Sample records for powder diffraction npd

  1. In Situ Neutron Diffraction of Rare-Earth Phosphate Proton Conductors Sr/Ca-doped LaPO4 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Al-Wahish, Amal; Al-Binni, Usama; Bridges, C. A.; Huq, A.; Bi, Z.; Paranthaman, M. P.; Tang, S.; Kaiser, H.; Mandrus, D.

    Acceptor-doped lanthanum orthophosphates are potential candidate electrolytes for proton ceramic fuel cells. We combined neutron powder diffraction (NPD) at elevated temperatures up to 800° C , X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) to investigate the crystal structure, defect structure, thermal stability and surface topography. NPD shows an average bond length distortion in the hydrated samples. We employed Quasi-Elastic Neutron Scattering (QENS) and electrochemical impedance spectroscopy (EIS) to study the proton dynamics of the rare-earth phosphate proton conductors 4.2% Sr/Ca-doped LaPO4. We determined the bulk diffusion and the self-diffusion coefficients. Our results show that QENS and EIS are probing fundamentally different proton diffusion processes. Supported by the U.S. Department of Energy.

  2. Suppression of the commensurate magnetic phase in nanosized hübnerite MnW O 4

    DOE PAGES

    Zajdel, P.; G?gor, A.; Pajerowski, D. M.; ...

    2017-05-18

    Magnetic structures of nanosized (20 to 70 nm) powders of MnWO 4 and MnWO 4:Mo were studied using neutron powder diffraction (NPD). Sizes and shapes of the crystallites calculated from anisotropic peak broadening of diffraction peaks were found to be orthogonal parallelepipedlike with the longest edge along the c axis and the shortest along the b axis. SQUID measurements indicate the presence of two magnetic transitions around 8 and 12 K. Rietveld refinement of the NPD data below the magnetic transition was consistent with the presence of an incommensurate spiral-like (ac-AF2) phase. Finally, a commensurate phase AF1 was not observedmore » down to 2.5 K for all of the samples.« less

  3. La 3+ doping of the Sr 2CoWO 6 double perovskite: A structural and magnetic study

    NASA Astrophysics Data System (ADS)

    López, C. A.; Viola, M. C.; Pedregosa, J. C.; Carbonio, R. E.; Sánchez, R. D.; Fernández-Díaz, M. T.

    2008-11-01

    La-doped Sr 2CoWO 6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr 2+ by La 3+ induces a change of the tetragonal structure, space group I4/ m of the undoped Sr 2CoWO 6 into the distorted monoclinic crystal structure, space group P2 1/ n, Z=2. The structure of La-doped phases contains alternating CoO 6 and (Co/W)O 6 octahedra, almost fully ordered. On the other hand, the replacement of Sr 2+ by La 3+ induces a partial replacement of W 6+ by Co 2+ into the B sites, i.e. Sr 2-xLa xCoW 1-yCo yO 6 ( y= x/4) with segregation of SrWO 4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.

  4. La{sup 3+} doping of the Sr{sub 2}CoWO{sub 6} double perovskite: A structural and magnetic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, C.A.; Viola, M.C.; Pedregosa, J.C.

    2008-11-15

    La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, {lambda}=1.594 A). At room temperature, the replacement of Sr{sup 2+} by La{sup 3+} induces a change of the tetragonal structure, space group I4/m of the undoped Sr{sub 2}CoWO{sub 6} into the distorted monoclinic crystal structure, space group P2{sub 1}/n, Z=2. The structure of La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra,more » almost fully ordered. On the other hand, the replacement of Sr{sup 2+} by La{sup 3+} induces a partial replacement of W{sup 6+} by Co{sup 2+} into the B sites, i.e. Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4) with segregation of SrWO{sub 4}. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below T{sub N}=24 K independently of the La-substitution. - Graphical abstract: La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in polycrystalline form by solid-state reaction. The general formula of these compounds is Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4). XRPD, NPD and magnetic susceptibility studies were performed. The structure of monoclinic La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra, almost fully ordered. NPD and magnetic measurements indicate an antiferromagnetic ordering at low temperature.« less

  5. In Situ Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries

    PubMed Central

    Brant, William R.; Schmid, Siegbert; Du, Guodong; Brand, Helen E. A.; Pang, Wei Kong; Peterson, Vanessa K.; Guo, Zaiping; Sharma, Neeraj

    2014-01-01

    Li-ion batteries are widely used in portable electronic devices and are considered as promising candidates for higher-energy applications such as electric vehicles.1,2 However, many challenges, such as energy density and battery lifetimes, need to be overcome before this particular battery technology can be widely implemented in such applications.3 This research is challenging, and we outline a method to address these challenges using in situ NPD to probe the crystal structure of electrodes undergoing electrochemical cycling (charge/discharge) in a battery. NPD data help determine the underlying structural mechanism responsible for a range of electrode properties, and this information can direct the development of better electrodes and batteries. We briefly review six types of battery designs custom-made for NPD experiments and detail the method to construct the ‘roll-over’ cell that we have successfully used on the high-intensity NPD instrument, WOMBAT, at the Australian Nuclear Science and Technology Organisation (ANSTO). The design considerations and materials used for cell construction are discussed in conjunction with aspects of the actual in situ NPD experiment and initial directions are presented on how to analyze such complex in situ data. PMID:25406578

  6. In situ neutron powder diffraction using custom-made lithium-ion batteries.

    PubMed

    Brant, William R; Schmid, Siegbert; Du, Guodong; Brand, Helen E A; Pang, Wei Kong; Peterson, Vanessa K; Guo, Zaiping; Sharma, Neeraj

    2014-11-10

    Li-ion batteries are widely used in portable electronic devices and are considered as promising candidates for higher-energy applications such as electric vehicles. However, many challenges, such as energy density and battery lifetimes, need to be overcome before this particular battery technology can be widely implemented in such applications. This research is challenging, and we outline a method to address these challenges using in situ NPD to probe the crystal structure of electrodes undergoing electrochemical cycling (charge/discharge) in a battery. NPD data help determine the underlying structural mechanism responsible for a range of electrode properties, and this information can direct the development of better electrodes and batteries. We briefly review six types of battery designs custom-made for NPD experiments and detail the method to construct the 'roll-over' cell that we have successfully used on the high-intensity NPD instrument, WOMBAT, at the Australian Nuclear Science and Technology Organisation (ANSTO). The design considerations and materials used for cell construction are discussed in conjunction with aspects of the actual in situ NPD experiment and initial directions are presented on how to analyze such complex in situ data.

  7. Synthesis, structure and magnetic properties of Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) double perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Abul K., E-mail: aka7@st-andrews.ac.uk; Khan, Abdullah; Eriksson, Sten-G.

    2009-12-15

    Polycrystalline Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperaturemore » decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.« less

  8. X-ray absorption spectroscopy and neutron diffraction study of the perovskite-type rare-earth cobaltites

    NASA Astrophysics Data System (ADS)

    Sikolenko, V.; Efimova, E.; Franz, A.; Ritter, C.; Troyanchuk, I. O.; Karpinsky, D.; Zubavichus, Y.; Veligzhanin, A.; Tiutiunnikov, S. I.; Sazonov, A.; Efimov, V.

    2018-05-01

    Correlations between local and long-range structure distortions in the perovskite-type RE1-xSrxCoO3-δ (RE = La, Pr, Nd; x = 0.0 and 0.5) compounds have been studied at room temperature by extended X-ray absorption fine structure (EXAFS) at the Co K-edge and high-resolution neutron powder diffraction (NPD). The use of two complementary experimental techniques allowed us to explore the influence of the type of rare-earth element and strontium substitution on unusual behavior of static and dynamic features of both the Co-O bond lengths.

  9. On the novel double perovskites A2Fe(Mn0.5W0.5)O6 (A= Ca, Sr, Ba). Structural evolution and magnetism from neutron diffraction data

    NASA Astrophysics Data System (ADS)

    García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio

    2018-06-01

    New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano-Sánchez, F.; Gharsallah, M.; Nemes, N. M.

    SnSe has been prepared by arc-melting, as mechanically robust pellets, consisting of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy, and transport measurements. A microscopic analysis from NPD data demonstrates a quite perfect stoichiometry SnSe{sub 0.98(2)} and a fair amount of anharmonicity of the chemical bonds. The Seebeck coefficient reaches a record maximum value of 668 μV K{sup −1} at 380 K; simultaneously, this highly oriented sample exhibits an extremely low thermal conductivity lower than 0.1 W m{sup −1} K{sup −1} around room temperature, which are two of the main ingredients of good thermoelectric materials. Thesemore » excellent features exceed the reported values for this semiconducting compound in single crystalline form in the moderate-temperatures region and highlight its possibilities as a potential thermoelectric material.« less

  11. Magnetic study of the low temperature anomalies in the magnetodielectric terbium iron garnet

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine

    2018-05-01

    The anomalous magnetic properties at low temperatures of terbium iron garnet (TbIG) are analyzed and summarized using neutron powder diffraction (NPD) experiments together with high field magnetization, magnetostriction and specific heat measurements performed on single crystals. Reliable information at both microscopic and macroscopic levels is provided about the significant change of the double umbrella structure observed in the NPD results near 54 K. The positions of the observed maxima at 55-65 K in the paraprocess magnetic susceptibility along the three mean directions and paraprocess of the forced magnetostriction along the easy axis of magnetization 〈111〉 agree with the manifestations of the "low-temperature point" TB predicted by Belov at 58 K. However, the pronounced maximum at 57 K in the excess of specific heat in zero magnetic fields reveals that the Schottky effect causes anomaly at temperature close the TB point. The results are discussed and compared with previous magnetic, magneto-optical and magnetodielectric reports.

  12. Magnetic properties of Ruddlesden-Popper phases Sr3 -xYx(Fe1.25Ni0.75) O7 -δ : A combined experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Keshavarz, Samara; Kontos, Sofia; Wardecki, Dariusz; Kvashnin, Yaroslav O.; Pereiro, Manuel; Panda, Swarup K.; Sanyal, Biplab; Eriksson, Olle; Grins, Jekabs; Svensson, Gunnar; Gunnarsson, Klas; Svedlindh, Peter

    2018-04-01

    We present a comprehensive study of the magnetic properties of Sr3 -xYx(Fe1.25Ni0.75) O7 -δ (0 ≤x ≤0.75 ). Experimentally, the magnetic properties are investigated using superconducting quantum interference device (SQUID) magnetometry and neutron powder diffraction (NPD). This is complemented by a theoretical study based on density functional theory as well as the Heisenberg exchange parameters. Experimental results show an increase in the Néel temperature (TN) with an increase of Y concentrations and O occupancy. The NPD data reveal that all samples are antiferromagnetically ordered at low temperatures, which has been confirmed by our theoretical simulations for the selected samples. Our first-principles calculations suggest that the three-dimensional magnetic order is stabilized due to finite interlayer exchange couplings. The latter give rise to finite interlayer spin-spin correlations, which disappear above TN.

  13. Electron doping effect on structural and magnetic phase transitions in Sr{sub 2-x}Nd{sub x}FeMoO{sub 6} double perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, A.K.; Eriksson, S.-G.; Khan, Abdullah

    2006-05-15

    Polycrystalline Sr{sub 2-x}Nd{sub x}FeMoO{sub 6} (x=0.0, 0.1, 0.2, 0.4) materials have been synthesized by a citrate co-precipitation method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature-dependent NPD data shows that the compounds (x=0.0, 0.1, 0.2) crystallize in the tetragonal symmetry in the range 10-400K and converts to cubic symmetry above 450K. The unit cell volume increases with increasing Nd{sup 3+} concentration, which is an electronic effect in order to change the valence state of the B-site cations. Antisite defects at the Fe-Mo sublattice increases with the Nd{sup 3+} doping. The Curie temperature wasmore » increased from 430K for x=0 to 443K for x=0.4. The magnetic moment of the Fe-site decreases while the Mo-site moment increases with electron doping. The antiferromagnetic arrangement causes the system to show a net ferrimagnetic moment.« less

  14. Structure and Dynamics Investigations of Sr/Ca-Doped LaPO 4 Proton Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Wahish, Amal; al-Binni, U.; Tetard, L.

    Proton conductors loom out of the pool of candidate materials with great potential to boost hydrogen alternatives to fossil-based resources for energy. Acceptor doped lanthanum orthophosphates are considered for solid oxide fuel cells (SOFCs) for their potential stability and conductivity at high temperature. By exploring the crystal and defect structure of x% Sr/Ca-doped LaPO 4 with different nominal Sr/Ca concentrations (x = 0 – 10) with Neutron powder diffraction (NPD) and X-ray powder diffraction (XRD), we confirm that Sr/Ca-doped LaPO 4 can exist as self-supported structures at high temperatures during solid oxide fuel cell operation. Thermal stability, surface topography, sizemore » distribution are also studied to better understand the proton conductivity for dry and wet compounds obtained at sintering temperatures ranging from 1200 to 1400 °C using a combination of scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). In conclusion, the results suggest that Sr doped samples exhibit the highest proton conductivity of our samples and illustrate the impact of material design and versatile characterization schemes on the development of proton conductors with superior functionality.« less

  15. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.

  16. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates.

    PubMed

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-01-01

    The local structure of apatite-type lanthanum silicates of general formula La 9.33+x (SiO 4 ) 6 O 2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO 4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

  17. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates

    PubMed Central

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-01-01

    Abstract The local structure of apatite-type lanthanum silicates of general formula La9.33+x(SiO4)6O2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions. PMID:28970872

  18. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-12-01

    The local structure of apatite-type lanthanum silicates of general formula La9.33+x(SiO4)6O2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

  19. Neutron diffraction study, magnetic properties and thermal stability of YMn 2D 6 synthesized under high deuterium pressure

    NASA Astrophysics Data System (ADS)

    Paul-Boncour, V.; Filipek, S. M.; Dorogova, M.; Bourée, F.; André, G.; Marchuk, I.; Percheron-Guégan, A.; Liu, R. S.

    2005-01-01

    A new phase YMn 2D 6 was synthesized by submitting YMn 2 to 1.7 kbar deuterium pressure at 473 K. According to X-ray and neutron powder diffraction experiments, YMn 2D 6 crystallizes in the Fm3¯m space group with a=6.709(1) Å at 300 K. The Y and half of the Mn atoms occupy statistically the 8 c site whereas the other Mn atoms are located in 4 a site and surrounded by 6 D atoms (24 e). This corresponds to a K 2PtCl 6-type structure with a partially disordered substructure which can be written as [YMn]MnH 6. No ordered magnetic moment is observed in the NPD patterns and the magnetization measurements display a paramagnetic behavior. The study of the thermal stability by Differential Scanning Calorimetry and XRD experiments indicates that this phase decomposes in YD 2 and Mn at 625 K, and is more stable than YMn 2H 4.5.

  20. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    PubMed

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  1. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    PubMed Central

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  2. Metal-insulator transition in Nd(1-x)Eu(x)NiO(3) compounds.

    PubMed

    Escote, M T; Barbeta, V B; Jardim, R F; Campo, J

    2006-07-05

    Polycrystalline Nd(1-x)Eu(x)NiO(3) (0≤x≤0.5) compounds were synthesized in order to investigate the character of the metal-insulator (MI) phase transition in this series. Samples were prepared through the sol-gel route and subjected to heat treatments at ∼1000 °C under oxygen pressures as high as 80 bar. X-ray diffraction (XRD) and neutron powder diffraction (NPD), electrical resistivity ρ(T), and magnetization M(T) measurements were performed on these compounds. The NPD and XRD results indicated that the samples crystallize in an orthorhombic distorted perovskite structure, space group Pbnm. The analysis of the structural parameters revealed a sudden and small expansion of ∼0.2% of the unit cell volume when electronic localization occurs. This expansion was attributed to a small increase of ∼0.003 Å of the average Ni-O distance and a simultaneous decrease of ∼-0.5° of the Ni-O-Ni superexchange angle. The ρ(T) measurements revealed a MI transition occurring at temperatures ranging from T(MI)∼193 to 336 K for samples with x = 0 and 0.50, respectively. These measurements also show a large thermal hysteresis in NdNiO(3) during heating and cooling processes, suggesting a first-order character of the phase transition at T(MI). The width of this thermal hysteresis was found to decrease appreciably for the sample Nd(0.7)Eu(0.3)NiO(3). The results indicate that cation disorder associated with increasing substitution of Nd by Eu is responsible for changing the first-order character of the transition in NdNiO(3).

  3. Magnetic phase diagram and multiferroicity of Ba 3 MnNb 2 O 9 : A spin - 5 2 triangular lattice antiferromagnet with weak easy-axis anisotropy

    DOE PAGES

    Lee, M.; Choi, E. S.; Huang, X.; ...

    2014-12-01

    Here we have performed magnetic, electric, thermal and neutron powder diffraction (NPD) experiments as well as density functional theory (DFT) calculations on Ba 3MnNb 2 O 9. All results suggest that Ba 3MnNb 2 O 9 is a spin-5/2 triangular lattice antiferromagnet (TLAF) with weak easy-axis anisotropy. At zero field, we observed a narrow two-step transition at T N1 = 3.4 K and T N2 = 3.0 K. The neutron diffraction measurement and the DFT calculation indicate a 120 spin structure in ab plane with out-of-plane canting at low temperatures. With increasing magnetic field, the 120 spin structure evolves intomore » up-up-down (uud) and oblique phases showing successive magnetic phase transitions, which fits well to the theoretical prediction for the 2D Heisenberg TLAF with classical spins. Ultimately, multiferroicity is observed when the spins are not collinear but suppressed in the uud and oblique phases.« less

  4. Double perovskite Sr2FeMoO6-xNx (x=0.3, 1.0) oxynitrides with anionic ordering

    NASA Astrophysics Data System (ADS)

    Retuerto, M.; de la Calle, C.; Martínez-Lope, M. J.; Porcher, F.; Krezhov, K.; Menéndez, N.; Alonso, J. A.

    2012-01-01

    Two new oxynitride double perovskites of composition Sr2FeMoO6-xNx (x=0.3, 1.0) have been synthesized by annealing precursor powders obtained by citrate techniques in flowing ammonia at 750 °C and 650 °C, respectively. The polycrystalline samples have been characterized by chemical analysis, x-ray and neutron diffraction (NPD), Mössbauer spectroscopy and magnetic measurements. They exhibit a tetragonal structure with a=5.5959(1) Å, c=7.9024(2) Å, V=247.46(2) Å3 for Sr2FeMoO5.7N0.3; and a=5.6202(2) Å, c=7.9102(4) Å, V=249.85(2) Å3 for Sr2FeMoO5N; space group I4/m, Z=2. The nitridation process seems to extraordinarily improve the long-range Fe/Mo ordering, achieving 95% at moderate temperatures of 750 °C. The analysis of high resolution NPD data, based on the contrast existing between the scattering lengths of O and N, shows that both atoms are located at (O,N)2 anion substructure corresponding to the basal ab plane of the perovskite structure, whereas the O1 site is fully occupied by oxygen atoms. The evolution of the and distances suggests a shift towards a configuration close to Fe4+(3d4, S=2):Mo5+(4d1, S=1/2). The magnetic susceptibility shows a ferrimagnetic transition with a reduced saturation magnetization compared to Sr2FeMoO6, due to the different nature of the magnetic double exchange interactions through Fe-N-Mo-N-Fe paths in contrast to the stronger Fe-O-Mo-O-Fe interactions. Also, the effect observed by low-temperature NPD seems to reduce the ordered Fe moments and enhance the Mo moments, in agreement with the evolution of the oxidation states, thus decreasing the saturation magnetization.

  5. Effect of the Pb(2+) lone electron pair in the structure and properties of the double perovskites Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6: relaxor state due to intrinsic partial disorder.

    PubMed

    Larrégola, S A; Alonso, J A; Algueró, M; Jiménez, R; Suard, E; Porcher, F; Pedregosa, J C

    2010-06-07

    We describe the preparation, the crystal structure refined from neutron powder diffraction (NPD) data, and study of the permittivity of two related double perovskites, Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6. These compounds were synthesized by standard ceramic procedures; Rietveld refinements from room temperature NPD data show that the crystal structures are well defined in a cubic unit cell (space group Fm3m) with double parameter, a = 2a0 ≈ 8 Å. They contain a completely ordered array of ScO6 and (B,Te)O6 (B = Sc, Ti) octahedra sharing corners; the PbO12 polyhedra present an off-center displacement of the lead atoms along the [1 1 1] directions, due to the electrostatic repulsion between the Pb(2+) 6 s electron lone-pair and the Pb-O bonds of the cuboctahedron. Both compounds present a low temperature, highly dispersive maximum in permittivity, the position of which follows the Vogel-Fulcher relation with freezing temperatures of 156 and 99 K for Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6, respectively, exhibiting a typical phenomenology of relaxors.

  6. Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO4 with Ca(2).

    PubMed

    Paolella, Andrea; Turner, Stuart; Bertoni, Giovanni; Hovington, Pierre; Flacau, Roxana; Boyer, Chad; Feng, Zimin; Colombo, Massimo; Marras, Sergio; Prato, Mirko; Manna, Liberato; Guerfi, Abdelbast; Demopoulos, George P; Armand, Michel; Zaghib, Karim

    2016-04-13

    Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon-coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.

  7. Development of Kawai-type multianvil technology using nano-polycrystalline diamond anvils

    NASA Astrophysics Data System (ADS)

    Irifune, T.; Kunimoto, T.

    2016-12-01

    Nano-polycrystalline diamond (NPD) developed at GRC, Ehime Univ., is known to be much harder than conventional sintered polycrystalline diamond (SD), and is potentially important as material for anvils for Kawai-type (6-8 type) multianvil apparatus (KMA), as well as for diamond anvil cell. We synthesized NPD rods with about 8 mm in both diameter and length using a 6000-ton press KMA (BOTCHAN-6000), which are cut by pulsed-laser to form cubes with 6 mm edge length and tested them as anvils for KMA. In situ X-ray observations were made to evaluate the produced pressures and sample images using the "6-6-8 assembly". A combination of semi-fired pyrophyllite gaskets and alumina ceramics pressure medium optimized for the NPD anvils with a truncation (TEL) of 1.0 mm yielded pressures up to 88 GPa at a press load of only 3.4 MN, which is nearly 60% higher than the pressure (56 GPa) reached using SD anvils with the identical cell assembly at the same press load. Moreover, the high X-ray transparency of NPD has enabled us to clearly see the sample image via the anvils, allowing diffraction measurements and observations of the sample shape even if the anvil gap becomes very small under such very high pressures. The use of NPD anvils should lead to new technology for mineral physics studies under the conditions of the Earth's lowermost mantle and possibly those of the core without scarifying the advantages of KMA over DAC.

  8. Structure and magnetic properties of L n MnSbO ( L n = La and Ce)

    DOE PAGES

    Zhang, Qiang; Kumar, C. M. N.; Tian, Wei; ...

    2016-03-11

    Here, a neutron powder diffraction (NPD) study of LnMnSbO (Ln = La or Ce) reveals differences between the magnetic ground state of the two compounds due to the strong Ce-Mn coupling compared to La-Mn. The two compounds adopt the P4/nmm space group down to 2 K, and whereas magnetization measurements do not show obvious anomaly at high temperatures, NPD reveals a C-type antiferromagnetic (AFM) order below T N = 255K for LaMnSbO and 240 K for CeMnSbO. While the magnetic structure of LaMnSbO is preserved to base temperature, a sharp transition at T SR = 4.5K is observed in CeMnSbOmore » due to a spin-reorientation (SR) transition of the Mn 2+ magnetic moments from pointing along the c axis to the ab plane. The SR transition in CeMnSbO is accompanied by a simultaneous long-range AFM ordering of the Ce moments, which indicates that the Mn SR transition is driven by the Ce-Mn coupling. The ordered moments are found to be somewhat smaller than those expected for Mn 2+ (S = 5/2) in insulators, but large enough to suggest that these compounds belong to the class of local-moment antiferromagnets. The lower T N found in these two compounds compared to the As-based counterparts (T N = 317 for LaMnAsO, T N = 347K for CeMnAsO) indicates that the Mn-Pn (Pn=As or Sb) hybridization that mediates the superexchange Mn-Pn-Mn coupling is weaker for the Sb-based compounds.« less

  9. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries.

    PubMed

    Kang, Jungwon; Mathew, Vinod; Gim, Jihyeon; Kim, Sungjin; Song, Jinju; Im, Won Bin; Han, Junhee; Lee, Jeong Yong; Kim, Jaekook

    2014-02-10

    A monoclinic Li3V2(PO4)3/C (LVP/C) cathode for lithium battery applications was synthesized by a polyol-assisted pyro-synthesis. The polyol in the present synthesis acts not only as a solvent, reducing agent and a carbon source but also as a low-cost fuel that facilitates a combustion process combined with the release of ultrahigh exothermic energy useful for nucleation process. Subsequent annealing of the amorphous particles at 800°C for 5 h is sufficient to produce highly crystalline LVP/C nanoparticles. A combined analysis of X-ray diffraction (XRD) and neutron powder diffraction (NPD) patterns was used to determine the unit cell parameters of the prepared LVP/C. Electron microscopic studies revealed rod-type particles of length ranging from nanometer to micrometers dispersed among spherical particles with average particle-sizes in the range of 20-30 nm. When tested for Li-insertion properties in the potential windows of 3-4.3 and 3-4.8 V, the LVP/C cathode demonstrated initial discharge capacities of 131 and 196 mAh/g (~100% theoretical capacities) at 0.15 and 0.1 C current densities respectively with impressive capacity retentions for 50 cycles. Interestingly, the LVP/C cathode delivered average specific capacities of 125 and 90 mAh/g at current densities of 9.6 C and 15 C respectively within the lower potential window.

  10. Synthesis, structure and electrochemical properties of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, Stanislav S.; Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 143026 Moscow; Kuzovchikov, Sergey M.

    2016-10-15

    LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate was synthesized via conventional solid-state and novel freeze-drying routes. The crystal structure was refined based on neutron powder diffraction (NPD) data and validated by electron diffraction (ED) and high-resolution transmission electron microscopy (HRTEM). The alkali ions are ordered in LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F and the transition metals jointly occupy the same crystallographic sites. The oxidation state and oxygen coordination environment of the Fe atoms were verified by {sup 57}Fe Mössbauer spectroscopy. Electrochemical tests of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F cathode material demonstrated a reversible activity of the Fe{sup 3+}/Fe{sup 2+} redox couple at the electrodemore » potential near 3.4 V and minor activity of the Co{sup 3+}/Co{sup 2+} redox couple over 5 V vs Li/Li{sup +}. The material exhibited the discharge capacity of more than 82% (theo.) regarding Fe{sup 3+}/Fe{sup 2+} in the 2.4÷4.6 V vs Li/Li{sup +} potential range. - Graphical abstract: The ball-polyhedral representation of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F crystal structure. The MO{sub 4}F{sub 2} units are depicted as blue octahedra, PO{sub 4} units as orange tetrahedra, sodium atoms are designated as yellow (Na1), lithium – red and brown (Li2, Li3 resp.), fluorine – green, oxygen – violet spheres. - Highlights: • Freeze-drying method was successfully applied to the synthesis of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F. • The crystal structure of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F was refined based on NPD and validated by ED and HRTEM. • LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F demonstrated a reversible Li de/intercalation in the 2.5÷4.6 V vs Li/Li{sup +} range.« less

  11. Hydroxyl defects and conversion thermodynamics and kinetics of hydrothermal barium titanate

    NASA Astrophysics Data System (ADS)

    Atakan, Vahit

    The main objectives of this study are to investigate the possibility of hydrothermal conversion of carboxylate based solid-state precursors to BaTiO3 and to characterize residual H or commonly referred as hydroxyls, which are common defects in hydrothermally synthesized ceramic oxides. Neutron scattering techniques, prompt gamma activation analysis (PGAA) and neutron powder diffraction (NPD) were selected as the main tools for characterization of residual H due to high interaction capability of neutrons with H. Residual H was classified as surface and lattice H. Total H content was measured by PGAA and surface H was measured by Karl Fischer Titration (KFT). NPD was used for estimating lattice H. It was found that 75% of the residual H was in the lattice. Even though more than half of the residual H was removed at low temperatures like 200°C, it was tough to remove H completely even at 1200°C. Residual H caused expansion in the unit cell and presence of lattice H was compensated by Ti vacancies. Yield diagrams were generated depending on a thermodynamic model to theoretically verify that hydrothermal conversion of carboxylate based solid-state precursors to BaTiO3 is possible. Theoretical results were then verified experimentally. It was found that BaC2O 4 and TiO2, and BaTiO(C2O4)2 can be successfully converted to BaTiO3 under hydrothermal conditions. However, BaCO3 and TiO2 precursors were not fully converted. Among barium oxalate and titania, and barium titanly oxalate (BTO) systems, conversion of BTO was more favorable in terms of reaction temperature and KOH concentration. BTO can be hydrothermally converted to BaTiO3 at temperatures as low as room temperature. Further studies on hydrothermal conversion of BTO showed that, reaction time can be reduced from 12 h to less than 5 seconds under atmospheric pressure at ˜103°C.

  12. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  13. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less

  14. Neuroprotectin/protectin D1: endogenous biosynthesis and actions on diabetic macrophages in promoting wound healing and innervation impaired by diabetes

    PubMed Central

    Tian, Haibin; Lu, Yan; Laborde, James Monroe; Muhale, Filipe A.; Wang, Quansheng; Alapure, Bhagwat V.; Serhan, Charles N.; Bazan, Nicolas G.

    2014-01-01

    Dysfunction of macrophages (MΦs) in diabetic wounds impairs the healing. MΦs produce anti-inflammatory and pro-resolving neuroprotectin/protectin D1 (NPD1/PD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid); however, little is known about endogenous NPD1 biosynthesis by MΦs and the actions of NPD1 on diabetic MΦ functions in diabetic wound healing. We used an excisional skin wound model of diabetic mice, MΦ depletion, MΦs isolated from diabetic mice, and mass spectrometry-based targeted lipidomics to study the time course progression of NPD1 levels in wounds, the roles of MΦs in NPD1 biosynthesis, and NPD1 action on diabetic MΦ inflammatory activities. We also investigated the healing, innervation, chronic inflammation, and oxidative stress in diabetic wounds treated with NPD1 or NPD1-modulated MΦs from diabetic mice. Injury induced endogenous NPD1 biosynthesis in wounds, but diabetes impeded NPD1 formation. NPD1 was mainly produced by MΦs. NPD1 enhanced wound healing and innervation in diabetic mice and promoted MΦs functions that accelerated these processes. The underlying mechanisms for these actions of NPD1 or NPD1-modulated MΦs involved 1) attenuating MΦ inflammatory activities and chronic inflammation and oxidative stress after acute inflammation in diabetic wound, and 2) increasing MΦ production of IL10 and hepatocyte growth factor. Taken together, NPD1 appears to be a MΦs-produced factor that accelerates diabetic wound healing and promotes MΦ pro-healing functions in diabetic wounds. Decreased NPD1 production in diabetic wound is associated with impaired healing. This study identifies a new molecular target that might be useful in development of more effective therapeutics based on NPD1 and syngeneic diabetic MΦs for treatment of diabetic wounds. PMID:25273880

  15. Neuroprotectin/protectin D1: endogenous biosynthesis and actions on diabetic macrophages in promoting wound healing and innervation impaired by diabetes.

    PubMed

    Hong, Song; Tian, Haibin; Lu, Yan; Laborde, James Monroe; Muhale, Filipe A; Wang, Quansheng; Alapure, Bhagwat V; Serhan, Charles N; Bazan, Nicolas G

    2014-12-01

    Dysfunction of macrophages (MΦs) in diabetic wounds impairs the healing. MΦs produce anti-inflammatory and pro-resolving neuroprotectin/protectin D1 (NPD1/PD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid); however, little is known about endogenous NPD1 biosynthesis by MΦs and the actions of NPD1 on diabetic MΦ functions in diabetic wound healing. We used an excisional skin wound model of diabetic mice, MΦ depletion, MΦs isolated from diabetic mice, and mass spectrometry-based targeted lipidomics to study the time course progression of NPD1 levels in wounds, the roles of MΦs in NPD1 biosynthesis, and NPD1 action on diabetic MΦ inflammatory activities. We also investigated the healing, innervation, chronic inflammation, and oxidative stress in diabetic wounds treated with NPD1 or NPD1-modulated MΦs from diabetic mice. Injury induced endogenous NPD1 biosynthesis in wounds, but diabetes impeded NPD1 formation. NPD1 was mainly produced by MΦs. NPD1 enhanced wound healing and innervation in diabetic mice and promoted MΦs functions that accelerated these processes. The underlying mechanisms for these actions of NPD1 or NPD1-modulated MΦs involved 1) attenuating MΦ inflammatory activities and chronic inflammation and oxidative stress after acute inflammation in diabetic wound, and 2) increasing MΦ production of IL10 and hepatocyte growth factor. Taken together, NPD1 appears to be a MΦs-produced factor that accelerates diabetic wound healing and promotes MΦ pro-healing functions in diabetic wounds. Decreased NPD1 production in diabetic wound is associated with impaired healing. This study identifies a new molecular target that might be useful in development of more effective therapeutics based on NPD1 and syngeneic diabetic MΦs for treatment of diabetic wounds. Copyright © 2014 the American Physiological Society.

  16. The Powder Diffraction File: Past, Present, and Future

    PubMed Central

    Smith, Deane K.; Jenkins, Ron

    1996-01-01

    The Powder Diffraction file has been the primary reference for Powder Diffraction Data for more than half a century. The file is a collection of about 65 000 reduced powder patterns stored as sets of d/I data along with the appropriate crystallographic, physical and experimental information. This paper reviews the development and growth of the PDF and discusses the role of the ICDD in the maintenance and dissemination of the file. PMID:27805163

  17. Determination of cellulose crystallinity from powder diffraction diagrams: Powder Diffraction Diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Benjamin; Petridis, Loukas; Langan, Paul

    2014-10-01

    Commonly one-dimensional (1D) (spherically averaged) powder diffraction diagrams are used to determine the degree of cellulose crystallinity in biomass samples. Here, it is shown using molecular modeling how disorder in cellulose fibrils can lead to considerable uncertainty in conclusions drawn concerning crystallinity based on 1D powder diffraction data alone. For example, cellulose microfibrils that contain both crystalline and noncrystalline segments can lead to powder diffraction diagrams lacking identifiable peaks, while microfibrils without any crystalline segments can lead to such peaks. Moreover, this leads to false positives, that is, assigning disordered cellulose as crystalline, and false negatives, that is, categorizing fibrilsmore » with crystalline segments as amorphous. Finally, the reliable determination of the fraction of crystallinity in any given biomass sample will require a more sophisticated approach combining detailed experiment and simulation.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biendicho, J.J.; The ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX Oxfordshire; Shafeie, S.

    Oxygen-deficient ferrates with the cubic perovskite structure Sr{sub x}Y{sub 1−x}FeO{sub 3−δ} were prepared in air (0.71≤x≤0.91) as well as in N{sub 2} (x=0.75 and 0.79) at 1573 K. The oxygen content of the compounds prepared in air increases with increasing strontium content from 3−δ=2.79(2) for x=0.75 to 3−δ=2.83(2) for x=0.91. Refinement of the crystal structure of Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79} using TOF neutron powder diffraction (NPD) data shows high anisotropic atomic displacement parameter (ADP) for the oxygen atom resulting from a substantial cation and anion disorder. Electron diffraction (ED) and high-resolution electron microscopy (HREM) studies of Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79}more » reveal a modulation along 〈1 0 0〉{sub p} with G± ∼0.4〈1 0 0〉{sub p} indicating a local ordering of oxygen vacancies. Magnetic susceptibility measurements at 5–390 K show spin-glass behaviour with dominating antiferromagnetic coupling between the magnetic moments of Fe cations. Among the studied compositions, Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79} shows the lowest thermal expansion coefficient (TEC) of 10.5 ppm/K in air at 298–673 K. At 773–1173 K TEC increases up to 17.2 ppm/K due to substantial reduction of oxygen content. The latter also results in a dramatic decrease of the electrical conductivity in air above 673 K. Partial substitution of Fe by Cr, Mn and Ni according to the formula Sr{sub 0.75}Y{sub 0.25}Fe{sub 1−y}M{sub y}O{sub 3−δ} (y=0.2, 0.33, 0.5) leads to cubic perovskites for all substituents with y=0.2. Their TECs are higher in comparison with un-doped Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79}. Only M=Ni has increased electrical conductivity compared to un-doped Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79}. - Graphical abstract: Oxygen-deficient ferrates with the cubic perovskite structure Sr{sub x}Y{sub 1−x}FeO{sub 3−δ} were prepared both in air (0.71≤x≤0.91) and N{sub 2} (x=0.75 and 0.79) at 1573 K. Refinement of the crystal structure of Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79} using TOF neutron powder diffraction (NPD) data (S.G. Pm-3m, a=3.86455(3) Å; χ{sup 2}=6.71, R{sub p}=0.03; R{sub wp}=0.04) confirmed the cubic perovskite structure. The observed high anisotropic atomic displacement parameter for the oxygen atom indicates a substantial anion sublattice disorder. Electron diffraction (ED) and high-resolution electron microscopy (HREM) studies of Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79} show compositional modulation along 〈1 0 0〉{sub p} with G± ∼0.4〈1 0 0〉{sub p} indicating ordering of oxygen vacancies at the local scale. Highlights: ► Cubic perovskites Sr{sub x}Y{sub 1−x}FeO{sub 3−δ} (0.71≤x<0.91) were synthesized. ► Sr{sub 0.75}Y{sub 0.25}Fe{sub 1−y}M{sub y}O{sub 3−δ}, M=Cr, Mn, Ni were prepared. ► High-temperature conductivity properties and crystal structure were studied. ► High-temperature thermal expansion behavior was investigated.« less

  19. Visualization of the Diffusion Pathway of Protons in (NH4)2Si0.5Ti0.5P4O13 as an Electrolyte for Intermediate-Temperature Fuel Cells.

    PubMed

    Sun, Chunwen; Chen, Lanli; Shi, Siqi; Reeb, Berthold; López, Carlos Alberto; Alonso, José Antonio; Stimming, Ulrich

    2018-01-16

    We demonstrate that (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 is an excellent proton conductor. The crystallographic information concerning the hydrogen positions is unraveled from neutron-powder-diffraction (NPD) data for the first time. This study shows that all the hydrogen atoms are connected though H bonds, establishing a two-dimensional path between the [(Si 0.5 Ti 0.5 )P 4 O 13 2- ] n layers for proton diffusion across the crystal structure by breaking and reconstructing intermediate H-O═P bonds. This transient species probably reduces the potential energy of the H jump from an ammonium unit to the next neighboring NH 4 + unit. Both theoretical and experimental results support an interstitial-proton-conduction mechanism. The proton conductivities of (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 reach 0.0061 and 0.024 S cm -1 in humid air at 125 and 250 °C, respectively. This finding demonstrates that (NH 4 ) 2 Si 0.5 Ti 0.5 P 4 O 13 is a promising electrolyte material operating at 150-250 °C. This work opens up a new avenue for designing and fabricating high-performance inorganic electrolytes.

  20. Narcissistic Personality Disorder and suicidal behavior in mood disorders.

    PubMed

    Coleman, Daniel; Lawrence, Ryan; Parekh, Amrita; Galfalvy, Hanga; Blasco-Fontecilla, Hilario; Brent, David A; Mann, J John; Baca-Garcia, Enrique; Oquendo, Maria A

    2017-02-01

    The relationship of Narcissistic Personality Disorder (NPD) to suicidal behavior is understudied. The modest body of existing research suggests that NPD is protective against low-lethality suicide attempts, but is associated with high lethality attempts. Mood-disordered patients (N = 657) received structured interviews including Axis I and II diagnosis and standardized clinical measures. Following chi-square and t-tests, a logistical regression model was constructed to identify predictors of suicide attempt. While there was no bivariate relationship of NPD on suicide attempt, in the logistic regression patients with NPD were 2.4 times less likely to make a suicide attempt (OR = 0.41; 95% CI = 0.19 - 0.88; p < 0.05), compared with non-NPD patients and controlling for possible confounding variables. NPD was not associated with attempt lethality. NPD patients were more likely to be male, to have a substance use disorder, and to have high aggression and hostility scores. Limitations include that the sample consists of only mood-disordered patients, a modest sample size of NPD, and the data are cross-sectional. The multivariate protective effect of NPD on suicide attempt is consistent with most previous research. The lower impulsivity of NPD patients and less severe personality pathology relative to other personality disorders may contribute to this effect. No relationship of NPD to attempt lethality was found, contradicting other research, but perhaps reflecting differences between study samples. Future studies should oversample NPD patients and include suicide death as an outcome. Clinical implications include discussion of individualized suicide risk assessment with NPD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Simulation of generation of new ideas for new product development and IT services

    NASA Astrophysics Data System (ADS)

    Nasiopoulos, Dimitrios K.; Sakas, Damianos P.; Vlachos, D. S.; Mavrogianni, Amanda

    2015-02-01

    This paper describes a dynamic model of the New Product Development (NPD) process. The model has been occurring from best practice noticed in our research conducted at a range of situations. The model contributes to determine and put an IT company's NPD activities into the frame of the overall NPD process[1]. It has been found to be a useful tool for organizing data on IT company's NPD activities without enforcement an excessively restrictive research methodology refers to the model of NPD. The framework, which strengthens the model, will help to promote a research of the methods undertaken within an IT company's NPD process, thus promoting understanding and improvement of the simulation process[2]. IT companies tested many techniques with several different practices designed to improve the validity and efficacy of their NPD process[3]. Supported by the model, this research examines how widely accepted stated tactics are and what impact these best tactics have on NPD performance. The main assumption of this study is that simulation of generation of new ideas[4] will lead to greater NPD effectiveness and more successful products in IT companies. With the model implementation, practices concern the implementation strategies of NPD (product selection, objectives, leadership, marketing strategy and customer satisfaction) are all more widely accepted than best practices related with controlling the application of NPD (process control, measurements, results). In linking simulation with impact, our results states product success depends on developing strong products and ensuring organizational emphasis, through proper project selection. Project activities strengthens both product and project success. IT products and services success also depends on monitoring the NPD procedure through project management and ensuring team consistency with group rewards. Sharing experiences between projects can positively influence the NPD process.

  2. Cloning of a Gene Cluster Involved in the Catabolism of p-Nitrophenol by Arthrobacter sp. Strain JS443 and Characterization of the p-Nitrophenol Monooxygenase▿

    PubMed Central

    Perry, Lynda L.; Zylstra, Gerben J.

    2007-01-01

    The npd gene cluster, which encodes the enzymes of a p-nitrophenol catabolic pathway from Arthrobacter sp. strain JS443, was cloned and sequenced. Three genes, npdB, npdA1, and npdA2, were independently expressed in Escherichia coli in order to confirm the identities of their gene products. NpdA2 is a p-nitrophenol monooxygenase belonging to the two-component flavin-diffusible monooxygenase family of reduced flavin-dependent monooxygenases. NpdA1 is an NADH-dependent flavin reductase, and NpdB is a hydroxyquinol 1,2-dioxygenase. The npd gene cluster also includes a putative maleylacetate reductase gene, npdC. In an in vitro assay containing NpdA2, an E. coli lysate transforms p-nitrophenol stoichiometrically to hydroquinone and hydroxyquinol. It was concluded that the p-nitrophenol catabolic pathway in JS443 most likely begins with a two-step transformation of p-nitrophenol to hydroxy-1,4-benzoquinone, catalyzed by NpdA2. Hydroxy-1,4-benzoquinone is reduced to hydroxyquinol, which is degraded through the hydroxyquinol ortho cleavage pathway. The hydroquinone detected in vitro is a dead-end product most likely resulting from chemical or enzymatic reduction of the hypothetical intermediate 1,4-benzoquinone. NpdA2 hydroxylates a broad range of chloro- and nitro-substituted phenols, resorcinols, and catechols. Only p-nitro- or p-chloro-substituted phenols are hydroxylated twice. Other substrates are hydroxylated once, always at a position para to a hydroxyl group. PMID:17720792

  3. Examination of the teaching styles of nursing professional development specialists, part II: correlational study on teaching styles and use of adult learning theory.

    PubMed

    Curran, Mary K

    2014-08-01

    This article, the second in a two-part series, details a correlational study that examined the effects of four variables (graduate degrees in nursing education, professional development training in adult learning theory, nursing professional development [NPD] certification, and NPD specialist experience) on the use of adult learning theory to guide curriculum development. Using the Principles of Adult Learning Scale, 114 NPD specialists tested the hypothesis that NPD specialists with graduate degrees in nursing education, professional development training in adult learning theory, NPD certification, and NPD experience would use higher levels of adult learning theory in their teaching practices to guide curriculum development than those without these attributes. This hypothesis was rejected as regression analysis revealed only one statistically significant predictor variable, NPD certification, influenced the use of adult learning theory. In addition, analysis revealed NPD specialists tended to support a teacher-centered rather than a learner-centered teaching style, indicating NPD educators are not using adult learning theory to guide teaching practices and curriculum development.

  4. JCPDS-ICDD Research Associateship (Cooperative Program with NBS/NIST)

    PubMed Central

    Wong-Ng, W.; McMurdie, H. F.; Hubbard, C. R.; Mighell, A. D.

    2001-01-01

    The Research Associateship program of the Joint Committee on Powder Diffraction-International Centre for Diffraction Data (JCPDS-ICDD, now known as the ICDD) at NBS/NIST was a long standing (over 35 years) successful industry-government cooperation. The main mission of the Associateship was to publish high quality x-ray reference patterns to be included in the Powder Diffraction File (PDF). The PDF is a continuing compilation of patterns gathered from many sources, compiled and published by the ICDD. As a result of this collaboration, more than 1500 high quality powder diffraction patterns, which have had a significant impact on the scientific community, were reported. In addition, various research collaborations with NBS/NIST also led to the development of several standard reference materials (SRMs) for instrument calibration and quantitative analyses, and computer software for data collection, calibration, reduction, for the editorial process of powder pattern publication, analysis of powder data, and for quantitative analyses. This article summarizes information concerning the JCPDS-ICDD organization, the Powder Diffraction File (PDF), history and accomplishments of the JCPDS-ICDD Research Associateship. PMID:27500061

  5. Total-scattering pair-distribution function of organic material from powder electron diffraction data.

    PubMed

    Gorelik, Tatiana E; Schmidt, Martin U; Kolb, Ute; Billinge, Simon J L

    2015-04-01

    This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.

  6. Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James; Gindhart, Amy; Blanton, Thomas

    The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.

  7. Intestinal current measurement versus nasal potential difference measurements for diagnosis of cystic fibrosis: a case-control study.

    PubMed

    Bagheri-Hanson, Azadeh; Nedwed, Sebastian; Rueckes-Nilges, Claudia; Naehrlich, Lutz

    2014-10-04

    Nasal potential difference (NPD) and intestinal current measurement (ICM) are functional CFTR tests that are used as adjunctive diagnostic tools for cystic fibrosis (CF). Smoking has a systemic negative impact on CFTR function. A diagnostic comparison between NPD and ICM and the impact of smoking on both CFTR tests has not been done. The sweat chloride test, NPD, and ICM were performed in 18 patients with CF (sweat chloride >60 mmol/l), including 6 pancreatic sufficient (PS) patients, and 13 healthy controls, including 8 smokers. The NPD CFTR response to Cl-free and isoproterenol perfusion (Δ0Cl- + Iso) was compared to the ICM CFTR response to forskolin/IBMX, carbachol, and histamine (ΔIsc, forskolin/IBMX+ carbachol+histamine). The mean NPD CFTR response and ICM CFTR response between patients with CF and healthy controls was significantly different (p <0.001), but not between patients with CF who were PS and those who were pancreatic insufficient (PI). Smokers have a decreased CFTR response measured by NPD (p = 0.049). For ICM there is a trend towards decreased CFTR response (NS). Three healthy control smokers had NPD responses within the CF-range. In contrast to NPD, there was no overlap of the ICM response between patients with CF and controls. ICM is superior to NPD in distinguishing between patients with CF who have a sweat chloride > 60 mmol/l and healthy controls, including smokers. Neither NPD nor ICM differentiated between patients with CF who were PS from those who were PI. Smoking has a negative impact on CFTR function in healthy controls measured by NPD and challenges the diagnostic interpretation of NPD, but not ICM.

  8. Examination of the Teaching Styles of Nursing Professional Development Specialists, Part II: Correlational Study on Teaching Styles and Use of Adult Learning Theory.

    PubMed

    Curran, Mary K

    2014-07-16

    This article, the second in a two-part series, details a correlational study that examined the effects of four variables (graduate degrees in nursing education, professional development training in adult learning theory, nursing professional development [NPD] certification, and NPD specialist experience) on the use of adult learning theory to guide curriculum development. Using the Principles of Adult Learning Scale, 114 NPD specialists tested the hypothesis that NPD specialists with graduate degrees in nursing education, professional development training in adult learning theory, NPD certification, and NPD experience would use higher levels of adult learning theory in their teaching practices to guide curriculum development than those without these attributes. This hypothesis was rejected as regression analysis revealed only one statistically significant predictor variable, NPD certification, influenced the use of adult learning theory. In addition, analysis revealed NPD specialists tended to support a teacher-centered rather than a learner-centered teaching style, indicating NPD educators are not using adult learning theory to guide teaching practices and curriculum development. J Contin Educ Nurs. 2014;45(8):xxx-xxx. Copyright 2014, SLACK Incorporated.

  9. New Powder Diffraction File (PDF-4) in relational database format: advantages and data-mining capabilities.

    PubMed

    Kabekkodu, Soorya N; Faber, John; Fawcett, Tim

    2002-06-01

    The International Centre for Diffraction Data (ICDD) is responding to the changing needs in powder diffraction and materials analysis by developing the Powder Diffraction File (PDF) in a very flexible relational database (RDB) format. The PDF now contains 136,895 powder diffraction patterns. In this paper, an attempt is made to give an overview of the PDF-4, search/match methods and the advantages of having the PDF-4 in RDB format. Some case studies have been carried out to search for crystallization trends, properties, frequencies of space groups and prototype structures. These studies give a good understanding of the basic structural aspects of classes of compounds present in the database. The present paper also reports data-mining techniques and demonstrates the power of a relational database over the traditional (flat-file) database structures.

  10. Ionic Conductivity and its Role in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Tamimi, Mazin Abdulla

    In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the combination of a reference catalyst for the oxidative coupling of methane with a support with very high oxygen conductivity demonstrated a small increase in performance at low temperatures.

  11. New Rhenium-Doped SrCo1−xRexO3−δ Perovskites Performing as Cathodes in Solid Oxide Fuel Cells

    PubMed Central

    Troncoso, Loreto; Gardey, María Celeste; Fernández-Díaz, María Teresa; Alonso, José Antonio

    2016-01-01

    In the aim to stabilize novel three-dimensional perovskite oxides based upon SrCoO3−δ, we have designed and prepared SrCo1−xRexO3−δ phases (x = 0.05 and 0.10), successfully avoiding the competitive hexagonal 2H polytypes. Their performance as cathode materials in intermediate-temperature solid oxide fuel cells (IT-SOFC) has been investigated. The characterization of these oxides included X-ray (XRD) and in situ temperature-dependent neutron powder diffraction (NPD) experiments for x = 0.10. At room temperature, SrCo1−xRexO3−δ perovskites are defined in the P4/mmm space group, which corresponds to a subtle tetragonal perovskite superstructure with unit-cell parameters a = b ≈ ao, c = 2ao (ao = 3.861 and 3.868 Å, for x = 0.05 and 0.10, respectively). The crystal structure evolves above 380 °C to a simple cubic perovskite unit cell, as observed from in-situ NPD data. The electrical conductivity gave maximum values of 43.5 S·cm−1 and 51.6 S·cm−1 for x = 0.05 and x = 0.10, respectively, at 850 °C. The area specific resistance (ASR) polarization resistance determined in symmetrical cells is as low as 0.087 Ω·cm2 and 0.065 Ω·cm2 for x = 0.05 and x = 0.10, respectively, at 850 °C. In single test cells these materials generated a maximum power of around 0.6 W/cm2 at 850 °C with pure H2 as a fuel, in an electrolyte-supported configuration with La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) as the electrolyte. Therefore, we propose the SrCo1−xRexO3−δ (x = 0.10 and 0.05) perovskite oxides as promising candidates for cathodes in IT-SOFC. PMID:28773844

  12. Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.

    1984-01-01

    ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.

  13. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    DOE PAGES

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; ...

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering datamore » and avoiding beam-damage of the sample are possible to resolve.« less

  14. Narcissistic Personality Disorder and the Structure of Common Mental Disorders.

    PubMed

    Eaton, Nicholas R; Rodriguez-Seijas, Craig; Krueger, Robert F; Campbell, W Keith; Grant, Bridget F; Hasin, Deborah S

    2017-08-01

    Narcissistic personality disorder (NPD) shows high rates of comorbidity with mood, anxiety, substance use, and other personality disorders. Previous bivariate comorbidity investigations have left NPD multivariate comorbidity patterns poorly understood. Structural psychopathology research suggests that two transdiagnostic factors, internalizing (with distress and fear subfactors) and externalizing, account for comorbidity among common mental disorders. NPD has rarely been evaluated within this framework, with studies producing equivocal results. We investigated how NPD related to other mental disorders in the internalizing-externalizing model using diagnoses from a nationally representative sample (N = 34,653). NPD was best conceptualized as a distress disorder. NPD variance accounted for by transdiagnostic factors was modest, suggesting its variance is largely unique in the context of other common mental disorders. Results clarify NPD multivariate comorbidity, suggest avenues for classification and clinical endeavors, and highlight the need to understand vulnerable and grandiose narcissism subtypes' comorbidity patterns and structural relations.

  15. Ataxin-1 Poly(Q)-induced Proteotoxic Stress and Apoptosis Are Attenuated in Neural Cells by Docosahexaenoic Acid-derived Neuroprotectin D1*

    PubMed Central

    Calandria, Jorgelina M.; Mukherjee, Pranab K.; de Rivero Vaccari, Juan Carlos; Zhu, Min; Petasis, Nicos A.; Bazan, Nicolas G.

    2012-01-01

    Neurodegenerative diseases share two common features: enhanced oxidative stress and cellular inability to scavenge structurally damaged abnormal proteins. Pathogenesis of polyglutamine (poly(Q)) diseases involves increased protein misfolding, along with ubiquitin and chaperon protein-containing nuclear aggregates. In spinocerebellar ataxia, the brain and retina undergo degeneration. Neuroprotectin D1 (NPD1) is made on-demand in the nervous system and retinal pigment epithelial (RPE) cells in response to oxidative stress, which activates prosurvival signaling via regulation of gene expression and other processes. We hypothesized that protein misfolding-induced proteotoxic stress triggers NPD1 synthesis. We used ARPE-19 cells as a cellular model to assess stress due to ataxin-1 82Q protein expression and determine whether NPD1 prevents apoptosis. Ectopic ataxin-1 expression induced RPE cell apoptosis, which was abrogated by 100 nm docosahexaenoic acid, 10 ng/ml pigment epithelium-derived factor, or NPD1. Similarly, NPD1 was protective in neurons and primary human RPE cells. Furthermore, when ataxin-1 82Q was expressed in 15-lipoxygenase-1-deficient cells, apoptosis was greatly enhanced, and only NPD1 (50 nm) rescued cells from death. NPD1 reduced misfolded ataxin-1-induced accumulation of proapoptotic Bax in the cytoplasm, suggesting that NPD1 acts by preventing proapoptotic signaling pathways from occurring. Finally, NPD1 signaling interfered with ataxin-1/capicua repression of gene expression and decreased phosphorylated ataxin-1 in an Akt-independent manner, suggesting that NPD1 signaling modulates formation or stabilization of ataxin-1 complexes. These data suggest that 1) NPD1 synthesis is an early response induced by proteotoxic stress due to abnormally folded ataxin-1, and 2) NPD1 promotes cell survival through modulating stabilization of ataxin-1 functional complexes and pro-/antiapoptotic and inflammatory pathways. PMID:22511762

  16. Types A and B Niemann-Pick disease.

    PubMed

    Schuchman, Edward H; Wasserstein, Melissa P

    2015-03-01

    Two distinct metabolic abnormalities are encompassed under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly in infancy and profound central nervous system involvement. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second NPD category are designated as having types C and D NPD. These patients may have mild hepatosplenomegaly, but the central nervous system is profoundly affected. Impaired intracellular trafficking of cholesterol causes types C and D NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed. Copyright © 2014. Published by Elsevier Ltd.

  17. Attachment and mentalization in female patients with comorbid narcissistic and borderline personality disorder.

    PubMed

    Diamond, Diana; Levy, Kenneth N; Clarkin, John F; Fischer-Kern, Melitta; Cain, Nicole M; Doering, Stephan; Hörz, Susanne; Buchheim, Anna

    2014-10-01

    We investigated attachment representations and the capacity for mentalization in a sample of adult female borderline patients with and without comorbid narcissistic personality disorder (NPD). Participants were 22 borderline patients diagnosed with comorbid NPD (NPD/BPD) and 129 BPD patients without NPD (BPD) from 2 randomized clinical trials. Attachment and mentalization were assessed on the Adult Attachment Interview (AAI; George, Kaplan, & Main, 1996). Results showed that as expected, compared with the BPD group, the NPD/BPD group was significantly more likely to be categorized as either dismissing or cannot classify on the AAI, whereas the BPD group was more likely to be classified as either preoccupied or unresolved for loss and abuse than was the NPD/BPD group. Both groups of patients scored low on mentalizing, and there were no significant differences between the groups, indicating that both NPD/BPD and BPD individuals showed deficits in this capacity. The clinical implications of the group differences in AAI classification are discussed with a focus on how understanding the attachment representations of NPD/BPD patients helps to illuminate their complex, contradictory mental states. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  18. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  19. Prevalence, correlates, disability, and comorbidity of DSM-IV narcissistic personality disorder: results from the wave 2 national epidemiologic survey on alcohol and related conditions.

    PubMed

    Stinson, Frederick S; Dawson, Deborah A; Goldstein, Risë B; Chou, S Patricia; Huang, Boji; Smith, Sharon M; Ruan, W June; Pulay, Attila J; Saha, Tulshi D; Pickering, Roger P; Grant, Bridget F

    2008-07-01

    To present nationally representative findings on prevalence, sociodemographic correlates, disability, and comorbidity of narcissistic personality disorder (NPD) among men and women. Face-to-face interviews with 34,653 adults participating in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions conducted between 2004 and 2005 in the United States. Prevalence of lifetime NPD was 6.2%, with rates greater for men (7.7%) than for women (4.8%). NPD was significantly more prevalent among black men and women and Hispanic women, younger adults, and separated/divorced/widowed and never married adults. NPD was associated with mental disability among men but not women. High co-occurrence rates of substance use, mood, and anxiety disorders and other personality disorders were observed. With additional comorbidity controlled for, associations with bipolar I disorder, post-traumatic stress disorder, and schizotypal and borderline personality disorders remained significant, but weakened, among men and women. Similar associations were observed between NPD and specific phobia, generalized anxiety disorder, and bipolar II disorder among women and between NPD and alcohol abuse, alcohol dependence, drug dependence, and histrionic and obsessive-compulsive personality disorders among men. Dysthymic disorder was significantly and negatively associated with NPD. NPD is a prevalent personality disorder in the general U.S. population and is associated with considerable disability among men, whose rates exceed those of women. NPD may not be as stable as previously recognized or described in the DSM-IV. The results highlight the need for further research from numerous perspectives to identify the unique and common genetic and environmental factors underlying the disorder-specific associations with NPD observed in this study.

  20. Types A and B Niemann-Pick Disease.

    PubMed

    Schuchman, Edward H; Wasserstein, Melissa P

    2016-06-01

    Two distinct metabolic abnormalities are included under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly, frequent pulmonary infections, and profound central nervous system involvement in infancy. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and progressive alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second category are designated as having type C NPD. Impaired intracellular trafficking of cholesterol causes type C NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed.

  1. Expected values and variances of Bragg peak intensities measured in a nanocrystalline powder diffraction experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öztürk, Hande; Noyan, I. Cevdet

    A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less

  2. Expected values and variances of Bragg peak intensities measured in a nanocrystalline powder diffraction experiment

    DOE PAGES

    Öztürk, Hande; Noyan, I. Cevdet

    2017-08-24

    A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less

  3. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals.

    PubMed

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-09-01

    The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  4. Nursing Professional Development Organizational Value Demonstration Project.

    PubMed

    Harper, Mary G; Aucoin, Julia; Warren, Joan I

    2016-01-01

    A common question nursing professional development (NPD) practitioners ask is, "How many NPD practitioners should my organization have?" This study examined correlations among facility size and structure, NPD practitioner characteristics and time in service, and organizational outcomes. Organizations with a higher rate of NPD full-time equivalents per bed had higher patient satisfaction with nurses' communication and provision of discharge instruction on their HCAHPS (Hospital Consumer Assessment of Healthcare Provider and Systems) scores.

  5. Synthesis of nanostructured vanadium powder by high-energy ball milling: X-ray diffraction and high-resolution electron microscopy characterization

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran

    2016-10-01

    Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.

  6. Prevalence, Correlates, Disability, and Comorbidity of DSM-IV Narcissistic Personality Disorder: Results from the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions

    PubMed Central

    Stinson, Frederick S.; Dawson, Deborah A.; Goldstein, Rise B.; Chou, S. Patricia; Huang, Boji; Smith, Sharon M.; Ruan, W. June; Pulay, Attila J.; Saha, Tulshi D.; Pickering, Roger P.; Grant, Bridget F.

    2009-01-01

    Objectives To present nationally representative findings on prevalence, sociodemographic correlates, disability, and comorbidity of narcissistic personality disorder (NPD) among men and women. Methods Face-to-face interviews with 34,653 adults participating in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. Results Prevalence of lifetime NPD was 6.2%, with rates greater for men (7.7%) than women (4.8%). NPD was significantly more prevalent among Black men and women and Hispanic women, younger adults, and separated/divorced/widowed and never married adults. NPD was associated with mental disability among men but not women. High co-occurrence rates of substance use, mood, anxiety, and other personality disorders (PDs) were observed. With additional comorbidity controlled for, associations with bipolar I disorder, PTSD, and schizotypal and borderline PDs remained significant, but weakened, among men and women. Similar associations were observed between NPD and specific phobia, generalized anxiety disorder, and bipolar II disorder among women; and alcohol abuse, alcohol dependence, drug dependence, and histrionic and obsessive-compulsive PDs among men. Dysthymia was significantly and negatively associated with NPD. Conclusions NPD is a prevalent PD in the general U.S. population and is associated with considerable disability among men, whose rates exceed those of women. NPD may not be as stable as previously recognized or described in the DSM-IV. The results highlight the need for further research from numerous perspectives to identify the unique and common genetic and environmental factors underlying the disorder-specific associations with NPD observed in this study. PMID:18557663

  7. Sucrose lyophiles: a semi-quantitative study of residual water content by total X-ray diffraction analysis.

    PubMed

    Bates, S; Jonaitis, D; Nail, S

    2013-10-01

    Total X-ray Powder Diffraction Analysis (TXRPD) using transmission geometry was able to observe significant variance in measured powder patterns for sucrose lyophilizates with differing residual water contents. Integrated diffraction intensity corresponding to the observed variances was found to be linearly correlated to residual water content as measured by an independent technique. The observed variance was concentrated in two distinct regions of the lyophilizate powder pattern, corresponding to the characteristic sucrose matrix double halo and the high angle diffuse region normally associated with free-water. Full pattern fitting of the lyophilizate powder patterns suggested that the high angle variance was better described by the characteristic diffraction profile of a concentrated sucrose/water system rather than by the free-water diffraction profile. This suggests that the residual water in the sucrose lyophilizates is intimately mixed at the molecular level with sucrose molecules forming a liquid/solid solution. The bound nature of the residual water and its impact on the sucrose matrix gives an enhanced diffraction response between 3.0 and 3.5 beyond that expected for free-water. The enhanced diffraction response allows semi-quantitative analysis of residual water contents within the studied sucrose lyophilizates to levels below 1% by weight. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Hippo/crates-in-situ deformation strain and testure studies using neutron time-of-flight diffraction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, S. C.; Hartig, C.; Brissier, T. D.

    2005-01-01

    In situ deformation studies by diffraction allow studying of deformation mechanisms and provide valuable data to validate and improve deformation models. In particular, deformation studies using time-of-flight neutrons provide averages over large numbers of grains and allow to probing the response of lattice planes parallel and perpendicular to the applied load simultaneously. In this paper we describe the load-frame CRATES, designed for the HIPPO neutron time-of-flight diffractometer at LANSCE. The HIPPO/CRATES combination allows probing up to 20 diffraction vectors simultaneously and provides rotation of the sample in the beam while under load. With this, deformation texture, i.e. the change ofmore » grain orientation due to plastic deformation, or strain pole figures may be measured. We report initial results of a validation experiment, comparing deformation of a Zircaloy specimen measured using the NPD neutron diffractometer with results obtained for the same material using HIPPO/CRATES.« less

  9. Influence of perfusate temperature on nasal potential difference.

    PubMed

    Bronsveld, Inez; Vermeulen, François; Sands, Dorotha; Leal, Teresinha; Leonard, Anissa; Melotti, Paola; Yaakov, Yasmin; de Nooijer, Roel; De Boeck, Kris; Sermet, Isabelle; Wilschanski, Michael; Middleton, Peter G

    2013-08-01

    Nasal potential difference (NPD) quantifies abnormal ion transport in cystic fibrosis. It has gained acceptance as an outcome measure for the investigation of new therapies. To quantify the effect of solution temperature on NPD, we first examined the effect of switching from room temperature (20-25°C) to warmed (32-37°C) solutions and vice versa during each perfusion step. Secondly, standard protocols were repeated at both temperatures in the same subjects. Changing solution temperature did not alter NPD during perfusion with Ringer's solution (<1 mV) (p>0.1). During perfusion with zero chloride solution, changing from room temperature to warmed solutions tended to decrease absolute NPD (i.e. it became less negative) by 0.9 mV (p>0.1); changing from warmed to room temperature increased NPD by 2.1 mV (p<0.05). During isoprenaline perfusion, changing from room temperature to warmed solutions increased NPD by 1.5 mV (p<0.01) and from warmed to room temperature decreased NPD by 1.4 mV (p<0.05). For full protocols at room temperature or warmed in the same subjects, mean values were similar (n = 24). During warmed perfusion, group results for total chloride response had a larger standard deviation. As this increased variability will probably decrease the power of trials, this study suggests that solutions at room temperature should be recommended for the measurement of NPD.

  10. Neuroprotectin D1 Attenuates Laser-induced Choroidal Neovascularization in Mouse

    PubMed Central

    Sheets, Kristopher G.; Zhou, Yongdong; Ertel, Monica K.; Knott, Eric J.; Regan, Cornelius E.; Elison, Jasmine R.; Gordon, William C.; Gjorstrup, Per

    2010-01-01

    Purpose To examine the effects of neuroprotectin D1 (NPD1), a stereospecific derivative of docosahexaenoic acid, on choroidal neovascularization (CNV) in a laser-induced mouse model. Specifically, this was assessed by clinically grading laser-induced lesions, measuring leakage area, and volumetrically quantifying vascular endothelial cell proliferation. Methods C57Bl/6 mice were treated with vehicle control or NPD1, and choroidal neovascularization was induced by laser rupture of Bruch's membrane; treatment was administered throughout the first week of recovery. One and two weeks after CNV induction, fundus fluorescein angiography was performed. Angiograms were clinically graded to assess leakage severity, while leakage area was measured by image analysis of angiograms. Proliferation of vascular endothelial cells was evaluated volumetrically by three-dimensional laser confocal immunofluorescent microscopy of cytoskeletal, nuclear, and endothelial cell markers. Results At seven days after CNV induction, NPD1-treated mice had 60% fewer clinically relevant lesions than controls, dropping to 80% fewer by 14 days. NPD1 mice exhibited 25% smaller leakage area than controls at 7 days and 44% smaller area at 14 days. Volumetric immunofluorescence revealed 46% less vascular endothelial cell volume in 7-day NPD1-treated mice than in 7-day controls, and by 14 days NPD1 treatment was 68% lower than controls. Furthermore, comparison of 7- and 14-day volumes of NPD1-treated mice revealed a 50% reduction at 14 days. Conclusions NPD1 significantly inhibits choroidal neovascularization. There are at least two possible mechanisms that could explain the neuroprotective action of NPD1. Ultimately, nuclear factor-κB could be inhibited with a reduction in cyclooxygenase-2 (COX-2) to reduce vascular endothelial growth factor (VEGF) expression, and/or activation of the resolution phase of the inflammatory response/survival pathways could be upregulated. Moreover, NPD1 continues to be effective after treatment is concluded, suggesting sustained protection and highlighting the potential applicability of this lipid mediator in preventing or ameliorating endothelial cell growth in pathoangiogenesis. PMID:20216940

  11. Analysis of Short and Long Range Atomic Order in Nanocrystalline Diamonds with Application of Powder Diffractometry

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.; hide

    2002-01-01

    Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.

  12. A New Camera for Powder Diffraction of Macromolecular Crystallography at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Keiko; Inoue, Katsuaki; Goto, Shunji

    2004-05-12

    A powder diffractometer of Guinier geometry was developed and tested on a beamline, BL40B2, at SPring-8. The long specimen-to-detector distance, 1,000 mm, is advantageous in recording diffraction from Bragg spacing of 20 nm or larger. The angular resolution, 0.012 degrees, was realized together with the focusing optics, the long specimen-to-detector distance and the small pixel size of Blue-type Imaging Plate detector. Such a high resolution makes the peak separation possible in the powder diffraction from microcrystals with large unit cell and low symmetry of biological macromolecules.

  13. Energy research with neutrons (ErwiN) and installation of a fast neutron powder diffraction option at the MLZ, Germany1

    PubMed Central

    Mühlbauer, Martin J.

    2018-01-01

    The need for rapid data collection and studies of small sample volumes in the range of cubic millimetres are the main driving forces for the concept of a new high-throughput monochromatic diffraction instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Germany. A large region of reciprocal space will be accessed by a detector with sufficient dynamic range and microsecond time resolution, while allowing for a variety of complementary sample environments. The medium-resolution neutron powder diffraction option for ‘energy research with neutrons’ (ErwiN) at the high-flux FRM II neutron source at the MLZ is foreseen to meet future demand. ErwiN will address studies of energy-related systems and materials with respect to their structure and uniformity by means of bulk and spatially resolved neutron powder diffraction. A set of experimental options will be implemented, enabling time-resolved studies, rapid parametric measurements as a function of external parameters and studies of small samples using an adapted radial collimator. The proposed powder diffraction option ErwiN will bridge the gap in functionality between the high-resolution powder diffractometer SPODI and the time-of-flight diffractometers POWTEX and SAPHiR at the MLZ. PMID:29896055

  14. Structural and magnetic properties of RTiNO{sub 2} (R=Ce, Pr, Nd) perovskite nitride oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Spencer H.; Huang, Zhenguo, E-mail: zhenguo@uow.edu.au; Cheng, Zhenxiang

    2015-03-15

    Neutron powder diffraction indicates that CeTiNO{sub 2} and PrTiNO{sub 2} crystallize with orthorhombic Pnma symmetry (Ce: a=5.5580(5), b=7.8369(7), and c=5.5830(4) Å; Pr: a=5.5468(5), b=7.8142(5), and c=5.5514(5) Å) as a result of a{sup –}b{sup +}a{sup –} tilting of the titanium-centered octahedra. Careful examination of the NPD data, confirms the absence of long range anion order in both compounds, while apparent superstructure reflections seen in electron diffraction patterns provide evidence for short range anion order. Inverse magnetic susceptibility plots reveal that the RTiNO{sub 2} (R=Ce, Pr, Nd) compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. Effective magneticmore » moments for RTiNO{sub 2} (R=Ce, Pr, Nd) are 2.43 μ{sub B}, 3.63 μ{sub B}, and 3.47 μ{sub B}, respectively, in line with values expected for free rare-earth ions. Deviations from Curie–Weiss behavior that occur below 150 K for CeTiNO{sub 2} and below 30 K for NdTiNO{sub 2} are driven by magnetic anisotropy, spin–orbit coupling, and crystal field effects. - Graphical abstract: The structure and magnetism of the oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr, Nd) have been explored. The average symmetry is shown to be Pnma with a random distribution of oxide and nitride ions and a{sup −}b{sup +}a{sup −} tilting of the titanium-centered octahedra, but electron diffraction shows evidence for short range anion order. All three compounds are paramagnetic but deviations from the Curie Weiss law are seen below 150 K for R=Ce and below 30 K for R=Nd. - Highlights: • The oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr) have been prepared and their structures determined. • Diffraction measurements indicate short range cis-order of O and N, but no long range order. • Compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. • CeTiO{sub 2}N and NdTiO{sub 2}N deviate from Curie–Weiss behavior below 150 and 30 K, respectively.« less

  15. High-resolution neutron diffraction study of microstructural changes in nanocrystalline ball-milled niobium carbide NbC{sub 0.93}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.

    2015-11-15

    High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less

  16. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    PubMed Central

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  17. Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations.

    PubMed

    Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck

    2016-10-04

    The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.

  18. A new theory for X-ray diffraction.

    PubMed

    Fewster, Paul F

    2014-05-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.

  19. Narcissistic Personality Disorder: Relations with distress and functional impairment

    PubMed Central

    Miller, Joshua D.; Campbell, W. Keith; Pilkonis, Paul A.

    2007-01-01

    This study examined the construct validity of Narcissistic Personality Disorder (NPD) by examining the relations between NPD and measures of psychological distress and functional impairment both concurrently and prospectively across two samples. In particular, the goal was to address whether NPD typically “meets” Criterion C of the DSM-IV definition of Personality Disorder, which requires that the symptoms lead to clinically significant distress or impairment in functioning. Sample 1 (N =152) was composed of individuals receiving psychiatric treatment, while Sample 2 (N=151) was composed of both psychiatric patients (46%) and individuals from the community. NPD was linked to ratings of depression, anxiety, and several measures of impairment both concurrently and at 6-month follow-up. However, the relations between NPD and psychological distress were (a) small, especially in concurrent measurements, and (b) largely mediated by impaired functioning. NPD was most strongly related to causing pain and suffering to others, and this relationship was significant even when other Cluster B personality disorders were controlled. These findings suggest that NPD is a maladaptive personality style which primarily causes dysfunction and distress in interpersonal domains. The behavior of narcissistic individuals ultimately leads to problems and distress for the narcissistic individuals and for those with whom they interact. PMID:17292708

  20. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl(6) and other alloys are twinned cubic crystals.

    PubMed

    Pauling, L

    1987-06-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl(6) and Mg(32)(Al,Zn)(49) and the neutron powder diffraction pattern of MnAl(6) are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl(6) and 24.313 A (x-ray) for Mg(32)(Al,Zn)(49).

  1. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl6 and other alloys are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1987-01-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl6 and Mg32(Al,Zn)49 and the neutron powder diffraction pattern of MnAl6 are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 Å (x-ray) and 23.416 Å (neutron) for MnAl6 and 24.313 Å (x-ray) for Mg32(Al,Zn)49. PMID:16593841

  2. New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction.

    PubMed

    Tang, C C; Bushnell-Wye, G; Cernik, R J

    1998-05-01

    A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10-1500 K. Results from Fe and NH(4)Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.

  3. Stabilization of cubic Li7La3Hf2O12 by Al-doping

    NASA Astrophysics Data System (ADS)

    Baklanova, Yana V.; Tyutyunnik, Alexander P.; Tarakina, Nadezda V.; Fortes, A. Dominic; Maksimova, Lidiya G.; Korona, Daniil V.; Denisova, Tatyana A.

    2018-07-01

    In this paper we report on the stabilization of cubic Li7La3Hf2O12 by Al3+ doping and present a detailed crystal structure study and lithium ion conductivity measurements of the obtained compound. Polycrystalline Al-doped Li7La3Hf2O12 was prepared by a modified solid state method. The compound consists of micrometer size grains encapsulated by a glassy phase, which helps preventing the volatilization of lithium during annealing. Al-doped Li7La3Hf2O12 crystallizes in the garnet-related structure with a cubic unit cell (sp. gr. Ia 3 bar d (230)). A structural refinement using X-ray and neutron powder diffraction data showed that the Al3+ ions occupy only tetrahedral Li+ sites in the structure. The presence of overextended leading edges of the peaks on the XRD and NPD data is described by the introduction of an additional phase with rhombohedral distortion that occurs through a stretching of the cubic phase along the body diagonal. The activation energy as well as the total conductivity at room temperature are close to values obtained for un-doped cubic Li7La3Zr2O12 and Li7La3Hf2O12 garnets, which make Al-doped Li7La3Hf2O12 a potential candidate for the application as solid electrolyte in solid-state rechargeable lithium-ion batteries.

  4. Improved camera for better X-ray powder photographs

    NASA Technical Reports Server (NTRS)

    Parrish, W.; Vajda, I. E.

    1969-01-01

    Camera obtains powder-type photographs of single crystals or polycrystalline powder specimens. X-ray diffraction photographs of a powder specimen are characterized by improved resolution and greater intensity. A reasonably good powder pattern of small samples can be produced for identification purposes.

  5. Repeatability and Diagnostic Value of Nasal Potential Difference in a Genetically Admixed Population.

    PubMed

    Sad, Izabela Rocha; Higa, Laurinda Yoko Shinzato; Leal, Teresinha; Martins, Raisa da Silva; de Almeida, Ana Claudia; Ramos, Eloane Goncalves; de Cabello, Giselda Maria Kalil; Peixoto, Maria Virginia Marques

    2016-01-01

    The genetic diversity of the Brazilian population results from three ethnic groups admixture: Europeans, Africans and Amerindians, thus increasing the difficulty of performing cystic fibrosis (CF) diagnosis. The nasal potential difference (NPD) evaluates the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) activity. Despite being a useful CF diagnostic test and a biomarker of CFTR-modulator drugs, it is also highly operator dependent. Therefore, it may be difficult to get accurate results and to interpret them. Wilschanski and Sermet scores were proposed to address these issues. This study aimed to evaluate repeatability and diagnostic value of NPD parameters and Wilschanski and Sermet scores in a CF center in Rio de Janeiro. NPD was performed in 78 subjects. Maximal PD, amiloride response, total chloride response, and Wilschanski and Sermet scores were explored as means (confidence interval, CI). One-way ANOVA was used to compare mean differences and Scheffe test was used to pair-wise comparisons. Repeatability was evaluated by scatter and Bland-Altman plots. The Ethics Committee of the CF Center has approved the study protocol. Parents and adult participants signed an informed consent form. Forty-eight healthy-volunteers, 19 non-CF and 11 CF patients were enrolled in this study. Significant differences were found when comparing CF patients' NPD parameters to the other two groups (P = 0.000). Moreover, no significant differences were found when parameters from non-CF patients were compared with those from healthy volunteers (P > 0.05). The means of NPD parameters and diagnostic scores of each group were in concordance with disease/non-disease conditions. The repeatability data - Wilschanski and Sermet and NPD - allow NPD to be performed in this Brazilian CF Center. The present study gathered consistent data for Bland-Altman plots. The results of Wilschanski and Sermet diagnostic scores suggest that they were concordant with CF/non-CF conditions. More NPD tests should be performed in the Rio de Janeiro CF dynamic cohort to contribute to international NPD validation studies and to provide NPD as a biomarker in Brazil.

  6. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    NASA Astrophysics Data System (ADS)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.

  7. Repeatability and Diagnostic Value of Nasal Potential Difference in a Genetically Admixed Population

    PubMed Central

    Sad, Izabela Rocha; Higa, Laurinda Yoko Shinzato; Leal, Teresinha; Martins, Raisa da Silva; de Almeida, Ana Claudia; Ramos, Eloane Goncalves; de Cabello, Giselda Maria Kalil; Peixoto, Maria Virginia Marques

    2016-01-01

    Background The genetic diversity of the Brazilian population results from three ethnic groups admixture: Europeans, Africans and Amerindians, thus increasing the difficulty of performing cystic fibrosis (CF) diagnosis. The nasal potential difference (NPD) evaluates the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) activity. Despite being a useful CF diagnostic test and a biomarker of CFTR-modulator drugs, it is also highly operator dependent. Therefore, it may be difficult to get accurate results and to interpret them. Wilschanski and Sermet scores were proposed to address these issues. This study aimed to evaluate repeatability and diagnostic value of NPD parameters and Wilschanski and Sermet scores in a CF center in Rio de Janeiro. Methods NPD was performed in 78 subjects. Maximal PD, amiloride response, total chloride response, and Wilschanski and Sermet scores were explored as means (confidence interval, CI). One-way ANOVA was used to compare mean differences and Scheffe test was used to pair-wise comparisons. Repeatability was evaluated by scatter and Bland-Altman plots. The Ethics Committee of the CF Center has approved the study protocol. Parents and adult participants signed an informed consent form. Results Forty-eight healthy-volunteers, 19 non-CF and 11 CF patients were enrolled in this study. Significant differences were found when comparing CF patients’ NPD parameters to the other two groups (P = 0.000). Moreover, no significant differences were found when parameters from non-CF patients were compared with those from healthy volunteers (P > 0.05). The means of NPD parameters and diagnostic scores of each group were in concordance with disease/non-disease conditions. The repeatability data - Wilschanski and Sermet and NPD - allow NPD to be performed in this Brazilian CF Center. Conclusions The present study gathered consistent data for Bland-Altman plots. The results of Wilschanski and Sermet diagnostic scores suggest that they were concordant with CF/non-CF conditions. More NPD tests should be performed in the Rio de Janeiro CF dynamic cohort to contribute to international NPD validation studies and to provide NPD as a biomarker in Brazil. PMID:26668678

  8. Types A and B Niemann-Pick disease.

    PubMed

    Schuchman, Edward H; Desnick, Robert J

    The eponym Niemann-Pick disease (NPD) refers to a group of patients who present with varying degrees of lipid storage and foam cell infiltration in tissues, as well as overlapping clinical features including hepatosplenomegaly, pulmonary insufficiency and/or central nervous system (CNS) involvement. Due to the pioneering work of Roscoe Brady and co-workers, we now know that there are two distinct metabolic abnormalities that account for NPD. The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM; "types A & B" NPD), and the second is due to defective function in cholesterol transport ("type C" NPD). Herein only types A and B NPD will be discussed. Type A NPD patients exhibit hepatosplenomegaly in infancy and profound CNS involvement. They rarely survive beyond 2-3years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no CNS signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Intermediate patients also have been reported with mild to moderate neurological findings. All patients with types A and B NPD have mutations in the gene encoding ASM (SMPD1), and thus the disease is more accurately referred to as ASM deficiency (ASMD). Herein we will review the clinical, pathological, biochemical, and genetic findings in types A and B NPD, and emphasize the seminal contributions of Dr. Brady to this disease. We will also discuss the current status of therapy for this disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  10. Nasal potential difference measurements in diagnosis of cystic fibrosis: an international survey.

    PubMed

    Naehrlich, Lutz; Ballmann, Manfred; Davies, Jane; Derichs, Nico; Gonska, Tanja; Hjelte, Lena; van Konigsbruggen-Rietschel, Silke; Leal, Teresinha; Melotti, Paola; Middleton, Peter; Tümmler, Burkhard; Vermeulen, Francois; Wilschanski, Michael

    2014-01-01

    The role of nasal potential difference (NPD) measurement as a diagnostic test for cystic fibrosis (CF) is a subject of global controversy because of the lack of validation studies, clear reference values, and standardized protocols for diagnostic NPD. To determine diagnostic NPD frequency, protocols, interpretation, and rater agreement, we surveyed the 18 NPD centres of the European Cystic Fibrosis Society Diagnostic Network Working Group. Fifteen centres reported performing 373 diagnostic NPDs in 2012. Most use the CFF-TDN-SOP (67%) and the chloride-free + isoproterenol response of the side with the largest response (47%) as diagnostic criteria and use centre-specific reference ranges. Rater agreement for five NPD tracings - in general - was good, but poor in tracings with different responses between the two nostrils. NPD is frequently used as a diagnostic and research tool for CF. Performance is highly standardized, centre-specific reference ranges are established, and rater agreement - in general - is good. Centre-independent diagnostic criteria and reference ranges must be defined by multicentre validation studies to improve standardized interpretation for diagnostic use. © 2013.

  11. A masked negative self-esteem? Implicit and explicit self-esteem in patients with Narcissistic Personality Disorder.

    PubMed

    Marissen, Marlies A E; Brouwer, Marlies E; Hiemstra, Annemarie M F; Deen, Mathijs L; Franken, Ingmar H A

    2016-08-30

    The mask model of narcissism states that the narcissistic traits of patients with NPD are the result of a compensatory reaction to underlying ego fragility. This model assumes that high explicit self-esteem masks low implicit self-esteem. However, research on narcissism has predominantly focused on non-clinical participants and data derived from patients diagnosed with Narcissistic Personality Disorder (NPD) remain scarce. Therefore, the goal of the present study was to test the mask model hypothesis of narcissism among patients with NPD. Male patients with NPD were compared to patients with other PD's and healthy participants on implicit and explicit self-esteem. NPD patients did not differ in levels of explicit and implicit self-esteem compared to both the psychiatric and the healthy control group. Overall, the current study found no evidence in support of the mask model of narcissism among a clinical group. This implicates that it might not be relevant for clinicians to focus treatment of NPD on an underlying negative self-esteem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Relevance of nasal potential difference in diagnosis of cystic fibrosis among children.

    PubMed

    Valiulis, Arūnas; Skurvydienė, Iveta; Misevičienė, Valdonė; Kasnauskienė, Jūratė; Vaidelienė, Laimutė; Utkus, Algirdas

    2013-01-01

    OBJECTIVE. The aim of this study was to estimate the significance of nasal potential difference (NPD) in the diagnosis of cystic fibrosis (CF) in children with clinical symptoms suggestive of the disease, positive sweat test results, and/or genetically confirmed diagnosis. MATERIAL AND METHODS. NPD measurements according to the modifications by Alton were performed in 50 children with clinical CF symptoms supported by positive sweat test results, 50 children with other obstructive lung diseases, and 50 healthy children. A subgroup of 17 children with the diagnosis confirmed by 2 identified mutations in the CF transmembrane regulatory gene was analyzed individually. RESULTS. The mean NPD value recorded in 50 children with clinical symptoms of CF supported by positive sweat test results and/or genetic analysis was -28.0 mV [SD, 10.2]. The mean NPD value in the subgroup of children with 2 identified mutations in the CF gene (n=17) was more negative than in the subgroup of children with unrecognized mutations (n=33) (-37.1 mV [SD, 7.0] vs. -23.4 mV [SD, 8.3], P<0.001). The mean NPD value in patients with other obstructive lung diseases and healthy children was significantly more positive than in the group of CF children with positive sweat test results and/or identified mutations (-18.1 mV [SD, 3.6] and -15.5 mV [SD, 4.3] vs. -28.0 mV [SD, 10.2], P<0.001). The NPD cut point value for the genetically confirmed diagnosis of CF was -35.0 mV (sensitivity, 93.9%; specificity, 88.2%), while in general, the NPD prognostic value was -24.0 mV (sensitivity, 58.0%; specificity, 98.0%). CONCLUSIONS. The NPD measurement is a valuable tool for the diagnosis of CF in children, but further studies are necessary to establish NPD values related to the CF genotype and to reduce the intrasubject variability of this test.

  13. Profiling pathological narcissism according to DSM-5 domains and traits: A study on consecutively admitted Italian psychotherapy patients.

    PubMed

    Fossati, Andrea; Somma, Antonella; Borroni, Serena; Pincus, Aaron L; Markon, Kristian E; Krueger, Robert F

    2017-11-01

    [Correction Notice: An Erratum for this article was reported in Vol 29(11) of Psychological Assessment (see record 2016-56886-001). In the article, several values were reversed and the mean was misreported in Table 2. The corrected table is present in the erratum.] Pathological narcissism represents a clinically relevant, albeit controversial personality construct, with multiple conceptualizations that are operationalized by different measures. Even in the recently published Diagnostic and Statistical Manual for Mental Disorders-Fifth Edition (DSM-5), 2 different views of narcissistic personality disorder (NPD) are formulated (i.e., Section II and Section III). The DSM-5 Section III alternative PD model diagnosis of NPD is based on self and interpersonal dysfunction (Criterion A) and a profile of maladaptive personality traits (Criterion B), specifically elevated scores on Attention Seeking and Grandiosity. Given the diversity of conceptualizations of pathological narcissism, we evaluated the convergences and divergences in DSM-5 trait profiles characterizing multiple measures of narcissism in a clinical sample of 278 consecutively admitted Italian psychotherapy patients. Patients were administered the Italian versions of the Personality Inventory for DSM-5 (PID-5) and 4 measures of NPD, (a) the Narcissistic Personality Inventory (NPI); (b) the NPD scale of the Personality Diagnostic Questionnaire-4+; (c) the Structured Clinical Interview for Axis II Personality Disorders, Version 2.0 (SCID-II) as an observer-rated measure of NPD; and (d) the Pathological Narcissism Inventory (PNI). Multiple regression analyses showed that PID-5 traits explained from 13% to more than 60% of the variance in the different NPD measures. Attention Seeking was consistently associated with all measures of NPD, whereas Grandiosity was associated with some of the NPD measures. All measures of NPD were also significantly related to additional DSM-5 maladaptive traits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  15. A new theory for X-ray diffraction

    PubMed Central

    Fewster, Paul F.

    2014-01-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the ‘Bragg position’ even if the ‘Bragg condition’ is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many ‘Bragg positions’. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on ‘Bragg-type’ scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the ‘background’. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models. PMID:24815975

  16. Pathological narcissism and narcissistic personality disorder in Axis I disorders.

    PubMed

    Ronningstam, E

    1996-01-01

    This paper presents available information on the comorbidity of narcissistic personality disorder (NPD) and pathological narcissism with major mental illness. A review of empirical studies reporting on the prevalence of NPD in Axis I disorders, and of theoretical and clinical literature on narcissistic pathology in major mental illness, forms the basis for an analysis of this interface. The results show that prevalence rates of NPD in Axis I disorders rarely exceed those found in the general psychiatric or personality disorder populations (i.e., less than 22%). NPD was found at high rates in individuals with a substance use disorder (12-38%) or bipolar disorder (4-47%); it was present at very low rates or absent in persons with obsessive-compulsive disorder. Higher prevalence rates were reported in the studies that used the Millon Clinical Multiaxial Inventory I or II than in those that employed the Structured interview for DSM-III Personality Disorders or the Structured Interview for DSM-III-R Personality Disorders--Revised. There is no evidence implicating a significant relationship between NPD and any specific Axis I disorder. A comparison of theoretical and clinical studies with empirical ones reveals major differences in the views regarding the presence and significance of NPD in Axis I disorders. However, the results highlight trends of interacting comorbidity between NPD and substance use disorders, bipolar disorder, depression, and anorexia nervosa.

  17. Empathy in Narcissistic Personality Disorder: From Clinical and Empirical Perspectives

    PubMed Central

    Baskin-Sommers, Arielle; Krusemark, Elizabeth; Ronningstam, Elsa

    2015-01-01

    Narcissistic personality disorder (NPD) is associated with an assortment of characteristics that undermine interpersonal functioning. A lack of empathy is often cited as the primary distinguishing feature of NPD. However, clinical presentations of NPD suggest that empathy is not simply deficient in these individuals, but dysfunctional and subject to a diverse set of motivational and situational factors. Consistent with this presentation, research illustrates that empathy is multidimensional, involving 2 distinct emotional and cognitive processes associated with a capacity to respectively understand and respond to others’ mental and affective states. The goal of this practice review is to bridge the gap between our psychobiological understanding of empathy and its clinical manifestations in NPD. We present 3 case studies highlighting the variability in empathic functioning in people with NPD. Additionally, we summarize the literature on empathy and NPD, which largely associates this disorder with deficient emotional empathy, and dysfunctional rather than deficient cognitive empathy. Because this research is limited, we also present empathy-based findings for related syndromes (borderline and psychopathy). Given the complexity of narcissism and empathy, we propose that multiple relationships can exist between these constructs. Ultimately, by recognizing the multifaceted relationship between empathy and narcissism, and moving away from an all or nothing belief that those with NPD simply lack empathy, therapists may better understand narcissistic patients’ behavior and motivational structure. PMID:24512457

  18. Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.

    2014-02-01

    In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.

  19. Acid sphingomyelinase (Asm) deficiency patients in The Netherlands and Belgium: disease spectrum and natural course in attenuated patients.

    PubMed

    Hollak, C E M; de Sonnaville, E S V; Cassiman, D; Linthorst, G E; Groener, J E; Morava, E; Wevers, R A; Mannens, M; Aerts, J M F G; Meersseman, W; Akkerman, E; Niezen-Koning, K E; Mulder, M F; Visser, G; Wijburg, F A; Lefeber, D; Poorthuis, B J H M

    2012-11-01

    Niemann-Pick disease (NPD) is a neurovisceral lysosomal storage disorder caused by acid sphingomyelinase (ASM) deficiency, which can be categorized as either Niemann-Pick disease type A [NPD-A], with progressive neurological disease and death in early childhood, or as Niemann-Pick disease type B [NPD-B], with a more variable spectrum of manifestations. Enzyme replacement therapy (ERT) with recombinant sphingomyelinase is currently studied as potential treatment for NPD-B patients. The objective of this study is to characterize the clinical features of patients with ASM deficiency in the Netherlands and Belgium with focus on the natural disease course of NPD-B patients. Prospective and retrospective data on ASM deficient patients were collected in The Netherlands and part of Belgium. Patients with NPD-B that could be followed prospectively were evaluated every 6-12 months for pulmonary function tests, 6 minute walk test (6 MWT), imaging (bone marrow infiltration measured by QCSI, organ volumes by MRI and CT scan of the lungs) and biochemical markers. Twenty-five patients with ASM deficiency were identified (13 males, 12 females, median age 13years, range 1-59 years). Nine patients had died at the time of the study, including four NPD-A patients at the age of 1,1, 2, 3 and five NPDB patents at the age of 5, 6, 43, 56 and 60 years. There was a high prevalence of homozygosity and compound heterozygosity for the common p.Arg608del mutation in 43% and 19% of NPD-B patients, respectively. In NPD-B patients, thrombocytopenia was present in most, while anemia and leucopenia were less common (33% and 6 % respectively). HDL cholesterol was reduced in most patients. Pulmonary disease was severe in several patients. Follow-up up to 11 years revealed a gradual decrease in platelet count. Detailed investigations in 6 NPD-B patients with follow-up in 4 patients revealed remarkable stable disease parameters up to 6 years, with some decline in pulmonary function and 6 MWT. Bone marrow fat fractions were decreased, indicating the presence of storage macrophages. Lung involvement was not related to the extent of visceromegaly, cytopenia or bone marrow involvement. In conclusion, in NPD-B patients pulmonary disease is the most debilitating feature. Disease manifestations are mostly stable in attenuated patients. Bone marrow infiltration is a less prominent feature of the disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. PP-8 ESOPHAGEAL HIGH RESOLUTION MANOMETRY IN NEUROLOGICALLLY IMPAIRED CHILDREN AND GASTRO-OESOPHAGEAL REFLUX DISEASE.

    PubMed

    Turco, R; Ummarino, D; Miele, E; Terrone, G; Del Giudice, E; Staiano, A

    2015-10-01

    Mechanism underlying the occurrence of Gastroesophageal reflux disease (GERD) in neurologically impaired children (NIC) is poorly understood. We sought to characterize, by Esophageal High Resolution Manometry (EHRM), alterations of esophageal motility associated with GERD in NIC and to compare with a group with a suspicion of GERD and normal psychomotor development (NDP). EHRM and multichannel intraluminal impedance/pH-metry (MII/pH) were conducted in 7 NIC and 9 patients with suspicion of GERD and NPD. Esophagogastric junction relaxation (EGJr), the presence/pressure troughs of the oesophageal segments, the distal contractile integral adjusted for esophageal length (DCIa) and the pressurization frontal velocity (PFV) were analyzed by EHRM. Three out of 7 NIC (42.8%) and 4 out of 9 patients with NPD (44.4%) resulted positive to MII/pH (p = 1). No statistical differences were observed for EGJr and PFV between NIC and NPD patients. DCIa was significantly lower in NIC subjects respect to NPD patients (p < 0.01). Comparing NIC with GERD and patients with GERD and NPD we found that third segment was absent in 2/3 (66,6 %) of NIC respect to NPD patients (p < 0.05) and that the third pressure trough was significantly lower in NIC respect to NPD patients (p < 0.05). There were no statistical differences with respect to the first and second pressure trough between NIC and NDP patients. NIC have esophageal motor dysfunction that can be detected by EHRM. Some esophageal manometric alterations could be predictive of GERD in NIC and could explain a different pathogenesis of GERD in NIC and in patients with NPD.

  1. Decisions on new product development under uncertainties

    NASA Astrophysics Data System (ADS)

    Huang, Yeu-Shiang; Liu, Li-Chen; Ho, Jyh-Wen

    2015-04-01

    In an intensively competitive market, developing a new product has become a valuable strategy for companies to establish their market positions and enhance their competitive advantages. Therefore, it is essential to effectively manage the process of new product development (NPD). However, since various problems may arise in NPD projects, managers should set up some milestones and subsequently construct evaluative mechanisms to assess their feasibility. This paper employed the approach of Bayesian decision analysis to deal with the two crucial uncertainties for NPD, which are the future market share and the responses of competitors. The proposed decision process can provide a systematic analytical procedure to determine whether an NPD project should be continued or not under the consideration of whether effective usage is being made of the organisational resources. Accordingly, the proposed decision model can assist the managers in effectively addressing the NPD issue under the competitive market.

  2. Observations on online educational materials for powder diffraction crystallography software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toby, B. H.

    2010-10-01

    This article presents a series of approaches used to educate potential users of crystallographic software for powder diffraction. The approach that has been most successful in the author's opinion is the web lecture, where an audio presentation is coupled to a video-like record of the contents of the presenter's computer screen.

  3. Frequency analysis for modulation-enhanced powder diffraction.

    PubMed

    Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi

    2016-07-01

    Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.

  4. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  5. Improvement of CSCW Software Implementation in NPD: The CAM Mechanism for a Better Adoption by Users

    ERIC Educational Resources Information Center

    Restrepo, Tomas; Arbelaez, Natalia; Millet, Dominique; Gidel, Thierry

    2010-01-01

    Cooperation between disseminated actors is a key factor in improving new product development (NPD) performance. In the last years, numerous CSCW software applications have been introduced in the industry to support NPD with a low success rate. This is partly due to the limited insight of the organisational and human factors influencing user…

  6. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    NASA Astrophysics Data System (ADS)

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-10-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.

  7. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders.

    PubMed

    Forero, Diego A; Prada, Carlos F; Perry, George

    2016-01-01

    In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD.

  8. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders

    PubMed Central

    Forero, Diego A.; Prada, Carlos F.; Perry, George

    2016-01-01

    Background: In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. Objective: To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. Methods: A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. Results: We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. Conclusion: These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD. PMID:27990183

  9. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    PubMed Central

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-01-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384

  10. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  11. The High Resolution Powder Diffraction Beam Line at ESRF.

    PubMed

    Fitch, A N

    2004-01-01

    The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data.

  12. Systematic review and meta-analysis of nasal potential difference in hypoxia-induced lung injury.

    PubMed

    Su, Zhenlei; Zhu, Lili; Wu, Jing; Zhao, Runzhen; Ji, Hong-Long

    2016-08-04

    Nasal potential difference (NPD), a well-established in vivo clinical test for cystic fibrosis, reflects transepithelial cation and anion transport in the respiratory epithelium. To analyze whether NPD can be applied to diagnose hypoxic lung injury, we searched PubMed, EMBASE, Scopus, Web of Science, Ovid MEDLINE, and Google Scholar, and analyzed data retrieved from eleven unbiased studies for high altitude pulmonary edema (HAPE) and respiratory distress syndrome (RDS) using the software RevMan and R. There was a significant reduction in overall basal (WMD -5.27 mV, 95% CI: -6.03 to -4.52, P < 0.00001, I(2) = 42%), amiloride-sensitive (ENaC) (-2.87 mV, 95% CI: -4.02 to -1.72, P < 0.00001, I(2) = 51%), and -resistant fractions (-3.91 mV, 95% CI: -7.64 to -0.18, P = 0.04, I(2) = 95%) in lung injury patients. Further analysis of HAPE and RDS separately corroborated these observations. Moreover, SpO2 correlated with ENaC-associated NPD positively in patients only, but apparently related to CFTR-contributed NPD level inversely. These correlations were confirmed by the opposite associations between NPD values and altitude, which had a negative regression with SpO2 level. Basal NPD was significantly associated with amiloride-resistant but not ENaC fraction. Our analyses demonstrate that acute lung injury associated with systemic hypoxia is characterized by dysfunctional NPD.

  13. Application of powder X-ray diffraction in studying the compaction behavior of bulk pharmaceutical powders.

    PubMed

    Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael

    2005-11-01

    This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.

  14. An Inquiry-Based Project Focused on the X-Ray Powder Diffraction Analysis of Common Household Solids

    ERIC Educational Resources Information Center

    Hulien, Molly L.; Lekse, Jonathan W.; Rosmus, Kimberly A.; Devlin, Kasey P.; Glenn, Jennifer R.; Wisneski, Stephen D.; Wildfong, Peter; Lake, Charles H.; MacNeil, Joseph H.; Aitken, Jennifer A.

    2015-01-01

    While X-ray powder diffraction (XRPD) is a fundamental analytical technique used by solid-state laboratories across a breadth of disciplines, it is still underrepresented in most undergraduate curricula. In this work, we incorporate XRPD analysis into an inquiry-based project that requires students to identify the crystalline component(s) of…

  15. Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO

    ERIC Educational Resources Information Center

    Corsepius, Nicholas C.; DeVore, Thomas C.; Reisner, Barbara A.; Warnaar, Deborah L.

    2007-01-01

    A laboratory exercise was developed by using variable temperature powder X-ray diffraction (XRD) to determine [alpha] for MgO (periclase)and was tested in the Applied Physical Chemistry and Materials Characterization Laboratories at James Madison University. The experiment which was originally designed to provide undergraduate students with a…

  16. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  17. Comparison of Nasal Potential Difference and Intestinal Current Measurements as Surrogate Markers for CFTR Function.

    PubMed

    Wilschanski, Michael; Yaakov, Yasmin; Omari, Ibrahim; Zaman, Munir; Martin, Camilia R; Cohen-Cymberknoh, Malena; Shoseyov, David; Kerem, Eitan; Dasilva, Deborah; Sheth, Sunil; Uluer, Ahmet; OʼSullivan, Brian P; Freedman, Steven

    2016-11-01

    Nasal potential difference (NPD) measurement is part of the diagnostic criteria for cystic fibrosis (CF) and now used routinely as an endpoint in clinical trials of correcting the basic defect in CF. Intestinal current measurement (ICM), measured ex vivo on a rectal biopsy, has been used to study cystic fibrosis transmembrane conductance regulator (CFTR) function but has not been compared to NPD in the same subject in adults and children. The aim of the study is to evaluate the potential usefulness of ICM as a marker of CFTR function for treatment studies compared NPD in patients with CF and in healthy control subjects. ICM and NPD were performed on healthy controls and patients with CF. The healthy adults were individuals undergoing routine screening colonoscopy at the Beth Israel Deaconess Medical Center. The healthy children were undergoing colonoscopy for suspicion of inflammation in Hadassah Hebrew University Medical Center. The CF adults were recruited from Boston Children's Hospital CF Center and CF Center Worcester Mass, the children with CF from Hadassah CF Center. ICM measurements in healthy control subjects (n = 16) demonstrated a mean (±SE) carbachol response of 16.0 (2.2) μA/cm, histamine response of 13.2 (2.1) μA/cm and a forskolin response of 6.3 (2.0) μA/cm. Basal NPD of -15.9 (1.9) and response to Cl free + isoproterenol of -13.8 (2.0). These responses were inverted in CF subjects (n = 12) for ICM parameters with carbachol response of -3.0 (0.5) μA/cm, histamine -1.0 (0.8) μA/cm and a forskolin response of 0.5 (0.3) and also for NPD parameters; basal NPD of -42.2 (4.3) and response to Cl free + isoproterenol of 4.3 (0.7). Pearson correlation test showed the comparability of ICM and NPD in assessing CFTR function. ICM is equivalent to NPD in the ability to distinguish patients with CF from controls and could be used as surrogate markers of CFTR activity in treatment protocols.

  18. Peripheral neuropathy in type A Niemann-Pick disease. A morphological study.

    PubMed

    Landrieu, P; Saïd, G

    1984-01-01

    A black boy had a severe neuropathic form of Niemann-Pick disease (NPD) with a pronounced sphingomyelinase deficiency in the fibroblasts. Nerve conduction velocities were diminished, and a nerve biopsy was performed. Isolated fibers showed segmental demyelination and numerous dense bodies in the Schwann cells (SC). Electron microscopy revealed two categories of inclusions: the first was made up of lysosomal inclusions usually described in NPD. The second comprised myelin inclusions--sometimes still connected to the original myelin sheath--indicating severe myelinopathy. Both myelin debris and NPD inclusions were found in axoplasms and probably came from SC cytoplasm through axolemma lesions. NPD is a unique example of myelinopathy due to sphingomyelinase deficiency.

  19. Measures of Narcissism and Their Relations to DSM-5 Pathological Traits: A Critical Reappraisal.

    PubMed

    Miller, Joshua D; Lynam, Donald R; Campbell, W Keith

    2016-02-01

    There exists substantial debate about how to best assess pathological narcissism with a variety of measures designed to assess grandiose and vulnerable narcissism, as well as the DSM-IV and DSM-5 based conceptualizations of narcissistic personality disorder (NPD). Wright and colleagues published correlations between several narcissism measures (Narcissistic Personality Inventory [NPI]; Pathological Narcissism Inventory [PNI]; Personality Diagnostic Questionnaire [PDQ] NPD) with the traits comprising the DSM-5 Section III personality trait model. In the current study, we examine the agreement manifested by Wright and colleagues' narcissism-DSM-5 trait profiles with expert ratings of the DSM-5 traits most relevant to descriptions of DSM-IV NPD. Despite concerns regarding the NPI's ability to measure pathological narcissism, its trait profile was strongly correlated with expert ratings, as was PDQ NPD's profile. Conversely, the trait profiles associated with the PNI were primarily uncorrelated with the expert rated NPD profile. The implications of these findings with regard to the assessment of narcissism are discussed. © The Author(s) 2014.

  20. The Narcissistic Personality Inventory: a useful tool for assessing pathological narcissism? Evidence from patients with Narcissistic Personality Disorder.

    PubMed

    Vater, Aline; Schröder-Abé, Michela; Ritter, Kathrin; Renneberg, Babette; Schulze, Lars; Bosson, Jennifer K; Roepke, Stefan

    2013-01-01

    The Narcissistic Personality Inventory (NPI) has dominated research on narcissism in the field of social and personality psychology. Surprisingly, it is unclear whether the NPI is useful for identifying pathological narcissism in patients with Narcissistic Personality Disorder (NPD). The goal of this study was to close this research gap. We used an extreme-group approach by including NPD patients and healthy controls and comparing their narcissism scores. We further investigated whether explicit self-esteem (assessed with the Rosenberg Self-Esteem Scale) suppressed the relationship between group membership and NPI narcissism. According to our results, NPD patients do not score higher on the NPI in comparison to healthy controls. Analysis of indirect effects revealed that differences in NPI scores are suppressed by NPD patients' low self-esteem. Our results indicate that the NPI is not a valid indicator of NPD, unless one controls for self-esteem. Implications for future research are discussed.

  1. Examination of the teaching styles of nursing professional development specialists, part I: best practices in adult learning theory, curriculum development, and knowledge transfer.

    PubMed

    Curran, Mary K

    2014-05-01

    The American Nurses Association advocates for nursing professional development (NPD) specialists to have an earned graduate degree, as well as educational and clinical expertise. However, many NPD specialists have limited exposure to adult learning theory. Limited exposure to adult learning theory may affect NPD educational practices, learning outcomes, organizational knowledge transfer, and subsequently, the professional development of the nurses they serve and quality of nursing care. An examination of current teaching practices may reveal opportunities for NPD specialists to enhance educational methods to promote learning, learning transfer, and organizational knowledge and excellence. This article, the first in a two-part series, examines best practices of adult learning theories, nursing professional development, curriculum design, and knowledge transfer. Part II details the results of a correlational study that examined the effects of four variables on the use of adult learning theory to guide curriculum development for NPD specialists in hospitals. Copyright 2014, SLACK Incorporated.

  2. Scope It Out: What's In and What's Out.

    PubMed

    Price, M Greta

    It has been nearly a year since the third edition of the Nursing Professional Development: Scope and Standards of Practice was released. During that time, many nursing professional development (NPD) departments across the nation have incorporated this foundational document into their practice. This column describes the activities of one NPD department to align their scope of practice with the NPD scope and standards and optimize their contributions to their organization.

  3. New Product Development in the Pharmaceutical Industry: Evidence from a generic market.

    PubMed

    Yousefi, Nazila; Mehralian, Gholamhossein; Rasekh, Hamid Reza; Yousefi, Mina

    2017-01-01

    In today's competitive world, there are several strategies to deal with the fast changing environment, among which New product development (NPD) is a common strategy. However, almost half of the resources that companies devote to NPD are spent on products that may fail. This issue is particularly highlighted in the pharmaceutical industry mainly because of a long development-time, low success rate, high capital requirement, and market uncertainty. This study identifies critical success factors of NPD based on the relevant literatures and expert opinions in Iranian pharmaceutical industry, then prioritizes them using the methodology of multiple criteria decision making (MCDM) through analyzing 50 filled questionnaires structured based on the AHP (Analytical Hierarchy Process) approach. Although the NPD success factors seem the same in both generic and bio-generic pharmaceutical industries, the underlying factors and related sub-factors show the different importance in these two industries. However, this study reveal that, the company capabilities is the most important factor affecting new product development success in both pharmaceutical generic and bio-generic industry. The results of this study contribute to create baseline information for pharmaceutical industry especially Iranian pharmaceutical companies to be more effective in budget allocation on improving NPD success factors so that they can boost the success rate of NPD more effectively.

  4. New Product Development in the Pharmaceutical Industry: Evidence from a generic market

    PubMed Central

    Yousefi, Nazila; Mehralian, Gholamhossein; Rasekh, Hamid Reza; Yousefi, Mina

    2017-01-01

    In today’s competitive world, there are several strategies to deal with the fast changing environment, among which New product development (NPD) is a common strategy. However, almost half of the resources that companies devote to NPD are spent on products that may fail. This issue is particularly highlighted in the pharmaceutical industry mainly because of a long development-time, low success rate, high capital requirement, and market uncertainty. This study identifies critical success factors of NPD based on the relevant literatures and expert opinions in Iranian pharmaceutical industry, then prioritizes them using the methodology of multiple criteria decision making (MCDM) through analyzing 50 filled questionnaires structured based on the AHP (Analytical Hierarchy Process) approach. Although the NPD success factors seem the same in both generic and bio-generic pharmaceutical industries, the underlying factors and related sub-factors show the different importance in these two industries. However, this study reveal that, the company capabilities is the most important factor affecting new product development success in both pharmaceutical generic and bio-generic industry. The results of this study contribute to create baseline information for pharmaceutical industry especially Iranian pharmaceutical companies to be more effective in budget allocation on improving NPD success factors so that they can boost the success rate of NPD more effectively. PMID:28979339

  5. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple model of a nanocrystal with spherical shape and centro-symmetric strain at the surface shell we obtain theoretical alp-Q values which match very well the alp-Q plots determined experimentally for Sic, GaN, and diamond nanopowders. The theoretical models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the surface shell. According to our calculations, the part of the diffraction pattern measured at relatively low diffraction vectors Q (below 10/angstrom) provides information on the surface strain, whle determination of the lattice parameters in the grain core requires measurements at large Q-values (above 15 - 20/angstrom).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frølich, S.; Leemreize, H.; Jakus, A.

    A model sample consisting of two different hydroxyapatite (hAp) powders was used as a bone phantom to investigate the extent to which X-ray diffraction tomography could map differences in hAp lattice constants and crystallite size. The diffraction data were collected at beamline 1-ID, the Advanced Photon Source, using monochromatic 65 keV X-radiation, a 25 × 25 µm pinhole beam and translation/rotation data collection. The diffraction pattern was reconstructed for each volume element (voxel) in the sample, and Rietveld refinement was used to determine the hAp lattice constants. The crystallite size for each voxel was also determined from the 00.2 hApmore » diffraction peak width. The results clearly show that differences between hAp powders could be measured with diffraction tomography.« less

  7. Investigations into the chemical structure based selectivity of the microfabricated nitrogen-phosphorus detector

    DOE PAGES

    Brocato, Terisse A.; Hess, Ryan F.; Moorman, Matthew; ...

    2015-10-28

    The nitrogen and phosphorus atoms are constituents of some of the most toxic chemical vapors. Nitrogen-phosphorus gas chromatograph detectors (NPDs) rely on selective ionization of such compounds using ionization temperatures typically greater than 600 °C. NPDs have previously been reported to be 7*10 4× and 10 5× more sensitive for nitrogen and phosphorus, respectively, than for carbon. Presented here is an investigation of the structure-based selectivity of a microfabricated nitrogen-phosphorus detector (μNPD). The μNPD presented here is smaller than a dime and can be placed in a system that is 1/100th the size of a commercial NPD. Comparison of responsesmore » of such devices to homologous anilines (p-methoxyaniline, p-fluoroaniline, and aniline) revealed that detection selectivity, determined by the ratio of μNPD to nonselective flame ionization detector (FID) peak areas, is correlated with acid disassociation pK a values for the respective analine. Selectivity was determined to be greatest for p-methoxyaniline, followed by p-fluoroaniline, with aniline having the smallest response. The limit of detection for a nitrogen containing chemical, p-methoxyaniline, using the μNPD was determined to be 0.29 ng compared to 59 ng for a carbon chemical containing no nitrogen or phosphorus, 1,3,5-trimethybenzene. The μNPD presented here has increased detection for nitrogen and phosphorus compared to the FID and with a slight increase in detection of carbon compounds compared to commercial NPD's sensitivity to nitrogen and carbon.« less

  8. Endoscopic management of pancreatic pseudocysts at atypical locations.

    PubMed

    Bhasin, Deepak Kumar; Rana, Surinder Singh; Nanda, Mohit; Chandail, Vijant Singh; Masoodi, Ibrahim; Kang, Mandeep; Kalra, Navin; Sinha, Saroj Kant; Nagi, Birinder; Singh, Kartar

    2010-05-01

    There is paucity of data on endoscopic management of pseudocysts at atypical locations. We evaluated the efficacy of endoscopic transpapillary nasopancreatic drain (NPD) placement in the management of pseudocysts of pancreas at atypical locations. Eleven patients with pseudocysts at atypical locations were treated with attempted endoscopic transpapillary nasopancreatic drainage. On endoscopic retrograde pancreatography (ERP), a 5-F NPD was placed across/near the site of duct disruption. Three patients each had mediastinal, intrahepatic, and intra/perisplenic pseudocysts and one patient each had renal and pelvic pseudocyst. Nine patients had chronic pancreatitis whereas two patients had acute pancreatitis. The size of the pseudocysts ranged from 2 to 15 cm. On ERP, the site of ductal disruption was in the body of pancreas in five patients (45.4%), and tail of pancreas in six patients (54.6%). All the patients had partial disruption of pancreatic duct. The NPD was successfully placed across the disruption in 10 of the 11 patients (90.9%) and pseudocysts resolved in 4-8 weeks. One of the patients developed fever, 5 days after the procedure, which was successfully treated by intravenous antibiotics. In another patient, NPD became blocked 12 days after the procedure and was successfully opened by aspiration. The NPD slipped out in one of the patient with splenic pseudocyst and was replaced with a stent. There was no recurrence of symptoms or pseudocysts during follow-up of 3-70 months. Pancreatic pseudocysts at atypical locations with ductal communication and partial ductal disruption that is bridged by NPD can also be effectively treated with endoscopic transpapillary NPD placement.

  9. Resolving TRPV1 and TNF-α Mediated Spinal Cord Synaptic Plasticity and Inflammatory Pain with Neuroprotectin D1

    PubMed Central

    Park, Chul-Kyu; Lü, Ning; Xu, Zhen-Zhong; Liu, Tong; Serhan, Charles N.; Ji, Ru-Rong

    2011-01-01

    Mechanisms of inflammatory pain are not fully understood. We investigated the role of TRPV1 and TNF-α, two critical mediators for inflammatory pain, in regulating spinal cord synaptic transmission. We found in mice lacking Trpv1 the frequency but not the amplitude of spontaneous EPSCs (sEPSCs) in lamina II neurons of spinal cord slices is reduced. Further, C-fiber-induced spinal long-term potentiation (LTP) in vivo is abolished in Trpv1 knockout mice. TNF-α also increases sEPSC frequency but not amplitude in spinal lamina IIo neurons, and this increase is abolished in Trpv1 knockout mice. Single-cell PCR analysis revealed that TNF-α-responding neurons in lamina IIo are exclusively excitatory (vGluT2+) neurons. Notably, neuroprotectin-1 (NPD1), an anti-inflammatory lipid mediator derived from omega-3 polyunsaturated fatty acid (docosahexaenoic acid) blocks TNF-α- and capsaicin-evoked sEPSC frequency increases but has no effect on basal synaptic transmission. Strikingly, NPD1 potently inhibits capsaicin-induced TRPV1 current (IC50=0.4 nM) in dissociated dorsal root ganglion neurons, and this IC50 is ≈ 500 times lower than that of AMG9810, a commonly used TRPV1 antagonist. NPD1 inhibition of TRPV1 is mediated by GPCRs, since the effects were blocked by pertussis toxin. In contrast, NPD1 had not effect on mustard oil-induced TRPA1 currents. Spinal injection of NPD1, at very low doses (0.1–10 ng), blocks spinal LTP and reduces TRPV1-dependent inflammatory pain, without affecting baseline pain. NPD1 also reduces TRPV1-independent but TNF-α-dependent pain hypersensitivity. Our findings demonstrate a novel role of NPD1 in regulating TRPV1/TNF-α-mediated spinal synaptic plasticity and identify NPD1 as a novel analgesic for treating inflammatory pain. PMID:22016541

  10. Entrainment of lactose inhalation powders: a study using laser diffraction.

    PubMed

    Watling, C P; Elliott, J A; Cameron, R E

    2010-07-11

    We have investigated the mechanism of entrainment of lactose inhalation blends released from a dry powder inhaler using a diffraction particle size analyser (Malvern Spraytec). Whether a powder blend entrains as a constant stream of powder (the "erosion" mechanism) or as a few coarse plugs (the "fracture" mechanism) was found by comparing transmission data with particle size information. This technique was then applied to a lactose grade with 0, 5 and 10wt% added fine particles. As the wt% fines increased, the entrainment mechanism was found to change from a mild fracture, consisting of multiple small plugs, to more severe fracture with fewer plugs. The most severe fracture mechanism consisted of either the powder reservoir emptying as a single plug, or of the reservoir emptying after a delay of the order of 0.1s due to the powder sticking to its surroundings. Further to this, three different inhalation grades were compared, and the severity of the fracture was found to be inversely proportional to the flowability of the powder (measured using an annular ring shear tester). By considering the volume of aerosolised fine particles in different blends it was determined that the greater the volume of fines added to a powder, the smaller the fraction of fines that were aerosolised. This was attributed to different behaviour when fines disperse from carrier particles compared with when they disperse from agglomerates of fines. In summary, this paper demonstrates how laser diffraction can provide a more detailed analysis of an inhalation powder than just its size distribution. 2010. Published by Elsevier B.V. All rights reserved.

  11. Real-time powder diffraction studies of energy materials under non-equilibrium conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Vanessa K.; Auckett, Josie E.; Pang, Wei-Kong

    Energy materials form the central part of energy devices. An essential part of their function is the ability to reversibly host charge or energy carriers, and analysis of their phase composition and structure in real time under non-equilibrium conditions is mandatory for a full understanding of their atomic-scale functional mechanism. Real-time powder diffraction is increasingly being applied for this purpose, forming a critical step in the strategic chemical engineering of materials with improved behaviour. This topical review gives examples of real-time analysis using powder diffraction of rechargeable battery electrodes and porous sorbent materials used for the separation and storage ofmore » energy-relevant gases to demonstrate advances in the insights which can be gained into their atomic-scale function.« less

  12. Real-time powder diffraction studies of energy materials under non-equilibrium conditions

    PubMed Central

    Peterson, Vanessa K.; Auckett, Josie E.; Pang, Wei-Kong

    2017-01-01

    Energy materials form the central part of energy devices. An essential part of their function is the ability to reversibly host charge or energy carriers, and analysis of their phase composition and structure in real time under non-equilibrium conditions is mandatory for a full understanding of their atomic-scale functional mechanism. Real-time powder diffraction is increasingly being applied for this purpose, forming a critical step in the strategic chemical engineering of materials with improved behaviour. This topical review gives examples of real-time analysis using powder diffraction of rechargeable battery electrodes and porous sorbent materials used for the separation and storage of energy-relevant gases to demonstrate advances in the insights which can be gained into their atomic-scale function. PMID:28989711

  13. Structural phase transition in d-benzil characterised by capacitance measurements and neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Goossens, D. J.; Wu, Xiaodong; Prior, M.

    2005-12-01

    The ferroelectric phase transition in deuterated benzil, C 14H 10O 2, has been studied using capacitance measurements and neutron powder diffraction. Hydrogenous benzil shows a phase transition at 83.5 K from a high temperature P3 121 phase to a cell-doubled P2 1 phase. The phase transition in d-benzil occurs at 88.1 K, a small isotope effect. Neutron powder diffraction was consistent with a low temperature phase of space group P2 1. Upon deuteration the transition remained first-order and the dynamics of the phenyl ring dominated the behaviour. The isotope effect can be attributed to the difference in mass and moment of inertia between C 6H 5 and C 6D 5.

  14. Synthesis and characterization of Mn-Bi alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Patil, Harsha; Jain, G.; Mishra, N.

    2012-06-01

    High purity MnBi low temperature phase has been prepared and analyzed using X-ray diffraction, Lorentz-Polarization Factor and Fourier transforms infrared measurement. After synthesis of samples structural characterization has done on samples by X-ray diffraction, which shows that after making the bulk sample is in no single phase MnBi has been prepared by sintering Mn and Bi powders. By Lorentz-Polarization Factor is affecting the relative intensity of diffraction lines on a powder form. And by FTIR which shows absorption peaks of MnBi alloys.

  15. Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu

    2007-09-01

    Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.

  16. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  17. Structural and Spectral Characterization of Co2+- and Ni2+-DOPED CdO Powder Prepared From Solution at Room Temperature

    NASA Astrophysics Data System (ADS)

    Reddy, C. V.; Rao, L. V. Krishna; Satish, D. V.; Shim, J.; Ravikumar, R. V. S. S. N.

    2015-11-01

    The mild and simple solution method was used for the synthesis of Co2+- and Ni2+-doped CdO powders at room temperature. The prepared powders were characterized using powder X-ray diffraction, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), optical absorption, and Fourier transform infrared spectroscopy (FTIR). From the powder X-ray diffraction patterns, it has been observed that the prepared Co2+ and Ni2+ ion-doped CdO powders belong to the cubic phase, and the evaluated average crystalline sizes of the powders are 20 and 14 nm, respectively. The SEM images and the EDS spectra show that the prepared powders are distributed over different sizes in the grain boundaries. Optical absorption studies allow determination of site symmetry of the metal ion with its ligands. The crystal field (Dq) and inter-electronic repulsion (B and C) parameters have been evaluated from the optical absorption spectra. The FTIR spectra show the characteristic fundamental vibrations of the metal oxide and CdO.

  18. Content validity of the DSM-IV borderline and narcissistic personality disorder criteria sets.

    PubMed

    Blais, M A; Hilsenroth, M J; Castlebury, F D

    1997-01-01

    This study sought to empirically evaluate the content validity of the newly revised DSM-IV narcissistic personality disorder (NPD) and borderline personality disorder (BPD) criteria sets. Using the essential features of each disorder as construct definitions, factor analysis was used to determine how adequately the criteria sets covered the constructs. In addition, this empirical investigation sought to: 1) help define the dimensions underlying these polythetic disorders; 2) identify core features of each diagnosis; and 3) highlight the characteristics that may be most useful in diagnosing these two disorders. Ninety-one outpatients meeting DSM-IV criteria for a personality disorder (PD) were identified through a retrospective analysis of chart information. Records of these 91 patients were independently rated on all of the BPD and NPD symptom criteria for the DSM-IV. Acceptable interrater reliability (kappa estimates) was obtained for both presence or absence of a PD and symptom criteria for BPD and NPD. The factor analysis, performed separately for each disorder, identified a three-factor solution for both the DSM-IV BPD and NPD criteria sets. The results of this study provide strong support for the content validity of the NPD criteria set and moderate support for the content validly of the BPD criteria set. Three domains were found to comprise the BPD criteria set, with the essential features of interpersonal and identity instability forming one domain, and impulsivity and affective instability each identified as separate domains. Factor analysis of the NPD criteria set found three factors basically corresponding to the essential features of grandiosity, lack of empathy, and need for admiration. Therefore, the NPD criteria set adequately covers the essential or defining features of the disorder.

  19. Keto-supplemented Low Protein Diet: A Valid Therapeutic Approach for Patients with Steroid-resistant Proteinuria during Early-stage Chronic Kidney Disease.

    PubMed

    Zhang, J; Xie, H; Fang, M; Wang, K; Chen, J; Sun, W; Yang, L; Lin, H

    2016-04-01

    Low protein diets supplemented with keto acid (sLPD) are recommended for patients with stage 3-5 chronic kidney disease (CKD). This study assessed whether sLPD is beneficial for patients with steroid-resistant proteinuria during early-stage CKD. A 1-year randomized controlled trial was conducted from 2010 to 2012. In this study, 108 proteinuric patients who were steroid-resistant were assigned to a sLPD group (0.6 g/kg/d with 0.09 g/kg/d keto acids) or a normal protein diet group (NPD, 1.0 g/kg/d). Estimated dietary protein intake, urinary protein excretion, remission rate, renal function, nutritional status, and blood pressure were measured. Baseline characteristics were comparable between the sLPD group (47 patients) and the NPD group (49 patients). Urinary protein excretion significantly decreased in sLPD compared to NPD in months 6, 9, and 12 (P<0.05). Proteinuria reduction was higher in sLPD than in NPD (P<0.001) at the end of the study. Complete remission and partial remission rates were higher in sLPD than in NPD. Serum albumin and pre-albumin levels were higher in sLPD than in NPD in months 9 and 12 (P<0.05). Serum total cholesterol and triglyceride levels declined more significantly in sLPD than in NPD (P<0.01) at the end of the study. There were no differences in nutritional status, renal function, hemoglobin, or blood pressure between the two groups. sLPD is both nutritionally safe and beneficial, providing nephroprotective effects for early-stage CKD patients with steroid-resistant proteinuria.

  20. Examining sex differences in DSM-IV-TR narcissistic personality disorder symptom expression using Item Response Theory (IRT).

    PubMed

    Hoertel, Nicolas; Peyre, Hugo; Lavaud, Pierre; Blanco, Carlos; Guerin-Langlois, Christophe; René, Margaux; Schuster, Jean-Pierre; Lemogne, Cédric; Delorme, Richard; Limosin, Frédéric

    2017-12-14

    The limited published literature on the subject suggests that there may be differences in how females and males experience narcissistic personality disorder (NPD) symptoms. The aim of this study was to use methods based on item response theory to examine whether, when equating for levels of NPD symptom severity, there are sex differences in the likelihood of reporting DSM-IV-TR NPD symptoms. We conducted these analyses using a large, nationally representative sample from the USA (n=34,653), the second wave of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). There were statistically and clinically significant sex differences for 2 out of the 9 DSM-IV-TR NPD symptoms. We found that males were more likely to endorse the item 'lack of empathy' at lower levels of narcissistic personality disorder severity than females. The item 'being envious' was a better indicator of NPD severity in males than in females. There were no clinically significant sex differences on the remaining NPD symptoms. Overall, our findings indicate substantial sex differences in narcissistic personality disorder symptom expression. Although our results may reflect sex-bias in diagnostic criteria, they are consistent with recent views suggesting that narcissistic personality disorder may be underpinned by shared and sex-specific mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 4P-NPD ultra-thin films as efficient exciton blocking layers in DBP/C70 based organic solar cells

    NASA Astrophysics Data System (ADS)

    Patil, Bhushan R.; Liu, Yiming; Qamar, Talha; Rubahn, Horst-Günter; Madsen, Morten

    2017-09-01

    Exciton blocking effects from ultra-thin layers of N,N‧-di-1-naphthalenyl-N,N‧-diphenyl [1,1‧:4‧,1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD) were investigated in small molecule-based inverted organic solar cells (OSCs) using tetraphenyldibenzoperiflanthene as the electron donor material and fullerene (C70) as the electron acceptor material. The short-circuit current density (J SC) and power conversion efficiency (PCE) of the optimized OSCs with 0.7 nm thick 4P-NPD were approximately 16% and 24% higher, respectively, compared to reference devices without exciton blocking layers (EBLs). Drift diffusion-based device modeling was conducted to model the full current density-voltage (JV) characteristics and external quantum efficiency spectrum of the OSCs, and photoluminescence measurements were conducted to investigate the exciton blocking effects with increasing thicknesses of the 4P-NPD layer. Importantly, coupled optical and electrical modeling studies of the device behaviors and exciton generation rates and densities in the active layer for different 4P-NPD layer thicknesses were conducted, in order to gain a complete understanding of the observed increase in PCE for 4P-NPD layer thicknesses up to 1 nm, and the observed decrease in PCE for layer thicknesses beyond 1 nm. This work demonstrates a route for guiding the integration of EBLs in OSC devices.

  2. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  3. On the possibility of using polycrystalline material in the development of structure-based generic assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaire, Marc, E-mail: allaire@bnl.gov; Moiseeva, Natalia; Botez, Cristian E.

    The correlation coefficients calculated between raw powder diffraction profiles can be used to identify ligand-bound/unbound states of lysozyme. The discovery of ligands that bind specifically to a targeted protein benefits from the development of generic assays for high-throughput screening of a library of chemicals. Protein powder diffraction (PPD) has been proposed as a potential method for use as a structure-based assay for high-throughput screening applications. Building on this effort, powder samples of bound/unbound states of soluble hen-egg white lysozyme precipitated with sodium chloride were compared. The correlation coefficients calculated between the raw diffraction profiles were consistent with the known bindingmore » properties of the ligands and suggested that the PPD approach can be used even prior to a full description using stereochemically restrained Rietveld refinement.« less

  4. Addressing the amorphous content issue in quantitative phase analysis: the certification of NIST standard reference material 676a.

    PubMed

    Cline, James P; Von Dreele, Robert B; Winburn, Ryan; Stephens, Peter W; Filliben, James J

    2011-07-01

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum (α-Al(2)O(3)) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Under the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% ± 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.

  5. Use of the TAT in the assessment of DSM-IV cluster B personality disorders.

    PubMed

    Ackerman, S J; Clemence, A J; Weatherill, R; Hilsenroth, M J

    1999-12-01

    The Social Cognition and Object Relations Scale (SCORS), developed by Western, Lohr, Silk, Kerber, and Goodrich (1985), is a diagnostic instrument used to assess an array of psychological functioning by using clinical narratives such as the Thematic Apperception Test (TAT; Murray, 1943) stories. This study investigated the utility of the SCORS to differentiate between Diagnostic and Statistical Manual of Mental Disorders (4th ed. [DSM-IV]; American Psychiatric Association, 1994) antisocial personality disorder (ANPD), borderline personality disorder (BPD), narcissistic personality disorder (NPD), and Cluster C personality disorder (CPD). A sample of 58 patients was separated into four groups: ANPD (n = 9), BPD (n = 21; 18 with a primary BPD diagnosis and 3 with prominent borderline traits who met 4 of the 5 DSM-IV criteria necessary for a BPD diagnosis), NPD (n = 16; 8 with a primary NPD diagnosis and 8 with prominent narcissistic traits who met 4 of the 5 DSM-IV criteria necessary for a NPD diagnosis), and CPD (n = 12). These groups were then compared on the 8 SCORS variables by using 5 TAT cards (1, 2, 3BM, 4, and 13MF). Spearman-Brown correction for 2-way mixed effects model of reliability for the 8 SCORS variables ranged from .70 to .95. The results of categorical and dimensional analyses indicate that (a) SCORS variables can be used to differentiate ANPD, BPD, and NPD; (b) the BPD group scored significantly lower (greater maladjustment) than did the CPD group on certain variables; (c) the BPD group scored significantly lower (greater maladjustment) than did the NPD group on all 8 SCORS variables; (d) the ANPD group scored significantly lower than did the NPD group on certain variables; (e) certain variables were found to be empirically related to the total number of DSM-IV ANPD, BPD, and NPD criteria; and (f) certain variables were found to be empirically related to Minnesota Multiphasic Personality Inventory-2 (MMPI-2; Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989) Personality disorder scales. The results of this study are discussed in terms of clinical utility, conceptual, and theoretical implications.

  6. Effect of the Chemical State of the Surface on the Relaxation of the Surface Shell Atoms in SiC and GaN Nanocrystals

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H. P.; Janik, J. F.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The effect of the chemical state of the surface of nanoparticles on the relaxation in the near-surface layer was examined using the concept of the apparent lattice parameter (alp) determined for different diffraction vectors Q. The apparent lattice parameter is a lattice parameter determined either from an individual Bragg reflection, or from a selected region of the diffraction pattern. At low diffraction vectors the Bragg peak positions are affected mainly by the structure of the near-surface layer, while at high Q-values only the interior of the nano-grain contributes to the diffraction pattern. Following the measurements on raw (as prepared) powders we investigated powders cleaned by annealing at 400C under vacuum, and the same powders wetted with water. Theoretical alp-Q plots showed that the structure of the surface layer depends on the sample treatment. Semi-quantitative analysis based on the comparison of the experimental and theoretical alp-Q plots was performed. Theoretical alp-Q relations were obtained from the diffraction patterns calculated for models of nanocrystals with a strained surface layer using the Debye functions.

  7. Characterization of composite materials based on cement-ceramic powder blended binder

    NASA Astrophysics Data System (ADS)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  8. Phase analysis of ZrO2-SiO2 systems synthesized through Ball milling mechanical activations

    NASA Astrophysics Data System (ADS)

    Nurlaila, Rizka; Musyarofah, Muwwaqor, Nibras Fuadi; Triwikantoro, Kuswoyo, Anton; Pratapa, Suminar

    2017-01-01

    Zircon powders have been produced from raw materials of amorphous zirconia and amorphous silica powders obtained from natural zircon sand of Kalimantan Tengah, Indonesia. Synthesis process was started with the extraction of zircon powder to produce sodium silicate solution and pure zircon powder. The amorphous zirconia and silica powders were prepared by alkali fusion and co-precipitation techniques. The powders were mixed using a planetary ball mill, followed by a calcination of various holding time of 3, 10, and 15 h. Phase characterization was done using X-Ray Diffraction (XRD) technique and analysis of the diffraction data was carried out using Rietica and MAUD software. The identified phases after the calcination were zircon, tetragonal zirconia, and cristobalite. The highest zircon content was obtained in the sample calcinated for15 hours - reaching 99.66 %wt. Crystallite size analysis revealed that the samples calcinated for 3, 10, and 15 h exhibited zircon crystal size of 176 (1) nm, 191 (1) nm and 233 (1) nm respectively.

  9. Characterization of composite materials based on cement-ceramic powder blended binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulovaná, Tereza; Pavlík, Zbyšek

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less

  10. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  11. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.

    PubMed

    Shareef, M Y; Messer, P F; van Noort, R

    1993-01-01

    In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.

  12. Polymorphism of Alprazolam (Xanax): a review of its crystalline phases and identification, crystallographic characterization, and crystal structure of a new polymorph (form III).

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Van den Mooter, Guy; Blaton, Norbert

    2007-05-01

    A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  13. Mg(1 + x)Ir(1 - x) (x = 0, 0.037 and 0.054), a binary intermetallic compound with a new orthorhombic structure type determined from powder and single-crystal X-ray diffraction.

    PubMed

    Cerný, Radovan; Renaudin, Guillaume; Favre-Nicolin, Vincent; Hlukhyy, Viktor; Pöttgen, Rainer

    2004-06-01

    The new binary compound Mg(1 + x)Ir(1 - x) (x = 0-0.054) was prepared by melting the elements in the Mg:Ir ratio 2:3 in a sealed tantalum tube under an argon atmosphere in an induction furnace (single crystals) or by annealing cold-pressed pellets of the starting composition Mg:Ir 1:1 in an autoclave under an argon atmosphere (powder sample). The structure was independently solved from high-resolution synchrotron powder and single-crystal X-ray data: Pearson symbol oC304, space group Cmca, lattice parameters from synchrotron powder data a = 18.46948 (6), b = 16.17450 (5), c = 16.82131 (5) A. Mg(1 + x)Ir(1 - x) is a topologically close-packed phase, containing 13 Ir and 12 Mg atoms in the asymmetric unit, and has a narrow homogeneity range. Nearly all the atoms have Frank-Kasper-related coordination polyhedra, with the exception of two Ir atoms, and this compound contains the shortest Ir-Ir distances ever observed. The solution of a rather complex crystal structure from powder diffraction, which was fully confirmed by the single-crystal method, shows the power of powder diffraction in combination with the high-resolution data and the global optimization method.

  14. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.

    PubMed

    Hadzović, Ervina; Betz, Gabriele; Hadzidedić, Seherzada; El-Arini, Silvia Kocova; Leuenberger, Hans

    2010-08-30

    The effect of roller compaction on disintegration time, dissolution rate and compressibility of tablets prepared from theophylline anhydrate powder, theophylline anhydrate fine powder and theophylline monohydrate was studied. In addition, the influence of adding microcrystalline cellulose, a commonly used excipient, in mixtures with these materials was investigated. Theophylline anhydrate powder was used as a model drug to investigate the influence of different compaction pressures on the tablet properties. Tablets with same porosity were prepared by direct compaction and by roller compaction/re-compaction. Compressibility was characterized by Heckel and modified Heckel equations. Due to the property of polymorphic materials to change their form during milling and compression, X-ray diffraction analysis of theophylline anhydrate powder, theophylline anhydrate fine powder and theophylline monohydrate powders and granules was carried out. After roller compaction the disintegration time and the dissolution rate of the tablets were significantly improved. Compressibility of theophylline anhydrate powder and theophylline anhydrate fine powder was decreased, while theophylline monohydrate showed higher compressibility after roller compaction. Microcrystalline cellulose affected compressibility of theophylline anhydrate powder, theophylline anhydrate fine powder and theophylline monohydrate whereby the binary mixtures showed higher compressibility than the individual materials. X-ray diffraction analyses confirmed that there were no polymorphic/pseudopolymorphic changes after roller compaction. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Circadian changes in core body temperature, metabolic rate and locomotor activity in rats on a high-protein, carbohydrate-free diet.

    PubMed

    Yamaoka, Ippei; Hagi, Mieko; Doi, Masako

    2009-12-01

    Ingestion of a high-protein meal results in body weight loss due to elevated energy expenditure, while also increasing satiety and decreasing subsequent food intake. The present study aimed to clarify the effects of a high-protein, carbohydrate-free diet (HPCFD) on these physiological indicators from a circadian perspective. Rats were given HPCFD or a pair-fed normal protein content diet (20% protein; NPD) for 4 d. The HPCFD group lost more body weight than the NPD group. Oxygen consumption (VO(2)) in the HPCFD group did not change during the experimental period, and tended to be higher during the light (L) phase than in the NPD group. Carbon dioxide production (VCO(2)) during the L phase was higher in the HPCFD group than in the NPD group, where VCO(2) was gradually decreased during the last dark (D) phase and throughout the L phase. The HPCFD group exhibited higher daily core body temperature (T(b)), particularly during the late D phase and throughout the L phase when compared to the NPD group. Locomotor activities during the D phase of the NPD group tended to gradually increase and were thus significantly higher than in the HPCFD group. These results suggest that HPCFD, even if energy intake is insufficient, maintains circadian changes in metabolic rates, resulting in maintenance of elevated daily T(b) and body weight reduction without increasing activity.

  16. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    PubMed Central

    Cascos, Vanessa; Alonso, José Antonio; Fernández-Díaz, María Teresa

    2016-01-01

    SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2) oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC) with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2) oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD) experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features. PMID:28773708

  17. Crystal structure of hydrocortisone acetate, C23H32O6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Gindhart, Amy M.; Blanton, Thomas N.

    The crystal structure of hydrocortisone acetate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Hydrocortisone acetate crystallizes in space groupP2 1(#4) witha= 8.85173(3) Å,b= 13.53859(3) Å,c= 8.86980(4) Å,β= 101.5438(3)°,V= 1041.455(6) Å 3, andZ= 2. Both hydroxyl groups form hydrogen bonds to the ketone oxygen atom on the steroid ring system, resulting in a three-dimensional hydrogen bond network. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.

  18. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam.

    PubMed

    Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K

    2012-04-07

    Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Influence of Pentacene Interface Layer in ITO/α-NPD/Alq3/Al Organic Light Emitting Diodes by Time-Resolved Electric-Field-Induced Optical Second-Harmonic Generation Measurement.

    PubMed

    Oda, Yoshiaki; Sadakata, Atsuo; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    By using I-V, EL-V, displacement current measurement (DCM) and time-resolved electric-field-induced optical second-harmonic generation (TR-EFISHG) measurement, we studied the influence of interface pentacene layer inserted between ITO and a-NPD layers in ITO/α-NPD/Alq3/Al OLEDs. All experiments were carried out for the OLEDs with and without a pentacene interface layer. The I-V and EL-V measurements showed the decrease of operating voltage of EL, the DCM showed the lowering of inception voltage of carrier injection by inserting a pentacene interface layer. The TR-EFISHG measurement showed the faster accumulation of holes at the interface between the a-NPD and Alq3 layers, which resulted in the relaxation of electric field of a-NPD layer accomplished by the increase of the conductivity and the increase of the electric field in the Alq3 layer. We conclude that TR-EFISHG measurement is helpful for understanding I-V and EL-V characteristics, and can be combined with other methods to give significant information which are impacted by the interface layer.

  20. The validity of the Personality Diagnostic Questionnaire-4 Narcissistic Personality Disorder scale for assessing pathological grandiosity.

    PubMed

    Hopwood, Christopher J; Donnellan, M Brent; Ackerman, Robert A; Thomas, Katherine M; Morey, Leslie C; Skodol, Andrew E

    2013-01-01

    Although controversy surrounds the definition and measurement of narcissism, the claim that pathological grandiosity is central to the construct generates little disagreement. Yet representations of pathological grandiosity vary across measures of narcissism, leading to conceptual confusion in the literature. The validity of a DSM-based measure of pathological narcissism, the Personality Diagnostic Questionnaire-4 Narcissistic Personality Disorder scale (PDQ-4 NPD), was evaluated in 1 clinical and 3 nonclinical samples (total N=2,391) for its ability to measure pathological grandiosity. Findings were generally supportive: average scores were higher in the clinical than nonclinical samples and the PDQ-4 NPD scale correlated most strongly with (a) other measures of NPD; (b) other DSM Cluster B personality disorders; (c) traits involving antagonism, hostility, and assertiveness; and (d) interpersonal distress and disaffiliative dominance. However, the low internal consistency of the PDQ-4 NPD scale and unexpected associations with Cluster A and obsessive-compulsive features point to potential psychometric weaknesses with this instrument. These findings are useful for evaluating the PDQ-4 NPD scale and for informing ongoing debates regarding how to define and assess pathological narcissism.

  1. Neutron and X-ray powder diffraction study of skutterudite thermoelectrics

    DOE PAGES

    Wang, H.; Kirkham, M. J.; Watkins, T. R.; ...

    2016-02-17

    N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubicmore » symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.« less

  2. Synthesis of cerium oxide (CeO 2) by co-precipitation for application as a reference material for X-ray powder diffraction peak widths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Lima Batista, Anderson Márcio; Miranda, Marcus Aurélio Ribeiro; Martins, Fátima Itana Chaves Custódio

    Several methods can be used to obtain, from powder diffraction patterns, crystallite size and lattice strain of polycrystalline samples. Some examples are the Scherrer equation, Williamson–Hall plots, Warren/Averbach Fourier decomposition, Whole Powder Pattern Modeling, and Debye function analysis. To apply some of these methods, it is necessary to remove the contribution of the instrument to the widths of the diffraction peaks. Nowadays, one of the main samples used for this purpose is the LaB6 SRM660b commercialized by the National Institute of Standard Technology; the width of the diffraction peak of this sample is caused only by the instrumental apparatus. However,more » this sample can be expensive for researchers in developing countries. In this work, the authors present a simple route to obtain micron-sized polycrystalline CeO 2that have a full width at half maximum comparable with the SRM660b and therefore it can be used to remove instrumental broadening.« less

  3. Farm characteristics and management routines related to neonatal porcine diarrhoea: a survey among Swedish piglet producers.

    PubMed

    Larsson, Jenny; Fall, Nils; Lindberg, Maria; Jacobson, Magdalena

    2016-11-10

    In recent years reports from a number of countries, including Sweden, describe problems with diarrhoea in newborn piglets despite the use of previously effective preventive measures. This seemingly altered disease pattern of neonatal porcine diarrhoea (NPD) warrants investigations on the magnitude and manifestation of the problem. The aim of the present study was to investigate the herd-level prevalence of NPD in Sweden and to describe disease characteristics and intervention strategies used in affected herds. To obtain this information a questionnaire was developed and sent out to 170 randomly selected herds. The presence of NPD in the herds was specified as "Yes", "No" or "Occasional cases" during the preceding year. A response rate of 58% (98/170) was achieved. The total prevalence of farmer experienced NPD, including occasional cases was 79.6% (95% CI 70.6-86.4%). Most herds (85%; 83/98) employed maternal vaccination against enterotoxigenic Escherichia coli (ETEC). The most common treatment regimens used in affected herds included antimicrobials only (43%; 18/42) or antimicrobials in combination with supplementary fluids (33%; 14/42). Trimethoprim in combination with a sulphonamide was the drug of choice in 57% (24/42) of the affected herds whereas the remaining herds used a broad range of other antimicrobials (neomycin, amoxicillin, fluoroquinolones, penicillin, and tylosin). Furthermore, the risk of experiencing NPD was found to be higher in herds with >200 sows (OR = 4.0) compared to herds with <200 sows and in herds where more ambitious efforts (such as providing supplemental colostrum or practicing split-suckling) were made to save weak-born piglets (OR = 4.4). The results of the present study indicate that Swedish farmers commonly experience NPD in their herds, often despite vaccination against ETEC. Considering the extent of this problem and its contribution to antimicrobial usage, improving alternative control strategies for NPD needs to be prioritized.

  4. Addressing the amorphous content issue in quantitative phase analysis : the certification of NIST SRM 676a.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, J. P.; Von Dreele, R. B.; Winburn, R.

    2011-07-01

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less

  5. Addressing the Amorphous Content Issue in Quantitative Phase Analysis: The Certification of NIST Standard Reference Material 676a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Cline; R Von Dreele; R Winburn

    2011-12-31

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less

  6. The Nuclear Protein Database (NPD): sub-nuclear localisation and functional annotation of the nuclear proteome

    PubMed Central

    Dellaire, G.; Farrall, R.; Bickmore, W.A.

    2003-01-01

    The Nuclear Protein Database (NPD) is a curated database that contains information on more than 1300 vertebrate proteins that are thought, or are known, to localise to the cell nucleus. Each entry is annotated with information on predicted protein size and isoelectric point, as well as any repeats, motifs or domains within the protein sequence. In addition, information on the sub-nuclear localisation of each protein is provided and the biological and molecular functions are described using Gene Ontology (GO) terms. The database is searchable by keyword, protein name, sub-nuclear compartment and protein domain/motif. Links to other databases are provided (e.g. Entrez, SWISS-PROT, OMIM, PubMed, PubMed Central). Thus, NPD provides a gateway through which the nuclear proteome may be explored. The database can be accessed at http://npd.hgu.mrc.ac.uk and is updated monthly. PMID:12520015

  7. Niemann-Pick type B in adulthood.

    PubMed

    Simões, Rita Gonçalves; Maia, Helena

    2015-02-05

    Niemann-Pick disease (NPD) is a rare group of autosomal recessive disorders associated with intracellular deposition of sphingomyelin. NPD type B is a milder form, generally later in onset, with a good prognosis for survival into adulthood and usually with no neurological abnormalities. The authors describe the case of a 52-year-old man who presented with unexplained pancytopenia and splenomegaly. He was admitted to emergency splenectomy due to pathological splenic rupture. The histological findings showed diffuse histiocytosis, suggesting lysosomal storage disease. The NPD was confirmed when residual activity of acid sphingomyelinase in peripheral blood leucocytes and cultured skin fibroblasts was detected. Besides lipid abnormalities, the patient also had lipid interstitial pneumonia. There is no treatment for NPD. Management is based on surveillance and supportive care. The patient has reached the sixth decade of life with no symptoms and, despite the pneumonia and splenectomy, he still has a fairly healthy life. 2015 BMJ Publishing Group Ltd.

  8. Insight into the structure and functional application of the Sr0.95Ce0.05CoO3-δ cathode for solid oxide fuel cells.

    PubMed

    Yang, Wei; Zhang, Huairuo; Sun, Chunwen; Liu, Lilu; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2015-04-06

    A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 μm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.

  9. Additional evidence from x-ray powder diffraction patterns that icosahedral quasi-crystals of intermetallic compounds are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1988-01-01

    Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, “noise”) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals. PMID:16593948

  10. Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.; hide

    2010-01-01

    The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14

  11. Melting point suppression in new lanthanoid(III) ionic liquids by trapping of kinetic polymorphs: an in situ synchrotron powder diffraction study.

    PubMed

    Chesman, Anthony S R; Yang, Mei; Mallick, Bert; Ross, Tamsyn M; Gass, Ian A; Deacon, Glen B; Batten, Stuart R; Mudring, Anja-Verena

    2012-01-04

    The complexes (N(4444))(3)[Ln(dcnm)(6)] (Ln = La-Nd, Sm; N(4444) = tetrabutylammonium) display a decrease in the melting point upon fast cooling from a melt, which is shown by in situ synchrotron based X-ray powder diffraction to be due to the formation of a second, less thermodynamically stable, polymorph. This journal is © The Royal Society of Chemistry 2012

  12. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron

    Science.gov Websites

    Analysis of NaH and NaD, DOE Technical Report, April 1947 The Diffraction of Neutrons by Crystalline Powders; DOE Technical Report; 1948 Neutron Diffraction Studies, DOE Technical Report, 1948 Laue Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction, DOE Technical Report, April

  13. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  14. Synthesis of nano-forsterite powder by making use of natural silica sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurbaiti, Upik, E-mail: upik-nurbaiti@mail.unnes.ac.id; Department of Physics, Faculty of Mathematics and Natural Sciences Semarang State University Jl. Raya Sekaran GunungPati, Semarang 50221; Suud, Fikriyatul Azizah

    2016-02-08

    Nano-forsterite powder with natural silica sand and magnesium powder as the raw materials have been succesfully synthesized. The silica sand was purified followed by a coprecipitation process to obtain colloidal silica. The magnesium powder was dissolved in a chloric acid solution to obtain MgCl{sub 2} solution. The nanoforsterite powder was synthesised using a sol-gel method which included the mixing the colloidal silica and the MgCl{sub 2} solution with various aging and filtering processes. The samples were dried at 100 °C using a hot plate and then the dried powders were calcinated at 900 °C for 2 hours. The samples weremore » characetised for their elements and phase compositions using X-ray Flourescence (XRF) and X-ray Diffraction (XRD) methods, respectively. The diffraction data were qualitatively analyzed using Match!2 software and quantitatively using Rietica software. The crystallite size was verified using Transmission Electron Microscopy (TEM). Results of XRD data analysis showed that the forsterite content reached up to 90.5% wt. The TEM average crystallite size was approximately 53(6) nm.« less

  15. Crystal structure of methylprednisolone acetate form II, C 24H 32O 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, Austin M.; Kaduk, James A.; Gindhart, Amy M.

    The crystal structure of methylprednisolone acetate form II, C 24H 32O 6, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Methylprednisolone acetate crystallizes in space groupP2 12 12 1(#19) witha= 8.17608(2),b= 9.67944(3),c= 26.35176(6) Å,V= 2085.474(6) Å 3, andZ= 4. Both hydroxyl groups act as hydrogen bond donors, resulting in a two-dimensional hydrogen bond network in theabplane. C–H…O hydrogen bonds also contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1412.

  16. Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments

    NASA Astrophysics Data System (ADS)

    Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander

    2018-03-01

    This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.

  17. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  18. Magnetocaloric effect in cubic spinel Co(Cr0.95Fe0.05)2O4

    NASA Astrophysics Data System (ADS)

    Kumar, Ram; Rayaprol, S.; Xiao, Y.; Ji, W.; Siruguri, V.; Pal, D.

    2018-04-01

    The crystal structure, magnetic properties and magnetocaloric effect (MCE) of Co(Cr0.95Fe0.05)2O4 have been studied. Co(Cr0.95Fe0.05)2O4 synthesized by solid-state reaction method, crystallizes in normal cubic spinel structure with Fd-3m space group. Neutron powder diffraction (NPD) and magnetic measurements when compared to the undoped CoCr2O4, show that the compound is ferrimagnetic (FIM) and transition temperature (TC) is enhanced due to Fe substitution. Analysis of structural and magnetic properties shows the existence of two different sites of magnetic clusters due to Fe/Cr cation disorder. The competition between the moments of the two different sub-lattices gives rise to the temperature induced magnetization reversal at compensation tempearature (Tcomp) = 44 K. The magnetocaloric effect (simply the change in magnetic entropy i.e, -ΔSM) has been observed in Co(Cr0.95Fe0.05)2O4 with different applied magnetic fields (max. H = 90 kOe). We found maximum change of magnetic entropy ˜1.2 J/kg K, for a field change of 90 kOe at FIM transition temperature (TC˜110 K) with relative cooling power (RCP) of ˜13 J/kg. Moreover, the sign change of -ΔSM across the compensation temperature (Tcomp˜ 44 K) shows another phase transition across Tcomp in Co(Cr0.95Fe0.05)2O4. The values of MCE and RCP are also appreciable so as to consider Co(Cr0.95Fe0.05)2O4 as a magnetic refrigerant above liquid nitrogen temperature.

  19. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE PAGES

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel; ...

    2016-09-02

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  20. Nasal potential difference in cystic fibrosis considering severe CFTR mutations.

    PubMed

    Ng, Ronny Tah Yen; Marson, Fernando Augusto de Lima; Ribeiro, Jose Dirceu; Ribeiro, Antonio Fernando; Bertuzzo, Carmen Silvia; Ribeiro, Maria Angela Gonçalves de Oliveira; Severino, Silvana Dalge; Sakano, Eulalia

    2015-01-01

    The gold standard for diagnosing cystic fibrosis (CF) is a sweat chloride value above 60 mEq/L. However, this historical and important tool has limitations; other techniques should be studied, including the nasal potential difference (NPD) test. CFTR gene sequencing can identify CFTR mutations, but this method is time-consuming and too expensive to be used in all CF centers. The present study compared CF patients with two classes I-III CFTR mutations (10 patients) (G1), CF patients with classes IV-VI CFTR mutations (five patients) (G2), and 21 healthy subjects (G3). The CF patients and healthy subjects also underwent the NPD test. A statistical analysis was performed using the Mann-Whitney, Kruskal-Wallis, χ(2), and Fisher's exact tests, α = 0.05. No differences were observed between the CF patients and healthy controls for the PDMax, Δamiloride, and Δchloride + free + amiloride markers from the NPD test. For the finger value, a difference between G2 and G3 was described. The Wilschanski index values were different between G1 and G3. In conclusion, our data showed that NPD is useful for CF diagnosis when classes I-III CFTR mutations are screened. However, if classes IV-VI are considered, the NPD test showed an overlap in values with healthy subjects.

  1. Nasal Potential Difference in Cystic Fibrosis considering Severe CFTR Mutations

    PubMed Central

    Ng, Ronny Tah Yen; Marson, Fernando Augusto de Lima; Ribeiro, Jose Dirceu; Ribeiro, Antonio Fernando; Bertuzzo, Carmen Silvia; Ribeiro, Maria Angela Gonçalves de Oliveira; Severino, Silvana Dalge; Sakano, Eulalia

    2015-01-01

    The gold standard for diagnosing cystic fibrosis (CF) is a sweat chloride value above 60 mEq/L. However, this historical and important tool has limitations; other techniques should be studied, including the nasal potential difference (NPD) test. CFTR gene sequencing can identify CFTR mutations, but this method is time-consuming and too expensive to be used in all CF centers. The present study compared CF patients with two classes I-III CFTR mutations (10 patients) (G1), CF patients with classes IV-VI CFTR mutations (five patients) (G2), and 21 healthy subjects (G3). The CF patients and healthy subjects also underwent the NPD test. A statistical analysis was performed using the Mann-Whitney, Kruskal-Wallis, χ 2, and Fisher's exact tests, α = 0.05. No differences were observed between the CF patients and healthy controls for the PDMax, Δamiloride, and Δchloride + free + amiloride markers from the NPD test. For the finger value, a difference between G2 and G3 was described. The Wilschanski index values were different between G1 and G3. In conclusion, our data showed that NPD is useful for CF diagnosis when classes I-III CFTR mutations are screened. However, if classes IV-VI are considered, the NPD test showed an overlap in values with healthy subjects. PMID:25667564

  2. Narcissistic Personality Disorder in Clinical Health Psychology Practice: Case Studies of Comorbid Psychological Distress and Life-Limiting Illness.

    PubMed

    Kacel, Elizabeth L; Ennis, Nicole; Pereira, Deidre B

    2017-01-01

    Narcissistic Personality Disorder (NPD) is characterized by a persistent pattern of grandiosity, fantasies of unlimited power or importance, and the need for admiration or special treatment. Individuals with NPD may experience significant psychological distress related to interpersonal conflict and functional impairment. Research suggests core features of the disorder are associated with poor prognosis in therapy, including slow progress to behavioral change, premature patient-initiated termination, and negative therapeutic alliance. The current manuscript will explore challenges of working with NPD within the context of life-limiting illness for two psychotherapy patients seen in a behavioral health clinic at a large academic health science center. The ways in which their personality disorder affected their illness-experience shared significant overlap characterized by resistance to psychotherapeutic change, inconsistent adherence to medical recommendations, and volatile relationships with providers. In this manuscript we will (1) explore the ways in which aspects of narcissistic personality disorder impacted the patients' physical health, emotional well-being, and healthcare utilization; (2) describe psychotherapeutic methods that may be useful for optimizing psychosocial, behavioral, and physical well-being in individuals with co-morbid NPD and life-limiting disease; and (3) review conceptualizations of NPD from the DSM-5 alternative model for assessing personality function via trait domains.

  3. PubMed

    Wanden-Berghe Lozano, Carmina; Campos Martín, Cristina; Cuerda Compes, Cristina; Gómez Candela, Carmen; Burgos Peláez, Rosa; Moreno Villares, José Manuel; Pereira Cunill, José Luis; Pérez de la Cruz, Antonio; Virgili Casas, Nuria; Martinez Faedo, Ceferino; Álvarez Hernández, Julia; Garde Orbaiz, Carmen; Penacho Lázaro, Mª Ángeles; Sánchez Martos, Eva Ángeles; Sanz Paris, Alejandro; Gonzalo Marín, Montserrat; Zugasti Murillo, Ana; Matía Martín, Pilar; Martín Folgueras, Tomás; Carabaña Pérez, Fátima; Díaz Guardiola, Patricia; Tejera Pérez, Cristina; De Luis Román, Daniel; Luengo Pérez, Luis Miguel; Santacruz Carmona, Nieves; Apezetxea Celaya, Antxón; Ponce González, Miguel Ángel; Urgeles Planella, Juan Ramón; Laborda González, Lucía; Martinez Olmos, Miguel Ángel; Sánchez-Vilar Burdiel, Olga; Joaquín Ortiz, Clara; Martínez Costa, Cecilia; Suárez Llanos, José Pablo; Calleja Fernández, Alicia; Leyes García, Pere; Gil Martinez, Mª Carmen; Mauri Roca, Silvia; García Zafra, Maria Victoria; Carrera Santaliestra, María José; Nadya-Senpe, Grupo

    2016-11-29

    Objetivo: Comunicar los datos del registro de Nutrición Parenteral Domiciliaria (NPD) del grupo de trabajo NADYA-SENPE del años 2015.Material y métodos: Recopilación de los datos de NPD del registro "on-line" del grupo de Nutrición Artificial Domiciliaria y Ambulatoria (NADYA) desde el 1 de enero de 2015 al 31 de diciembre de 2015.Resultados: Se registraron 236 pacientes, con 243 episodios de NPD procedentes de 40 hospitales. Lo que representa una tasa de 5,08 pacientes/millón de habitantes/ año 2015. La patología más frecuente en los adultos fue "otros" (26,3%) seguido por "oncológico paliativo" (21,6%).  La complicación más frecuente fue la séptica relacionada con el catéter que presentó una tasa de 0,53 infecciones/1000 días de NPD. Finalizaron 64 episodios, la principal causa fue el fallecimiento (43,7%) y el 'paso a la vía oral' (32,8%).Conclusiones: constatamos el aumento de los centros y profesionales colaboradores, dando respuesta a la cantidad progresivamente mayor de pacientes con soporte nutricional parenteral en domicilio. Se mantienen estables las principales indicaciones para el establecimiento de NPD y las causas de finalización del tratamiento.

  4. Narcissistic Personality Disorder in Clinical Health Psychology Practice: Case Studies of Comorbid Psychological Distress and Life-Limiting Illness

    PubMed Central

    Kacel, Elizabeth L.; Ennis, Nicole; Pereira, Deidre B.

    2018-01-01

    Narcissistic Personality Disorder (NPD) is characterized by a persistent pattern of grandiosity, fantasies of unlimited power or importance, and the need for admiration or special treatment. Individuals with NPD may experience significant psychological distress related to interpersonal conflict and functional impairment. Research suggests core features of the disorder are associated with poor prognosis in therapy, including slow progress to behavioral change, premature patient-initiated termination, and negative therapeutic alliance. The current manuscript will explore challenges of working with NPD within the context of life-limiting illness for two psychotherapy patients seen in a behavioral health clinic at a large academic health science center. The ways in which their personality disorder affected their illness-experience shared significant overlap characterized by resistance to psychotherapeutic change, inconsistent adherence to medical recommendations, and volatile relationships with providers. In this manuscript we will (1) explore the ways in which aspects of narcissistic personality disorder impacted the patients’ physical health, emotional well-being, and healthcare utilization; (2) describe psychotherapeutic methods that may be useful for optimizing psychosocial, behavioral, and physical well-being in individuals with comorbid NPD and life-limiting disease; and (3) review conceptualizations of NPD from the DSM-5 alternative model for assessing personality function via trait domains. PMID:28767013

  5. Effects of Peripheral Architecture on the Properties of Aryl Polyhedral Oligomeric Silsesquioxanes

    DTIC Science & Technology

    2012-07-26

    POSS) molecules are described. These POSS materials were synthesized in our laboratory and characterized by single-crystal and powder X - ray diffraction ...powder X - ray diffraction (XRD), where applicable. 1H, 13C, and 29Si NMR spectra were obtained on Bruker 300 and 400 MHz spectrometers using 5 mm o.d...degree of cage ordering during precipitation. Referring back to Figure 14, strong X - ray scattering peaks in the spectra for 1 in the d- spacing range

  6. Insertion of Guest Molecules into a Mixed Ligand Metal-Organic Framework via Single-Crystal-to-Single Crystal Guest Exchange

    DTIC Science & Technology

    2014-07-01

    powder x-ray diffraction (PXRD), thermogravimentric analysis (TGA), and Fourier transform infrared (FTIR). 15. SUBJECT TERMS Metal organic frame work...the inclusion by using a variety of analytical techniques, such as powder x-ray diffraction (PXRD), thermo-gravimetric analysis (TGA), Fourier...Characterizations Analysis of the MOF and the complexes with the MOF and the guest molecules was performed using an Agilent GC-MS (Model 6890N GC and Model 5973N

  7. Testing the limits of sensitivity in a solid-state structural investigation by combined X-ray powder diffraction, solid-state NMR, and molecular modelling.

    PubMed

    Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu

    2011-10-28

    A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. This journal is © the Owner Societies 2011

  8. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  9. Crystallographic Determination of Molecular Parameters for K2SiF6: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Loehlin, James H.; Norton, Alexandra P.

    1988-01-01

    Describes a crystallography experiment using both diffraction-angle and diffraction-intensity information to determine the lattice constant and a lattice independent molecular parameter, while still employing standard X-ray powder diffraction techniques. Details the method, experimental details, and analysis for this activity. (CW)

  10. Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.

    PubMed

    Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-02-06

    The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and  followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated  samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.

  11. Does extensive genotyping and nasal potential difference testing clarify the diagnosis of cystic fibrosis among patients with single-organ manifestations of cystic fibrosis?

    PubMed

    Ooi, Chee Y; Dupuis, Annie; Ellis, Lynda; Jarvi, Keith; Martin, Sheelagh; Ray, Peter N; Steele, Leslie; Kortan, Paul; Gonska, Tanja; Dorfman, Ruslan; Solomon, Melinda; Zielenski, Julian; Corey, Mary; Tullis, Elizabeth; Durie, Peter

    2014-03-01

    The phenotypic spectrum of cystic fibrosis (CF) has expanded to include patients affected by single-organ diseases. Extensive genotyping and nasal potential difference (NPD) testing have been proposed to assist in the diagnosis of CF when sweat testing is inconclusive. However, the diagnostic yield of extensive genotyping and NPD and the concordance between NPD and the sweat test have not been carefully evaluated. We evaluated the diagnostic outcomes of genotyping (with 122 mutations included as disease causing), sweat testing and NPD in a prospectively ascertained cohort of undiagnosed patients who presented with chronic sino-pulmonary disease (RESP), chronic/recurrent pancreatitis (PANC) or obstructive azoospermia (AZOOSP). 202 patients (68 RESP, 42 PANC and 92 AZOOSP) were evaluated; 17.3%, 22.8% and 59.9% had abnormal, borderline and normal sweat chloride results, respectively. Only 17 (8.4%) patients were diagnosable as having CF by genotyping. Compared to sweat testing, NPD identified more patients as having CF (33.2%) with fewer borderline results (18.8%). The level of agreement according to kappa statistics (and the observed percentage of agreement) between sweat chloride and NPD in RESP, PANC and AZOOSP subjects was 'moderate' (65% observed agreement), 'poor' (33% observed agreement) and 'fair' (28% observed agreement), respectively. The degree of agreement only improved marginally when subjects with borderline sweat chloride results were excluded from the analysis. The diagnosis of CF or its exclusion is not always straightforward and may remain elusive even with comprehensive evaluation, particularly among individuals who present at an older age with single-organ manifestations suggestive of CF.

  12. Phase diagram of the relaxor ferroelectric (1- x )Pb(Mg 1/3Nb 2/3)O 3+ x PbTiO 3 revisited: a neutron powder diffraction study of the relaxor skin effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelan, D.; Rodriguez, E. E.; Gao, J.

    2014-11-17

    We revisit the phase diagram of the relaxor ferroelectric PMN- xPT using neutron powder diffraction to test suggestions that residual oxygen vacancies and/or strain affect the ground state crystal structure. Powdered samples of PMN- xPT were prepared with nominal compositions of x = 0:10, 0.20, 0.30, and 0.40 and divided into two identical sets, one of which was annealed in air to relieve grinding-induced strain and to promote an ideal oxygen stoichiometry. For a given composition and temperature the same structural phase is observed for each specimen. However, the distortions in all of the annealed samples are smaller than thosemore » in the as-grown samples. Further, the diffraction patterns for x = 0:10, 0.20, and 0.30 are best refined using the monoclinic Cm space group. By comparing our neutron diffraction results to those obtained on single crystals having similar compositions, we conclude that the relaxor skin effect in PMN- xPT vanishes on the Ti-rich side of the morphotropic phase boundary.« less

  13. Hydrogenation properties of Li{sub x}Sr{sub 1−x}AlSi studied by quantum-chemical methods (0≤x≤1) and in-situ neutron powder diffraction (x=1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; FR 8.1 Universität des Saarlandes, Postach 151150, 66041 Saarbrücken; Reichert, Christian

    2015-01-15

    In-situ neutron powder diffraction studies of the Half-Heusler phase LiAlSi under high deuterium pressures and first principle calculations of solid solutions of Li{sub x}Sr{sub 1−x}AlSi and their hydrides Li{sub x}Sr{sub 1−x}AlSiH were carried out. In contrast to an earlier study, there is no experimental evidence for hydrogen (deuterium) uptake up to gas pressures of 15 MPa and temperatures of 550 °C. Instead a slow decomposition reaction according to LiAlSi+1/2H{sub 2}=LiH+Al+Si was found by in-situ neutron powder diffraction. Theoretical calculations by DFT methods on hypothetical solid solutions of Li{sub x}Sr{sub 1−x}AlSi show the LiAlSi type to be the energetically most stablemore » structure for 0.7« less

  14. Thinking Structurally About Narcissism: An Examination of the Five-Factor Narcissism Inventory and Its Components.

    PubMed

    Miller, Joshua D; Lynam, Donald R; McCain, Jessica L; Few, Lauren R; Crego, Cristina; Widiger, Thomas A; Campbell, W Keith

    2016-02-01

    The Five-Factor Narcissism Inventory (FFNI) is a self-report measure of the traits linked to grandiose and vulnerable narcissism, as well as narcissistic personality disorder (NPD), from a five-factor model perspective (FFM). In the current studies, the factor structure of the FFNI was explored and the results supported the extraction of three factors: Antagonism (e.g., Arrogance), Neuroticism (e.g., Need for Admiration), and Agentic Extraversion (e.g., Authoritativeness). In Study 2, the FFNI factors manifested convergent validity with their corresponding Big Five domains and diverging relations with measures of grandiose and vulnerable narcissism, NPD, and self-esteem. Ultimately, the FFNI factors help explicate the differences between various expressions of narcissism such that all are related to Antagonism but differ with regard to Neuroticism (relevant to vulnerable narcissism and NPD) and Agentic Extraversion (relevant to grandiose narcissism and NPD). The results also highlight the complex relation between self-esteem and the traits that comprise narcissism measures.

  15. Sweat Chloride as A Biomarker of CFTR Activity: Proof of Concept and Ivacaftor Clinical Trial Data

    PubMed Central

    Accurso, Frank J.; Van Goor, Fredrick; Zha, Jiuhong; Stone, Anne J.; Dong, Qunming; Ordonez, Claudia L.; Rowe, Steven M.; Clancy, John Paul; Konstan, Michael W.; Hoch, Heather E.; Heltshe, Sonya L.; Ramsey, Bonnie W.; Campbell, Preston W.; Ashlock, Melissa A.

    2014-01-01

    Background We examined data from a Phase 2 trial {NCT00457821 } of ivacaftor, a CFTR potentiator, in cystic fibrosis (CF) patients with a G551D mutation to evaluate standardized approaches to sweat chloride measurement and to explore the use of sweat chloride and nasal potential difference (NPD) to estimate CFTR activity. Methods Sweat chloride and NPD were secondary endpoints in this placebo-controlled, multicenter trial. Standardization of sweat collection, processing, and analysis was employed for the first time.. Sweat chloride and chloride ion transport (NPD) were integrated into a model of CFTR activity. Results Within-patient sweat chloride determinations showed sufficient precision to detect differences between dose-groups and assess ivacaftor treatment effects. Analysis of changes in sweat chloride and NPD demonstrated that patients treated with ivacaftor achieved CFTR activity equivalent to approximately 35%–40% of normal. Conclusions Sweat chloride is useful in multicenter trials as a biomarker of CFTR activity and to test the effect of CFTR potentiators. PMID:24660233

  16. Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data.

    PubMed

    Accurso, Frank J; Van Goor, Fredrick; Zha, Jiuhong; Stone, Anne J; Dong, Qunming; Ordonez, Claudia L; Rowe, Steven M; Clancy, John Paul; Konstan, Michael W; Hoch, Heather E; Heltshe, Sonya L; Ramsey, Bonnie W; Campbell, Preston W; Ashlock, Melissa A

    2014-03-01

    We examined data from a Phase 2 trial {NCT00457821} of ivacaftor, a CFTR potentiator, in cystic fibrosis (CF) patients with aG551D mutation to evaluate standardized approaches to sweat chloride measurement and to explore the use of sweat chloride and nasal potential difference (NPD) to estimate CFTR activity. Sweat chloride and NPD were secondary endpoints in this placebo-controlled, multicenter trial. Standardization of sweat collection, processing,and analysis was employed for the first time. Sweat chloride and chloride ion transport (NPD) were integrated into a model of CFTR activity. Within-patient sweat chloride determinations showed sufficient precision to detect differences between dose-groups and assess ivacaftor treatment effects. Analysis of changes in sweat chloride and NPD demonstrated that patients treated with ivacaftor achieved CFTR activity equivalent to approximately 35%–40% of normal. Sweat chloride is useful in multicenter trials as a biomarker of CFTR activity and to test the effect of CFTR potentiators.

  17. Validity aspects of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, narcissistic personality disorder construct.

    PubMed

    Karterud, Sigmund; Øien, Maria; Pedersen, Geir

    2011-01-01

    The Diagnostic and Statistical Manual of Mental Disorders (DSM), Fourth Edition, narcissistic personality disorder (NPD) construct has been criticized for being too narrowly defined, for example, by focusing on overt grandiosity at the expense of exhibitionism and narcissistic vulnerability and thus covering only parts of the domain of narcissism. The purpose of this study was to elucidate several validity aspects of the NPD construct. The material consisted of data from 2277 patients (80% of whom had a personality disorder [PD]) who were admitted to units connected to The Norwegian Network of Psychotherapeutic Day Hospitals. The Axis II diagnoses were assessed by Structured Clinical Interview for DSM, Fourth Edition, Axis II Personality Disorders. The frequency of NPD was very low (0.8%). Male patients were overrepresented both on a diagnostic level and on criteria levels. The NPD category was positively associated with other cluster B disorders and negatively associated with avoidant PD. The criteria "demands excessive admiration" and "fantasies of unlimited success" correlated almost as highly with the histrionic PD category and loaded primarily on a histrionic factor. The dominant NPD factor also included the antisocial criterion of "showing no regret having injured others." The major part of the patients' personality pathology could be attributed to other PD criteria. The results challenge the notion of NPD as a distinct diagnostic category. Rather, narcissism should be conceived as personality dimensions pertinent to the whole range of PDs. The results support the views put forward by Russ et al (Refining the construct of narcissistic personality disorder: diagnostic criteria and subtypes. Am J Psychiatry 2008;11:1473-1481) that what clinicians conceive as narcissism consists of several subtypes (dimensions). Our data support the existence of a grandiose/malignant type and an exhibitionistic type. Unfortunately, there was no measure of hypersensitivity. The proposal to delete NPD as a prototype category in the DSM, Fifth Edition, seems well justified. However, the proposed trait domain of antagonism in the DSM, Fifth Edition, seems to account better for the grandiose/malignant dimension than the exhibitionistic/histrionic dimension. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  19. Crystal structure of choline fenofibrate (Trilipix®), (C5H14NO) (C17H14ClO4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Zhong, Kai; Gindhart, Amy M.

    2016-04-04

    The crystal structure of choline fenofibrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Choline fenofibrate crystallizes in space groupPbca(#61) witha= 12.341 03(2),b= 28.568 70(6),c= 12.025 62(2) Å,V= 4239.84(1) Å 3, andZ= 8. The hydroxyl group of the choline anion makes a strong hydrogen bond to the ionized carboxylate group of the fenofibrate anion. Together with C–H···O hydrogen bonds, these link the cations and anions into layers parallel to theac-plane. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.

  20. New Product Development (NPD) Process - An Example of Industrial Sector

    NASA Astrophysics Data System (ADS)

    Kazimierska, Marianna; Grębosz-Krawczyk, Magdalena

    2017-12-01

    This aim of this article is to present the process of new product introduction on example of industrial sector in context of new product development (NPD) concept. In the article, the concept of new product development is discussed and the different stages of the process of new electric motor development are analysed taking into account its objectives, implemented procedures, functions and responsibilities division. In the article, information from secondary sources and the results of empirical research - conducted in an international manufacturing company - are used. The research results show the significance of project leader and regular cooperation with final client in the NPD process.

  1. The Five-Factor Narcissism Inventory (FFNI): a test of the convergent, discriminant, and incremental validity of FFNI scores in clinical and community samples.

    PubMed

    Miller, Joshua D; Few, Lauren R; Wilson, Lauren; Gentile, Brittany; Widiger, Thomas A; Mackillop, James; Keith Campbell, W

    2013-09-01

    The five-factor narcissism inventory (FFNI) is a new self-report measure that was developed to assess traits associated with narcissistic personality disorder (NPD), as well as grandiose and vulnerable narcissism from a five-factor model (FFM) perspective. In the current study, the FFNI was examined in relation to Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV; American Psychiatric Association, 2000) NPD, DSM-5 (http://www.dsm5.org) NPD traits, grandiose narcissism, and vulnerable narcissism in both community (N = 287) and clinical samples (N = 98). Across the samples, the FFNI scales manifested good convergent and discriminant validity such that FFNI scales derived from FFM neuroticism were primarily related to vulnerable narcissism scores, scales derived from FFM extraversion were primarily related to grandiose scores, and FFNI scales derived from FFM agreeableness were related to both narcissism dimensions, as well as the DSM-IV and DSM-5 NPD scores. The FFNI grandiose and vulnerable narcissism composites also demonstrated incremental validity in the statistical prediction of these scores, above and beyond existing measures of DSM NPD, grandiose narcissism, and vulnerable narcissism, respectively. The FFNI is a promising measure that provides a comprehensive assessment of narcissistic pathology while maintaining ties to the significant general personality literature on the FFM.

  2. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.

    PubMed

    Bolzoni, L; Weissgaerber, T; Kieback, B; Ruiz-Navas, E M; Gordo, E

    2013-04-01

    The Ti-6Al-7Nb alloy was obtained using the blending elemental approach with a master alloy and elemental titanium powders. Both the elemental titanium and the Ti-6Al-7Nb powders were characterised using X-ray diffraction, differential thermal analysis and dilatometry. The powders were processed using the conventional powder metallurgy route that includes uniaxial pressing and sintering. The trend of the relative density with the sintering temperature and the microstructural evolution of the materials sintered at different temperatures were analysed using scanning electron microscopy and X-ray diffraction. A minimum sintering temperature of 1200°C has to be used to ensure the homogenisation of the alloying elements and to obtain a pore structure composed of spherical pores. The sintered samples achieve relative density values that are typical for powder metallurgy titanium and no intermetallic phases were detected. Mechanical properties comparable to those specified for wrought Ti-6Al-7Nb medical devices are normally obtained. Therefore, the produced materials are promising candidates for load bearing applications as implant materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  4. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  5. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results of our studies show, that Sic nanocrystals have the features of two phases, each with its distinct elastic properties. and under pressures up to 8 GPa.

  6. A Comparison of Cocrystal Structure Solutions from Powder and Single Crystal Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Lapidus; P Stephens; K Arora

    We demonstrate the effectiveness and accuracy of high resolution powder diffraction for determination of cocrystal structures through a double-blind study. Structures of 10 cocrystals of varying complexity were determined independently using single crystal and powder techniques. The two methodologies give identical molecular packing and hydrogen bond topology, and an rms difference in covalent bond lengths of 0.035 {angstrom}. Powder techniques are clearly sufficient to establish a complete characterization of cocrystal geometry.

  7. Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.

    PubMed

    Fabio, Karine; Curley, Kieran; Guarneri, Joseph; Adamo, Benoit; Laurenzi, Brendan; Grant, Marshall; Offord, Robin; Kraft, Kelly; Leone-Bay, Andrea

    2015-12-01

    In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).

  8. X-ray investigations related to the shock history of the Shergotty achondrite

    NASA Technical Reports Server (NTRS)

    Horz, F.; Hanss, R.; Serna, C.

    1986-01-01

    The shock stress suffered by naturally shocked materials from the Shergotty achondrite was studied using X-ray diffraction techniques and experimentally shocked augite and enstatite as standards. The Shergotty pyroxenes revealed the formation of continuous diffraction rings, line broadening, preferred orientation of small scale diffraction domains, and other evidence of substantial lattice disorders. As disclosed by the application of Debye-Scherrer techniques, they are hybrids between single crystals and fine-grained random powders. The pyroxene lattice is very resistant to shock damage on smaller scales. While measurable lattice disaggregation and progressive fragmentation occur below 25 GPa, little additional damage is suffered from application of pressures between 30 to 60 GPa, making pressure calibration of naturally shocked pyroxenes via X-ray methods difficult. Powder diffractometer scans on pure maskelynite fractions of Shergotty revealed small amounts of still coherently diffracting plagioclase, which may contribute to the high refractive indices of the diaplectic feldspar glasses of Shergotty.

  9. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  10. Valence fluctuating compound α-YbAlB4 studied by 174Yb Mössbauer spectroscopy and X-ray diffraction using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Oura, Momoko; Ikeda, Shugo; Masuda, Ryo; Kobayashi, Yasuhiro; Seto, Makoto; Yoda, Yoshitaka; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo; Suzuki, Shintaro; Kuga, Kentaro; Nakatsuji, Satoru; Kobayashi, Hisao

    2018-05-01

    The structural properties and the Yb 4 f electronic state of the valence fluctuating α-YbAlB4 have been investigated by powder X-ray diffraction under pressure and 174Yb Mössbauer spectroscopy with magnetic fields at low temperature, respectively, using synchrotron radiation. Powder X-ray diffraction patterns showed that the crystal structure does not change up to p ∼ 18 GPa at 8 K and the volume decreases smoothly. However, the pressure dependence of the difference in the structure factor between the (060) and (061) diffraction lines changes at ∼ 3.4 GPa, indicating the change of atomic coordination parameters. The 174Yb Mössbauer spectroscopy measurements at 2 K with 10 and 50 kOe suggest that the electrical quadrupole interaction changes by applied magnetic fields.

  11. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  12. Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.

    2012-02-01

    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

  13. Synthesis and Characterization of Single-Source Molecular Precursors to Binary Metal Sulphides: Bis(Diethyldithiocarbamato) M(II)Trialkylphosphine (M=Zn and Cd) Adducts

    DTIC Science & Technology

    1994-05-06

    while the heterobimetallic species, 7, thermally decomposed to give00 crystalline ZnO.5S according to X-ray powder diffraction data. A. SUBJECT TERMS 15... heterobimetallic species, 7, thermally decomposed to give crystalline ZnO.5CdO.5S according to X-ray powder diffraction data. LaGOSSIOn "or OTIS RA&I VT-iC TAB EU...on the NMR timescale, and a single heterobimetallic species. Attempts to distinguish these possibilities are described later. The variable temperature

  14. Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders.

    PubMed

    Montazeri, Leila; Javadpour, Jafar; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Javadian, Sayfoddin

    2010-08-01

    Pure hydroxyapatite (HAp) and fluoride-containing apatite powders (FHAp) were synthesized using a hydrothermal method. The powders were assessed by x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and F-selective electrode. X-ray diffraction results revealed the formation of single phase apatite structure for all the compositions synthesized in this work. However, the addition of a fluoride ion led to a systematic shift in the (3 0 0) peak of the XRD pattern as well as modifications in the FTIR spectra. It was found that the efficiency of fluoride ion incorporation decreased with the increase in the fluoride ion content. Fluorine incorporation efficiency was around 60% for most of the FHAp samples prepared in the current study. Smaller and less agglomerated particles were obtained by fluorine substitution. The bioactivity of the powder samples with different fluoride contents was compared by performing cell proliferation, alkaline phosphatase (ALP) and Alizarin red staining assays. Human osteoblast cells were used to assess the cellular responses to the powder samples in this study. Results demonstrated a strong dependence of different cell activities on the level of fluoridation.

  15. Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakata, M.; Aoyagi, S.; Ogura, T.

    2007-01-19

    Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kindmore » of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.« less

  16. Investigation of the Surface Stress in SiC and Diamond Nanocrystals by In-situ High Pressure Powder Diffraction Technique

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.

    2003-01-01

    The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.

  17. Calculating cellulose diffraction patterns

    USDA-ARS?s Scientific Manuscript database

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  18. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  19. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  20. Structure of N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide by combined X-ray powder diffraction, 13C solid-state NMR and molecular modelling.

    PubMed

    Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu

    2010-12-01

    The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.

  1. Crystal structure of paliperidone palmitate (INVEGA SUSTENNA®), C39H57FN4O4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Dmitrienko, Artem O.; Gindhart, Amy M.

    2017-08-29

    The crystal structure of paliperidone palmitate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Paliperidone palmitate crystallizes in space groupP2 1/c(#14) witha= 34.415 40(35),b= 10.093 49(7),c= 10.904 92(9) Å,β= 94.3917(9)°,V= 3776.94(6) Å 3, andZ= 4. The conformation of the paliperidone fragment differs from that of the parent compound. The palmitate chain exhibits a slight twist close to the ester group. Several C–H•••O hydrogen bonds contribute to the crystal packing, which is dominated by van der Waals interactions. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1614.

  2. Nonvolatile RRAM cells from polymeric composites embedding recycled SiC powders.

    PubMed

    De Girolamo Del Mauro, Anna; Nenna, Giuseppe; Miscioscia, Riccardo; Freda, Cesare; Portofino, Sabrina; Galvagno, Sergio; Minarini, Carla

    2014-10-21

    Silicon carbide powders have been synthesized from tires utilizing a patented recycling process. Dynamic light scattering, Raman spectroscopy, SEM microscopy, and X-ray diffraction have been carried out to gather knowledge about powders and the final composite structure. The obtained powder has been proven to induce resistive switching in a PMMA polymer-based composite device. Memory effect has been detected in two-terminal devices having coplanar contacts and quantified by read-write-erase measurements in terms of level separation and persistence.

  3. Narcissism: The Good, the Bad, and the Ugly

    ERIC Educational Resources Information Center

    Spencer, Vicky G.; Garcia-Simpson, Cynthia; Newland, Shera

    2007-01-01

    The purpose of this article was to explore the complex issues surrounding the behaviors exhibited by students who have Narcissistic Personality Disorder (NPD) and the role the disorder may play in school violence. Students with NPD are often characterized by arrogance, grandiosity, and self-importance; a preoccupation with fantasies of success and…

  4. The Teaching Styles and Use of Adult Learning Theory among Nursing Professional Development Educators

    ERIC Educational Resources Information Center

    Curran, Mary K.

    2013-01-01

    The American Nurses Association advocates for nursing professional development (NPD) specialists to have an earned graduate degree, as well as educational and clinical expertise. However, many NPD specialists have limited exposure to adult learning theory (ALT), and this lack of exposure may reduce organizational knowledge transfer (KT) and the…

  5. A semi-blinded study comparing 2 methods of measuring nasal potential difference: Subcutaneous needle versus dermal abrasion.

    PubMed

    De Wachter, E; De Schutter, I; Meulemans, A; Buyl, R; Malfroot, A

    2016-01-01

    According to European and US protocols, two nasal potential difference (NPD) measurement methods are considered acceptable, although they have not been formally compared: subcutaneous agar-filled needle with calomel (Ndl) and dermal abrasion with conducting cream and Ag/AgCl electrodes (Abr). We compared both in CF and healthy volunteers (HV), assessing their discriminative value and subject's preference. Twelve classic CF and 17 HV underwent both NPD methods, performed by one operator in random order. A written questionnaire, assessing preference, was completed after each test. Tracings were coded, scored in a semi-blinded fashion and categorised as CF/non-CF. 110 tracings (56 Ndl/54 Abr) were collected: 42/110 scored CF and 68/110 non-CF, showing a good correlation. No significant preference for either method was reported. Both NPD methods are similar in terms of discriminative value and subject's preference, comparing classical CF and HV. For diagnosing CF, the operator's preferred NPD-method may be used. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  6. Docosahexaenoic Acid and the Aging Brain1–3

    PubMed Central

    Lukiw, Walter J.; Bazan, Nicolas G.

    2008-01-01

    The dietary essential PUFA docosahexaenoic acid [DHA; 22:6(n-3)] is a critical contributor to cell structure and function in the nervous system, and deficits in DHA abundance are associated with cognitive decline during aging and in neurodegenerative disease. Recent studies underscore the importance of DHA-derived neuroprotectin D1 (NPD1) in the homeostatic regulation of brain cell survival and repair involving neurotrophic, antiapoptotic and antiinflammatory signaling. Emerging evidence suggests that NPD1 synthesis is activated by growth factors and neurotrophins. Evolving research indicates that NPD1 has important determinant and regulatory interactions with the molecular-genetic mechanisms affecting β-amyloid precursor protein (βAPP) and amyloid beta (Aβ) peptide neurobiology. Deficits in DHA or its peroxidation appear to contribute to inflammatory signaling, apoptosis, and neuronal dysfunction in Alzheimer disease (AD), a common and progressive age-related neurological disorder unique to structures and processes of the human brain. This article briefly reviews our current understanding of the interactions of DHA and NPD1 on βAPP processing and Aβ peptide signaling and how this contributes to oxidative and pathogenic processes characteristic of aging and AD pathology. PMID:19022980

  7. A multiple reader scoring system for Nasal Potential Difference parameters.

    PubMed

    Solomon, George M; Liu, Bo; Sermet-Gaudelus, Isabelle; Fajac, Isabelle; Wilschanski, Michael; Vermeulen, Francois; Rowe, Steven M

    2017-09-01

    Nasal Potential Difference (NPD) is a biomarker of CFTR activity used to diagnose CF and monitor experimental therapies. Limited studies have been performed to assess agreement between expert readers of NPD interpretation using a scoring algorithm. We developed a standardized scoring algorithm for "interpretability" and "confidence" for PD (potential difference) measures, and sought to determine the degree of agreement on NPD parameters between trained readers. There was excellent agreement for interpretability between NPD readers for CF and fair agreement for normal tracings but slight agreement of interpretability in indeterminate tracings. Amongst interpretable tracings, excellent correlation of mean scores for Ringer's Baseline PD, Δ amiloride , and Δ Cl-free+Isoproterenol was observed. There was slight agreement regarding confidence of the interpretable PD tracings, resulting in divergence of the Ringers and Δ amiloride , and ΔCl -free+Isoproterenol PDs between "high" and "low" confidence CF tracings. A multi-reader process with adjudication is important for scoring NPDs for diagnosis and in monitoring of CF clinical trials. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  8. Same Precursor, Two Different Products: Comparing the Structural Evolution of In–Ga–O “Gel-Derived” Powders and Solution-Cast Films Using Pair Distribution Function Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Suzannah R.; Woods, Keenan N.; Plassmeyer, Paul N.

    Amorphous metal oxides are central to a variety of technological applications. In particular, indium gallium oxide has garnered attention as a thin-film transistor channel layer material. In this work we examine the structural evolution of indium gallium oxide gel-derived powders and thin films using infrared vibrational spectroscopy, X-ray diffraction, and pair distribution function (PDF) analysis of X-ray total scattering from standard and normal incidence thin-film geometries (tfPDF). We find that the gel-derived powders and films from the same aqueous precursor evolve differently with temperature, forming mixtures of Ga-substituted In2O3 and In-substituted β-Ga2O3 with different degrees of substitution. X-ray total scatteringmore » and PDF analysis indicate that the majority phase for both the powders and films is an amorphous/nanocrystalline β-Ga2O3 phase, with a minor constituent of In2O3 with significantly larger coherence lengths. This amorphous β-Ga2O3 phase could not be identified using the conventional Bragg diffraction techniques traditionally used to study crystalline metal oxide thin films. The combination of Bragg diffraction and tfPDF provides a much more complete description of film composition and structure, which can be used to detail the effect of processing conditions and structure–property relationships. This study also demonstrates how structural features of amorphous materials, traditionally difficult to characterize by standard diffraction, can be elucidated using tfPDF.« less

  9. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Yuan; Jacobsen, Steven D.; Kimura, Masaki; Irifune, Tetsuo; Ohno, Ichiro

    2014-03-01

    The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have been determined by GHz-ultrasonic interferometry on three different bulk samples, and by resonant spectroscopy on a spherically fabricated NPD sample. We employ a newly-developed optical contact micrometer to measure the thickness of ultrasonic samples to ±0.05 μm with a spatial resolution of ∼50 μm in the same position of the GHz-ultrasonic measurements, resulting in acoustic-wave sound velocity measurements with uncertainties of 0.005-0.02%. The isotropic and adiabatic bulk and shear moduli of NPD measured by GHz-ultrasonic interferometry are KS0 = 442.5 (±0.5) GPa and G0 = 532.4 (±0.5) GPa. By rotating the shear-wave polarization direction, we observe no transverse anisotropy in this NPD. Using resonant sphere spectroscopy, we obtain KS0 = 440.3 (±0.5) GPa and G0 = 532.7 (±0.4) GPa. For comparison, we also measured by GHz-ultrasonic interferometry the elastic constants of a natural single-crystal type-IA diamond with about one-half the experimental uncertainty of previous measurements. The resulting Voigt-Reuss-Hill averaged bulk and shear moduli of natural diamond are KS0 = 441.8 (±0.8) GPa and G0 = 532.6 (±0.5) GPa, demonstrating that the bulk-elastic properties of transparent NPD are equivalent to natural single-crystal diamond as calculated from polycrystalline averaging of its elastic constants.

  10. Seven novel mutations of the SMPD1 gene in four Chinese patients with Niemann-Pick disease type A and prenatal diagnosis for four fetuses.

    PubMed

    Ding, Yuan; Li, Xiyuan; Liu, Yupeng; Hua, Ying; Song, Jinqing; Wang, Liwen; Li, Mengqiu; Qin, Yaping; Yang, Yanling

    2016-04-01

    Niemann-Pick disease type A (NPD-A) is a rare autosomal recessive lysosomal storage disorder caused by acid sphingomyelinase deficiency. Only a few cases have been documented in mainland China, and prenatal diagnosis has not been performed to date. In this study, the clinical and laboratory features of four Chinese patients with early-onset NPD-A were summarized. Four patients with NPD-A were the firstborns of non-consanguineous parents from four unrelated Chinese families. Bone marrow analysis, acid sphingomyelinase assay and genetic studies were performed. SMPD1 gene studies on amniocytes were performed for the prenatal diagnosis of four fetuses from three families. Four patients were admitted at the age of 1-10 months due to jaundice, hepatosplenomegaly and psychomotor retardation. Liver histopathological analysis revealed glucolipid accumulation. Massive foamy histiocytes were found in the bone marrow. Acid sphingomyelinase activities of peripheral blood leukocytes were significantly decreased (4.05-21.9 nmol/h/mg protein, normal range 216.1-950.9 nmol/h/mg protein). Seven novel mutations (c.518-519insT, c.562_563insC, c.792Gdel, c.949G>A, c.1487_1499delACCGTGTGTACCA, c.1495T>C and c.1670T>C) of the SMPD1 gene were identified in four patients. Only one fetus had two mutations of the SMPD1 gene of amniocytes. The results suggested that the fetus was affected by NPD-A. The mother chose artificial abortion. The other three fetuses were not affected by NPD-A. No mutation of the SMPD1 gene was detected in the cultured amniocytes from the mothers. Postnatal genetic analysis and normal development of the three infants confirmed the prenatal diagnosis. Seven novel mutations associated with NPD-A were identified in the Chinese population. Prenatal diagnosis for four fetuses of three families was successfully performed by amniocyte gene analysis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Synthesis and characterization of graphene oxide using modified Hummer's method

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Kaur, Harsimran; Kukkar, Deepak

    2018-05-01

    In the present study, a simple approach has been followed for the synthesis of graphene oxide (GO) using modified Hummers method in which graphite powder was oxidized in the presence of concentrated H2SO4 and KMnO4. The amount of NaNO3 and KMnO4 was varied to produce sheet like structure. The varied concentrations of NaNO3 and KMnO4 resulted in yielding large amount of the product. Structural, morphological and physicochemical features of the product were studied using UV-Visible spectrophotometer, Fourier Transform infrared spectroscopy (FTIR), and crystal structure was determined using X-ray powder diffraction (XRD). UV-Vis spectra of GO was observed at a maximum absorption of 230 nm due to (π-π*) transition of atomic carbon-carbon bonds. FTIR spectra revealed the presence of oxygen containing functional groups which ensures the complete exfoliation of graphite into graphene oxide X-ray powder diffraction pattern of the product showed the diffraction peak at (2θ = 26.7°) with an interlayer spacing of 0.334 nm. All the above characterizations successfully confirmed the formation of GO.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, James D.; Womick, Jordan M.; Rosmus, Kimberly A.

    Novel quaternary lanthanide-substituted oxides of stoichiometry LnxY2-xTi2O7 (where Ln is lanthanum, neodymium, samarium, gadolinium, or ytterbium) were prepared by traditional high-temperature, solid-state techniques and characterized by X-ray powder diffraction. Samples with nominal values of x up to 1.0 were attempted. The well-studied ternary cubic pyrochlore compound yttrium titanium oxide (Y2Ti2O7, space group Fd-3m, Z = 8), served as a parent structural framework in which Ln3+ cations were substituted on the Y3+ site. Laboratory-grade X-ray powder diffraction data revealed pure quaternary pyrochlore phases for LnxY2-xTi2O7 with x ≤ 0.2. Pyrochlore phase purity was verified by Rietveld analysis using high-resolution synchrotron X-raymore » powder diffraction data when x ≤ 0.2, however, for La3+ substitution specifically, pure quaternary pyrochlore formed at x<0.1. Band gap energies on selected samples were determined using optical diffuse reflectance spectroscopy and showed that these materials can be classified as electrical insulators with indirect band gap energies around 3.7 eV.« less

  13. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  14. Structural properties of a family of hydrogen-bonded co-crystals formed between gemfibrozil and hydroxy derivatives of t-butylamine, determined directly from powder X-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter

    2007-03-01

    We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.

  15. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE PAGES

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.; ...

    2017-06-15

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  16. Raman scattering and X-ray powder diffraction studies of hydrate layered perovskites: dirubidium aquapentafluoromanganate(III) and dipotassium aquapentafluoroferrate(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galicka, Karolina; Slodczyk, Aneta; Ratuszna, Alicja

    2004-06-08

    The structural and vibrational properties of above mentioned crystals were determined using X-ray powder diffraction and Raman scattering experiments. At room temperature hydrate layered perovskites: Rb{sub 2}MnF{sub 5}{center_dot}H{sub 2}O and K{sub 2}FeF{sub 5}{center_dot}H{sub 2}O exhibit orthorhombic--Cmcm (D{sub 2h}{sup 17}) and monoclinic--C2/c (C{sub 2h}{sup 6}) symmetry. Their structure is built up of MnF{sub 6} or FeF{sub 5}{center_dot}H{sub 2}O octahedra forming trans-linked zig-zag chains or hydrogen bonded zig-zag chains along the major crystallographic direction [0 0 1], respectively. To confirm crystal structures and to describe lattice dynamics of these compounds the vibrational normal modes (in {gamma} point of first Brillouin zone) weremore » calculated on the base of the group theory analysis and compared with the spectra obtained from Raman scattering experiments. A relatively good reliability was obtained for both X-ray powder diffraction and Raman scattering.« less

  17. Investigation of phase evolution of CaCu3Ti4O12 (CCTO) by in situ synchrotron high-temperature powder diffraction

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Huang, Saifang; Zhang, Weijun; Cao, Peng; Huang, Zhaohui; Gao, Wei

    2014-03-01

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu3Ti4O12 (CCTO) precursors prepared via solid-state and sol-gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol-gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol-gel precursor. Both precursors are able to be calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study.

  18. Development of Cu Reinforced SiC Particulate Composites

    NASA Astrophysics Data System (ADS)

    Singh, Harshpreet; Kumar, Lailesh; Nasimul Alam, Syed

    2015-02-01

    This paper presents the results of Cu-SiCp composites developed by powder metallurgy route and an attempt has been made to make a comparison between the composites developed by using unmilled Cu powder and milled Cu powder. SiC particles as reinforcement was blended with unmilled and as-milled Cu powderwith reinforcement contents of 10, 20, 30, 40 vol. % by powder metallurgy route. The mechanical properties of pure Cu and the composites developed were studied after sintering at 900°C for 1 h. Density of the sintered composites were found out based on the Archimedes' principle. X-ray diffraction of all the composites was done in order to determine the various phases in the composites. Scanning electron microscopy (SEM) and EDS (electron diffraction x-ray spectroscopy) was carried out for the microstructural analysis of the composites. Vickers microhardness tester was used to find out the hardness of the samples. Wear properties of the developed composites were also studied.

  19. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  20. [Autophagy-lysosome pathway in skeletal muscle of diabetic nephropathy rats and the effect of low-protein diet plus α-keto acids on it].

    PubMed

    Huang, Juan; Yuan, Wei-jie; Wang, Jia-lin; Gu, Li-jie; Yin, Jun; Dong, Ting; Bao, Jin-fang; Tang, Zhi-huan

    2013-11-26

    To explore the regulation of autophagy-lysosome pathway (ALP) in skeletal muscle of diabetic nephropathy and examine the effect of low protein diet plus α-keto acid on ALP. A total of 45 24-week-old Goto-Kakizaki rats were randomized to receive normal protein (22%) diet (NPD), low-protein (6%) diet (LPD) or low-protein (5%) plus α-keto acids (1%) diet (Keto) (n = 15 each). Wistar control rats had a normal protein diet. The mRNA and protein levels of ALP markers LC3B, Bnip3, Cathepsin L in soleus muscle were evaluated at 48 weeks. Electron microscopy was used to confirm the changes of autophagy. Compared with CTL group, the mRNA levels of LC3B, Bnip3, Cathepsin L in soleus muscle of rats on NPD were higher, and protein levels of LC3B-I, LC3B-II, Bnip3, Cathepsin L in soleus muscle of rats on NPD also higher than CTL group (0.82 ± 0.33 vs 0.25 ± 0.07, 0.76 ± 0.38 vs 0.20 ± 0.12, 1.25 ± 0.30 vs 0.56 ± 0.19, 1.29 ± 0.40 vs 0.69 ± 0.20). The mRNA levels of LC3B, Bnip3 and Cathepsin L in LPD group were slightly lower, compared with NPD group. However there was no statistical significance. Similarly the protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L in LPD group were slightly lower with no statistical significance. In contrast, the mRNA levels of LC3B, Bnip3 and Cathepsin L were greatly lower in Keto group in comparison with NPD and LPD. And protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L were also greatly lower in Keto group in comparison with NPD and LPD. Additionally, autophagosome or auto-lysosome was found in NPD and LPD groups by electron microscopy. ALP is activated in skeletal muscle of diabetic nephropathy rats. And low protein plus α-keto acid decrease the activation of ALP and improve muscle wasting.

  1. A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform.

    PubMed

    René de Cotret, Laurent P; Siwick, Bradley J

    2017-07-01

    The general problem of background subtraction in ultrafast electron powder diffraction (UEPD) is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT) wavelet transforms when applied to simulated UEPD data on the M1-R phase transition in VO 2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.

  2. X-ray diffraction study of the caged magnetic compound DyFe 2 Zn 20 at low temperatures

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Maeta, K.; Isikawa, Y.

    2018-05-01

    We have carried out high-angle X-ray powder diffraction measurements of the caged magnetic compound DyFe2Zn20 at low temperature between 14 and 300 K. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. The Debye temperature is obtained to be 227 K from the results of the volumetric thermal expansion coefficient, which is approximately coincident with that of CeRu2Zn20 (245 K) and that of pure Zn metal (235 K).

  3. Vibrations and reorientations of H2O molecules in [Sr(H2O)6]Cl2 studied by Raman light scattering, incoherent inelastic neutron scattering and proton magnetic resonance.

    PubMed

    Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert

    2014-04-24

    Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic incoherent neutron scattering (IINS) spectra were calculated by the DFT method and quite a good agreement with the experimental data was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Cabral, Lucio Mendes; Healy, Anne Marie; de Sousa, Valeria Pereira

    2016-03-30

    The purpose of this study was to prepare engineered particles of rivastigmine hydrogen tartrate (RHT) and to characterize the physicochemical and aerodynamic properties, in comparison to a lactose carrier formulation (LCF). Microparticles were prepared from ethanol/water solutions containing RHT with and without the incorporation of L-leucine (Leu), using a spray dryer. Dry powder inhaler formulations prepared were characterized by scanning electron microscopy, powder X-ray diffraction, laser diffraction particle sizing, ATR-FTIR, differential scanning calorimetry, bulk and tapped density, dynamic vapour sorption and in vitro aerosol deposition behaviour using a next generation impactor. The smooth-surfaced spherical morphology of the spray dried microparticles was altered by adding Leu, resulting in particles becoming increasingly wrinkled with increasing Leu. Powders presented low densities. The glass transition temperature was sufficiently high (>90 °C) to suggest good stability at room temperature. As Leu content increased, spray dried powders presented lower residual solvent content, lower particle size, higher fine particle fraction (FPF<5 μm), and lower mass median aerodynamic diameter (MMAD). The LCF showed a lower FPF and higher MMAD, relative to the spray dried formulations containing more than 10% Leu. Spray dried RHT powders presented better aerodynamic properties, constituting a potential drug delivery system for oral inhalation. Copyright © 2016. Published by Elsevier B.V.

  5. High resolution powder diffraction at HASYLAB

    NASA Astrophysics Data System (ADS)

    Wroblewski, Thomas; Ihringer, Jorg; Maichle, Josef

    1988-04-01

    HASYLAB's beamline F1 was modified for powder diffraction in a triple-axis geometry. The diffractometer consists of two independent circles for θ and 2θ motion on either side of the beam. The θ circle can be translated along its axis. This makes the instrument highly flexible for the installation of different attachments like a cryostat which was used for low temperature measurements on the new high Tc superconductors. Measurements on zeolites demonstrate the excellent resolution and signal-to-noise ratio. Novel measuring strategies concerning the use of multiple analyzers, the examination of phase transitions and anomalous dispersion are presented.

  6. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    USGS Publications Warehouse

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  7. TSX-PLUS MULTI-TASKING UPGRADE FOR THE NICOLET L-11 POWDER DIFFRACTION SYSTEM.

    USGS Publications Warehouse

    Fitzpatrick, J.; Queen, David L.

    1985-01-01

    In August of 1982, a single-user, dual-translator, automated powder diffraction system was purchased by the Denver Research Institute for use on project work in the Chemical and Materials Sciences Division. Within a short period of time, the system had already become saturated with users. Scheduling conflicts arose. In view of these problems, an answer was sought in the form of hardware and software changes which would allow many users access to the system simultaneously. A low-cost, minimum impact solution was eventually found. The elements of the solution are reported.

  8. Structure resolution by electron diffraction tomography of the complex layered iron-rich Fe-2234-type Sr{sub 5}Fe{sub 6}O{sub 15.4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepoittevin, Christophe, E-mail: christophe.lepoittevin@neel.cnrs.fr

    2016-10-15

    The crystal structure of the strontium ferrite Sr{sub 5}Fe{sub 6}O{sub 15.4}, was solved by direct methods on electron diffraction tomography data acquired on a transmission electron microscope. The refined cell parameters are a=27.4047(3) Å, b=5.48590(7) Å and c=42.7442(4) Å in Fm2m symmetry. Its structure is built up from the intergrowth sequence between a quadruple perovskite-type layer with a complex rock-salt (RS)-type block. In the latter iron atoms are found in two different environments : tetragonal pyramid and tetrahedron. The structural model was refined by Rietveld method based on the powder X-ray diffraction pattern. - Highlights: • Complex structure of Sr{submore » 5}Fe{sub 6}O{sub 15.4} solved by electron diffraction tomography. • Observed Fourier maps allow determining missing oxygen atoms in the structure. • Structural model refined from powder X-ray diffraction data. • Intergrowth between quadruple perovskite layer with double rock-salt-type layer.« less

  9. The Contributions of Organisational and Technological Practices to the Speedup of New Product Development

    ERIC Educational Resources Information Center

    Sun, Hongyi

    2007-01-01

    Based on data from 700 companies in 20 countries, this paper records the research that investigates the contribution of organisational and technological practices to speed up New Product Development (NPD). The organisational practice is found positively correlated with the speed of NPD. However, no significant direct relationship was found between…

  10. Idealized powder diffraction patterns for cellulose polymorphs

    USDA-ARS?s Scientific Manuscript database

    Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...

  11. Quantitative analysis of crystalline pharmaceuticals in powders and tablets by a pattern-fitting procedure using X-ray powder diffraction data.

    PubMed

    Yamamura, S; Momose, Y

    2001-01-16

    A pattern-fitting procedure for quantitative analysis of crystalline pharmaceuticals in solid dosage forms using X-ray powder diffraction data is described. This method is based on a procedure for pattern-fitting in crystal structure refinement, and observed X-ray scattering intensities were fitted to analytical expressions including some fitting parameters, i.e. scale factor, peak positions, peak widths and degree of preferred orientation of the crystallites. All fitting parameters were optimized by the non-linear least-squares procedure. Then the weight fraction of each component was determined from the optimized scale factors. In the present study, well-crystallized binary systems, zinc oxide-zinc sulfide (ZnO-ZnS) and salicylic acid-benzoic acid (SA-BA), were used as the samples. In analysis of the ZnO-ZnS system, the weight fraction of ZnO or ZnS could be determined quantitatively in the range of 5-95% in the case of both powders and tablets. In analysis of the SA-BA systems, the weight fraction of SA or BA could be determined quantitatively in the range of 20-80% in the case of both powders and tablets. Quantitative analysis applying this pattern-fitting procedure showed better reproducibility than other X-ray methods based on the linear or integral intensities of particular diffraction peaks. Analysis using this pattern-fitting procedure also has the advantage that the preferred orientation of the crystallites in solid dosage forms can be also determined in the course of quantitative analysis.

  12. Low cost synthesis of TiO2-C nanocomposite powder for high efficiency visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Nayak, J.

    2018-04-01

    Titanium dioxide-carbon nanocomposite powder was synthesized via a low cost chemical route using oleic acid and titanium tetra-isopropoxide. Since the carbon remained mainly on the surface of the TiO2 nanoparticles, the powder had black color. The composition of the powder was analyzed by X-ray photoelectron spectroscopy and the structure was studied with X-ray diffraction and transmission electron microscopy. The visible photocatalytic activity of the black TiO2 powder was investigated by studying the photo-bleaching of methylene blue under visible light. Our experimental observation showed that the black-TiO2 powder had a higher visible photocatalytic activity compared to the commercial TiO2 powder (P25 Degussa).

  13. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids

    PubMed Central

    2013-01-01

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493

  14. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids.

    PubMed

    Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M

    2013-06-13

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.

  15. Quantitative phase analysis of challenging samples using neutron powder diffraction. Sample #4 from the CPD QPA round robin revisited

    DOE PAGES

    Whitfield, Pamela S.

    2016-04-29

    Here, quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magneticmore » reflections from Fe 3O 4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Qregion (<0.6 Å) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high- Q (low d-spacing) background using simple polynomials.« less

  16. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Huang, Chao; Yang, Fan; Yang, Xu; Du, Li; Liao, Shijun

    2015-12-01

    A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (NIr/NPd = 0.1), the activity of PdIr0.1/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd-Ir electronic interaction caused by the addition of Ir.

  17. What Alumni Value from New Product Development Education: A Longitudinal Study

    ERIC Educational Resources Information Center

    Cobb, Corie L.; Hey, Jonathan; Agogino, Alice M.; Beckman, Sara L.; Kim, Sohyeong

    2016-01-01

    We present a longitudinal study of what graduates take away from a cross-disciplinary graduate-level New Product Development (NPD) course at UC Berkeley over a 15-year period from 1996-2010. We designed and deployed a longitudinal survey and interviewed a segment of our NPD alumni population to better understand how well our course prepared these…

  18. Iron oxide nanoparticles supported on ultradispersed diamond powders: Effect of the preparation procedure

    NASA Astrophysics Data System (ADS)

    Dimitrov, Momtchil; Ivanova, Ljubomira; Paneva, Daniela; Tsoncheva, Tanya; Stavrev, Stavry; Mitov, Ivan; Minchev, Christo

    2009-01-01

    The state of the iron oxide nanoparticles, supported on ultradispersed diamond (UDD) powders is studied by X-ray diffraction, nitrogen physisorption, temperature-programmed reduction, FTIR and Mössbauer spectroscopy. Methanol decomposition to hydrogen and CO is used as a catalytic test. The peculiarities of the iron oxide species strongly depend on the detonation procedure used for the UDD powders preparation as well as on the iron modification procedure.

  19. Synthesis and characterization of titanium dioxide (TiO2) nanopowder

    NASA Astrophysics Data System (ADS)

    Munirah, S.; Nadzirah, Sh.; Khusaimi, Z.; Fazlena, H.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) powder was synthesized via sol-gel technique using Titanium tetraisopropoxide (TTIP) and ethanol as precursors. Acetylacetone, distilled water, polyethylene glycol (PEG) and stabilizers (glacial acetic acid and nitric acid) were then added to the solution. The solution was left for ageing for 24 hours and then dried into powder. The synthesized powders were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA).

  20. Nasal potential difference: Best or average result for CFTR function as diagnostic criteria for cystic fibrosis?

    PubMed

    Keenan, Katherine; Avolio, Julie; Rueckes-Nilges, Claudia; Tullis, Elizabeth; Gonska, Tanja; Naehrlich, Lutz

    2015-05-01

    The current practice of averaging the nasal potential difference (NPD) results of right and left nostril measurements reduce inter-individual variability but may underestimate individual CFTR function. Best NPD response to Cl(-)-free and isoproterenol perfusion (=largest ΔPD(0Cl/Iso)) from the right and left nostril was compared to the average result in 13 cystic fibrosis (CF), 78 query-CF patients and 22 healthy controls from 2 cohorts. Despite moderate to good correlation (p<0.001) between right and left measured ΔPD(0Cl/Iso), we observed large differences in some individuals. A comparison of average versus best ΔPD(0Cl/Iso) showed only moderate agreement (Giessen κ=0.538; Toronto κ=0.607). Averaging ΔPD(0Cl/Iso) showed a lower composite chloride response compared to best ΔPD(0Cl/Iso) and altered diagnostic NPD interpretation in 30 of 113 (27%) subjects. The current practice of averaging the NPD results of right and left nostril measurements leads to an underestimation of the individual CFTR function and should be reconsidered. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  1. [The reality of home-based parenteral nutrition in Spain].

    PubMed

    Juana-Roa, J; Wanden-Berghe, C; Sanz-Valero, J

    2011-01-01

    It is important to be acquainted with the magnitude and characteristics of Parental Home Nutrition NPD in Spain to fundamentally provide decision making in clinics as well as the steps to be taken based on knowledge. To be aware of the perception and characteristics of the NPD in Spain throughout the year 2008. Description Time Research made in the 713 Spanish hospitals including those listed in the Health, Social, Social Political and Equanimity Ministry, which fulfilled the criterion inclusion during 2008. The Hospital Pharmacy Services were contacted through telephone survey. From the 713 hospital included, 62 (8,70%) carried out NPD, treating 228 patients, of which 201 (88,16%) were adults. The prevalence in Spain was of 4,91/10(6) inhabitants during 2008, being in adults 5,06/10(6) inhabitants and in children 4,01/10(6) inhabitants. The Autonomous Community of Madrid reached the highest prevalence 11,53/10(6) inhabitants. The Nutritional Units carried out the following up in 26 of the hospitals. With this work, a base for the future analysis and investigation about the situation of the NPD is established. It can also be a reference for different data bases.

  2. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    NASA Astrophysics Data System (ADS)

    Post, J. E.; Bish, D. L.; Heaney, P. J.

    2006-05-01

    Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase transformation coinciding with the loss of the remaining bound water molecule. These temperature-resolved real-time powder X-ray diffraction studies provide the first comprehensive description of the sepiolite structure and the complex changes it undergoes as it dehydrates. Additional heating and cooling in situ powder X-ray diffraction experiments are underway in order to investigate the relative stabilities and rehydration behaviors of the partially-hydrated sepiolite phases. The results of these studies should provide a more robust model for predicting and modifying the properties and applications of this critical industrial material and environmentally important mineral.

  3. Noncontact Temperature Measurements of Organic Layers in an Organic Light-Emitting Diode Using Wavenumber-Temperature Relations of Raman Bands

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takuro; Furukawa, Yukio

    2008-05-01

    We have measured the temperatures of the organic layers in operating organic light-emitting diodes (OLEDs) by Raman spectroscopy. The wavenumbers of the Raman bands due to N,N'-di-naphthaleyl-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) and copper phthalocyanine (CuPc) have been measured as a function of temperature in the range of 25-191 °C. The observed positions of strong bands around 1607 cm-1 (NPD) and 1531 cm-1 (CuPc) shifted downward linearly with increasing temperature in the ranges lower than 92 and 191 °C, respectively. We have determined the temperatures of the NPD and CuPc layers in an operating OLED from the wavenumber-temperature relations of these bands.

  4. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  5. Micro structrual characterization and analysis of ball milled silicon carbide

    NASA Astrophysics Data System (ADS)

    Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.

    2018-04-01

    Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.

  6. Time-resolved in situ powder X-ray diffraction reveals the mechanisms of molten salt synthesis.

    PubMed

    Moorhouse, Saul J; Wu, Yue; Buckley, Hannah C; O'Hare, Dermot

    2016-11-24

    We report the first use of high-energy monochromatic in situ X-ray powder diffraction to gain unprecedented insights into the chemical processes occurring during high temperature, lab-scale metal oxide syntheses. During the flux synthesis of the n = 4 Aurivillius phase, Bi 5 Ti 3 Fe 0.5 Cr 0.5 O 15 at 950 °C in molten Na 2 SO 4 we observe the progression of numerous metastable phases. Using sequential multiphase Rietveld refinement of the time-dependent in situ XRD data, we are able to obtain mechanistic understanding of this reaction under a range of conditions.

  7. Magnetic structure of Ho0.5Y0.5Mn6Sn6 compound studied by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    Li, X.-Y.; Peng, L.-C.; He, L.-H.; Zhang, S.-Y.; Yao, J.-L.; Zhang, Y.; Wang, F.-W.

    2018-05-01

    The crystallographic and magnetic structures of the HfFe6Ge6-type compound Ho0.5Y0.5Mn6Sn6 have been studied by powder neutron diffraction and in-situ Lorentz transmission electron microscopy. Besides the nonlinear thermal expansion of lattice parameters, an incommensurate conical spiral magnetic structure was determined in the temperature interval of 2-340 K. A spin reorientation transition has been observed from 50 to 300 K, where the alignment of the c-axis component of magnetic moments of the Ho sublattice and the Mn sublattice transfers from ferrimagnetic to ferromagnetic.

  8. Crystal structure of pentasodium hydrogen dicitrate from synchrotron X-ray powder diffraction data and DFT comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rammohan, Alagappa; Kaduk, James A.

    2017-01-27

    The crystal structure of pentasodium hydrogen dicitrate, Na 5H(C 6H 5O 7) 2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H...O hydrogen bonds, with O...O distances of 2.419 and 2.409 Å. Four octahedrally coordinated Na +ions share edges to form open layers parallel to theabplane. A fifth Na +ion in trigonal–bipyramidal coordination shares faces with NaO 6octahedra on both sides of these layers.

  9. In situ neutron diffraction study of micromechanical interactions and phase transformation in Ni-Mn-Ga alloy under uniaxial and hydrostatic stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, R. L.; Wang, Y. D.; Nie, Z. H.

    2008-01-01

    This paper deals with the experimental study of stress-induced phase transformation in a polycrystalline Ni-Mn-Ga alloy under uniaxial compression and its powder under hydrostatic compression. In situ neutron diffraction experiments were employed to follow changes in the structure and lattice strains caused by the applied stresses. Large lattice strains that are dependent on the lattice planes or grain orientations were observed in the parent Heusler phase for both the bulk material and the powder sample. The development of such anisotropic strains and the influence of external load conditions are discussed in the paper.

  10. High temperature phase stability in Li{sub 0.12}Na{sub 0.88}NbO{sub 3}: A combined powder X-ray and neutron diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S. K.; Krishna, P. S. R.; Shinde, A. B.

    2015-09-07

    The phase stabilities of ecofriendly piezoelectric material of lithium doped sodium niobate for composition Li{sub 0.12}Na{sub 0.88}NbO{sub 3} (LNN12) have been investigated by a combination of powder X-ray and neutron diffraction techniques in the temperature range of 300–1100 K. We observed interesting changes with appearance or disappearance of the super-lattice reflections in the powder diffraction patterns. Unambiguous experimental evidence is shown for coexistence of paraelectric and ferroelectric orthorhombic phases in the temperature range of 525 K to 675 K. We identified the correct crystal structure of LNN12 with temperature and correlated it with observed anomaly in the physical properties. Identification of crystal structuremore » also helps in the mode assignments in Raman and infrared spectroscopies. We argued that application of chemical pressure as a result of Li substitution in NaNbO{sub 3} matrix favors the freezing of zone centre phonons in contrast to the freezing of zone boundary phonons in pure NaNbO{sub 3} with the variation of temperature.« less

  11. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    PubMed

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  12. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  13. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  14. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    NASA Astrophysics Data System (ADS)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  15. POWTEX - A new High-Intensity Powder and Texture Diffractometer at FRM II, Garching Germany

    NASA Astrophysics Data System (ADS)

    Walter, J. M.; Brückel, T.; Dronskowski, R.; Hansen, B. T.; Houben, A.; Klein, H.; Leiss, B.; Vollbrecht, A.; Sowa, H.

    2009-05-01

    In recent years, neutron diffraction has become a routine tool in Geoscience for experimental high-field (HP/HT/HH) powder diffraction and for the quantitative analysis of the crystallographic preferred orientation (CPO). Quantitative texture analysis is e.g. involved in the research fields of fabric development in mono- and polyphase rocks, deformation histories and kinematics during mountain building processes and the characterization of flow kinematics in lava flows. Secondly the quantitative characterization of anisotropic physical properties of both rock and analogue materials is conducted by bulk texture measurements of sometimes larger sample volumes. This is easily achievable by neutron diffraction due to the high penetration capabilities of the neutrons. The resulting geoscientific need for increased measuring time at neutron diffraction facilities with the corresponding technical characteristics and equipment will in future be satisfied by this high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany. It will be built by a consortium of groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen, who will also operate the instrument. The diffractometer will be optimized to high intensities (flux) with an equivalent sufficient resolution for polyphase rocks. Furthermore a broad range of d-values (0.5 to 15 Å) will be measurable. The uniqueness of this instrument is the geoscientific focus on different sample environments for in situ-static and deformation experiments (stress, strain and annealing/recrystallisation) and (U)HP/(U)HT experiments. A LP/LT or atmospheric-P deformation rig for in situ-deformation experiments on ice, halite or rock analogue materials is planned, to allow in situ-measurements of the texture development during deformation and annealing. Additionally a uniaxial HT/MP deformation apparatus for salt deformation experiments and an adapted Griggs- type deformation rig are also designated. Furthermore an uniaxial stress frame for in situ stress investigations is planned to conduct simultaneous measurements of stress, elastic or plastic deformation and texture. Other sample environments for geoscientific application will be HP/HT furnaces and pressure cells for powder diffraction investigations. Furthermore the diffractometer will be built in combination with a high-pressure multi anvil up to 25 GPa and 2500 K built by the University of Bayreuth at the same beam line. The detector concept allows single shot texture measurements and therefore the measurement of larger geological sample series as necessary for the investigations of complete geological structures. This concept is complementary to the geoscience neutron texture diffractometer in Dubna, Russia and the stress diffractometer STRESS-SPEC located also at the Garching research reactor. For powder diffraction the diffractometer will be complementary to the existing high-resolution powder diffractometer SPODI at the FRM-II. It will offer the possibility of short, high-intensity parametric powder diffraction measurements in dependency of temperature, electrical, magnetic and stress fields due to the higher flux at the sample. The optimization to high-intensities and therefore short measuring times will also allow time-resolved measurements of kinetic reactions even of small sample volumes.

  16. Optical, Physical, and Chemical Properties of Surface Modified Titanium Dioxide Powders

    DTIC Science & Technology

    2011-02-01

    coefficient depends on the optical efficiency factor, QCM , the geometric cross section, G, and the particle mass as indicated by the relationship in eq 2...diffraction sensor with a RODOS powder dispersing unit. The instrument houses a HeNe laser (632.8 nm) and Fourier lens. Upon introduction of the

  17. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate.

    PubMed

    Park, Young-Joon; Ryu, Dong-Sung; Li, Dong Xun; Quan, Qi Zhe; Oh, Dong Hoon; Kim, Jong Oh; Seo, Youn Gee; Lee, Young-Im; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon

    2009-06-01

    To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.

  18. Nano-Crystalline Thermally Evaporated Bi2Se3 Thin Films Synthesized from Mechanically Milled Powder

    NASA Astrophysics Data System (ADS)

    Amara, A.; Abdennouri, N.; Drici, A.; Abdelkader, D.; Bououdina, M.; Chaffar Akkari, F.; Khemiri, N.; Kanzari, M.; Bernède, J. C.

    2017-08-01

    Bi2Se3 powder has been successfully synthesized via mechanical ball milling of bismuth and selenium as starting materials. X-ray diffraction characterization revealed the formation of the rhombohedral and orthorhombic phases of Bi2Se3 material belonging to systems with space groups R\\bar{3}m and Pbnm, respectively. The advantageous last finding is confirmed by the Rietveld refinement of the x-ray diffraction data. Furthermore, the analysis of the x-ray data of thermally deposited thin films revealed that both orthorhombic and rhombohedral phases are coexisting in the layer. The morphology of the ball milled powder was studied by scanning electron microscopy. The phase formation of the material is confirmed by Raman spectroscopy. M-H (Magnetization versus Magnetic field) curve indicates that Bi2Se3 powder has a ferromagnetic behavior. Additionally, absorbance and transmittance measurements were carried out on the obtained thermally evaporated thin films and yielded a band gap of 1.33 eV supporting the potential application of the heterogeneous rhombohedral/orthorhombic Bi2Se3 material in photovoltaics.

  19. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsuan; Chu, Hsueh-Liang; Hwang, Weng-Sing; Wang, Moo-Chin; Ko, Horng-Huey

    2017-12-01

    The synthesis and optical properties of Mg-Al layered double hydroxide (LDH) precursor powders were investigated using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution TEM (HRTEM), UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363-1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH)2](CO3)0.083.(H2O)0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL) spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  20. The contemporary practice of psychiatric surgery: results from a global survey of functional neurosurgeons.

    PubMed

    Mendelsohn, Daniel; Lipsman, Nir; Lozano, Andres M; Taira, Takaomi; Bernstein, Mark

    2013-01-01

    Interest in neurosurgery for psychiatric diseases (NPD) has grown globally. We previously reported the results of a survey of North American functional neurosurgeons that evaluated general attitudes towards NPD and the future directions of the field. The purpose of this study was to expand on our previous work and obtain a snapshot in time of global attitudes towards NPD among practicing functional neurosurgeons. We measure general and regional trends in functional neurosurgery and focus specifically on surgery for mind and mood, while exploring the future prospects of the field. We designed an online survey and distributed it electronically to 881 members of the following international organizations: World Society for Stereotactic and Functional Neurosurgery, European Society for Stereotactic and Functional Neurosurgery, Asian-Australasian Society for Stereotactic Functional Neurosurgery and the South and Latin American Society for Stereotactic and Functional Neurosurgery. Subsequent statistical and thematic analysis was performed on the data obtained. Of 881 surveys distributed, 106 were returned (12.8%). Eighty-two percent of functional neurosurgeon respondents were fellowship trained, with movement disorders and pain making up the majority of their practice. Psychiatric indications are the most frequently treated conditions for 34% of survey respondents, and over half of participants (51%) perform epilepsy surgery. Of the psychiatric conditions, obsessive-compulsive disorder and depression are the most common disorders treated. The majority of respondents (90%) felt optimistic about the future of NPD. Two thirds cited the reluctance of psychiatrists to refer patients as the greatest obstacle facing the field, and a majority reported that a cultural stigma surrounding psychiatric diseases exists in their community. In response to hypothetical situations involving cognitive and personality enhancement, opinions varied, but the majority opposed enhancement interventions. Regional variations were examined as well and uncovered distinct attitudinal differences depending on geographic location. Surgery for psychiatric conditions is an expanding field within functional neurosurgery. The opinions of international functional neurosurgeons were largely in line with those of their North American colleagues. Optimism regarding the future of NPD predominates, and future editions of this survey can be used to track the evolution of neurosurgeons' attitudes towards NPD and neuroenhancement. Copyright © 2013 S. Karger AG, Basel.

  1. Effect of microfibril twisting in theoretical powder diffraction studies of cellulose Iß

    USDA-ARS?s Scientific Manuscript database

    Previous studies of calculated diffraction patterns for cellulose crystallites have suggested that the distortions arising once models have been subjected to MD simulation are likely the result of dimensional changes induced by the empirical force field, but have been unable to determine to what ext...

  2. Epigenetics of Subcellular Structure Functioning in the Origin of Risk or Resilience to Comorbidity of Neuropsychiatric and Cardiometabolic Disorders.

    PubMed

    Zapata-Martín Del Campo, Carlos Manuel; Martínez-Rosas, Martín; Guarner-Lans, Verónica

    2018-05-14

    Mechanisms controlling mitochondrial function, protein folding in the endoplasmic reticulum (ER) and nuclear processes such as telomere length and DNA repair may be subject to epigenetic cues that relate the genomic expression and environmental exposures in early stages of life. They may also be involved in the comorbid appearance of cardiometabolic (CMD) and neuropsychiatric disorders (NPD) during adulthood. Mitochondrial function and protein folding in the endoplasmic reticulum are associated with oxidative stress and elevated intracellular calcium levels and may also underlie the vulnerability for comorbid CMD and NPD. Mitochondria provide key metabolites such as nicotinamide adenine dinucleotide (NAD+), ATP, α-ketoglutarate and acetyl coenzyme A that are required for many transcriptional and epigenetic processes. They are also a source of free radicals. On the other hand, epigenetic markers in nuclear DNA determine mitochondrial biogenesis. The ER is the subcellular organelle in which secretory proteins are folded. Many environmental factors stop the ability of cells to properly fold proteins and modify post-translationally secretory and transmembrane proteins leading to endoplasmic reticulum stress and oxidative stress. ER functioning may be epigenetically determined. Chronic ER stress is emerging as a key contributor to a growing list of human diseases, including CMD and NPD. Telomere loss causes chromosomal fusion, activation of the control of DNA damage-responses, unstable genome and altered stem cell function, which may underlie the comorbidity of CMD and NPD. The length of telomeres is related to oxidative stress and may be epigenetically programmed. Pathways involved in DNA repair may be epigenetically programmed and may contribute to diseases. In this paper, we describe subcellular mechanisms that are determined by epigenetic markers and their possible relation to the development of increased susceptibility to develop CMD and NPD.

  3. Oxidized nanocrystalline Fe-Cu pseudoalloy subjected to high pressure and electrodischarge pulses: Mössbauer and x-ray investigations

    NASA Astrophysics Data System (ADS)

    Gavriliuk, A. G.; Voitkovsky, V. S.; Sidorov, V. A.; Filonenko, V. P.; Tsiok, O. B.; Khvostantsev, L. G.

    1998-05-01

    Nanocrystalline Fe15Cu85 pseudoalloy has been subjected to pulsed heating up to 1500 K at high pressure (8 GPa). Two regimes were studied: the direct heating using electrodischarge through the sample and indirect heating with the use of cylindrical heater around the sample. The temperature and time conditions in both types of experiments were adjusted to be equivalent. The discharge parameters (stored energy, discharge time, and magnitude of current pulse) were sufficient to move defects by conduction electrons, but insufficient to melt the sample. The properties of treated samples were studied using Mössbauer absorption spectra and x-ray diffraction for three types of samples: (a) primary powder treated by high pressure up to 8 GPa, (b) powder subjected to indirect pulsed heating at 8 GPa, (c) powder treated by electrical pulses at 8 GPa. The x-ray diffraction pattern of primary powder exhibits peaks of copper, iron, and copper oxide (CuO). The Mössbauer spectrum of primary powder exhibits six peaks of alpha iron and some peaks near zero velocity due to the small iron clusters in the copper matrix and ultrafine clusters of paramagnetic phase x-Fe2O3. The transformation of CuO to Cu2O takes place in the course of indirect heating, the Mössbauer spectrum being almost unchanged. The direct electrodischarge heating causes the appearance of new magnetic phase with the magnetic field on iron nucleus 505 kOe, which corresponds to α-Fe2O3. The formation of α-Fe2O3 was confirmed by x-ray diffraction. At the same time the transformation of CuO to Cu2O is incomplete. These experiments demonstrate that high density current pulses, causing the electron wind, can be a useful tool to influence the structure of nanocrystalline powder.

  4. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts

    PubMed Central

    2014-01-01

    To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the cell walls; thus, the electrolyte is leaked from cells. PMID:24572014

  5. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.

    PubMed

    Li, Liang; Sun, Siping; Parumasivam, Thaigarajan; Denman, John A; Gengenbach, Thomas; Tang, Patricia; Mao, Shirui; Chan, Hak-Kim

    2016-05-01

    L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w/w) of LL in the bulk powders) could minimize moisture-induced deterioration in the aerosol performance. In conclusion, particle surface coverage of LL can offer short-term protection against moisture on dispersion of hygroscopic powders. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Yi, Danqing; Zhu, Baojun

    2013-04-01

    Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.

  7. [Atrio-ventricular pressure difference associated with mitral valve motion].

    PubMed

    Wang, L M; Mori, H; Minezaki, K; Shinozaki, Y; Okino, H

    1990-05-01

    Pressure difference (PD) across the mitral valve was analyzed by a computer-aided catheter system in dogs. Positive PD (PPD) was consistently traced in the initial phase of rapid filling. While heart rate (HR) was below 100 beat/min, a negative PD (NPD) followed the above PPD. In the period between the NPD and the 2nd PPD due to atrial contraction, PD was kept at zero, while LA and LV pressures were gradually elevated by pulmonary venous return. As HR exceeded 100, 2 positive peaks of PD merged into M-shaped or mono-peaked PD. Through higher inflow resistance produced by artificial mitral stenosis, PPD peak decayed without NPD. In mitral regurgitation with an acute volume overload, all of the PD amplitudes were exaggerated. Thus the quick reversal of PD suggested the effect in blood filling process across the mitral valve.

  8. Probing hydrogen positions in hydrous compounds: information from parametric neutron powder diffraction studies.

    PubMed

    Ting, Valeska P; Henry, Paul F; Schmidtmann, Marc; Wilson, Chick C; Weller, Mark T

    2012-05-21

    We demonstrate the extent to which modern detector technology, coupled with a high flux constant wavelength neutron source, can be used to obtain high quality diffraction data from short data collections, allowing the refinement of the full structures (including hydrogen positions) of hydrous compounds from in situ neutron powder diffraction measurements. The in situ thermodiffractometry and controlled humidity studies reported here reveal that important information on the reorientations of structural water molecules with changing conditions can be easily extracted, providing insight into the effects of hydrogen bonding on bulk physical properties. Using crystalline BaCl2·2H2O as an example system, we analyse the structural changes in the compound and its dehydration intermediates with changing temperature and humidity levels to demonstrate the quality of the dynamic structural information on the hydrogen atoms and associated hydrogen bonding that can be obtained without resorting to sample deuteration.

  9. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  10. Structure investigations of ferromagnetic Co-Ni-Al alloys obtained by powder metallurgy.

    PubMed

    Maziarz, W; Dutkiewicz, J; Lityńska-Dobrzyńska, L; Santamarta, R; Cesari, E

    2010-03-01

    Elemental powders of Co, Ni and Al in the proper amounts to obtain Co(35)Ni(40)Al(25) and Co(40)Ni(35)Al(25) nominal compositions were ball milled in a high-energy mill for 80 h. After 40 h of milling, the formation of a Co (Ni, Al) solid solution with f.c.c. structure was verified by a change of the original lattice parameter and crystallite size. Analytical transmission electron microscopy observations and X-ray diffraction measurements of the final Co (Ni, Al) solid solution showed that the crystallite size scattered from 4 to 8 nm and lattice parameter a = 0.36086 nm. The chemical EDS point analysis of the milled powder particles allowed the calculation of the e/a ratio and revealed a high degree of chemical homogeneity of the powders. Hot pressing in vacuum of the milled powders resulted in obtaining compacts with a density of about 70% of the theoretical one. An additional heat treatment increased the density and induced the martensitic transformation in a parent phase. Selected area diffraction patterns and dark field images obtained from the heat-treated sample revealed small grains around 300 nm in diameter consisting mainly of the ordered gamma phase (gamma'), often appearing as twins, and a small amount of the L1(0) ordered martensite.

  11. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation

    PubMed Central

    Wu, Xiao; Hayes, Don; Zwischenberger, Joseph B; Kuhn, Robert J; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary for dry powder inhalation, as quantified by Karl Fisher coulometric titration. Conclusively, advanced spray-drying particle engineering design from organic solution in closed mode was successfully used to design and optimize solid-state particles in the respirable size range necessary for targeted pulmonary delivery, particularly for the deep lung. These particles were dry, stable, and had optimal properties for dry powder inhalation as a novel pulmonary nanomedicine. PMID:23403805

  12. Endoscopic transpapillary drainage for external fistulas developing after surgical or radiological pancreatic interventions.

    PubMed

    Rana, Surinder Singh; Bhasin, Deepak Kumar; Nanda, Mohit; Siyad, Ismail; Gupta, Rajesh; Kang, Mandeep; Nagi, Birinder; Singh, Kartar

    2010-06-01

    External pancreatic fistulas (EPFs) are a therapeutic challenge. The present study was conducted to evaluate the efficacy of endoscopic transpapillary nasopancreatic drainage (NPD) in patients with EPF. Over 12 years, 23 patients (19 males) with EPF underwent attempted endoscopic transpapillary NPD. The end points were fistula closure with healing of pancreatic duct disruption on nasopancreatogram, or need for surgery. All 23 patients had persistent drain output (>50 mL/day) for >6 weeks. The mean output volume of the fistula was 223 mL (range: 60 mL to 750 mL). Sixteen patients had partial and seven patients had complete pancreatic duct disruption. The NPD could be successfully placed in 21/23 (91.3%) patients. Disruption was bridged in 15 of 16 patients with partial duct disruption. EPF healed in 2-8 weeks of placement of NPD in all of the patients with partial duct disruption that was bridged and there was no recurrence at a mean follow-up of 38 months. The EPF resolved in only 2/6 (33%) patients with complete duct disruption. External pancreatic fistulas developing following percutaneous drainage of pancreatic fluid collections or surgical necrosectomy can be effectively treated by transpapillary nasopancreatic drain placement especially when there is partial ductal disruption and the disruption can be bridged.

  13. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers.

    PubMed

    Garnacho, Carmen; Dhami, Rajwinder; Simone, Eric; Dziubla, Thomas; Leferovich, John; Schuchman, Edward H; Muzykantov, Vladimir; Muro, Silvia

    2008-05-01

    Type B Niemann-Pick disease (NPD) is a multiorgan system disorder caused by a genetic deficiency of acid sphingomyelinase (ASM), for which lung is an important and challenging therapeutic target. In this study, we designed and evaluated new delivery vehicles for enzyme replacement therapy of type B NPD, consisting of polystyrene and poly(lactic-coglycolic) acid polymer nanocarriers targeted to intercellular adhesion molecule (ICAM)-1, an endothelial surface protein up-regulated in many pathologies, including type B NPD. Real-time vascular imaging using intravital microscopy and postmortem imaging of mouse organs showed rapid, uniform, and efficient binding of fluorescently labeled ICAM-1-targeted ASM nanocarriers (anti-ICAM/ASM nanocarriers) to endothelium after i.v. injection in mice. Fluorescence microscopy of lung alveoli actin, tissue histology, and 125I-albumin blood-to-lung transport showed that anti-ICAM nanocarriers cause neither detectable lung injury, nor abnormal vascular permeability in animals. Radioisotope tracing showed rapid disappearance from the circulation and enhanced accumulation of anti-ICAM/125I-ASM nanocarriers over the nontargeted naked enzyme in kidney, heart, liver, spleen, and primarily lung, both in wild-type and ASM knockout mice. These data demonstrate that ICAM-1-targeted nanocarriers may enhance enzyme replacement therapy for type B NPD and perhaps other lysosomal storage disorders.

  14. Influence of grinding on service properties of VT-22 powder applied in additive technologies

    NASA Astrophysics Data System (ADS)

    Zakharov, M. N.; Rybalko, O. F.; Romanova, O. V.; Gelchinskiy, B. R.; Il'inykh, S. A.; Krashaninin, V. A.

    2017-01-01

    Powder of titanium alloy (VT-22) produced by plasma-spraying was subjected to grinding to obtain powder with size less 100 microns. These powders were sprayed by plasma unit using two types of gases, namely, air and air with methane (spraying in water and sputtering of coating on steel support). Influence of grinding time on yield of powder of required fraction was studied. Morphology and phase composition of the grinded powder and plasma sprayed one were under investigation. In the result of experiments, it appears that the grinding time genuinely influences the chemical and phase compositions, but there is no effect on physical-processing properties. For powders after plasma spraying some changes of non-metal elements content were detected by chemical analysis. Using gaseous mixture of air and methane in plasma spraying unit leads to formation of a new phase in the powder according X-ray diffraction data.

  15. Compact, Non-Pneumatic Rock-Powder Samplers

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi; Chang, Zensheu; Jones, Christopher; Aldrich, Jack

    2008-01-01

    Tool bits that automatically collect powdered rock, permafrost, or other hard material generated in repeated hammering action have been invented. The present invention pertains to the special case in which it is desired to collect samples in powder form for analysis by x-ray diffraction and possibly other techniques. The present invention eliminates the need for both the mechanical collection equipment and the crushing chamber and the pneumatic collection equipment of prior approaches, so that it becomes possible to make the overall sample-acquisition apparatus more compact.

  16. Time-resolved in situ neutron diffraction under supercritical hydrothermal conditions: a study of the synthesis of KTiOPO4.

    PubMed

    Ok, Kang Min; Lee, Dong Woo; Smith, Ronald I; O'Hare, Dermot

    2012-10-31

    In the first in situ neutron powder diffraction study of a supercritical hydrothermal synthesis, the crystallization of KTiOPO(4) (KTP) at 450 °C and 380 bar has been investigated. The time-resolved diffraction data suggest that the crystallization of KTP occurs by the reaction between dissolved K(+)(aq), PO(4)(3-)(aq), and [Ti(OH)(x)]((4-x)+)(aq) species.

  17. Experimental measurement of lattice strain pole figures using synchrotron x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.P.; Bernier, J.V.; Park, J.-S.

    This article describes a system for mechanically loading test specimens in situ for the determination of lattice strain pole figures and their evolution in multiphase alloys via powder diffraction. The data from these experiments provide insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Relatively thin (0.5 mm) iron/copper specimens were axially strained using a mechanical loading frame beyond the macroscopic yield strength of the material. The loading was halted at multiple points during the deformation to conduct a diffraction experiment using a 0.5x0.5 mm{sup 2} monochromatic (50 keV) xmore » ray beam. Entire Debye rings of data were collected for multiple lattice planes ({l_brace}hkl{r_brace}'s) in both copper and iron using an online image plate detector. Strain pole figures were constructed by rotating the loading frame about the specimen transverse direction. Ideal powder patterns were superimposed on each image for the purpose of geometric correction. The chosen reference material was cerium (IV) oxide powder, which was spread in a thin layer on the downstream face of the specimen using petroleum jelly to prevent any mechanical coupling. Implementation of the system at the A2 experimental station at the Cornell High Energy Synchrotron Source (CHESS) is described. The diffraction moduli measured at CHESS were shown to compare favorably to in situ data from neutron-diffraction experiments conducted on the same alloys.« less

  18. Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn

    2015-01-15

    Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less

  19. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godec, Matjaz, E-mail: matjaz.godec@imt.si; Batic, Barbara Setina; Mandrino, Djordje

    2010-04-15

    A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbidesmore » were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.« less

  20. A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.

    PubMed

    Gregoire, John M; Dale, Darren; van Dover, R Bruce

    2011-01-01

    Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.

  1. Synthesis of TiCx Powder via the Underwater Explosion of an Explosive

    NASA Astrophysics Data System (ADS)

    Tanaka, Shigeru; Bataev, Ivan; Hamashima, Hideki; Tsurui, Akihiko; Hokamoto, Kazuyuki

    2018-05-01

    In this study, a novel approach to the explosive synthesis of titanium carbide (TiC) is discussed. Nonstoichiometric TiCx powder was produced via the underwater explosion of a Ti powder encapsulated within a spherical explosive charge. The explosion process, bubble formation, and synthesis process were visualized using high-speed camera imaging. It was concluded that synthesis occurred within the detonation gas during the first expansion/contraction cycle of the bubble, which was accompanied by a strong emission of light. The recovered powders were studied using scanning electron microscopy and X-ray diffraction. Submicron particles were generated during the explosion. An increase in the carbon content of the starting powder resulted in an increase in the carbon content of the final product. No oxide byproducts were observed within the recovered powders.

  2. Dynamic Octahedral Breathing in Oxygen-Deficient Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) Perovskite Performing as a Cathode in Intermediate-Temperature SOFC.

    PubMed

    Gong, Yudong; Sun, Chunwen; Huang, Qiu-an; Alonso, Jose Antonio; Fernández-Díaz, Maria Teresa; Chen, Liquan

    2016-03-21

    Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) outperforms as a cathode in solid-oxide fuel cells (SOFC), at temperatures as low as 700-750 °C. The microscopical reason for this performance was investigated by temperature-dependent neutron powder diffraction (NPD) experiments. In the temperature range of 25-800 °C, Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) shows a perfectly cubic structure (a = a0), with a significant oxygen deficiency in a single oxygen site, that substantially increases at the working temperatures of a SOFC. The anisotropic thermal motion of oxygen atoms considerably rises with T, reaching B(eq) ≈ 5 Å(2) at 800 °C, with prolate cigar-shaped, anisotropic vibration ellipsoids that suggest a dynamic breathing of the octahedra as oxygen ions diffuse across the structure by a vacancies mechanism, thus implying a significant ionic mobility that could be described as a molten oxygen sublattice. The test cell with a La(0.8)Sr(0.2)Ga(0.83)Mg(0.17)O(3-δ) electrolyte (∼300 μm in thickness)-supported configuration yields a peak power density of 0.20 and 0.40 W cm(-2) at temperatures of 700 and 750 °C, respectively, with pure H2 as fuel and ambient air as oxidant. The electrochemical impedance spectra (EIS) evolution with time of the symmetric cathode fuel cell measured at 750 °C shows that the Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) cathode possesses a superior ORR catalytic activity and long-term stability. The mixed electronic-ionic conduction properties of Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) account for its good performance as an oxygen-reduction catalyst.

  3. Powder X-ray diffraction laboratory, Reston, Virginia

    USGS Publications Warehouse

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  4. Spheroidization of molybdenum powder by radio frequency thermal plasma

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-ping; Wang, Kuai-she; Hu, Ping; Chen, Qiang; Volinsky, Alex A.

    2015-11-01

    To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.

  5. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    NASA Astrophysics Data System (ADS)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x as determined from the magnitude of the magnetic propagation vector. This trend can be qualitatively reproduced by increasing the ratio of J2/ J1 in the Heisenberg model. Intriguingly, the domain size extracted from peak broadening of the magnetic reflections is nearly equal to the pitch length for each value of x, which suggests that the two qualities are linked in this unusual antiferromagnet. The last chapter focuses on the oxyfluoride Fe3PO7-x Fx. Through fluorination using low-temperature chimie douce reactions with polytetrafluoroethylene, the magnetic properties show changes in the magnetic susceptibility, isothermal magnetization, and neutron powder diffraction. The magnetic susceptibility shows a peak near T = 13 K and a zero field cooled/field cooled splitting at T = 78 K. The broad, flat-topped magnetic reflections in the powder neutron diffraction exhibit a decrease in width and increase in intensity. The changes in the neutron powder diffraction suggest an increase in correlation length in the ab plane of the fluorinated compound. Iron phosphate oxide is a unique lattice showing a rich magnetic phase diagram in both the gallium-substituted and fluorinated species. While mean-field interactions are sufficient to describe interactions in the solid solution series Fe3-xGaxPO4O3, the additional magnetic transitions in Fe3PO7-xFx suggest a more complicated set of interactions.

  6. Type a niemann-pick disease. Description of three cases with delayed myelination.

    PubMed

    D'Amico, A; Sibilio, M; Caranci, F; Bartiromo, F; Taurisano, R; Balivo, F; Melis, D; Parenti, G; Cirillo, S; Elefante, R; Brunetti, A

    2008-06-03

    We describe three patients with type A Niemann-Pick disease (NPD-A). NPD-A is an autosomal recessive neuronal storage disease classified among the sphingolipidoses, characterized by accumulation of sphingomyelin in various tissues and in the brain. Magnetic Resonance imaging (MRI) of our three patients showed a marked delay of myelination with frontal atrophy. Few descriptions of this MRI pattern of delayed myelination have been published to date.

  7. Expanding collaborative boundaries in nursing education and practice: The nurse practitioner-dentist model for primary care.

    PubMed

    Dolce, Maria C; Parker, Jessica L; Marshall, Chantelle; Riedy, Christine A; Simon, Lisa E; Barrow, Jane; Ramos, Catherine R; DaSilva, John D

    The purpose of this paper is to describe the design and implementation of a novel interprofessional collaborative practice education program for nurse practitioner and dental students, the Nurse Practitioner-Dentist Model for Primary Care (NPD Program). The NPD Program expands collaborative boundaries in advanced practice nursing by integrating primary care within an academic dental practice. The dental practice is located in a large, urban city in the Northeast United States and provides comprehensive dental services to vulnerable and underserved patients across the age spectrum. The NPD Program is a hybrid curriculum comprised of online learning, interprofessional collaborative practice-based leadership and teamwork training, and clinical rotations focused on the oral-systemic health connection. Practice-based learning promotes the development of leadership and team-based competencies. Nurse practitioners emerge with the requisite interprofessional collaborative practice competencies to improve oral and systemic health outcomes. Copyright © 2017. Published by Elsevier Inc.

  8. Fear and decision-making in narcissistic personality disorder-a link between psychoanalysis and neuroscience.

    PubMed

    Ronningstam, Elsa; Baskin-Sommers, Arielle R

    2013-06-01

    Linking psychoanalytic studies with neuroscience has proven increasingly productive for identifying and understanding personality functioning. This article focuses on pathological narcissism and narcissistic personality disorder (NPD), with the aim of exploring two clinically relevant aspects of narcissistic functioning also recognized in psychoanalysis: fear and decision-making. Evidence from neuroscientific studies of related conditions, such as psychopathy, suggests links between affective and cognitive functioning that can influence the sense of self-agency and narcissistic self-regulation. Attention can play a crucial role in moderating fear and self-regulatory deficits, and the interaction between experience and emotion can be central for decision-making. In this review we will explore fear as a motivating factor in narcissistic personality functioning, and the impact fear may have on decision-making in people with pathological narcissism and NPD. Understanding the processes and neurological underpinnings of fear and decision-making can potentially influence both the diagnosis and treatment of NPD.

  9. New Insights on the Recrystallization and New Growth of Extensively Radiation-damaged Zircon

    NASA Astrophysics Data System (ADS)

    Hanchar, J. M.; Schmitz, M. D.; Wirth, R.

    2012-12-01

    Approximately 10 grams of cm-sized nearly metamict zircon crystals from the Saranac Prospect in the Bancroft District of Ontario were combined by breaking into small pieces and then ground under ethanol to a fine powder with an agate mortar and pestle in order to make enough homogeneously mixed material for multiple powder X-Ray and diffraction scans, high-resolution transmission electron microscopy (HR-TEM) measurements, and chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-TIMS). While these large zircon crystals ground to a powder have a larger surface area and not in the same physical state (i.e., brown and metamict) as what is typically analyzed in single zircon CA-ID-TIMS U-Pb analysis (clear euhedral grains), the physical and chemical changes that occur during the heat treatment used in CA-TIMS are thought to be similar processes. Aliquots of the ground zircon powder were annealed in situ using a Pt furnace in a powder diffractometer during which time simultaneous powder diffraction patterns were acquired starting at 25°C, at elevated temperature (from 500°C to 1400°C) at selected time intervals, and then again at 25°C. The powder X-ray diffraction results indicate that below ~900°C the recrystallization of the zircon powder commences but is incomplete, even after 36 hours, with diffuse low intensity diffraction peaks. At 1150°C the zircon powder shows significant recrystallization. At 1150°C, the recrystallization is essentially complete in less than one hour. Before heating the zircon powder samples consisted of clear, transparent to brown, translucent, complexly zoned fragments. After heating at 900°C the zircon powder retained a smaller percentage of clear or brown complexly zoned fragments, while the majority of material had transformed to oscillatory or irregularly zoned, dominantly white opaque microcrystalline fragments. The clear fragments were hypothesized to be preexisting original crystalline zircon, the brown complexly zoned fragments preexisting metamict zircon, and the white opaque fragment new recrystallized zircon and other oxides. At 1150°C all that remained after heating were dominantly white opaque fragments and extremely rare clear fragments. A variety of fragment types from unannealed, 900°C and 1150°C anneals were chemically abraded in concentrated hydrofluoric acid at 190°C for 12 hours. Upon treatment with chemical abrasion, all unannealed material, nearly all material from the 900°C anneal, and all white opaque microcrystalline material from the 1150°C anneal dissolved; only the rare residual clear, transparent fragments from the 1150°C anneal were robust to chemical abrasion at these conditions. Residual clear fragments yielded concordant U-Pb ID-TIMS dates of 1064 Ma (considering updated U decay constant ratio), confirming the hypothesis that low-U closed system domains are preserved through annealing up to 1150°C and can be extracted via chemical abrasion from even dominantly metamict zircon crystals. By contrast, newly formed crystallites resulting from metamict zircon breakdown during annealing appear to be quite soluble during chemical abrasion. Further experiments are underway to refine minimum threshold chemical abrasion conditions necessary to eliminate open-system domains in the Saranac zircon.

  10. Phase modification of copper phthalocyanine semiconductor by converting powder to thin film

    NASA Astrophysics Data System (ADS)

    Ai, Xiaowei; Lin, Jiaxin; Chang, Yufang; Zhou, Lianqun; Zhang, Xianmin; Qin, Gaowu

    2018-01-01

    Thin films of copper phthalocyanine (CuPc) semiconductor were deposited on glass substrates by a thermal evaporation system using the CuPc powder in a high vacuum. The crystal structures of both the films and the powder were measured by the X-ray diffraction spectroscopy technique. It is observed that CuPc films only show one peak at 6.84°, indicating a high texture of α phase along (200) orientation. In comparison, CuPc powder shows a series of peaks, which are confirmed from the mixture of both α and β phases. The effects of substrate anneal temperature on the film structure, grain size and optical absorption property of CuPc films were also investigated. All the films are of α phase and the full width of half maximum for (200) diffraction peak becomes narrow with increasing the substrate temperatures. The average grain size calculated by the Scherrer's formula is 33.63 nm for the film without anneal, which is increased up to 58.29 nm for the film annealed at 200 °C. Scanning electron microscope was further measured to prove the growth of crystalline grain and to characterize the morphologies of CuPc films. Ultraviolet-visible absorption spectra were employed to study the structure effect on the optical properties of both CuPc films and powder. Fourier Transform infrared spectroscopy was used to identify the crystalline nature of both CuPc powder and film.

  11. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    NASA Astrophysics Data System (ADS)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  12. Defect ordering in YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6: Synthesis and characterization by neutron and electron diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.

    1990-02-01

    Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.

  13. Structural Mineral Physics at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.

    2017-12-01

    Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.

  14. The storage degradation of an 18650 commercial cell studied using neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Lee, Po-Han; Wu, She-huang; Pang, Wei Kong; Peterson, Vanessa K.

    2018-01-01

    Commercial 18650 lithium ion cells containing a blended positive electrode of layered LiNi0.5Mn0.3Co0.2O2 and spinel Li1.1Mn1.9O4 alongside a graphite negative electrode were stored at various depth-of-discharge (DoD) at 60 °C for 1, 2, 4, and 6 months. After storage, the cells were cycled at C/25 at 25 °C between 2.75 and 4.2 V for capacity determination and incremental capacity analysis (ICA). In addition to ICA analysis, the mechanism for capacity fade was investigated by combining the results of neutron powder diffraction under in-situ and operando conditions, in conjunction with post-mortem studies of the electrodes using synchrotron X-ray powder diffraction and inductively-coupled plasma optical emission spectroscopy. Among the cells, those stored at 25% DoD suffered the highest capacity fade due to their higher losses of active Li, NMC, and LMO than cells stored at other DoD. The cells stored at 0% DoD shows second high capacity fade because they exhibit the highest of active LMO and graphite anode among the stored cells and higher losses of active Li and NMC than cells stored at 50% DoD.

  15. Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kleiner, Karin; Dixon, Ditty; Jakes, Peter; Melke, Julia; Yavuz, Murat; Roth, Christina; Nikolowski, Kristian; Liebau, Verena; Ehrenberg, Helmut

    2015-01-01

    The degradation of LiNi0.8Co0.15Al0.05O2 (LNCAO), a cathode material in lithium-ion-batteries, was studied using in situ powder diffraction and in situ Ni K edge X-ray absorption spectroscopy (XAS). The fatigued material was taken from a 7 Ah battery which was cycled for 34 weeks under defined durability conditions. Meanwhile, a cell was stored, as reference, under controlled conditions without electrochemical treatment. The fatigued LNCAO used in this study showed a capacity loss of 26% ± 9% compared to the non-cycled material. During charge and discharge the local and the overall structure of LNCAO was investigated by X-ray near edge structure (XANES) analysis, the extended X-ray absorption fine structure (EXAFS) analysis and by using Rietveld refinement of in situ powder diffraction patterns. Both powder diffraction and XAS revealed additional, rhombohedral phases which do not change with electrochemical cycling. Moreover, a phase with the lattice parameters of fully lithiated LNCAO was still present in the fatigued material at high potentials, while it was absent in the non-fatigued reference material. The coexistence of these phases is described by domains within the LNCAO particles, in correlation with the observed fatigue.

  16. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post,J.; Bish, D.; Heaney, P.

    2007-01-01

    Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less

  17. Phase Equilibria and Crystallography of Ceramic Oxides

    PubMed Central

    Wong-Ng, W.; Roth, R. S.; Vanderah, T. A.; McMurdie, H. F.

    2001-01-01

    Research in phase equilibria and crystallography has been a tradition in the Ceramics Division at National Bureau of Standards/National Institute of Standatrds and Technology (NBS/NIST) since the early thirties. In the early years, effort was concentrated in areas of Portland cement, ceramic glazes and glasses, instrument bearings, and battery materials. In the past 40 years, a large portion of the work was related to electronic materials, including ferroelectrics, piezoelectrics, ionic conductors, dielectrics, microwave dielectrics, and high-temperature superconductors. As a result of the phase equilibria studies, many new compounds have been discovered. Some of these discoveries have had a significant impact on US industry. Structure determinations of these new phases have often been carried out as a joint effort among NBS/NIST colleagues and also with outside collaborators using both single crystal and neutron and x-ray powder diffraction techniques. All phase equilibria diagrams were included in Phase Diagrams for Ceramists, which are collaborative publications between The American Ceramic Society (ACerS) and NBS/NIST. All x-ray powder diffraction patterns have been included in the Powder Diffraction File (PDF). This article gives a brief account of the history of the development of the phase equilibria and crystallographic research on ceramic oxides in the Ceramics Division. Represented systems, particularly electronic materials, are highlighted. PMID:27500068

  18. Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability

    NASA Astrophysics Data System (ADS)

    Galimberti, Matteo; Marinoni, Nicoletta; Della Porta, Giovanna; Marchi, Maurizio; Dapiaggi, Monica

    2017-10-01

    Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments were chosen to prepare raw meals for clinker manufacturing, aiming to define a parameter controlling the burnability. First, limestones were characterized by X-Ray Fluorescence, X-Ray Powder Diffraction and Optical Microscopy to assess their suitability for clinker production and their petrographic features. The average domains size and the microstrain of calcite were also determined by X-Ray Powder Diffraction line profile analysis. Then, each limestone was admixed with clay minerals to achieve the adequate chemical composition for clinker production. Raw meals were thermally threated at seven different temperatures, from 1000 to 1450 °C, to evaluate their behaviour on heating by ex situ X-Ray Powder Diffraction and to observe the final clinker morphology by Scanning Electron Microscopy. Results indicate the calcite microstrain is a reliable parameter to predict the burnability of the raw meals, in terms of calcium silicates growth and lime consumption. In particular, mixtures prepared starting from high-strained calcite exhibit a better burnability. Later, when the melt appears this correlation vanishes; however differences in the early burnability still reflect on the final clinker composition and texture.

  19. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  20. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    PubMed

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  1. Synthesis of Cu-W nanocomposite by high-energy ball milling.

    PubMed

    Venugopal, T; Rao, K Prasad; Murty, B S

    2007-07-01

    The Cu-W bulk nanocomposites of different compositions were successfully synthesized by high-energy ball milling of elemental powders. The nanocrystalline nature of the Cu-W composite powder is confirmed by X-ray diffraction analysis, transmission electron microscopy, and atomic force microscopy. The Cu-W nanocomposite powder could be sintered at 300-400 degrees C below the sintering temperature of the un-milled Cu-W powders. The Cu-W nanocomposites showed superior densification and hardness than that of un-milled Cu-W composites. The nanocomposites also have three times higher hardness to resistivity ratio in comparison to Oxygen free high conductivity copper.

  2. Neutron diffraction studies for realtime leaching of catalytic Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iles, Gail N., E-mail: gail.iles@helmholtz-berlin.de; Reinhart, Guillaume, E-mail: guillaume.reinhart@im2np.fr; Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble

    2014-07-21

    The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processingmore » route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni{sub 2}Al{sub 3} and NiAl{sub 3} continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.« less

  3. The synthesis of nanostructured SiC from waste plastics and silicon powder

    NASA Astrophysics Data System (ADS)

    Ju, Zhicheng; Xu, Liqiang; Pang, Qiaolian; Xing, Zheng; Ma, Xiaojian; Qian, Yitai

    2009-09-01

    Waste plastics constitute a growing environmental problem. Therefore, the treatment of waste plastics should be considered. Here we synthesize 3C-SiC nanomaterials coexisting with amorphous graphite particles utilizing waste plastics and Si powder at 350-500 °C in a stainless steel autoclave. 3C-SiC could be finally obtained after refluxing with aqueous HClO4 (70 wt%) at 180 °C. X-ray powder diffraction patterns indicate that the product is 3C-SiC with the calculated lattice constant a = 4.36 Å. Transmission electron microscopy (TEM) images show that the SiC samples presented two morphologies: hexagonal platelets prepared by the waste detergent bottles or beverage bottles and nanowires prepared by waste plastic bags respectively. The corresponding selected area electron diffraction (SAED) pattern indicates that either the entire hexagonal platelet or the nanowire is single crystalline. High-resolution TEM shows the planar surfaces of the SiC platelet correspond to {111} planes; the lateral surfaces are {110} planes and the preferential growth direction of the nanowires is along [111]. The output of SiC was ~39% based on the amount of Si powder.

  4. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    NASA Astrophysics Data System (ADS)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  5. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  6. Secondary Mineral Formation Associated With Respiration of Nontronite, NAu-1 by Iron Reducing Bacteria

    DTIC Science & Technology

    2005-12-01

    with a set of expected powder diffraction rings for siderite (JCPDS Card 8-133). The diffraction rings correspond to the d-spacing values (and hkl ...Bender et al., Geochim. Cos- 33j. E. Kostka and K. H. Nealson, in Techniques in Microbial Ecology, mochim. Acta 43(7), 1075 (1979). edited by R. S

  7. Neutron diffraction measurements and micromechanical modelling of temperature-dependent variations in TATB lattice parameters

    DOE PAGES

    Yeager, John D.; Luscher, Darby J.; Vogel, Sven C.; ...

    2016-02-02

    Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. TATB-based explosives exhibit irreversible volume expansion (“ratchet growth”) when thermally cycled. A theoretical understanding of the relationship between anisotropy of the crystal, crystal orientation distribution (texture) of polycrystalline aggregates, and the intergranular interactions leading to this irreversible growth is necessary to accurately develop physics-based predictive models for TATB-based PBXs under various thermal environments. In this work, TATB lattice parameters were measured using neutron diffraction during thermal cycling of loose powder and a pressed pellet. The measured lattice parameters help clarify conflicting reports in the literaturemore » as these new results are more consistent with one set of previous results than another. The lattice parameters of pressed TATB were also measured as a function of temperature, showing some differences from the powder. This data is used along with anisotropic single-crystal stiffness moduli reported in the literature to model the nominal stresses associated with intergranular constraints during thermal expansion. The texture of both specimens were characterized and the pressed pellet exhibits preferential orientation of (001) poles along the pressing direction, whereas no preferred orientation was found for the loose powder. Lastly, thermal strains for single-crystal TATB computed from lattice parameter data for the powder is input to a self-consistent micromechanical model, which predicts the lattice parameters of the constrained TATB crystals within the pellet. The agreement of these model results with the diffraction data obtained from the pellet is discussed along with future directions of research.« less

  8. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  9. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes.

    PubMed

    Calta, Nicholas P; Wang, Jenny; Kiss, Andrew M; Martin, Aiden A; Depond, Philip J; Guss, Gabriel M; Thampy, Vivek; Fong, Anthony Y; Weker, Johanna Nelson; Stone, Kevin H; Tassone, Christopher J; Kramer, Matthew J; Toney, Michael F; Van Buuren, Anthony; Matthews, Manyalibo J

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  10. Empirically testing vaterite structural models using neutron diffraction and thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan

    Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less

  11. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  12. Empirically testing vaterite structural models using neutron diffraction and thermal analysis

    DOE PAGES

    Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan; ...

    2016-11-18

    Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less

  13. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE PAGES

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; ...

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  14. Template-free solution approach to synthesize CdS dendrites with SCN based ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kangfeng; Li, Jiajia; Cheng, Xianyi

    2011-07-15

    Highlights: {yields} Template-free solution approach to synthesize CdS hierarchical dendrites. {yields} The 1-butyl-3-methlyimidazole thiocyanate ([BMIM][SCN]) plays doubly functional roles in the progress. {yields} The CdS hierarchical dendrites exhibit a more intense emission at 710 nm belongs to infrared band. -- Abstract: Cadmium sulfide dendrites were synthesized by a facile hydrothermal treatment from CdCl{sub 2} and ionic liquid 1-butyl-3-methlyimidazole thiocyanate acted both as sulfur source and surfactant. The product was characterized by means of X-ray powder diffraction and scanning electron microscopy. X-ray powder diffraction studies indicated that the product was well-crystallized hexagonal phase of CdS, and the scanning electron microscopy imagesmore » showed that the obtained powders consisted of a wealth of well-defined CdS dendritic microstructures with a pronounced trunk and highly ordered branches. The UV-Vis and photoluminescence spectroscopy measurements were taken as well. The possible formation mechanism of CdS dendrites was simply proposed in the end.« less

  15. Driving forces of redistribution of elements during quasicrystalline phase formation under heating of mechanically alloyed Al65Cu23Fe12 powder

    NASA Astrophysics Data System (ADS)

    Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.

    2008-02-01

    Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.

  16. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction.

    PubMed

    Dankar, Iman; Haddarah, Amira; Omar, Fawaz E L; Pujolà, Montserrat; Sepulcre, Francesc

    2018-09-15

    Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were used to study the effect of four food additives, agar, alginate, lecithin and glycerol, at three different concentrations, 0.5, 1 and 1.5%, on the molecular structure of potato puree prepared from commercial potato powder. Vibrational spectra revealed that the amylose-amylopectin skeleton present in the raw potato starch was missing in the potato powder but could be fully recovered upon water addition when the potato puree was prepared. FTIR peaks corresponding to water were clearly present in the potato powder, indicating the important structural role of water molecules in the recovery of the initial molecular conformation. None of the studied puree samples presented a crystalline structure or strong internal order. A comparison of the FTIR and XRD results revealed that the additives exerted some effects, mainly on the long-range order of the starch structure via interacting with and changing -OH and hydrogen bond interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1

    NASA Astrophysics Data System (ADS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.

    2013-12-01

    We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  18. A non-randomised, controlled clinical trial of an innovative device for negative pressure wound therapy of pressure ulcers in traumatic paraplegia patients.

    PubMed

    Srivastava, Rajeshwar N; Dwivedi, Mukesh K; Bhagat, Amit K; Raj, Saloni; Agarwal, Rajiv; Chandra, Abhijit

    2016-06-01

    The conventional methods of treatment of pressure ulcers (PUs) by serial debridement and daily dressings require prolonged hospitalisation, associated with considerable morbidity. There is, however, recent evidence to suggest that negative pressure wound therapy (NPWT) accelerates healing. The commercial devices for NPWT are costly, cumbersome, and electricity dependent. We compared PU wound healing in traumatic paraplegia patients by conventional dressing and by an innovative negative pressure device (NPD). In this prospective, non-randomised trial, 48 traumatic paraplegia patients with PUs of stages 3 and 4 were recruited. Patients were divided into two groups: group A (n = 24) received NPWT with our NPD, and group B (n = 24) received conventional methods of dressing. All patients were followed up for 9 weeks. At week 9, all patients on NPD showed a statistically significant improvement in PU healing in terms of slough clearance, granulation tissue formation, wound discharge and culture. A significant reduction in wound size and ulcer depth was observed in NPD as compared with conventional methods at all follow-up time points (P = 0·0001). NPWT by the innovative device heals PUs at a significantly higher rate than conventional treatment. The device is safe, easy to apply and cost-effective. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  19. Fabricating the spherical and flake silver powder used for the optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Ma, Wangjing; Zhang, Fangzhi; Chen, Yixiang; Xie, Jinpeng

    2018-01-01

    The spherical and flake silver powder with different particle size for the optoelectronic devices was partly prepared by using chemical reduction and ball milling method, and charactered by scanning electron microscope (SEM), X-ray diffraction (XRD), laser particle size analyzer and thermo-gravimetric(TG) analyzer. The particle size of three series of spherical silver powder fabricated by chemical reduction is about 1.5μm, 1μm and 0.6μm, respectively; after being mechanical milling, the particle size of flake silver powder with high flaky rate is about 10μm, 6μm and 2μm respectively. Thermo gravimetric (TG) and XRD analyses showed that the silver powders have high purity and crystalline, and then the laser particle size and SEM analyses showed that the silver powders has good uniformity.

  20. Moisture sorption by cellulose powders of varying crystallinity.

    PubMed

    Mihranyan, Albert; Llagostera, Assumpcio Piñas; Karmhag, Richard; Strømme, Maria; Ek, Ragnar

    2004-01-28

    Moisture in microcrystalline cellulose may cause stability problems for moisture sensitive drugs. The aim of this study was to investigate the influence of crystallinity and surface area on the uptake of moisture in cellulose powders. Powders of varying crystallinity were manufactured, and the uptake of moisture was investigated at different relative humidities. The structure of the cellulose powders was characterized by X-ray diffraction, BET surface area analysis, and scanning electron microscopy. Moisture uptake was directly related to the cellulose crystallinity and pore volume: Cellulose powders with higher crystallinity showed lower moisture uptake at relative humidities below 75%, while at higher humidities the moisture uptake could be associated with filling of the large pore volume of the cellulose powder of highest crystallinity. In conclusion, the structure of cellulose should be thoroughly considered when manufacturing low moisture grades of MCC.

  1. Different magnetic origins of (Mn, Fe)-codoped ZnO powders and thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiuping; Jiang, Fengxian; Quan, Zhiyong

    2012-11-15

    Graphical abstract: The effects of the sample forms, fabricated methods, and process conditions on the structural and magnetic properties of (Mn, Fe)-codoped ZnO powders and films were systematically studied. The origins of ferromagnetism in the vacuum-annealed powder and PLD-deposited film are different. The former originates from the impurities of magnetic clusters, whereas the latter comes from the almost homogenous phase. Highlights: ► The magnetic natures of Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powders and thin films come from different origins. ► The ferromagnetism of the powder is mainly from the contribution of magnetic clusters. ► Whereas the ferromagnetic behavior of the filmmore » comes from the almost homogenous phase. -- Abstract: The structural and magnetic properties of (Mn, Fe)-codoped ZnO powders as well as thin films were investigated. The X-ray diffraction and magnetic measurements indicated that the higher sintering temperature facilitates more Mn and Fe incorporation into ZnO. Magnetic measurements indicated that the powder sintered in air at 800 °C showed paramagnetic, but it exhibited obvious room temperature ferromagnetism after vacuum annealing at 600 °C. The results revealed that magnetic clusters were the major contributors to the observed ferromagnetism in vacuum-annealed Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powder. Interestingly, the room temperature ferromagnetism was also observed in the Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O film deposited via pulsed laser deposition from the air-sintered paramagnetic target, but the secondary phases in the film were not detected from X-ray diffraction, transmission electron microscopy, and zero-field cooling and field cooling. Apparently, the magnetic natures of powders and films come from different origins.« less

  2. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula; Sharma, Vimal, E-mail: manjula.physics@gmail.com

    2016-05-23

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, Raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  3. Macromolecular powder diffraction : structure solution via molecular.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebbler, J.; Von Dreele, R.; X-Ray Science Division

    Macromolecular powder diffraction is a burgeoning technique for protein structure solution - ideally suited for cases where no suitable single crystals are available. Over the past seven years, pioneering work by Von Dreele et al. [1,2] and Margiolaki et al. [3,4] has demonstrated the viability of this approach for several protein structures. Among these initial powder studies, molecular replacement solutions of insulin and turkey lysozyme into alternate space groups were accomplished. Pressing the technique further, Margiolaki et al. [5] executed the first molecular replacement of an unknown protein structure: the SH3 domain of ponsin, using data from a multianalyzer diffractometer.more » To demonstrate that cross-species molecular replacement using image plate data is also possible, we present the solution of hen egg white lysozyme using the 60% identical human lysozyme (PDB code: 1LZ1) as the search model. Due to the high incidence of overlaps in powder patterns, especially in more complex structures, we have used extracted intensities from five data sets taken at different salt concentrations in a multi-pattern Pawley refinement. The use of image plates severely increases the overlap problem due to lower detector resolution, but radiation damage effects are minimized with shorter exposure times and the fact that the entire pattern is obtained in a single exposure. This image plate solution establishes the robustness of powder molecular replacement resulting from different data collection techniques.« less

  4. Laboratory manual: mineral X-ray diffraction data retrieval/plot computer program

    USGS Publications Warehouse

    Hauff, Phoebe L.; VanTrump, George

    1976-01-01

    The Mineral X-Ray Diffraction Data Retrieval/Plot Computer Program--XRDPLT (VanTrump and Hauff, 1976a) is used to retrieve and plot mineral X-ray diffraction data. The program operates on a file of mineral powder diffraction data (VanTrump and Hauff, 1976b) which contains two-theta or 'd' values, and intensities, chemical formula, mineral name, identification number, and mineral group code. XRDPLT is a machine-independent Fortran program which operates in time-sharing mode on a DEC System i0 computer and the Gerber plotter (Evenden, 1974). The program prompts the user to respond from a time-sharing terminal in a conversational format with the required input information. The program offers two major options: retrieval only; retrieval and plot. The first option retrieves mineral names, formulas, and groups from the file by identification number, by the mineral group code (a classification by chemistry or structure), or by searches based on the formula components. For example, it enables the user to search for minerals by major groups (i.e., feldspars, micas, amphiboles, oxides, phosphates, carbonates) by elemental composition (i.e., Fe, Cu, AI, Zn), or by a combination of these (i.e., all copper-bearing arsenates). The second option retrieves as the first, but also plots the retrieved 2-theta and intensity values as diagrammatic X-ray powder patterns on mylar sheets or overlays. These plots can be made using scale combinations compatible with chart recorder diffractograms and 114.59 mm powder camera films. The overlays are then used to separate or sieve out unrelated minerals until unknowns are matched and identified.

  5. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    PubMed

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Cation ordering/disordering kinetics in Ba3CoNb2O9: An in situ study using synchrotron x-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Mallinson, P. M.; Claridge, J. B.; Rosseinsky, M. J.; Ibberson, R. M.; Wright, J. P.; Fitch, A. N.; Price, T.; Iddles, D. M.

    2007-11-01

    In situ synchrotron x-ray powder diffraction has been used to study the kinetics of cation ordering and disordering in the microwave dielectric electroceramic Ba3CoNb2O9 with a time resolution of 15s. The method enables the order/disorder temperature (To /d) in this material of 1430°C to be directly observed. The changes in the rate and degree of cation ordering and in the growth of ordered domains between samples ordered from standard precursor material and then subsequently reordered following an annealing period above To /d show that small changes in precursor order state and phase assemblage strongly influence the final domain size.

  7. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    NASA Astrophysics Data System (ADS)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  8. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in; Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012; Sukumar, M.

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure andmore » doped benzimidazole crystals measured using Kurtz powder test.« less

  9. Asymmetric band flipping for time-of-flight neutron diffraction data

    DOE PAGES

    Whitfield, Pamela S.; Coelho, Alan A.

    2016-08-24

    Charge flipping with powder diffraction data is known to produce a result more reliably with high-resolution data,i.e.visible reflections at smalldspacings. This data are readily accessible with the neutron time-of-flight technique but the assumption that negative scattering density is nonphysical is no longer valid where elements with negative scattering lengths are present. The concept of band flipping was introduced in the literature, where a negative threshold is used in addition to a positive threshold during the flipping. But, it was not tested with experimental data at the time. Finallly, band flipping has been implemented inTOPAStogether with the band modification of low-densitymore » elimination and tested with experimental powder and Laue single-crystal neutron data.« less

  10. Magnetic and neutron diffraction study on quaternary oxides MTeMoO6 (M = Mn and Zn)

    NASA Astrophysics Data System (ADS)

    Doi, Yoshihiro; Suzuki, Ryo; Hinatsu, Yukio; Ohoyama, Kenji

    2009-01-01

    Crystal structures and magnetic properties of quaternary oxides MTeMoO6 (M = Mn and Zn) were investigated. From the Rietveld analyses for the powder x-ray and neutron diffraction measurements, their detailed structures have been determined. Both compounds have orthorhombic structure with space group P 21212 and a charge configuration of M2+Te4+Mo6+O6. ZnTeMoO6 shows diamagnetic behavior. In this structure, M ions are arranged in a square-planar manner. The temperature dependence of the magnetic susceptibility for MnTeMoO6 shows a broad peak at ~33 K, which is due to a two-dimensional characteristic of the magnetic interaction. In addition, this compound shows an antiferromagnetic transition at 20 K. The magnetic structure was determined by the powder neutron diffraction measurement at 3.3 K. The magnetic moments of Mn2+ ions (4.45 μB) order in a collinear antiferromagnetic arrangement along the b axis.

  11. Photocatalytic degradation of diethyl phthalate using TiO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singla, Pooja, E-mail: pooja.singla@thapar.edu; Pandey, O. P., E-mail: pooja.singla@thapar.edu; Singh, K., E-mail: pooja.singla@thapar.edu

    2014-04-24

    TiO{sub 2} nanoparticles predominantly in rutile phase are synthesized by ultrasonication assisted sol-gel method. TiO{sub 2} powder is characterized using X-ray powder diffraction and UV-vis diffuse reflectance. TiO{sub 2} is used as catalyst in photocatalytic degradation of Diethyl Phthalate. TiO{sub 2} exhibits good photocatalytic activity for the degradation of diethyl phthalate.

  12. Powder Handling Device for Analytical Instruments

    NASA Technical Reports Server (NTRS)

    Sarrazin, Philippe C. (Inventor); Blake, David F. (Inventor)

    2006-01-01

    Method and system for causing a powder sample in a sample holder to undergo at least one of three motions (vibration, rotation and translation) at a selected motion frequency in order to present several views of an individual grain of the sample. One or more measurements of diffraction, fluorescence, spectroscopic interaction, transmission, absorption and/or reflection can be made on the sample, using light in a selected wavelength region.

  13. Characterization of powdered fish heads for bone graft biomaterial applications.

    PubMed

    Oteyaka, Mustafa Ozgür; Unal, Hasan Hüseyin; Bilici, Namık; Taşçı, Eda

    2013-01-01

    The aim of this study was to define the chemical composition, morphology and crystallography of powdered fish heads of the species Argyrosomus regius for bone graft biomaterial applications. Two sizes of powder were prepared by different grinding methods; Powder A (coarse, d50=68.5 µm) and Powder B (fine, d50=19.1 µm). Samples were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), thermogravimetry (TG), and energy dispersive X-ray spectroscopy (EDS). The powder was mainly composed of aragonite (CaCO3) and calcite (CaCO3). The XRD pattern of Powder A and B matched standard aragonite and calcite patterns. In addition, the calcium oxide (CaO) phase was found after the calcination of Powder A. Thermogravimetry analysis confirmed total mass losses of 43.6% and 47.3% in Powders A and B, respectively. The microstructure of Powder A was mainly composed of different sizes and tubular shape, whereas Powder B showed agglomerated particles. The high quantity of CaO and other oxides resemble the chemical composition of bone. In general, the powder can be considered as bone graft after transformation to hydroxyapatite phase.

  14. Direct Printing of Organic Electronics at the Nanometer Scale

    DTIC Science & Technology

    2006-02-01

    patterning as seen in Figure 3. Also, a flat film OVJP grown Alq3 NPD OLED was shown to be competitive with VTE with quantum efficiencies of 0.84%. 0 0...a tris(8-hydroxyquinoline)- aluminum ( Alq3 ) electron transport and emitting layer. The OLEDs exhibited an external 8 quantum efficiency of (0.84...parameter analyzer and a Newport Model 2932-C dual-channel power meter. An OLED having the layer structure: ITO/60nm NPD/60nm Alq3 /LiF:Al was deposited

  15. The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders.

    PubMed

    Liebenberg, W; de Villiers, M M; Wurster, D E; Swanepoel, E; Dekker, T G; Lötter, A P

    1999-09-01

    In South Africa, oxytetracycline is identified as an essential drug; many generic products are on the market, and many more are being developed. In this study, six oxytetracycline hydrochloride powders were obtained randomly from manufacturers, and suppliers were compared. It was found that compliance to a pharmacopoeial monograph was insufficient to ensure the optimum dissolution performance of a simple tablet formulation. Comparative physicochemical raw material analysis showed no major differences with regard to differential scanning calorimetry (DSC), infrared (IR) spectroscopy, powder dissolution, and particle size. However, the samples could be divided into two distinct types with respect to X-ray powder diffraction (XRD) and thus polymorphism. The two polymorphic forms had different dissolution properties in water or 0.1 N hydrochloride acid. This difference became substantial when the dissolution from tablets was compared. The powders containing form A were less soluble than that containing form B.

  16. Aqueous Combustion Synthesis and Characterization of Nanosized Tetragonal Zirconia Single Crystals

    NASA Astrophysics Data System (ADS)

    Reddy, B. S. B.; Mal, Indrajit; Tewari, Shanideep; Das, Karabi; Das, Siddhartha

    2007-08-01

    Nanocrystalline zirconia powder has been synthesized by an aqueous combustion synthesis route using glycine as fuel and nitrate as oxidizer. The powders have been prepared by using different glycine to zirconyl nitrate molar ratios (G/N). The powders produced with different G/N ratios have been characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to determine the parameters resulting from powder with attractive properties. The theoretical combustion temperature (T ad ) has been calculated for different G/N ratios, and it is correlated with powder characteristics. An attempt is also made to explain the stability of tetragonal zirconia on the basis of extrinsic factors such as the morphology of nanocrystallites. Nanocrystalline metastable tetragonal zirconia (˜25 nm) powder (TZ) with disc-shaped morphology has been produced with a weak agglomeration in fuel deficient mixtures.

  17. Effect of Nitrooxy Compounds with Different Molecular Structures on the Rumen Methanogenesis, Metabolic Profile, and Methanogenic Community.

    PubMed

    Jin, Wei; Meng, Zhenxiang; Wang, Jing; Cheng, Yanfen; Zhu, Weiyun

    2017-08-01

    Rumen in vitro fermentation was used to evaluate the capacity of nitrooxy compounds to mitigate rumen methane production. The following three nitrooxy compounds, each with different molecular structures, were evaluated: 2,2-dimethyl-3-(nitrooxy) propanoic (DNP), N-[2-(Nitrooxy)ethyl]-3-pyridinecarboxamide (NPD), and nitroglycerin (NG). All three compounds substantially decreased the total gas production, methane production, and the acetate:propionate ratio, while increasing hydrogen production. The growth of methanogens was specifically inhibited by all three compounds, without affecting the abundance of bacteria, anaerobic fungi, or protozoa. However, inhibition of methanogenesis required a much higher dose of DNP when compared to NPD or NG. Further investigations were conducted on NG to determine its effects on the methanogenic community. NG reduced the relative abundance of Methanomassiliicoccales, while increasing the relative abundance of Methanobrevibacter and Methanosphaera. Overall, the results suggested that all three of these nitrooxy compounds could specifically inhibit rumen methanogenesis, but NPD and NG were much more efficient than DNP at rumen methane mitigation.

  18. Fear and decision-making in narcissistic personality disorder—a link between psychoanalysis and neuroscience

    PubMed Central

    Ronningstam, Elsa; Baskin-Sommers, Arielle R.

    2013-01-01

    Linking psychoanalytic studies with neuroscience has proven increasingly productive for identifying and understanding personality functioning. This article focuses on pathological narcissism and narcissistic personality disorder (NPD), with the aim of exploring two clinically relevant aspects of narcissistic functioning also recognized in psychoanalysis: fear and decision-making. Evidence from neuroscientific studies of related conditions, such as psychopathy, suggests links between affective and cognitive functioning that can influence the sense of self-agency and narcissistic self-regulation. Attention can play a crucial role in moderating fear and self-regulatory deficits, and the interaction between experience and emotion can be central for decision-making. In this review we will explore fear as a motivating factor in narcissistic personality functioning, and the impact fear may have on decision-making in people with pathological narcissism and NPD. Understanding the processes and neurological underpinnings of fear and decision-making can potentially influence both the diagnosis and treatment of NPD. PMID:24174893

  19. Identification of multi-insecticide residues using GC-NPD and the degradation kinetics of chlorpyrifos in sweet corn and soils.

    PubMed

    Wang, Peidan; Rashid, Muhammad; Liu, Jie; Hu, Meiying; Zhong, Guohua

    2016-12-01

    Because more than one insecticide is applied to crops to protect plants from pests, an analytical multi-residue determination method was developed using gas chromatography with a nitrogen phosphorus detector (GC-NPD). The retention time for 12 insecticides was 3.7-27.7min. Under the selected conditions, the limits of detection (LOD) and quantification (LOQ) were below the maximum residue limits (MRLs) and in the range of 0.00315-0.05μgmL(-1) and 0.01-0.165μgmL(-1), respectively. Using GC-NPD, we investigated the dissipation dynamics and final residual levels of chlorpyrifos in sweet corn and soil and determined that the half-lives was 4-7days, that is, that chlorpyrifos is safe to use on sweet corn with a pre-harvest interval of 16-22days before harvest. These results provide new insights into chlorpyrifos degradation in plants and its environmental behavior. Copyright © 2016. Published by Elsevier Ltd.

  20. Synchrotron powder diffraction on Aztec blue pigments

    NASA Astrophysics Data System (ADS)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  1. Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks

    NASA Astrophysics Data System (ADS)

    Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.

    2009-12-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  2. Evidence for weak ferromagnetism, isostructural phase transition, and linear magnetoelectric coupling in the multiferroic Bi0.8Pb0.2Fe0.9Nb0.1O3 solid solution

    NASA Astrophysics Data System (ADS)

    Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai

    2013-09-01

    Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).

  3. Propofol Requirement for Induction of Unconsciousness Is Reduced in Patients with Parkinson's Disease: A Case Control Study

    PubMed Central

    Xu, Xiao-ping; Yu, Xi-ya; Wu, Xi; Hu, Xiao-wu; Chen, Jian-chun; Li, Jin-bao; Deng, Xiao-ming

    2015-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, but whether the neurodegenerative process influences the pharmacodynamics of propofol remains unclear. We aimed to evaluate the effect of PD on pharmacodynamics of propofol. A total of 31 PD patients undergoing surgical treatment (PD group) and 31 pair-controlled non-PD patients undergoing intracranial surgery (NPD group) were recruited to investigate the propofol requirement for unconsciousness induction. Unconsciousness was induced in all patients with target-controlled infusion of propofol. The propofol concentration at which unconsciousness was induced was compared between the two groups. EC50 and EC95 were calculated as well. Demographic data, bispectral index, and hemodynamic values were comparable between PD and NPD groups. The mean target concentration of propofol when unconsciousness was achieved was 2.32 ± 0.38 μg/mL in PD group, which was significantly lower than that in NPD group (2.90 ± 0.35 μg/mL). The EC50 was 2.05 μg/mL (95% CI: 1.85–2.19 μg/mL) in PD group, much lower than the 2.72 μg/mL (95% CI: 2.53–2.88 μg/mL) in NPD group. In conclusion, the effective propofol concentration needed for induction of unconsciousness in 50% of patients is reduced in PD patients. (This trial is registered with NCT01998204.) PMID:26495319

  4. Effect of titanium on the structural and optical property of NiO nano powders

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Mishra, Prashant; Khatun, Nasima; Ayaz, Saniya; Srivastava, Tulika; Sen, Somaditya

    2018-05-01

    Nickel Oxide (NiO) and Ti doped NiO nanoparticles were prepared by sol-gel auto combustion method. Powder x-ray diffraction (PXRD) structural studies revealed face centered cubic (FCC) structure of the NiO nanopowders. The crystallite size decreased with Ti incorporation. UV-Vis spectroscopy carried out in diffused reflectance mode revealed decrease in band gap with increment in Urbach energy with doping.

  5. Flexible graphene composites for removal of methylene blue dye-contaminant from water

    NASA Astrophysics Data System (ADS)

    Oliva, J.; Martinez, A. I.; Oliva, A. I.; Garcia, C. R.; Martinez-Luevanos, A.; Garcia-Lobato, M.; Ochoa-Valiente, R.; Berlanga, A.

    2018-04-01

    This work presents the use of flexible graphene composites (FGCs) fabricated by a casting method for the removal of Methylene blue (MB) dye from water. Those FGCs with elastic modulus of 15 MPa had enough mechanical resistance to support the Al2O3:Eu3+ and SrAl2O4:Bi3+ photocatalytic powders. After the incorporation of those powders in the FGCs, their photocatalytic activity was evaluated by monitoring the degradation of MB dye under solar irradiation. Scanning electron microscopy (SEM) images demonstrate that the surface of FGCs with catalysts powders presents pores with sizes in the range of 15-40 μm, which favored the sunlight absorption by scattering effects. Moreover, X-Ray diffraction measurements confirmed the formation of the composites by displacements of their diffraction peaks. The MB dye was completely removed (by photocatalysis and by physical adsorption) from the water after 180 min and 270 min by using the FGCs with Al2O3:Eu3+ and SrAl2O4:Bi3+ catalysts respectively. Hence, the results of photocatalytic activity suggest that our FGCs could be used as an effective support of catalyst powders for the easy removal of dye contaminants in wastewater treatment plants.

  6. Extraction of Lithium from Brine Solution by Hydrolysis of Activated Aluminum Powder

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Chen, Xingyu; Liu, Xuheng; Zhao, Zhongwei; Liu, Chongwu

    2018-05-01

    Activated aluminum powder has been used to extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction. First, activated aluminum powder was prepared under the optimal conditions of NaCl addition of 70%, ball-milling time of 3 h, and ball-to-powder mass ratio of 20:1. Then, the activated aluminum powder was added into the Mg-Li mixed solution to extract lithium. X-ray diffraction analysis indicated that Li+ was adsorbed by freshly formed Al(OH)3 in the form of LADH-Cl [LiCl·2Al(OH)3·mH2O]. Under the optimal conditions of reaction time of 3 h, Al/Li molar ratio of 4:1 for activated aluminum powder addition, and reaction temperature of 70°C, lithium precipitation exceeded 90% while magnesium precipitation was controlled at 13%. These results indicate that activated aluminum powder can efficiently extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de

    A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ballmore » milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.« less

  8. Characterization of monoclinic crystals in tablets by pattern-fitting procedure using X-ray powder diffraction data.

    PubMed

    Yamamura, Shigeo; Momose, Yasunori

    2003-06-18

    The purpose of this study is to characterize the monoclinic crystals in tablets by using X-ray powder diffraction data and to evaluate the deformation feature of crystals during compression. The monoclinic crystals of acetaminophen and benzoic acid were used as the samples. The observed X-ray diffraction intensities were fitted to the analytic expression, and the fitting parameters, such as the lattice parameters, the peak-width parameters, the preferred orientation parameter and peak asymmetric parameter were optimized by a non-linear least-squares procedure. The Gauss and March distribution functions were used to correct the preferred orientation of crystallites in the tablet. The March function performed better in correcting the modification of diffraction intensity by preferred orientation of crystallites, suggesting that the crystallites in the tablets had fiber texture with axial orientation. Although a broadening of diffraction peaks was observed in acetaminophen tablets with an increase of compression pressure, little broadening was observed in the benzoic tablets. These results suggest that "acetaminophen is a material consolidating by fragmentation of crystalline particles and benzoic acid is a material consolidating by plastic deformation then occurred rearrangement of molecules during compression". A pattern-fitting procedure is the superior method for characterizing the crystalline drugs of monoclinic crystals in the tablets, as well as orthorhombic isoniazid and mannitol crystals reported in the previous paper.

  9. Utilization of fish bone as adsorbent of Fe3+ ion by controllable removal of its carbonaceous component

    NASA Astrophysics Data System (ADS)

    Nurhadi, M.; Kusumawardani, R.; Widiyowati, I. I.; Wirhanuddin; Nur, H.

    2018-05-01

    The performance of fish bone to adsorb Fe3+ ion in solution was studied. Powdered fish bone and carbonized fish bone were used as adsorbent. All absorbents were characterized by X-ray diffraction (XRD), IR spectroscopy, nitrogen adsorption, scanning electron microscopy (SEM) and TG analysis. Powdered fish bone and carbonized fish bone were effective as adsorbent for removing Fe3+ ion in solution. The metal adsorptions of Fe3+ ion were 94 and 98% for powdered fish bone and fish bone which carbonized at 400 and 500 °C.

  10. Relative impact of H 2 O and O 2 in the oxidation of UO 2 powders from 50 to 300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald, Scott B.; Davisson, M. Lee; Dai, Zurong

    Here, we studied the reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO 2) powder at elevated temperature by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). We observed and quatified oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.

  11. Relative impact of H2O and O2 in the oxidation of UO2 powders from 50 to 300 °C

    NASA Astrophysics Data System (ADS)

    Donald, Scott B.; Davisson, M. Lee; Dai, Zurong; Roberts, Sarah K.; Nelson, Art J.

    2017-12-01

    The reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO2) powder at elevated temperature was studied by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). Oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice was observed and quantified. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.

  12. Relative impact of H 2 O and O 2 in the oxidation of UO 2 powders from 50 to 300 °C

    DOE PAGES

    Donald, Scott B.; Davisson, M. Lee; Dai, Zurong; ...

    2017-10-04

    Here, we studied the reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO 2) powder at elevated temperature by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). We observed and quatified oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.

  13. Order-disorder-reorder process in thermally treated dolomite samples: a combined powder and single-crystal X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zucchini, A.; Comodi, P.; Katerinopoulou, A.; Balic-Zunic, T.; McCammon, C.; Frondini, F.

    2012-04-01

    A combined powder and single-crystal X-ray diffraction analysis of dolomite [CaMg(CO3)2] heated to 1,200°C at 3 GPa was made to study the order-disorder-reorder process. The order/disorder transition is inferred to start below 1,100°C, and complete disorder is attained at approximately 1,200°C. Twinned crystals characterized by high internal order were found in samples annealed over 1,100°C, and their fraction was found to increase with temperature. Evidences of twinning domains combined with probable remaining disordered portions of the structure imply that reordering processes occur during the quench. Twin domains are hereby proposed as a witness to thermally induced intra-layer-type cation disordering.

  14. Perylene and Perylene-Derivative Nano-Cocrystals: Preparation and Physicochemical Property

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Konta, Sayaka; Oliveira, Daniel; Sugai, Kenji; Onodera, Tsunenobu; Masuhara, Akito; Kasai, Hitoshi; Oikawa, Hidetoshi; Nakanishi, Hachiro

    2012-12-01

    Organic nano-cocrystals of functional dyes of perylene and a perylene derivative were successfully prepared by the reprecipitation method. The particle sizes, optical properties, and powder X-ray diffraction patterns of nano-cocrystals were evaluated. Typically, the size with size distribution of nano-cocrystals was 55±15 nm when the molar ratio of perylene to the perylene derivative was 50:50. The particular intermolecular electronic interaction between perylene and the perylene derivative in the nano-cocrystal state was observed by absorption and fluorescence spectra measurements. The powder X-ray diffraction pattern analysis confirmed that the structure of nano-cocrystals was different from those prepared from perylene and the perylene derivative. The nano-cocrystal having unique physicochemical properties will be potentially classified as a new type of functional nanomaterial.

  15. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.

  16. Investigation of phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by in situ synchrotron high-temperature powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Xin; Huang, Saifang; School of Materials Science and Technology, China University of Geosciences

    2014-03-15

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) precursors prepared via solid-state and sol–gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol–gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol–gel precursor. Both precursors are able to bemore » calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study. -- Graphical abstract: The in situ synchrotron HT-XRD patterns of CCTO sol–gel and solid-state precursor. Highlights: • Phase formation sequence/mechanism in two CCTO precursors has been established. • Formation temperature of CCTO via sol–gel method is lower than solid-state method. • Intermediate phases are only observed in the sol–gel precursor. • Both precursors are able to be calcined into sub-micrometric sized powders.« less

  17. Evidence for existence of functional monoclinic phase in sodium niobate based solid solution by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.

    2018-04-01

    We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.

  18. Macroscopic X-ray Powder Diffraction Scanning: Possibilities for Quantitative and Depth-Selective Parchment Analysis.

    PubMed

    Vanmeert, Frederik; De Nolf, Wout; Dik, Joris; Janssens, Koen

    2018-06-05

    At or below the surface of painted works of art, valuable information is present that provides insights into an object's past, such as the artist's technique and the creative process that was followed or its conservation history but also on its current state of preservation. Various noninvasive techniques have been developed over the past 2 decades that can probe this information either locally (via point analysis) or on a macroscopic scale (e.g., full-field imaging and raster scanning). Recently macroscopic X-ray powder diffraction (MA-XRPD) mapping using laboratory X-ray sources was developed. This method can visualize highly specific chemical distributions at the macroscale (dm 2 ). In this work we demonstrate the synergy between the quantitative aspects of powder diffraction and the noninvasive scanning capability of MA-XRPD highlighting the potential of the method to reveal new types of information. Quantitative data derived from a 15th/16th century illuminated sheet of parchment revealed three lead white pigments with different hydrocerussite-cerussite compositions in specific pictorial elements, while quantification analysis of impurities in the blue azurite pigment revealed two distinct azurite types: one rich in barite and one in quartz. Furthermore, on the same artifact, the depth-selective possibilities of the method that stem from an exploitation of the shift of the measured diffraction peaks with respect to reference data are highlighted. The influence of different experimental parameters on the depth-selective analysis results is briefly discussed. Promising stratigraphic information could be obtained, even though the analysis is hampered by not completely understood variations in the unit cell dimensions of the crystalline pigment phases.

  19. M(II)-dipyridylamide-based coordination frameworks (M=Mn, Co, Ni): Structural transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, Biing-Chiau; Selvam, TamilSelvi; Tsai, Miao-Hsin

    2016-11-15

    A series of 1-D double-zigzag (([M(papx){sub 2}(H{sub 2}O){sub 2}](ClO{sub 4}){sub 2}){sub n}; M=Mn, x=s (1), x=o (3); M=Co, x=s (4), x=o (5); M=Ni, x=s (6), x=o (7)) and 2-D polyrotaxane ([Mn(paps){sub 2}(ClO{sub 4}){sub 2}]{sub n} (2)) frameworks were synthesized by reactions of M(ClO{sub 4}){sub 2} (M=Mn, Co, and Ni) with papx (paps, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenylthioether; papo, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenyl ether), which have been isolated and structurally characterized by X-ray diffraction. Based on powder X-ray diffraction (PXRD) experiments, heating the double-zigzag frameworks underwent structural transformation to give the respective polyrotaxane ones. Moreover, grinding the solid samples of the respective polyrotaxanes in the presence of moisturemore » also resulted in the total conversion to the original double-zigzag frameworks. In this study, we have successfully extended studies to Mn{sup II}, Co{sup II}, and Ni{sup II} frameworks from the previous Zn{sup II}, Cd{sup II}, and Cu{sup II} ones, and interestingly such structural transformation is able to be proven experimentally by powder and single-crystal X-ray diffraction studies as well. - Graphical abstract: 1-D double-zigzag and 2-D polyrotaxane frameworks of M(II)-papx (x=s, o; M=Mn, Co, Ni) frameworks can be interconverted by heating and grinding in the presence of moiture, and such structural transformation has be proven experimentally by powder and single-crystal X-ray diffraction studies.« less

  20. Chemical Reduction of Nd 1.85 Ce 0.15 CuO 4− δ Powders in Supercritical Sodium Ammonia Solutions

    DOE PAGES

    Dias, Yasmin; Wang, Hui; Zhou, Haiqing; ...

    2015-01-01

    Nd 1.85 Ce 0.15 CuO 4− δ powders are chemically reduced in supercritical sodium ammonia solutions from room temperature to 350°C. The crystallographic structure of the reduced powders is investigated from Rietveld refinement of X-ray powder diffraction. The atomic positions are maintained constant within experimental errors while temperature factors of all atoms increase significantly after the chemical treatments, especially of Nd/Ce atoms. The ammonothermally reduced Nd 1.85 Ce 0.15 CuO 4− δ powders show diamagnetic below 24 K which is contributed to the lower oxygen content and higher temperature factors of atoms in the treated compound. Themore » ammonothermal method paves a new way to reduce oxides in supercritical solutions near room temperature.« less

  1. Mechanical alloying, characterization and consolidation of Ti-Al-Ni alloys

    NASA Technical Reports Server (NTRS)

    Nash, P.; Higgins, G. T.; Dillinger, N.; Hwang, S. J.; Kim, H.

    1989-01-01

    Mechanical alloying is being investigated as a processing route for the production of aluminide intermetallics. This program involves powder production and characterization, consolidation and thermal treatments and determination of microstructure-property relationships. An attritor mill is being used to produce powder in lots up to 1000 grams and the processing parameters are being systematically varied to establish the optimum milling conditions. The mill is being instrumented to generate data related to the processing to provide a basis for theoretical modeling. Powder is being characterized using thermal analysis, optical and electron microscopy and X-ray diffraction. Particle size distributions and powder density are being determined. Consolidation of the powder is being approached in several different ways including, cold isostatic pressing, sintering, extrusion and hot pressing. The results of the program so far will be presented and future directions discussed.

  2. Three-dimensional distribution of polymorphs and magnesium in a calcified underwater attachment system by diffraction tomography

    PubMed Central

    Leemreize, Hanna; Almer, Jonathan D.; Stock, Stuart R.; Birkedal, Henrik

    2013-01-01

    Biological materials display complicated three-dimensional hierarchical structures. Determining these structures is essential in understanding the link between material design and properties. Herein, we show how diffraction tomography can be used to determine the relative placement of the calcium carbonate polymorphs calcite and aragonite in the highly mineralized holdfast system of the bivalve Anomia simplex. In addition to high fidelity and non-destructive mapping of polymorphs, we use detailed analysis of X-ray diffraction peak positions in reconstructed powder diffraction data to determine the local degree of Mg substitution in the calcite phase. These data show how diffraction tomography can provide detailed multi-length scale information on complex materials in general and of biomineralized tissues in particular. PMID:23804437

  3. X-ray diffraction, spectroscopic and mechanical studies on potential organic NLO materials of metaNitroaniline and N-3-Nitrophenyl Acetamide single crystals

    NASA Astrophysics Data System (ADS)

    Senthil, S.; Madhavan, J.

    2015-02-01

    In the present paper, attempts were made to grow good quality metaNitroaniline (mNA) and N-3-Nitrophenyl (3-NAA) single crystals. The lattice parameter values from the Powder X-ray diffraction pattern confirms that mNA belongs to orthorhombic crystal system with the unit cell parameter values of a = 6.501 Å, b = 19.330 Å and c = 5.082 Å with space group Pbc21. Similarly the powder XRD data indicates that 3-NAA crystal retained its monoclinic structure with lattice parameter values a = 9.762 Å, b =13.287 Å, c =13.226 Å, and β = 102.99°. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier Transform infrared spectroscopy technique. The SHG efficiency of mNA and 3NAA was determined by Kurtz and Perry powder technique. The Optical absorption study confirms the suitability of the crystals for device applications. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester.

  4. Compositional dependence of magnetic anisotropy in chemically synthesized Co3- x Fe x O4 (0 ≤ x ≤ 2)

    NASA Astrophysics Data System (ADS)

    Hayashi, Kensuke; Yamada, Keisuke; Shima, Mutsuhiro

    2018-01-01

    Magnetic anisotropy of Co3- x Fe x O4 (CFO, 0 ≤ x ≤ 2) thin-film and powder samples prepared by a sol-gel method has been investigated as a function of Fe composition x. Structural analyses by X-ray diffraction show that CFO powder samples exhibit diffraction peaks associated with the spinel structure when x < 2, while CFO thin-film samples with thickness of 130-510 nm yield the peaks when 0 ≤ x ≤ 2. CFO thin-film samples are highly (111)-oriented with the Lotgering factor greater than 0.9 when 0.6 ≤ x ≤ 1.3. The magnetic anisotropy constant K 1 of CFO powder samples estimated from their room-temperature hysteresis loops yields a minimum when x = 0.9. Relatively large in-plane magnetic anisotropy (K eff = 5.7 × 105 erg/cm3) is observed for the CFO thin-film sample when x = 1.3. With increasing x, the magnetic easy axis of the spinel CFO changes from 〈111〉 to 〈100〉 when x = 0.9.

  5. An alternative gas sensor material: Synthesis and electrical characterization of SmCoO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Carlos Rafael; Delgado, Emilio; Santillan, Gloria

    2007-01-18

    Single-phase perovskite SmCoO{sub 3} was prepared by a wet-chemical synthesis technique using metal-nitrates and citric acid; after its characterization by thermal analyses and X-ray diffraction, sintering at 900 deg. C in air, gave single phase and well crystallized powders. The powders were mixed with an organic solvent to prepare a slurry, which was deposited on alumina substrates as thick films, using the screen-printing technique. Electrical and gas sensing properties of sintered SmCoO{sub 3} films were investigated in air, O{sub 2} and CO{sub 2}, the results show that sensitivity reached a maximum value at 420 deg. C, for both gases. Dynamicmore » tests revealed a better behavior of SmCoO{sub 3} in CO{sub 2} than O{sub 2}, due to a fast response and a larger electrical resistance change to this gas. X-ray diffraction made on powders after electrical characterization in gases, showed that perovskite-type structure was preserved.« less

  6. Mechanically activated synthesis of PZT and its electromechanical properties

    NASA Astrophysics Data System (ADS)

    Liu, X.; Akdogan, E. K.; Safari, A.; Riman, R. E.

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead zirconium titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ˜110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.

  7. Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625

    NASA Astrophysics Data System (ADS)

    Talla, Gangadharudu; Gangopadhyay, S.; Biswas, C. K.

    2016-02-01

    The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.

  8. The Effect of Time, Temperature and Composition on Boron Carbide Synthesis by Sol-gel Method

    NASA Astrophysics Data System (ADS)

    Hadian, A. M.; Bigdeloo, J. A.

    2008-02-01

    To minimize free carbon residue in the boron carbide (B4C) powder, a modified sol-gel process is performed where the starting materials as boric acid and citric acid compositions are adjusted. Because of boron loss in the form of B2O2(g) during the reduction reaction of the stoichiometric starting composition, the final B4C powders contain carbon residues. Thus, an excess H3BO3 is used in the reaction to compensate the loss and to obtain stoichiometric powders. Parameters of production have been determined using x-ray diffraction analysis and particle size analyses. The synthesized B4C powder using an excess boric acid composition shows no trace of carbon.

  9. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter

    NASA Astrophysics Data System (ADS)

    Sumiya, H.; Hamaki, K.; Harano, K.

    2018-05-01

    Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.

  10. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery.

    PubMed

    Li, Xiaojian; Mansour, Heidi M

    2011-12-01

    Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.

  11. Apparatus Notes.

    ERIC Educational Resources Information Center

    Eaton, Bruce G., Ed.

    1982-01-01

    Presents a technique to produce samples for x-ray diffraction studies on the Tel-X-Ometer 80 x-ray apparatus from readily available crystalline powders and discusses observations of transverse modes of an optical resonator. (SK)

  12. An Investigation of the Interatomic Bonding Characteristics of a Ti - 51at.% Al Alloy by X-Ray Diffraction

    DTIC Science & Technology

    1991-06-01

    GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence

  13. A structural investigation into the compaction behavior of pharmaceutical composites using powder X-ray diffraction and total scattering analysis.

    PubMed

    Moore, Michael D; Steinbach, Alison M; Buckner, Ira S; Wildfong, Peter L D

    2009-11-01

    To use advanced powder X-ray diffraction (PXRD) to characterize the structure of anhydrous theophylline following compaction, alone, and as part of a binary mixture with either alpha-lactose monohydrate or microcrystalline cellulose. Compacts formed from (1) pure theophylline and (2) each type of binary mixture were analyzed intact using PXRD. A novel mathematical technique was used to accurately separate multi-component diffraction patterns. The pair distribution function (PDF) of isolated theophylline diffraction data was employed to assess structural differences induced by consolidation and evaluated by principal components analysis (PCA). Changes induced in PXRD patterns by increasing compaction pressure were amplified by the PDF. Simulated data suggest PDF dampening is attributable to molecular deviations from average crystalline position. Samples compacted at different pressures were identified and differentiated using PCA. Samples compacted at common pressures exhibited similar inter-atomic correlations, where excipient concentration factored in the analyses involving lactose. Practical real-space structural analysis of PXRD data by PDF was accomplished for intact, compacted crystalline drug with and without excipient. PCA was used to compare multiple PDFs and successfully differentiated pattern changes consistent with compaction-induced disordering of theophylline as a single component and in the presence of another material.

  14. Investigations on synthesis, growth and physicochemical properties of semi-organic NLO crystal bis(thiourea) ammonium nitrate for nonlinear frequency conversion

    NASA Astrophysics Data System (ADS)

    Anbarasi, A.; Ravi Kumar, S. M.; Sundar, G. J. Shanmuga; Mosses, M. Allen; Raj, M. Packiya; Prabhakaran, M.; Ravisankar, R.; Gunaseelan, R.

    2017-10-01

    Bis(thiourea) ammonium nitrate (BTAN), a new nonlinear optical crystal was grown successfully by slow evaporation technique using water as solvent at room temperature. The grown crystals were optically good quality with dimensions upto 10 × 6 × 3 mm3. Single crystal X-Ray diffraction analysis reveals that the crystal lattice is orthorhombic. From Powder X-ray diffraction analysis the diffraction planes have been indexed. The presence of the various functional groups of BTAN was identified through FTIR spectroscopic analysis. UV cut-off wavelength was observed from optical absorbance spectrum and it was found to be 240 nm. Second harmonic efficiency was determined using Kurtz powder method in comparison with KDP to confirm the nonlinearity of the material. Thermal analysis confirmed that grown crystal is thermally stable upto 184 °C. Microhardness studies show that hardness number (Hv) increases with load. Conductivity measurements such as dielectric, ac and photoconductivity were studied. Growth mechanism and surface features of the as grown single crystal was analysed by chemical etching analysis.

  15. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  16. Increasing dissolution of trospium chloride by co-crystallization with urea

    NASA Astrophysics Data System (ADS)

    Skořepová, Eliška; Hušák, Michal; Čejka, Jan; Zámostný, Petr; Kratochvíl, Bohumil

    2014-08-01

    The search for various solid forms of an active pharmaceutical ingredient (API) is an important step in drug development. Our aim was to prepare co-crystals of trospium chloride, an anticholinergic drug used for the treatment of incontinence, and to investigate if they have advantageous properties for drug formulation. Phase identification was done by powder X-ray diffraction and single-crystal X-ray diffraction. The chemical composition was verified by solution NMR and the dissolution rate of the prepared phases was studied by IDR (intrinsic dissolution rate). For further analysis of phase stability and transitions, combined thermal analysis and temperature-resolved X-ray powder diffraction were used. Urea was selected as a co-crystallization partner. Trospium chloride urea (1:1) co-crystal was prepared by a solvent evaporation. From single-crystal data, the co-crystal structure was solved in a space group P21/c and compared to previously published structures of trospium chloride. Intrinsic dissolution rate revealed that the co-crystal dissolves 32% faster than pure API. However, its low thermal and pressure stability makes it a challenging choice for the final drug formulation.

  17. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8

    NASA Astrophysics Data System (ADS)

    Kawaguchi, S.; Takemoto, M.; Osaka, K.; Nishibori, E.; Moriyoshi, C.; Kubota, Y.; Kuroiwa, Y.; Sugimoto, K.

    2017-08-01

    In this study, we developed a user-friendly automatic powder diffraction measurement system for Debye-Scherrer geometry using a capillary sample at beamline BL02B2 of SPring-8. The measurement system consists of six one-dimensional solid-state (MYTHEN) detectors, a compact auto-sampler, wide-range temperature control systems, and a gas handling system. This system enables to do the automatic measurement of temperature dependence of the diffraction patterns for multiple samples. We introduced two measurement modes in the MYTHEN system and developed new attachments for the sample environment such as a gas handling system. The measurement modes and the attachments can offer in situ and/or time-resolved measurements in an extended temperature range between 25 K and 1473 K and various gas atmospheres and pressures. The results of the commissioning and performance measurements using reference materials (NIST CeO2 674b and Si 640c), V2O3 and Ti2O3, and a nanoporous coordination polymer are presented.

  18. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  19. Effect of drying environment on grain size of titanium dioxide nano-powder synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Zandi, Pegah; Hosseini, Elham; Rashchi, Fereshteh

    2018-01-01

    Titanium dioxide Nano powder has been synthesized from titanium isopropoxide (TTIP) in chloride media by sol-gel method. In this research, the effect of the drying environment, from air to oven drying at 100 °C, calcination time and temperature on nano TiO2 grain size was investigated. The synthesized powder was analyzed by x-ray diffraction and scanning electron microscope. Based on the results, the powder has been crystallized in anatase and rutile phases, due to different calcination temperatures. At temperatures above 600 °C, the Titanium dioxide nano powder has been crystallized as rutile. The crystalline structure of titanium dioxide nano powder changed because of the different calcination temperatures and time applied. The average particle size of the powder dried in air was larger than the powder dried in oven. The minimum particle size of the powder dried in air was 50 nm and in the oven was 9 nm, observed and calculated Williamson-Hall equation. All in all, with overall increasing of calcination time and temperature the grain size increased. Moreover, in the case of temperature, after a certain temperature, the grain size became constant and didn't change significantly.

  20. Synthesis and characterization of nanocrystalline Al 2024-B4C composite powders by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Varol, T.; Canakci, A.

    2013-06-01

    In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.

  1. An ERP study of agreement features in Spanish.

    PubMed

    Silva-Pereyra, Juan F; Carreiras, Manuel

    2007-12-14

    The goal of the present study was to investigate whether two morphological agreement features, Person and Number, play a different role in the agreement process. According to the Feature Hierarchy hypothesis, different nominal agreement features have different degrees of cognitive strength (e.g., Person>Number). Event-related potentials (ERPs) were collected from Spanish speakers while they read sentences in which either Person Disagreement (PD; e.g., Tú salto en el patio [You (2ndPerSing) jump (1stPerSing) in the backyard]), Number Disagreement (ND; e.g., Nosotros salto en el patio [We (1stPerPl) jump (1stPerSing) in the backyard]) or both Person and Number Disagreement (NPD; e.g., Ustedes salto en el patio [You (2ndPerPl) jump (1stPerSing) in the backyard]) relationships were manipulated. ND, PD and NPD all elicited an anterior negativity (AN) and P600 pattern. An AN effect was only found in the NPD with a different topography from the classic LAN effect as it was lateralized to right and central sites. The P600 effect elicited by the NPD condition was larger than the agreement condition and that of ND and PD in the first window 500-700, while the three disagreement conditions elicited larger P600 amplitudes than the agreement condition in the second window 700-900. There were no differences between the processing of person and number. Thus, the combination of number and person disagreement could be solved in parallel through an additive mechanism of the two features. These results do not support the Feature Hierarchy hypothesis.

  2. Effect of ZrO2 Powders on the Pyrolysis of Polycarbosilanes Coating Under Laser Ablation

    NASA Astrophysics Data System (ADS)

    Cheng, Han; Chen, Zhaofeng; Tao, Jie; Yan, Bo; Li, Cong; Wang, Liangbing; Zhang, Ying; Fang, Dan; Wan, Shuicheng; Wu, Wangping

    Aircrafts hold the outstanding mastery of the sky in modern wars, however the laser beam weapons can carry out laser attacking to aircrafts. The purpose of the present paper is to research on a new type laser protective material. Polycarbosilanes (PCS)/divinylbenzene mixtures containing ZrO2 powders were brushed to the surface of the aluminum alloy plates and then cured at 150°C for 6 h. The PCS-coated plates were ablated by laser for 3 s. The phase identification of as-ablated powders was examined by X-ray diffraction. The results indicated that the as-ablated powders of cured PCS were composed of major phase β-SiC and smaller amounts of free carbon. The PCS composite coating played a certain role of laser ablation resistance. The effect of added ZrO2 powders on the pyrolysis of PCS-coating under laser ablation is conspicuous.

  3. Rietveld analysis of the effect of annealing atmosphere on phase evolution of nanocrystalline TiO2 powders.

    PubMed

    Salari, M; Rezaee, M; Chidembo, A T; Konstantinov, K; Liu, H K

    2012-06-01

    The structural evolution of nanocrystalline TiO2 was studied by X-ray diffraction (XRD) and the Rietveld refinement method (RRM). TiO2 powders were prepared by the sol-gel technique. Post annealing of as-synthesized powders in the temperature range from 500 degrees C to 800 degrees C under air and argon atmospheres led to the formation of TiO2 nanoparticles with mean crystallite size in the range of 37-165 nm, based on the Rietveld refinement results. It was found that the phase structure, composition, and crystallite size of the resulting particles were dependent on not only the annealing temperature, but also the annealing atmosphere. Rietveld refinement of the XRD data showed that annealing the powders under argon atmosphere promoted the polymorphic phase transformation from anatase to rutile. Field emission scanning electron microscopy (FESEM) was employed to investigate the morphology and size of the annealed powders.

  4. Plasma-Chemical Synthesis of Oxide Powders Using Transformer-Coupled Discharge

    NASA Astrophysics Data System (ADS)

    M. Ulanov, I.; V. Isupov, M.; Yu Litvinsev, A.; A. Mischenko, P.

    2013-04-01

    An experimental investigation of transformer-coupled discharge in an Ar-O2 mixture with the addition of SiCl4, TiCl4 and ZrCl4 has been carried out under the atmospheric pressure of plasma-forming gases. Discharge power and discharge heat losses have been determined, and the dispersion and phase composition of reaction products (oxide powders) has been analyzed with SEM and X-ray diffraction analysis. Investigations reveal the formation of ultrafine oxide powders in the case of vaporized chloride (SiCl4 and TiCl4) injecting into the transformer coupled discharge. In the case of fine powder (ZrCl4) injection, full oxidation was not observed and reaction products consisted of a mixture of ZrO2 and ZrOCl2. A conclusion has been made regarding the perspectives of using transformer-coupled discharge to produce ultrafine oxide powders.

  5. Magnetic and magnetocaloric properties of spin-glass material DyNi 0.67Si 1.34

    DOE PAGES

    Chen, X.; Mudryk, Y.; Pathak, A. K.; ...

    2017-04-18

    Structural, magnetic, and magnetocaloric properties of DyNi 0.67Si 1.34 were investigated using X-ray powder diffraction, magnetic susceptibility, and magnetization measurements. X-ray powder diffraction pattern shows that DyNi 0.67Si 1.34 crystallizes in the AlB 2-type hexagonal structure (space group: P6/ mmm, No. 191, a = b = 3.9873(9) Å, and c = 3.9733(1) Å). The compound is a spin-glass with the freezing temperature TG = 6.2 K. The ac magnetic susceptibility measurements confirm magnetic frustration in DyNi 0.67Si 1.34. Furthermore, the maximum value of the magnetic entropy change determined from M(H) data is –16.1 J/kg K at 10.5 K for amore » field change of 70 kOe.« less

  6. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  7. Abinitio powder x-ray diffraction and PIXEL energy calculations on thiophene derived 1,4 dihydropyridine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, N., E-mail: karthin10@gmail.com; Sivakumar, K.; Pachamuthu, M. P.

    We focus on the application of powder diffraction data to get abinitio crystal structure determination of thiophene derived 1,4 DHP prepared by cyclocondensation method using solid catalyst. Crystal structure of the compound has been solved by direct-space approach on Monte Carlo search in parallel tempering mode using FOX program. Initial atomic coordinates were derived using Gaussian 09W quantum chemistry software in semi-empirical approach and Rietveld refinement was carried out using GSAS program. The crystal structure of the compound is stabilized by one N-H…O and three C-H…O hydrogen bonds. PIXEL lattice energy calculation was carried out to understand the physical naturemore » of intermolecular interactions in the crystal packing, on which the total lattice energy is contributed into Columbic, polarization, dispersion, and repulsion energies.« less

  8. Compact low power infrared tube furnace for in situ X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Doran, A.; Schlicker, L.; Beavers, C. M.; Bhat, S.; Bekheet, M. F.; Gurlo, A.

    2017-01-01

    We describe the development and implementation of a compact, low power, infrared heated tube furnace for in situ powder X-ray diffraction experiments. Our silicon carbide (SiC) based furnace design exhibits outstanding thermal performance in terms of accuracy control and temperature ramping rates while simultaneously being easy to use, robust to abuse and, due to its small size and low power, producing minimal impact on surrounding equipment. Temperatures in air in excess of 1100 °C can be controlled at an accuracy of better than 1%, with temperature ramping rates up to 100 °C/s. The complete "add-in" device, minus power supply, fits in a cylindrical volume approximately 15 cm long and 6 cm in diameter and resides as close as 1 cm from other sensitive components of our experimental synchrotron endstation without adverse effects.

  9. Thermal, spectroscopic and structural characterization of isostructural phase transition in 4-hydroxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Panicker, Lata

    2018-05-01

    Polycrystalline samples of 4-hydroxybenzaldehyde (4-HOBAL) were investigated using differential scanning calorimeter (DSC), Raman spectroscopy and X-ray powder diffraction. The DSC data indicated that 4-HOBAL on heating undergoes a polymorphic transformation from polymorph I to polymorph II. The polymorph II formed remains metastable at ambient condition and transforms to polymorph I when annealed at ambient temperature for more than seven days. The structural information of polymorphs I and II obtained using its X-ray powder diffraction patterns indicated that 4-HOBAL undergoes an isostructural phase transition from polymorph I (monoclinic, P21/c) to polymorph II (monoclinic, P21/c). Raman data suggest that this structural change is associated with some change in its molecular interactions. Thus, in 4-HOBAL the polymorphic phase transformation (II to I) even though energetically favoured is kinetically hindered.

  10. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    NASA Astrophysics Data System (ADS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  11. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE PAGES

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.; ...

    2017-05-15

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  12. Synthesis, growth, structural, optical, spectral, thermal and mechanical studies of 4-methoxy 4-nitrostilbene (MONS): a new organic nonlinear optical single crystal.

    PubMed

    Dinakaran, Paul M; Bhagavannarayana, G; Kalainathan, S

    2012-11-01

    4-Methoxy 4-nitrostilbene (MONS), a new organic nonlinear optical material has been synthesized. Based on the solubility data good quality single crystal with dimensions up to 38×11×3 mm(3) has been grown by slow evaporation method using ethyl methyl ketone (MEK) as a solvent. Powder XRD confirms the crystalline property and also the diffraction planes have been indexed. The lattice parameters for the grown MONS crystals were determined by using single crystal X-ray diffraction analysis and it reveals that the crystal lattice system is triclinic. The crystalline perfection of the grown crystals has been analysed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Fourier transform infrared (FTIR) spectrum for powdered MONS sample confirms the functional groups present in the grown crystal. The UV-vis absorption spectrum has been recorded in the range of 190-1100 nm and the cut off wavelength 499 nm has been determined. The optical constants of MONS have been determined through UV-vis-NIR spectroscopy. The MONS crystals were further subjected to other characterizations. i.e., (1)H NMR, TG/DTA, photoluminescence and microhardness test. The Kurtz and Perry powder technique confirms the NLO property of the grown crystal and the SHG efficiency of MONS was found to be 1.55× greater than that of KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure.

    PubMed

    Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar

    2015-12-01

    A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  14. Lifetime improvement mechanism in organic light-emitting diodes with mixed materials at a heterojunction interface

    NASA Astrophysics Data System (ADS)

    Minagawa, Masahiro; Takahashi, Noriko

    2016-02-01

    To investigate the lifetime improvement mechanism caused by mixing at the heterojunction interface, organic light-emitting diodes (OLEDs) with stacked and mixed 4,4‧-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl (α-NPD)/tris(8-hydroxyquinoline)aluminum (Alq3) interfaces were fabricated, and changes in their displacement current due to continuous operation were measured. A decrease in accumulated holes at the α-NPD/Alq3 interface was observed in the stacked configuration devices over longer operations. These results indicate that the injected hole density was reduced during continuous operation, implying that the carrier balance became uneven in the emission region. However, few accumulated holes and changes in the displacement current due to continuous operation were observed in the devices having the mixed layer. Therefore, it was deduced that the number of holes concentrated between the α-NPD and Alq3 layers was decreased by mixing at the heterojunction interface, and that the change in the number of holes was smaller during continuous operation, resulting in less degradation.

  15. Ab initio modeling of steady-state and time-dependent charge transport in hole-only α-NPD devices

    NASA Astrophysics Data System (ADS)

    Liu, Feilong; Massé, Andrea; Friederich, Pascal; Symalla, Franz; Nitsche, Robert; Wenzel, Wolfgang; Coehoorn, Reinder; Bobbert, Peter A.

    2016-12-01

    We present an ab initio modeling study of steady-state and time-dependent charge transport in hole-only devices of the amorphous molecular semiconductor α-NPD [N ,N'-Di(1 -naphthyl)-N ,N'-diphenyl-(1 ,1'-biphenyl)-4 ,4'-diamine] . The study is based on the microscopic information obtained from atomistic simulations of the morphology and density functional theory calculations of the molecular hole energies, reorganization energies, and transfer integrals. Using stochastic approaches, the microscopic information obtained in simulation boxes at a length scale of ˜10 nm is expanded and employed in one-dimensional (1D) and three-dimensional (3D) master-equation modeling of the charge transport at the device scale of ˜100 nm. Without any fit parameter, predicted current density-voltage and impedance spectroscopy data obtained with the 3D modeling are in very good agreement with measured data on devices with different α-NPD layer thicknesses in a wide range of temperatures, bias voltages, and frequencies. Similarly good results are obtained with the computationally much more efficient 1D modeling after optimizing a hopping prefactor.

  16. In search of the elusive IrB 2: Can mechanochemistry help?

    DOE PAGES

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...

    2015-10-20

    We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.

  17. In search of the elusive IrB 2: Can mechanochemistry help?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina

    We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.

  18. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  19. Influences of powder granularity on crystallizing characteristics in mica-contained glass ceramic

    NASA Astrophysics Data System (ADS)

    Xu, L. N.; Kong, D. Y.; Tian, Q. B.; Lv, Z. J.

    2017-09-01

    A machinable mica-contained glass ceramic in the SiO2-Al2O3-MgO-F glassy system was prepared by ball milling and hot pressed sintering. Three kinds of powder sizes of base glass were chosen and the effects of the glass powder sizes on the crystallization were explored by x-ray diffraction and scanning electron microscopy techniques. The results indicate that mica crystal as a major phase and KFeSi2O6 and mullite as minor phases are crystallized. Applying pressure at 670°C has little influences on the types of crystal precipitated and the preferential growth of crystal. The powder sizes, however, have obvious effects on the morphology of precipitated mica crystals. In the glass sample with a powder size of d50=16.4 µm, the plate-shaped mica phase is precipitated. As the powder size decrease to 9.9 µm and 3.3 µm, however, the particle-shaped mica is formed instead of the plate-shaped crystals.

  20. Formation and mechanism of nanocrystalline AZ91 powders during HDDR processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yafen; Fan, Jianfeng, E-mail: fanjianfeng@tyu

    2017-03-15

    Grain sizes of AZ91 alloy powders were markedly refined to about 15 nm from 100 to 160 μm by an optimized hydrogenation-disproportionation-desorption-recombination (HDDR) process. The effect of temperature, hydrogen pressure and processing time on phase and microstructure evolution of AZ91 alloy powders during HDDR process was investigated systematically by X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy, respectively. The optimal HDDR process for preparing nanocrystalline Mg alloy powders is hydriding at temperature of 350 °C under 4 MPa hydrogen pressure for 12 h and dehydriding at 350 °C for 3 h in vacuum. A modified unreacted coremore » model was introduced to describe the mechanism of grain refinement of during HDDR process. - Highlights: • Grain size of the AZ91 alloy powders was significantly refined from 100 μm to 15 nm. • The optimal HDDR technology for nano Mg alloy powders is obtained. • A modified unreacted core model of grain refinement mechanism was proposed.« less

  1. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    NASA Astrophysics Data System (ADS)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  2. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  3. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    PubMed Central

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-01-01

    In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system. PMID:28793560

  4. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise.

    PubMed

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S

    2018-01-01

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.

  5. Microstructural Examination of Oxidized Fe_(14-x) Nb5_x Alloy Produced from Powders Prepared by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Demirkıran, A. Şükran; Sen, Saduman; Ozdemir, Ozkan; Sen, Ugur

    In the present study, ferrous niobium, ferrous boron and iron were used as starting powders. The mixture of the powders which were calculated to give the designed compositions was prepared by using planetary high energy ball mill. Mechanically alloyed powders were pressed and sintered at 1350°C for 120 min in Ar atmosphere. The cyclic oxidation experiments were carried out in an electrical furnace at 650, 750 and 850 °C in open atmosphere for 96 h. The specimens were periodically weighed for the determination of weight change. Before and after oxidation, the present phases of the samples were determined by X-ray diffraction analysis (XRD). The microstructural characterizations were realized using scanning electron microscopy (SEM) with EDS attachment.

  6. The Influence of Duration of Mechanical Activation of Titanium Powder on its Morphology, Microstructure, and Microhardness

    NASA Astrophysics Data System (ADS)

    Ditenberg, I. A.; Korchagin, M. A.; Pinzhin, Yu. P.; Melnikov, V. V.; Tyumentsev, A. N.; Grinyaev, K. V.; Smirnov, I. V.; Radishevskii, V. L.; Tsverova, A. S.; Sukhanov, I. I.

    2017-10-01

    Using the methods of X-ray diffraction analysis and scanning and transmission electron microscopy, an investigation of the influence of duration of mechanical activation on morphology and structure of titanium powder is performed. In the course of processing the following stages of material transformation are revealed: fragmentation of the initial powder, conglomeration, and ovalization of the conglomerates. It is found that when the duration of mechanical activation increases, the characteristic size of coherent scattering regions is significantly decreased, which is accompanied by an increase in the value of microdistortions and intensive fragmentation of the crystal lattice inside powder particles followed by the formation of highly defective nanostructured states. The transformation of microstructure is accompanied by a considerable increase in microhardness.

  7. Characterization of 17-4PH stainless steel powders produced by supersonic gas atomization

    NASA Astrophysics Data System (ADS)

    Zhao, Xin-Ming; Xu, Jun; Zhu, Xue-Xin; Zhang, Shao-Ming; Zhao, Wen-Dong; Yuan, Guo-Liang

    2012-01-01

    17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, scanning electron microscopy (SEM), and the X-ray diffraction (XRD) technique. The results show that the mass median particle diameter is about 19.15 μm. Three main types of surface microstructures are observed in the powders: well-developed dendrite, cellular, and cellular dendrite structure. The XRD measurements show that, as the particle size decreases, the amount of fcc phase gradually decreases and that of bcc phase increases. The cooling rate is inversely related to the particle size, i.e., it decreases with an increase in particle size.

  8. Particle Size Determination in Small Solid Propellant Rocket Motors Using the Diffractively Scattered Light Method.

    DTIC Science & Technology

    1982-10-01

    calibrated by using spherical glass beads and aluminum oxide powder . Measurements were successfully made at both locations. Because DO 1473 EoITioN OF I NOVy...determined using measurements of diffrac- tively scattered laser power spectra. The apparatus was calibrated by using spherical glass beads and aluminum oxide... powder . Measurements were successfully made at both loca- tions. Because of the presence of char agglomerates in the exhaust, continued effort is

  9. Effect of organic fuels on surface area and photocatalytic activity of scheelite CaWO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manjunath, Kusuma; Gujjarahalli Thimmanna, Chandrappa

    2018-03-01

    Discrete nanoscale calcium tungstate (CaWO4) nanoparticles with exquisite photocatalytic activities were synthesized through ultra-rapid solution combustion route. Here, we aim to study the effect of different fuels on the synthesis of CaWO4 nanoparticles which lead to improve the characteristic properties and morphological evolution of the powders. From BET surface area measurement, it is observed that CaWO4 nanoparticles synthesized by using citric acid as fuel exhibits relatively large surface area (31.78 m2 g‑1) as compared to other fuels. The powder x-ray diffraction (PXRD) studies reveal that CaWO4 nanoparticles belong to scheelite type tetragonal system. The morphology of CaWO4 nanoparticles investigated using scanning electron microscopy (SEM) reveals that the powders are highly porous and agglomerated. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of the CaWO4 nanoparticles show that a well-dispersed nearly oval-shaped nanoparticles with variable dimensions and lattice spacing that depends on the type of fuels used in the synthesis. The selected area electron diffraction (SAED) patterns of CaWO4 nanoparticles exhibit several concentric rings with bright spots indicating the polycrystalline nature of the powders. Investigation on photocatalytic activity of CaWO4 nanoparticles synthesized using citric acid shows highest (∼93%) degradation of methylene blue (MB).

  10. Effect of synthesis process on the microstructure and electrical conductivity of nickel/yttria-stabilized zirconia powders prepared by urea hydrolysis

    NASA Astrophysics Data System (ADS)

    Lin, Jyung-Dong; Wu, Zhao-Lun

    In this study, NiO/YSZ composite powders were synthesized using hydrolysis on two solutions, one contains YSZ particles and Ni 2+ ion, and the other contains NiO particles, Zr 4+, and Y 3+ ions, with the aid of urea. The microstructure of the powders and sintered bulks was further characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicated that various synthesis processes yielded NiO/YSZ powders with different morphologies. The NiO precursors would deposit onto the surface of YSZ particles, and NiO-deposited YSZ composite powders were obtained. Alternatively, it was not observed that YSZ precursors deposited onto the surface of NiO particles, thus, a uniform powder mixture of fine NiO and fine YSZ particles was produced. After sintering and subsequent reduction, these powders would lead to the variations of Ni distribution in the YSZ matrix and conductivity of cermets. Owing to the core-shell structure of the powders and the higher size ratio of YSZ and NiO particles, the conductivity of cermet with NiO-deposited YSZ powders containing 23 wt% NiO is comparable to those with a NiO/YSZ powder mixture containing 50 wt% NiO.

  11. The microstructure-processing-property relationships in an aluminum matrix composite system reinforced by aluminum-copper-iron alloy particles

    NASA Astrophysics Data System (ADS)

    Tang, Fei

    Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the "low shear" consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that these strengthening mechanisms can be combined to predict accurately the strength of the composites. By neutron diffraction measurements, it also was found that the composites consolidated from Al and Al63Cu25Fe12 quasicrystal alloy reinforcement powders have compressive residual stress in the Al matrix, contrary to the tensile residual stress in typical Al/SiC composites. The composites made by the quasi-isostatic forging process exhibited higher tensile strengths and much higher compressive residual stresses than the composites made by the VHP process.

  12. Neutron powder diffraction and high-pressure synchrotron x-ray diffraction study of tantalum nitrides

    NASA Astrophysics Data System (ADS)

    Feng, Lei-hao; Hu, Qi-wei; Lei, Li; Fang, Lei-ming; Qi, Lei; Zhang, Lei-lei; Pu, Mei-fang; Kou, Zi-li; Peng, Fang; Chen, Xi-ping; Xia, Yuan-hua; Kojima, Yohei; Ohfuji, Hiroaki; He, Duan-wei; Chen, Bo; Irifune, Tetsuo

    2018-02-01

    Not Available Project supported by the Research Foundation of Key Laboratory of Neutron Physics (Grant No. 2015BB03), the National Natural Science Foundation of China (Grant Nos. 11774247), the Science Foundation for Excellent Youth Scholars of Sichuan University (Grant No. 2015SCU04A04), and the Joint Usage/Research Center PRIUS (Ehime University, Japan) and Chinese Academy of Sciences (Grant No. 2017-BEPC-PT-000568).

  13. Magnetic and thermal behavior of a family of compositionally related zero-dimensional fluorides

    NASA Astrophysics Data System (ADS)

    Felder, Justin B.; Smith, Mark D.; Sefat, Athena; zur Loye, Hans-Conrad

    2018-07-01

    The mild hydrothermal crystal growth technique has been leveraged to synthesize four new zero-dimensional transition metal fluorides. Their structures were determined by single crystal X-ray diffraction and confirmed by powder X-ray diffraction. The thermal, optical, and magnetic properties were investigated and the presence of thermal polymorphism and antiferromagnetism were observed. In addition, the potential application of these materials as precursors for advanced functional materials was explored.

  14. X-Ray Diffraction Study of Elemental Erbium to 65 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravica, M.G.; Lipinska-Kalita, K.; Quine, Z.

    2006-02-02

    We have investigated phase transitions in elemental erbium in a diamond anvil cell up to 65 GPa using x-ray powder diffraction methods. We present preliminary evidence of a series of phase transitions that appear to follow the expected hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc sequence. In particular, we believe that we have evidence for the predicted dhcp {yields} distorted fcc transition between 43 GPa and 65 GPa.

  15. Crystal structure transformation in potassium acrylate

    NASA Astrophysics Data System (ADS)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  16. Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients.

    PubMed

    Minne, Antoine; Boireau, Hélène; Horta, Maria Joao; Vanbever, Rita

    2008-11-01

    The aim of this study was to investigate the influence of formulation excipients on physical characteristics of inhalation dry powders prepared by spray-drying. The excipients used were a series of amino acids (glycine, alanine, leucine, isoleucine), trehalose and dipalmitoylphosphatidylcholine (DPPC). The particle diameter and the powder density were assessed by laser diffraction and tap density measurements, respectively. The aerosol behaviour of the powders was studied in a Multi-Stage Liquid Impinger. The nature and the relative proportion of the excipients affected the aerosol performance of the powders, mainly by altering powder tap density and degree of particle aggregation. The alanine/trehalose/DPPC (30/10/60 w/w/w) formulation showed optimal aerodynamic behaviour with a mass median aerodynamic diameter of 4.7 microm, an emitted dose of 94% and a fine particle fraction of 54% at an airflow rate of 100 L/min using a Spinhaler inhaler device. The powder had a tap density of 0.10 g/cm(3). The particles were spherical with a granular surface and had a 4 microm volume median diameter. In conclusion, optimization of the aerosolization properties of inhalation dry powders could be achieved by appropriately selecting the composition of the particles.

  17. SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties

    NASA Astrophysics Data System (ADS)

    Dontsova, Tetiana A.; Nagirnyak, Svitlana V.; Zhorov, Vladyslav V.; Yasiievych, Yuriy V.

    2017-05-01

    Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), N2 sorption/desorption technique, IR spectroscopy and, in addition, their current-voltage characteristics have also been measured. The single crystalline structures were obtained both in case of 0D (zero-dimensional) SnO2 powders and in case of 0D nanofibers, as confirmed by electron diffraction of TEM. It was found that SnO2 synthesis parameters significantly affect materials' properties by contributing to the difference in morphology, texture formation, changes in IR spectra of 1D structure as compared to 0D powders, increases in the specific surface area of nanofibers, and the alteration of current-voltage characteristics 0D and 1D SnO2 nanostructures. It was established that gas sensors utilizing of 1D nanofibers significantly outperform those based on 0D powders by providing higher specific surface area and ohmic I-V characteristics.

  18. Crystal structure of rivastigmine hydrogen tartrate Form I (Exelon®), C 14H 23N 2O 2(C 4H 5O 6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Zhong, Kai; Gindhart, Amy M.

    2016-03-08

    The crystal structure of rivastigmine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Rivastigmine hydrogen tartrate crystallizes in space groupP2 1(#4) witha= 17.538 34(5),b= 8.326 89(2),c= 7.261 11(2) Å,β= 98.7999(2)°,V= 1047.929(4) Å 3, andZ= 2. The un-ionized end of the hydrogen tartrate anions forms a very strong hydrogen bond with the ionized end of another anion to form a chain. The ammonium group of the rivastigmine cation forms a strong discrete hydrogen bond with the carbonyl oxygen atom of the un-ionized end of the tartrate anion. These hydrogen bondsmore » form a corrugated network in thebc-plane. Both hydroxyl groups of the tartrate anion form intramolecular O–H···O hydrogen bonds. Several C–H···O hydrogen bonds appear to contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File ™as entry 00-064-1501.« less

  19. Measurement of nasal potential difference in young children with an equivocal sweat test following newborn screening for cystic fibrosis.

    PubMed

    Sermet-Gaudelus, Isabelle; Girodon, Emmanuelle; Roussel, Delphine; Deneuville, Eric; Bui, Stéphanie; Huet, Frédéric; Guillot, Marcel; Aboutaam, Rola; Renouil, Michel; Munck, Anne; des Georges, Marie; Iron, Albert; Thauvin-Robinet, Christel; Fajac, Isabelle; Lenoir, Gerard; Roussey, Michel; Edelman, Aleksander

    2010-06-01

    A challenging problem arising from cystic fibrosis (CF) newborn screening is the significant number of infants with hypertrypsinaemia (HIRT) with sweat chloride levels in the intermediate range and only one or no identified CF-causing mutations. To investigate the diagnostic value for CF of assessing CF transmembrane conductance regulator (CFTR) protein function by measuring nasal potential difference in children with HIRT. A specially designed protocol was used to assess nasal potential difference (NPD) in 23 young children with HIRT (3 months-4 years) with inconclusive neonatal screening. Results were analysed with a composite score including CFTR-dependent sodium and chloride secretion. Results were correlated with genotype after extensive genetic screening and with clinical phenotype at follow-up 3 years later. NPD was interpretable for 21 children with HIRT: 13 had NPD composite scores in the CF range. All 13 were finally found to carry two CFTR mutations. At follow-up, nine had developed a chronic pulmonary disease consistent with a CF diagnosis. The sweat test could be repeated in nine children, and six had sweat chloride values >or=60 mmol/l. Of the eight children with normal NPD scores, only two had two CFTR mutations, both wide-spectrum mutations. None had developed a CF-like lung disease at follow-up. The sweat test could be reassessed in five of these eight children and all had sweat chloride values <60 mmol/l. CF diagnosis was ruled out in six of these eight children. Evaluation of CFTR function in the nasal epithelium of young children with inconclusive results at CF newborn screening is a useful diagnostic tool for CF.

  20. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.

    PubMed

    Rowe, Steven M; Liu, Bo; Hill, Aubrey; Hathorne, Heather; Cohen, Morty; Beamer, John R; Accurso, Frank J; Dong, Qunming; Ordoñez, Claudia L; Stone, Anne J; Olson, Eric R; Clancy, John P

    2013-01-01

    Nasal potential difference (NPD) is used as a biomarker of the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) activity. We evaluated methods to detect changes in chloride and sodium transport by NPD based on a secondary analysis of a Phase II CFTR-modulator study. Thirty-nine subjects with CF who also had the G551D-CFTR mutation were randomized to receive ivacaftor (Kalydeco™; also known as VX-770) in four doses or placebo twice daily for at least 14 days. All data were analyzed by a single investigator who was blinded to treatment assignment. We compared three analysis methods to determine the best approach to quantify changes in chloride and sodium transport: (1) the average of both nostrils; (2) the most-polarized nostril at each visit; and (3) the most-polarized nostril at screening carried forward. Parameters of ion transport included the PD change with zero chloride plus isoproterenol (CFTR activity), the basal PD, Ringer's PD, and change in PD with amiloride (measurements of ENaC activity), and the delta NPD (measuring CFTR and ENaC activity). The average and most-polarized nostril at each visit were most sensitive to changes in chloride and sodium transport, whereas the most-polarized nostril at screening carried forward was less discriminatory. Based on our findings, NPD studies should assess both nostrils rather than a single nostril. We also found that changes in CFTR activity were more readily detected than changes in ENaC activity, and that rigorous standardization was associated with relatively good within-subject reproducibility in placebo-treated subjects (± 2.8 mV). Therefore, we have confirmed an assay of reasonable reproducibility for detecting chloride-transport improvements in response to CFTR modulation.

  1. Low-protein diet supplemented with ketoacids ameliorates proteinuria in 3/4 nephrectomised rats by directly inhibiting the intrarenal renin-angiotensin system.

    PubMed

    Zhang, Jia-Ying; Yin, Ying; Ni, Li; Long, Quan; You, Li; Zhang, Qian; Lin, Shan-Yan; Chen, Jing

    2016-11-01

    Low-protein diet plus ketoacids (LPD+KA) has been reported to decrease proteinuria in patients with chronic kidney diseases (CKD). However, the mechanisms have not been clarified. As over-activation of intrarenal renin-angiotensin system (RAS) has been shown to play a key role in the progression of CKD, the current study was performed to investigate the direct effects of LPD+KA on intrarenal RAS, independently of renal haemodynamics. In this study, 3/4 subtotal renal ablated rats were fed 18 % normal-protein diet (Nx-NPD), 6 % low-protein diet (Nx-LPD) or 5 % low-protein diet plus 1 % ketoacids (Nx-LPD+KA) for 12 weeks. Sham-operated rats fed NPD served as controls. The level of proteinuria and expression of renin, angiotensin II (AngII) and its type 1 receptors (AT1R) in the renal cortex were markedly higher in Nx-NPD group than in the sham group. LPD+KA significantly decreased the proteinuria and inhibited intrarenal RAS activation. To exclude renal haemodynamic impact on intrarenal RAS, the serum samples derived from the different groups were added to the culture medium of mesangial cells. It showed that the serum from Nx-NPD directly induced higher expression of AngII, AT1R, fibronectin and transforming growth factor-β1 in the mesangial cells than in the control group. Nx-LPD+KA serum significantly inhibited these abnormalities. Then, proteomics and biochemical detection suggested that the mechanisms underlying these beneficial effects of LPD+KA might be amelioration of the nutritional metabolic disorders and oxidative stress. In conclusion, LPD+KA could directly inhibit the intrarenal RAS activation, independently of renal haemodynamics, thus attenuating the proteinuria in CKD rats.

  2. Four Novel p.N385K, p.V36A, c.1033–1034insT and c.1417–1418delCT Mutations in the Sphingomyelin Phosphodiesterase 1 (SMPD1) Gene in Patients with Types A and B Niemann-Pick Disease (NPD)

    PubMed Central

    Manshadi, Masoumeh Dehghan; Kamalidehghan, Behnam; Keshavarzi, Fatemeh; Aryani, Omid; Dadgar, Sepideh; Arastehkani, Ahoora; Tondar, Mahdi; Ahmadipour, Fatemeh; Meng, Goh Yong; Houshmand, Massoud

    2015-01-01

    Background: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene. Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis. Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033–1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417–1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations. Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations. PMID:25811928

  3. The effect of preliminary hydrolysis on the properties of ZrO2-7% Y2O3 powders prepared by hydroxide precipitation

    NASA Astrophysics Data System (ADS)

    Zhirenkina, Nina V.; Mashkovtsev, Maxim A.; Bereskina, Polina A.; Zakirov, Ilsur F.; Baksheev, Evgenie O.; Bujnachev, Sergey V.; Vereshchagin, Artem O.

    2017-09-01

    In this study, the effect of preliminary hydrolysis of zirconyl oxysulfate on the properties of ZrO2-7 % Y2O3 powders prepared by hydroxides precipitation at a constant pH of 5 was studied. X-ray diffraction analysis showed the monophasic nature of the samples and the insignificant difference between CSR (coherent scattering regions). Samples differed in particle size distribution, porosity and morphology.

  4. Materials Research for Advanced Inertial Instrumentation; Task 3: Rare Earth Magnetic Material Technology as Related to Gyro Torquers and Motors.

    DTIC Science & Technology

    1981-12-01

    POWDER FEED S PRAY STREAM POWER INPUT - COOLING GAS I WATER DEPOSIT SUBSTRATEI 10/77 12404 REV A 1/78 Figure 13. Schematic sketch of spray process .( 14...as-HIPed condition ...... 26 13 Schematic sketch of spray process ........... ........ 3 14 X-ray diffraction patterns on deposits formed from (A) 42.0...Br values to be low. When the alloy powder is magnetically aligned and cold isostatically compacted followed by densificaton by lIPing, there is

  5. Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagherazzi, G.; Canton, P.; Benedetti, A.

    Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated of crystallite size) obtained by precipitation and subsequent calcination has been confirmed. The result shows that using conventional x-ray diffraction techniques the cubic crystallographic form of ZrO{sub 2} from the tetragonal one in nanosized powders. These conclusions are supported by the findings of independent Raman scattering experiments. {copyright} {ital 1997 Materials Research Society.}

  6. In situ analysis of phase transformation in sol-gel cogelified nanopowder mixture of Al 2O 3 and TiO 2 using synchrotron X-ray radiation diffraction experiments

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.

    2003-01-01

    Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.

  7. Study of Initial Stages of Ball-Milling of Cu Powder Using X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Gayathri, N.; Mukherjee, Paramita

    2018-04-01

    The initial stage of size refinement of Cu powder is studied using detailed X-ray diffraction (XRD) analysis to understand the mechanism of formation of nanomaterials during the ball-milling process. The study was restricted to samples obtained for milling time up to 240 min to understand the deformation mechanism at the early stages of ball milling. Various model based approaches for the analysis of the XRD were used to study the evolution of the microstructural parameters such as domain size and microstrain along the different crystallographic planes. It was seen that the domain size saturates at a low value along the (311) plane whereas the size along the (220) and (200) plane is still higher. The r.m.s microstrain showed a non-monotonic change along the different crystallographic directions up to the milling time of 240 min.

  8. Synthesis, crystal structure and ionic conductivity of the Ba3Mo1-xWxNbO8.5 solid solution

    NASA Astrophysics Data System (ADS)

    Bernasconi, Andrea; Tealdi, Cristina; Mühlbauer, Martin; Malavasi, Lorenzo

    2018-02-01

    Ba3MoNbO8.5 compound has been recently discovered as novel oxide ionic conductor with a structure that is a hybrid between 9R hexagonal perovskite and palmierite. In this work, the full substitution of Mo with W has been demonstrated as possible, without altering significantly the conductivity of the material. The crystal structure of the Ba3Mo1-xWxNbO8.5 solid solution (with x equals 0, 0.25, 0.5, 0.75 and 1) has been investigated by X-ray powder diffraction, showing a reduction of the unit cell by increasing the molybdenum content, despite the larger size of tungsten compared to molybdenum. Neutron powder diffraction measurements have been performed, indicating different levels of contribution of 9R polytype and of palmierite to the hybrid structure of the material as a function of the W-content.

  9. Crystal structure and europium luminescence of NaMgH3-xFx

    NASA Astrophysics Data System (ADS)

    Pflug, Christian; Franz, Alexandra; Kohlmann, Holger

    2018-02-01

    The solid solution series NaMgH3-xFx (x = 0, 0.5, 1, 1.5, 2, 2.5, 3) was synthesized by solid-state reactions under hydrogen gas pressure from binary ionic hydrides, fluorides and magnesium. Rietveld refinement based on X-ray powder diffraction data revealed the GdFeO3-structure type for all compounds and a trend of lattice parameters according to Vegard's law. The anion distribution in NaMgD2F and NaMgD1.5F1.5 was found to be statistical by Rietveld refinement based on neutron powder diffraction data. Photoluminescence measurements on europium(II) substituted NaMgH3-xFx revealed a strong red shift of the emission wavelength (λem = 665 nm for NaMgH2F:Eu) in comparison to violet emitting NaMgF3:Eu.

  10. High-Pressure Polymorph of NaBiO3.

    PubMed

    Naa, Octavianti; Kumada, Nobuhiro; Miura, Akira; Takei, Takahiro; Azuma, Masaki; Kusano, Yoshihiro; Oka, Kengo

    2016-06-20

    A new high-pressure polymorph of NaBiO3 (hereafter β-NaBiO3) was synthesized under the conditions of 6 GPa and 600 °C. The powder X-ray diffraction pattern of this new phase was indexed with a hexagonal cell of a = 9.968(1) Å and c = 3.2933(4) Å. Crystal structure refinement using synchrotron powder X-ray diffraction data led to RWP = 8.53% and RP = 5.55%, and the crystal structure was closely related with that of Ba2SrY6O12. No photocatalytic activity for phenol decomposition was observed under visible-light irradiation in spite of a good performance for its mother compound, NaBiO3. The optical band-gap energy of β-NaBiO3 was narrower than that of NaBiO3, which was confirmed with density of states curves simulated by first-principles density functional theory calculation.

  11. Parts per Million Powder X-ray Diffraction

    DOE PAGES

    Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.; ...

    2015-10-14

    Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect lowmore » crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.« less

  12. Crystallisation of alpha-crustacyanin, the lobster carapace astaxanthin-protein: results from EURECA

    NASA Astrophysics Data System (ADS)

    Zagalsky, P. F.; Wright, C. E.; Parsons, M.

    1995-08-01

    Crystallisation of alpha-crustacyanin, the lobster carapace astaxanthin-protein was attempted under microgravity conditions in EURECA satellite using liquid-liquid diffusion with polyethyleneglycol (PEG) as precipitant; in a second reaction chamber phenol and dioxan were used as additives to prevent composite crystal growth. Crystals of alpha-crustacyanin grown under microgravity from PEG were larger than those grown terrestrially in the same apparatus under otherwise identical conditions. On retrieval, the crystals from PEG were shown to be composite and gave a powder diffraction pattern. The second reaction chamber showed leakage on retrieval and had also been subjected to rapid temperature variation during flight. Crystal fragments were nevertheless recovered but showed a powder diffraction pattern. It is concluded, certainly for liquid-liquid diffusion using PEG alone, that, for crustacyanin, although microgravity conditions resulted in an increase in dimensions of crystals, a measurable improvement in molecular ordering was not achieved.

  13. Validation of missed space-group symmetry in X-ray powder diffraction structures with dispersion-corrected density functional theory.

    PubMed

    Hempler, Daniela; Schmidt, Martin U; van de Streek, Jacco

    2017-08-01

    More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic coordinates of all non-H atoms is established to be 0.2 Å. For 98.5% of 200 molecular crystal structures published with missed symmetry, the correct space group is identified; there are no false positives. Very small, very symmetrical molecules can end up in artificially high space groups upon energy minimization, although this is easily detected through visual inspection. If the space group of a crystal structure determined from powder diffraction data is ambiguous, energy minimization with DFT-D provides a fast and reliable method to select the correct space group.

  14. Crystal Structure of the Caged Magnetic Compound DyFe2Zn20 at Low Temperature Magnetic Ordering State

    NASA Astrophysics Data System (ADS)

    Kishii, Nobuya; Tateno, Shota; Ohashi, Masashi; Isikawa, Yosikazu

    We have carried out X-ray powder diffraction and thermal expansion measurements of the caged magnetic compound DyFe2Zn20. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks at 14 K correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. Although the temperature change of the lattice constant is isotropic, an anomalous behavior was observed in the thermal expansion coefficient around 15 K, while the anomaly around TC = 53 K is not clear. The results indicate that the volume change is not caused by the ferromagnetic interaction between Fe and Dy but by the exchange interaction between two Dy ions.

  15. Synthesis, characterization, photoluminescence, and electrochemical studies of novel mononuclear Cu(II) and Zn(II) complexes with the 1-benzylimidazolium ligand

    NASA Astrophysics Data System (ADS)

    Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah

    2017-08-01

    Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.

  16. Magnetic texturing due to the partial ordering of Fe+3 and Cu+2 in NdBaCuFeO5

    NASA Astrophysics Data System (ADS)

    Pissas, M.

    2017-06-01

    The crystal and magnetic structure of the oxygen deficient double perovskite NdBaCuFeO5 was studied, using neutron powder diffraction data. The structure was refined from neutron powder diffraction data using the space groups P 4 / mmm and P 4 mm . For 2K ⩽ T ⩽TN2 = 260K three families of magnetic Bragg peaks exist. These peaks can be indexed with commensurate propagation vectors k1 =[1/2 1/2 1/2], k2 =[1/2 1/2 0] and the incommensurate k3 =[1/2 1/2 0.4]. Above TN2 only magnetic Bragg peaks originated from k1 and k2 propagation, were observed. The incommensurate magnetic structure can be attributed to a circular inclined spiral ordering as in YBaCuFeO5 compound.

  17. Spiral chain structure of high pressure selenium-II{sup '} and sulfur-II from powder x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami

    2004-10-01

    The structure of high pressure phases, selenium-II{sup '} (Se-II{sup '}) and sulfur-II (S-II), for {alpha}-Se{sub 8} (monoclinic Se-I) and {alpha}-S{sub 8} (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II{sup '} and S-II were found to be isostructural and to belong to the tetragonal space group I4{sub 1}/acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4{sub 1} and 4{sub 3} screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemicalmore » bonds of the phases are also discussed from the interatomic distances that were obtained.« less

  18. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  19. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  20. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE PAGES

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...

    2018-01-24

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  1. Structural properties of barium stannate

    NASA Astrophysics Data System (ADS)

    Phelan, D.; Han, F.; Lopez-Bezanilla, A.; Krogstad, M. J.; Gim, Y.; Rong, Y.; Zhang, Junjie; Parshall, D.; Zheng, H.; Cooper, S. L.; Feygenson, M.; Yang, Wenge; Chen, Yu-Sheng

    2018-06-01

    BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported by density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.

  2. Lifting the geometric frustration through a monoclinic distortion in “114” YBaFe{sub 4}O{sub 7.0}: Magnetism and transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffort, V.; Sarkar, T.; Caignaert, V., E-mail: vincent.caignaert@ensicaen.fr

    2013-09-15

    The possibility to lift the geometric frustration in the “114” stoichiomeric tetragonal oxide YBaFe{sub 4}O{sub 7.0} by decreasing the temperature has been investigated using neutron and synchrotron powder diffraction techniques. Besides the structural transition from tetragonal to monoclinic symmetry that appears at T{sub S}=180 K, a magnetic transition is observed below T{sub N}=95 K. The latter corresponds to a lifting of the 3D geometric frustration toward an antiferromagnetic long range ordering, never observed to date in a cubic based “114’” oxide. The magnetic structure, characterized by the propagation vector k{sub 1}=(0,0,½), shows that one iron Fe2 exhibits a larger magneticmore » moment than the three others, suggesting a possible charge ordering according to the formula YBaFe{sup 3+}Fe{sub 3}{sup 2+}O{sub 7.0}. The magnetic M(T) and χ′(T) curves, in agreement with neutron data, confirm the structural and magnetic transitions and evidence the coexistence of residual magnetic frustration. Moreover, the transport measurements show a resistive transition from a thermally activated conduction mechanism to a variable range hopping mechanism at T{sub S}=180 K, with a significant increase of the dependence of the resistivity vs. temperature. Mössbauer spectroscopy clearly evidences a change in the electronic configuration of the iron framework at the structural transition as well as coexistence of several oxidation states. The role of barium underbonding in these transitions is discussed. - Graphical abstract: Atomic displacements at the tetragonal-monoclinic transition in YBaFe{sub 4}O{sub 7}. Display Omitted - Highlights: • The structural and magnetic phase transitions of YBaFe{sub 4}O{sub 7} were studied below room temperature. • The tetragonal to monoclinic transition, characterized by NPD and SXRD, was studied using mode crystallography approach. • Monoclinic distortion allows the lifting of the geometrical frustration on the iron sublattice, leading to AF order at T=95 K.« less

  3. Selective Laser Melting of Metal Powder Of Steel 3161

    NASA Astrophysics Data System (ADS)

    Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Tomilina, T. M.

    2016-08-01

    In this article the results of experimental study of the structure and mechanical properties of materials obtained by selective laser melting (SLM), metal powder steel 316L was carried out. Before the process of cultivation of samples as the input control, the morphology of the surface of the powder particles was studied and particle size analysis was carried out. Also, 3D X-ray quality control of the grown samples was carried out in order to detect hidden defects, their qualitative and quantitative assessment. To determine the strength characteristics of the samples synthesized by the SLM method, static tensile tests were conducted. To determine the stress X-ray diffraction analysis was carried out in the material samples.

  4. Diamond-silicon carbide composite

    DOEpatents

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  5. Diamond-Silicon Carbide Composite And Method For Preparation Thereof

    DOEpatents

    Qian, Jiang; Zhao, Yusheng

    2005-09-06

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  6. Effect of calcination temperature on phase transformation and crystallite size of copper oxide (CuO) powders

    NASA Astrophysics Data System (ADS)

    Ratnawulan, Fauzi, Ahmad; AE, Sukma Hayati

    2017-08-01

    Copper oxide powder was prepared from Copper iron from South Solok, Indonesia. The samples was dried and calcined for an hour at temperatures of 145°C, 300°C,850°C, 1000°C. Phase transformation and crystallite size of the calcined powders have been investigated as a function of calcination temperature by room-temperature X-ray diffraction (XRD). It was seen that the tenorite, CuO was successfully obtained. With increasing calcining temperature, CuO transformed from malachite Cu2(CO3)(OH)2 to tenorite phase (CuO) and crystallite size of prepared samples increased from 36 nm to 76 nm.

  7. X-ray diffraction studies of phase transformations in heavy-metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Doremus, R. H.

    1985-01-01

    Powder X-ray diffraction and differential scanning calorimetry studies of the crystallization properties of five ZrF4-based glass compositions have indicated that the crystalline phase in Zr-Ba-La-Pb fluoride glass is beta-BaZrF6; no such identification of crystal phases was obtainable, however, for the other glasses. Reversible polymorphic phase transformations occur in Zr-Ba-La-Li and Zr-Ba-La-Na fluoride glasses, upon heating to higher temperatures.

  8. X-ray diffraction study of elemental erbium to 70 GPa

    NASA Astrophysics Data System (ADS)

    Pravica, Michael G.; Romano, Edward; Quine, Zachary

    2005-12-01

    We have investigated phase transitions in elemental erbium in a diamond anvil cell (DAC) up to 70GPa using angular-dispersive x-ray powder diffraction methods. We present evidence of a series of phase transitions that appear to follow the anticipated hcp→Sm-type→doublehcp(dhcp)→distorted fcc sequence. In particular, we present evidence for the predicted dhcp→distorted fcc transition above 63GPa . Equation of state data are also presented up to 70GPa .

  9. The devitrification of a LAS glass matrix studied by X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Rocherullé, Jean; Bénard-Rocherullé, Patricia

    2002-06-01

    The crystallisation kinetics of a Li 0.6Al 0.1Si 0.6O 1.65 glass matrix has been performed by means of X-ray powder diffraction. Data diffraction have shown the simultaneous formation of two crystalline phases Li 2SiO 3 and Li 0.6Al 0.6Si 2.4O 6 (so-called virgilite) for heat treatments conducted at 700 and 750 °C. The kinetic parameters of crystallisation have been determined for each phase from several time-dependent X-ray diffraction studies. The two values of the Avrami exponent, close to 1.5, suggest that crystallisation is controlled by a diffusion process, the nucleation being non-existent in the temperature range from 700 to 750 °C. With regard to the activation energy of the overall crystallisation phenomenon, the values obtained, close to 175 kJ mol -1, provide to this glass a relative ability to crystallise compared to others glasses from MSiAlO systems, where M is an alkaline-earth or a rare-earth element. With respect to the Li 0.6Al 0.6Si 2.4O 6 phase, long time heat treatments at 750 °C have revealed a phase transition from the hexagonal symmetry to the tetragonal one. The corresponding value of the Avrami exponent (i.e., 1) suggests a diffusionless transformation with a one-dimensional growth.

  10. Calcium hydride synthesis of Ti-Nb-based alloy powders

    NASA Astrophysics Data System (ADS)

    Kasimtsev, A. V.; Shuitsev, A. V.; Yudin, S. N.; Levinskii, Yu. V.; Sviridova, T. A.; Alpatov, A. V.; Novosvetlova, E. E.

    2017-09-01

    The metallothermic (calcium hydride) synthesis of Ti-Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) alloys. The physicochemical and technological properties of the Ti-22Nb-6Ta and Ti-22Nb-6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.

  11. Elaboration of the hydroxyapatite with different precursors and application for the retention of the lead.

    PubMed

    Meski, S; Ziani, S; Khireddine, H; Yataghane, F; Ferguene, N

    2011-01-01

    Carbonate hydroxyapatite (CHAP) was synthesized from different precursors; synthetic (CaCO3 and Ca(OH)2) and natural (egg shell before and after calcinations at 900 degrees C) under different conditions and characterized by using TG/DTG analysis, X-ray powder diffraction (XRD) method and Fourier transform infrared (FT-IR) spectroscopy techniques. The results of these analyses indicate that the four powders present the same structure of hydroxyapatite. Furthermore the four powders obtained were used for the retention of lead. The results obtained indicated that all powders present high adsorption capacity for lead, but from environmental and economic views, the hydroxyapatite synthesized from eggshell no calcined (HA2) is most advantageous. The influence of different sorption parameters, such as: initial metal concentration, equilibration time, solution pH and sorbent dosage was studied and discussed.

  12. High temperature neutron powder diffraction study of the Cu12Sb4S13 and Cu4Sn7S16 phases

    NASA Astrophysics Data System (ADS)

    Lemoine, Pierric; Bourgès, Cédric; Barbier, Tristan; Nassif, Vivian; Cordier, Stéphane; Guilmeau, Emmanuel

    2017-03-01

    Ternary copper-containing sulfides Cu12Sb4S13 and Cu4Sn7S16 have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu12Sb4S13 and Cu4Sn7S16 phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu12Sb4S13 decomposes above ≈792 K into Cu3SbS3, and (ii) Cu4Sn7S16 decomposes above ≈891 K into Sn2S3 and a copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu3SnS4 stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu12Sb4S13 are in fair agreement with recent published data, the decomposition behavior of Cu4Sn7S16 differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu4Sn7S16 and tetrahedrite Cu12Sb4S13 phases at 300 K, and for the high temperature form of skinnerite Cu3SbS3 at 843 K.

  13. Solid state characterization and crystal structure from X-ray powder diffraction of two polymorphic forms of ranitidine base.

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van Gyseghem, Elke; Martens, Johan; Van Haele, Gerrit; Van Den Mooter, Guy

    2009-01-01

    Ranitidine hydrochloride (RAN-HCl), a known anti-ulcer drug, is the product of reaction between HCl and ranitidine base (RAN-B). RAN-HCl has been extensively studied; however this is not the case of the RAN-B. The solid state characterization of RAN-B polymorphs has been carried out using different analytical techniques (microscopy, thermal analysis, Fourier transform infrared spectrometry in the attenuated total reflection mode, (13)C-CPMAS-NMR spectroscopy and X-ray powder diffraction). The crystal structures of RAN-B form I and form II have been determined using conventional X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined using rigid-body Rietveld refinement. RAN-B form I is a monoclinic polymorph with cell parameters: a = 7.317(2), b = 9.021(2), c = 25.098(6) A, beta = 95.690(1) degrees and space group P2(1)/c. The form II is orthorhombic: a = 31.252(4), b = 13.052(2), c = 8.0892(11) A with space group Pbca. In RAN-B polymorphs, the nitro group is involved in a strong intramolecular hydrogen bond responsible for the existence of a Z configuration in the enamine portion of the molecules. A tail to tail packing motif can be denoted via intermolecular hydrogen bonds. The crystal structures of RAN-B forms are compared to those of RAN-HCl polymorphs. RAN-B polymorphs are monotropic polymorphic pairs. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  14. Protection of hydrophobic amino acids against moisture-induced deterioration in the aerosolization performance of highly hygroscopic spray-dried powders.

    PubMed

    Yu, Jiaqi; Chan, Hak-Kim; Gengenbach, Thomas; Denman, John A

    2017-10-01

    Inhalable particles containing amorphous form of drugs or excipients may absorb atmospheric moisture, causing powder aggregation and recrystallization, adversely affecting powder dispersion and lung deposition. The present study aims to explore hydrophobic amino acids for protection against moisture in spray-dried amorphous powders, using disodium cromoglycate (DSCG) as a model drug. DSCG powders were produced by co-spray drying with isoleucine (Ile), valine (Val) and methionine (Met) in various concentrations (10, 20 and 40%w/w). Particle size distribution and morphology were measured by laser diffraction and scanning electron microscopy (SEM). Physiochemical properties of the powders were characterized by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). Particle surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performance was evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH) for one month and three months. Ile, Val and Met significantly reduced the deleterious effect of moisture on aerosol performance, depending on the amount of amino acids in the formulation. Formulations containing 10% or 20% of Ile, Val and Met showed notable deterioration in aerosol performance, with fine particle fraction (FPF) reduced by 6-15% after one-month storage at both 60% and 75% RH. However, 40% Ile was able to maintain the aerosol performance of DSCG stored at 75% RH for one month, while the FPF dropped by 7.5% after three months of storage. In contrast, 40% Val or Met were able to maintain the aerosol performance at 60% RH storage but not at 75% RH. At 40%w/w ratio, these formulations had particle surface coverage of 94.5% (molar percent) of Ile, 87.1% of Val and 84.6% of Met, respectively, which may explain their moisture protection effects. Ile, Val and Met showed promising moisture protection effect on aerosol performance. The results broaden the understanding on the use of hydrophobic amino acids as an excipient for long-term storage of inhalation powders formulations that are hygroscopic. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei

    Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less

  16. Mechanical properties and negative thermal expansion of a dense rare earth formate framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhanrui; Jiang, Xingxing; Feng, Guoqiang

    The fundamental mechanical properties of a dense metal–organic framework material, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}] (1), have been studied using nanoindentation technique. The results demonstrate that the elastic moduli, hardnesses, and yield stresses on the (021)/(02−1) facets are 29.8/30.2, 1.80/1.83 and 0.93/1.01 GPa, respectively. Moreover, variable-temperature powder and single-crystal X-ray diffraction experiments reveal that framework 1 shows significant negative thermal expansion along its b axis, which can be explained by using a hinge–strut structural motif. - Graphical abstract: The structure of framework, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}], and its indicatrix of thermal expansion. - Highlights: • The elastic modulus, hardness, and yieldmore » stress properties of a rare earth metal–organic framework material were studied via nanoindentation technique. • Variable-temperature powder X-ray diffraction experiments reveal that this framework shows significant negative thermal expansion along its b axis. • Based on variable-temperature single-crystal X-ray diffraction experiments, the mechanism of negative thermal expansion can be explained by a hinge–strut structural motif.« less

  17. Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction

    DOE PAGES

    Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei; ...

    2016-11-02

    Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less

  18. Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Chatterji, Tapan; Iles, Gail N.; Ouladdiaf, Bachir; Hansen, Thomas C.

    2010-08-01

    We have investigated the magnetoelastic effects in MF2 (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature TN by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μB, 4.05 ± 0.05 μB and 1.99 ± 0.05 μB per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF2 (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.

  19. Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction.

    PubMed

    Chatterji, Tapan; Iles, Gail N; Ouladdiaf, Bachir; Hansen, Thomas C

    2010-08-11

    We have investigated the magnetoelastic effects in MF(2) (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature T(N) by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μ(B), 4.05 ± 0.05 μ(B) and 1.99 ± 0.05 μ(B) per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF(2) (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.

  20. Unified structure theory of icosahedral quasicrystals: Evidence from neutron powder diffraction patterns that AlCrFeMnSi, AlCuLiMg, and TiNiFeSi icosahedral quasicrystals are twins of cubic crystals containing about 820 or 1012 atoms in a primitive unit cube

    PubMed Central

    Pauling, Linus

    1988-01-01

    A unified structure theory of icosahedral quasicrystals, combining the twinned-cubic-crystal theory and the Penrose-tiling-six-dimensional-projection theory, is described. Values of the primitive-cubic lattice constant for several quasicrystals are evaluated from x-ray and neutron diffraction data. The fact that the low-angle diffraction maxima can be indexed with cubic unit cells provides additional support for the twinned-cubic-crystal theory of icosahedral quasicrystals. PMID:16593990

  1. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE PAGES

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...

    2016-03-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  2. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  3. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    PubMed Central

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias

    2016-01-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771

  4. Remediating Non-Positive Definite State Covariances for Collision Probability Estimation

    NASA Technical Reports Server (NTRS)

    Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.

    2017-01-01

    The NASA Conjunction Assessment Risk Analysis team estimates the probability of collision (Pc) for a set of Earth-orbiting satellites. The Pc estimation software processes satellite position+velocity states and their associated covariance matri-ces. On occasion, the software encounters non-positive definite (NPD) state co-variances, which can adversely affect or prevent the Pc estimation process. Inter-polation inaccuracies appear to account for the majority of such covariances, alt-hough other mechanisms contribute also. This paper investigates the origin of NPD state covariance matrices, three different methods for remediating these co-variances when and if necessary, and the associated effects on the Pc estimation process.

  5. Conceptions of narcissism and the DSM-5 pathological personality traits.

    PubMed

    Wright, Aidan G C; Pincus, Aaron L; Thomas, Katherine M; Hopwood, Christopher J; Markon, Kristian E; Krueger, Robert F

    2013-06-01

    The Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) features two conceptions of Narcissistic Personality Disorder (NPD), one based on the retained DSM-IV's categorical diagnosis and the other based on a model that blends impairments in personality functioning with a specific trait profile intended to recapture DSM-IV NPD. Nevertheless, the broader literature contains a richer array of potential conceptualizations of narcissism, including distinguishable perspectives from psychiatric nosology, clinical observation and theory, and social/personality psychology. This raises questions about the most advantageous pattern of traits to use to reflect various conceptions of narcissistic pathology via the Personality Inventory for the DSM-5 (PID-5). In this study, we examine the associations of the Personality Disorder Questionnaire-Narcissistic Personality Disorder scale, Narcissistic Personality Inventory-16, and the Pathological Narcissism Inventory and the PID-5 dimensions and facets in a large sample (N = 1,653) of undergraduate student participants. Results point to strong associations with PID-5 Antagonism scales across narcissism measures, consistent with the DSM-5's proposed representation of NPD. However, additional notable associations emerged with PID-5 Negative Affectivity and Psychoticism scales when considering more clinically relevant narcissism measures.

  6. Structure and thermal expansion of Ca9Gd(VO4)7: A combined powder-diffraction and dilatometric study of a Czochralski-grown crystal

    NASA Astrophysics Data System (ADS)

    Paszkowicz, Wojciech; Shekhovtsov, Alexei; Kosmyna, Miron; Loiko, Pavel; Vilejshikova, Elena; Minikayev, Roman; Romanowski, Przemysław; Wierzchowski, Wojciech; Wieteska, Krzysztof; Paulmann, Carsten; Bryleva, Ekaterina; Belikov, Konstantin; Fitch, Andrew

    2017-11-01

    Materials of the Ca9RE(VO4)7 (CRVO) formula (RE = rare earth) and whitlockite-related structures are considered for applications in optoelectronics, e.g., in white-light emitting diodes and lasers. In the CRVO structure, the RE atoms are known to share the site occupation with Ca atoms at two or three among four Ca sites, with partial occupancy values depending on the choice of the RE atom. In this work, the structure and quality of a Czochralski-grown crystal of this family, Ca9Gd(VO4)7 (CGVO), are studied using X-ray diffraction methods. The room-temperature structure is refined using the powder diffraction data collected at a high-resolution synchrotron beamline ID22 (ESRF, Grenoble); for comparison purposes, a laboratory diffraction pattern was collected and analyzed, as well. The site occupancies are discussed on the basis of comparison with literature data of isostructural synthetic crystals of the CRVO series. The results confirm the previously reported site-occupation scheme and indicate a tendency of the CGVO compound to adopt a Gd-deficient composition. Moreover, the thermal expansion coefficient is determined for CGVO as a function of temperature in the 302-1023 K range using laboratory diffraction data. Additionally, for CGVO and six other single crystals of the same family, thermal expansion is studied in the 298-473 K range, using the dilatometric data. The magnitude and anisotropy of thermal expansion, being of importance for laser applications, are discussed for these materials.

  7. Investigation of the solid state properties of amoxicillin trihydrate and the effect of powder pH.

    PubMed

    Ghassempour, Alireza; Rafati, Hasan; Adlnasab, Laleh; Bashour, Yosef; Ebrahimzadeh, Homeira; Erfan, Mohammad

    2007-11-09

    The purpose of this research was to investigate some physicochemical and solid-state properties of amoxicillin trihydrate (AMT) with different powder pH within the pharmacopoeia-specified range. AMT batches prepared using Dane salt method with the pH values from 4.39 to 4.97 were subjected to further characterization studies. Optical and scanning electron microscopy showed that different batches of AMT powders were similar in crystal habit, but the length of the crystals increased as the pH increased. Further solid-state investigations using powder x-ray diffraction (PXRD) demonstrated the same PXRD pattern, but the intensity of the peaks raised by the powder pH, indicated increased crystallinity. Differential scanning calorimetry (DSC) studies further confirmed that as the powder pH increased, the crystallinity and, hence, thermal stability of AMT powders increased. Searching for the possible cause of the variations in the solid state properties, HPLC analysis showed that despite possessing the requirements of the United States Pharmacopoeia (USP) for purity/impurity profile, there was a direct relationship between the increase of the powder pH and the purity of AMT, and also decrease in the impurity I (alpha-Hydroxyphenylglycine) concentration in AMT powder. Recrystallization studies confirmed that the powder pH could be controlled by adjusting the pH of the crystallization.

  8. The Preparation and Characterization of a Sodium Tungsten Bronze

    ERIC Educational Resources Information Center

    Conroy, Lawrence E.

    1977-01-01

    Describes an experiment that utilizes the techniques of temperature synthesis, crystallization from a molten salt, oxidation-reduction in a molten salt, powder X-ray diffraction and analysis by high temperature volatilization or a specific ion electrode. (MLH)

  9. Low temperature method for the production of calcium phosphate fillers

    PubMed Central

    Calafiori, Anna Rita; Marotta, Marcello; Nastro, Alfonso; Martino, Guglielmo

    2004-01-01

    Background Calcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity. Methods Commercial hydroxyapatite (HAp) and monetite (M) powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37–120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD), Vickers hardness test (HV), scanning electron microscopy (SEM), and porosity evaluation. Results The X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50–60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c) or Hap 50%-M 50% (f), show cohesion of the powder grains. Conclusions The dissolution-reprecipitation process is more intesive in manufactured samples (c) and (f), according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c) (f) manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues. PMID:15035671

  10. Structural Transitions in Nanosized Zn0.97Al0.03O Powders under High Pressure Analyzed by in Situ Angle-Dispersive X-ray Diffraction

    PubMed Central

    Lin, Chih-Ming; Liu, Hsin-Tzu; Zhong, Shi-Yao; Hsu, Chia-Hung; Chiu, Yi-Te; Tai, Ming-Fong; Juang, Jenh-Yih; Chuang, Yu-Chun; Liao, Yen-Fa

    2016-01-01

    Nanosized aluminum-doped zinc oxide Zn1−xAlxO (AZO) powders (AZO-NPs) with x = 0.01, 0.03, 0.06, 0.09 and 0.11 were synthesized by chemical precipitation method. The thermogravimetric analysis (TGA) indicated that the precursors were converted to oxides from hydroxides near 250 °C, which were then heated to 500 °C for subsequent thermal processes to obtain preliminary powders. The obtained preliminary powders were then calcined at 500 °C for three hours. The structure and morphology of the products were measured and characterized by angle-dispersive X-ray diffraction (ADXRD) and scanning electron microscopy (SEM). ADXRD results showed that AZO-NPs with Al content less than 11% exhibited würtzite zinc oxide structure and there was no other impurity phase in the AZO-NPs, suggesting substitutional doping of Al on Zn sites. The Zn0.97Al0.03O powders (A3ZO-NPs) with grain size of about 21.4 nm were used for high-pressure measurements. The in situ ADXRD measurements revealed that, for loading run, the pressure-induced würtzite (B4)-to-rocksalt (B1) structural phase transition began at 9.0(1) GPa. Compared to the predicted phase-transition pressure of ~12.7 GPa for pristine ZnO nanocrystals of similar grain size (~21.4 nm), the transition pressure for the present A3ZO-NPs exhibited a reduction of ~3.7 GPa. The significant reduction in phase-transition pressure is attributed to the effects of highly selective site occupation, namely Zn2+ and Al3+, were mainly found in tetrahedral and octahedral sites, respectively. PMID:28773683

  11. Synthesis and magnetic properties of the high-pressure scheelite-type GdCrO{sub 4} polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dos santos-Garcia, A.J., E-mail: adossant@quim.ucm.es; Climent-Pascual, E.; Gallardo-Amores, J.M.

    The scheelite-type polymorph of GdCrO{sub 4} has been obtained from the corresponding zircon-type compound under high pressure and temperature conditions, namely 4 GPa and 803 K. The crystal structure has been determined by X-ray powder diffraction. This GdCrO{sub 4} scheelite crystallizes in a tetragonal symmetry with space group I4{sub 1}/a (No. 88, Z=4), a=5.0501(1) A, c=11.4533(2) A and V=292.099(7) A{sup 3}. The thermal decomposition leads to the formation of the zircon-polymorph as intermediate phase at 773 K to end in the corresponding GdCrO{sub 3} distorted perovskite-structure at higher temperatures. Magnetic susceptibility and magnetization measurements suggest the existence of long-range antiferromagneticmore » interactions which have been also confirmed from specific heat measurements. Neutron powder diffraction data reveal the simultaneous antiferromagnetic Gd{sup 3+} and Cr{sup 5+} ordering in the scheelite-type GdCrO{sub 4} with a T{sub N}{approx}20 K. The magnetic propagation vector was found to be k=(0 0 0). Combined with group theory analysis, the best neutron powder diffraction fit was obtained with a collinear antiferromagnetic coupling in which the m{sub Cr{sup 5}{sup +}} and m{sub Gd{sup 3}{sup +}} magnetic moments are confined in the tetragonal basal plane according to the mixed representation {Gamma}{sub 6} Circled-Plus {Gamma}{sub 8}. Thermal decomposition of the GdCrO{sub 4} high pressure polymorph, from the scheelite-type through the zircon-type structure as intermediate to end in the GdCrO{sub 3} perovskite. Highlights: Black-Right-Pointing-Pointer New high pressure GdCrO{sub 4} polymorph crystallizing in the scheelite type structure. Black-Right-Pointing-Pointer It is an antiferromagnet with a metamagnetic transition at low magnetic fields. Black-Right-Pointing-Pointer We have determined its magnetic structure from powder neutron diffraction data. Black-Right-Pointing-Pointer Otherwise, the room pressure zircon-polymorph is a ferromagnet. Black-Right-Pointing-Pointer The paper will be a great contribution in the study of 3d-4f magnetic interactions.« less

  12. Phase transformations in xerogels of mullite composition

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Bansal, Narottam P.

    1990-01-01

    Monophasic and diphasic xerogels have been prepared as precursors for mullite (3Al203-2Si02). Monophasic xerogel was synthesized from tetraethyl orthosilicate and aluminum nitrate nanohydrate and the diphasic xerogel from colloidal suspension of silica and boehmite. The chemical and structural evolutions, as a function of thermal treatment, in these two types of sol-gel derived mullite precursor powders have been characterized by DTA, TGA, X-ray diffraction, SEM and infrared spectroscopy. Monophasic xerogel transforms to an Al-Si spinel from an amorphous structure at approximately 980 C. The spinel then changes into mullite on further heating. Diphasic xerogel forms mullite at approximately 1360 C. The components of the diphasic powder react independently up to the point of mullite formation. The transformation in the monophasic powder occurs rapidly and yields strongly crystalline mullite with no other phases present. The diphasic powder, however, transforms rather slowly and contains remnants of the starting materials (alpha-Al203, cristobalite) even after heating at high temperatures for long times (1600 C, 6 hr). The diphasic powder could be sintered to high density but not the monophasic powder in spite of its molecular level homogeneity.

  13. Surface segregation of additives on SnO 2 based powders and their relationship with macroscopic properties

    NASA Astrophysics Data System (ADS)

    Pereira, Gilberto J.; Castro, Ricardo H. R.; Hidalgo, Pilar; Gouvêa, Douglas

    2002-07-01

    Surface properties of ceramic powders frequently play an important role in producing high-quality, high-performance, and reliable ceramic products. These properties are related to the surface bond types and interactions with the surroundings. Oxide surfaces generally contain adsorbed hydroxyl groups and modifications in the chemical composition of the surface may be studied by infrared spectroscopy. In this work, we prepared SnO 2 containing Fe or Mg ions by organic chemical route derived from Pechini's method. The prepared powders were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic electrophoretic mobility and surface area determination. Results demonstrated that the studied additives segregate onto the oxide surface and modify the hydroxyl IR bands of the adsorbed hydroxyl groups. These surface modifications change some macroscopic properties of the powder such as the isoelectric point (IEP) in aqueous suspensions and the final specific surface area. The increase of the surface area with additive concentration is supposedly due to the reduction of surface energy of the powders when additives segregate on the powder surface.

  14. One pot synthesis of pure micro/nano photoactive α-PbO crystals

    NASA Astrophysics Data System (ADS)

    Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit

    2018-05-01

    The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.

  15. Evaluation of drug-carrier interactions in quaternary powder mixtures containing perindopril tert-butylamine and indapamide.

    PubMed

    Voelkel, Adam; Milczewska, Kasylda; Teżyk, Michał; Milanowski, Bartłomiej; Lulek, Janina

    2016-04-30

    Interactions occurring between components in the quaternary powder mixtures consisting of perindopril tert-butylamine, indapamide (active pharmaceutical ingredients), carrier substance and hydrophobic colloidal silica were examined. Two grades of lactose monohydrate: Spherolac(®) 100 and Granulac(®) 200 and two types of microcrystalline cellulose: M101D+ and Vivapur(®) 102 were used as carriers. We determined the size distribution (laser diffraction method), morphology (scanning electron microscopy) and a specific surface area of the powder particles (by nitrogen adsorption-desorption). For the determination of the surface energy of powder mixtures the method of inverse gas chromatography was applied. Investigated mixtures were characterized by surface parameters (dispersive component of surface energy, specific interactions parameters, specific surface area), work of adhesion and cohesion as well as Flory-Huggins parameter χ23('). Results obtained for all quaternary powder mixtures indicate existence of interactions between components. The strongest interactions occur for both blends with different types of microcrystalline cellulose (PM-1 and PM-4) while much weaker ones for powder mixtures with various types of lactose (PM-2 and PM-3). Published by Elsevier B.V.

  16. A multi-analytical approach for the characterization of powders from the Pompeii archaeological site.

    PubMed

    Canevali, Carmen; Gentile, Paolo; Orlandi, Marco; Modugno, Francesca; Lucejko, Jeannette Jacqueline; Colombini, Maria Perla; Brambilla, Laura; Goidanich, Sara; Riedo, Chiara; Chiantore, Oscar; Baraldi, Pietro; Baraldi, Cecilia; Gamberini, Maria Cristina

    2011-10-01

    Nine black powders found in Pompeii houses in three different types of bronze vessels (cylindrical theca atramentaria, unguentaries, and aryballoi) were characterized in order to assess a correspondence between the composition and the type of vessel and, possibly, to verify if these powders were inks or not. For the compositional characterization, a multi-analytical approach was adopted, which involved the use of scanning electron microscopy-energy dispersive X-ray, Fourier-transformed infrared spectroscopy, Raman, X-ray diffraction, electron paramagnetic resonance spectroscopy, thermogravimetric analysis, gas chromatography coupled with mass spectrometry (GC/MS), and pyrolysis GC/MS. Powders contained in cylindrical theca atramentaria form a homogeneous group, and their organic and inorganic compositions suggest that they were writing inks, while powders contained in unguentaries and aryballoi could have had several different uses, including writing inks and cosmetics. Furthermore, the composition profile of the powders found in cylindrical cases shows that, at 79 AD: , in Pompeii, carbon-based inks were still used for writing, and iron gall inks had not been introduced yet.

  17. Microstructural changes in NiFe{sub 2}O{sub 4} ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K.; Bokolia, Renuka

    2016-05-23

    Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{submore » 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.« less

  18. CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua

    2012-01-01

    Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.

  19. Influence of Powder Metallurgical Processing Routes on Phase Formations in a Multicomponent NbSi-Alloy

    NASA Astrophysics Data System (ADS)

    Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.

    2014-09-01

    Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.

  20. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

Top