for three devices, we deduce that for the device with a ZrOx layer sputtered in N2/Ar mixture, oxygen ions (O2-), which are decisive to the disruption/formation of the conductive filament, will gather around the tip of the filament due to the existence of doping nitrogen, and lead to the reduction of O2- migration randomness in the operation process, so that the uniformity of the N-doped ZrOx device can be improved.

  13. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C

    PubMed Central

    Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping

    2017-01-01

    Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000–3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr–Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic’s oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance. PMID:28613275

  14. Investigation of mechanism and critical parameters for removal of arsenic from water using Zr-TiO2 composite.

    PubMed

    Anđelković, I; Amaizah, N R R; Marković, S B; Stanković, D; Marković, M; Kuzmanović, D; Roglić, G

    2017-09-01

    Using the microwave-hydrothermal method for the synthesis of composite, high surface density of hydroxyl groups, as an active adsorption sites for arsenic, was obtained. Adsorption mechanisms of As(III) and As(V) onto zirconium-doped titanium dioxide (Zr-TiO 2 ) were investigated and proposed using macroscopic and microscopic methods. Obtained results are suggesting inner-sphere and outer-sphere adsorption mechanisms for As(III) and As(V), respectively. This allowed us to identify parameters that are critical for the successful removal of arsenic from water, which is essential information for further optimization of the removal process. The composite was further applied for the removal of As(III) and As(V) from water in a dynamic flow through the reactor. Column study proved that the removal of both arsenic species below the value recommended by WHO can be achieved. Elution of As(III) and As(V) from the composite can be done by using small amounts of 0.01 M NaOH solution resulting in preconcentration of arsenic species and possible multiple usage of composite.

  15. Group 4 metal mono-dicarbollide piano stool complexes. Synthesis, structure, and reactivity of ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})M(NR{sub 2}){sub 2}(NHR{sub 2}) (M = Zr, R = Et; M = Ti, R = Me, Et)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, D.E.; Jordan, R.F.; Rogers, R.D.

    1995-08-01

    The amine elimination reaction of C{sub 2}B{sub 9}H{sub 13} and Zr(NEt{sub 2}){sub 4} yields the mono-dicarbollide complex ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(NHEt{sub 2}), (1), which has been shown to adopt a three-legged piano stool structure by X-ray crystallography. Crystal data for 1: space group P2{sub 1}/c, a = 10.704(4) A, b = 11.066(3) A, c = 20.382(8) A, {beta} = 99.20(3){degree}, V = 2383(1) A{sup 3}, Z = 4. Complex 1 undergoes facile ligand substitution by THF and 4-picoline, yielding ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}-(THF) (2) and ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(4-picoline){sub 2} (3).more » Compound 3 exists as the four-coordinate species ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(4-picoline) in CH{sub 2}Cl{sub 2} solution. Complex 1 reacts selectively with 2 equiv of [NH{sub 2}ET{sub 2}]Cl, yielding ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})ZrCl{sub 2}(NHEt{sub 2}){sub 2} (4). Similarly, the reaction of C{sub 2}B{sub 9}H{sub 13} and Ti(NR{sub 2}){sub 4} yields ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Ti(NR{sub 2}){sub 2}(NHR{sub 2}) (5, R = Me; 6, R = Et). Compounds 1-6 are potential precursors to group 4 metal ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})MR{sub 2}L{sub n} alkyl species. 25 refs., 3 figs., 3 tabs.« less

  16. Catalytic activity during copolymerization of ethylene and 1-hexene via mixed TiO2/SiO2-supported MAO with rac-Et[Ind]2ZrCl2 metallocene catalyst.

    PubMed

    Jongsomjit, Bunjerd; Ngamposri, Sutti; Praserthdam, Piyasan

    2005-07-14

    Activities during ethylene/1-hexene copolymerization were found to increase using the mixed titania/silica-supported MAO with rac-Et[Ind]2ZrCl2 metallocene catalyst. Energy Dispersive X-ray spectorcopy (EDX) indicated that the titania was apparently located on the outer surface of silica and acted as a spacer to anchor MAO to the silica surface. IR spectra revealed the Si-O-Ti stretching at 980 cm(-1) with low content of titania. The presence of anchored titania resulted in less steric hindrance and less interaction due to supporting effect.

  17. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    PubMed

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Annealing induced effect on the physical properties of ion-beam sputtered 0.5 Ba(Zr0.2Ti0.8)O3 - 0.5 (Ba0.7Ca0.3)TiO3-δ ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Oliveira, M. J. S.; Silva, J. P. B.; Veltruská, Kateřina; Matolín, V.; Sekhar, K. C.; Moreira, J. Agostinho; Pereira, M.; Gomes, M. J. M.

    2018-06-01

    This work reports thermal annealing induced effect on the structural, optical, chemical and ferroelectric properties of ion-beam sputtered lead-free ferroelectric 0.5 Ba(Zr0.2Ti0.8)O3 - 0.5 (Ba0.7Ca0.3)TiO3-δ (0.5BZT-0.5BCT) thin films. X-ray diffraction studies reveal that the tetragonality increases with the annealing temperature (Ta), while photoluminescence and X-ray photoelectron spectroscopy studies confirm that this effect is associated with the annihilation of the oxygen vacancies as well as changes in the Ba2+ coordination. The films annealed at 750 °C show a remarkable remnant polarization of Pr = 45.0 μC/cm2, with a coercive field of 32 kV/cm. The temperature dependence of the spontaneous polarization of the 0.5BZT-0.5BCT film reveals a mean field behavior of the polarization and the fatigue study reveals that Pr only decreases 3% after passing 109 cycles. Therefore the high remnant polarization and its high Pr stability make these films as promising candidates for memory applications.

  19. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  20. On the Potential of Bulk Metallic Glasses for Dental Implantology: Case Study on Ti40Zr10Cu36Pd14.

    PubMed

    Liens, Alethea; Etiemble, Aurélien; Rivory, Pascaline; Balvay, Sandra; Pelletier, Jean-Marc; Cardinal, Sandrine; Fabrègue, Damien; Kato, Hidemi; Steyer, Philippe; Munhoz, Tais; Adrien, Jerome; Courtois, Nicolas; Hartmann, Daniel J; Chevalier, Jérôme

    2018-02-06

    Ti 40 Zr 10 Cu 36 Pd 14 Bulk Metallic Glass (BMG) appears very attractive for future biomedical applications thanks to its high glass forming ability, the absence of toxic elements such as Ni, Al or Be and its good mechanical properties. For the first time, a complete and exhaustive characterization of a unique batch of this glassy alloy was performed, together with ISO standard mechanical tests on machined implant-abutment assemblies. The results were compared to the benchmark Ti-6Al-4V ELI (Extra-Low-Interstitial) to assess its potential in dental implantology. The thermal stability, corrosion and sterilization resistance, cytocompatibility and mechanical properties were measured on samples with a simple geometry, but also on implant-abutment assemblies' prototypes. Results show that the glassy alloy exhibits a quite high thermal stability, with a temperature range of 38 °C between the glass transition and crystallization, a compressive strength of 2 GPa, a certain plastic deformation (0.7%), a hardness of 5.5 GPa and a toughness of 56 MPa.√m. Moreover, the alloy shows a relatively lower Young's modulus (96 GPa) than the Ti-6Al-4V alloy (110-115 GPa), which is beneficial to limit bone stress shielding. The BMG shows a satisfactory cytocompatibility, a high resistance to sterilization and a good corrosion resistance (corrosion potential of -0.07 V/SCE and corrosion current density of 6.0 nA/cm²), which may ensure its use as a biomaterial. Tests on dental implants reveal a load to failure 1.5-times higher than that of Ti-6Al-4V and a comparable fatigue limit. Moreover, implants could be machined and sandblasted by methods usually conducted for titanium implants, without significant degradation of their amorphous nature. All these properties place this metallic glass among a promising class of materials for mechanically-challenging applications such as dental implants.